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The major part of the code is hidden from user in the list of Python library files, located in pyfitit folder. 

The control panel is represented by several Jupyter Notebooks which help to setup calculations and 

visualize results. Places in the Notebooks which must be adopted by user are highlighted by #Modify tag. 

The same places in the Manual are highlighted by color. 

 

0. Fitting smooth 

This is a preparation step which helps to adjust parameters of convolution and shift between theoretical 

spectra and experimental ones 

 

0.1 Import experimental spectrum  

 

expSpectrum = readSpectrum('exp_ground.txt', energyColumn=0, 

intensityColumn=1,  

skiprows = 1) 

 

parameters energyColumn, intensityColumn are used to specify which columns in file with experimental 

spectrum should be used for plotting, skiprows helps to avoid headers. 

 

project = createPartialProject(expSpectrum = expSpectrum, fdmnesShift = 7113) 

 

specify here roughly the shift between calculated and experimental spectrum 

 

0.2 Import theoretical spectrum 

 

xanes = parseFdmnesFolder('fdmnes_fdm_5') 

 

specify the folder of FDMNES calculation, which should be copied to the folder with Jupyter Notebook 

file. Inside FDMNES folder the standard files of calculation should be present: fdmfile, input file and 

output file (without renaming them after calculation). 

 

1. Create a project 

Place in the working folder XYZ file with the structure and file with experimental spectrum (arbitrary 

header, two columns: energy and XANES). 

 

1.1 Name of the XYZ structure file:  

 

m = Molecule(join(projectFolder,'Fe_terpy.xyz')) 

 

1.2 Split molecule into parts. 

Each part is described by the string which contains atomic numbers from xyz file. By default (when 

setParts is not used), all atoms in the molecule belong to part 0. 



 

m.setParts('0', '1-9', '10-19', '20-29', '30-38', '39-48', '49-58') 

 

where atom 0 was attached to part 0, atoms 1-9 to part 1, atoms 10-19 to part 2 and so on (numeration in 

Python starts always from 0).  
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Figure 1. Atom '0' is central orange Fe atom, atoms '1-9' in part 1 are highlighted in left panel, atoms '10-

19' in part 2 and '20-29' in part 3 are highlighted in the right panel.  

 

User can select any atoms to group, e.g.:  

 

m.setParts('0', '1, 2, 5', '3, 4, 6-11', '12-29', '30-38', '39-48', '49-58') 

 

Then coordinates of e.g. twelfth atom (python index 11), which belongs to the third part (python index 2) 

can be accessed by two equivalent commands m.atom[11] or m.part[2].atom[1]. User can 

further modify positions of the atoms: 

 

m.atom[0] = [1,1,1] 

 

1.3 Define deformations. 

Each deformation is described by its name, parts involved, axis and type.  

Example 1: 

 

deformation = 'centralRing1_Shift' 

axis = normalize(m.atom[1] - m.atom[0]) 

m.part[1].shift(axis*params[deformation]) 

 



This example describes deformation named 'centralRing1_Shift', which corresponds to the translation of 

part 1 along bond between atoms 1 and 0 (see Figure 1). Array params[deformation] specifies the 

sliders with the name of deformations which will be used further for fitting. 

 

Example 2: 

 

deformation = 'centralRing1_Rotate' 

axis = normalize(m.atom[1] - m.atom[0]) 

m.part[1].rotate(axis, m.atom[0], 

params[deformation]) 

 

This example describes deformation named 'centralRing1_Rotate', which corresponds to the rotation of 

part 1 around the axis parallel to the bond between atoms 1 and 0, which passes through atom 0. 

 

Example 3: 

deformation = 'sideRings1_Elong' 

axis1 = normalize(m.atom[10] - m.atom[0]) 

axis2 = normalize(m.atom[20] - m.atom[0]) 

m.part[2].shift(axis1*params[deformation]) 

m.part[3].shift(axis2*params[deformation]) 

 

This example describes deformation named 'sideRings1_Elong', which corresponds to the 

simultaneous translation of part 2 along bond between atoms 10 and 0 and part 3 along bond 

between atoms 20 and 0 (see Figure 1). Shift is a vector and specified in the example above via axis. It 

can also be specified by a vector as [1,0,1]. 

