
bfit: A Python Application For Beta-Detected NMR

Derek Fujimoto1, 2, ∗

1Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
2Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

(Dated: June 22, 2021)

Beta-detected nuclear magnetic resonance (β-NMR) measures the beta-decay of probe radioactive
nuclei to infer the electromagnetic character of the probe’s local environment. Similar to muon spin
rotation (µSR), this technique allows for unique insight of material properties not easily measured
by conventional NMR. The bfit package provides a graphical user interface (GUI) and application
programming interface (API) to facilitate the analysis of implanted-ion β-NMR measurements taken
at TRIUMF.

I. BACKGROUND

β-NMR leverages the parity-violating nuclear weak in-
teraction to measure the spin precession of a ensemble
of radioactive probe nuclei.1 These nuclei can either be
activated by neutrons or implanted as a foreign species
in the form of a low-energy particle beam. Upon decay,
the direction of the emitted electron is correlated with the
nuclear spin orientation. As with many nuclear and parti-
cle physics experiments, the data collected is the counted
number of electrons emitted in a given direction. These
counts are then histogrammed and processed to yield a
signal of interest.

The activation or implantation of the probe nuclei re-
quire high-intensity particle beams, restricting the tech-
nique to large nationally-supported facilities. Even to-
day, there are only a handful of locations capable of con-
ducting β-NMR measurements, such as TRIUMF, which
is situated in Vancouver, Canada. This facility has been
running β-NMR experiments for the past 20 years, and
has developed the Muon Data (MUD) file format2 as a
means of storing µSR and β-NMR data.

II. STATEMENT OF NEED

At TRIUMF, β-NMR receives approximately 5 weeks
of radioactive beam time per year. As with other large-
facility experiments employing particle beams, this data
is extremely limited and expensive to generate. Having
the tools for rapid on-line analysis is therefore crucial for
efficient and informed measurement. Additionally, many
of the experimenters using the β-NMR spectrometer are
visiting scientists or students who have little experience
with the technical aspects of the measurement.

As with many older science applications, the MUD API
is written in C and FORTRAN. These statically-typed
and compiled languages are known for their computa-
tional efficiency, but are accompanied by long develop-
ment times, relative to modern languages. In many com-
munities, scientific computing has shifted to languages
such as Python: a dynamically-typed and interpreted
language. As a result, Python has amassed a massive li-
brary of data analysis tools.3 The short development time

of Python programs is particularly important in the con-
text of scientific analyses, which are typically run only
a few times by select individuals. As a result, the de-
velopment time of the analysis code comprises a large
part of the program’s effective run time. The aim of this
work is to bring this rapid prototyping style of analysis
to β-NMR. To further streamline on-line analyses, bfit
provides an intuitive GUI capable of a moderately high
degree of sophistication.

It should be acknowledged that, while a large body of
analysis software exists to support µSR workers (such as
WIMDA,4 MANTID,5 and Musrfit6), β-NMR does not
have a comparably extensive suite of maintained analysis
programs. While there have been some recent improve-
ments to this situation,7 the analysis required for any
non-trivial β-NMR experiment necessitates the develop-
ment of new code to meet the individual requirements of
each experiment. While such code may employ Musrfit,
which is compatible with the MUD file format, this ap-
proach may be cumbersome for complex or rapid analy-
ses, and presents a entry high entry barrier for new users.
The Python API of bfit is well suited for addressing
these issues.

III. USAGE AND FEATURES

The bfit GUI has three primary functions which are
contained in the Inspect, Fetch, and Fit tabs. The pur-
pose of the Inspect tab (shown below) is to quickly view
the file headers and plot the data in order to detect and
solve problems as they may arise during measurement.
The Fetch tab has been designed to prepare the data for
analysis, loading runs in batch and allowing the user to
draw and compare each run. The Fit tab provides the
tools needed to fit a model to the data, and to view and
analyze the result. These tools include global fitting (i.e.,
sharing fit parameters between data sets), constrained
fitting (i.e., constraining a parameter to follow a specific
model dependent on the experimental conditions, such
as temperature), non-trivial fitting functions specific to
pulsed-beam operation, multiple minimization routines,
and more.

