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Preface

DiffMan is a MATLAB toolbox for solving Ordinary Differential Equations on manifolds, based on the
concept of 'Coordinate Free Numerics’. This is, loosely speaking, the idea that (whenever possible) it
is important to formulate numerical algorithms generically, independent of special representations and
coordinate systemdDiffMan inherits its basic design philosophy from the C++ package SOPHUS. The
SOPHUS project was initiated by Magne Haveraaen and Hans Munthe-Kaas, University of Bergen, and
aims at solving tensor field equations on sequential and parallel computers.

Some of the mathematical backgroundffMan is described in AppendiA. This chapter, however, is
included for the sake of completeness. The user can read the rest of the manual BiftMaewithout
having studied this chapter.

The writing of this toolbox was initiated as a project within the SYNODE project, and a number of papers
describing the numerical methods DiffMan is available on the SYNODE home page at URitp:
/Iwww.math.ntnu.no/num/synode/

We will thank Antonella Zanna for reading an earlier version of this User’s Guide and always giving helpful
suggestions, and Martine T. Monsen for extensive proof reading.

Kenth Engg Arne Marthinsen Hans Z. Munthe-Kaas


http://www.math.ntnu.no/num/synode/
http://www.math.ntnu.no/num/synode/
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Chapter 1

Introduction

DiffMan is an object oriented MATLAB toolbox designed to solve differential equations evolving on man-
ifolds. DiffMan 2.0 addresses primarily the issue of solving ordinary differential equations. The solution
techniques implemented fall into the category of geometric integrators — a very active area of research
during the last few years. The essence of geometric integration is to construct numerical methods that
respect underlying constraints, for instance the configuration space of a mechanical problem, and to ren-
der correctly geometric structures and invariants important to the underlying continous problem. Hence,
the DiffMan toolbox collects some of the most recent and sophisticated methods for solving ODEs in the
sense of geometric integratioDiffMan is an ongoing project and an overall goal for future work is to also
include geometric integration techniques for partial differential equations evolving on infinite dimensional
manifolds.

To understand the workings biffMan, a geometric understanding of ordinary differential equations evolv-
ing on a manifold is of great importance. Consider the ordinary differential equation

y/ = F(tv y)7 y(O) = Yo (1.1)

evolving in Euclidean space. That ig;e R™ and F'(¢,y) is a vector field assigning to each pointlk#

and timet € R, a vectorF. The geometric interpretation of finding a solution to equatiof)(s to find a
curvey(t) starting at the poing, in Euclidean space, having as its tangent at every succeeding point and
time the vector specified by the vector figid Hence, we want to follow a curve in space that starts at the
inital pointyg, evolving in the direction prescribed by the vector field.

This same description can be used for an ordinary differential equation evolving on a manifold. The only
difference is that the manifold is in general a non-linear space, and not a linear vector space. The simplest
example of a manifold is the sphere. A vector field over the manifold will at each point attach a tangent
vector, just like in the Euclidean case. A solution of this ODE is a curve through the initial pgititat

evolves on the manifold in the direction given by the tangent vector.

There is a well established theory for solvirigl) on a Euclidean space, a fact to be extensively exploited
in one of the methods discussed in Appendix A well-known family of methods are the Runge—Kutta
methods {4]. There are also splitting methods and composition methods, see for instanee][ but in
DiffMan we will among the classical methods mainly be concerned with the Runge-Kutta family.
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Chapter 2

The DiffMan environment

In this chapter we will go through basic concepts in object orientation and explain how these things are
done in MATLAB. We will outline the general structure DiffMan and discuss the four different types of
objects used iDiffMan. The last section, probably the most important section in the whole user’s guide,
discusses how to go about getting the necessary help in DiffMan

2.1 Object orientation and mathematics

A class is simply a collection of 'elements’ with equal properties. In mathematical terms one would say
that a class is a set. The 'elements’ of a class is usually called objects, and the common properties of the
objects specify the class. Mathematically, the properties of a class can be stated as relations that the object
must satisfy in order to be a member of the class. Another very important and interesting aspect of object
orientation is that it allows for information hiding. An object typically consists of a public and a private
part. The public part can be accessed from the outside of the class, whereas the private part cannot. This
enables us to hide implementation specific issues for the particular class in the private part, and to easily
make changes to it, without altering the public interface of the class.

This then, naturally brings up the issue of specifying a class. A class specification can be divided up into a
'what’ part and a ’how’ part. 'what’ describes the interaction of the class with the surroundings; what is the
public interface of the class, 'what'’ is the class supposed to do? 'how’ the class is implemented is an issue
related to the private section of the class. The surroundings do not need to know about implementational
issues as long as the interaction of the class is as specified by the public interface.

This distinction between 'what’s and 'how’s of objects (elements) is ubiquitous in pure mathematics. This

is also the reason why abstract mathematical concepts are so well suited for implementation in object
oriented programming languages, s&B, B1]. Coordinate free constructions in mathematics, e.g. tensors,
tries to capture what the operation of an object is regardless of the coordinate system. The tensor class is
then specified by properties independent of the coordinate systems, and the different choices of coordinates
used in an actual implementation on a computer is deferred to the private part of the class. Hence, a
specification of a class emphasizes and extracts the important features of a class, and this conforms very
well with algebraic techniques so rampant in pure mathematics.

Thinking in these terms gives rise to the rather contradictory term 'coordinate free num&tj&?][ What

is a coordinate free algorithm? The whole idea is to device algorithms specified by algebraic operations
not dependent on the particular representation of the object. All the meth@l#§Ntan are defined on

groups and they are all very good examples of coordinate free algorithms. The group elements can have
very different representations, but the algorithms are all expressed through algebraically defined operations
such as group multiplication and Lie-group actions.
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2.2 Object orientation in MATLAB and DiffMan

In MATLAB a class is defined by creating a directa@ymyclass, wheremyclass is the name of the
class. The prefix@ simply tells MATLAB that this is a class directory. All the public class functions
are put in this directory, while the private class functions are put in a dire@onyclass/private

Where the file is located within the class directory tree distinguishes the m-file from being a public or
private function.

Every class must have its own unique constructor. The constructor is implemented in an m-file called
myclass.m , the same name as the class itself. In MATLAB, a class object is represented as a MATLAB
struct, where a struct is the same as a struct in C or a record in PASCAL. This struct can have an arbitrary
number of fields. To turn a MATLAB struct into an object @myclass the functionclass must be

called within the constructor m-file:

obj.field1 ni;
obj.field2 = n2;
obj = class(obj,’myclass’);

The user can not access the structure fields of the object directly in MATLAB. Attempting to do this will
result in an error. Hence, the fields of the object struct can be viewed as part of the data representation of
the object, and is private to the class. For the user to interact with the information contained in the fields of
the object struct, the class must have implemented public m-files specifically doing this.

Public functions making up the interface of a class are naturally divided up into three categonistsuc-

tors, observers andgenerators In MATLAB there is only one constructor, but in other object oriented
programming languages like C++ it is possible to have more than one constructor. The observers of a class
are the public functions that extract information from the class objects without altering the object itself.
The generators of a class are those public functions which change properties of the class objects, or create
new objects of the same or other classesDiffiMan you will typically find this partition of the public
functions when reading a class specification.

In DiffMan the object orientation is applied in several different ways. The domain points (elements of a
manifold) are treated as members of a class. Depending on the specific properties of the domain, there are
severaltypesof domains implemented iDiffMan. Each of the different types of domains are collections

of algebraically similar domain classes; i.e. itis a category in the strict mathematical sense. The integration
methods used to solve the ODEs are called time steppers, and the different time stepper methods are treated
as different classes. Flows and vector fields are also implemented as two classes.

In DiffMan 2.0 there are three categories of domains implemented: Homogeneous spaces, Lie algebras, and
Lie groups. Each domain category is further divided up into domain classes of that particular type. Hence,
each of the classes within a particular domain type has similar characteristics, but there are differences that
partitions them into individual classes. These similar characteristics of the classes of a specific domain type
are what defines the domain category. Trying to define and specify the domain category is done through
the introduction of a virtual superclass in each domain category. The virtual superclass defines and takes
care of operations that are common to all the classes in the domain category. This is obtained through
the concept ofnheritance in object orientation. The virtual superclass is the parent class of all the other
classes in the domain category, and all the child classes inherit the parents’ functions. That means that one
can apply the public functions of the virtual superclass on an object of a child class. If the child class needs
specific implemented versions of any of the public functions of the parent class, this is achieved through
overloading. Supply a public function to the child class with a matching name, and MATLAB will use this
version of the public function instead of the one supplied by the parent class.
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2.3 Structure of DiffMan

The general structure @fiffMan is reflected in the way the directories are organized. The structure is very
modular and it is therefore very easy to add new classes of your own. Diffivan root directory you
will find 3 m-files and4 directories. The directories are:

auxiliary/
domain/
field/
flow/

Theauxiliary directory included subdirectories which contain tfiffMan documentation, command
line examples, demos, and utility functions. As the name of this directory reflects its contents are not vital
to the workings oDiffMan.

Thedomain directory, however, contains the domain categories, which are very important building blocks

of DiffMan. Think of a domain as a differentiable manifold. Creating a domain category is done by creating

a subdirectory in thelomain directory. InDiffMan 2.0 there are3 domain categories implemented:
homogeneous spaces, Lie algebras, and Lie groups. The classes of a domain category are put in this
subdirectory along with a virtual superclass specifying the domain category.

Thefield directory contains field classes defined over domain classes. Think of this directory as the field
category. Sinc®iffMan 2.0 only solves ordinary differential equations, the only field class implemented
so far is@vectorfield . The field category is subject to change in future releasd3iffilan, but
@vectorfield will stay the same. In order to solve some PDEs it is interesting to be able to define
tensor fields over manifolds, hence a tensor field class is very likely to be added in a future release of
DiffMan.

Theflow directory collects classes pertinent to the continuous flow. The numerical methods are treated as
time steppers, and they are all placed in the subdirediorgsteppers  found in theflow directory.

The flow class is a virtual superclass with no subclasses since all the numerics are placed within the time
steppers. The reason for this distinction between flow and time stepper is an attempt to isolate features
common to all the numerical methods (the time steppers), e.g. variable time stepping, and place these
features in the flow class.

2.3.1 Functor classes

In DiffMan the different domain types are viewed as categories. A function on a category is called a
functor. Examples of internal functors are the direct product, semi-direct product, and tangent map. The
direct product functor will take: domain classes as input, and create a new domain object; the direct
product of the domains. The semi-direct functor works in an analogous way. The tangent functor takes
a domain manifold and turns it into the tangent bundle of that manifold. The tangent bundle is also a
manifold; hence, it is a domain.

In DiffMan we call classes that automatically generate new domains from otherfumetsr classes

The choice of name should be clear from the above discussioBiffidan 2.0 you will find one of the

above functorial constructors implemented; the direct product of domains. The functor classes in question
are@ladirprod and@lgdirprod . The next release diffMan will include the semi-direct product
functor and the tangent functor.
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2.4 Objects inDiffMan

In DiffMan you will encounter! different types of objectddomain, field, time stepper, andflow objects.

Each object is defined in such a way as to capture the mathematical essentials of a manifold, the field
defining the differential equation, the numerical time stepper algorithm, and the flow operator, respectively.
We will discuss each one of these objects in the following.

2.4.1 The domain object

Every domain object (e.g. objects of the type Lie algebra, Lie group, or homogeneous space) is built up as
a MATLAB struct with two fields:shape anddata . Generically, every domain object is represented as:

domainobject =
shape:
data:

A domain object specifies a specific point in a specific manifold. It is often useful to create a single class
for representing a family of manifolds, e.g. all Lie algebg&s:) are represented by the same cl@dagl .

The shape specifies the particular manifold in the family (in this easehile the data part represents a
particular point in this manifold (in this caseby n matrices. The shape is in computer science called a
dynamic subtyping of the class. If an object has an empty data field, it is taken to only represent the space
(the subtype).

A second example is the dynamic subtyping of the homogeneous &aéie . This is the homogeneous

space obtained by any Lie group acting on itself by left multiplication. Considering all the different Lie
groups and Lie algebras, the shape is chosen to be an object of the particular group or algebra. Since all Lie
groups and Lie algebras themselves are dynamically subtyped, the sh@perdie must be a Lie group

or Lie algebra object with a pre-set shape. This is because we need to know a 'size’ measure on the domain
objects that are acting on themselves.

The user cannot access the contents ofdiv@pe anddata fields of a domain object directly, since

the fields belong to the private part of the domain class. In order to do this the user must use the public
functionsgetshape andgetdata to return the contents of the fields, asetshape andsetdata to

update the values of the private fields.

