Global Arrays: A Portable “Shared-Memory” Programming Model for
Distributed Memory Computers

Jaroslaw Nieplocha, Robert J. Harrison and Richard J. Littlefield

Pacific Northwest Laboratory*, P.O. Box 999, Richland WA 99352

Abstract chemistry. At the same time, we and our colleagues at the
Portability, efficiency, and ease of coding are all importanPaCifiC Northwest ITaboratory (PNL) have a shqrt-term goal
considerations in choosing the programming model for aOf de\{eloplng, W'th.m the next three years, asuite O.f paraliel
scalable parallel application. The message-passing prcchemlstry application codes to be used in production mode
. c . ; ... for chemistry research at PNL's Environmental and Molec-
ramming model is widely used because of its portability .
g 9 y b ‘ular Science Laboratory (EMSL) and elsewhere. The pro-

yet some applications are too complex to code in it whil . . : .
also trying to maintain a balanced computation load anddramming model and implementations described here have
turned out to be useful for both purposes.

avoid redundant computations. The shared-memory prc

gramming model simplifies coding, but it is not portable Ty assumptions permeate our work. The first is that
and often provid_es little contro_l over interprocessor datéyost high performance parallel computers currently and
transfer costs.This paper describes a new approach, calleyjj| continue to have physically distributed memories with
Global Arrays (GA), tha_t combines t_he better_features CNon-Uniform Memory Access (NUMA) timing character-
both other models, leading to both simple coding and effistics, and will thus work best with application programs
cient exe_cution. The key conc_ept of GA is that i_t providestnat have a high degree of locality in their memory refer-
portable interface through which each process in @ MIMCgpce patterns. The second assumption is that extra program-
parallel program can asynchronously access logical blockying effort is and will continue to be required to construct
of physic_ally distributed matrices, with no n_eed for explicig,ch applications. Thus, a recurring theme in our work is to
cooperation by other processes. We have implemented (jeyelop techniques and tools that allow applications with

libraries on a variety of computer systems, including the '”explicit control of locality to be developed with only a tol-
tel DELTA and Paragon, the IBM SP-1 (all message-pasigraple amount of extra effort.

ers), the Kendall Square KSR-2 (a nonuniform acces
shared-memory machine), and networks of Unix workst: There are significant tradeoffs between the important
tions. We discuss the design and implementation of theseconsiderations of portability, efficiency, and ease of coding.
braries, report their performance, illustrate the use of GAThe message-passing programming model is widely used
in the context of computational chemistry applications, anbecause of its portability, yet some applications are too
describe the use of a GA performance visualization tool. complex to code in it while also trying to maintain a bal-
anced computation load and avoid redundant computations.
. The shared-memory programming model simplifies coding,
1 Introduction but it is not portable and often provides little control over
This paper addresses the issue of how to prograinterprocesso_r data transfer costs. Other more recent paral-
scalable scientific applications. Our interest in this issue hl€l Programming models, represented by languages and fa-
both long-term and short-term components. As participanCilities such as HPF [1], SISAL[2], PCN[3], Fortran-M [4],
in a Federal High Performance Computing and Commun'—'”da_ [5],. and shared virtual memory, address these prob-
cations Initiative (HPCCI) Grand Challenge Applications®ms in different ways and to varying degrees, but none of
project, our long-term goal is to develop the algorithmithem represents an ideal solution.
and software engineering techniques necessary to perr In this paper, we describe a new approach, called Glo-

exploiting future terafiops machines for computationabal Arrays (GA), that combines the better features of mes-
sage-passing and shared-memory, leading to both simple
t. Pacific Northwest Laboratory is a multiprogram national labo-coding and efficient execution for a class of applications
ratory operated for the U.S. Department of Energy by Battelle Me¢that appears to be fairly common. The key concept of GA is
morial Institute under contract DE-AC06-76RL0 1830. that it provides a portable interface through which each

1
ISSN: 1063-9535. Copyright (c) 1994 |IEEE. All rights reserved.
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution must be obtained from
IEEE. For information on obtaining permission, send blank email message to info.pub.permission@ieee.or g.
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

process in a MIMD parallel program can independently All of the methods considered compute approximate
asynchronously, and efficiently access logical blocks osolutions to the non-relativistic electronic Satinger
physically distributed matrices, with no need for explicitequation. In addition to the general characteristics noted
cooperation by other processes. In this respect, it is similiabove, these applications also

to the shared-memory programming model. However, th
GA model also acknowledges that remote data is slower
access than local, and it allows data locality to be explicith
specified and used. In these respects, it is similar to mee benefit from specific irregular distributions of data, with
sage passing. alignment of related quantities,

have large volumes of I/O that can be eliminated by
caching or recomputation,

We have implemented libraries and tools to suppor® require linear algebra operations on distributed dense
the GA model on a variety of computer systems, including Matrices (multiplication, eigensolving, and linear equa-
the Intel DELTA and Paragon and the IBM SP-1 (all mes. tion solving).