 

The blocks provided in examples are repeated for each required deformation. User can rotate and shift 

either part or the whole molecule:  

 

m.rotate(axis, center, angle) 

m.part[0].rotate(axis, center, angle) 

m.shift(shift) 

m.part[0].shift(shift) 

 

The axis command specifies the axis for rotation. It can be written as a vector in squared brackets, e.g. 

axis = [0,1,0] or using coordinates of atoms, e.g. axis = m.atom[0] moreover, given two 

axis, it is possible to define their differences and even their vector product as axis = cross(v1, 
v2). The angle of rotation is specified in radians (see below). To facilitate the implementation of 

geometric transformations and shorten the code we introduced functions that work with the positions of 

atoms as vectors: 
 
v = m.part[0][0] 
v = v / norm(v) 
axis = cross(v,vc) 
m1 = copy(m) 



 

cross - vector product 

dot - scalar product 

norm - Euclidean vector norm 

copy - creates a copy of this molecule 

 

1.4 Name of the file with experiment.   

 

def projectConstructor(expFile='exp_ground.txt'): 

 

place file with experiment in the same folder with Jupyter Notebook 

 

1.5 Load experimental spectrum 

 

project.spectrum = readSpectrum(filePath, energyColumn=0, intensityColumn=1, 

skiprows = 1) 

 

Specify energy and XANES column numbers (numbering starts from zero) and number of header lines to 

skip. 

 

1.6 Number of spectrum points for fitting 

 

project.maxSpectrumPoints = 100 

 

To save computational time the convolution for selected part of spectrum (see p.1.7) is calculated only for 

a given number of points. The density of this points is larger in energy intervals where experimental 

spectrum varies more.  

 

1.7 Energy interval for fitting.  

 

a = 7113; b = 7213 

 

1.8 Ranges of deformations.  

 

project.geometryParamRanges = { 

'centralRing1_Shift': [-0.3, 0.5],  

'sideRings1_Shift': [-0.3, 0.5],  

'sideRings1_Elong': [-0.3, 0.5],  

'centralRing2_Shift': [-0.3, 0.5],  

'sideRings2_Shift': [-0.3, 0.5],  

'sideRings2_Elong': [-0.3, 0.5] 

} 

 

Specify the ranges of deformations, described previously in Section 1.3. For angles, the ranges are 

specified in radians. 

 



1.9 Parameters of FDMNES calculation.  

 

project.FDMNES_calc = { 
'Energy range': '-15 0.02 8 0.1 18 0.5 30 2 54 3 117', 

'Green': False, 

'radius': 5, 

} 

 

Specify the energy grid for calculation of theoretical spectrum, whether multiple scattering approximation 

in muffin tin potential is used or not ('Green': False or 'Green': True) and radius of cluster for 

calculations. Other parameters of FDMNES calculations can also be tuned. See the whole list of 

accessible commands the fdmnes.py file inside script folder pyfitit. 

 

1.10. Default parameters for convolution. 

 

project.FDMNES_smooth = { 

'Gamma_hole': 2, 

'Ecent': 25, 

'Elarg': 50, 

'Gamma_max': 15, 

'Efermi': 5, 

'shift': 7113, 

} 

 

See FDMNES manual, section Energy Convolution for explanation of these parameters. 

 

1.11 Check deformations 

Execute commands: 

 

project = projectConstructor() 

project.constructMoleculesForEdgePoints() 

 

and check XYZ files created in the project directory, which correspond to the molecules with applied 

deformations (p.1.3 and 1.9). Molecules are saved in files mol_param_value.xyz. 

 

1.12 Save project 

 

saveAsProject('FeterpyProject.py') 

 

Comments: 

 

The function moleculeConstructor must have two arguments: project and params. Parameter 

project is the project in which the molecule will be used. This variable can be useful in cases where 

the process of creating a molecule depends on the settings of the entire project. Parameter params 

defines the geometric parameters that are used to create the molecule. These parameters are configured by 

the user and correspond to the sliders in the fitting spectrum function fitBySliders.  



 

2. Calculate XANES for a set of geometries 

2.2 Generate input files for XANES training set 

 

folder = 'sample' 

generateInputFiles(project.geometryParamRanges, 

project.moleculeConstructor, sampleCount=100,  

method='IHS', spectralProgram='fdmnes', 

spectrCalcParams = project.FDMNES_calc,  

folder=folder) 

 

Alternatives to IHS 

method = 'grid', sampleCount = {'centralRing1_Shift': 5, 'sideRings1_Shift': 

5, 'sideRings1_Elong': 5, 'centralRing2_Shift': 5, 'sideRings2_Shift': 5, 

'sideRings2_Elong': 5} 

 

method = 'random', sampleCount = 100 

 

method = 'line', sampleCount = 100, Optional: lineEdges = {'start':{...}, 

'end':{...}} 

for lineEdges  

 

The function generateInputFiles in user define folder creates subfolders for each sampling point in 

the structural parameters space. The number of points for each calculation is specified by the variable 

sampleCount, and user can select one of the three methods to distribute points in the space of structural 

parameters: method = 'IHS', 'grid' or 'random'. Parameters for calculations by FDMNES are taken 

from project parameter FDMNES_calc, specified (see Section 1.10) 

