
Copyright © 2015 - 2016 by SynthWorks Design Inc. All rights reserved. 1
Verbatim copies of this document may be used and distributed without restriction.

MemoryPkg User Guide

User Guide for Release 2016.01

By

Jim Lewis

SynthWorks VHDL Training

Jim@SynthWorks.com

http://www.SynthWorks.com

Copyright © 2015 - 2016 by SynthWorks Design Inc. All rights reserved. 2
Verbatim copies of this document may be used and distributed without restriction.

Table of Contents

1 AlertLogPkg Overview... 3
2 AlertLogPkg Use Models ... Error! Bookmark not defined.
3 Simple Mode: Global Alert Counter .. 3
4 Hierarchy Mode: Separate Alert Counters Error! Bookmark not defined.
5 Method Reference .. 4

5.1 Package References ... 4
5.2 AlertType .. Error! Bookmark not defined.
5.3 Simple Alerts ... Error! Bookmark not defined.
5.4 Creating Hierarchy: GetAlertLogID Error! Bookmark not defined.
5.5 FindAlertLogID: Find an AlertLogID Error! Bookmark not defined.
5.6 Hierarchical Alerts .. Error! Bookmark not defined.
5.7 ReportAlerts: Reporting Alerts Error! Bookmark not defined.
5.8 SetAlertLogName: Setting the Test Name ... 5
5.9 SetGlobalAlertEnable: Alert Global Enable / Disable Error! Bookmark not defined.
5.10 SetAlertEnable: Alert Enable / Disable Error! Bookmark not defined.
5.11 SetAlertStopCount: Alert Stop Counts Error! Bookmark not defined.
5.12 AlertCountType .. Error! Bookmark not defined.
5.13 GetAlertCount .. Error! Bookmark not defined.
5.14 GetEnabledAlertCount .. Error! Bookmark not defined.
5.15 GetDisabledAlertCount .. Error! Bookmark not defined.
5.16 ClearAlerts: Reset Alert and Stop Counts............... Error! Bookmark not defined.
5.17 Math on AlertCountType Error! Bookmark not defined.
5.18 SumAlertCount: AlertCountType to Integer Error CountError! Bookmark not
defined.
5.19 SetAlertLogJustify .. Error! Bookmark not defined.
5.20 LogType .. Error! Bookmark not defined.
5.21 Simple Logs ... Error! Bookmark not defined.
5.22 Hierarchical Logs ... Error! Bookmark not defined.
5.23 SetLogEnable: Enable / Disable Logging Error! Bookmark not defined.
5.24 IsLoggingEnabled .. Error! Bookmark not defined.
5.25 OsvvmOptionsType .. Error! Bookmark not defined.
5.26 SetAlertLogOptions: Configuring Report Options Error! Bookmark not defined.
5.27 DeallocateAlertLogStruct Error! Bookmark not defined.
5.28 InitializeAlertLogStruct ... Error! Bookmark not defined.

6 Compiling AlertLogPkg and Friends .. 6
7 About AlertLogPkg ... 6
8 Future Work .. 7

Copyright © 2015 - 2016 by SynthWorks Design Inc. All rights reserved. 3
Verbatim copies of this document may be used and distributed without restriction.

9 About the Author - Jim Lewis .. 7

1 MemoryPkg Overview

The AlertLogPkg provides a protected type and methods to simplify the creation of data
structures required to model larger memories.

2 Simple Mode: Global Alert Counter

By default, there is a single global alert counter. All designs that use alert or log need
to reference the package AlertLogPkg.

use osvvm.AlertLogPkg.all ;
architecture Test1 of tb is

Use Alert to flag an error, AlertIf to flag an error when a condition is true, or AlertIfNot
to flag an error when a condition is false (similar to assert). Alerts can be of severity
FAILURE, ERROR, or WARNING.