2.4.2 The field object

A field is defined over a manifold. Some examples of fields are vector fields, tensor fields, and divergence
free vector fields. A vector field is a mathematical construction which assigns a vector to every element of
the manifold. Likewise; for a tensor field, a tensor is assigned to each element of the manifold. From this
it is natural to conclude, since the output from different fields is not similar, that a generic field object only
contains information about the manifold over which the field is defined:

fieldobject =
domain:

To define an ordinary differential equation we only need the notion of a vector field. Tensor fields are
mainly used in partial differential equatior3iffMan 2.0 is only devoted to the solution of ODESs evolving

on manifolds. Hence, the only field class implemente@igctorfield . The generic representation of

a vector field object is:

vectorfieldobject =
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domain:

eqgntype:
fm2g:

Compared to the above field object, two more struct fields have been added in the vector field object. In
DiffMan 2.0 every vector field over a manifold is represented by a funétioR x M — g. This function

is calledfm2g, (function from M to g). If the functionfm2g only depends on time, the ODE is said

to be linear or of Lie type, and it is said to be general if the funcfin@g depends on both time and
configuration. Theeqntype provides this information.

2.4.3 The time stepper object

This is where all the numerics are hidden. A time stepper is the numerical algorithm used in advancing
the solution of the differential equation one step along the integral curve of the flow. There are different
approaches in constructing these time steppers and a list of the available time stefiji#igan 2.0 is

found in AppendixB.

Common for all the time steppers is that they work locally on the domain manifold, and because of this
they need to know local coordinates on the Lie group manifold. Another common feature is that the time
steppers naturally divide up into classes of methods. The steppers belonging to one particular class are
typically distinguished by the order of approximation the method yields. Hence, it is important to also be
able to choose a method of the preferred order.

The generic representation of a time stepper object takes the form:

timestepperobject =
coordinate:
method:

2.4.4 The flow object
Mathematically, the flow is an operator defined by the vector field. Given the ordinary differential equation

Yy =F(y), y0)=peM,
the flow operator of this differential equation is the operatet, : M — M satisfying

L pi(p) = F(Urs (0).

dt
The classical solution of a differential equation is an integral curve of the vector field generating the flow
operator. This integral curve is found by evaluating the flow operator in the initial point on the manifold.

The generic representation of a flow object is:

flowobject =

vectorfield:
timestepper:
defaults:

The flow object must, of course, know the vector field defining it. Next, it needs to know a time stepper
object. The choice of time stepper specifies the numerical algorithm to be used in the solution of the
differential equation. This is really all the information that the flow object needs to know. However,
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for convenience, constants used in variable time stepping and nonlinear equation solving are collected in
the flow object in the third fieldlefaults . Unless the user changes any of these constants with the
setdefaults function, the default values set by the flow constructor will be used.

2.5 How to get help inDiffMan

In MATLAB there are three ways to get online help. The first two provide simple help information on
MATLAB functions, while the third is a huge collection of documentation stored in hypertext format which
you access with a Web browser.

HELP - Function help, display help text at command line
HELPWIN - Function help, separate window for navigation
HELPDESK - Comprehensive hypertext documentation and troubleshooting

In DiffMan you will also have the possibility of using a window based help system caitételp .
DMHELP - An extended and improved version of HELPWIN

This help system is based on thelpwin  system in MATLAB, but several new features have been added:
Access information about all the different classes and class functions, view the source code of m-files, view
this User’s guide online in pdf, go to thaiffMan home page on WWW, etc. Please note tiratelp can

only be invoked once you have started BiéMan toolbox, see SectioB.1

an Help Topics

iGeneral helpfiles
clags_arrays - Array structures
dm_optimization -  DiffMan Quick start guide. TBW = to be written
i dmdirectories -  DM-DIRECTORIES
iClasses
i Elasp - SPECIFICATION OF: LASP
@lafree -  SPECIFICATION OF: lisalgehra class lafree
@ladirprod - SPECTFICATION OF: LADirProd
@lasl - SPECTFICATION OF: liealgehra class lasl
@laso - SPECTFICATION OF: liealgebra class laso
@liealgehra - SPECTFICATION OF: LisAlgehra
@larn - SPECTFICATION OF: liealgehra class larn
@lagl - SPECIFICATION OF: liealgebra class lagl
@lgdirprod - SPECTFICATION OF: LGDirProd
@liegroup - SPECIFICATION OF: LieGroup
ehmanifold - SPECTIFICATION OF : HManifold
@vectorfield - SPECIFICATION OF : VectorFisld
@flow - SPECIFICATION OF : Flow
! gtimestepper -  SPECIFICATION OF: TimeStepper
iDirectories:
i DiffMan - DiffMan - Differential Equations on Manifolds W
liealgebra - Diffffan - Liealgehras

Figure 2.1: TheDiffMan Help Window.

Once you have started WiffMan you issue the command
>> dmhelp

in order to just launch thBiffMan Help Window, or type the command
>> dmhelp topic

to launch theDiffMan Help Window with the help information abotdpic

Once theDiffMan Help Window system has been launched, see Figukeyou can type any help topic in
the upper left box of the Help Window and press 'Enter’. If the help topic has help information this will be
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displayed. If a line in the main text of the Help Window starts with a help topic followed by ' - ’, you can
also click on it directly in order to access the help information.

Consider the following examples. If you see lines in the main text Help Window looking like these, you
just click on them directly in order to go to that help topic:

plot - Help on any matlab functions.
liealgebra - Help on the _directory_ ’liealgebra’.
@liealgebra - Info on the _class_ ’liealgebra’.
@lagl - Info on the Lie algebra gl(n).
@lafree/order - Function 'order.m’ in class ’lafree’.

The other option is to type the name of the help topic in the box in the upper left corner, and access the
same information this way.

The first time you launch thBiffMan Help Window it might take some time before it appears. If you in a
MATLAB session want to close the Help Window after you have finished using it, we urge you to use the
'Close’ button in the window. The reason for this is that in case you want to launch the Help Window again
in the same session, MATLAB will use the same window. Hitting the 'Close’ button causes MATLAB to
turn the visibility of the window off, and MATLAB does not have to recreate the window again when you
re-enter the commardinhelp .

If none of the above commands seems to give you the desired explanations, you can also try the MATLAB
commandsdemo, lookfor , which , andgeneral






Chapter 3

How to useDiffMan

This chapter will teach you the basics of solving differential equatiomiffiMan. The first section shows
you how to initializeDiffMan and get the toolbox up and running. The next section descritsestep
procedure to be followed when solving differential equatio®ifiMan, followed by a section taking you
through a very detailed example demonstrating&tstep procedure in practice. We end this chapter by
discussing ODEs represented as infinitesimal generators.

3.1 How to get started

The very first thing to do is to initialize thaiffMan toolbox. Make sure that you are located in BiéMan
directory, or that this directory is included in the MATLAB path. You can easily include the following
command in youstartup.m file, or issue it at the MATLAB prompt:

>> addpath('/local/path/on/your/machine/DiffMan’);
Initializing DiffMan is done simply by typing the command:
>> dminit

The result of this command is that all necessary paths are set and the following is displayed in MATLAB:

DiffMan Version 2.0 is initialized - 2000.09.15

Please report any problems and/or bugs to:
diffman@math.ntnu.no

For more information and how to get started, try:
>> dmtutorial
>> dmhelp
>> demo

>>

The DiffMan facility dmtutorial will launch a window where you can choose to run different kinds of
tutorials. One of these tutorials will guide you through 'How to solve ODB3iffMan’. This is the5-step
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procedure presented in the next section. The other tutorials will guide you through other important aspects
of the DiffMan toolbox essential to the user. For further details, see Se¢tibn

dmhelp is a substantially improved version of thelpwin facility in MATLAB. dmhelp will launch
a DiffMan help window where you can get help on every function and clagiffiMan, and also every
other function in MATLAB. Hence, when working witbiffMan we urge you to usémhelp instead of
the MATLAB functionshelpwin andhelp . For more information about the workings ainhelp , see
Section2.5.

The MATLAB demo utility will include DiffMan among its toolboxes. Running ttiziffMan demos is
another convenient way of launching tBéfMan tutorials, and running all th®iffMan command line
examples.

3.2 How to solve differential equations inDiffMan — A 5-step proce-
dure

OnceDiffMan is initialized you can start solving differential equations.

In DiffMan we are exclusively working with objects, and these objects are members of different classes.
To create an object of a particular class, invoke the constructor of that class. The constructor always has
the same name as the class.

The5-step procedure for solving differential equation®iffMan is the following:

1) Construct an initial domain object y in a homogeneous spacdn order to solve an initial value
problem,DiffMan needs to know an initial condition. The initial domain object serves this purpose.

2) Construct a vector field objectvf over the domain objecty. DiffMan finds numerically the
integral curve of this vector field through the initial domain object. A vector field object consists of
three partsidomain , egntype , andfm2g. Set these properties of the vector field object by the
functionssetdomain , seteqntype , andsetfm2g . See Sectioh.1for more information.

3) Construct a time stepper objectts . The time stepper class determines the numerical method used
to advance the numerical solution along the integral line. A time stepper object consists of two
parts:coordinate  andmethod . Set these properties of the time stepper object by the functions
setcoordinate andsetmethod . See Chaptes for more information.

4) Construct a flow objectf . The flow object is defined by the vector field object. Since we are doing
numerical computations the flow object also needs to know how to step forward, hence the flow
objectf also needs to know the time stepper object. To set the two properties of the flow object, use
the functionssetvectorfield andsettimestepper

5) Solve the ODE Solving the ODE defined by the flow objectiffMan is simply done by evaluating
the flow object at the initial domain object, start time, end time, and step size:
>> output = f(y,tstart,tfinal,h);

Variable step size is indicated by using negative values fdihe initial step is then of lengtfi|. output
is a MATLAB structure that consists of three fieldsitput.y  is a vector of domain objecteutput.t
is a vector of time points, anoutput.rej is a vector indicating rejection of a time step in variable time

stepping.
Detailed mathematical information and definitions of flows and vector fields are found in Appendix

The 5-step procedure will be demonstrated on an example in the next section.



3.3 A detailed example 13

3.3 A detailed example

Consider solving the following differential equation on the sph#te

q 0 t —0.4 cos(t) 0
Y 0 01t | y@), y0)=|o], (3.1)
A |o.4cos(t) —0.1¢ 0 1

wherey € R? is a vector of unit length, and the matrix on the right hand side is a mapramto so(3).

The homogeneous manifold in question@hmnsphere which consists of the sphere manifofd, the
Lie algebra of @3) which isso(3), and the actio® : (v, m) — exp(v) - m of s0(3) on S2. The elements
of the manifoldS? are vectors of unit length.

Step #1: Construct an initial domain object y in @hmnsphere

The initial domain object is created by calling the constructa@fmnsphere. This constructor can take
an integer or daso object as an argument and thereby specifying the shape of the manifold object.

>> y = hmnsphere(3)
y =
Class: hmnsphere
Shape-object information:
Class: laso
Shape: 3

The shape of an object @hmnsphere consists of an object in the Lie algellago . The integer supplied
to the constructor sets the shape of this Lie algebra object which comprises the shag@bfthsphere
object. If an argument to the constructor is not supplied, the shape can be set later by usatgitape
function.

As mentioned in the beginning of this Section, the data representation of an ob@tinimsphere is a
vector of unit length. If the initial condition for the ODE on the sphere is the North pole, the data of the
initial object must be set equal to the North pole vector.

>> setdata(y,[0 0 1]);
>>y

y =

Class: hmnsphere
Shape-object information:

Class: laso
Shape: 3
Data:
0
0
1

The first step is now completed.
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Construct a vector field objectvf over the domain objecty

A vector field is defined over a domain. The constructo@ifectorfield is called with the domain
object as input:

>> vf = vectorfield(y)
vf =
Class: vectorfield
Domain: hmnsphere
Shape-object information:
Class: laso
Shape: 3
Egn type: General

Already,vf contains a lot of information. Since the domain object was supplied as an argument for the
vector field constructor, the domain information is already set. The shape @limensphere object

is alaso object, and the information about this Lie algebra object is displayeShape-object
information . Further, the equation type of the generator map for the vector field is set to be 'General'.
This is the default value. However, equatidhlj is of linear type, so the type should be changed to
‘Linear’ in order to speed up the calculations.

>> seteqntype(vf,'Linear’);

The generator map of equatio.{) is the matrix on the right hand side of the equation. The m-file
vfex5.m contains the MATLAB necessary code to implement the generator map.

