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Preface

DiffMan is a MATLAB toolbox for solving Ordinary Differential Equations on manifolds, based on the
concept of ’Coordinate Free Numerics’. This is, loosely speaking, the idea that (whenever possible) it
is important to formulate numerical algorithms generically, independent of special representations and
coordinate systems.DiffMan inherits its basic design philosophy from the C++ package SOPHUS. The
SOPHUS project was initiated by Magne Haveraaen and Hans Munthe-Kaas, University of Bergen, and
aims at solving tensor field equations on sequential and parallel computers.

Some of the mathematical background ofDiffMan is described in AppendixA. This chapter, however, is
included for the sake of completeness. The user can read the rest of the manual and useDiffMan without
having studied this chapter.

The writing of this toolbox was initiated as a project within the SYNODE project, and a number of papers
describing the numerical methods inDiffMan is available on the SYNODE home page at URLhttp:
//www.math.ntnu.no/num/synode/ .

We will thank Antonella Zanna for reading an earlier version of this User’s Guide and always giving helpful
suggestions, and Martine T. Monsen for extensive proof reading.

Kenth Engø Arne Marthinsen Hans Z. Munthe-Kaas

http://www.math.ntnu.no/num/synode/
http://www.math.ntnu.no/num/synode/
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Chapter 1

Introduction

DiffMan is an object oriented MATLAB toolbox designed to solve differential equations evolving on man-
ifolds. DiffMan 2.0 addresses primarily the issue of solving ordinary differential equations. The solution
techniques implemented fall into the category of geometric integrators – a very active area of research
during the last few years. The essence of geometric integration is to construct numerical methods that
respect underlying constraints, for instance the configuration space of a mechanical problem, and to ren-
der correctly geometric structures and invariants important to the underlying continous problem. Hence,
theDiffMan toolbox collects some of the most recent and sophisticated methods for solving ODEs in the
sense of geometric integration.DiffMan is an ongoing project and an overall goal for future work is to also
include geometric integration techniques for partial differential equations evolving on infinite dimensional
manifolds.

To understand the workings ofDiffMan, a geometric understanding of ordinary differential equations evolv-
ing on a manifold is of great importance. Consider the ordinary differential equation

y′ = F (t, y), y(0) = y0 (1.1)

evolving in Euclidean space. That is;y ∈ Rn andF (t, y) is a vector field assigning to each point inRn

and timet ∈ R, a vectorF . The geometric interpretation of finding a solution to equation (1.1) is to find a
curvey(t) starting at the pointy0 in Euclidean space, having as its tangent at every succeeding point and
time the vector specified by the vector fieldF . Hence, we want to follow a curve in space that starts at the
inital pointy0, evolving in the direction prescribed by the vector field.

This same description can be used for an ordinary differential equation evolving on a manifold. The only
difference is that the manifold is in general a non-linear space, and not a linear vector space. The simplest
example of a manifold is the sphere. A vector field over the manifold will at each point attach a tangent
vector, just like in the Euclidean case. A solution of this ODE is a curve through the initial pointy0, that
evolves on the manifold in the direction given by the tangent vector.

There is a well established theory for solving (1.1) on a Euclidean space, a fact to be extensively exploited
in one of the methods discussed in AppendixA. A well-known family of methods are the Runge–Kutta
methods [14]. There are also splitting methods and composition methods, see for instance [26, 27], but in
DiffMan we will among the classical methods mainly be concerned with the Runge-Kutta family.
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Chapter 2

The DiffMan environment

In this chapter we will go through basic concepts in object orientation and explain how these things are
done in MATLAB. We will outline the general structure ofDiffMan and discuss the four different types of
objects used inDiffMan. The last section, probably the most important section in the whole user’s guide,
discusses how to go about getting the necessary help in DiffMan.

2.1 Object orientation and mathematics

A class is simply a collection of ’elements’ with equal properties. In mathematical terms one would say
that a class is a set. The ’elements’ of a class is usually called objects, and the common properties of the
objects specify the class. Mathematically, the properties of a class can be stated as relations that the object
must satisfy in order to be a member of the class. Another very important and interesting aspect of object
orientation is that it allows for information hiding. An object typically consists of a public and a private
part. The public part can be accessed from the outside of the class, whereas the private part cannot. This
enables us to hide implementation specific issues for the particular class in the private part, and to easily
make changes to it, without altering the public interface of the class.

This then, naturally brings up the issue of specifying a class. A class specification can be divided up into a
’what’ part and a ’how’ part. ’what’ describes the interaction of the class with the surroundings; what is the
public interface of the class, ’what’ is the class supposed to do? ’how’ the class is implemented is an issue
related to the private section of the class. The surroundings do not need to know about implementational
issues as long as the interaction of the class is as specified by the public interface.

This distinction between ’what’s and ’how’s of objects (elements) is ubiquitous in pure mathematics. This
is also the reason why abstract mathematical concepts are so well suited for implementation in object
oriented programming languages, see [15, 31]. Coordinate free constructions in mathematics, e.g. tensors,
tries to capture what the operation of an object is regardless of the coordinate system. The tensor class is
then specified by properties independent of the coordinate systems, and the different choices of coordinates
used in an actual implementation on a computer is deferred to the private part of the class. Hence, a
specification of a class emphasizes and extracts the important features of a class, and this conforms very
well with algebraic techniques so rampant in pure mathematics.

Thinking in these terms gives rise to the rather contradictory term ’coordinate free numerics’ [31, 32]. What
is a coordinate free algorithm? The whole idea is to device algorithms specified by algebraic operations
not dependent on the particular representation of the object. All the methods inDiffMan are defined on
groups and they are all very good examples of coordinate free algorithms. The group elements can have
very different representations, but the algorithms are all expressed through algebraically defined operations
such as group multiplication and Lie-group actions.
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2.2 Object orientation in MATLAB and DiffMan

In MATLAB a class is defined by creating a directory@myclass , wheremyclass is the name of the
class. The prefix@ simply tells MATLAB that this is a class directory. All the public class functions
are put in this directory, while the private class functions are put in a directory@myclass/private .
Where the file is located within the class directory tree distinguishes the m-file from being a public or

private function.

Every class must have its own unique constructor. The constructor is implemented in an m-file called
myclass.m , the same name as the class itself. In MATLAB, a class object is represented as a MATLAB
struct, where a struct is the same as a struct in C or a record in PASCAL. This struct can have an arbitrary
number of fields. To turn a MATLAB struct into an object of@myclass the functionclass must be
called within the constructor m-file:

obj.field1 = n1;
obj.field2 = n2;
obj = class(obj,’myclass’);

The user can not access the structure fields of the object directly in MATLAB. Attempting to do this will
result in an error. Hence, the fields of the object struct can be viewed as part of the data representation of
the object, and is private to the class. For the user to interact with the information contained in the fields of
the object struct, the class must have implemented public m-files specifically doing this.

Public functions making up the interface of a class are naturally divided up into three categories:construc-
tors, observers, andgenerators. In MATLAB there is only one constructor, but in other object oriented
programming languages like C++ it is possible to have more than one constructor. The observers of a class
are the public functions that extract information from the class objects without altering the object itself.
The generators of a class are those public functions which change properties of the class objects, or create
new objects of the same or other classes. InDiffMan you will typically find this partition of the public
functions when reading a class specification.

In DiffMan the object orientation is applied in several different ways. The domain points (elements of a
manifold) are treated as members of a class. Depending on the specific properties of the domain, there are
severaltypesof domains implemented inDiffMan. Each of the different types of domains are collections
of algebraically similar domain classes; i.e. it is a category in the strict mathematical sense. The integration
methods used to solve the ODEs are called time steppers, and the different time stepper methods are treated
as different classes. Flows and vector fields are also implemented as two classes.

In DiffMan 2.0 there are three categories of domains implemented: Homogeneous spaces, Lie algebras, and
Lie groups. Each domain category is further divided up into domain classes of that particular type. Hence,
each of the classes within a particular domain type has similar characteristics, but there are differences that
partitions them into individual classes. These similar characteristics of the classes of a specific domain type
are what defines the domain category. Trying to define and specify the domain category is done through
the introduction of a virtual superclass in each domain category. The virtual superclass defines and takes
care of operations that are common to all the classes in the domain category. This is obtained through
the concept ofinheritance in object orientation. The virtual superclass is the parent class of all the other
classes in the domain category, and all the child classes inherit the parents’ functions. That means that one
can apply the public functions of the virtual superclass on an object of a child class. If the child class needs
specific implemented versions of any of the public functions of the parent class, this is achieved through
overloading. Supply a public function to the child class with a matching name, and MATLAB will use this
version of the public function instead of the one supplied by the parent class.
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2.3 Structure of DiffMan

The general structure ofDiffMan is reflected in the way the directories are organized. The structure is very
modular and it is therefore very easy to add new classes of your own. In theDiffMan root directory you
will find 3 m-files and4 directories. The directories are:

auxiliary/
domain/
field/
flow/

Theauxiliary directory includes4 subdirectories which contain theDiffMan documentation, command
line examples, demos, and utility functions. As the name of this directory reflects its contents are not vital
to the workings ofDiffMan.

