
1
ISSN: 1063-9535. Copyright (c) 1994 IEEE. All rights reserved.
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution must be obtained from
IEEE. For information on obtaining permission, send blank email message to info.pub.permission@ieee.or g.
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Global Arrays: A Portable “Shared-Memory” Programming Model for
Distributed Memory Computers

Jaroslaw Nieplocha, Robert J. Harrison and Richard J. Littlefield

Pacific Northwest Laboratory‡, P.O. Box 999, Richland WA 99352

Abstract

Portability, efficiency, and ease of coding are all important
considerations in choosing the programming model for a
scalable parallel application. The message-passing pro-
gramming model is widely used because of its portability,
yet some applications are too complex to code in it while
also trying to maintain a balanced computation load and
avoid redundant computations. The shared-memory pro-
gramming model simplifies coding, but it is not portable
and often provides little control over interprocessor data
transfer costs.This paper describes a new approach, called
Global Arrays (GA), that combines the better features of
both other models, leading to both simple coding and effi-
cient execution. The key concept of GA is that it provides a
portable interface through which each process in a MIMD
parallel program can asynchronously access logical blocks
of physically distributed matrices, with no need for explicit
cooperation by other processes. We have implemented GA
libraries on a variety of computer systems, including the In-
tel DELTA and Paragon, the IBM SP-1 (all message-pass-
ers), the Kendall Square KSR-2 (a nonuniform access
shared-memory machine), and networks of Unix worksta-
tions. We discuss the design and implementation of these li-
braries, report their performance, illustrate the use of GA
in the context of computational chemistry applications, and
describe the use of a GA performance visualization tool.

1 Introduction

This paper addresses the issue of how to program
scalable scientific applications. Our interest in this issue has
both long-term and short-term components. As participants
in a Federal High Performance Computing and Communi-
cations Initiative (HPCCI) Grand Challenge Applications
project, our long-term goal is to develop the algorithmic
and software engineering techniques necessary to permit
exploiting future teraflops machines for computational

‡. Pacific Northwest Laboratory is a multiprogram national labo-
ratory operated for the U.S. Department of Energy by Battelle Me-
morial Institute under contract DE-AC06-76RL0 1830.

chemistry. At the same time, we and our colleagues at the
Pacific Northwest Laboratory (PNL) have a short-term goal
of developing, within the next three years, a suite of parallel
chemistry application codes to be used in production mode
for chemistry research at PNL’s Environmental and Molec-
ular Science Laboratory (EMSL) and elsewhere. The pro-
gramming model and implementations described here have
turned out to be useful for both purposes.

Two assumptions permeate our work. The first is that
most high performance parallel computers currently and
will continue to have physically distributed memories with
Non-Uniform Memory Access (NUMA) timing character-
istics, and will thus work best with application programs
that have a high degree of locality in their memory refer-
ence patterns. The second assumption is that extra program-
ming effort is and will continue to be required to construct
such applications. Thus, a recurring theme in our work is to
develop techniques and tools that allow applications with
explicit control of locality to be developed with only a tol-
erable amount of extra effort.

There are significant tradeoffs between the important
considerations of portability, efficiency, and ease of coding.
The message-passing programming model is widely used
because of its portability, yet some applications are too
complex to code in it while also trying to maintain a bal-
anced computation load and avoid redundant computations.
The shared-memory programming model simplifies coding,
but it is not portable and often provides little control over
interprocessor data transfer costs. Other more recent paral-
lel programming models, represented by languages and fa-
cilities such as HPF [1], SISAL[2], PCN[3], Fortran-M [4],
Linda [5], and shared virtual memory, address these prob-
lems in different ways and to varying degrees, but none of
them represents an ideal solution.

In this paper, we describe a new approach, called Glo-
bal Arrays (GA), that combines the better features of mes-
sage-passing and shared-memory, leading to both simple
coding and efficient execution for a class of applications
that appears to be fairly common. The key concept of GA is
that it provides a portable interface through which each

2

process in a MIMD parallel program can independently,
asynchronously, and efficiently access logical blocks of
physically distributed matrices, with no need for explicit
cooperation by other processes. In this respect, it is similar
to the shared-memory programming model. However, the
GA model also acknowledges that remote data is slower to
access than local, and it allows data locality to be explicitly
specified and used. In these respects, it is similar to mes-
sage passing.