 

2.3 Generate input files for supplementary XANES training set (compare different machine learning 

methods) 

 

folderCompare = 'sample_compareMethods' 

generateInputFiles(project.geometryParamRanges, project.moleculeConstructor, 

sampleCount=200,  

method='line', spectralProgram='fdmnes', spectrCalcParams = 

project.FDMNES_calc,  

folder=folderCompare, 

lineEdges={'start':{'centralRing1_Shift': 0, 'sideRings1_Shift': 0, 

'sideRings1_Elong': 0,  

'centralRing2_Shift': 0, 'sideRings2_Shift': 0, 'sideRings2_Elong': 0},  

'end':{'centralRing1_Shift': -0.3, 'sideRings1_Shift': 0.5, 

'sideRings1_Elong': 0.5,  

'centralRing2_Shift': 0.5, 'sideRings2_Shift': -0.3, 'sideRings2_Elong': -

0.3}}) 

 

2.4 Save this file as python script and execute remotely on cluster. 

 



saveAsScript('sample.py') 

 

Calculations can be also executed remotely. To proceed, user should generate a script file from this 

notebook by the execution of the command saveAsScript or by saving it manually from the main 

menu through the command File→Download as → Python (.py) 

 

Install PyFitIt on you cluster using instructions on the website hpc.nano.sfedu.ru/pyfitit 

 

Copy project file, generated python script, file with experiment to a folder at remote cluster. 

 

Before executing script specify following parameters: 

 

• In function calcSpectra change runType='local' to runType='run-cluster' if you 

use cluster Blokhin. For example, if you want to run in parallel calculations for 10 structures and 

parallelize each calculation on 6 cores you should specify: 

calcSpectra(spectralProgram='fdmnes', runType='run-cluster', nProcs=6, 

memory=5000, calcSampleInParallel=10, folder=folder) 

• in function calcSpectra change runType='local' to runType='user defined' and add 

to this function parameter runCmd='command' where command runs fdmnes on your cluster. 

For example, if your cluster uses slurm and you want to run in parallel calculations for 10 

structures and parallelize each calculation on 4 cores you should specify:  

calcSpectra(spectralProgram='fdmnes', runType='user defined', runCmd =  

'srun -n 4 fdmnes' calcSampleInParallel=10, folder=folder) 

 

Command sample.py will work for a long time. Therefore, it should be executed in background or by 

using manager Tmux. To run in background, you may use command: 

python sample.py  >  log.txt  2>&1  & 

(instead of name sample you should specify your name of script) 

 

To run program in Tmux manager user should start this manager by command “tmux” or attach to the 

existing tmux session “tmux a” and execute python sample.py (for example in Blokhin cluster you 

should use /opt/anaconda/bin/python sample.py) 

 

2.5 Attention. Start xanes calculation on local computer (can be too long) 

 

calcSpectra(spectralProgram='fdmnes', runType='local', 

calcSampleInParallel=4, folder=folder) 

calcSpectra(spectralProgram='fdmnes', runType='local', 

calcSampleInParallel=4, folder=folderCompare) 

 

Function calcSpectra starts sequential or parallel calculation of spectra for generated input files. 

 

2.6 Collect results into two files: params.txt and xanes.txt 

 

collectResults(folder=folder, outputFolder=folder+'_result') 



collectResults(folder=folderCompare, outputFolder=folderCompare+'_result') 

 

The function collectResults creates two files from the separate calculations. These are composed by 

a first file characterized by all theoretical spectra and a second file with the corresponding structural 

parameters.  

 

3. Inverse approach 

3.1 Import project file and experiment 

 

project = loadProject('FeterpyProject.py', expFile = 'exp_excited.txt') 

 

3.2 Import training set 

 

sample = readSample('IHS_729') 

sampleCompare = readSample('line_200') 

 

Specify the folders inside project folder where files params.txt and spectra.txt are located (these files were 

created in Section 2.6) 

 

3.3 Compare different machine learning methods 

This is optional step. If supplementary training set was also calculated (see Section 2.5) then quality of 

available machine learning methods is compared on the basis of supplementary points, which represent a 

line in the space of structural parameters. 

 

compareDifferentInverseMethods(sampleTrain = sample, sampleTest = 

sampleCompare,  

energyPoint=7143, geometryParam='centralRing1_Shift', 

project=project, folderToSaveResult = 'results/inverseMethodsCompare') 

 

this function trains ML algorithm on the basis of training sample (sample) and predicts spectrum for 

given set of points (sampleCompare). Choose one energy point (energyPoint) of spectrum. Chose any 

geometryParam (specified in Section 1.3) which will be shown on the x-axis to specify the steps along 

the line. Results will be written to the folder specified in variable folderToSaveResult. 