Thedomain directory, however, contains the domain categories, which are very important building blocks
of DiffMan. Think of a domain as a differentiable manifold. Creating a domain category is done by creating
a subdirectory in thedomain directory. In DiffMan 2.0 there are3 domain categories implemented:
homogeneous spaces, Lie algebras, and Lie groups. The classes of a domain category are put in this
subdirectory along with a virtual superclass specifying the domain category.

Thefield directory contains field classes defined over domain classes. Think of this directory as the field
category. SinceDiffMan 2.0 only solves ordinary differential equations, the only field class implemented
so far is@vectorfield . The field category is subject to change in future releases ofDiffMan, but
@vectorfield will stay the same. In order to solve some PDEs it is interesting to be able to define
tensor fields over manifolds, hence a tensor field class is very likely to be added in a future release of
DiffMan.

Theflow directory collects classes pertinent to the continuous flow. The numerical methods are treated as
time steppers, and they are all placed in the subdirectorytimesteppers found in theflow directory.
The flow class is a virtual superclass with no subclasses since all the numerics are placed within the time
steppers. The reason for this distinction between flow and time stepper is an attempt to isolate features
common to all the numerical methods (the time steppers), e.g. variable time stepping, and place these
features in the flow class.

2.3.1 Functor classes

In DiffMan the different domain types are viewed as categories. A function on a category is called a
functor. Examples of internal functors are the direct product, semi-direct product, and tangent map. The
direct product functor will taken domain classes as input, and create a new domain object; the direct
product of the domains. The semi-direct functor works in an analogous way. The tangent functor takes
a domain manifold and turns it into the tangent bundle of that manifold. The tangent bundle is also a
manifold; hence, it is a domain.

In DiffMan we call classes that automatically generate new domains from other onesfunctor classes.
The choice of name should be clear from the above discussion. InDiffMan 2.0 you will find one of the
above functorial constructors implemented; the direct product of domains. The functor classes in question
are@ladirprod and@lgdirprod . The next release ofDiffMan will include the semi-direct product
functor and the tangent functor.



6 TheDiffMan environment

2.4 Objects inDiffMan

In DiffMan you will encounter4 different types of objects:domain, field, time stepper, andflow objects.
Each object is defined in such a way as to capture the mathematical essentials of a manifold, the field
defining the differential equation, the numerical time stepper algorithm, and the flow operator, respectively.
We will discuss each one of these objects in the following.

2.4.1 The domain object

Every domain object (e.g. objects of the type Lie algebra, Lie group, or homogeneous space) is built up as
a MATLAB struct with two fields:shape anddata . Generically, every domain object is represented as:

domainobject =
shape:

data:

A domain object specifies a specific point in a specific manifold. It is often useful to create a single class
for representing a family of manifolds, e.g. all Lie algebrasgl(n) are represented by the same class@lagl .
The shape specifies the particular manifold in the family (in this casen), while the data part represents a
particular point in this manifold (in this casen by n matrices. The shape is in computer science called a
dynamic subtypingof the class. If an object has an empty data field, it is taken to only represent the space
(the subtype).

A second example is the dynamic subtyping of the homogeneous space@hmlie . This is the homogeneous
space obtained by any Lie group acting on itself by left multiplication. Considering all the different Lie
groups and Lie algebras, the shape is chosen to be an object of the particular group or algebra. Since all Lie
groups and Lie algebras themselves are dynamically subtyped, the shape of@hmlie must be a Lie group
or Lie algebra object with a pre-set shape. This is because we need to know a ’size’ measure on the domain
objects that are acting on themselves.

The user cannot access the contents of theshape and data fields of a domain object directly, since
the fields belong to the private part of the domain class. In order to do this the user must use the public
functionsgetshape andgetdata to return the contents of the fields, andsetshape andsetdata to
update the values of the private fields.

2.4.2 The field object

A field is defined over a manifold. Some examples of fields are vector fields, tensor fields, and divergence
free vector fields. A vector field is a mathematical construction which assigns a vector to every element of
the manifold. Likewise; for a tensor field, a tensor is assigned to each element of the manifold. From this
it is natural to conclude, since the output from different fields is not similar, that a generic field object only
contains information about the manifold over which the field is defined:

fieldobject =
domain:

To define an ordinary differential equation we only need the notion of a vector field. Tensor fields are
mainly used in partial differential equations.DiffMan 2.0 is only devoted to the solution of ODEs evolving
on manifolds. Hence, the only field class implemented is@vectorfield . The generic representation of
a vector field object is:

vectorfieldobject =
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domain:
eqntype:

fm2g:

Compared to the above field object, two more struct fields have been added in the vector field object. In
DiffMan 2.0 every vector field over a manifold is represented by a functionξ : R×M→ g. This function
is calledfm2g , (function fromM to g). If the function fm2g only depends on time, the ODE is said
to be linear or of Lie type, and it is said to be general if the functionfm2g depends on both time and
configuration. Theeqntype provides this information.

2.4.3 The time stepper object

This is where all the numerics are hidden. A time stepper is the numerical algorithm used in advancing
the solution of the differential equation one step along the integral curve of the flow. There are different
approaches in constructing these time steppers and a list of the available time steppers inDiffMan 2.0 is
found in AppendixB.

Common for all the time steppers is that they work locally on the domain manifold, and because of this
they need to know local coordinates on the Lie group manifold. Another common feature is that the time
steppers naturally divide up into classes of methods. The steppers belonging to one particular class are
typically distinguished by the order of approximation the method yields. Hence, it is important to also be
able to choose a method of the preferred order.

The generic representation of a time stepper object takes the form:

timestepperobject =
coordinate:

method:

2.4.4 The flow object

Mathematically, the flow is an operator defined by the vector field. Given the ordinary differential equation

y′ = F (y), y(0) = p ∈M,

the flow operator of this differential equation is the operatorΨF,t :M→M satisfying

d
dt

ΨF,t(p) = F (ΨF,t(p)).

The classical solution of a differential equation is an integral curve of the vector field generating the flow
operator. This integral curve is found by evaluating the flow operator in the initial point on the manifold.

The generic representation of a flow object is:

flowobject =
vectorfield:
timestepper:

defaults:

The flow object must, of course, know the vector field defining it. Next, it needs to know a time stepper
object. The choice of time stepper specifies the numerical algorithm to be used in the solution of the
differential equation. This is really all the information that the flow object needs to know. However,
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for convenience, constants used in variable time stepping and nonlinear equation solving are collected in
the flow object in the third fielddefaults . Unless the user changes any of these constants with the
setdefaults function, the default values set by the flow constructor will be used.

2.5 How to get help inDiffMan

In MATLAB there are three ways to get online help. The first two provide simple help information on
MATLAB functions, while the third is a huge collection of documentation stored in hypertext format which
you access with a Web browser.

HELP - Function help, display help text at command line
HELPWIN - Function help, separate window for navigation
HELPDESK - Comprehensive hypertext documentation and troubleshooting

In DiffMan you will also have the possibility of using a window based help system calleddmhelp .

DMHELP - An extended and improved version of HELPWIN

This help system is based on thehelpwin system in MATLAB, but several new features have been added:
Access information about all the different classes and class functions, view the source code of m-files, view
this User’s guide online in pdf, go to theDiffMan home page on WWW, etc. Please note thatdmhelp can
only be invoked once you have started theDiffMan toolbox, see Section3.1.

Figure 2.1: TheDiffMan Help Window.

Once you have started upDiffMan you issue the command

>> dmhelp

in order to just launch theDiffMan Help Window, or type the command

>> dmhelp topic

to launch theDiffMan Help Window with the help information abouttopic .

Once theDiffMan Help Window system has been launched, see Figure2.1, you can type any help topic in
the upper left box of the Help Window and press ’Enter’. If the help topic has help information this will be
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displayed. If a line in the main text of the Help Window starts with a help topic followed by ’ - ’, you can
also click on it directly in order to access the help information.

Consider the following examples. If you see lines in the main text Help Window looking like these, you
just click on them directly in order to go to that help topic:

plot - Help on any matlab functions.
liealgebra - Help on the _directory_ ’liealgebra’.
@liealgebra - Info on the _class_ ’liealgebra’.
@lagl - Info on the Lie algebra gl(n).
@lafree/order - Function ’order.m’ in class ’lafree’.

The other option is to type the name of the help topic in the box in the upper left corner, and access the
same information this way.