We have implemented libraries and tools to support
the GA model on a variety of computer systems, including
the Intel DELTA and Paragon and the IBM SP-1 (all mes-
sage-passers), the Kendall Square KSR-2 (a nonuniform ac-
cess shared-memory machine), and on networks of Unix
workstations. We have also used GA to implement several
large chemistry applications for the HPCCI project and
EMSL, and plan to continue its use.

The organization of this paper is as follows. Section 2
outlines and characterizes the applications that we are most
interested in. Sections 3 and 4 describe the GA program-
ming model and its implementations. The performance of
two implementations is discussed in Section 5, and Section
6 describes a GA performance visualization tool. Section 7
outlines future work. Finally, Section 8 summarizes our re-
sults and conclusions.

2 Target Applications

Generically, the applications that motivated our work
can be characterized as

• requiring task parallelism (MIMD), possibly in addition
to data parallelism,

• accessing relatively small blocks of matrices that are too
large to hold in the memory of any single processor
(thus requiring blockwise physical distribution),

• having wide variation in task execution time (thus re-
quiring dynamic load balancing, with attendant unpre-
dictable data reference patterns), and

• having a fairly large ratio of computation to data move-
ment (thus making it possible to retain high efficiency
while accessing remote data on demand).

More specifically, we are concerned with computing
the electronic structure of molecules and other small or
crystalline chemical systems. These calculations are used to
predict many chemical properties that are not directly ac-
cessible by experiments, and play a dominant role in the
number of supercomputer cycles currently used for compu-
tational chemistry.

All of the methods considered compute approximate
solutions to the non-relativistic electronic SchrÖdinger
equation. In addition to the general characteristics noted
above, these applications also

• have large volumes of I/O that can be eliminated by
caching or recomputation,

• benefit from specific irregular distributions of data, with
alignment of related quantities,

• require linear algebra operations on distributed dense
matrices (multiplication, eigensolving, and linear equa-
tion solving).

The iterative Self Consistent Field (SCF) method [6]
is the simplest method. The major computational kernel
contracts integrals with a density matrix to form the Fock
matrix. Both matrices are of dimension of an underlying ba-
sis set (Nbasis ≈ 103). The number of integrals scales be-
tweenO(N2

basis) andO(N4
basis) depending on the nature of

the system and level of accuracy required. To avoid an I/O
bottleneck, integrals are recomputed as required [7]. Blocks
of the density matrix must be read and results accumulated
into blocks of the Fock matrix [8].

 The second-order Møller-Plesset Perturbation meth-
od [6] is the simplest theory to improve upon SCF. The
dominant computation is the transformation of the integrals
used in the SCF algorithm into an orthonormal basis, which
is an O(N5

basis) process. The resulting very large matrix
must be distributed in a specific fashion for subsequent data
parallel operations. The related Coupled-Cluster method [9]
has a similar structure. Gather and scatter operations are re-
quired to access elements of arrays of variable length
records packed into linear global arrays.

 The Multi-Reference Configuration Interaction
(MRCI) method is the most accurate post-SCF electronic
structure method. The parallel COLUMBUS MRCI pro-
gram [10] was, until the development of these tools, limited
in its parallel scalability by either the large amounts of I/O
performed upon intermediate quantities or the requirement
that these entities be replicated within the memory of each
processor to eliminate I/O. The dominant use of the global
array tools in this application are to provide a shared, sec-
ondary I/O cache. The COLUMBUS I/O library searches
local memory, and then global memory for data items be-
fore accessing disk.

3 Functionality and Interface

3.1 Programming model

The current GA programming model can be charac-
terized as follows:

3

• MIMD parallelism is provided using a multi-process ap-
proach, in which all non-GA data, file descriptors, and
so on are replicated or unique to each process.

• Processes can communicate with each other by creating
and accessing GA distributed matrices, and also (if de-
sired) by conventional message-passing.

• Matrices are physically distributed blockwise, either
regularly or as the Cartesian product of irregular distri-
butions on each axis.

• Each process can independently and asynchronously ac-
cess any two-dimensional patch of a GA distributed ma-
trix, without requiring cooperation by the application
code in any other process.

• Several types of access are supported, including ‘get’,
‘put’, ‘accumulate’ (floating point sum-reduction), and
‘get and increment’ (integer). This list is expected to be
extended as needed.

• Each process is assumed to have fast access to some
portion of each distributed matrix, and slower access to
the remainder. These speed differences define the data
as being ‘local’ or ‘remote’, respectively. However, the
numeric difference between ‘local’ and ‘remote’ access
times is unspecified.

