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1. Input data format and commands to import and plot the experimental XANES data 

The experimental input data file must consist of a .dat or .txt file formatted in the following way: the first 

column must contain the energy values while the following columns must be filled by the related 

absorption coefficients acquired during a time-dependent variation of a physical/chemical variable (e.g. 

time, temperature, PH … ect). It is worth noting that to every XANES spectrum must correspond the 

same energy column. This fact implies that the number of points, characterising each XANES spectrum, 

must be equals to the number of points sited in the energy column. The PCA module allows the user to 

perform the data normalization (see Section 3.1), however it is recommended to use as a input file a set 

of XANES spectra already normalized for their absorption jump. This process can be realised by the 

external XAS data analysis software such us ATHENA [1]. An example of a correctly formatted input 

file is reported in Figure 1. 

�

Figure 1: Example of a proper formatted input dataset. The energy columns must be followed by the related spectra 

located in the columns of the data file. 

The data file name be passed as argument to the function openFile as: dataFileBrowser = 

openFile(‘file_name.dat (or.txt)’). The following cell, containing the function 

plot_data(energy,data) allows to visualise the experimental data before the statistical analysis and 

the related spectral decomposition. In the same cell, user can modify the data energy range (selecting the 

regions where the data variation is more significant) adding and executing the following code lines: 

e_Min= minimum value chosen ; e_Max= maximum value chosen 

e_Min_near=min(energy, key=lambda x:abs(x-e_Min)); e_Max_near=min(energy, 
key=lambda x:abs(x-e_Max)) 

p_Min=list(energy).index(e_Min_near);p_Max=list(energy).index(e_Max_near) 

energy=energy[p_Min:p_Max]; data=data[p_Min:p:Max] 

2. Statistical Analysis of the Experimental Dataset 

2.1. Principal Component Analysis (PCA) on the experimental XANES dataset 

The calcSVD(data)performs the Singular Value Decomposition (SVD) of the XANES data matrix. 

Starting from this procedure, the eigenvalues (l) of the covariance matrix associated to the original dataset 

and the data projections over its eigenvectors (principal_components) are retrieved. This two output 

are at the basis of the statistical and empirical results provided by the following functions (see Sections 2.2 

and 2.3). 

All the following pictures refer to the PtH.dat file. 



2.2. Calculations and graphical representation of the statistical parameters used to identify the 

exact number of principal components (PCs) 

Function MalinowskyParameters(data, l) returns the statistical parameters: IND, IE and the 

percentage of significance (F) associated to each PC together with the principal dimensions pc (or 

component number). These values can be saved in a .txt file inside the sub-folder results in the PCA folder 

by the command saveToFile('results/statistic.dat', statistic). The same command 

is also used to save the l-values (i.e. the variance associated to each PC). Each of this statistic parameters 

can be plotted vs the number of the principal dimensions. This purpose is realised by the command 

plotTestStatistic(statistic, pc, l). The graphical output of this function is reported in 

Figure 2. 

�

Figure 2: Graphical representation of the statistical parameters used to identify the correct (signal-related) number of 

PCs. All four test show a number of signal-related PCs equal to three. 

�

A detailed description about the usage and the interpretation of each of these parameters can be found in 

books [2, 3] and in Section 2.2 of the reference text for PyFitIt [5]. In the following, only a brief and 

practical description is given for each of them. 

• Scree Plot: In the scree plot each variance value contained in the l array (i.e. the eigenvalues of the 

data covariance matrix) is plotted vs its related PC. Because of noise, non-signal related components 

will be characterized by similar values of variance. For this reason, these PCs will be localized 

around a common flat line. This implies that the correct number of signal related PCs must be 

chosen as the elbow point of the graph. 

• IE and IND: The imbedded error (IE) function and the Factor indicator function (IND) are two an 

empirical function developed to identify those PCs related to noise without relying upon an estimate 

of the error associated with the data matrix. For both of them the correct number of 

physical/chemical PCs must be identified in their minimum value. It is worth to mention that the 

IND function usually seems to be more sensitive than IE to identify the true dimensionality of the 

dataset [2-4]. 

• F-Test: The decision of what components correspond to the noise and what are the signal-related 

PCs can be made also on the basis of the Fisher test of the variance associated j
th
 PC and the summed 

variances associated with noise components. The j
th
 PC is accepted as a signal-related component is 

if the percentage of significance level (%SL) for the F-test is lower than some test level, generally 
5%. 



Finally, function recommendPCnumber(statistic) returns, see Figure 3, the minimum value of the 

IND function (more precise then IE, as told before) and the number of PCs having a %SL located under a 

test level fixed to 5% (generally used). 

�

Figure 3: Output of the�recommendPCnumber function. 

�

2.3. Qualitative estimation of the exact number of PCs 

The qualitative analysis of the PCs extracted by SVD can help to identify the correct number of components 

related to physical variation of signals. It is worth noting that the number of point characterising each PC is 

equal to the number of points of the energy column. This fact implies that each PC can be plotted vs the 

column energy and interpreted as an abstract spectrum without any chemical/physical meaning. The function 

plotPCAcomponents(energy, principal_components) allows to plot each abstract 

component and test if or not it takes account for the noise contribution.  

�

Figure 4: Abstract Components plot. (a) Not normalized components. (b) Normalized components. 

Figure 4(a,b) shows the output of this function. The Component arrows allow to increment or reduce the 

number of components visualised while the Switching radio button enables to visualise them in a normalised 

form (each abstract spectrum is divided by the area) magnifying their noisy features (see for an example) 



�

Figure 5: Plot of the first five normalized abstract components applying the normalization condition. While for the 

third abstract component some physical signal features are present in the range between 11560-11580 eV ( see Figure 

4(a,b)), the forth and the fifth components are completely dominated by noise and they can not be considered physical. 