sage-passers), the Kendall Square KSR-2 (anonuniforma e jierative Self Consistent Field (SCF) method [6]

cess shared-memory machine), and on networks of Unig he simplest method. The major computational kernel
workstations. We have also used GA to implement Severiconiracts integrals with a density matrix to form the Fock
large chemistry applications for the HPCCI project antyayrix. Both matrices are of dimension of an underlying ba-
EMSL, and plan to continue its use. sis set Kasis= 10°). The number of integrals scales be-
tweenO(N%,cid andO(N%,,sid depending on the nature of
outlines and characterizes the applications that we are mcthe system _and level of accuracy required. T.O avoid an 1/0
bottleneck, integrals are recomputed as required [7]. Blocks

interested in. Sections 3 and 4 describe the GA progran f the densit i b 4 and it lated
ming model and its implementations. The performance c2! the density malrix must be read and results accumulate

two implementations is discussed in Section 5, and Sectic'mo blocks of the Fock matrix [8].

The organization of this paper is as follows. Section -

6 describes a GA performance visualization tool. Section The second-order Mgller-Plesset Perturbation meth-
outlines future work. Finally, Section 8 summarizes our reod [6] is the simplest theory to improve upon SCF. The
sults and conclusions. dominant computation is the transformation of the integrals

used in the SCF algorithm into an orthonormal basis, which
.. is an O(N®, i) process. The resulting very large matrix
2 Target Applications must be distributed in a specific fashion for subsequent data
parallel operations. The related Coupled-Cluster method [9]
has a similar structure. Gather and scatter operations are re-
quired to access elements of arrays of variable length
records packed into linear global arrays.

Generically, the applications that motivated our work
can be characterized as

* requiring task parallelism (MIMD), possibly in addition
to data parallelism, The Multi-Reference Configuration Interaction
(MRCI) method is the most accurate post-SCF electronic

structure method. The parallel COLUMBUS MRCI pro-
gram [10] was, until the development of these tools, limited
in its parallel scalability by either the large amounts of I/O
« having wide variation in task execution time (thus re-performed upon intermediate quantities or the requirement

quiring dynamic load balancing, with attendant unpre_that these entities be replicated within the memory of each
dictable data reference patternsi and processor to eliminate I/O. The dominant use of the global

array tools in this application are to provide a shared, sec-
» having a fairly large ratio of computation to data move-ondary I/O cache. The COLUMBUS 1/O library searches
ment (thus making it possible to retain high efficiencylocal memory, and then global memory for data items be-
while accessing remote data on demand). fore accessing disk.

» accessing relatively small blocks of matrices that are to
large to hold in the memory of any single processo
(thus requiring blockwise physical distribution),

More specifically, we are concerned with computing) .
the electronic structure of molecules and other small ¢3 Functionality and Interface
crystalline chemical systems. These calculations are used
predict many chemical properties that are not directly ac
cessible by experiments, and play a dominant role in th
number of supercomputer cycles currently used for compt The current GA programming model can be charac-
tational chemistry. terized as follows:

3.1 Programming model

* MIMD parallelism is provided using a multi-process ap-3.2 Supported operations
proach, in which all non-GA data, file descriptors, anc

so on are replicated or unique to each process. Each operation may be categorized as being either an

implementation dependent primitive operation or construct-

» Processes can communicate with each other by creatiled in an implementation independent fashion from primi-
and accessing GA distributed matrices, and also (if detive operations. Operations also differ in their implied
sired) by conventional message-passing. synchronization. A final category is provided by interfaces

. Matrices are physically distributed blockwise, eitherto third party libraries.The following are primitive opera-

regularly or as the Cartesian product of irregular distri-t'onS that are invoked synchronously by all processes:

butions on each axis. e create an array, controlling alignment and distribution;

» Each process can independently and asynchronously z create an array following a provided template (existing
cess any two-dimensional patch of a GA distributed ma array);
trix, without requiring cooperation by the appIication.

code in any other process. destroy an array; and

« Several types of access are supported, including ‘get’ synchronize all processes.