• Each process can determine which portion of each dis-
tributed matrix is stored ‘locally’. Every element of a
distributed matrix is guaranteed to be ‘local’ to exactly
one process.

This model differs from other common models as fol-
lows. Unlike HPF, it allows task-parallel access to distribut-
ed matrices, including reduction into overlapping patches.
Unlike Linda, it efficiently provides for sum-reduction and
access to overlapping patches. Unlike shared virtual memo-
ry facilities, GA requires explicit library calls to access
data, but avoids the operating system overhead associated
with maintaining memory coherence and handling virtual
page faults, and allows the implementation to guarantee
that all of the required data for a patch can be transferred at
the same time. Unlike Active Messages, GA does not in-
clude the concept of getting another processor’s coopera-
tion, which permits GA to be implemented efficiently even
on shared-memory systems. Finally, unlike some other
strategies based on polling‡, task duration is relatively un-
important in programs using GA, which simplifies coding
and makes it possible for GA programs to exploit standard
library codes without modifying them.

‡. John Salmon, personal communication, describes a split-re-
quest programming strategy in which processes post many re-
quests, then poll for requests to them, poll for replies to their own
requests, handle them, and repeat the process.

3.2 Supported operations

 Each operation may be categorized as being either an
implementation dependent primitive operation or construct-
ed in an implementation independent fashion from primi-
tive operations. Operations also differ in their implied
synchronization. A final category is provided by interfaces
to third party libraries.The following are primitive opera-
tions that are invoked synchronously by all processes:

• create an array, controlling alignment and distribution;

• create an array following a provided template (existing
array);

• destroy an array; and

• synchronize all processes.

The following are primitive operations that may be in-
voked in true MIMD style by any process with no implied
synchronization with other processes and, unless otherwise
stated, with no guaranteed atomicity:

• fetch, store and atomic accumulate into rectangular
patch of a two-dimensional array;

• gather and scatter array elements;

• atomic read and increment of an array element;

• inquiry about the location and distribution of the data;
and

• direct access to local elements of array to support and/or
improve performance of application specific data-paral-
lel operations.

The following are a set of BLAS-like data-parallel op-
erations that have been developed on top of the primitive
operations (synchronization is included as a user conve-
nience):

• vector operations (e.g., dot-product or scale) optimized
to avoid communication by direct access to local data;

• matrix operations (e.g., symmetrize) optimized to re-
duce communication and data copying by direct access
to local data; and

• matrix multiplication.

The vector, matrix multiplication, copy, and print op-
erations exist in two versions that operate on either entire
array(s) or specified sections of array(s). The array sections
in operations that involve multiple arrays do not have to be
conforming -- the only requirements are that they must be
of the same type and contain the same number of elements.

The following is functionality that is provided by
third party libraries made available by using the GA primi-
tives to perform necessary data rearrangement. TheO(N2)

4

cost of such rearrangement is observed to be negligible in
comparison to that ofO(N3) linear-algebra operations.
These libraries may internally use any form of parallelism
appropriate to the computer system, such as cooperative
message passing or shared memory:

• standard and generalized real symmetric eigensolver;
and

• linear equation solver (interface to SCALAPACK [11]).

3.3 Sample code fragment

 This interface has been designed in the light of
emerging standards. In particular, HPF [1,12] will certainly
provide the basis for future standards definition of distribut-
ed arrays in FORTRAN. The basic functionality described
above (create, fetch, store, accumulate, gather, scatter, data-
parallel operations) all may be expressed as single state-
ments using FORTRAN-90 array notation and the data-dis-
tribution directives of HPF. What HPF does not currently
provide is random access to regions of distributed arrays
from within a MIMD parallel subroutine call-tree, and re-
duction into overlapping regions of shared arrays.

The following code fragment uses the FORTRAN in-
terface to create ann × m double precision array, blocked in
at least 10× 5 chunks, which is zeroed and then has a patch
filled from a local array. Undefined values are assumed to
be computed elsewhere. The routinega_create() re-
turns in the variableg_a a handle to the global array with
which subsequent references to the array may be made.

integer g_a, n, m, ilo, ihi, jlo, jhi, ldim

double precision local(1:ldim,*)

c

call ga_create(MT_DBL, n, m, ‘A’, 10, 5, g_a)

call ga_zero(g_a)

call ga_put(g_a, ilo, ihi, jlo, jhi, local, ldim)

 The above code is very similar in functionality to the
following HPF-like statements

integer n, m, ilo, ihi, jlo, jhi, ldim

double precision a(n,m), local(1:ldim,*)

!hpf$ distribute a(block(10), block(5))

c

a = 0.0

a(ilo:ihi,jlo:jhi)=local(1:ihi-ilo+1,1:jhi-jlo+1)

The difference is that this single HPF assignment
would be executed in a data-parallel fashion, whereas the
global array put operation would be executed in MIMD
parallel mode such that each process might reference differ-
ent array patches.