The first time you launch theDiffMan Help Window it might take some time before it appears. If you in a
MATLAB session want to close the Help Window after you have finished using it, we urge you to use the
’Close’ button in the window. The reason for this is that in case you want to launch the Help Window again
in the same session, MATLAB will use the same window. Hitting the ’Close’ button causes MATLAB to
turn the visibility of the window off, and MATLAB does not have to recreate the window again when you
re-enter the commanddmhelp .

If none of the above commands seems to give you the desired explanations, you can also try the MATLAB
commands:demo, lookfor , which , andgeneral .





Chapter 3

How to useDiffMan

This chapter will teach you the basics of solving differential equations inDiffMan. The first section shows
you how to initializeDiffMan and get the toolbox up and running. The next section describes a5-step
procedure to be followed when solving differential equation inDiffMan, followed by a section taking you
through a very detailed example demonstrating the5-step procedure in practice. We end this chapter by
discussing ODEs represented as infinitesimal generators.

3.1 How to get started

The very first thing to do is to initialize theDiffMan toolbox. Make sure that you are located in theDiffMan
directory, or that this directory is included in the MATLAB path. You can easily include the following
command in yourstartup.m file, or issue it at the MATLAB prompt:

>> addpath(’/local/path/on/your/machine/DiffMan’);

Initializing DiffMan is done simply by typing the command:

>> dminit

The result of this command is that all necessary paths are set and the following is displayed in MATLAB:

DiffMan Version 2.0 is initialized - 2000.09.15

Please report any problems and/or bugs to:
diffman@math.ntnu.no

For more information and how to get started, try:
>> dmtutorial
>> dmhelp
>> demo

>>

TheDiffMan facility dmtutorial will launch a window where you can choose to run different kinds of
tutorials. One of these tutorials will guide you through ’How to solve ODEs inDiffMan’. This is the5-step
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procedure presented in the next section. The other tutorials will guide you through other important aspects
of theDiffMan toolbox essential to the user. For further details, see Section7.1.

dmhelp is a substantially improved version of thehelpwin facility in MATLAB. dmhelp will launch
a DiffMan help window where you can get help on every function and class inDiffMan, and also every
other function in MATLAB. Hence, when working withDiffMan we urge you to usedmhelp instead of
the MATLAB functionshelpwin andhelp . For more information about the workings ofdmhelp , see
Section2.5.

The MATLAB demo utility will include DiffMan among its toolboxes. Running theDiffMan demos is
another convenient way of launching theDiffMan tutorials, and running all theDiffMan command line
examples.

3.2 How to solve differential equations inDiffMan – A 5-step proce-
dure

OnceDiffMan is initialized you can start solving differential equations.

In DiffMan we are exclusively working with objects, and these objects are members of different classes.
To create an object of a particular class, invoke the constructor of that class. The constructor always has
the same name as the class.

The5-step procedure for solving differential equations inDiffMan is the following:

1) Construct an initial domain object y in a homogeneous space. In order to solve an initial value
problem,DiffMan needs to know an initial condition. The initial domain object serves this purpose.

2) Construct a vector field object vf over the domain object y . DiffMan finds numerically the
integral curve of this vector field through the initial domain object. A vector field object consists of
three parts:domain , eqntype , andfm2g . Set these properties of the vector field object by the
functionssetdomain , seteqntype , andsetfm2g . See Section5.1for more information.

3) Construct a time stepper objectts . The time stepper class determines the numerical method used
to advance the numerical solution along the integral line. A time stepper object consists of two
parts:coordinate andmethod . Set these properties of the time stepper object by the functions
setcoordinate andsetmethod . See Chapter6 for more information.

4) Construct a flow object f . The flow object is defined by the vector field object. Since we are doing
numerical computations the flow object also needs to know how to step forward, hence the flow
objectf also needs to know the time stepper object. To set the two properties of the flow object, use
the functionssetvectorfield andsettimestepper .

5) Solve the ODE. Solving the ODE defined by the flow object inDiffMan is simply done by evaluating
the flow object at the initial domain object, start time, end time, and step size:

>> output = f(y,tstart,tfinal,h);

Variable step size is indicated by using negative values forh. The initial step is then of length|h|. output
is a MATLAB structure that consists of three fields:output.y is a vector of domain objects,output.t
is a vector of time points, andoutput.rej is a vector indicating rejection of a time step in variable time
stepping.

Detailed mathematical information and definitions of flows and vector fields are found in AppendixA.

The5-step procedure will be demonstrated on an example in the next section.
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3.3 A detailed example

Consider solving the following differential equation on the sphereS2:

dy
dt

=

 0 t −0.4 cos(t)
−t 0 0.1t

0.4 cos(t) −0.1t 0

 y(t), y(0) =

0
0
1

 , (3.1)

wherey ∈ R3 is a vector of unit length, and the matrix on the right hand side is a map fromR into so(3).

The homogeneous manifold in question is@hmnsphere which consists of the sphere manifoldS2, the
Lie algebra of O(3) which isso(3), and the actionΦ : (v,m)→ exp(v) ·m of so(3) onS2. The elements
of the manifoldS2 are vectors of unit length.

Construct an initial domain object y in @hmnsphereStep #1:

The initial domain object is created by calling the constructor of@hmnsphere. This constructor can take
an integer or alaso object as an argument and thereby specifying the shape of the manifold object.

>> y = hmnsphere(3)
y =
Class: hmnsphere
Shape-object information:

Class: laso
Shape: 3

The shape of an object in@hmnsphere consists of an object in the Lie algebralaso . The integer supplied
to the constructor sets the shape of this Lie algebra object which comprises the shape of the@hmnsphere
object. If an argument to the constructor is not supplied, the shape can be set later by using thesetshape
function.

As mentioned in the beginning of this Section, the data representation of an object in@hmnsphere is a
vector of unit length. If the initial condition for the ODE on the sphere is the North pole, the data of the
initial object must be set equal to the North pole vector.

>> setdata(y,[0 0 1]’);
>> y
y =
Class: hmnsphere
Shape-object information:

Class: laso
Shape: 3

Data:
0
0
1

The first step is now completed.
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Construct a vector field objectvf over the domain objectyStep #2:

A vector field is defined over a domain. The constructor of@vectorfield is called with the domain
object as input:

>> vf = vectorfield(y)
vf =
Class: vectorfield
Domain: hmnsphere
Shape-object information:

Class: laso
Shape: 3

Eqn type: General

Already,vf contains a lot of information. Since the domain object was supplied as an argument for the
vector field constructor, the domain information is already set. The shape of the@hmnsphere object
is a laso object, and the information about this Lie algebra object is displayed asShape-object
information . Further, the equation type of the generator map for the vector field is set to be ’General’.
This is the default value. However, equation (3.1) is of linear type, so the type should be changed to
’Linear’ in order to speed up the calculations.

>> seteqntype(vf,’Linear’);

The generator map of equation (3.1) is the matrix on the right hand side of the equation. The m-file
vfex5.m contains the MATLAB necessary code to implement the generator map.

>> setfm2g(vf,’vfex5’);

What does this m-filevfex5.m look like? To view the file, you can typetype vfex5.m at the MAT-
LAB prompt, or usedmhelp and push the buttonView src . Either way the output is:

function [la] = vfex5(t,y)
% VFEX5 - Generator map from RxM to liealgebra. Linear type.

la = liealgebra(y);
dat = [0 t -0.4*cos(t); -t 0 .1*t; .4*cos(t) -.1*t 0];
setdata(la,dat);
return;

All the generator map function files that you write on your own must have this generic structure: The
file must support two arguments; the first is a scalar - time, and the second is a domain object from the
homogeneous space. Output must be a Lie algebra object. To find the correct Lie algebra of the domain
object, callliealgebra(y) , which will return an object in the correct Lie algebra with preset shape
information. Edit the datadat , and callsetdata(la,dat) in order to set the data representation of
the Lie algebra object.

Now the vector field objectvf displays as:

>> vf
vf =
Class: vectorfield
Domain: hmnsphere
Shape-object information:
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Class: laso
Shape: 3

Map fm2g: vfex5
Eqn type: Linear

Construct a time stepper objecttsStep #3:

The time stepper class decides which numerical method to use for advancing along the integral curve of
the vector field. Calling any of the time stepper constructors will return a time stepper object withdefault
coordinate and method. If the user prefers other coordinates or another method, these can be changed
through the functionssetcoordinate and setmethod . To get an overview of the different time
steppers typedmhelp timestepper in MATLAB. In our example we want to use an RKMK method:

>> ts = tsrkmk
ts =
Class: tsrkmk
Coord.: exp
Method: RK4

In case of@tsrkmk the default coordinate isexp and the default method isRK4. For a discussion of
possible choices of coordinates, see Section6.1. For each time stepper class there are many schemes to
choose from. None of these schemes can be used for all the different time stepper classes andDiffMan will
issue an error message if a wrong selection is made.

In our example we are not satisfied with only the standard4th-orderRK4 method; we want the more
accurate answer supplied by the6th-order Butcher method:

>> setmethod(ts,’butcher6’)
>> ts
ts =
Class: tsrkmk
Coord.: exp
Method: butcher6

To get information about the different methods while runningDiffMan, typedmhelp setmethod .