‘put’, ‘accumulate’ (floating point sum-reduction), and The following are primitive operations that may be in-
‘get and increment’ (integer). This list is expected to bevoked in true MIMD style by any process with no implied
extended as needed. synchronization with other processes and, unless otherwise

e Each process is assumed to have fast access to soStated’ with no guaranteed atomicity-

portion of each distributed matrix, and slower access te fetch, store and atomic accumulate into rectangular
the remainder. These speed differences define the de patch of a two-dimensional array;

as being ‘local’ or ‘remote’, respectively. However, the
numeric difference between ‘local’ and ‘remote’ access’

times is unspecified. « atomic read and increment of an array element;

+ Each process can determine which portion of each dis inquiry about the location and distribution of the data;
tributed matrix is stored ‘locally’. Every element of a and

distributed matrix is guaranteed to be ‘local’ to exactly .
one process. « direct access to local elements of array to support and/or

improve performance of application specific data-paral-
This model differs from other common models as fol- |el operations.

lows. Unlike HPF, it allows task-parallel access to distribut:) .

ed matrices, including reduction into overlapping patches | The following are a set of BLAS-like data-paralle'l op-
Unlike Linda, it efficiently provides for sum-reduction and €'ations that have been developed on top of the primitive
access to overlapping patches. Unlike shared virtual mem<oPerations (synchronization is included as a user conve-
ry facilities, GA requires explicit library calls to access €nce):

data, but avoids the operating system overhead associale vector operations (e.g., dot-product or scale) optimized

with maintaining memory coherence and handling virtua to avoid communication by direct access to local data;
page faults, and allows the implementation to guarante

that all of the required data for a patch can be transferred © Malrix operations (e.g., symmetrize) optimized to re-
the same time. Unlike Active Messages, GA does not in dUc& communication and data copying by direct access
clude the concept of getting another processor's cooper. t© local data; and

tion, which permits GA to be implemented efficiently even. matrix multiplication.

on shared-memory systems. Finally, unlike some othe) o]
strategies based on pollihgask duration is relatively un- ~The vector, matrix multiplication, copy, and print op-
important in programs using GA, which simplifies Codingeratlons exist in two versions that operate on either entire

and makes it possible for GA programs to exploit standar@ray(s) or specified sections of array(s). The array sections
library codes without modifying them. in operations that involve multiple arrays do not have to be

conforming -- the only requirements are that they must be
of the same type and contain the same number of elements.

gather and scatter array elements;

t. John Salmon, personal communication, describes a split-re-])]]))
quest programming strategy in which processes post many re- The following is functionality that is provided by

quests, then poll for requests to them, poll for replies to their owrthird party libraries made available by using the GA primi-
requests, handle them, and repeat the process. tives to perform necessary data rearrangement.O[Né)

cost of such rearrangement is observed to be negligible - The difference is that this single HPF assignment
comparison to that ofO(N®) linear-algebra operations. would be executed in a data-parallel fashion, whereas the
These libraries may internally use any form of parallelismglobal array put operation would be executed in MIMD
appropriate to the computer system, such as cooperatiparallel mode such that each process might reference differ-
message passing or shared memory: ent array patches.

» standard and generalized real symmetric eigensolve _
and 4 Implementation

* linear equation solver (interface to SCALAPACK [11]). We currently support three distinct environments:

1. Distributed-memory, message-passing parallel comput-

3.3 Sample code fragment ers with interrupt-driven communications or Active

Messages (Intel Gamma, Delta and Paragon, IBM

This interface has been designed in the light o Sp-1).

emerging standards. In particular, HPF [1,12] will certainly
provide the basis for future standards definition of distribut passing (using the TCGMSG portable message-passing
ed arrays in FORTRAN. The basic functionality describec :

library [13] on top of TCP/IP).
above (create, fetch, store, accumulate, gather, scatter, dz
parallel operations) all may be expressed as single stat3- Shared-memory parallel computers (KSR-2, SGI, most
ments using FORTRAN-90 array notation and the data-dis ~ UNIX workstations).
tribution directives of HPF. What HPF does not currently
provide_ is_ random access to region_s of distributed arrayy 1 Distributed-memory and network
from' W|t'h|n a MIMD paralle! subroutine call-tree, and re- environments
duction into overlapping regions of shared arrays.