>> setfm2g(vf,'viex5’);

What does this m-filefex5.m look like? To view the file, you can typgpe viex5.m  at the MAT-
LAB prompt, or usedmhelp and push the buttoiew src . Either way the output is:

function [la] = vfex5(t,y)
% VFEX5 - Generator map from RxM to liealgebra. Linear type.

la = liealgebra(y);

dat = [0 t -0.4*cos(t); -t O .1*; .4*cos(t) -.1*t O];
setdata(la,dat);

return;

All the generator map function files that you write on your own must have this generic structure: The
file must support two arguments; the first is a scalar - time, and the second is a domain object from the
homogeneous space. Output must be a Lie algebra object. To find the correct Lie algebra of the domain
object, callliealgebra(y) , which will return an object in the correct Lie algebra with preset shape
information. Edit the datalat , and callsetdata(la,dat) in order to set the data representation of

the Lie algebra object.

Now the vector field objectf displays as:

>> vf

vf =

Class: vectorfield
Domain: hmnsphere
Shape-object information:
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Class: laso
Shape: 3
Map fm2g: vfex5
Egn type: Linear

Step #3: Construct a time stepper objectts

The time stepper class decides which numerical method to use for advancing along the integral curve of
the vector field. Calling any of the time stepper constructors will return a time stepper objedefatiit
coordinate and method. If the user prefers other coordinates or another method, these can be changed
through the functionsetcoordinate andsetmethod . To get an overview of the different time
steppers typdmhelp timestepper in MATLAB. In our example we want to use an RKMK method:

>> ts = tsrkmk

ts =

Class: tsrkmk
Coord.: exp
Method: RK4

In case of@tsrkmk the default coordinate isxp and the default method RK4. For a discussion of
possible choices of coordinates, see Sectidn For each time stepper class there are many schemes to
choose from. None of these schemes can be used for all the different time stepper claBs#slandvill

issue an error message if a wrong selection is made.

In our example we are not satisfied with only the standdbhdorder RK4 method; we want the more
accurate answer supplied by tbth-order Butcher method:

>> setmethod(ts,’butcher6’)

>> ts

ts =

Class: tsrkmk
Coord.: exp

Method: butcher6

To get information about the different methods while runridiffMan, typedmhelp setmethod
Step #4: Construct a flow objectf

The flow object is constructed from the vector field objett and the time stepper objets already
created. Merely calling thé&flow constructor will create an object with defaulttime stepper. The
default time stepper preset in the flow objéds only a matter of convenience, and must not be confused
with the time stepper object created in Step #3.

>> f = flow
f =
Class: flow
Timestepper class: tsrkmk
Coordinates:  exp
Method: RK4

In our example we have created another time stepper digjetitat we want to use instead of the default
time stepper object supplied by tl@flow constructor. To change the time stepper of the flow objetct
ts , call the functionsettimestepper

>> settimestepper(f,ts)
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A flow is defined as the flow of some vector field. Hence, our flow oljectust have information about
this vector field.

>> setvectorfield(f,vf)

>> f

f =

Class: flow

Vector field information:
Domain: hmnsphere
Equation type: Linear
Map defining DE: vfexb5

Timestepper class: tsrkmk
Coordinates:  exp
Method: butcher6

Now the flow object has the necessary information and we can go on to the next, and final step, in the
5-step solution procedure.

Step #5: Solve the ODE

Solving equation3.1) with the RKMK method is done by evaluating the flow object with four arguments:
initial domain object, start time, end time, and step size.

>> curve = f(y,0,5,0.05)
curve =
y: [1x61 hmnsphere]
t: [1x61 double ]
rej: [1x61 double ]

The outputcurve is a MATLAB struct with the three fieldsy, t , andrej . curve.y is a vector of
objects from the homogeneous space upon which the problem is modeted.t is a vector of scalars,

the time pointscurve.rej is a vector of integers indicating whether a step was rejected or not. In our
examplecurve.rej is the zero vector, since we did not use variable time stepping. See Ségion

how to do variable time stepping.

Callinggetdata(curve.y) will access the actual data representations of al@mennsphere objects.

In this case, this output will be a vector three times the length of the scalar wot@.t . To get the
3-vectors corresponding to each time point, the output fgetdata(curve.y) must be reshaped into

a 3xlength(t) matrix where each column corresponds to a time point. To plot the data we can do the
following:

>> t = curve.t;
>> a = getdata(curve.y);
>> a = reshape(a,3,length(t));
>> comet3(a(l,:),a(2,:),a(3,));
In Figure3.1the solution of the problem is plotted on the Northern hemisphere of the unit ball.

This detailed example is found as example 5 inBfiVian toolbox and runs by typing:

>> dmex5
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Figure 3.1: Plot of the solution 08(1)

What's next?: Solve the same problem with a different time stepper

To use another time stepper to solve equati®bd)(we must repeat steps #3 through #5. We must create
a new time stepper object, put this into the existing flow object, and evaluate the flow again. To use the
Crouch—Grossman method we do the following:

>> ts2 = tscg

ts2 =
Class: tscg
Coord.: exp

Method: CG3a

>> settimestepper(f,ts2)

>> f

f =

Class: flow

Vector field information:
Domain: hmnsphere
Equation type: Linear
Map defining DE: vfex5

Timestepper class: tscg
Coordinates: exp
Method: CG3a

>> curve = f(y,0,5,0.05);

To plot the solution we just repeat the above plotting commands. The solution is the same, except from the
fact that we have used a third-order method. This solution is not as accurate as the solution obtained by the
6th-order Butcher method used in the RKMK time stepper.

3.4 ODEs as infinitesimal generators

All the ODEs that we can solve iBiffMan are assumed to be written in the form of an infinitesimal
generator. If you are given just any ODE, it might turn out to be an impossible feat to determine the
Lie-group action of which the given ODE can be written as the infinitesimal generator. The choices can
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be many, and there is no known general procedure for doing this. Consult App&rfdixnecessary
definitions and notation.

But on the other hand, there are many well-known examples of ODEs evolving on homogeneous spaces
that are known to be able to be stated in the form of an infinitesimal generator. In the rest of this section
we will give you examples of such ODESs, in order to aid you in your hunt for the group-action and the best
setting for your particular ODE.

Recall that the ingredients of a homogeneous space is a Lie gfpapdomain manifold\, and a Lie-
group action® : G x M — M. The infinitesimal generator of the Lie-group actidrwith respect to the
element € gis defined as

fM (CL’) = — (I)cxp(tg) (CL’), Vo € M. (32)

Example 3.4.1 (Classical ODEs ifR™)

Any classical ODE can be cast in the representation of an infinitesimal generator by making the choices
M =R" G =R", and ®(g,z) = g + x. Calculating the infinitesimal generator of this action (remember
that in this case the exponential map is equal to the identity map) with respect to the element £ € g = R"
gives us

€rn (z) = €. (3-3)
Hence, any ODE

y' =f(ty) (3.4)
on R™ has the form of an infinitesimal generator by just choosing the generator map £ : R x R" — R”
equal to the function f in (3.4).

Example 3.4.2 (Differential equations on matrix Lie groups)

In this example we choose the manifold equal to the Lie group; that is M = G, and let the Lie group act
on itself by left multiplication, ®(g,h) = gh. In this case the exponential takes the form of the matrix
exponential and the infinitesimal generator is

falg) =& 9. (3.5)

Choosing £ as the generator map f : R x G — g all ODEs on matrix Lie groups take on the general form

y = f(t,y)y.

Example 3.4.3 (Isospectral flows)

For isospectral flows the domain manifold M is chosen as a subset of the set of n X n matrices. The Lie
group is the special orthogonal group SO(n) that acts upon M by the action ®(g,m) = gmg~'. The
exponential map is in this case also equal to the matrix exponential, and the infinitesimal generator of this
action with respect to the element € so(n) is

Em(m) = [€,m]. (3.6)

[-, -] is the matrix commutator. Now, choosing & as the generator map f : R x M — so(n) all ODEs for
isospectral flows take on the general form

y = ft,y)y —yf(t,y).

Example 3.4.4 (Lie-Poisson systems)
This example might seem very hard and abstract on a first reading, but it is a very important and interesting
problem and deserves some attention. For notation and a detailed introduction see [21, 6].

A Lie-Poisson system is nothing else than a Hamiltonian problem. In this example the domain manifold
is the dual space of a Lie algebra g, that is M = g*. The Hamiltonian function H : g* — R is a
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conserved quantity for the flow. The Lie group G acts on the dual Lie algebra g* by the coadjoint action:
D(g,n) = Ad o1 (). The infinitesimal generator of this action with respect to £ € g is

Eg- (1) = adg(p). (3.7

For this particular example it turns out that the generator map is expressible by the Hamiltonian. Next, we
will introduce the notion of the functional derivative, which classically is nothing else than the gradient of
a function. The functional derivative % of a function F' : g* — R is the element in the Lie algebra g that

satisfies the relation 1 SF
lim (€)= F1) = (€, 50 38

The functional derivative can be viewed as a function from g* to g, and hence it serves the role as a generator
map for time-independent Hamiltonians. The Hamiltonian ODE on g* with Hamiltonian H takes the form

p = ad’su (n). (3.9)

What does this equation look like in concrete examples? The rigid body and the Euler equations pop up by

considering the Hamiltonian H (IT) = 111 - I~'II modeled on the dual space of the Lie algebra so(3). In

this case (3.9) reduces to the Euler equations

dar_ IIx 7 I
dt
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Domain

In DiffMan 2.0 the following collections of domains are implemented:

hmanifold % Homogeneous spaces
liealgebra % Lie algebras
liegroup % Lie groups

As a user you will work exclusively with homogeneous spaces. Thus, the collections of Lie algebras and
Lie groups are mere geometric building blocks for the homogeneous spaces.

Each of the collections of domains contains a virtual superclass of that collection. The purpose of this
superclass is that it serves as the parent of all the other classes, and all functions common to all the classes
in the collection are implemented once and for all in this superclass. Thus, all the actual matrix class imple-
mentations contain far fewer functions than the number of functions implemented in the virtual superclass.
For an overview of the actual functions implemented in the superclasses see Appendix

In MATLAB a class has to be prefixed b@in order to be recognized as a class. The constructor of the
particular@myclass has to be an m-file with the nammeyclass.m . In the virtual superclass of each
collection of domains we have overloaded ordinary arithmetic operations in order to make them work for
the objects. Since the virtual superclass is the parent of all the implemented classes, they inherit these
operations. The advantage of this approach is that one saves a lot of coding if a new class is to be added,
and if changes has to be made these are only made one place. Do not forget that these inherited functions
can again be overloaded in each of the particular classes.

In the next three subsections, all the implemented classes in each of the domain collections are listed.

4.1 Homogeneous spaces

The homogeneous space classes implementBifidan are the following:

@hmanifold - The virtual superclass

@hmisospec - Isospectral flow: action of Lie algebra on M \in R*(nxn).
@hmlie - The action of any Lie group and algebra on itself.
@hmnsphere - The N-sphere with action of the orthogonal group.
@hmrigid - The rigid body modeled as a homogenous space.
@hmrn - The action of any algebra on Rn.

@hmsineeuler - The Sine-Euler equation.
@hmtop - The heavy top modeled as a homogenous space.
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The virtual superclass homogeneous space is na@ieahanifold . All the other homogeneous spaces
are prefixed by@hnin order to emphasize that these are actual implementations of homogeneous spaces.

4.2 Lie algebras

The Lie algebra classes implementediffMan are the following:

@ladirprod - The direct product of Lie algebras.

@lafree - The free Lie algebra of q elements up to order s.

@lagl - The real and complex Lie algebra of the general linear group.
@larn - The real and complex Lie algebra of R"n.

@lase - The (real) special Euclidean algebra.

@lasl - The real and complex Lie algebra of the special linear group.
@laso - The (real) Lie algebra of the special orthogonal group.
@laso_pq - The (real) Lie algebra of the special pseudo-orthogonal group.
@lasp - The real and complex symplectic Lie algebra.

@lasu - The (complex) Lie algebra of the special unitary group.
@latangent - The tangent manifold of a Lie algebra.

@laun - The (complex) Lie algebra of the unitary group.

@liealgebra - The virtual superclass of all Lie algebras.

The virtual superclass Lie algebra is nan@diealgebra . All the other algebras are prefixed @la
in order to emphasize that these are actual implementations of Lie algebras.

4.2.1 The free Lie algebra

In this section we want to show you in a very rudimentary way how to use the free Lie algebra class
@lafree . See also Section.4.2for other examples.

The commands given below reflect the basic operations in the free Lie algebr@difsse .