4 Implementation

 We currently support three distinct environments:

1. Distributed-memory, message-passing parallel comput-
ers with interrupt-driven communications or Active
Messages (Intel Gamma, Delta and Paragon, IBM
SP-1).

2. Networked workstation clusters with simple message
passing (using the TCGMSG portable message-passing
library [13] on top of TCP/IP).

3. Shared-memory parallel computers (KSR-2, SGI, most
UNIX workstations).

4.1 Distributed-memory and network
environments

Implementations on the distributed-memory and net-
work environments share nearly all of their code. The dis-
tinction arises in the manner in which data are distributed
and accessed. The availability of interrupt-driven commu-
nications on distributed memory machines permits us to es-
tablish handlers that support remote access to local data
which is then stored within the application processes. This
permits very fast access to ‘local’ data. Some care is needed
to mask interrupts to ensure coherency and guarantee dead-
lock free execution. In the network environment, we do not
attempt to implement interrupt-driven communications. In-
stead, we use a data-server model in which server processes
manage the data and respond to requests from the client ap-
plication processes. While this approach is very portable,
access to local data is not as fast as if the data resided di-
rectly in the application processes. Also, an additional layer
is required on top of the message-passing tools to hide the
additional server processes from the application. There are
several other ways that the GA model could be implement-
ed in the network environment, notably either sharing the
memory associated with GA matrices between server and
client processes, or using a single process with separate ap-
plication and server threads. Both of these would likely be
faster but less portable than our current approach.

A reference to a patch of a global array is internally
decomposed into references to patches on specific proces-
sors. The protocol used to communicate between client and
server is almost the same for both environments. Opera-
tions such as store or accumulate that require no
synchronization cause the requesting process to send a

5

single message. The message contains information that de-
scribes the requested operation and data size, followed by
the data itself. A read operation requires that the client wait
for the response. The current protocol for read operation on
the distributed memory machines has been influenced by
features of the EUI-H message passing library on the IBM
SP-1: relatively small (8KB) system message buffers and
the in-order message delivery rule. The requesting proces-
sor posts an asynchronous receive before sending a request
for the data. In the network environment, the requesting
processor sends a request and then posts a blocking receive
for the message that contains the data. The protocols will be
unified when asynchronous communication becomes sup-
ported in TCGMSG.

The gather and scatter operations are designed to min-
imize the number of messages sent. The input list of index
pairs are sorted by the process in which the data element re-
sides so that requests for data on that process are bundled
into a single message.

4.2 Shared-memory environments

 In order to maintain complete consistency with the
other implementations, we provide a distributed-memory
environment in which the only shared data is that provided
by the global array library. The current implementation uses
System V shared memory and heavy-weight UNIX pro-
cesses, rather than threads. On machines such as the Ken-
dall Square Research KSR-2 native memory locks are used
to support mutual exclusion, while on other platforms
semaphores are used. Implementations that use semaphores
currently sequentialize access to the entire array in
‘read_and_increment’ and ‘accumulate’ operations, but a
more scalable mutual exclusion algorithm is planned.

 On the KSR-2, a substantial performance improve-
ment may be obtained by prefetching subpages (128 bytes)
of shared data with the correct access mode (read-only for a
get operation, exclusive for put and accumulate operations).
The KSR memory architecture permits memory subpages
to be put into atomic mode with similar cost to an ordinary
non-atomic access to that page. This facility is used to pro-
vide fine grain locking in the accumulate operation which
increases scalability. Also on the KSR, we use a dynamic F-
way barrier which is claimed to be the fastest barrier for
this machine [14]. On other machines, the central barrier al-
gorithm is used.

5 Performance of Communication
Primitives

The efficiency of the elementary communication op-
erations, get, put and accumulate, might be crucial to the

overall performance of the applications that use the toolkit.
We demonstrate performance of these primitives on a mes-
sage-passing distributed-memory architecture, the Intel
Touchstone Delta, and on a NUMA shared-memory archi-
tecture, the Kendall Square KSR-2 which is essentially a
two-fold faster version of the KSR-1 [15].