While the GUI greatly facilitates rapid on-line anal-

https://github.com/dfujim/bfit
https://github.com/dfujim/bfit
https://github.com/dfujim/bfit
https://github.com/dfujim/bfit


2

FIG. 1. The inspection tab of the bfit GUI.

ysis, the bfit API provides the flexibility needed for
publishable analyses. The analysis tools and functions
utilized in the GUI are readily accessible via the API,
and documented in the wiki. Many of these tools are
very general, easily interfacing with other Python pack-
ages, and can accommodate a great deal of complexity
and sophistication.

ACKNOWLEDGMENTS

The author acknowledges the support of a SBQMI
QuEST fellowship.

∗ fujimoto@phas.ubc.ca
1 W. A. MacFarlane, “Implanted-ion βNMR: A new probe for

nanoscience,” Solid State Nucl. Magn. Reson. 68-69, 1–12
(2015).

2 Ted Whidden, Donald Arseneau, and Suzannah Daviel,
“MUon Data access,” (1994).

3 Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stefan J. Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, An-
drew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,
C. J. Carey, Ilhan Ilhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Har-
ris, Anne M. Archibald, Antonio H. Antonio H. Ribeiro,
Fabian Pedregosa, and Paul van Mulbregt, “SciPy 1.0: fun-
damental algorithms for scientific computing in Python,”
Nat. Methods 17, 261–272 (2020).

4 F. L. Pratt, “WIMDA: a muon data analysis program for
the Windows PC,” Phys. B Condens. Matter 289-290, 710–
714 (2000).

5 O. Arnold, J. C. Bilheux, J. M. Borreguero, A. Buts, S. I.
Campbell, L. Chapon, M. Doucet, N. Draper, R. Fer-
raz Leal, M. A. Gigg, V. E. Lynch, A. Markvardsen,
D. J. Mikkelson, R. L. Mikkelson, R. Miller, K. Palmen,
P. Parker, G. Passos, T. G. Perring, P. F. Peterson, S. Ren,
M. A. Reuter, A. T. Savici, J. W. Taylor, R. J. Taylor,
R. Tolchenov, W. Zhou, and J. Zikovsky, “Mantid–Data
analysis and visualization package for neutron scattering
and µ SR experiments,” Nucl. Instrum. Methods Phys. Res.
Sect. A 764, 156–166 (2014).

6 A. Suter and B.M. Wojek, “Musrfit: A Free Platform-
Independent Framework for µSR Data Analysis,” Phys.
Procedia 30, 69–73 (2012).

7 Hassan Saadaoui, “BnmrOffice: A Free Software for β-nmr
Data Analysis,” in JPS Conf. Proc. (Journal of the Physical
Society of Japan, 2018).

https://github.com/dfujim/bfit
https://github.com/dfujim/bfit
https://github.com/dfujim/bfit/wiki
mailto:fujimoto@phas.ubc.ca
http://dx.doi.org/ 10.1016/j.ssnmr.2015.02.004
http://dx.doi.org/ 10.1016/j.ssnmr.2015.02.004
http://musr.ca/mud/
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/ 10.1016/S0921-4526(00)00328-8
http://dx.doi.org/ 10.1016/S0921-4526(00)00328-8
http://dx.doi.org/ 10.1016/j.nima.2014.07.029
http://dx.doi.org/ 10.1016/j.nima.2014.07.029
http://dx.doi.org/10.1016/j.phpro.2012.04.042
http://dx.doi.org/10.1016/j.phpro.2012.04.042
http://dx.doi.org/ 10.7566/JPSCP.21.011049

	bfit: A Python Application For Beta-Detected NMR
	Abstract
	Background
	Statement of need
	Usage and features
	Acknowledgments
	References