>> fla = lafree({[p,q].[w1,w2,...,wp]});
Generate a free Lie algebra frqgsymbols with gradew1,w2,...,wp . All terms of total grade
greater thamg are set to 0. If no grades are supplied, grades equaate used.

>> Xi = basis(fla,);
Return the 'th Hall basis elementifia . If 1 <i < p, return thd 'th generatorX;.

>> X+Y; r*X; [X)Y];
Basic computations in the free Lie algebra.

>> 7 = eval(E{Y1,Y2,..,Yp});
If Eis an element of a free Lie algebra, afidl,Y2,...,Yp} is a list of elements fronany

DiffMan Lie algebra, this will evaluate the expressiBnusing the data set1,Y2,...,Yp in
place of the generating set.

Examples of use of these commands are:

>> fla = lafree({[3,3]})
fla =
LieAlgebra class: lafree
Shape:
{3 31 1 1}
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Basis vectors:
1] 2:q2] 3:3] 4:[1,2]

8[L[1,3]] 9[2[1.2]] 10:2,[1,3]]

13:[3,[1,3]] 14:3,[2,3]]

>> x1 = basis(fla,1)
x1 =
LieAlgebra class: lafree
Data:
(1]
>> x4 = basis(fla,4)
x4 =
LieAlgebra class: lafree
Data:
(1.2]
>> x=random(lagl(2))
X =
Class: lagl
Shape: 2
Data:
992/1139 -166/925
1169/1402 1029/1307
>> y = random(x), z = random(x)
y =
Class: lagl
Shape: 2
Data:
-1367/1546 1527/2438
-1185/4027  -1342/1369
Z =

Class: lagl

Shape: 2

Data:

-10067/13939 -1037/1721
-129/217 104/501

>> eval(x7,cat(1,x,y,z))

ans =

Class: lagl

Shape: 2

Data:
-76/989 -271/1666
-452/571 76/989

4.3 Lie groups

6:2,3] 7:[L[1,2]]
11[2,[2,3]  12:[3,[1,2]]

>> X7 = basis(fla,7)
X7 =
LieAlgebra class: lafree
Data:
(1.[1.2]]
>> [x1 x4] - x7
ans =
LieAlgebra class: lafree
Data:
0

The Lie group classes implementeddiffMan are the following:

@Ilgdirprod - The direct product of Lie groups.

@lggl - The real and complex general linear group.
@Ilgon - The (real) orthogonal group.

@Ilgon_pq - The (real) pseudo-orthogonal group.

@Ilgrn - The real and complex Lie group R™n.
@Ilgse - The (real) special Euclidean group.

@lgsl - The real and complex special linear group.
@lgso - The (real) special othogonal group.
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@Ilgso_pq - The (real) special pseudo-othogonal group.
@lgsp - The real and complex symplectic group.
@lgsu - The (complex) special unitary group.
@Igtangent - The tangent bundle of a Lie group.

@Ilgun - The (complex) unitary group.

@liegroup - The virtual superclass of all Lie groups.

The virtual superclass Lie group is nam@diegroup . All the other groups are prefixed lglg in order
to emphasize that these are actual implementations of Lie groups.

4.4 My domain is not implemented!?

Eventually, DiffMan will contain all possible domain classes that you can think of. Since this is just
DiffMan 2.0 you might encounter the fact that the homogeneous space or Lie group that you want to use as
a domain in your application, is not yet implemented.

If that is to happen you have at least two options: You can carefully read this guide — which is by no
means complete — and peek into the source code of the other classes and try to implement the missing class
yourself. If you do this we would appreciate obtaining a copy of your class so that it can be included in the
general distribution. We are more than willing to answer any of your questions if you choose to do it this
way.

A second option is to send us a request, and let us know about the classes that are missing, so that we can
possibly include them in a future versionBiffMan.
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Field

In DiffMan 2.0 the only field implemented is vector fields over domains.

5.1 \Vector field

A vector field F' over a manifoldM is a section of the tangent bundle of the manifdid; M — TM.
This means that at each point € M, the vector field computes a tangent vecktfm) € TM,,, or,
equivalently, thatr o F' = id o4, wherer is the projection fromil'’ M to M.

A vector field on a manifold defines the flow, and integral curves of vector fields are solutions of differential
equations.

DiffMan 2.0 is based on domains that are homogeneous manifolds. As is described in Appetitix
function evaluating the vector field should take R andy € M as arguments and return an element in
the Lie algebra of the Lie group which, together with the Lie-group action and the manifold, define the
homogeneous space.

The integral curves of a vector field, or, in other words, the solution of the differential equation defined by
the vector field, are computed numericallyDiffMan. A vector field over a domain is constructed by the
vectorfield operation. In the following example, we define an objetd belong to the homogeneous
space defined bigmlie over the Lie group SQ):

>> y=hmlie(lgso(3));
>> vf=vectorfield(y)
vf =
Class: vectorfield
Domain: hmlie
Shape-object information:
Class: Igso
Shape: 3
Egn type: General

The vector field object is now defined, but we have to assign to it a function which actually computes the
tangent vectors. Example 1 BiffMan gives an example of such a function (functidfexl1 ):

function [la] = vfexl(t,y)
% VFEX1 - Generator map from RxM to the Lie algebra. Linear type.
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la = liealgebra(y);

dat = [0t1; -t 0-t2; -1t2 Q]
setdata(la,dat);

return;

The function should in general receiveandy as input arguments and return a Lie algebra element. The
Lie algebra is the one corresponding to the Lie group which defines, together with the Lie-group action and
the manifold, the homogeneous space.

Usingsetfmg , the function is assigned tovectorfield object:
>> setfm2g(vf,'viexl’)
and information about the current map is retrieved ugiedfm2g :

>> getfm2g(vf)
ans =
vfexl

When we initializedvf usingvectorfield , the output
Egn type: General

appeared on the screeBeneral means that the vector field is géneraltype, i.e. it depends both dn
andy. When the vector field only depends bnwe say it is dinear vector field. Thetypeof the vector
field can be changed usisgteqntype

>> seteqntype(vf,’L’)
Type information about the current vector field is retrieved ugiegqntype

>> geteqntype(vf)
ans =
Linear

If we want to change the domain of the vector field, we may use the funséitstomain . Information
about current domain is retrieved usiggtdomain :

>> setdomain(vf,hmlie(lgso(4)))
>> getdomain(vf)
ans =
Class: hmlie
Shape-object information:
Class: Igso
Shape: 4
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Flow

The underlying assumption of the time-integrator®iffMan is the existence of a Lie groug with Lie
algebrag that is endowed with Lie brackét -], a (left) Lie-group actiord : G x M — M and a function

¢ : R x M — g such that the ordinary differential equation describing the problem can be written in the
form (see Appendid)

v =&m(ty),  y0)=peM. (6.1)

The flow operator of this differential equation is the operabg, ey : M — M, wheregy, is the
infinitesimal generator of the action corresponding to g,

d
SM (Q) = & (I)cxp(tﬁ) (q)a Vq e M.
t=0
The classical solution of a differential equation is an integral curve of the vector field generating the flow
operator. This integral curve is found by evaluating the flow operator in the initial point on the manifold.

In DiffMan the flow is approximated numerically using a particular time stepper method. The virtual
superclass defining the flow is

@flow % The virtual flow superclass

A flow object is defined by a vector field object and a time stepper object. The default time stepper object
if from the classsrkmk with coordinatesexp and the classical fourth order Runge-Kutta metRi
as scheme. The flow constructor is used as follows:

>> fl=flow

fl =

Class: flow

Timestepper class: tsrkmk
Coordinates: exp
Method: RK4

When evaluated, thibow object approximates the integral curve of the flow through an initial point from

time tgart O tenq USING either constant or variable step size. The outer part of the time stepping process
is included inflow , while the computation of one single step is done using the time stepper object. The
advantage of this is that we write the outer part only once. The variable step size control resides here, and
so do the other control structures defining the integration process. When changing time stepper object, the
environment and integration parameters remain the same, and the effect of changing the time stepper object
can be measured.
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The flow object must be associated with a vector field (see e.g. Sebtipn This is done using the
setvectorfield routine. Lety be the objechmlie(lgso(3)) . Then

>> vf=vectorfield(y)
vf =
Class: vectorfield
Domain: hmlie
Shape-object information:
Class: Igso
Shape: 3
Egn type: General

and this vectorfield is given to tHow object through
>> setvectorfield(fl,vf)

The vectorfield coupled toffow object is retrieved usingetvectorfield

In theflow object a number of parameters are defined. Most of these are used in the time stepper routines.
Thegetdefaults routine returns the default setting:

>> getdefaults(fl)

ans =
small: 0.5000
large: 2
disp: 1

The values are changed usisgtdefaults

>> setdefaults(fl,’'small’,0.1)
>> getdefaults(fl)
ans =
small: 0.1000
large: 2

disp: 1

6.1 Time stepping
In DiffMan 2.0 the following numerical time stepper algorithms are implemented:

@timestepper - The virtual superclass timestepper.

@tscg - The Crouch-Grossman methods.

@tsfer - The Fer expantion method.

@tsliegn - Test timestepper for free Lie algebra speed hack.
@tsmagnus - The Magnus-series method.

@tsprkmk - Partitioned Runge-Kutta-Munthe-Kaas type methods
@tsqq - Quadrature methods for quadratic Lie groups.
@tsrk - Classical Runge-Kutta methods.

@tsrkmk - Runge-Kutta methods of Munthe-Kaas type.
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@tsrkmkgeo - Geodesic-symmetric RKMK-type method.
@tsscg - Time-symmetric Crouch-Grossman method.
@tssym - Flow-symmetric RKMK-type method.

A detailed mathematical exposition of each of the methods is found in Appéndix future release of
DiffMan will also contain various multistep methods.

Initialization of a time stepper of typiscg is done as follows:

>> ts=tscg
ts =

Class: tscg
Coord.: exp

Method: CG3a

The default coordinates aegp and the default scheme@G3a A list of the schemes available DiffMan
2.0 is included in AppendiB. You can change time stepper scheme usitgnethod :

>> setmethod(ts,'CG43’)
and you can retrieve the parameter values of the scheme gisinpthod :

>> getmethod(ts)
ans =
RKname: 'CG43’
RKa: [5x5 double]
RKb: [0.6756 0 -0.1756 -0.1756 0.6756]
RKc: [0 1.5000 1.3512 -0.3512 1]
RKns: 5
RKord: 4
RKtype: ’explicit’
RKbhat: [0.6756 0 -0.1756 -0.1756 0.6756]

Many of the methods are based on a certain choice of coordinate syBiftan 2.0 provides the follow-
ing coordinates:

exp % canonical coordinates of the first kind;
%  defined by a single exponential map
expexp % canonical coordinates of the second kind;
%  defined by a product of exponential maps
cay % coordinates based on the Cayley map;
% defined by a single Cayley map
caycay % coordinates based on the Cayley map;
%  defined by a product of Cayley maps
pade22 % coordinates based on the (2,2) diagonal Pade map;
%  defined by a single (2,2) diagonal Pade map

See e.g. ] for a discussion of different choices of coordinates. The default coordinate choice is the
exponential mapping for most of the methods. You can change coordinates by usetctwrdinate

routine:

>> setcoordinate(ts,’cay’)
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Thegetcoordinate routine returns the current choice of coordinate system.

You may change time stepperiffMan by using thesettimestepper routine:

>> ts=tsmagnus

ts =

Class: tsmagnus
Coord.: exp
Method: M4a

>> settimestepper(fl,ts)
Thegettimestepper routine retrieves information from tHeow object:

>> gettimestepper(fl)

ans =
Class: tsmagnus
Coord.: exp
Method: M4a

6.1.1 My time stepper is not implemented!?

Eventually,DiffMan will contain most of the time stepper classes described in the literatubaffivian 2.0

you might encounter the fact that the time stepper that you want to choose is not yet implemented. If that is
to happen you have at least two options: You can carefully read this guide — which is by no means complete
— and peek into the source code of the other classes and try to implement the missing class yourself. If
you do this, theDiffMan development team would appreciate receiving a copy of your class so that it can
be included in the general distribution. We are more than willing to answer any of your questions if you
choose to do it this way.

A second option is to send us a request, and let us know about the classes that are missing. We will then
possibly include them in a future versionDiffMan.

6.2 Implicit methods — Solution of nonlinear equations

In DiffMan 2.0 the nonlinear systems of equations arising from the implicit time steppers are solved using
fixed point iteration only. The iteration on the stage values continue until the error is below

max (10712, h? /100)

, Wherep is the order of the method aridis the step size.

In future versions oDiffMan, we will provide general nonlinear equation solvers, e.g. Newton iteration as
developed by Owren and Welfe@d]. These schemes reduce to the classical Newton-iteration scheme in
Euclidean space with the standard basis.