Networked workstation clusters with simple message

)) Implementations on the distributed-memory and net-
The following code fragment uses the FORTRAN in-\ o environments share nearly all of their code. The dis-
terface to create anx mdouble precision array, blocked in tinction arises in the manner in which data are distributed
at least 10« 5 chunks, which is zeroed and then has a patCyng accessed. The availability of interrupt-driven commu-
filled from a local array. Undefined values are assumed thications on distributed memory machines permits us to es-
be computed elsewhere. The routige create() re- (aplish handlers that support remote access to local data
turns in the variablg_a a handle to the global array with \ich is then stored within the application processes. This
which subsequent references to the array may be made. permits very fast access to ‘local’ data. Some care is needed
to mask interrupts to ensure coherency and guarantee dead-
lock free execution. In the network environment, we do not
attempt to implement interrupt-driven communications. In-
double precision local(1:ldim,*) stead, we use a data-server model in which server processes
c manage the data and respond to requests from the client ap-
plication processes. While this approach is very portable,
access to local data is not as fast as if the data resided di-
call ga_zero(g_a) rectly in the application processes. Also, an additional layer
call ga_put(g_a, ilo, ihi, jlo, jhi, local, Idim) is required on top of the message-passing tools to hide the
additional server processes from the application. There are
several other ways that the GA model could be implement-
The above code is very similar in functionality to theed in the network environment, notably either sharing the
following HPF-like statements memory associated with GA matrices between server and
client processes, or using a single process with separate ap-
plication and server threads. Both of these would likely be

integer g_a, n, m, ilo, ihi, jlo, jhi, Idim

call ga_create(MT_DBL, n, m, ‘A’, 10, 5, g_a)

integer n, m, ilo, ihi, jlo, jhi, ldim faster but less portable than our current approach.
double precision a(n,m), local(1:1dim,”) A reference to a patch of a global array is internally
Ihpf$ distribute a(block(10), block(5)) decomposed into references to patches on specific proces-

sors. The protocol used to communicate between client and

server is almost the same for both environments. Opera-
a=00 tions such as store or accumulate that require no
a(ilo:ihi,jlo:jhi)=local(L:ihi-ilo+1,1:jhi-jlo+1) synchronization cause the requesting process to send a

c

single message. The message contains information that coverall performance of the applications that use the toolkit.

scribes the requested operation and data size, followed We demonstrate performance of these primitives on a mes-
the data itself. A read operation requires that the client wasage-passing distributed-memory architecture, the Intel

for the response. The current protocol for read operation cTouchstone Delta, and on a NUMA shared-memory archi-

the distributed memory machines has been influenced Itecture, the Kendall Square KSR-2 which is essentially a

features of the EUI-H message passing library on the IBNtwo-fold faster version of the KSR-1 [15].

SP-1: relatively small (8KB) system message buffers an
the in-order message delivery rule. The requesting proce
sor posts an asynchronous receive before sending a requ

In general, each primitive operation can reference
data that is physically local, physically remote or both.

for the data. In the network environment, the requestinlAISO’ either contiguous or noncontiguous blocks of memo-

processor sends a request and then posts a blocking rece’y '€ accessed depending on whether a one- or a multi-di-

for the message that contains the data. The protocols will t(rjnens!gngllp?:]gh of ?n arrayl IS SEI'?E refer?ngedl. 'Il'he Tests
unified when asynchronous communication becomes su eslcrlle | In this section involved erther exc uh5|ve3:c oca OL.
ported in TCGMSG. exclusively remote accesses to square patches of a two-di-

mensional array resident on a single processor. The refer-
The gather and scatter operations are designed to miences to noncontiguous blocks of memory, in this case,
imize the number of messages sent. The input list of indecorrespond to the data access patterns in our targeted appli-
pairs are sorted by the process in which the data element ications and in many parallel algorithms in dense numerical
sides so that requests for data on that process are bundlinear algebra using block decomposition.

into a single message.
g g The latency of local and remote get, put, and accumu-

late operations, as a function of the number of bytes, refer-
4.2 Shared-memory environments enced in small to medium size patches of an array, is
o)) illustrated in Figure 1 for the Intel Touchstone Delta, in Fig-
In order to maintain complete consistency with the;re 5 for the KSR-2 and Figure 3 for the IBM SP-1. While
other implementations, we provide a distributed-memony,e |5tencies on the Delta and the SP-1 are almost indepen-
environment in which the only shared data is that providegent of the physical distance between the processor request-
by the global array library. The current |mplgmentatlon US€jng the data and the data owner, on the KSR platform there
System V shared memory and heavy-weight UNIX pro-c, pe 5 significantly variable cost for access to remote

cesses, rather than threads. On machines such as the Kyaa This effect is clearly seen in Figure 2 for remote data
dall Square Research KSR-2 native memory locks are uUs(ocateqd in the memory of another processor on the same
to support mutual exclusion, while on other platforms,.q 4 different ring.

semaphores are used. Implementations that use semaphc

currently sequentialize access to the entire array i Both visual inspection of Figure 2 and statistical anal-
‘read_and_increment’ and ‘accumulate’ operations, but ysis (linear and nonlinear regression) of the gathered data
more scalable mutual exclusion algorithm is planned.

