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Abstract 

Although a number of foundational natural language 
processing (NLP) tasks like text segmentation are considered 
a simple problem in the general English domain dominated by 
well-formed text, complexities of clinical documentation lead 
to poor performance of existing solutions designed for the 
general English domain. We present an alternative solution 
that relies on a convolutional neural network layer followed 
by a bidirectional long short-term memory layer (CNN-Bi-
LSTM) for the task of sentence boundary disambiguation and 
describe an ensemble approach for domain adaptation using 
two training corpora. Implementations using the Keras 
neural-networks API are available at 
https://github.com/NLPIE/clinical-sentences. 
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Introduction 

In contrast to general English, clinical notes have significant 
differences in structure and content. For instance, clinical text 
often contains units of thought that fit the technical definition 
of sentences that are not terminated by the standard sentence 
boundary symbols or any symbols in many cases. Structures 
such as labels, section headers, text arranged in tables, and 
lists are examples of clinical text that do not follow general 
English rules for sentence termination. Furthermore, clinical 
text contains a disproportionately high number of acronyms, 
abbreviations, and ordinal numbers frequently decorated with 
punctuation symbols and containing variable capitalization. 
Segmentation errors caused by these ambiguities are magni-
fied in downstream processing.  

Previous research has shown that transfer learning in deep 
networks can improve generalization to tasks of related prob-
lems with small data sets [1]. Ensemble methods that engage 
in meta-learning through weighted voting models such as 
boosting, bagging, and stacking also reduce the generalization 
error over standard models [2]. We utilize transfer learning 
both in the use of word embeddings, and in our method for 
domain adaptation of models trained on one corpus to a differ-
ent, but related corpus of clinical text. 

Sentence boundary disambiguation (SBD), also known as sen-
tence segmentation or sentence boundary detection, is a well-

understood and explored problem in the domain of general 
English text. In well-formed general English text, a majority 
of sentences are terminated by sentence boundary symbols. 
Ambiguities caused by acronyms, abbreviations, quotations, 
and ordinal numbers are handled by further rules, or by statis-
tical methods such as maximum entropy classification of 
boundaries. Using these methods on general English text re-
sults in accuracy performance above 95% [3]. Relying on sen-
tence boundary symbols for SBD on the entire text of a clini-
cal document leads to errors in detecting non-terminated sen-
tence boundaries [4]. Although deep learning is the prevailing 
approach for many machine learning problems, it remains 
under-utilized in clinical applications, and the generalizability 
of clinical applications using current approaches is limited [5]. 

In this paper we report on applying deep neural network 
methods with the use case of sequence labeling to the SBD 
problem on the entire text of clinical notes with no prepro-
cessing or cleaning. We show that an architecture consisting 
of word embeddings enriched with character information run 
through a bi-LSTM have high accuracy in detecting sentence 
boundaries. We also explore the generalization problem of 
using a trained model for SBD on previously unseen text using 
several implementations, including combining training data, 
resuming training with data from the new corpus, and a stack-
ing method where the hidden layer results of two models 
trained separately on both corpora are summed before predic-
tion using a shared prediction layer. We show that the stacking 
method has the lowest generalization error with 96% F1 score 
for beginning of sentence tags.  

Methods 

Sentence Segmentation 

SBD is often the first step in solving any problem using natu-
ral language processing (NLP). Availability of sentence 
boundaries is necessary both for many general language tasks, 
such as part-of-speech tagging and parsing, and for domain-
specific analytical tasks such as document classification. Er-
rors in sentence detection tend to propagate to many other 
areas in a system making sentence accuracy critical for any 
downstream tasks in a text analysis system. 

In Table 1, some examples of text from Fairview Medical 
Services notes where sentences are not terminated with sen-
tence boundary symbols are shown. 