6.3 Variable step sizing

Traditional step size control strategies rely on the local error of the method. At every step this quantity is
estimated, and a new step size is computed. It is natural to employ similar techniques also in the case of
integration on Lie groups or more general manifolds. Description of the strategy may be found in most
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standard texts on integration methods for ordinary differential equations, but for completeness we include
a brief overview of the procedure.

In order to attain the local error estimatg,; = ¢ at time stept + 1, the next step sizé; is chosen
as a function of the previous step sizg, as follows (see e.g3p] or [12, 13]). Let p be the order of the
method. When using embedded pairs, as is usual in classical Runge-Kutta methodg; beetlee order
of the lower-order approximation scheme). Furthermoge= e, the error estimate, ant,cgsimist IS a

pessimist factor which is heuristically determined (typical valuega&er 0.9). We first compute

1/(p+1)
-~ e
hk+1 = Olpessimist <_> P,
Tk

A typical strategy to prevent rapid oscillations of the step size is to restrict the extent of step size variation
in any single step. This is obtained by letting

thrl = min{hmaxa max{asmallhk7 min{alargehlm /};k:Jrl}}}u

wherehn.y is the largest allowed step size, whilgn.n and ... are two constants. If the local error
exceeds the tolerance by a factor more than.,:, then we reject the step and retry with a smaller step
size computed as above but with equal to the step size we just tried. This algorithm proceeds until the
local error estimate satisfies

€k+1 < Qaccept€-

DiffMan defines default values for the constants used in variable step size integration. The names are

Qpessimise PESSIMIst
Qsmall < small
Hlarge < large
Qlaccept < aCCEPL

€ « tol

hmax <> hmax

All the values can be changed by the useDifMan (see description of the flow object). The routine
getdefaults returns the default setting of the constants:

>> fl=flow;
>> getdefaults(fl)
ans =
small: 0.5000
large: 2
pessimist: 0.9000

disp: 1
The values are changed usisgtdefaults

>> setdefaults(fl,'large’,4)

>> getdefaults(fl)

ans =
small: 0.5000
large: 4

pessimist: 0.9000

disp: 1

The variable step size algorithm will be extended in future releasB#fdan.






Chapter 7

Auxiliary

7.1 Demos

Issuing the MATLAB commandemo on the command line iBiffMan will launch the MATLAB Demos.
Since this is done whilBiffMan is running you will be able to fin@iffMan and its demonstrations as one
of the MATLAB toolboxes. The situation should look very similar to Figuré

File  Winclow  Help ‘

TLAB Demos

Language/Graphics Difftdan A
Gallery
Games The Difftdan Toolbox integrates differential equation:
discellaneous evolving on homogeneous manifolds, and is part of ¢
To lean more... program for developing coordinate free numerics. Fo
-Toolboxes mare information please visit: .
4 1 -

Communications

Control System
Frequency Domain
Financial Command Line Examples
Fuzzy Logic

Higher- Crder Spect

System Identification

Diffdan Tutarial

Close | Run Diffhdan Tutorial

Figure 7.1: The MATLAB Demos.

The Demos feature in MATLAB is very simple to use. You just high-light what you want to learn more
about, and then push the button down to the right ("Run ...-button) to go on to more information about
the specific topic. FobiffMan 2.0 there are two topics for further help: 'TheffMan tutorials’ and 'The
Command Line Examples’.

Under DiffMan tutorials’ you will find short and well-documented slide shows which guide you through
different aspects of how to ugiffMan. Figure7.2shows you the 'Tutorial’ window as launched from the
'Demo’ window. The two existing tutorials are on how to U3#Man to solve ODEs on manifolds, and
about the domains iDiffMan. More tutorials will be tried added in the future. If you have ideas for such
tutorials please inform thBiffMan development teanmailto:diffman@math.ntnu.no

'Command Line Examples’ collectd) of the examples found in theiffMan distribution. Accessing the
CL-examples this way, the user simply has to push a button in order to run an example. See7/Sgftiron
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File

Window Help

more information.

How to solve ODEs in Difian Diffdan Domains

Welcome to the Diffan Tutarials

Launch different tutorials by pushing any of the above buttons

Figure 7.2: ThéiffMan tutorials.

7.2 Documentation

All the DiffMan documentation is placed in the directddyffMan/auxiliary/documentation

The User’s Guide, which you are reading now, is found as both a PDF and PS-file. There are also other
.doc and.m-files in this directory which are worth while looking at. However, in the present distribution

of DiffMan they are not guaranteed to be finished.

When detailed technical notes for instance about new classes or specific problems s@iféidan are
released by th®iffMan development team, these will also be placed in this directory as PDF and/or PS-

files.

7.3 Examples

In DiffMan you can find several examples of solved ODEDIfiMan 2.0 these are:

dmex1
dmexla

dmexlb

dmex2
dmex3
dmex4
dmex5
dmex6
dmex7
dmex8
dmex9
dmex10
dmex10a

PURPOSE:

PURPOSE:

This is an
This is an

ODE evolving in SO(3)
ODE evolving in SO(3)

Integrate 'dmex1’ with variable and constant step size.

This is an

ODE evolving in SO(3)

Integrate 'dmex1’ with variable and constant step size
for time steppers: 'tscg’ and ’tsrk’.

Solution of the Lorenz equations in R™3

This is a linear ODE evolving in SO(3)

Integration
This is an
Integration
Integration
Integration
Integration
This is an
This is an

of the rigid body

ODE evolving on the sphere S™2
of an isospectral flow

of the Airy equation

of the van der Pol equation

of the heavy top

ODE evolving in SO(3)

ODE evolving in SO(3)
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PURPOSE: Use "ftorder" to verify the order of the solution
of some fer schemes

WARNING: This routine is very time consuming to run.

exlafree - Using the Lie algebra @lafree.

PURPOSE: Use the free Lie algebra to establish a
connection between the Magnus method and the RKMK
method.

extoolsl - Example of ODE evolving in SO(3).

PURPOSE: Demonstrate the use of the flow tools routine
"ftorder", that computes order of approximation
of a given integrator and scheme.

extools2 - Example of ODE evolving in SO(3).

PURPOSE: Demonstrate the use of the flow tools routine
"fteff", that computes the efficiency of a given
integrator and scheme as global error versus
flops.

All these examples can be run directly iffMan by just typing the name of the example. If you are

a beginner user dbiffMan, it might also be worth-while to view the source code of the examples with
dmhelp . This gives you an idea of how things are done, and probably the best way to learn is to take an
already existing example, copy it, and modify it, and see what happens.

The examplesimex1 throughdmex10 are the ones found among the 'Command Line Examples’ in the
DiffMan Demo, see Figurgé.3. In order to run the examples this way, you push the example button. Make
sure that the MATLAB window is visible, because output from the examples will be displayed here and in
plots.

File  Window Help ‘

Difftdan example # 1 Difftdan example # 6

Difftdan example # 2 Difftdan example # 7

Difftlan example # 4 Difftdan example # 9

Difftdan example # 3 | Difftan example # 8 |

Difftian example # 5

Difftdan example # 10

‘Welcome 1o the Difan Command Line E

Launch different examples by pushing any of the above buttons

Remember to have your MATLAB Command Windom visible.

Figure 7.3: ThebiffMan command line examples.
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7.4 Utilities

The root utilities directory contains some functions which are 'nice’ to have. It is not vital to know how
to use all these functions, but it is very convenient to have an idea of where to look for these types of
functions, in case you are in need of one. The functions located in the root utilities directory are:

addsubdir - Add subdirectories to the path.

array - Create arrays of objects.

dmargcheck - Turn on/off input checking in DiffMan.
dmhelp - The help facility in DiffMan.

dmprogrep - Turn on/off progress report.

iseven - Function to test if a number is even.
iscellempty - Check if a cell tree consists of empty matrices.
iseven - Check if integer is even.

repprogress - The progress report m-file.

isinteger - Function to test if a number is integer.
skew - Creates a skew matrix from a 3-vector.

There are also two subdirectories containing class specific utilities functions:

flowtools - Functions for efficiency and order checks.
lafreeutil - Utility functions for the free Lie algebra.

For more information about the functions contained in these subdirectories see the next two subsections.

7.4.1 flowtools

DiffMan 2.0 provides the user with two specfldw utility routines: ftorder  andfteff . ftorder

estimates both the local and global order of approximation of a timestepper. The user can provide a “cor-
rect” (or “exact”) integrator. If this is not supplied, therkmk timestepper with th&K4 scheme is used.

The first time this routine is called, an “exact” reference solution is computed. This is a rather time consum-
ing operation, and can be avoided in the next call with the same setting. The user shoulttorotéfly

that the same “exact” solution should be used, by changing the value of the flow paraave¢sact :

>> setdefaults(fl,'newexact’,0)

The example routinextoolsl  uses this tool:

flA = flow; % The integrator to be estimated
ts = tsrkmk;

setcoordinate(ts,’pade22’);
setmethod(ts,'RKF34);

settimestepper(flA,ts);

flB = flow; % "Reference" integrator - computes the “"exact" solution
ts = tsrkmk;

setcoordinate(ts,’'exp’);

setmethod(ts,'RK4);

settimestepper(flB,ts);

out=ftorder(flA,fIB,y);
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% input exact solution to avoid computing it once more - example
setdefaults(flA,’newexact’,0);
out2=ftorder(flA,fIB,y,[].[].[],out.exact);

Thefteff  utility routine estimates the efficiency of a timestepper. The efficiency measure is global error
as a function of number of flops used by the integrator. The MATLAB routops is used to count the
flops usage. The sample prograxtools2 demonstrates the use of the routine:

flA = flow; % The integrator to be estimated
ts = tsrkmk;

setcoordinate(ts,’pade22’);
setmethod(ts,'RKF34);

settimestepper(flA,ts);

fIB = flow; % "Reference" integrator - computes the "exact" solution
ts = tsrkmk;

setcoordinate(ts,’'exp’);

setmethod(ts,'RK4");

settimestepper(flB,ts);

out=fteff(flA,fIB,y);

% input exact solution to avoid computing it once more - example
out2=fteff(flA,out.sol,y);

7.4.2 lafreeutil

This subdirectory collects some handy functions related to the free Lie al@feee

bch - Computes the BCH formula of order g, and n flows.
bch2 - Computes the BCH formula of order q, just 2 flows.
cdopri5 - Classical dopri5 of order 5.

divisors - All the divisors of an integer.

killing - Killing form on a Lie algebra.

lafcount - Count commutators in a graded free Lie algebra.
lafdim - Dimension of a graded free Lie algebra.

magnusdim - Magnus dimension.

mobius - Number theoretic mu function.

rkal - Runge-Kutta-Gauss-Legendre coefficients of n stages, order 2n.
rkmk4 - Classical RKMK of order 4.

rkmk4mod - Modified classical RKMK of order 4.

slegendre - Shifted Legendre polynomial of order n.

For instancebch andbch2 can be used like this:

>> format rat
>> bch(3,3)
Fixpoint iteration, 3 steps:
Done step: 1
Done step: 2
Done step: 3
Composing 3 flows:
ans =
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computing commtab!

Done step: 3
ans =
LieAlgebra class: lafree
Data:
[1] + [2] + [3] + 1/2*1,2] + 1/2*1,3] + 1/2*[2,3] + 1/12*[1,[1,2]]
+ 1/12*[1,[1,3]] - 1/12*%[2,[1,2]] + 1/6*[2,[1,3]] + 1/12*[2,[2,3]]
- 1/3*[3,[1,2]] - 1/12*3,[1,3]] - 1/12*3,[2,3]]
>> hch2(4)
ans =
LieAlgebra class: lafree
Data:

[ + [2] + 12*1,2] + V12*1,[1.2]] - 1/1242,[1,2]] - 1/24*[2,[1....

7.5 Efficiency and speed-up oDiffMan

First, let us state the following fact: the object orientation in MATLAB is not fast. We have tried to remedy
this situation inDiffMan by a couple of programming tricks. The first 'trick’ is to use MEX-files, and the
second 'trick’ is to aid the most time-consuming computation by precomputations in the free Lie algebra.
In the present version @iffMan only the first of these two tricks is available for exploitation.