On the KSR-2, a substantial performance improve g gg20

ment may be obtained by prefetching subpages (128 byte o—olocal get
of shared data with the correct access mode (read-only for s&—Alocal hccumulate

. . . o—oremote get
get operation, exclusive for put and accumulate operations g5 | $—2remote put

a—Aremote accumulate
The KSR memory architecture permits memory subpage
to be put into atomic mode with similar cost to an ordinary @
non-atomic access to that page. This facility is used to prc ?0_0010
vide fine grain locking in the accumulate operation whict &
increases scalability. Also on the KSR, we use a dynamic f
way barrier which is claimed to be the fastest barrier fo g5
this machine [14]. On other machines, the central barrier a

gorithm is used.

0'OOOOO 1000 2000 3000b 4000 5000 6000 7000
. . es
5 Performance of Communication v
Primitives _
Figure 1: The latency of local and remote get, put, and accumu-
. o late operations as a function of the number of bytes, referenced in
The efficiency of the elementary communication op- small to medium size patches of an array for the Intel Touchstone

erations, get, put and accumulate, might be crucial to th Delta.

| slocal’get ' ' 0.20 i i T T

0.0016 [sjocal put — pecoet ¢ v]
alocal accumulate itted pu 5 o—o|ocal get
0.0014 [oremote get — fitted accumul - ——local put
’ oremote put — 7 a—alocal accumulate
Aremote accumulate "' 0.15F ©—eremote get
0.0012 [oremote get (2 4 ? 1 +—e remote put

*remote put (2

9 A—Aremote accumulate
vremote accumulate (2) _g
L 2 b

0.0010
0.0008

latency [s]
latency [s]
=]
N
o

0.0006

0.0004 1 0.051

0.00000"""1500 2000 3000 4000 5000 6000 7000 0.004 200000 400000 600000 800000 1000000
bytes bytes
Figure 2: The latency of local and remote get, put, and accumu- Figure 4: The latencies of local and remote get, put, and accumu-
late operations as a function of the number of bytes, referenced in late operations for larger array patches for the Intel Touchstone
small to medium size patches of an array for the Kendall Square Delta.
KSR-2.
0.0012 T T T T T T T
e—o|ocal get ©—9Jocal get
“local put o—elocal put
0.0010 local accumulate R &—4A|ocal accumulate
) remote get 0.06 [* *remote get b
+—*remote put +—¢remote put
A—aremote accumulate A—Aremote accumulate
0.0008 [1 o—Oremote get (2)
) W o—oremote put (2) X
> ~ | &—Aremote accumulate (2) %
20.0006 [1 3004 o
2 o 8
ks g
0.0004 []
0.02
0.0002 []
0.0000 - - 2.5 3 il L L L 1 1 0.00 g 1 L 1 1
0 1000 2000 3000 4000 5000 6000 7000 0 200000 400000 600000 800000 1000000
bytes bytes
Figure 3: The latency of local and remote get, put, and accumu- Figure 5. The latency of local and remote get, put, and accumu-
late operations as a function of the number of bytes, referenced in late operations for larger array patches for the Kendall Square
small to medium size patches of an array for the IBM SP-1. KSR-2.

reveal the presence of a nonlinear relationship between tlFigure 4 for the Delta, Figure 5 for the KSR-2 and Figure 6
latency and the number of bytes in remote operations on tifor the SP-1. The functional relationship between latency
KSR-2. The statistically significant nonlinear -- square rooand the number of bytes appears to be linear.
-- term is present due to the fact that each column of a smi
square patch of an array will reside in a separate 128-by The latency of remote get on the Delta and the SP-1
Subpage_ Thus for small patcheS, the number of Subpagis h|gher than for the other communication primitives. It
that must be transferred is proportional to the number chas the following components:
columns, or the square root of the total patch size. Th
curves in this figure were prepared based on the actual r tget = et startupt M2 copy™ Teomnd - (1)
gression model fitted for the empirical data.
wheretyet.startupls the overhead for subroutine calls, send-

The latencies of local and remote get, put, and accting and receiving two messages, and generating an interrupt

mulate operations for larger array patches are shown ion the remote processaris the number of byteScqpy is