Construct a flow object fStep #4:

The flow object is constructed from the vector field objectvf and the time stepper objectts already
created. Merely calling the@flow constructor will create an object with adefault time stepper. The
default time stepper preset in the flow objectf is only a matter of convenience, and must not be confused
with the time stepper object created in Step #3.

>> f = flow
f =
Class: flow
Timestepper class: tsrkmk

Coordinates: exp
Method: RK4

In our example we have created another time stepper objectts that we want to use instead of the default
time stepper object supplied by the@flow constructor. To change the time stepper of the flow objectf to
ts , call the functionsettimestepper :

>> settimestepper(f,ts)
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A flow is defined as the flow of some vector field. Hence, our flow objectf must have information about
this vector field.

>> setvectorfield(f,vf)
>> f
f =
Class: flow
Vector field information:

Domain: hmnsphere
Equation type: Linear
Map defining DE: vfex5

Timestepper class: tsrkmk
Coordinates: exp
Method: butcher6

Now the flow object has the necessary information and we can go on to the next, and final step, in the
5-step solution procedure.

Solve the ODEStep #5:

Solving equation (3.1) with the RKMK method is done by evaluating the flow object with four arguments:
initial domain object, start time, end time, and step size.

>> curve = f(y,0,5,0.05)
curve =

y: [1x61 hmnsphere]
t: [1x61 double ]

rej: [1x61 double ]

The outputcurve is a MATLAB struct with the three fields:y , t , andrej . curve.y is a vector of
objects from the homogeneous space upon which the problem is modeled.curve.t is a vector of scalars,
the time points.curve.rej is a vector of integers indicating whether a step was rejected or not. In our
examplecurve.rej is the zero vector, since we did not use variable time stepping. See Section6.3 on
how to do variable time stepping.

Callinggetdata(curve.y) will access the actual data representations of all the@hmnsphere objects.
In this case, this output will be a vector three times the length of the scalar vectorcurve.t . To get the
3-vectors corresponding to each time point, the output fromgetdata(curve.y) must be reshaped into
a 3×length(t) matrix where each column corresponds to a time point. To plot the data we can do the
following:

>> t = curve.t;
>> a = getdata(curve.y);
>> a = reshape(a,3,length(t));
>> comet3(a(1,:),a(2,:),a(3,:));

In Figure3.1the solution of the problem is plotted on the Northern hemisphere of the unit ball.

This detailed example is found as example 5 in theDiffMan toolbox and runs by typing:

>> dmex5



3.4 ODEs as infinitesimal generators 17

Figure 3.1: Plot of the solution of (3.1)

What’s next?: Solve the same problem with a different time stepper

To use another time stepper to solve equation (3.1) we must repeat steps #3 through #5. We must create
a new time stepper object, put this into the existing flow object, and evaluate the flow again. To use the
Crouch–Grossman method we do the following:

>> ts2 = tscg
ts2 =
Class: tscg
Coord.: exp
Method: CG3a
>> settimestepper(f,ts2)
>> f
f =
Class: flow
Vector field information:

Domain: hmnsphere
Equation type: Linear
Map defining DE: vfex5

Timestepper class: tscg
Coordinates: exp
Method: CG3a

>> curve = f(y,0,5,0.05);

To plot the solution we just repeat the above plotting commands. The solution is the same, except from the
fact that we have used a third-order method. This solution is not as accurate as the solution obtained by the
6th-order Butcher method used in the RKMK time stepper.

3.4 ODEs as infinitesimal generators

All the ODEs that we can solve inDiffMan are assumed to be written in the form of an infinitesimal
generator. If you are given just any ODE, it might turn out to be an impossible feat to determine the
Lie-group action of which the given ODE can be written as the infinitesimal generator. The choices can
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be many, and there is no known general procedure for doing this. Consult AppendixA for necessary
definitions and notation.

But on the other hand, there are many well-known examples of ODEs evolving on homogeneous spaces
that are known to be able to be stated in the form of an infinitesimal generator. In the rest of this section
we will give you examples of such ODEs, in order to aid you in your hunt for the group-action and the best
setting for your particular ODE.

Recall that the ingredients of a homogeneous space is a Lie groupG, a domain manifoldM, and a Lie-
group actionΦ : G×M→M. The infinitesimal generator of the Lie-group actionΦ with respect to the
elementξ ∈ g is defined as

ξM(x) =
d
dt

∣∣∣∣
t=0

Φexp(tξ)(x), ∀x ∈M. (3.2)

Example 3.4.1 (Classical ODEs inRn)
Any classical ODE can be cast in the representation of an infinitesimal generator by making the choices
M = R

n, G = R
n, and Φ(g, x) = g + x. Calculating the infinitesimal generator of this action (remember

that in this case the exponential map is equal to the identity map) with respect to the element ξ ∈ g = R
n

gives us
ξRn(x) = ξ. (3.3)

Hence, any ODE
y′ = f(t, y) (3.4)

on Rn has the form of an infinitesimal generator by just choosing the generator map ξ : R × Rn → R
n

equal to the function f in (3.4).

Example 3.4.2 (Differential equations on matrix Lie groups)
In this example we choose the manifold equal to the Lie group; that isM = G, and let the Lie group act
on itself by left multiplication, Φ(g, h) = gh. In this case the exponential takes the form of the matrix
exponential and the infinitesimal generator is

ξG(g) = ξ ·g. (3.5)

Choosing ξ as the generator map f : R×G→ g all ODEs on matrix Lie groups take on the general form

y′ = f(t, y)y.

Example 3.4.3 (Isospectral flows)
For isospectral flows the domain manifoldM is chosen as a subset of the set of n × n matrices. The Lie
group is the special orthogonal group SO(n) that acts upon M by the action Φ(g,m) = gmg−1. The
exponential map is in this case also equal to the matrix exponential, and the infinitesimal generator of this
action with respect to the element ξ ∈ so(n) is

ξM(m) = [ξ,m]. (3.6)

[·, ·] is the matrix commutator. Now, choosing ξ as the generator map f : R ×M → so(n) all ODEs for
isospectral flows take on the general form

y′ = f(t, y)y − yf(t, y).

Example 3.4.4 (Lie-Poisson systems)
This example might seem very hard and abstract on a first reading, but it is a very important and interesting
problem and deserves some attention. For notation and a detailed introduction see [21, 6].

A Lie-Poisson system is nothing else than a Hamiltonian problem. In this example the domain manifold
is the dual space of a Lie algebra g, that is M = g∗. The Hamiltonian function H : g∗ → R is a
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conserved quantity for the flow. The Lie group G acts on the dual Lie algebra g∗ by the coadjoint action:
Φ(g, µ) = Ad ∗g−1(µ). The infinitesimal generator of this action with respect to ξ ∈ g is

ξg∗(µ) = ad ∗ξ(µ). (3.7)

For this particular example it turns out that the generator map is expressible by the Hamiltonian. Next, we
will introduce the notion of the functional derivative, which classically is nothing else than the gradient of
a function. The functional derivative δF

δµ of a function F : g∗ → R is the element in the Lie algebra g that
satisfies the relation

lim
ε→0

1
ε

(F (µ+ εξ)− F (µ)) = 〈ξ, δF
δµ
〉. (3.8)

The functional derivative can be viewed as a function from g∗ to g, and hence it serves the role as a generator
map for time-independent Hamiltonians. The Hamiltonian ODE on g∗ with Hamiltonian H takes the form

µ′ = ad ∗δH
δµ

(µ). (3.9)

What does this equation look like in concrete examples? The rigid body and the Euler equations pop up by
considering the Hamiltonian H(Π) = 1

2Π · I−1Π modeled on the dual space of the Lie algebra so(3). In
this case (3.9) reduces to the Euler equations

dΠ
dt

= Π×I−1Π.
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Domain

In DiffMan 2.0 the following collections of domains are implemented:

hmanifold % Homogeneous spaces
liealgebra % Lie algebras
liegroup % Lie groups

As a user you will work exclusively with homogeneous spaces. Thus, the collections of Lie algebras and
Lie groups are mere geometric building blocks for the homogeneous spaces.

Each of the collections of domains contains a virtual superclass of that collection. The purpose of this
superclass is that it serves as the parent of all the other classes, and all functions common to all the classes
in the collection are implemented once and for all in this superclass. Thus, all the actual matrix class imple-
mentations contain far fewer functions than the number of functions implemented in the virtual superclass.
For an overview of the actual functions implemented in the superclasses see AppendixC.