7.5.1 Speed-up through MEX-files

Following the standar®iffMan 2.0 distribution there are three pre-programmed files in C that the user
can compile in order to speed up the executioDiffMan. A prerequisite for this to work is that there is

a C compiler installed on the platform which is running MATLAB. The files are located in the directory
DiffMan/domain/liealgebra/@liealgebra , and they are:

>> pwd

ans =
/..IDiffMan/domain/liealgebra/@liealgebra
>> |s *.c

ans =

dexpinv.c

horzcat.c

mtimes.c

To compile the C files and make MEX-files you can issue the following commands in MATLAB:

>> mex -O dexpinv.c
>> mex -O horzcat.c
>> mex -O mtimes.c
>> |s *.mexsol

ans =
dexpinv.mexsol
horzcat.mexsol
mtimes.mexsol

Note that the file extension of the MEX-files will vary depending on the platform on which you are running
MATLAB.

What happens now is that the next time you are running i&ffiiMan application, MATLAB will choose
the MEX-files instead of the m-files for any of the three functialexpinv.m , horzcat.m , and
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mtimes.m . This is done automatically, and the only way that the user can control this is by remov-
ing the MEX-files. The MEX-files are well tested on all the matrix groups, and they are expected to fail
seriously if used on any of the functorial classes. A word of advise is that if you run into any kind of trouble
using the MEX-files, remove them, issue the commeledr functions in MATLAB, and run your
problem just using the m-files (which are known to work properly).

Please be warned that the flops count which MATLAB produces when running any of the above MEX-files
is not correct. The reason for this is that the flops counter is not being updated in any of the MEX-files.
Hence, the results yielded by the functibeff  are erronous when used together with these MEX-files.

7.5.2 Speed-up by use of the free Lie algebra

To give you an idea of this beautiful trick we will briefly comment on it. The user will only notice the speed
increase, and does not have to do anything special than choosing the 'right’ RKMK time stepper class in
order to take advantage of it. The trick itself constitutes of aiding the most time-consuming computation
by a precomputation in the free Lie algel@dafree . The object from theé@lafree class represents the

whole update of step sizethat the numerical method is supposed to perform on the initial data. The free
Lie algebra object acts as an operator, and once calculated the object is saved for the rest of the iteration,
and whenever the time stepper is called, the object in the free Lie algebra is evaluated on the data. Hence,
you end up only with an evaluation in each step, instead of a time-consuming calculation.
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Appendix A

The mathematical building blocks of
DiffMan

In this chapter we briefly describe the mathematical backgroumiftiflan. To get a more detailed ex-
position of the topics the reader is recommended to study some of the more established references like
[1,2, 21, 35,40, 4]]

A.1 Homogeneous spaces

To really appreciat®iffMan, the most important concept to understand is the notion of a homogeneous
space. All the numerical algorithms for solving ordinary differential equations have been reformulated to
solve problems evolving on homogeneous spaces. We believe this to be the most general setting for solving
ordinary differential equations on manifolds. It should be noticed that all the methods, when applied in the
traditional setting oR”Y, reduce to the classical Runge—Kutta schemes.

Before defining homogeneous spaces, we need some mathematical building blocks.

Definition A.1.1 (Manifold)

A manifoldis a topological space M equipped with continuous local coordinate charts ¢; : U; C M — R?
such that all the overlap charts ¢;; : R? — R? are diffeomorphisms. The overlap charts (transition
functions) ¢;; are defined as ¢; o ¢7;1 ‘d)i(UmUj), where ¢;1|¢,;(UmUj) means the restriction of (;5,;1 to the
set ¢2(Uz N UJ)

While this is a quite abstract definition, DiffMan we will mainly concentrate on a particular class of
differentiable manifolds calletie groups

Definition A.1.2 (Lie group)
A Lie group (G, ) is a differential manifold G equipped with a binary operation - on G satisfying the
axioms of a group, such that the map v : G x G — G given by 1)(q,p) = q - p~ ! is smooth.

In this report we will slightly abuse notation and just refer to the Lie grou@'ahe identity element in
the Lie group will be denoted by

Definition A.1.3 (Tangent space)
Given a point p € M, we denote by TM|,, the tangent space of M at p. This space is the set of all linear
derivations vy, such that

vp(Af1 + pf2) = Avp(f1) + pop(f2) and  vp(fif2) = fi(p)vp(f2) + f2(p)vp(f1)



46 The mathematical building blocks ofDiffMan

for all functions f1, fo : M — R defined in a neighborhood of p, and all \, i € R.

The tangent bundle ot is TM = |J,c o TM|,. A vector field, X on M, is a section ofl M, i.e. to
each poinp € M it associates a vectdt (p) € TM|,.

Since a Lie group(s, is a manifold, there exists a tangent spal€,, at each poing € G.

Definition A.1.4 (Lie algebra)
A Lie algebra is a vector space, g, equipped with a bilinear, skew-symmetric form, [-,] : g X g — g,
satistying the Jacobi identity,

['LL, [7}, ’LU]] + ['U, [U}, ’LL]] + [wv [ua 'U]] =0,

when u,v,w € g. We call [-, -] the Lie bracket on g.

The Lie algebra of a Lie group is defined as the tangent space at the idgrtityG|.. In this case its Lie
bracket is given by

82
0t0s |,_,_,

whereg(t), h(s) € G are two curves such that0) = h(0) = e, ¢’'(0) = u, andh’(0) = v. In the case of
matrix Lie groups, the Lie bracket is the matrix commutaerp] = w - v — v - u, where- denotes matrix
multiplication.

g(t)h(s)g~ " (2),

[uv 7)} =

Definition A.1.5 (Lie-group action)
A (left) Lie-group action of a Lie group G on a manifold M is a smooth mapping ® : G x M — M,
which satisfies

(e, p) = p, where e € G is the identity element,

and
D(g1 - g2,p) = (g1, P(92,p)), forall 1,92 € G andp € M.

We say that a Lie-group action éffectiveif ®(g,p) = p for all p € M implies thatgy = e. Furthermore,
an action igransitiveif, for arbitrary p, ¢ € M, there exists g € G such that® (g, p) = ¢, i.e. the space
M consists of just a single orbit.

Based on these definitions we can now define the concept of homogeneous spaces.

Definition A.1.6 (Homogeneous space)
A homogeneous space is a manifold with a transitive Lie-group action.

Any ¢ € g specifies a tangent,, € TM|,, at any pointn € M via

d

fm:&

D(g(t), m),
t=0
whereg(t) € G is a curve such thag(0) = e andg’(0) = &. One may usg(t) = exp(t&), where
exp : g — G is the exponential magB[), or g(t) = ¢(t&) for any smooth functio : g — G such that
¢(0) = e and¢’(0) = I. This gives an identificatiog — &,, € TM]|, , which depends on the choice of
action®, but not on the particular choice of

A.2 Computing flows of vector fields

We have chosen to view all the numerical methods implement&iffilan as working on homogeneous
spaces. Even the classical Runge—Kutta methods are expressed in this setting.
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The numerical methods iDiffMan assume that the differential equation to be solved is presented in the
following canonical form

Yy =Fty) =Emty),  y0)=yo €M, (A1)
for some functiorg : R x M — g (see B4, 30, 5]).

If £(t,y) = £(¢), the equation is oLie typeor linear type Otherwise it is ofgeneral type Equations of
Lie type can be handled more efficiently than general type equations.

A.2.1 Classical Runge—Kutta methods

Classical Runge—Kutta methods have been thoroughly described in a large amount of papers the last
decades. These methods are implementé&iffiMan, but based on a slightly different understanding since
we work on homogeneous spaces.

In the classical setting, the differential equatiénl() takes on the following form. Integrate
u' =&t ®(u,y0)),  u(0) =0,
with y(¢) = ®(u(t), yo). We have here used thats the identity mapping in Euclidean space.

Algorithm A.2.1 (Classical Runge—Kutta methods)
Let A = (a;5), b = (bj) and ¢ = (c;) be the Butcher-coefficients of an s-stage, qth order Runge—Kutta
method. The following algorithm integrates (A.1) fromt =t, tot =t, + h:

Assume thay,, = y(t,) is given
fori=1,2,...,s

up = hy 5, aijk;

ki =& (tn + cih, ®(us, yn))
end
v="h3_ 1 bik;
Ynt+1 = 2(v,yn)

When®(u,y) = u + y, this reduces to the well known classical setting:

ki = ¢ (tn‘FCih,yn+hZ;:laijkj> , 1=1,2,...,s,
Yn+1 = Yn + hz bjk‘j.
j=1

If @ is a general group action, this method attains at most @deran arbitrary manifold.

A.2.2 Munthe-Kaas methods

The Munthe-Kaas methods were first described?i#].[ In the succeeding pape2{], the methods were
refined until their final formulation appeared iB0].

A large class of numerical algorithms are based on the assumption that thebifadgs, m) can be com-
puted efficiently. The Munthe-Kaas methods#d][are based on the choigg) = exp(£). More general
¢s are discussed ifv].
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The following commutative diagram, which is thoroughly discussedjnlfustrates the relations used as

a framework for these algorithms:

Tq Td,, 0T

™™
d¢uflo£o¢yoo¢T TFst

g — M
q:'?/o op

Herey, € M is the initial point,u € g, ®,,(u) = ®(u,yo) andde, ' : g — g is the right trivialized
tangent ofg. If ¢ = exp, thendg;! = dexpj1 can be expressed in terms of Lie brackets. For more
generaly one needs an efficient algorithm for computidig, ~*, see b, 36] for different choices. This
yields the following algorithm:

Algorithm A.2.2 (General Munthe-Kaas methods)
Given a differential equation in the form (A.1), this algorithm produces a qth order approximation to the
solution, using step size h:

e Find an approximation uy =~ u(to + h) by integrating the following differential equation on g
o = oy (€(6 D6, w0),  u(0) =0,
from ty to ty + h using one step with a gth order Runge—Kutta method.
e Advance the solution on M to y; = ®(¢(u1),40))) ~ y(to + h).

e Repeat with new initial values yy := y1, to := to + h.

Wheng = exp, this algorithm reduces to the Munthe-Kaas methods present&d]in [

Algorithm A.2.3 (Munthe-Kaas methods based on the exponential mapping)
Let A = (ai;), b = (b;) and ¢ = (c;) be the coefficients of an s-stage, gth order classical Runge—Kutta
method. The following algorithm integrates (A.1) fromt =t, tot =t, + h:

Assume thay,, ~ y(t,) is available
fori=1,2,...,s
wi =hy ) aijk;
ki = § (tn +cih, (b(exp(ui)a yn)>
];i = dexpin\(uiv ki, q)
end
v="h3i bik;
Ynt1 = D(exp(v), yn)

Here, agth order truncation of the dexpinv function is defined by

k

. 1 ! By ——"
dexpinv(u,v,q) = v — i[u, v] + ,;2 o [w, [u, [ .-, [u, v]]]

where[-, -] is the matrix commutator defined iy, B] = AB — BA whenA andB are matrices, and,
is thekth Bernoulli number.

This method has at least ordgon any manifold. In Eucliden space this algorithm reduces to the classical
Runge—Kutta algorithm.
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A.2.3 Magnus series methods

The solution of Lie type ordinary differential matrix equations,

Yy =&m(t),  y(0)=peM, (A.2)

where¢ : RT — g for everyt > 0, and M = @G is a matrix Lie group, was recently studied by Iserles
and Ngrsett 9. These methods can be viewed as a particular case of the Munthe-Kaas methods. The
following commutative diagram shows the framework:

T®,,0T exp
_

Tg TM
dexpuflo§o<1>y0 oexpT TF:{M
g — M
®,, 0exp

Again, yo € M is the initial point,u € g, ®,,(exp(u)) = ®(exp(u),yo) and dexp' : g — g is the
right trivialized tangent okxp. By applying an implicit Runge—Kutta method to the ordinary differen-
tial equation ong and, since& = £(t), performing Picard iteration, an infinite sum of integrals appears.
Magnus P0] observed that:(¢) can be expressed as an infinite sum of elemengs in

ut) = /Otg(ﬁ)dmé/ot [f(n),/oﬁf(a)da] dr
=] t [am), | [&(a» / a&(n)dn} da] i (A3)

+% Ot H{(H),/Oﬁg(a)da} a/()ﬁf(n)dn} de+--- .

Iserles and Ngrsett analysed this sum and presented the devices necessary to make it a useful numerical
method — or rather a whole family of methods — nariviadynus series methodenplementation issues and
error control of these numerical methods were discusseti7jn |

Whenu is approximated byi, say, the solution is advanced according to
Yn+1 = P(exp(a), yn).

Algorithm A.2.4 (A fourth-order Magnus series method)
Let c; and cz be the Gauss—Legendre points

>3

—_ _'_%

b

N

and Ccy =

N

Cc1 =
and evaluate £ at these abscissae values:
61 = f(tn —+ Clh) and 52 = f(tn —+ Cgh).

A fourth-order approximation to u is then given as

ulh = Th(& + &) - ghz[&’&}'

The solution is advanced according to

Yni1 = P(exp(ul?), y,).