0.15 T T T T 0.25
e—9|ocal get *—®access based
local put *—#get/put based
local accumulate 0.20
®—°remote get
" remote put
0.10 [4 “remote accumulate
o, % 0.15[]
Py)
2 £
2 =
= 0.10[]
0.051
0.05T |
0.00 e ' ' ' 0.00 TN oA 145750 g pap—— -
0 200000 400000 600000 800000 1000000 64 80 96 112128 140160176196 210 224 256
bytes processors
Figure 6: The latency of local and remote get, put, and accumu- Figure 7: Performance of the scaled add operation implemented
late operations for larger array patches for the IBM SP-1. using the access or get and put operations for a 3000 x 3000 prob-
lem on the Intel Touchstone Delta.
the per-byte time for a local memory copy, dpghmis the The ‘get’, ‘put’, and ‘accumulate’ operations are de-

per-byte communication transfer time. Latencies of thefined in terms of copying to and from process-local buffers.
remote put and accumulate operations are basically idenFor algorithms designed to operate on local patches, copy-

cal to each other: ing the data imposes an unnecessary cost. To address this
problem, we have added a separate set of ‘access’ opera-
Tout = Yout-startup® " Teopy™ Teomnd » (2) tions whose semantics are defined in terms of obtaining and

releasing access to patches. For ‘access’ operations, GA

but differ from that of remote get since one memory COPYgjmny returns a reference to the patch so that the applica-
the two message receipts and the remote interrupt are ryjo, ooy access the data in-place. The performance im-

on th(la critical path. Thde pLoczssor |szu(|jng a remote_ pfuuaprovement of using ‘access’ rather than ‘get and ‘put
cumulate request sends the data and does not wait for tprimitives can be significant for BLAS-1 type operations

cct))Tanetlor? ?f thekoperlat:jon (there is aflso an opt|or:1 avba"that touch each matrix element only once or twice. For ex-
able to walt for acknowledgment sent_ate_r request has e'ample, Figure 7 shows the execution time for a scaled ma-
processed). On the Delta, the bandwidth in access to the ltrix addition

cal data is 19.5 MB/s, and 5.3 to 6.25 MB/s for remote ge

and remote put, respectively. These results are consiste C = aA+pB, (3)
with the performance of the message-passing communic])

tion on this machine[16]. On the IBM SP-1, the bandwidttthat was implemented on the Delta using the two tech-
in access to the local data is 85 MB/s, and 7.3 to 7.7 MB/niques. The ‘access’ version runs about 25% faster.

for remote get and remote put, respectively.

Unlike the distributed-memory implementations, on® Visualization Tool for Global Arrays
the KSR-2 and other shared-memory platforms, compute
tions in the ‘accumulate’ operation are performed by the re
questing processor. However, this operation on the KSR-
is almost no more expensive than the get and put sinc
prefetching of subpages allows overlapping computation
with communication. Prefetching is also crucial in reducing
the performance gap between local and remote operatior
The bandwidth in the get and put operations is roughl
identical and varies with the source/destination of the dat This particular tool uses trace data that is gathered in
from 66MB/s for the processor cache, 33 MB/s for the locaa file during the program execution. The global array li-
memory, and 25.4 MB/s for the remote memory of anothebrary is instrumented to generate necessary tracing infor-
processor on the same ring to 13.5 MB/s in the case whemation whenever the distributed data is accessed. Patterns
the data has to be transferred between memories of two piof accesses are visualized by the tool that processes sequen-
cessors not on the same ring. tialized trace events. The user may adjust a time scale for

In order to aid in tuning the performance of applica-
tions using global arrays, a visualization and animation tool
has been developed. This tool helps the programmer design
efficient task scheduling strategies for MIMD algorithms
that operate on the distributed two-dimensional data. Mini-
mization of data access contention profits such applications
by improving processor utilization.