-- message, level
When others => Alert("Illegal State", FAILURE) ;
. . .
-- condition, message, level
AlertIf(ActualData /= ExpectedData, "Data Miscompare …", ERROR) ;
. . .
read(Buf, A, ReadValid) ;
-- condition, message, level
AlertIfNot(ReadValid, "read of A failed", FAILURE) ;

The output for an alert is as follows. Alert adds the time at which the log occurred.
%% Alert ERROR Data Miscompare … at 20160 ns

When a test completes, use ReportAlerts to provide a summary of errors.
ReportAlerts ;

When a test passes, the following message is generated:
%% DONE PASSED t1_basic at 120180 ns

When a test fails, the following message is generated (on a single line):
%% DONE FAILED t1_basic Total Error(s) = 2 Failures: 0 Errors: 1 Warnings: 1
at 120180 ns

Similar to assert, by default, when an alert FAILURE is signaled, a test failed message
(see ReportAlerts) is produced and the simulation is stopped. This action is controlled
by a stop count. The following call to SetAlertStopCount, causes a simulation to stop
after 20 ERROR level alerts are received.

SetAlertStopCount(ERROR, 20) ;

Copyright © 2015 - 2016 by SynthWorks Design Inc. All rights reserved. 4
Verbatim copies of this document may be used and distributed without restriction.

Alerts can be enabled by a general enable, SetGlobalAlertEnable (disables all alert
handling) or an enable for each alert level, SetAlertEnable. The following call to
SetAlertEnable disables WARNING level alerts.

SetGlobalAlertEnable(TRUE) ; -- Default
SetAlertEnable(WARNING, FALSE) ;

Logs are used for verbosity control. Log level values are ALWAYS, DEBUG, FINAL, and
INFO.

Log ("A message", DEBUG) ;

Log formats the output as follows.
%% Log DEBUG A Message at 15110 ns

Each log level is independently enabled or disabled. This allows the testbench to
support debug or final report messages and only enable them during the appropriate
simulation run. The log ALWAYS is always enabled, all other logs are disabled by
default. The following call to SetLogEnable enables DEBUG level logs.

SetLogEnable(DEBUG, TRUE) ;

3 Method Reference

3.1 Package References
Using MemoryPkg requires the following package references:

library osvvm ;
use osvvm.MemoryPkg.all ;

3.2 MemInit
Alert levels can be FAILURE, ERROR, or WARNING.

type AlertType is (FAILURE, ERROR, WARNING) ;

3.3 MemWrite
Simple alerts accumulate alerts in the default AlertLogID (ALERTLOG_DEFAULT_ID). It
supports the basic overloading and usage:

procedure Alert(Message : string ; Level : AlertType := ERROR) ;
. . .
Alert("Uart Parity") ; -- ERROR by default

3.4 MemRead Procedure
Each level in a hierarchy is referenced with an AlertLogID. The function, GetAlertLogID,
creates a new AlertLogID. If an AlertLogID already exists for the specified name,

Copyright © 2015 - 2016 by SynthWorks Design Inc. All rights reserved. 5
Verbatim copies of this document may be used and distributed without restriction.

GetAlertLogID will return its AlertLogID. It is recommended to use the instance label as
the Name. The interface for GetAlertLogID is as follows.

impure function GetAlertLogID(Name : string ;
 ParentID : AlertLogIDType := ALERTLOG_BASE_ID) return AlertLogIDType ;
 GetAlertLogID("UART_1", ALERTLOG_BASE_ID);

3.5 MemRead Function
The function, FindAlertLogID, finds an existing AlertLogID. If the AlertLogID is not
found, ALERTLOG_ID_NOT_FOUND is returned. The interface for FindAlertLogID is as
follows.

impure function FindAlertLogID(Name : string ; ParentID : AlertLogIDType)
 return AlertLogIDType ;
impure function FindAlertLogID(Name : string) return AlertLogIDType ;

3.6 MemErase
Hierarchical alerts require the AlertLogID to be specified in the call to alert. It supports
the basic overloading and usage:

procedure alert(
 AlertLogID : AlertLogIDType ;
 Message : string ;
 Level : AlertType := ERROR
) ;
. . .
Alert(UartID, "Uart Parity", ERROR) ;

3.7 Deallocate
At test completion alerts are reported with ReportAlerts.

procedure ReportAlerts (
 Name : string := "" ;
 AlertLogID : AlertLogIDType := ALERTLOG_BASE_ID ;
 ExternalErrors : AlertCountType := (others => 0)
) ;
. . .
ReportAlerts ;

3.8 ReadMemB and ReadMemH
Designed to mimic Verilog system functions $readmemb and readmemh.

procedure ReadMemB (
 Name : string ;
 StartAddr : natural := 0 ;
 FinishAddr : natural := natural'right
) ;

The file shall contain only of the following:

• White space (spaces, new lines, tabs, and form-feeds)

Copyright © 2015 - 2016 by SynthWorks Design Inc. All rights reserved. 6
Verbatim copies of this document may be used and distributed without restriction.