In general, each primitive operation can reference
data that is physically local, physically remote or both.
Also, either contiguous or noncontiguous blocks of memo-
ry are accessed depending on whether a one- or a multi-di-
mensional patch of an array is being referenced. The tests
described in this section involved either exclusively local or
exclusively remote accesses to square patches of a two-di-
mensional array resident on a single processor. The refer-
ences to noncontiguous blocks of memory, in this case,
correspond to the data access patterns in our targeted appli-
cations and in many parallel algorithms in dense numerical
linear algebra using block decomposition.

The latency of local and remote get, put, and accumu-
late operations, as a function of the number of bytes, refer-
enced in small to medium size patches of an array, is
illustrated in Figure 1 for the Intel Touchstone Delta, in Fig-
ure 2 for the KSR-2 and Figure 3 for the IBM SP-1. While
the latencies on the Delta and the SP-1 are almost indepen-
dent of the physical distance between the processor request-
ing the data and the data owner, on the KSR platform there
can be a significantly variable cost for access to remote
data. This effect is clearly seen in Figure 2 for remote data
located in the memory of another processor on the same
and a different ring.

Both visual inspection of Figure 2 and statistical anal-
ysis (linear and nonlinear regression) of the gathered data

Figure 1: The latency of local and remote get, put, and accumu-
late operations as a function of the number of bytes, referenced in
small to medium size patches of an array for the Intel Touchstone
Delta.

0 1000 2000 3000 4000 5000 6000 7000
bytes

0.0000

0.0005

0.0010

0.0015

0.0020

la
te

nc
y

[s
]

local get
local put
local accumulate
remote get
remote put
remote accumulate

6

reveal the presence of a nonlinear relationship between the
latency and the number of bytes in remote operations on the
KSR-2. The statistically significant nonlinear -- square root
-- term is present due to the fact that each column of a small
square patch of an array will reside in a separate 128-byte
subpage. Thus for small patches, the number of subpages
that must be transferred is proportional to the number of
columns, or the square root of the total patch size. The
curves in this figure were prepared based on the actual re-
gression model fitted for the empirical data.

The latencies of local and remote get, put, and accu-
mulate operations for larger array patches are shown in

Figure 2: The latency of local and remote get, put, and accumu-
late operations as a function of the number of bytes, referenced in
small to medium size patches of an array for the Kendall Square
KSR-2.

0 1000 2000 3000 4000 5000 6000 7000
bytes

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

la
te

nc
y

[s
]

KSR 2

local get
local put
local accumulate
remote get
remote put
remote accumulate
remote get (2)
remote put (2)
remote accumulate (2)

fitted get
fitted put
fitted accumulate

0 1000 2000 3000 4000 5000 6000 7000
bytes

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

la
te

nc
y

[s
]

local get
local put
local accumulate
remote get
remote put
remote accumulate

Figure 3: The latency of local and remote get, put, and accumu-
late operations as a function of the number of bytes, referenced in
small to medium size patches of an array for the IBM SP-1.

Figure 4 for the Delta, Figure 5 for the KSR-2 and Figure 6
for the SP-1. The functional relationship between latency
and the number of bytes appears to be linear.

 The latency of remote get on the Delta and the SP-1
is higher than for the other communication primitives. It
has the following components:

(1)

wheretget-startup is the overhead for subroutine calls, send-
ing and receiving two messages, and generating an interrupt
on the remote processor,n is the number of bytes,Tcopy is

Figure 4: The latencies of local and remote get, put, and accumu-
late operations for larger array patches for the Intel Touchstone
Delta.

0 200000 400000 600000 800000 1000000
bytes

0.00

0.05

0.10

0.15

0.20

la
te

nc
y

[s
]

local get
local put
local accumulate
remote get
remote put
remote accumulate

Figure 5: The latency of local and remote get, put, and accumu-
late operations for larger array patches for the Kendall Square
KSR-2.