In MATLAB a class has to be prefixed by@in order to be recognized as a class. The constructor of the
particular@myclass has to be an m-file with the namemyclass.m . In the virtual superclass of each
collection of domains we have overloaded ordinary arithmetic operations in order to make them work for
the objects. Since the virtual superclass is the parent of all the implemented classes, they inherit these
operations. The advantage of this approach is that one saves a lot of coding if a new class is to be added,
and if changes has to be made these are only made one place. Do not forget that these inherited functions
can again be overloaded in each of the particular classes.

In the next three subsections, all the implemented classes in each of the domain collections are listed.

4.1 Homogeneous spaces

The homogeneous space classes implemented inDiffMan are the following:

@hmanifold - The virtual superclass
@hmisospec - Isospectral flow: action of Lie algebra on M \in Rˆ(nxn).
@hmlie - The action of any Lie group and algebra on itself.
@hmnsphere - The N-sphere with action of the orthogonal group.
@hmrigid - The rigid body modeled as a homogenous space.
@hmrn - The action of any algebra on Rˆn.
@hmsineeuler - The Sine-Euler equation.
@hmtop - The heavy top modeled as a homogenous space.
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The virtual superclass homogeneous space is named@hmanifold . All the other homogeneous spaces
are prefixed by@hmin order to emphasize that these are actual implementations of homogeneous spaces.

4.2 Lie algebras

The Lie algebra classes implemented inDiffMan are the following:

@ladirprod - The direct product of Lie algebras.
@lafree - The free Lie algebra of q elements up to order s.
@lagl - The real and complex Lie algebra of the general linear group.
@larn - The real and complex Lie algebra of Rˆn.
@lase - The (real) special Euclidean algebra.
@lasl - The real and complex Lie algebra of the special linear group.
@laso - The (real) Lie algebra of the special orthogonal group.
@laso_pq - The (real) Lie algebra of the special pseudo-orthogonal group.
@lasp - The real and complex symplectic Lie algebra.
@lasu - The (complex) Lie algebra of the special unitary group.
@latangent - The tangent manifold of a Lie algebra.
@laun - The (complex) Lie algebra of the unitary group.
@liealgebra - The virtual superclass of all Lie algebras.

The virtual superclass Lie algebra is named@liealgebra . All the other algebras are prefixed by@la
in order to emphasize that these are actual implementations of Lie algebras.

4.2.1 The free Lie algebra

In this section we want to show you in a very rudimentary way how to use the free Lie algebra class
@lafree . See also Section7.4.2for other examples.

The commands given below reflect the basic operations in the free Lie algebra class@lafree .

>> fla = lafree({[p,q],[w1,w2,...,wp]});
Generate a free Lie algebra fromp symbols with gradesw1,w2,...,wp . All terms of total grade
greater thanq are set to 0. If no grades are supplied, grades equal to1 are used.

>> Xi = basis(fla,i);
Return thei ’th Hall basis element infla . If 1 ≤ i ≤ p, return thei ’th generatorXi.

>> X+Y; r*X; [X,Y];
Basic computations in the free Lie algebra.

>> Z = eval(E,{Y1,Y2,...,Yp});
If E is an element of a free Lie algebra, and{Y1,Y2,...,Yp} is a list of elements fromany
DiffMan Lie algebra, this will evaluate the expressionE, using the data setY1,Y2,...,Yp in
place of the generating set.

Examples of use of these commands are:

>> fla = lafree({[3,3]})
fla =

LieAlgebra class: lafree
Shape:

{[3 3],[1 1 1]}
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Basis vectors:
1:[1] 2:[2] 3:[3] 4:[1,2] 5:[1,3] 6:[2,3] 7:[1,[1,2]]
8:[1,[1,3]] 9:[2,[1,2]] 10:[2,[1,3]] 11:[2,[2,3]] 12:[3,[1,2]]
13:[3,[1,3]] 14:[3,[2,3]]

>> x1 = basis(fla,1) >> x7 = basis(fla,7)
x1 = x7 =

LieAlgebra class: lafree LieAlgebra class: lafree
Data: Data:

[1] [1,[1,2]]
>> x4 = basis(fla,4) >> [x1 x4] - x7
x4 = ans =

LieAlgebra class: lafree LieAlgebra class: lafree
Data: Data:

[1,2] 0
>> x=random(lagl(2))
x =
Class: lagl
Shape: 2
Data:

992/1139 -166/925
1169/1402 1029/1307

>> y = random(x), z = random(x)
y =
Class: lagl
Shape: 2
Data:

-1367/1546 1527/2438
-1185/4027 -1342/1369

z =
Class: lagl
Shape: 2
Data:
-10067/13939 -1037/1721

-129/217 104/501
>> eval(x7,cat(1,x,y,z))
ans =
Class: lagl
Shape: 2
Data:

-76/989 -271/1666
-452/571 76/989

4.3 Lie groups

The Lie group classes implemented inDiffMan are the following:

@lgdirprod - The direct product of Lie groups.
@lggl - The real and complex general linear group.
@lgon - The (real) orthogonal group.
@lgon_pq - The (real) pseudo-orthogonal group.
@lgrn - The real and complex Lie group Rˆn.
@lgse - The (real) special Euclidean group.
@lgsl - The real and complex special linear group.
@lgso - The (real) special othogonal group.
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@lgso_pq - The (real) special pseudo-othogonal group.
@lgsp - The real and complex symplectic group.
@lgsu - The (complex) special unitary group.
@lgtangent - The tangent bundle of a Lie group.
@lgun - The (complex) unitary group.
@liegroup - The virtual superclass of all Lie groups.

The virtual superclass Lie group is named@liegroup . All the other groups are prefixed by@lg in order
to emphasize that these are actual implementations of Lie groups.

4.4 My domain is not implemented!?

Eventually,DiffMan will contain all possible domain classes that you can think of. Since this is just
DiffMan 2.0 you might encounter the fact that the homogeneous space or Lie group that you want to use as
a domain in your application, is not yet implemented.

If that is to happen you have at least two options: You can carefully read this guide – which is by no
means complete – and peek into the source code of the other classes and try to implement the missing class
yourself. If you do this we would appreciate obtaining a copy of your class so that it can be included in the
general distribution. We are more than willing to answer any of your questions if you choose to do it this
way.

A second option is to send us a request, and let us know about the classes that are missing, so that we can
possibly include them in a future version ofDiffMan.
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Field

In DiffMan 2.0 the only field implemented is vector fields over domains.

5.1 Vector field

A vector fieldF over a manifoldM is a section of the tangent bundle of the manifold,F : M → TM.
This means that at each pointm ∈ M, the vector field computes a tangent vectorF (m) ∈ TMm, or,
equivalently, thatπ ◦ F = idM, whereπ is the projection fromTM toM.

A vector field on a manifold defines the flow, and integral curves of vector fields are solutions of differential
equations.

DiffMan 2.0 is based on domains that are homogeneous manifolds. As is described in AppendixA, the
function evaluating the vector field should taket ∈ R andy ∈ M as arguments and return an element in
the Lie algebra of the Lie group which, together with the Lie-group action and the manifold, define the
homogeneous space.

The integral curves of a vector field, or, in other words, the solution of the differential equation defined by
the vector field, are computed numerically inDiffMan. A vector field over a domain is constructed by the
vectorfield operation. In the following example, we define an objecty to belong to the homogeneous
space defined byhmlie over the Lie group SO(3):

>> y=hmlie(lgso(3));
>> vf=vectorfield(y)
vf =
Class: vectorfield
Domain: hmlie
Shape-object information:

Class: lgso
Shape: 3

Eqn type: General

The vector field object is now defined, but we have to assign to it a function which actually computes the
tangent vectors. Example 1 inDiffMan gives an example of such a function (functionvfex1 ):

function [la] = vfex1(t,y)
% VFEX1 - Generator map from RxM to the Lie algebra. Linear type.
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la = liealgebra(y);
dat = [0 t 1; -t 0 -tˆ2; -1 tˆ2 0];
setdata(la,dat);
return;

The function should in general receivet andy as input arguments and return a Lie algebra element. The
Lie algebra is the one corresponding to the Lie group which defines, together with the Lie-group action and
the manifold, the homogeneous space.

Usingsetfmg , the function is assigned to avectorfield object:

>> setfm2g(vf,’vfex1’)

and information about the current map is retrieved usinggetfm2g :

>> getfm2g(vf)
ans =
vfex1

When we initializedvf usingvectorfield , the output

Eqn type: General

appeared on the screen.General means that the vector field is ofgeneraltype, i.e. it depends both ont
andy . When the vector field only depends ont , we say it is alinear vector field. Thetypeof the vector
field can be changed usingseteqntype :

>> seteqntype(vf,’L’)

Type information about the current vector field is retrieved usinggeteqntype :

>> geteqntype(vf)
ans =
Linear

If we want to change the domain of the vector field, we may use the functionsetdomain . Information
about current domain is retrieved usinggetdomain :

>> setdomain(vf,hmlie(lgso(4)))
>> getdomain(vf)
ans =
Class: hmlie
Shape-object information:

Class: lgso
Shape: 4
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Flow

The underlying assumption of the time-integrators inDiffMan is the existence of a Lie groupG with Lie
algebrag that is endowed with Lie bracket[·, ·], a (left) Lie-group actionΦ : G×M→M and a function
ξ : R ×M → g such that the ordinary differential equation describing the problem can be written in the
form (see AppendixA)

y′ = ξM(t, y), y(0) = p ∈M. (6.1)

The flow operator of this differential equation is the operatorΦexp(tξ) : M → M, whereξM is the
infinitesimal generator of the action corresponding toξ ∈ g,

ξM(q) =
d
dt

∣∣∣∣
t=0

Φexp(tξ)(q), ∀ q ∈M.