Figure 8: A snapshot of the GA performance analysis tool prior to Figure 9: A snapshot of the Global Array performance analysis

the optimizations discussed in the text. The pixels correspond to tool after optimizations have been included. The scale for conten-
the elements of a 2-dimensional array. Depicted is the perfor- tion is three orders of magnitude smaller than in the preceding dis-
mance of a 300 basis function calculation on a chain of water mol- play.

ecules. Elements are shaded according to the time processes
wasted waiting for those elements.

the animation. A color coding is used to differentiate levels The performance of the main computational kernel of
of access contention for the particular data blocks. After ththe SCF program was improved approximately four-fold by
animation of events recorded in a tracefile is completed, the above tuning, and currently realizes an estimated speed-
composite access contention index is displayed using a dup (relative to a single processor) of 496 on 512 processors
ferent color coding for the entire distributed array. The too©f the Intel Delta. The single processor performance is esti-

has been implemented using the X Windows and Xt librarMated from the performance of smaller calculations and the
ies performance of the same problem size on 64 processors, the

smallest number of processors on which it was possible to

The tool was applied to our new distributed SCF pro-hOId the data.

gram [8]. Our first scheduling of the tasks realized poor pai
a!lel eff!cpncy, but the reason was not apparent fro-n7 Future Work
simple timing data. The performance tool showed that sig

nificant contention for data was the problem, as shown i

F|gure 8. This problem was regdny addressed by reorderonstrated their value in producing high performance scal-
ing the tasks so as to more uniformly spread out referenciyp|o applications, GA development is far from complete.
to the GA matrices, and by the introduction of caching (iroyr current implementations are first-generation research
the application code) to eliminate redundant data referenefforts, not robust production quality versions. Substantial
es. This eliminated most of the time lost due to Contentiorperformance improvement can be gained simply through
but the parallel speedup was still not as good as expectetuning and incorporating better internal algorithms, such as
The dynamic visualization (animation) then showed thasplit-phase remote access for logical blocks that span phys-
some large tasks were getting scheduled too near the endical processors. More importantly, even larger improve-
the computation, causing a load-balance problem. This wiments can be made by extending the API, such as to allow
resolved by incorporating a stratified randomizing schemapplications to specify access patterns in addition to physi-
that approximately preserved the large-to-small order Ocal_distributions, or to expose s_plit—phase ‘get’_ tc_J the appli-
tasks, necessary for load-balancing, while still reorderincation for even more effective latency hiding. Such
tasks of similar size enough to spread out the GA referenc:
and avoid contention. The final scheduling, depicted in Figt. Color versions of Figures 8 and 9 appear at the end of Proceed-
ure ¢, is both load-balanced and almost contention-free. N9S:

Although our GA model and tools have already dem-

improvements will involve tradeoffs in ease-of-use versuinstrumental in virtually eliminating the time lost due to
performance and will thus require serious evaluation. contention in a large chemistry application.

The GA model and tools were developed under our
HPCCI Grand Challenge project in Computational Chemis-
try, whose focus is on developing algorithms, techniques,

We have designed, implemented, and used a new prand tools for allowing computational chemistry applica-
gramming facility, called Global Arrays (GA). The key tions to exploit future teraflops machines. However, they
concept of GA is that it provides a portable interfacehave turned out to have immediate benefit as well, and are
through which each process in a MIMD parallel progrannow being widely adopted in parallel chemistry codes de-
can efficiently access logical blocks of physically diStribUt-Ve|oped for production use in PNL's Environmental and
ed matrices, with no need for explicit cooperation by otheMolecular Science Laboratory. Such rapid adoption of a
processes (or processors) where the data resides. In this new programming strategy illustrates the power of the
spect, it is similar to the shared-memory programmintHPCCI program in bringing together an effective collabora-
model. However, the GA model also acknowledges that retion of researchers from computer science and the applica-

mote data is slower to access than local, and it allows dation domains. We hope to see many similar results in the
locality to be explicitly specified and used. In these refyture.
spects, it is similar to message passing.

8 Summary and Conclusions

For certain kinds of applications, the GA model pro-g Acknowledgments
vides a better combination of simple coding, high efficien:

¢y, and portability than are provided by other models. Thi This work was performed under the auspices of the
applications that motivated our work are characterized bHigh Performance Computing and Communications Pro-
1) accessing relatively small blocks of very large matriceigram of the Office of Scientific Computing, U.S. Depart-
(thus requiring blockwise physical distribution), 2) havingment of Energy under contract DE-AC-6-76RLO 1830 with
wide variation in task execution time (thus requiring dy-Battelle Memorial Institute which operates the Pacific
namic load balancing, with attendant unpredictable datnorthwest Laboratory. The Environmental and Molecular
reference patterns), and 3) having a fairly large ratio oscience Laboratory project is managed by the Office of En-
computation to data movement (thus making it possible tergy Research. We thank Dr. David Bernholdt, Dr. Alistair

retain high efficiency while accessing remote data on derendell, Prof. Hans Lischka, Dr. Matthew Rosing and
mand). Although these characteristics may seem restrictiVGeorge Fann for valuable discussions.

our experience to date suggests that many applicatiol
would qualify. For example, the GA model seems to pro
vide good support for a large part of computational chemisReferences
try, especially electronic structure codes, and it is alsi
promising for application domains like global climate mod-1.
eling, where application codes often exhibit both spatial lo

High Performance Fortran Foruhigh Performance
Fortran Language Specificatiphfersion 1.0, Rice Uni-

cality and load imbalance [17].