0 200000 400000 600000 800000 1000000
bytes

0.00

0.02

0.04

0.06

la
te

nc
y

[s
]

local get
local put
local accumulate
remote get
remote put
remote accumulate
remote get (2)
remote put (2)
remote accumulate (2)

tget tget- startup n 2Tcopy Tcomm+[] ,+=

7

the per-byte time for a local memory copy, andTcomm is the
per-byte communication transfer time. Latencies of the
remote put and accumulate operations are basically identi-
cal to each other:

(2)

but differ from that of remote get since one memory copy,
the two message receipts and the remote interrupt are not
on the critical path. The processor issuing a remote put/ac-
cumulate request sends the data and does not wait for the
completion of the operation (there is also an option avail-
able to wait for acknowledgment sent after request has been
processed). On the Delta, the bandwidth in access to the lo-
cal data is 19.5 MB/s, and 5.3 to 6.25 MB/s for remote get
and remote put, respectively. These results are consistent
with the performance of the message-passing communica-
tion on this machine[16]. On the IBM SP-1, the bandwidth
in access to the local data is 85 MB/s, and 7.3 to 7.7 MB/s
for remote get and remote put, respectively.

Unlike the distributed-memory implementations, on
the KSR-2 and other shared-memory platforms, computa-
tions in the ‘accumulate’ operation are performed by the re-
questing processor. However, this operation on the KSR-2
is almost no more expensive than the get and put since
prefetching of subpages allows overlapping computations
with communication. Prefetching is also crucial in reducing
the performance gap between local and remote operations.
The bandwidth in the get and put operations is roughly
identical and varies with the source/destination of the data
from 66MB/s for the processor cache, 33 MB/s for the local
memory, and 25.4 MB/s for the remote memory of another
processor on the same ring to 13.5 MB/s in the case where
the data has to be transferred between memories of two pro-
cessors not on the same ring.

Figure 6: The latency of local and remote get, put, and accumu-
late operations for larger array patches for the IBM SP-1.

0 200000 400000 600000 800000 1000000
bytes

0.00

0.05

0.10

0.15

la
te

nc
y

[s
]

local get
local put
local accumulate
remote get
remote put
remote accumulate

Tput tput- startup n Tcopy Tcomm+[] ,+=

The ‘get’, ‘put’, and ‘accumulate’ operations are de-
fined in terms of copying to and from process-local buffers.
For algorithms designed to operate on local patches, copy-
ing the data imposes an unnecessary cost. To address this
problem, we have added a separate set of ‘access’ opera-
tions whose semantics are defined in terms of obtaining and
releasing access to patches. For ‘access’ operations, GA
simply returns a reference to the patch so that the applica-
tion can access the data in-place. The performance im-
provement of using ‘access’ rather than ‘get’ and ‘put’
primitives can be significant for BLAS-1 type operations
that touch each matrix element only once or twice. For ex-
ample, Figure 7 shows the execution time for a scaled ma-
trix addition,

, (3)

that was implemented on the Delta using the two tech-
niques. The ‘access’ version runs about 25% faster.

6 Visualization Tool for Global Arrays

In order to aid in tuning the performance of applica-
tions using global arrays, a visualization and animation tool
has been developed. This tool helps the programmer design
efficient task scheduling strategies for MIMD algorithms
that operate on the distributed two-dimensional data. Mini-
mization of data access contention profits such applications
by improving processor utilization.

This particular tool uses trace data that is gathered in
a file during the program execution. The global array li-
brary is instrumented to generate necessary tracing infor-
mation whenever the distributed data is accessed. Patterns
of accesses are visualized by the tool that processes sequen-
tialized trace events. The user may adjust a time scale for

Figure 7: Performance of the scaled add operation implemented
using the access or get and put operations for a 3000 × 3000 prob-
lem on the Intel Touchstone Delta.

64 128 176 224 25696 19680 112 140160 210
processors

0.00

0.05

0.10

0.15

0.20

0.25

tim
e

[s
]

access based
get/put based

C αA βB+=

8

the animation. A color coding is used to differentiate levels
of access contention for the particular data blocks. After the
animation of events recorded in a tracefile is completed, a
composite access contention index is displayed using a dif-
ferent color coding for the entire distributed array. The tool
has been implemented using the X Windows and Xt librar-
ies.

The tool was applied to our new distributed SCF pro-
gram [8]. Our first scheduling of the tasks realized poor par-
allel efficiency, but the reason was not apparent from
simple timing data. The performance tool showed that sig-
nificant contention for data was the problem, as shown in
Figure 8‡. This problem was readily addressed by reorder-
ing the tasks so as to more uniformly spread out references
to the GA matrices, and by the introduction of caching (in
the application code) to eliminate redundant data referenc-
es. This eliminated most of the time lost due to contention,
but the parallel speedup was still not as good as expected.
The dynamic visualization (animation) then showed that
some large tasks were getting scheduled too near the end of
the computation, causing a load-balance problem. This was
resolved by incorporating a stratified randomizing scheme
that approximately preserved the large-to-small order of
tasks, necessary for load-balancing, while still reordering
tasks of similar size enough to spread out the GA references
and avoid contention. The final scheduling, depicted in Fig-
ure 9‡, is both load-balanced and almost contention-free.