The classical solution of a differential equation is an integral curve of the vector field generating the flow
operator. This integral curve is found by evaluating the flow operator in the initial point on the manifold.

In DiffMan the flow is approximated numerically using a particular time stepper method. The virtual
superclass defining the flow is

@flow % The virtual flow superclass

A flow object is defined by a vector field object and a time stepper object. The default time stepper object
if from the classtsrkmk with coordinatesexp and the classical fourth order Runge-Kutta methodRK4
as scheme. The flow constructor is used as follows:

>> fl=flow
fl =
Class: flow
Timestepper class: tsrkmk

Coordinates: exp
Method: RK4

When evaluated, theflow object approximates the integral curve of the flow through an initial point from
time tstart to tend using either constant or variable step size. The outer part of the time stepping process
is included inflow , while the computation of one single step is done using the time stepper object. The
advantage of this is that we write the outer part only once. The variable step size control resides here, and
so do the other control structures defining the integration process. When changing time stepper object, the
environment and integration parameters remain the same, and the effect of changing the time stepper object
can be measured.
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The flow object must be associated with a vector field (see e.g. Section5.1). This is done using the
setvectorfield routine. Lety be the objecthmlie(lgso(3)) . Then

>> vf=vectorfield(y)
vf =
Class: vectorfield
Domain: hmlie
Shape-object information:

Class: lgso
Shape: 3

Eqn type: General

and this vectorfield is given to theflow object through

>> setvectorfield(fl,vf)

The vectorfield coupled to aflow object is retrieved usinggetvectorfield .

In theflow object a number of parameters are defined. Most of these are used in the time stepper routines.
Thegetdefaults routine returns the default setting:

>> getdefaults(fl)
ans =

small: 0.5000
large: 2

...
disp: 1

The values are changed usingsetdefaults :

>> setdefaults(fl,’small’,0.1)
>> getdefaults(fl)
ans =

small: 0.1000
large: 2

...
disp: 1

6.1 Time stepping

In DiffMan 2.0 the following numerical time stepper algorithms are implemented:

@timestepper - The virtual superclass timestepper.
@tscg - The Crouch-Grossman methods.
@tsfer - The Fer expantion method.
@tslieqn - Test timestepper for free Lie algebra speed hack.
@tsmagnus - The Magnus-series method.
@tsprkmk - Partitioned Runge-Kutta-Munthe-Kaas type methods
@tsqq - Quadrature methods for quadratic Lie groups.
@tsrk - Classical Runge-Kutta methods.
@tsrkmk - Runge-Kutta methods of Munthe-Kaas type.
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@tsrkmkgeo - Geodesic-symmetric RKMK-type method.
@tsscg - Time-symmetric Crouch-Grossman method.
@tssym - Flow-symmetric RKMK-type method.

A detailed mathematical exposition of each of the methods is found in AppendixA. A future release of
DiffMan will also contain various multistep methods.

Initialization of a time stepper of typetscg is done as follows:

>> ts=tscg
ts =
Class: tscg
Coord.: exp
Method: CG3a

The default coordinates areexp and the default scheme isCG3a. A list of the schemes available inDiffMan
2.0 is included in AppendixB. You can change time stepper scheme usingsetmethod :

>> setmethod(ts,’CG43’)

and you can retrieve the parameter values of the scheme usinggetmethod :

>> getmethod(ts)
ans =

RKname: ’CG43’
RKa: [5x5 double]
RKb: [0.6756 0 -0.1756 -0.1756 0.6756]
RKc: [0 1.5000 1.3512 -0.3512 1]

RKns: 5
RKord: 4

RKtype: ’explicit’
RKbhat: [0.6756 0 -0.1756 -0.1756 0.6756]

Many of the methods are based on a certain choice of coordinate system.DiffMan 2.0 provides the follow-
ing coordinates:

exp % canonical coordinates of the first kind;
% defined by a single exponential map

expexp % canonical coordinates of the second kind;
% defined by a product of exponential maps

cay % coordinates based on the Cayley map;
% defined by a single Cayley map

caycay % coordinates based on the Cayley map;
% defined by a product of Cayley maps

pade22 % coordinates based on the (2,2) diagonal Pade map;
% defined by a single (2,2) diagonal Pade map

See e.g. [5] for a discussion of different choices of coordinates. The default coordinate choice is the
exponential mapping for most of the methods. You can change coordinates by using thesetcoordinate
routine:

>> setcoordinate(ts,’cay’)
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Thegetcoordinate routine returns the current choice of coordinate system.

You may change time stepper inDiffMan by using thesettimestepper routine:

>> ts=tsmagnus
ts =
Class: tsmagnus
Coord.: exp
Method: M4a
>> settimestepper(fl,ts)

Thegettimestepper routine retrieves information from theflow object:

>> gettimestepper(fl)
ans =
Class: tsmagnus
Coord.: exp
Method: M4a

6.1.1 My time stepper is not implemented!?

Eventually,DiffMan will contain most of the time stepper classes described in the literature. InDiffMan 2.0
you might encounter the fact that the time stepper that you want to choose is not yet implemented. If that is
to happen you have at least two options: You can carefully read this guide – which is by no means complete
– and peek into the source code of the other classes and try to implement the missing class yourself. If
you do this, theDiffMan development team would appreciate receiving a copy of your class so that it can
be included in the general distribution. We are more than willing to answer any of your questions if you
choose to do it this way.

A second option is to send us a request, and let us know about the classes that are missing. We will then
possibly include them in a future version ofDiffMan.

6.2 Implicit methods — Solution of nonlinear equations

In DiffMan 2.0 the nonlinear systems of equations arising from the implicit time steppers are solved using
fixed point iteration only. The iteration on the stage values continue until the error is below

max(10−12, hp/100)

, wherep is the order of the method andh is the step size.

In future versions ofDiffMan, we will provide general nonlinear equation solvers, e.g. Newton iteration as
developed by Owren and Welfert [38]. These schemes reduce to the classical Newton-iteration scheme in
Euclidean space with the standard basis.

6.3 Variable step sizing

Traditional step size control strategies rely on the local error of the method. At every step this quantity is
estimated, and a new step size is computed. It is natural to employ similar techniques also in the case of
integration on Lie groups or more general manifolds. Description of the strategy may be found in most
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standard texts on integration methods for ordinary differential equations, but for completeness we include
a brief overview of the procedure.

In order to attain the local error estimaterk+1 = ε at time stepk + 1, the next step sizehk+1 is chosen
as a function of the previous step size,hk, as follows (see e.g. [39] or [12, 13]). Let p be the order of the
method. When using embedded pairs, as is usual in classical Runge-Kutta methods, we letp be the order
of the lower-order approximation scheme). Furthermore,rk = ek, the error estimate, andαpessimist is a
pessimist factor which is heuristically determined (typical values are0.8 or 0.9). We first compute

ĥk+1 = αpessimist

(
ε

rk

)1/(p+1)

hk,

A typical strategy to prevent rapid oscillations of the step size is to restrict the extent of step size variation
in any single step. This is obtained by letting

hk+1 = min{hmax,max{αsmallhk,min{αlargehk, ĥk+1}}},

wherehmax is the largest allowed step size, whileαsmall andαlarge are two constants. If the local error
exceeds the tolerance by a factor more thanαaccept, then we reject the step and retry with a smaller step
size computed as above but withhk equal to the step size we just tried. This algorithm proceeds until the
local error estimate satisfies

ek+1 ≤ αacceptε.

DiffMan defines default values for the constants used in variable step size integration. The names are

αpessimist↔ pessimist
αsmall ↔ small
αlarge ↔ large
αaccept↔ accept
ε ↔ tol
hmax ↔ hmax

All the values can be changed by the user ofDiffMan (see description of the flow object). The routine
getdefaults returns the default setting of the constants:

>> fl=flow;
>> getdefaults(fl)
ans =

small: 0.5000
large: 2

pessimist: 0.9000
...

disp: 1

The values are changed usingsetdefaults :

>> setdefaults(fl,’large’,4)
>> getdefaults(fl)
ans =

small: 0.5000
large: 4

pessimist: 0.9000
...

disp: 1

The variable step size algorithm will be extended in future releases ofDiffMan.
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Auxiliary

7.1 Demos

Issuing the MATLAB commanddemo on the command line inDiffMan will launch the MATLAB Demos.
Since this is done whileDiffMan is running you will be able to findDiffMan and its demonstrations as one
of the MATLAB toolboxes. The situation should look very similar to Figure7.1.