Finally, the PCAcomparison(energy,data) function can be used to identify the proper number of 

PCs. It creates the plot showed in Figure 6(a,b).  

�

Figure 6: (a) Reconstruction of the first spectrum of the dataset using 1 PC. How it is possible to see the residual plot 

shows traces of signal features between 11555 and 11580 eV. (b) Reconstruction of the same spectrum using 3 PCs. In 

this case the residual plot is characterized only by noise features. 

User can select a determined spectrum in the dataset and then, by means of command Component, he can 

reconstruct the spectrum increasing progressively the number of components. The inset in the main plot 

shows the residual plot. The correct number of PCs must correspond to the minimum number of components 

able to report in the residual plot only noise features, as represented in Figure 6(b). 

3. Spectral decomposition of the experimental dataset 

3.1. Data pre-treatment 

In order to perform a correct decomposition of the input dataset in a reduced set of pure independent spectra, 

each experimental spectrum �� must be normalised using the following scale factor: 
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Where ���
 and ��	

 are the minimum and maximum values of the energy range where spectra are defined. 

This step is realised by the command normalization(energy,data) and it is mandatory. It can be 

realised at the beginning of the analysis (i.e. before the statistical analysis, moving the command in the first 

cells before the plot_data function) or just before the Target Transformation procedure. It is worth 



noting that higher will be the number of points characterizing each experimental spectrum, more accurate 

will be the normalization result. For this reason, before this step, user can interpolate the experimental 

spectra with a finer sampling interval changing the step parameter in the function: 

interpolation(energy,data,step=0.05). The new energy values can be saved through the 

command: np.savetxt(‘Energy.dat’,energy). Clearly, as for the normalization function, also 

this command can be moved in the upper cells. 

3.2. The Target Transformation Function 

The targetTransformationPCA function allow to retrieve, from the experimental dataset, a set of 

pure spectra and their related concentration profiles having a well defined physical/chemical meaning. This 

technique foresees the usage of a transformation matrix whose elements can be directly modified by user 

moving some sliders, see Figure 7 . Once that the number of PCs has been identified, two working 

configuration are available.  

• Case: 1: The "pure" spectral profiles are not normalized. Herein, user can choose between four 

options: 

i. No Constraints: No constraints are fixed.  

ii. 1
st
 spectrum fixed: The first column of the transformation matrix is defined in order to fix as 

a pure spectrum the first experimental spectrum in the dataset.  

iii. Last Spectrum fixed: The last column of the transformation matrix is defined in order to fix 

as a pure spectrum the last experimental spectrum in the dataset.  

iv. 1
st
 and Last spectrum fixed: The firs and the last columns of the transformation matrix are 

defined in order to fix as a pure spectra the first and the last experimental spectrum in the 

dataset. 

• Case 2: The Normalization is imposed as a constraint. For a detailed description of this kind of 

constrain, user can refer to the Supporting information of [5]. As for Case 1, user can require that the 

first or the last (or both) experimental spectrum/a in the input dataset could be considered as a pure 

spectrum/a. The radio buttons in this case assume the following name: 

i. Normalization: only the normalization constraint is fixed. 

ii. Norm. and 1
st
 spectrum: normalization of the pure spectral profiles is fixed together with the 

request that the first spectrum is considered pure. 

iii. Norm. and last spectrum: normalization of the pure spectral profiles is fixed together with 

the request that the last spectra is considered pure. 

iv. Norm., 1
st
 and last spectrum: normalization of the pure spectral profiles is fixed together 

with the request that the first and last spectra are considered pure. 

Clearly if user wants to fix as a pure spectrum any other spectrum in the dataset, he can put it at the 

beginning or at the end of the data matrix and execute the function. 

Keeping account of all this variety of constraints, the number of sliders that can be accessible by users are 

given by the following equation: 
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The targetTransformationPCA functions reads the following inputs: (energy,data,sign=-

1,min_val=-5,max_val=5,step_val=0.05). The min_val and max_val provide the range of 

variation of each slider, while step_val the related step of variation. Finally the sign=-1 prevents the 

reversal of the retreived pure components due to the SVD algorithm in presence of the normalisation 

constraint. In case those spectra are affected by this problem, user must change the sign value from -1 to 

+1. 



Finally, it is worth to mention that this technique foresees the usage of a transformation square matrix. When 

the function is called for the first time, the output is a blank plot near a null matrix of dimension N
2
. When 

user starts to move the matrix elements by sliders or impose some constraints plots appear. However, it is 

worth noting that when transformation matrix is a singular matrix the Penrose pseudoinverse approach is 

applied allowing an approximate solution of the problem. Any time that a singular matrix is encountered the 

matrix rank is always lower than the number of PCs chosen. 

 

 

�

Figure 7: Pure Spectral and Concentration profiles obtained modifying by sliders the transformation matrix showed on 

the right. 

4. Saving Data and Images 

The pure spectra and their concentration values are saved, in the default folder results in PCA, by means 

of the following commands: 

• saveToFile('results/params.txt', pcaResult.params): saves the elements 

of the transformation matrix. 

• saveToFile('results/Pure Spectra.txt', pcaResult.pureSpectra): 

saves the pure spectral profiles. 

• saveToFile('results/Pure Concentrations.txt', 

pcaResult.pureConcentrations): saves the pure concentration profiles. 

• pcaResult.fig.savefig('results/image.png', dpi=200): saves the plot 

produced by the targetTransformationPCA function. 
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