Figure 8: A snapshot of the GA performance analysis tool prior to
the optimizations discussed in the text. The pixels correspond to
the elements of a 2-dimensional array. Depicted is the perfor-
mance of a 300 basis function calculation on a chain of water mol-
ecules. Elements are shaded according to the time processes
wasted waiting for those elements.

The performance of the main computational kernel of
the SCF program was improved approximately four-fold by
the above tuning, and currently realizes an estimated speed-
up (relative to a single processor) of 496 on 512 processors
of the Intel Delta. The single processor performance is esti-
mated from the performance of smaller calculations and the
performance of the same problem size on 64 processors, the
smallest number of processors on which it was possible to
hold the data.

7 Future Work

Although our GA model and tools have already dem-
onstrated their value in producing high performance scal-
able applications, GA development is far from complete.
Our current implementations are first-generation research
efforts, not robust production quality versions. Substantial
performance improvement can be gained simply through
tuning and incorporating better internal algorithms, such as
split-phase remote access for logical blocks that span phys-
ical processors. More importantly, even larger improve-
ments can be made by extending the API, such as to allow
applications to specify access patterns in addition to physi-
cal distributions, or to expose split-phase ‘get’ to the appli-
cation for even more effective latency hiding. Such

‡. Color versions of Figures 8 and 9 appear at the end of Proceed-
ings.

Figure 9: A snapshot of the Global Array performance analysis
tool after optimizations have been included. The scale for conten-
tion is three orders of magnitude smaller than in the preceding dis-
play.

9

improvements will involve tradeoffs in ease-of-use versus
performance and will thus require serious evaluation.

8 Summary and Conclusions

We have designed, implemented, and used a new pro-
gramming facility, called Global Arrays (GA). The key
concept of GA is that it provides a portable interface
through which each process in a MIMD parallel program
can efficiently access logical blocks of physically distribut-
ed matrices, with no need for explicit cooperation by other
processes (or processors) where the data resides. In this re-
spect, it is similar to the shared-memory programming
model. However, the GA model also acknowledges that re-
mote data is slower to access than local, and it allows data
locality to be explicitly specified and used. In these re-
spects, it is similar to message passing.

For certain kinds of applications, the GA model pro-
vides a better combination of simple coding, high efficien-
cy, and portability than are provided by other models. The
applications that motivated our work are characterized by
1) accessing relatively small blocks of very large matrices
(thus requiring blockwise physical distribution), 2) having
wide variation in task execution time (thus requiring dy-
namic load balancing, with attendant unpredictable data
reference patterns), and 3) having a fairly large ratio of
computation to data movement (thus making it possible to
retain high efficiency while accessing remote data on de-
mand). Although these characteristics may seem restrictive,
our experience to date suggests that many applications
would qualify. For example, the GA model seems to pro-
vide good support for a large part of computational chemis-
try, especially electronic structure codes, and it is also
promising for application domains like global climate mod-
eling, where application codes often exhibit both spatial lo-
cality and load imbalance [17].

Our application interface for GA is designed to permit
efficient implementation on a wide variety of platforms. We
currently have GA implementations based on 1) interrupt-
driven communication using a single process per processor,
2) blocking communications, using two processes per pro-
cessor (an application process and a data server), and 3)
hardware shared-memory support using multiple processes
and mutual exclusion primitives.

In addition to the basic programming facilities of GA,
we have also developed a performance visualizer tailored to
the GA model. The visualizer can provide animations
showing instantaneous temporal and spatial access patterns
to distributed arrays, and can also provide time-averaged
static displays showing aggregate processor time lost due to
contention for GA data. In its first use, the visualizer was

instrumental in virtually eliminating the time lost due to
contention in a large chemistry application.

The GA model and tools were developed under our
HPCCI Grand Challenge project in Computational Chemis-
try, whose focus is on developing algorithms, techniques,
and tools for allowing computational chemistry applica-
tions to exploit future teraflops machines. However, they
have turned out to have immediate benefit as well, and are
now being widely adopted in parallel chemistry codes de-
veloped for production use in PNL’s Environmental and
Molecular Science Laboratory. Such rapid adoption of a
new programming strategy illustrates the power of the
HPCCI program in bringing together an effective collabora-
tion of researchers from computer science and the applica-
tion domains. We hope to see many similar results in the
future.