Algorithm A.2.5 (A sixth-order Magnus series method)
Let ¢1, co and c3 be the Gauss—Legendre points

c1 = — s and C3 =

V15 —
10 ° Co =

[ I
[ I
[ I
=

ot
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and evaluate £ at these abscissae values:
& =&(tn + c1h), & = &(ty, + c2h) and & = &(tn + c3h).
A sixth-order approximation to u is then given by the following equations:
Ky = L(5¢ + 8& + 5¢3)
Ky = *W\/;fﬁ(?fu + €13 + 2623)
Kj = 432([51 53, £12] + [5&1 — &3, 623])
Ki = 3goh'[6, [, &3]

= K, + Ky + K3 + Ky,
where §;; = [&;, ¢;]. The solution is advanced according to
Yn+1 = ¢(exp(u[6]), yn)
The generalized Magnus series methods that sglve- ¢4 (t,y), y(0) = yo € G, are implemented
according to the algorithms presented4i3,[42]. These methods are based on the collocation idea.

Assume that approximatiors ~ g(tn +cih, y(ty +cih)), i=1,...,s,areknown. Based in these values
we approximate the functiog, in the vector spaceg, aroundt = t, with its Lagrangian interpolating
polynomial at the abscissae valugs. . ., c;

~>u(52)e “9
=1
where .
t—ci
Li(t) = 1:[ p——

k#i
By inserting the interpolating polynomial into the Magnus series, a method solving the general problem is
obtained. As in the classical case, the collocation methods are necessarily implicit. However, it is possible
to derive relaxed collocation schemes that are explicit.

The two collocation based Magnus method®iffMan 2.0 areMRC3 andMC4:

MRC3: (Magnus series method of ordgibased on relaxed collocation)

Yl = Yn, 51 :g(tnvyl)v
Yy = ®(exp (4&1), yn), L=t + L. Y0),
Y; = (eXp (h( 51 + 252))7,%), 53 = €(t7L + h’7 1/3)a

with
yns1 = @ exp (h(§&1 + 36 + §&) — S [6 — &, B + 56]).un)-

MC4: (Magnus series method of ordébased on collocation and orddrGauss-Legendre points)
Solve the following system

Y| = ‘I)(QXP (h(3& + (3
Y, = (exp (h((% )

1,2,a
h V31,2
Yn+1 = (eXp § 1 + 52) 12 h [517 f?])ayn) .

B ) ) (124 - ﬁ)h?gl?)ayn)a
%52) (144 + \/_)h2€12)vyn)7

andés = [£1, &2]. Advance the solution by computing
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A.2.4 Quadrature methods on quadratic Lie groups

The quadrature methods based on the Cayley transform are similar to the Magnus series methods. They
are discussed ir2p]. We again consider the solution of Lie type ordinary differential matrix equations,

y'=Em), y0)=peM,
where¢ : Rt — g for everyt > 0. For any matrixo € R™*™ a subalgebra ofl(n) is
g ={ucgl(n): vu+ulv = 0}.

Such Lie algebras are called quadratic Lie algebras. Roughly speaking, the Lie gepuisained by
exponentiation of these Lie algebras are called quadratic Lie groups. We immediately see that by choosing
v to be

0 L/2
7In/2 0

we recover the Lie algebras(n) andsp(n), respectively. It is well known that the computation of matrix
exponentials in general is a costly operation. When constructing numerical integrators for differential
equations evolving on quadratic Lie groups, we exploit the fact that there exist other mappings between the
Lie algebra and the Lie group than the exponential mapping. Celledoni and Is3ri®yved that ifp is

any analytic function that satisfiegz) - ¢(—z) = 1, then¢(g,) C G.

I, or [ } (whenn is even)

There exist a large number of such functions, but we shall focus on the Cayley transform
cay(z) = (1-5)7"(1+3).
The following commutative diagram shows the framework for the methods:

T®,,o0Tcay
—_—

Tg ™
dcay“_lo£o<1>y0 ocayT TF:SM
g ——— M
Dy, ocay

Again, y, € M is the initial point,u € g, ®,, (cay(u)) = ®(cay(u),yo) anddcay,' : g — g is the
right trivialized tangent o€ay. By applying an implicit Runge—Kutta method to the ordinary differential
equation ong and, sincet = £(t), performing Picard iteration, an infinite sum appears. The numerical
methods below are based on truncations of this sum.

The two timesteppers of the above kind implementeliffMan 2.0 areqg4aandqg6a

gg4a: (quadrature method of order four on quadratic Lie groups)
Consider the Gauss-Legendre weights of orden, = % —aande; = % +awitha = @ Let&l
be the functiort evaluated at the abscissae valug@s= £(t, + ¢;h), i = 1,2. The resulting fourth

order quadrature method based on the Cayley transform is then given by

uf = $h(E + &) — TPl &1 - gh (6 + &)°
Yn+1 = ¢(CaY(U2)7yn)-

gg6a: (quadrature method of order six on quadratic Lie groups)

Consider the Gauss-Legendre weights of oféter; = 1 — a, ¢c; = 1 andc; = 1 + a with

o= 1—105, and let agaig? = &£(t, + ¢;h), i = 1,...,3, be the functiorg evaluated at the abscissae
values. Letw?, wd andwy be defined as follows:

£ = Wl — ahwy + (ah)?wy, & =uwt and & = W + ahwd + (ah)?wh.
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The resulting sixth order quadrature method based on the Cayley transform is then given by
ug = hwy + 11—2h3(w3 — w1, wa] —wd)
+ R’ (240 ([Wz,ws] [wa, (w1, ws]] — wiws — waw? + [Wiwawr, wl])
— gowiwswi + 335 ([WF, wa] + w?))

Yn+1 = (I)(CaY(ug)v yn)

A.2.5 Fer expansion methods

The Fer expansion was introduced by F&i][as a method of solving matrix differential equations in
Euclidean space of the form

v =f)y,  y(0)=wo. (A.5)

Iserles [L6] proposed numerical methods based on a similar construction. They both showed that the
solution of A.5) can be expressed as an infinite product of exponentials:

y(t) = lim exp (Bo(t)) exp (Bi(t)) -+~ exp (Bn(t))vo, (A-6)
in a neighborhood 0. The B; are matrix valued functions, and they can be computed iteratively. By
letting Ag(t) = f(t), we obtainBy(t) fO Ap(7) dr. Furthermore, we construcl ;, asCo o(t) = Ao(t)
andCy ;+1(t) = [Co,(t), Bo(t)], 2 = 0,1,.. Here [-, ] denotes the matrix commutatad(t) and
By4+1(t) are now computed as follows:

Apya(t) Z

i=1

Ckz

whereCy, o(t) = Ag(t) andCl ;41 (t) = [Ck,i(t), Br(t)], i = 0,1,..., with By41(t) = fot Agy1(7)dr.

In DiffMan, we view the differential equation in a generalized setting:

Yy =&m(t),  y(0) =y e M. (A7)
The numerical procedure generates at each step an elgment: which we use to advance the numerical
solution fromy,, t0 ¥, 4+1:
Yn+1 = <1>(9n, yn)

This procedure is only valid whehis a function oft only. It is, however, possible to extend this algorithm
to also cope withy-dependent functions. This has been analysed3n42].

The Fer expansion methods integrating problén¥) are implemented according to the algorithms pre-
sented in 16]. The implementation of the algorithm is not straight-forward. We have, therefore, only
implemented irDiffMan methods up to ordes with n < 2 in (A.6). The algorithm is as follows (see
also [L6)):

Let Ao(t) = £(t). Assume we are given the coeﬁiciem{é) and ng), i=1,...,s and
j=1,....m. Setcgf) = 0 andBy(to,0) = 0. Evaluate, for every < i < s,

BO (to, C£2>h) = BO (15()7 Cz(i)l h)

+ (e = 2y w4 (to + (2 + (e 052_)1)0§1))h)
j=1
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and

0070 (to + 852)}1) = Ay (to + 052))

CO,k:(tO + CZ(?)}L) = [CO,k:—l (to + ng)h),BO (to, 652)h)], 1<k<p-1.
Then

p—1 k
2 2
A1 (t() + Cg )h) = kgl m(}o’k(to + CE )h),

and

Ba(to, h) = thZ(Q)Al(to +ch).

i=1

The generalized Fer expansion methods that sglve {a4(¢,y), y(0) = yo € M, are implemented
according to the algorithms presented4i,[42]. These methods are based on the collocation idea. Again,
the general implementation procedure is not straight-forward, so we have only implemented a few particular
methods.

Assume that approximatiogs ~ g(tn +cih, y(ty —|—cih)), 1=1,...,s,are known. Based in these values

we approximate the functiaharoundt = t,,, with its Lagrangian interpolating polynomial at the abscissae
valuescy, ..., cs as in A.4). By inserting the interpolating polynomial into the Fer expansion, a method
solving the general problem is obtained. As in the classical case, the collocation methods are necessarily
implicit. However, it is possible to derive relaxed collocation schemes that are explicit.

The two collocation based Fer method<iffMan 2.0 areFRC3 andFC4:

FRC3: (Fer expansion method of ord8rbased on relaxed collocation)

Yi = Yns 51 = g(tTHYl)a
YZ:(I)(QXP (%51),%), fzzf(tn—l—%,YQ)’
Y; = @(exp (h(—§1 + 252)),%)7 &3 = §(tn + h, Yg),

with

Ynt1 = D(exp (h(§&1 + 26+ §&3)) exp (— %2 (61— &, & + 558]), Un)-

FC4. (Fer expansion method of ordérbased on collocation)
Solve the following system

§i2=1[6,8], &3 =[&,8] &3 =[5 &3

Yi=yn

K= 26+ 36 — 518, Ko=—35802+ 515813 — 555523
Yy = ®(exp(hKy) exp (B Ks), yn)

Kimda 0+ b6 Kom oo s B
2
Y3 = ®(exp(hKy) exp (& K3), yn),
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whereg; = £(t, + ¢;h, Y;), i = 1,2, 3. Advance the solution by computing
U =h(36+ 26 + 1&)

Ky =[61,&], Kiz=[,8], Koz =[5,8]

h? 2 1 2
Uy =" (- &K1z — 55K13 — £ Ka3)

Y, = —26 - dLg - TG, K = [K12,Y1),
Vo= -t - ettt Ko= 1K il
V= ke - 56 - b Ky = [z, ¥

U3 = %S(Kl +K2 +K3),

and finally,

Ynt+1 = P(exp(Ur) exp(Uz + Us), yn)-

A.2.6 Crouch—-Grossman methods

The Crouch—Grossman methods were first described]inahd a general theory describing the order
conditions was presented i&7].

Assume that there exists a frame on the manifbldi.e. a set of vector fieldg', . .., E; on M, which at
each poinp € M span the tangent spadeM|,. A differential equation ooM can be written in terms of
this frame as

Yy =F,(y) = Z fily)E; wheref; : M — R are smooth functions (A.8)

Fy(y) = Z fi(p)E;.

Let g be the Lie algebra generated by the frafig. .., E; and letG C Diff (M) be the collection of
flows on M generated by exponentiatigg Furthermore, leh : g x M — M be the flow operator, i.e.
y(t) = A(tF, q) is the solution ofy’ = F'(y) with y(0) = ¢. Since

d

—| AtFyq) = Fy(y(1)|,—, = Fy(a),
t=0

it follows that (A.8) is an equation of the formA(1).

Algorithm A.2.6 (Crouch—Grossman methods)

Let A = (aij), b= (b;) and ¢ = (c;) be the coefficients of an s-stage, gth order Crouch—Grossman method
(see e.g. [37]). The following algorithm integrates (A.8) fromt =t, tot =t, + h:
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Assume thay,, =~ y(t,) is available

fori=1,2,...,s
Yi=1yn
forj=1,2,...,s
Y; = AMhaijFy,,Y;)
end
end

Yn+1 = Yn
fori=1,2,...,s

Yn+1 = A(hbiFmen+l)
end

The flow operaton\ is given as\(v,p) = <I>(exp(v)7p). In Eucliden space this algorithm reduces to the
classical Runge—Kutta algorithm.