Figure 7.1: The MATLAB Demos.

The Demos feature in MATLAB is very simple to use. You just high-light what you want to learn more
about, and then push the button down to the right (’Run ...’-button) to go on to more information about
the specific topic. ForDiffMan 2.0 there are two topics for further help: ’TheDiffMan tutorials’ and ’The
Command Line Examples’.

Under ’DiffMan tutorials’ you will find short and well-documented slide shows which guide you through
different aspects of how to useDiffMan. Figure7.2shows you the ’Tutorial’ window as launched from the
’Demo’ window. The two existing tutorials are on how to useDiffMan to solve ODEs on manifolds, and
about the domains inDiffMan. More tutorials will be tried added in the future. If you have ideas for such
tutorials please inform theDiffMan development team:mailto:diffman@math.ntnu.no .

’Command Line Examples’ collects10 of the examples found in theDiffMan distribution. Accessing the
CL-examples this way, the user simply has to push a button in order to run an example. See Section7.3for

mailto:diffman@math.ntnu.no
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Figure 7.2: TheDiffMan tutorials.

more information.

7.2 Documentation

All the DiffMan documentation is placed in the directoryDiffMan/auxiliary/documentation .
The User’s Guide, which you are reading now, is found as both a PDF and PS-file. There are also other
.doc and.m-files in this directory which are worth while looking at. However, in the present distribution
of DiffMan they are not guaranteed to be finished.

When detailed technical notes for instance about new classes or specific problems solved inDiffMan are
released by theDiffMan development team, these will also be placed in this directory as PDF and/or PS-
files.

7.3 Examples

In DiffMan you can find several examples of solved ODEs. InDiffMan 2.0 these are:

dmex1 - This is an ODE evolving in SO(3)
dmex1a - This is an ODE evolving in SO(3)

PURPOSE: Integrate ’dmex1’ with variable and constant step size.
dmex1b - This is an ODE evolving in SO(3)

PURPOSE: Integrate ’dmex1’ with variable and constant step size
for time steppers: ’tscg’ and ’tsrk’.

dmex2 - Solution of the Lorenz equations in Rˆ3
dmex3 - This is a linear ODE evolving in SO(3)
dmex4 - Integration of the rigid body
dmex5 - This is an ODE evolving on the sphere Sˆ2
dmex6 - Integration of an isospectral flow
dmex7 - Integration of the Airy equation
dmex8 - Integration of the van der Pol equation
dmex9 - Integration of the heavy top
dmex10 - This is an ODE evolving in SO(3)
dmex10a - This is an ODE evolving in SO(3)
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PURPOSE: Use "ftorder" to verify the order of the solution
of some fer schemes

WARNING: This routine is very time consuming to run.
exlafree - Using the Lie algebra @lafree.

PURPOSE: Use the free Lie algebra to establish a
connection between the Magnus method and the RKMK
method.

extools1 - Example of ODE evolving in SO(3).
PURPOSE: Demonstrate the use of the flow tools routine

"ftorder", that computes order of approximation
of a given integrator and scheme.

extools2 - Example of ODE evolving in SO(3).
PURPOSE: Demonstrate the use of the flow tools routine

"fteff", that computes the efficiency of a given
integrator and scheme as global error versus
flops.

All these examples can be run directly inDiffMan by just typing the name of the example. If you are
a beginner user ofDiffMan, it might also be worth-while to view the source code of the examples with
dmhelp . This gives you an idea of how things are done, and probably the best way to learn is to take an
already existing example, copy it, and modify it, and see what happens.

The examplesdmex1 throughdmex10 are the ones found among the ’Command Line Examples’ in the
DiffMan Demo, see Figure7.3. In order to run the examples this way, you push the example button. Make
sure that the MATLAB window is visible, because output from the examples will be displayed here and in
plots.

Figure 7.3: TheDiffMan command line examples.
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7.4 Utilities

The root utilities directory contains some functions which are ’nice’ to have. It is not vital to know how
to use all these functions, but it is very convenient to have an idea of where to look for these types of
functions, in case you are in need of one. The functions located in the root utilities directory are:

addsubdir - Add subdirectories to the path.
array - Create arrays of objects.
dmargcheck - Turn on/off input checking in DiffMan.
dmhelp - The help facility in DiffMan.
dmprogrep - Turn on/off progress report.
iseven - Function to test if a number is even.
iscellempty - Check if a cell tree consists of empty matrices.
iseven - Check if integer is even.
repprogress - The progress report m-file.
isinteger - Function to test if a number is integer.
skew - Creates a skew matrix from a 3-vector.

There are also two subdirectories containing class specific utilities functions:

flowtools - Functions for efficiency and order checks.
lafreeutil - Utility functions for the free Lie algebra.

For more information about the functions contained in these subdirectories see the next two subsections.

7.4.1 flowtools

DiffMan 2.0 provides the user with two specialflow utility routines: ftorder andfteff . ftorder
estimates both the local and global order of approximation of a timestepper. The user can provide a “cor-
rect” (or “exact”) integrator. If this is not supplied, thetsrkmk timestepper with theRK4scheme is used.
The first time this routine is called, an “exact” reference solution is computed. This is a rather time consum-
ing operation, and can be avoided in the next call with the same setting. The user should notifyftorder
that the same “exact” solution should be used, by changing the value of the flow parameternewexact :

>> setdefaults(fl,’newexact’,0)

The example routineextools1 uses this tool:

...
flA = flow; % The integrator to be estimated
ts = tsrkmk;
setcoordinate(ts,’pade22’);
setmethod(ts,’RKF34’);
settimestepper(flA,ts);
...
flB = flow; % "Reference" integrator - computes the "exact" solution
ts = tsrkmk;
setcoordinate(ts,’exp’);
setmethod(ts,’RK4’);
settimestepper(flB,ts);
...
out=ftorder(flA,flB,y);
...
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% input exact solution to avoid computing it once more - example
setdefaults(flA,’newexact’,0);
out2=ftorder(flA,flB,y,[],[],[],out.exact);
...

Thefteff utility routine estimates the efficiency of a timestepper. The efficiency measure is global error
as a function of number of flops used by the integrator. The MATLAB routineflops is used to count the
flops usage. The sample programextools2 demonstrates the use of the routine:

...
flA = flow; % The integrator to be estimated
ts = tsrkmk;
setcoordinate(ts,’pade22’);
setmethod(ts,’RKF34’);
settimestepper(flA,ts);
...
flB = flow; % "Reference" integrator - computes the "exact" solution
ts = tsrkmk;
setcoordinate(ts,’exp’);
setmethod(ts,’RK4’);
settimestepper(flB,ts);
...
out=fteff(flA,flB,y);
...
% input exact solution to avoid computing it once more - example
out2=fteff(flA,out.sol,y);
...

7.4.2 lafreeutil

This subdirectory collects some handy functions related to the free Lie algebra@lafree :

bch - Computes the BCH formula of order q, and n flows.
bch2 - Computes the BCH formula of order q, just 2 flows.
cdopri5 - Classical dopri5 of order 5.
divisors - All the divisors of an integer.
killing - Killing form on a Lie algebra.
lafcount - Count commutators in a graded free Lie algebra.
lafdim - Dimension of a graded free Lie algebra.
magnusdim - Magnus dimension.
mobius - Number theoretic mu function.
rkgl - Runge-Kutta-Gauss-Legendre coefficients of n stages, order 2n.
rkmk4 - Classical RKMK of order 4.
rkmk4mod - Modified classical RKMK of order 4.
slegendre - Shifted Legendre polynomial of order n.

For instance,bch andbch2 can be used like this:

>> format rat
>> bch(3,3)
Fixpoint iteration, 3 steps:

Done step: 1
Done step: 2
Done step: 3

Composing 3 flows:
ans =
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computing commtab!
Done step: 3

ans =
LieAlgebra class: lafree
Data:

[1] + [2] + [3] + 1/2*[1,2] + 1/2*[1,3] + 1/2*[2,3] + 1/12*[1,[1,2]]
+ 1/12*[1,[1,3]] - 1/12*[2,[1,2]] + 1/6*[2,[1,3]] + 1/12*[2,[2,3]]
- 1/3*[3,[1,2]] - 1/12*[3,[1,3]] - 1/12*[3,[2,3]]

>> bch2(4)
ans =

LieAlgebra class: lafree
Data:

[1] + [2] + 1/2*[1,2] + 1/12*[1,[1,2]] - 1/12*[2,[1,2]] - 1/24*[2,[1,...