9 Acknowledgments

 This work was performed under the auspices of the
High Performance Computing and Communications Pro-
gram of the Office of Scientific Computing, U.S. Depart-
ment of Energy under contract DE-AC-6-76RLO 1830 with
Battelle Memorial Institute which operates the Pacific
Northwest Laboratory. The Environmental and Molecular
Science Laboratory project is managed by the Office of En-
ergy Research. We thank Dr. David Bernholdt, Dr. Alistair
Rendell, Prof. Hans Lischka, Dr. Matthew Rosing and
George Fann for valuable discussions.

References

1. High Performance Fortran Forum,High Performance
Fortran Language Specification, Version 1.0, Rice Uni-
versity, 1993.

2. J.A. Stephen and R.R. Oldehoeft, ‘HEP SISAL: Paral-
lel Functional Programming’ inParallel MIMD Com-
putation: HEP Supercomputer and Its Applications, pp.
123-150, ed. J.S. Kowalik, The MIT Press, Cambridge,
MA, 1985.

3. I.T. Foster, R. Olson and S. Tuecke, ‘Productive Paral-
lel Programming: The PCN Approach,’Scientific Pro-
gramming, pp. 51-66, 1, 1992.

4. I.T. Foster and K.M. Chandy,Fortran M: A Language
for Modular Parallel Programming, Argonne National
Laboratory, preprint MCS-P327-0992, 1992.

5. N. Carriero and D. Gelernter,How To Write Parallel
Programs. A First Course, The MIT Press, Cambridge,
MA, 1990.

10

6. A. Szabo and N.S. Ostlund,Modern Quantum Chemis-
try: Introduction to Advanced Electronic Structure The-
ory. 1st Ed. Revised, McGraw-Hill, Inc., New York,
1989.

7. J. AlmlÖf, K. Faegri and K. Korsell, ‘The Direct SCF
Method,’J. Comp. Chem., 385, 3, 1982.

8. R.J. Harrison, M.F. Guest, R.A. Kendall, D.E. Bern-
holdt, A.T. Wong, M.S. Stave, J.L. Anchell, A.C. Hess,
R.J. Littlefield, G.I. Fann, J. Nieplocha, G.S. Thomas,
D. Elwood, J. Tilson, R.L. Shepard, A.F.Wagner, I.T.
Foster, E. Lusk and R. Stevens, ‘Fully Distributed Par-
allel Algorithms -- Molecular Self Consistent Field Cal-
culations,’J. Comp. Chem., submitted for publication,
1994.

9. A.P. Rendell, M.F. Guest and R.A. Kendall, ‘Distribut-
ed Data Parallel Coupled-Cluster Algorithm: Applica-
tion to the 2-Hydroxypyridine/2-Pyridone Tauto-
merism,’J. Comp. Chem., pp. 1429-1439, 14, 1993.

10. M. Schuler, T. Kovar, H. Lischka, R. Shepard and R.J.
Harrison, ‘A parallel implementation of the COLUM-
BUS multireference configuration interaction program,’
Theor. Chim. Acta, pp. 489-509, 84, 1993.

11. SCALAPACK, scalable linear algebra package, code
and documents available throughnetlib .

12. High Performance Fortran Forum II, information avail-
able fromchk@cs.rice.edu .

13. R.J. Harrison, ‘Portable Tools and Applications for Par-
allel Computers,’Int. J. Quant. Chem., pp. 847-863, 40,
1991.

14. D. Grunwald and S. Vajracharya, ‘Efficient barriers for
distributed shared memory computers,’Proceedings of
8th IPPS, pp. 604-608, 1994.

15. R.H. Saavedra, R.S. Gaines and M.J. Carlton, Micro
Benchmark Analysis of the KSR1,Proc. of Supercom-
puting ‘93, IEEE Computer Society, pp. 202-213, 1993.

16. R.J. Littlefield, ‘Characterizing and Tuning Communi-
cations Performance on the Touchstone DELTA and
iPSC/860,’ Proc. of the Intel Supercomputer Users’
Group 1992 Annual Users conference, pp. 309-313,
1992.

17. J. Michalakes,Analysis of Workload and Load Balanc-
ing Issues in NCAR Community Climate Model, Ar-
gonne National Laboratory, technical report MCS-TM-
144, 1991.