 

Two graphs appear which show exact values, calculated by FDMNES along the line and predicted by 

different ML methods. Second graph shows absolute values of errors for different methods relative to the 

exact calculation. 

 

3.4 Construct the inverse estimator 

 

inverseEstimator = constructInverseEstimator('Extra Trees', project, 

project.FDMNES_smooth,  

CVcount=4, folderToSaveCVresult='results/inverseEstimator_CVresult') 

 



CVcount – the parameter to specify parts of training set used for cross validation. 4 means that ¼ of 

whole training set will be used for cross-validation and ¾ - for training. The cross-validation will be 

repeated 4 times – for all different 4 parts of training set and results will be averaged. 

 

3.5 Train the estimator 

 

inverseEstimator.fit(sample) 

 

3.6 Start automatic fit 

 

inverseMethod.findGlobalL2NormMinimum(1, inverseEstimator, folderToSaveResult 

= 'results/inverseMethodResults') 

 

the first parameter specifies number of minimums to search. The minimums are obtained in random order 

and then sorted. Note that for RBF method the search procedure can be long. 

 

4. Direct approach 

4.1 Importing experiment data 

 

project = loadProject('FeterpyProject_combined.py', expFile = 

'exp_excited.txt') 

 

we use combined training set here, where we grouped 6 different parameters of Feterpy molecule into 3 to 

avoid ambiguity in prediction. 

 

4.2 Importing XANES calculated for support points 

 

sample = readSample('IHS_combined') 

 

4.3 Construct the direct estimator 

 

directEstimator = constructDirectEstimator('RBF', project, 

project.FDMNES_smooth, CVcount=4) 

 

Specify given ML method: 'Ridge', 'Ridge Quadric', 'Extra Trees', 'RBF', 'LightGBM', 'NN' 

 

4.4 Train the estimator 

 

directEstimator.fit(sample) 

 

4.5 Predict the geometry for experimetal data 

 

directEstimator.predict(project.spectrum, folderToSaveResult = 

'results/directMethodResults', smooth=False) 

 

4.6 Predict Radial Distribution 



 

m = project.moleculeConstructor({'centralRings_Shift': 0.25, 

'sideRings_Elong': 0.17, 'sideRings_Shift': 0}) 

 

specify the parameters of the molecule to display along with predicted structural parameters. 

 

directEstimator.predictRDF(project.spectrum, folderToSaveResult = 

'results/directMethodResults',  

atoms = [1, 30, 49, 20], smooth=False, check=False,  

extraMolecules={'best fit':m}) 

 

atoms are the numbers of atoms in xyz file which positions will be predicted 

smooth=False, check=False are set because we work with experiment which should not be 

additionally convoluted. 

extraMolecules is used to display RDF for a specified by user above (for visualization only) 

 

predictRDF predicts sorted distances to specified atoms (i.e. predicted four values are for atoms 

1,30,49,20, but not exactly in the same order as initially specified if distances changed relative to their 

initial values) and plots distribution function as sum of gaussian with sigma equal to root mean square 

error calculated by cross-validation. 

 

4.7 Predict Angular Distribution 

 

directEstimator.predictAngleDF(project.spectrum, folderToSaveResult = 

'results/directMethodResults',  

atoms = [1, 30, 49, 20], smooth=False, angleCount=50, sigma=10, check=False,  

extraMolecules={'best fit':m}) 

 

this method predicts directly angular distribution function in each point. I.e. for each structure in training 

set the angular distribution function is calculated using parameters - angleCount (number of points to 

approximate distribution function) and sigma (parameter of the Gaussian to model the distribution 

function width). Then algorithm is trained to predict each point of distribution function independently 

using all points of XANES spectrum. 

 

For smaller sigma user needs to set larger value of angleCount (calculation time is proportional to 

angleCount) 

 

5. Fitting XANES by sliders 

5.1 Importing experiment data 

 

project = loadProject('FeterpyProject.py', expFile = 'exp_excited.txt') 
specify the name of project file and file with experiment 

 

5.2 Importing XANES calculated for training set 

 
sample = readSample('IHS_729') 



specify folder with calculated training set – files params.txt (contains all parameters of deformations) and 

spectra.txt (contains spectra for each deformation) 

5.3 Fitting XANES by sliders 

 

fitResult = fitBySliders(sample, project) 

 
 

For slow methods – RBF or lightGBM set option “smooth before prediction”. This will imply 

approximation of spectra only on the number of points specified in parameter 

project.maxSpectrumPoints = 100 (see section 1.6). Otherwise all points calculated by FDMNES 

will be used. 

 

To see changes of spectra drag slider to the specified position and drop it or specify a required number on 

the right hand side from slider. 

 

5.4 Save results to files 


