
Asynchronous features of plac
Author: Michele Simionato

E-mail: michele.simionato@gmail.com

Date: June 2010

Download
page:

http://pypi.python.org/pypi/plac

Project page: http://micheles.googlecode.com/hg/plac/doc/plac.html

Installation: easy_install -U plac

License: BSD license

Requires: Python 2.5+

Contents
Introduction 1

Threaded commands 2

Running commands as external processes 3

Asynchronous mode 3

Introduction
plac_ started out as a command-line arguments parser, but it quickly grown as a general purpose tool to
write interpreters for command-line languages. In particular a number of facilities to write interactive
interpreters where implemented. However, before release 0.6 plac_ did not provide any facility to address
the issue of long running commands. The problem is that by default a plac_ interpreter blocks until a that
command terminates: that makes the interactive experience quite painful for long running commands. An
example is better than a thousand words, so consider the following fake importer:

import time
import plac

class Importer(object):
 "A fake importer with an import_file command"
 commands = ['import_file']
 def __init__(self, dsn):
 self.dsn = dsn
 def import_file(self, fname):
 "Import a file into the database"
 for n in range(10000):
 time.sleep(.01)
 if n % 100 == 99:
 yield 'Imported %d lines' % (n+1)
 yield # to keep the interface responsive

if __name__ == '__main__':
 plac.Interpreter(plac.call(Importer)).interact()

If you run the import_file commands, you will have to wait for 100 seconds before entering a new
command:

mailto:michele.simionato@gmail.com
http://pypi.python.org/pypi/plac
http://micheles.googlecode.com/hg/plac/doc/plac.html

$ python importer1.py dsn
A fake importer with an import_file command
i> import_file file1
Imported 100 lines
Imported 200 lines
Imported 300 lines
... <wait a couple of minutes>
Imported 10000 lines

Being unable to enter any command is quite annoying: in such situation one would like to run the long
running commands in the background, to keep the interface responsive. plac_ provides all the ways to do
it.

Threaded commands
The most familiar way to execute a task in the background (even if not necessarily the best way) is to run
it into a separated thread. In our example it is sufficient to replace the line

commands = ['import_file']

with

thcommands = ['import_file']

to tell to the plac_ interpreter that the command import_file should be run into a separated thread.
Here is an example session:

i> import_file file1
<ThreadedTask 1 [import_file file1] RUNNING>

The import task started in a separated thread. You can see the progress of the task by using the special
command _output:

i> _output 1
<ThreadedTask 1 [import_file file1] RUNNING>
Imported 100 lines
Imported 200 lines

If you look after a while, you will get more lines of output:

i> _output 1
<ThreadedTask 1 [import_file file1] RUNNING>
Imported 100 lines
Imported 200 lines
Imported 300 lines
Imported 400 lines

If you look after a time long enough, the task will be finished:

i> _output 1 <ThreadedTask 1 [import_file file1] FINISHED>

You can launch many tasks one after the other:

i> import_file file2
<ThreadedTask 5 [import_file file2] RUNNING>
i> import_file file3
<ThreadedTask 6 [import_file file3] RUNNING>

i> _list
<ThreadedTask 5 [import_file file2] RUNNING>
<ThreadedTask 6 [import_file file3] RUNNING>

It is even possible to kill a task:

i> _kill 5
<ThreadedTask 5 [import_file file2] TOBEKILLED>
i> _output 5
<ThreadedTask 5 [import_file file2] KILLED>

You should notice that since it is impossible to kill a thread, the _kill commands actually works by
setting the status of the task to TOBEKILLED. Internally the generator corresponding to the command is
executed in the thread and the status is checked at each iteration: when the status become TOBEKILLED
a GeneratorExit exception is raised and the thread terminates. This explain the importance of the
empty yield in the import_file generator (line 15 of importer1.py): since we are resuming the
generator every 10 milliseconds we check for the TOBEKILLED status 100 times per second (more than
enough). If we did not add the yield the status would have been checked only once every 100
iterations, i.e. once per second, not enough to get a responsive interface.

Running commands as external processes
Threads are not loved much in the Python world and actually most people prefer to use processes
instead. For this reason plac_ provides the option to execute long running commands as external
processes. Unfortunately the current implementation only works in Unix-like operating systems (including
Mac OS X) because it relies on fork via the multiprocessing_ module. To enable the feature in our
example it is sufficient to replace the line

thcommands = ['import_file']

with

mpcommands = ['import_file'].

The user experience is exactly the same as with threads and you will not see any difference at the user
interface level. Still, it is important to notice that using processes is quite different than using threads: in
particular, when using processes you can only yield pickleable values and you cannot re-raise an
exception first raised in a different process, because traceback objects are not pickleable.

Asynchronous mode
Command-line interfaces based on plac_ are usually blocking, i.e. the interpreter waits until it gets input
from stdin. However plac_ also support an synchronous mode based on an event loop which is
continuously running. You can submit commands to the event loop, and they are run one step at the time.
For the approach to work you must make sure that the command yields back to the event loop often
enough, otherwise the interface will block. In our example to enable the asynchronous mode it is sufficient
to replace the line

mpcommands = ['import_file']

with

asyncommands = ['import_file'].

The user experience is quite similar to the threading and multiprocessing mode, with a single difference:
the readline features are not available (the reason is that the plac_ event loop is based on a select
call). However on Unix you can use rlwrap_ on top of plac_ and you will get command history even if not
command completion.

The builtin event loop of plac_ is a toy: the asynchronous mode of plac_ is interesting if you are using a
third party asynchronous framework, such as Twisted or the Tornado web server. In such cases you can
use your framework event loop instead of the plac_ event loop. There is already a project (monocle_)
providing glue code for three asynchronous frameworks (Twisted, Tornado and the standard library
asyncore framework). I do not like to reinvent the wheel, therefore I wrote the plac_ eventloop to be
compatible with the monocle_ event loop: that means that you can integrate plac_ with all the event loops
wrapped by monocle_.

Here is an example (you need to install monocle_ first):

import plac
from monocle import asyncoreloop
from importer3 import Importer

if __name__ == '__main__':
 i = plac.Interpreter(plac.call(Importer))
 i.eventloop = asyncoreloop
 i.loop()

This code starts a server on port 2199: multiple clients can connect to it and run commands.

	Introduction
	Threaded commands
	Running commands as external processes
	Asynchronous mode