• Comments (either //, #, or --)
• @ character (designating the adjacent number is an address)
• Binary or hexadecimal numbers

Addresses specified in the call to ReadMemB ro ReadMemH provide both an initial
starting address and a range of valid addresses for memory operations. Addressing
advances from StartAddr to FinishAddr. If FinishAddr is greater than StartAddr, then
the next address is one larger than the current one, otherwise, the next address is one
less than the current address.

Addresses may also be specified in the file in the format '@' followed by a hexadecimal
number as shown below. There shall not be any space between the '@' and the
number. The address read must be between StartAddr and FinishAddr or a FAILURE is
generated.

@hhhhh

Values not preceded by an '@' character are data values. Data values must be
separated by white space or comments from other values. ReadMemB requires values
compatible with read for std_ulogic. ReadMemH requires hexadecimal values
compatible with hread for std_ulogic_vector. If more digits are read than are required
by the memory, left hand characters will be dropped provided they are 0. If fewer
digits are read than are required by the memory, left hand characters will be 0.

4 Compiling AlertLogPkg and Friends

Use of AlertLogPkg requires use NamePkg and OsvvmGlobalPkg. The compile order is:
NamePkg.vhd, OsvvmGlobalPkg.vhd, TranscriptPkg.vhd, and AlertLogPkg.vhd.
Compiling the packages requires VHDL-2008.

5 About AlertLogPkg

AlertLogPkg was developed and is maintained by Jim Lewis of SynthWorks VHDL
Training. It originated as an interface layer to the BitVis Utility Library (BVUL).
However, it required a default implementation and that default implementation grew
into its own project.

Please support our effort in supporting AlertLogPkg and OSVVM by purchasing your
VHDL training from SynthWorks.

AlertLogPkg is released under the Perl Artistic open source license. It is free (both to
download and use - there are no license fees). You can download it from
http://www.synthworks.com/downloads. It will be updated from time to time.
Currently there are numerous planned revisions.

Copyright © 2015 - 2016 by SynthWorks Design Inc. All rights reserved. 7
Verbatim copies of this document may be used and distributed without restriction.

If you add features to the package, please donate them back under the same license as
candidates to be added to the standard version of the package. If you need features,
be sure to contact us. I blog about the packages at http://www.synthworks.com/blog.
We also support the OSVVM user community and blogs through http://www.osvvm.org.

Find any innovative usage for the package? Let us know, you can blog about it at
osvvm.org.

6 Future Work

AlertLogPkg.vhd is a work in progress and will be updated from time to time.

Caution, undocumented items are experimental and may be removed in a future
version.

7 About the Author - Jim Lewis

Jim Lewis, the founder of SynthWorks, has twenty-eight years of design, teaching, and
problem solving experience. In addition to working as a Principal Trainer for
SynthWorks, Mr Lewis has done ASIC and FPGA design, custom model development,
and consulting.

Mr. Lewis is chair of the IEEE 1076 VHDL Working Group (VASG) and is the primary
developer of the Open Source VHDL Verification Methodology (OSVVM.org) packages.
Neither of these activities generate revenue. Please support our volunteer efforts by
buying your VHDL training from SynthWorks.

If you find bugs these packages or would like to request enhancements, you can reach
me at jim@synthworks.com.

	1 MemoryPkg Overview
	2 Simple Mode: Global Alert Counter
	3 Method Reference
	3.1 Package References
	3.2 MemInit
	3.3 MemWrite
	3.4 MemRead Procedure
	3.5 MemRead Function
	3.6 MemErase
	3.7 Deallocate
	3.8 ReadMemB and ReadMemH

	4 Compiling AlertLogPkg and Friends
	5 About AlertLogPkg
	6 Future Work
	7 About the Author - Jim Lewis