Table 1 – Examples of sentences without termination 

Text 
RECOMMENDATIONS FOR MDs/PROVIDERS 
TO ORDER: 
Recommendations already ordered by Registered 
Dietitian (RD): 
Calorie counts reordered 
Diet: dysphagia diet level 2 mechanical, thin liq-
uids, magic cup between meals, Nepro between 
meals 
Pt reported his appetite is getting better, he likes the 
supplements 
(+) No chance of pregnancy C-spine cleared: N/A, 
no H/O Chronic pain,no other significant disability 

There are a number of existing commonly used implementa-
tions of SBD that rely on or expect sentence boundary sym-
bols and perform poorly in their absence. Stanford CoreNLP 
[6] provides a rule-based algorithm, which makes decisions 
based on the results of a tokenizer to disambiguate whether 
sentence boundary symbols indicate sentence splits. Natural 
Language Toolkit (NLTK) [7] implements SBD using a meth-
od that combines rules for sentence boundaries with an unsu-
pervised algorithm for the detection of acronyms and abbrevi-
ations, a common source of errors in SBD [8]. The Apache 
OpenNLP toolkit [9] and Apache cTAKES [10] provide SBD 
based on the maximum entropy method described in [3]. Pre-
vious evaluations have looked at the performance of SBD and 
have noted the difficulty of the task in the domain of clinical 
notes and have noted the performance issues on non-
terminated sentences [4]. 

Approaches to the NLP problem of sequence tagging are well-
suited for the SBD problem—which can be expressed as a 
tagging task where words beginning sentences are tagged ‘B’ 
and words internal to sentences are tagged ‘I’. The architec-
ture for sequence tagging involving recurrent neural networks 
(RNNs) has shown good results when applied to the tasks of 
part-of-speech (PoS) tagging and named entity recognition 
(NER) [11], and improvements were shown when character 
information is combined with word embeddings via a convo-
lutional neural network (CNN) [12].  

Dataset 

Source Corpora 

We created two source corpora for the sentence detection task. 
The first dataset was drawn from the MIMIC-III (Medical 
Information Mart for Intensive Care) corpus [13], which is a 
de-identified corpus of notes associated with 40,000 intensive 
care unit patients at the Beth Israel Deaconess Medical Center 
between 2001 and 2012. Our MIMIC corpus consisted of 749 
randomly sampled notes. A second, target dataset was drawn 
from the Fairview Health Services (FV) EHR system. We 
used a stratified sampling strategy, in which we created batch-
es of 56 notes made up of 16 inpatient notes and 40 outpatient 
notes. The inpatient notes were selected proportional to the 
distribution of note type (Table 2) and the outpatient notes 
were selected proportional to the distribution of department 
(Table 3). A total of 952 notes from FV were used, 17 com-
plete batches. MIMIC notes were in plaintext while FV notes 
were converted from RTF to plaintext using the BioMedICUS 
system [14]. The MIMIC corpus used in this study contains a 
total of 315,797 tokens, and the FV corpus contained 415,112 
tokens. 

 

Table 2 – Inpatient note types per FV batch 

Note Type Number 
Progress Note 3 
Plan of Care 3 
ED Notes 2 
8 other note types 1 each 

Table 3 – Outpatient note departments per FV batch 

Note Type Number 
Family Medicine 5 
Internal Medicine 4 
Pediatrics 3 
Obstetrics and Gynecology 3 
Hematology and Oncology 3 
Urgent Care 3 
Physical Therapy 3 
Cardiovascular Disease 3 
13 other departments 1 each 

Manual Annotation of Sentences 

The manual annotation of sentences was performed in the 
BRAT Rapid Annotation Tool [15] by a pair of trained anno-
tators. Annotators were instructed to label all complete 
thoughts, section headers, item labels, list items, and frag-
ments using a “Sentence” annotation. For any data that was 
not groupable into sentence-like units (e.g., purely numeric 
tables, lists of laboratory data, lines of vital signs measures, 
and metadata tables such as those in header information), or 
for any other areas of text for which annotators had low confi-
dence in their ability to correctly label sentences, annotators 
were instructed to use an “Unsure” annotation. After sentences 
were manually annotated, the documents were tokenized and 
converted to tagged sequences where ‘B’ was applied to the 
first token in every sentence, ‘I’ was applied to the rest of the 
tokens in the sentence, and ‘O’ was applied to all of the tokens 
in the “Unsure” category. 