Our application interface for GA is designed to permit2-
efficient implementation on a wide variety of platforms. We
currently have GA implementations based on 1) interrupt
driven communication using a single process per process(
2) blocking communications, using two processes per prc
cessor (an application process and a data server), and
hardware shared-memory support using multiple process:
and mutual exclusion primitives.

In addition to the basic programming facilities of GA,
we have also developed a performance visualizer tailored
the GA model. The visualizer can provide animations
showing instantaneous temporal and spatial access patte!
to distributed arrays, and can also provide time-averages.
static displays showing aggregate processor time lost due
contention for GA data. In its first use, the visualizer was

versity, 1993.

J.A. Stephen and R.R. Oldehoeft, ‘HEP SISAL: Paral-
lel Functional Programming’ ifParallel MIMD Com-
putation: HEP Supercomputer and Its Applicatiopg.
123-150, ed. J.S. Kowalik, The MIT Press, Cambridge,
MA, 1985.

I.T. Foster, R. Olson and S. Tuecke, ‘Productive Paral-
lel Programming: The PCN Approaclgtientific Pro-
gramming pp. 51-66, 1, 1992.

I.T. Foster and K.M. Chandffortran M: A Language

for Modular Parallel ProgrammingArgonne National

Laboratory, preprint MCS-P327-0992, 1992.

N. Carriero and D. Gelernteddow To Write Parallel
Programs. A First CourseéThe MIT Press, Cambridge,
MA, 1990.

10.

A. Szabo and N.S. Ostlundlodern Quantum Chemis- 11.
try: Introduction to Advanced Electronic Structure The-
ory. 1st Ed. Revised, McGraw-Hill, Inc., New York, 12.
1989.

J. Almbf, K. Faegri and K. Korsell, ‘The Direct SCF 13
Method,’J. Comp. Chem385, 3, 1982.

R.J. Harrison, M.F. Guest, R.A. Kendall, D.E. Bern-
holdt, A.T. Wong, M.S. Stave, J.L. Anchell, A.C. Hess, 14.
R.J. Littlefield, G.I. Fann, J. Nieplocha, G.S. Thomas

D. Elwood, J. Tilson, R.L. Shepard, A.F.Wagner, I.T.
Foster, E. Lusk and R. Stevens, ‘Fully Distributed Par-15
allel Algorithms -- Molecular Self Consistent Field Cal- =
culations,’J. Comp. Chemsubmitted for publication,
1994,

SCALAPACK, scalable linear algebra package, code
and documents available througgtlib

High Performance Fortran Forum lIl, information avail-
able fromchk@cs.rice.edu

R.J. Harrison, ‘Portable Tools and Applications for Par-
allel Computers,Int. J. Quant. Chempp. 847-863, 40,
1991.

D. Grunwald and S. Vajracharya, ‘Efficient barriers for
distributed shared memory computeRrbceedings of
8th IPPS pp. 604-608, 1994.

R.H. Saavedra, R.S. Gaines and M.J. Carlton, Micro
Benchmark Analysis of the KSRPyoc. of Supercom-
puting ‘93 IEEE Computer Society, pp. 202-213, 1993.

16. R.J. Littlefield, ‘Characterizing and Tuning Communi-

A.P. Rendell, M.F. Guest and R.A. Kendall, ‘Distribut-
ed Data Parallel Coupled-Cluster Algorithm: Applica-
tion to the 2-Hydroxypyridine/2-Pyridone Tauto-
merism,’J. Comp. Chempp. 1429-1439, 14, 1993.

M. Schuler, T. Kovar, H. Lischka, R. Shepard and R.J17.
Harrison, ‘A parallel implementation of the COLUM-
BUS multireference configuration interaction program,’
Theor. Chim. Actapp. 489-509, 84, 1993.

10

cations Performance on the Touchstone DELTA and
iPSC/860, Proc. of the Intel Supercomputer Users’
Group 1992 Annual Users conferengay. 309-313,
1992.

J. MichalakesAnalysis of Workload and Load Balanc-
ing Issues in NCAR Community Climate Modé&l-
gonne National Laboratory, technical report MCS-TM-
144, 1991.