Appendix B

Avallable time stepper schemes

The schemes available BiffMan 2.0 are

Classical

A WN P
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Classical

300
301
302
303
304
305
306
307

Runge-Kutta coefficients: explicit methods

E1
'ME2’

'heun?’
‘ode23’

'moan25’
'moan35’
'RK4’
'rk45’
'RKF34’
'RKF43’
'RKF45a’
'RKF54a’
'RKF45b’
'RKF54b’
‘dopri45’
‘dopri54’
'butcher6’
'RKF78’
'RKF87’
‘dopri78’
'dopri87’

Runge-Kutta

'IET

'GL2’ 'IM2
'GL4

'GL6’
'TRAPZ’
'GL4S’
'GL6S’
‘LobattolllA4’

- Explicit Euler, order 1
- Modified Euler, order 2
- Heun’'s 2nd order method
- The method implemented in the MATLAB
ode23 routine
- Moan’s method, order 2(5)
- Moan’s method, order 3(5)
- "The" Runge-Kutta method, order 4
- Runge-Kutta method, order 4(5)
- Fehlberg’s method of order 3(4)
- Fehlberg’'s method of order 4(3)
- Fehlberg’'s method of order 4(5) (a)
- Fehlberg’s method of order 5(4) (a)
- Fehlberg’s method of order 4(5) (b)
- Fehlberg’s method of order 5(4) (b)
- Dormand and Prince’'s method of order 4(5)
- Dormand and Prince’'s method of order 5(4)
- Butcher’s method, order 6
- Fehlberg’s method of order 7(8)
- Fehlberg’'s method of order 8(7)
- Dormand and Prince’s method of order 7(8)
- Dormand and Prince’'s method of order 8(7)

coefficients: implicit methods

- Implicit Euler, order 1
- Gauss-Legendre/implicit midpoint, order 2
- Gauss-Legendre, order 4
- Gauss-Legendre, order 6
- Trapozoidal rule of 2nd order.
- Time symmetric GL method of order 4
- Time symmetric GL method of order 6
- Lobatto IlIA method of order 4.
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308 ‘LobattolllA6’ - Lobatto IlIA method of order 6.

Crouch-Grossman methods

500 'CG23 - Crouch-Grossman method of order 2(3)
501 'CG3a’ - Crouch-Grossman method of order 3
502 'CG43 - Crouch-Grossman method of order 4(3)
503 'CG34’ - Crouch-Grossman method of order 3(4)
504 'CG4a’ - Crouch-Grossman method of order 4
505 'CGha’ - Crouch-Grossman method of order 5.
From: jackiewicz1999cor.
506 'CG4test’ - Symmetric Crouch-Grossman method of
order 4

Magnus type methods

600 'M4a’ - Magnus method of order 4

601 'M6a’ - Magnus method of order 6

602 'MRC3' - Magnus method of order 3 based on
relaxed collocation

603 'MRC4’ - Magnus method of order 4 based on

relaxed collocation
Fer type methods
700 fer2a’ - Fer method of order 2

701 feraG2’ - Fer method of order 4 based on
Gaussian quadrature

702 'fer5sGR’ - Fer method of order 5 based on
Gauss-Radau quadrature

703 'fer6G3’ - Fer method of order 6 based on
Gaussian quadrature

704 'fer6GLR’ - Fer method of order 6 based on
Gaussian quadrature

705 'FRC3 - Fer method of order 3 based on
relaxed collocation

706 'FRC4’ - Fer method of order 4 based on

relaxed collocation

Special kind of coefficients for particular methods

1000 ‘qqda’ - Quadrature method for quadratic Lie
groups. Order 4.

1001 ‘gqg6a’ - Quadrature method for quadratic Lie
groups. Order 6.

1002 'SET1’ - Partitioned Munthe-Kaas method. Based
on the Euler coefficients. Order 1.

1003 'VER2’ - Partitioned Munthe-Kaas

method. Based on the Euler
coefficients. Order 2.

1004 'Lobattolll4’ - Partitioned Munthe-Kaas method. Based
on the Lobatto Il coefficients. Order 4.

You can refer to either the number of the method or to its abbreviated name. The following fields are
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returned:

.RKname - name of the method

.RKa - matrix A from the method’s Butcher tableau

.RKb - vector b from the method’s Butcher tableau

.RKc - vector ¢ from the method’'s Butcher tableau or the
abscissae values in case of Magnus methods

.RKns - number of stages in the method

.RKord - order of the method

.RKtype - type of the method (‘explicit’, 'implicit’, 'SDIRK")

.RKbhat - vector bhat from the method’'s Butcher tableau
(used in error estimation)

You may add new schemes in the file:
DiffMan/flow/timestepper/@timestepper/setmethod.m






Appendix C

Summary of virtual superclass
functions

C.1 Functions in @liealgebra

basis(a,i)

Returns the i'th basis vector in the Lie algebra.
dcay(a,b,ord)

The differential of the Cayley transform.
dcaycay(x,z,ord)

The differential of the Cayley coordinates of the second kind.
dcaycayinv(x,z,ord)

Inverse of the differential of Cayley coord. of the second kind.
dcayinv(a,b,ord)

The inverse of the differential of the Cayley transform.
dexp(a,b,ord)

The ord’th order approximation of the differential of exp.
dexpexp(x,z,ord)

The differential of canonical coordinates of the second kind.
dexpexpinv(x,z,ord)

Inverse of differential of canonical coord. of the second kind.
dexpinv(a,b,ord)

The ord’th order approximation of the inverse differential of exp.
dexpinvtest(a,b,ord)

The ord’th order approximation of the inverse differential of exp.
dimension(a)

Returns the dimension of the Lie algebra vectorspace.
display(obj)

Display a LIEALGEBRA object, or objects from a daugther class.
dist(a,b)

Distance metric function on the Lie algebra.
dpade22(x,z,ord)

Differential of the (2,2) Pade’ approximation of exponential map.
dpade22inv(x,z,ord)

Inverse differential of the (2,2) Pade’ approximation.
eig(a)

Overloaded version of the MATLAB built-in eigenvalue function.
getdata(g)

Returns the data that represents the element g in the Lie algebra.
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getmatrix(g)

Returns the matrix representation of g in the Lie algebra.
getshape(g)

Returns shape information if the Lie algebra is dynamically subtyped.
getvector(g)

Returns a column vector representing g in the Lie algebra.
hasmatrix(g)

Checks if the Lie algebra has a matrix representation.
hasshape(qg)

Checks if the Lie algebra has dynamic shape information.
horzcat(a,b)

Commutator in Lie algebra.
isabelian(a)

Checks whether or not a Lie algebra is Abelian.
isdata(a,m)

Checks if m could be data for an element in Lie algebra.
ismatrix(a,m)

Checks if m is a possible matrix representation in the Lie algebra.
liealgebra(varargin)

Constructor for virtual superclass of all liealgebras.
liegroup(a)

Picks out the liegroup corresponding to the liealgebra.
minus(u,v)

Vector subtraction in Lie algebra.
mtimes(u,v)

Scalar multiplication in Lie algebra.
norm(a,alt)

Overloaded version of the MATLAB built-in norm function.
plus(u,v)

Vector addition in Lie algebra.
project(a,m)

Returns a matrix v which is acceptable by the Lie algebra.
random(lalg)

Creates a random object in the Lie algebra.
sameshape(a,b)

Chechs if a and b belong to the same Lie algebra.
setdata(a,m)

Sets m to be the data of a.
setmatrix(a,m)

Sets m to be the matrix data of a.
setshape(a,sh)

Sets shape information in g.
setvector(a,v)

Sets v to be the vector data of a.
uminus(u)

Unary minus in Lie algebra.
zero(lalg)

Create the zero object in a Lie algebra.
zeros(obj,sz)

Creating an array of objects initalized to zero(obj).
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C.2 Functions in @liegroup

cay(lgr,a)

Computes the Cayley transform from Lie algebra to Lie group.

caycay(lgr,a)

Computes Cayley coordinates of the second kind.

display(obj)

Display a LIEGROUP object, or objects from a daugther class.

dist(a,b)

Distance metric function on the Lie group.

eig(a)

Overloaded version of the MATLAB built-in eigenvalue function.

exp(lgr,a)

Computes the exponential from the Lie algebra to the Lie group.

expexp(lgr,a)

Computes canonical coordinates of the second kind.

getdata(g)
Returns
getmatrix(g)
Returns
getshape(g)
Returns
hasmatrix(g)
Returns
hasshape(qg)
Checks
identity(a)
Returns
inv(a)

data that represents the element g in the Lie group.
matrix data that represents the element in the Lie group.
shape information if the Lie group is dynamically subtyped.
if the Lie group has a matrix representation.

if the Lie group has dynamic shape information.

the identity object in the Lie group of a.

The invers of an element in the Lie group.

invcay(a)

Computes the inverse Cayley coordinates of the first kind.

invcaycay(a)

Computes the inverse Cayley coordinates of the second kind.

invexpexp(a)

Computes inverse Canonical coordinates of the second kind.

invpade22(a)

The inverse (2,2) diagonal Pade’ coordinates of first kind.

isabelian(a)
Returns
isdata(a,m)
Checks
ismatrix(a,m)
Checks
liealgebra(a)

if the Lie group is Abelian or not.
if m is data representation for the Lie group.

if m is a matrix representation for the Lie group.

Picks out the liealgebra corresponding to the lie group.
liegroup(varargin)
Constructor for LIEGROUP objects.

log(a)

Computes the logarithm from the Lie group to the Lie algebra.

mtimes(a,b)

The binary operation of two elements in the Lie group.

norm(a,alt)

Overloaded version of the MATLAB built-in norm function.

pade22(lgr,a)

Computes the (2,2) Pade’ approximation of the exponential.



64

Summary of virtual superclass functions

project(a,m)

Returns a matrix v acceptable by the Lie group.
random(a)

Creates a random object in the Lie group.
sameshape(a,b)

Chechs if a and b belong to the same Lie group.

setdata(a,m)

Sets m to be the data repr. of a.
setmatrix(a,m)

Sets m to be the matrix repr. of a.
setshape(a,sh)

Sets shape information in g.
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C.3 Functions in @hmanifold

display(obj)

Display a HMANIFOLD object, or objects from daugther classes.
dist(a,b)

Distance metric function on the homogeneous manifold.
getdata(g)

Returns data representation of element in homogeneous space.
getshape(g)

Returns shape information of the homogeneous space.
hasshape(g)

Checks if the homogeneous space has dynamic shape information.
hmanifold(varargin)

Constructor for HMANIFOLD-objects.
invlambda(p,q)

Returns an object v in the Lie algebra such that lambda(v,p) = q.
isdata(a,m)

Checks if m is a data representation for the homogeneous space.
lambda(a,m,coord)

The action of the Lie algebra on the manifold.
liealgebra(a)

Picks out the liealgebra of the homogeneous space.
origin(a)

Returns the origin in the homogeneous space.
project(a,m)

Projects to a matrix acceptable in the homogeneous space.
random(a)

Creates a random object in the homogeneous space.
sameshape(a,b)

Checks if input has the same shape information.
setdata(a,m)

Sets the data representation of a homogenous space object.
setshape(a,sh)

Sets the shape information in a homogeneous space object.
stabilizer(a)

Returns a matrix spanning the stabilizer subalgebra.
zeros(obj,sz)

Creates an array of objects initalized to the origin object.
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C.4 Functions in @vectorfield

display(obj)

Display a VECTORFIELD object.
getdomain(f)

Returns object in domain over which the vector field is defined.
geteqntype(f)

Returns the type of the equation.
getfm2g(f)

Returns the map describing the vector field.
setdomain(vf,dom)

Sets dom to be the domain of the vector field vf.
seteqntype(vf,type)

Sets the equation-type-field of vf equal to 'type’.
setfm2g(vf,map)

Sets the map describing the differential equation.
vectorfield(varargin)

Constructor for the vector field class.
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C.5 Functions in @flow

display(obj)

Display a FLOW object.
flow(varargin)

Constructor for the flow class.
getdefaults(f)

Returns the default values of the flow object.
gettimestepper(f)

Returns the timestepper used by the flow.
getvectorfield(f)

Returns the vector field defining the flow.
newstepsize(fl,varargin)

Computes a new step size to be used by time stepper objects.
setdefaults(f,varargin)

Sets the defaults of the flow f to ts.
settimestepper(f,ts)

Sets the timestepper of the flow f to ts.
setvectorfield(f,vf)

Sets the vector field of the flow f to vf.
subsref(f,s)

Overloads the parenthesis for flow objects.
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C.6 Functions in @timestepper

display(obj)

Display a TIMESTEPPER object.
getcoordinate(ts)

Returns the coordinates used by the timestepper object.
getmethod(ts)

Returns the name of the integration scheme used.
setcoordinate(ts,coord)

Sets the coordinates to be used by the timestepper object.
setmethod(ts,method)

Assignes the numerical scheme to be used by the timestepper object.
subsref(ts,s)

This function overloads the parenthesis of a timestepper object.
timestepper(varargin)

Constructor TIMESTEPPER virtual superclass.
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