Cross-validation structure 

To evaluate generalization error a cross-validation structure 
was used where 100% of the MIMIC data was used for cross-
validation with 80% as a training split and 20% as a validation 
split; for the FV data 50% was used for cross-validation (again 
using an 80-20 training-validation split) and 50% was held out 
as an unseen test corpus. For architecture and hyper-parameter 
tuning, the MIMIC validation split was used. The FV cross-
validation set was used for training models alone or augment-
ing MIMIC-trained models. During training, the validation 
data was used to provide validation loss as an estimation of 
generalization error to determine when the model has stopped 
improving and training could be halted. 

Model Architecture 

Words were tokenized according to rules that split whenever 
any whitespace, any symbols, or any digits are encountered. 
Words were represented using a 300-dimension word embed-
ding trained using the Facebook fastText software package 
[16] on the entire MIMIC-III corpus preprocessed to replace 
any symbols with spaces, to replace digits with their English 
names in separate words, i.e. “1.23” to “one two three”, and to 
lowercase all letters. These word embeddings are enriched by 
summing with the results of a convolutional neural network 
(CNN) on 30-dimension character embeddings which are 
learned during training on the SBD tagging task. The CNN is 
made up of one convolutional layer with 300 filters, each 
looking at the sequences of the embeddings of four characters, 
followed by global max pooling. The results of the CNN func-



tion as an adjustment vector to the original word vector for the 
sentence tagging task. The input of the character CNN is all 
characters of the word (including symbols and whitespace) 
along with a context of up to seven characters between the 
previous word and the word; and up to seven characters be-
tween the word and the next word. Special characters were 
inserted for the end of the previous word, the beginning of the 
next word, the beginning and end of the word, as well as the 
beginning and end of the document if those fell into the con-
text. Using all of the original characters, including whitespace, 
allows structural information about the document’s formatting 
to be used for SBD decisions. After the word representation is 
constructed the results are batch-normalized before passing to 
the next layer. The architecture of the word representation 
layer is shown in Figure 1. 

Figure 1 – Word Representation Layer 

To encode contextual word representations, we use a bi-
directional long short-term memory (LSTM) layer. LSTM 
units are iteratively run on time-series data (sequences of 
words in the case of text), maintaining an internal cell state as 
it moves from one input to the next. LSTMs are optimized 
during training to learn what information is important to re-
member from previous inputs to the cell. A LSTM layer is 
parameterized by the number of LSTM units, each contrib-
uting one output dimension. In a bi-directional LSTM layer, 
the inputs are run both ways through the layer, with one set of 
LSTM units responsible for seeing the data in order and one 
set responsible for seeing the data in reverse. Dropout and 
recurrent dropout [17] were used to provide regularization of 
the learned weights and prevent overfitting. The results of the 
bi-LSTM layer are batch-normalized before being passed to 
the inference layer. In Figure 2, computation of a bi-LSTM on 
time series data is shown, each node labeled LSTM-F and 
LSTM-R is the same set of units at different points in the time 
series, and the lines drawn between nodes represent the propa-
gation of internal memory states to the next item in the time 
series. The outputs from the forward and backward LSTMs 
are concatenated to a single contextual word representation, an 
embedding of the word and surrounding words. 

 

Figure 2 – Bi-directional LSTM 

After the bi-directional LSTM layer, a sigmoid-activated 
dense NN prediction layer is used on each contextual word 
embedding to output the log-probability that the word is the 
beginning of a sentence. Lasso or L1-norm regularization was 
used on the weights of the prediction layer to prevent overfit-
ting. The complete graph of our architecture is shown in Fig-
ure 3. 

