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1 Introduction

This note discusses how to properly calculate the sensitivity of a neutrino detector from MC
simulations.

2 Calculation of effective volume/area etc.

We assume that simulations for discrete neutrino energies were performed. The following equations
refer to one specific neutrino energy Eν .

The effective volume is defined via

Veff = V/N
∑

i∈triggered

ωi , (1)

where V is the simulation volume, N is the total number of simulated events. The sum runs over
all triggered events and ωi is the weight (i.e. the probability of a neutrino reaching the simulation
volume) of event i.

The effective area is then given by

Aeff = Veff/Lint(Eν , ρ) , (2)

where Lint(Eν , ρ) is the interaction length of neutrinos of energy Eν in a medium with density ρ.
The interaction length is given by

Lint =
MN

σ(Eν)ρ
, (3)

according to [?] where MN is the nucleon mass which we approximate with the mass of the proton
mp and ρ is the average density along the path of the neutrino, which we approximate with the
density of deep ice of ρ = 0.917 g/cm3. This should be a reasonable assumption as the firn is
typically only a small fraction of the full simulation module. However, we can easily replace the
a constant density by a the averaged density which will depend on the incoming direction and
vertex position in the future.

For diffuse flux sensitivities it is often useful to define the ”effective volume steradian” which
is

Veff,sr = Veff ×∆Ω , (4)

where ∆Ω is the solid angle of the simulation which is typically 4π.
The exposure is the time integrated effective ares

ε =

∫
dtAeff = T ×Aeff , (5)

where the last equality holds if the effective area is independent of time and T is the total inte-
gration time.
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2.1 Historical definition

Typically, the water equivalent effective volume is quoted for an inter-experimental comparison.
Thus, the effective volume is multiplied by the ratio of ρice/ρwater. Internally in the code, this
definition is error prone, as the interaction length then needs to be calculated for water to convert
to effective area. Therefore, we don’t use it internally but we provide utility functions to convert
to water-equivalent effective volume.

3 Diffuse limit

Assuming a non-observation in a certain neutrino energy interval ∆E a limit of the diffuse neutrino
flux can be derived. The Feldman-Cousins 90% CL upper limit corresponds to the flux level that
predicts 2.4 events in an interval ∆E. Typically we assume that the neutrino flux follows a
Nν ∝ E−2

ν spectrum.
The number of events for a diffuse neutrino flux F (Eν) is given by

N =

∫
dEνF (Eν)ε(Eν)4π , (6)

where ε(Eν) is the average exposure over the full 4π sky, i.e., the time integral of the averaged
Aeff over all incoming directions. For F (Eν) = kE−γ we get

N =

∫
dEνkE

−γε(Eν)4π (7)

=

∫
d log10E ln(10) k E−γ+1 ε(Eν) 4π (8)

The flux limit is then given by

k =
2.4∫

d log10E ln(10)E−γ+1 ε(Eν) 4π
(9)

=
2.4Eγ−1

∆ log10E ln(10)Veff(E)/Lint(E)T 4π
. (10)

For multiple stations T can be replaced by T ×Nstations assuming that there is no overlap in the
detected events between stations.

4 Point source fluence limits

The number of events for a flux F (E) = k E−γ from a point source is given by

N =

∫
dE F (Eν)ε(E) (11)

=

∫
dE kE−γε(E) (12)

=

∫
d log10E ln(10) k E−γ+1 ε(E) (13)

=

∫
d log10E ln(10) k E−γ+1 (14)

The flux normalization k depends on γ and has units of [area−2 × energyγ−1]. Thus, the flux
normalization k always needs to be presented together with the spectral index γ, and the reference
energy.
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