 

Figure 3 – Complete Model Graph 

Domain Adaptation 

In addition to using models trained on each individual corpus, 
we evaluated three methods for domain adaptation of models 
trained on MIMIC to the FV hold-out test set. First, we looked 
at merging the cross-validation data from both corpora. Sec-
ond, we looked at resuming training of the network trained on 
the MIMIC cross-validation data with the FV cross-validation 
data. Third, we looked at using an ensemble stacking method 
for transfer learning where the hidden-layer contextual word 
representations of the network trained on MIMIC were 
summed with the contextual word representations of a new 
network before the sigmoid dense NN prediction layer. In this 
architecture the output of the second network functions as 
corrections to the first network for the FV training data. This 
stacked network architecture is shown in Figure 4. 

 

Figure 4 – Ensemble of Two Networks 

Training 

Based on the results of tuning using CV on the MIMIC cor-
pus, we selected the gradient descent variant ADAM (Adap-
tive Moment Estimation) [18] as the optimizer of network 
weights. During training, only models that were improvements 
on validation loss were saved, and after 5 epochs with no im-



provement training was terminated. Binary cross-entropy loss 
was used for training, and loss values were weighted by the 
ratio between the target tag probability and an equal distribu-
tion of tags, shown in the equation in Figure 5. Mini-batching 
was used for training, sequences of 32 words were batched 
into groups of 32 for gradient optimization. 

𝑤𝑒𝑖𝑔ℎ𝑡'()** =
𝑠𝑎𝑚𝑝𝑙𝑒𝑠121)(

𝑛'()**4* × 𝑠𝑎𝑚𝑝𝑙𝑒𝑠'()**
	

Figure 5 – Weighting of classes 

Results 

Manually Annotated Corpora 

On an overlap of 100 MIMIC notes annotated by both annota-
tors, ignoring “Unsure” annotations, the Cohen’s kappa of 
Sentence annotations was computed as 0.957 using the irr 
library in R version 3.4.4. The agreement between annotators 
on “Unsure” annotations was 0.646. After conversion, on the 
subset of 100 notes labeled by both annotators Cohen’s kappa 
was 0.71 for all tags and 0.95 after excluding items labeled as 
‘O’ by either annotator. Tables 4 and 5 describe the distribu-
tion of ‘B’, ‘I’, and ‘O’ tags after this conversion. 

Table 4 – Distribution of Tags in MIMIC 

Tag Count Percentage 
B 
I 
O 

23,648 
200,272 
91,877 

7.5% 
63.4% 
29.1% 

Table 5 – Distribution of Tags in FV 

Tag Count Percentage 
B 
I 
O 

43,636 
336,018 
35,458 

10.5% 
80.9% 
8.5% 

In both of the source corpora, sentences not terminated by 
sentence boundary symbols are highly prevalent. Section 
headers and text labels were common and often ended by the 
colon sentence boundary symbol. Table 6 shows the quantity 
of sentences terminated by each symbol. 

Table 6 – Sentence Termination Type 

Type MIMIC FV 
Period 12,698 (53.7%) 13,619 (31.2%) 
Exclamation Point 4 19 
Question Mark 24 (0.1%) 261 (0.6%) 
Semi-colon 48 (0.2%) 10 
Colon 4,855 (20.5%) 6,180 (14.2%) 
Quotation 4 58 (0.1%) 
No symbol 6,018 (25.4%) 23,506 (53.8%) 

Evaluation of SBD Approaches 

For our evaluation we ignored all tags that were labeled as ‘O’ 
both during training and during evaluation. Thus, the recall, 
precision, and F1 for ‘B’ and ‘I’ are symmetric, every false 
positive ‘B’ is a false negative ‘I’ and every false negative ‘B’ 
is a false positive ‘I’. We’ve reported only the ‘B’ scores as 
they are directly proportional to the overall accuracy of de-
tected sentences. The best architecture and hyper-parameter 
tuned models from cross validation achieved 98.6% F1 on 
both ‘B’ and ‘I’ tags on the MIMIC validation set and 99.2% 
F1 on ‘B’ and ‘I’ tags in the FV validation set. 

We evaluated our implementation of SBD against the 50% FV 
hold-out data set (476 notes). In addition to the architecture 
described above, we evaluated a maximum entropy / logistic 
regression classifier (listed as LR) using optimization of a 
sigmoid-activated dense NN layer on an input of 7 characters 
before, at the beginning, at the end, and following every word. 
This is an approach similar to, but not as tuned as individual 
implementations of maximum entropy SBD. The primary met-
rics used for evaluation were the precision, recall, and F1-
score for the beginning of sentence class tag.  

In addition to models trained on MIMIC and FV individually, 
we evaluated three methods to test generalizability against the 
FV test corpus. The models trained solely against one corpus 
are listed as “MIMIC” and “FV.” The results of a model 
trained on a both corpora’s cross-validation set combined are 
listed as “MIMIC+FV.” The continued training of one net-
work is listed as “MIMIC then FV” and the ensemble model is 
listed as “Ensemble.” Results of these evaluations are show in 
Table 6 with best results in bold. 

Table 6 – ‘B’ Tag Accuracy Against FV Hold-out 

Method Precision Recall F1 
LR-MIMIC 0.511 0.840 0.636 
LR-FV 0.650 0.948 0.771 
MIMIC 0.829 0.971 0.895 
FV 0.923 0.991 0.956 
MIMIC+FV 0.919 0.995 0.956 
MIMIC then FV 0.910 0.992 0.949 
Ensemble 0.933 0.989 0.96 

Discussion 

The complexity, grammatic idiosyncrasies, and domain varia-
bility of clinical text lead to significant hurdles in designing 
and training generalizable models for NLP tasks. This com-
mon challenge necessitates the use high-capacity, complex 
machine learning models such as the deep neural network ap-
proach described here. Leveraging transfer learning and do-
main adaptation, such as the ensemble method used here, is an 
important tool to regularize models created from smaller do-
main-specific corpora with data from external corpora. In the 
SBD task, the clinical-specific structuring of sentences in our 
target corpus led us to applying these approaches. 

In all experiments, recall was higher than precision, which can 
be explained by the class weighting structure. Models are pe-
nalized much higher for missing a ‘B’ tag than for replacing 
an ‘I’ with a ‘B’ tag, leading to models being overeager in 
splitting sentences. Adaptation of models trained on one cor-
pus to another corpus of text show clear but relatively small 
losses in performance—we can see that the MIMIC trained 
model has an F1-score approximately 0.06 lower than the FV 
trained model. 

The ensemble method slightly improves the F1 score against 
the other domain adaptation methods, increasing precision at a 
slight cost to recall. The ensemble method was the best per-
forming overall with a 0.96 F1 score on B-tags. This F1-score 
is on par with the 0.957 Cohen’s Kappa inter-rater agreement 
on the MIMIC data that represents a “ceiling” for performance 
of SBD algorithms. As shown in the information about our 
corpora, the FV corpus has different distribution of sentence 
‘B’, ‘I’, and ‘O’ tags than the MIMIC corpus, demonstrating 
that these methods are successful in adapting to a corpus with 
significant syntactic differences. 



There is a loss in performance in the continued training meth-
od versus the MIMIC+FV method. In this method, weights 
may not be able to recover from sub-optimal positions for 
predicting FV data from the training on MIMIC data. The gra-
dient descent may not be able to find a path from the current 
position of the weights to the more optimal position of weights 
found by the FV-only and the MIMIC+FV trained models. 

Conclusions 

Our study shows that there are improvements in SBD using 
deep networks over using traditional classification methods, 
and that these networks are capable of performing well even 
against different corpora and against corpora with large pro-
portions of sentences that are not terminated by sentence 
boundary symbols. We’ve also shown that transfer learning 
approaches for domain adaptation such as the ensemble model 
have lower generalization error than combining training sets 
or continued training. 

Further Work 

The generalization performance gains from using a two-
network ensemble indicate further exploration into meta-
learning and ensemble approaches may be fruitful. Further-
more, usage of this or other transfer learning ensemble meth-
ods with general-domain English corpora included as training 
data for base models remains an unexplored possibility. 

The accuracy of automatically detected sentences can have 
substantial consequences on downstream components in a 
processing pipeline. These benefits are significant on face but 
have not been formally quantified, and these effects are a po-
tential target for future research.  
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