7.5 Efficiency and speed-up ofDiffMan

First, let us state the following fact: the object orientation in MATLAB is not fast. We have tried to remedy
this situation inDiffMan by a couple of programming tricks. The first ’trick’ is to use MEX-files, and the
second ’trick’ is to aid the most time-consuming computation by precomputations in the free Lie algebra.
In the present version ofDiffMan only the first of these two tricks is available for exploitation.

7.5.1 Speed-up through MEX-files

Following the standardDiffMan 2.0 distribution there are three pre-programmed files in C that the user
can compile in order to speed up the execution ofDiffMan. A prerequisite for this to work is that there is
a C compiler installed on the platform which is running MATLAB. The files are located in the directory
DiffMan/domain/liealgebra/@liealgebra , and they are:

>> pwd
ans =
/../DiffMan/domain/liealgebra/@liealgebra
>> ls *.c
ans =
dexpinv.c
horzcat.c
mtimes.c

To compile the C files and make MEX-files you can issue the following commands in MATLAB:

>> mex -O dexpinv.c
>> mex -O horzcat.c
>> mex -O mtimes.c
>> ls *.mexsol
ans =
dexpinv.mexsol
horzcat.mexsol
mtimes.mexsol

Note that the file extension of the MEX-files will vary depending on the platform on which you are running
MATLAB.

What happens now is that the next time you are running yourDiffMan application, MATLAB will choose
the MEX-files instead of the m-files for any of the three functionsdexpinv.m , horzcat.m , and
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mtimes.m . This is done automatically, and the only way that the user can control this is by remov-
ing the MEX-files. The MEX-files are well tested on all the matrix groups, and they are expected to fail
seriously if used on any of the functorial classes. A word of advise is that if you run into any kind of trouble
using the MEX-files, remove them, issue the commandclear functions in MATLAB, and run your
problem just using the m-files (which are known to work properly).

Please be warned that the flops count which MATLAB produces when running any of the above MEX-files
is not correct. The reason for this is that the flops counter is not being updated in any of the MEX-files.
Hence, the results yielded by the functionfteff are erronous when used together with these MEX-files.

7.5.2 Speed-up by use of the free Lie algebra

To give you an idea of this beautiful trick we will briefly comment on it. The user will only notice the speed
increase, and does not have to do anything special than choosing the ’right’ RKMK time stepper class in
order to take advantage of it. The trick itself constitutes of aiding the most time-consuming computation
by a precomputation in the free Lie algebra@lafree . The object from the@lafree class represents the
whole update of step sizeh that the numerical method is supposed to perform on the initial data. The free
Lie algebra object acts as an operator, and once calculated the object is saved for the rest of the iteration,
and whenever the time stepper is called, the object in the free Lie algebra is evaluated on the data. Hence,
you end up only with an evaluation in each step, instead of a time-consuming calculation.
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Appendix A

The mathematical building blocks of
DiffMan

In this chapter we briefly describe the mathematical background ofDiffMan. To get a more detailed ex-
position of the topics the reader is recommended to study some of the more established references like
[1, 2, 21, 35, 40, 41]

A.1 Homogeneous spaces

To really appreciateDiffMan, the most important concept to understand is the notion of a homogeneous
space. All the numerical algorithms for solving ordinary differential equations have been reformulated to
solve problems evolving on homogeneous spaces. We believe this to be the most general setting for solving
ordinary differential equations on manifolds. It should be noticed that all the methods, when applied in the
traditional setting ofRN , reduce to the classical Runge–Kutta schemes.

Before defining homogeneous spaces, we need some mathematical building blocks.

Definition A.1.1 (Manifold)
A manifoldis a topological spaceM equipped with continuous local coordinate charts φi : Ui ⊂M→ R

d

such that all the overlap charts φij : Rd → R
d are diffeomorphisms. The overlap charts (transition

functions) φij are defined as φj ◦ φ−1
i |φi(Ui∩Uj), where φ−1

i |φi(Ui∩Uj) means the restriction of φ−1
i to the

set φi(Ui ∩ Uj).

While this is a quite abstract definition, inDiffMan we will mainly concentrate on a particular class of
differentiable manifolds calledLie groups.

Definition A.1.2 (Lie group)
A Lie group (G, ·) is a differential manifold G equipped with a binary operation · on G satisfying the
axioms of a group, such that the map ψ : G×G→ G given by ψ(q, p) = q · p−1 is smooth.

In this report we will slightly abuse notation and just refer to the Lie group asG. The identity element in
the Lie group will be denoted bye.

Definition A.1.3 (Tangent space)
Given a point p ∈ M, we denote by TM|p the tangent space ofM at p. This space is the set of all linear
derivations vp such that

vp(λf1 + µf2) = λvp(f1) + µvp(f2) and vp(f1f2) = f1(p)vp(f2) + f2(p)vp(f1)
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for all functions f1, f2 :M→ R defined in a neighborhood of p, and all λ, µ ∈ R.

The tangent bundle ofM is TM =
⋃
p∈MTM|p. A vector field,X onM, is a section ofTM, i.e. to

each pointp ∈M it associates a vectorX(p) ∈ TM|p.

Since a Lie group,G, is a manifold, there exists a tangent space,TG|g, at each pointg ∈ G.

Definition A.1.4 (Lie algebra)
A Lie algebra is a vector space, g, equipped with a bilinear, skew-symmetric form, [·, ·] : g × g → g,
satisfying the Jacobi identity,

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0,

when u, v, w ∈ g. We call [·, ·] the Lie bracket on g.

The Lie algebra of a Lie group is defined as the tangent space at the identity,g = TG|e. In this case its Lie
bracket is given by

[u, v] =
∂2

∂t∂s

∣∣∣∣
t=s=0

g(t)h(s)g−1(t),

whereg(t), h(s) ∈ G are two curves such thatg(0) = h(0) = e, g′(0) = u, andh′(0) = v. In the case of
matrix Lie groups, the Lie bracket is the matrix commutator,[u, v] = u · v − v · u, where· denotes matrix
multiplication.

Definition A.1.5 (Lie-group action)
A (left) Lie-group action of a Lie group G on a manifold M is a smooth mapping Φ : G ×M → M,
which satisfies

Φ(e, p) = p, where e ∈ G is the identity element,

and
Φ(g1 · g2, p) = Φ(g1,Φ(g2, p)), for all g1, g2 ∈ G and p ∈M.

We say that a Lie-group action iseffectiveif Φ(g, p) = p for all p ∈ M implies thatg = e. Furthermore,
an action istransitiveif, for arbitraryp, q ∈ M, there exists ag ∈ G such thatΦ(g, p) ≡ q, i.e. the space
M consists of just a single orbit.

Based on these definitions we can now define the concept of homogeneous spaces.

Definition A.1.6 (Homogeneous space)
A homogeneous space is a manifold with a transitive Lie-group action.

Any ξ ∈ g specifies a tangentξm ∈ TM|m at any pointm ∈M via

ξm =
d
dt

∣∣∣∣
t=0

Φ(g(t),m),

whereg(t) ∈ G is a curve such thatg(0) = e andg′(0) = ξ. One may useg(t) = exp(tξ), where
exp : g → G is the exponential map [30], or g(t) = φ(tξ) for any smooth functionφ : g → G such that
φ(0) = e andφ′(0) = I. This gives an identificationξ 7→ ξm ∈ TM|m, which depends on the choice of
actionΦ, but not on the particular choice ofφ.

A.2 Computing flows of vector fields

We have chosen to view all the numerical methods implemented inDiffMan as working on homogeneous
spaces. Even the classical Runge–Kutta methods are expressed in this setting.
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The numerical methods inDiffMan assume that the differential equation to be solved is presented in the
following canonical form

y′ = F (t, y) = ξM(t, y), y(0) = y0 ∈M, (A.1)

for some functionξ : R×M→ g (see [34, 30, 5]).

If ξ(t, y) = ξ(t), the equation is ofLie typeor linear type. Otherwise it is ofgeneral type. Equations of
Lie type can be handled more efficiently than general type equations.

A.2.1 Classical Runge–Kutta methods

Classical Runge–Kutta methods have been thoroughly described in a large amount of papers the last
decades. These methods are implemented inDiffMan, but based on a slightly different understanding since
we work on homogeneous spaces.

In the classical setting, the differential equation (A.1) takes on the following form. Integrate

u′ = ξ
(
t,Φ(u, y0)

)
, u(0) = 0,

with y(t) = Φ(u(t), y0). We have here used thatφ is the identity mapping in Euclidean space.

Algorithm A.2.1 (Classical Runge–Kutta methods)
Let A = (aij), b = (bj) and c = (cj) be the Butcher-coefficients of an s-stage, qth order Runge–Kutta
method. The following algorithm integrates (A.1) from t = tn to t = tn + h:

Assume thatyn ≈ y(tn) is given

for i = 1, 2, . . . , s
ui = h

∑s
j=1 aijkj

ki = ξ (tn + cih,Φ(ui, yn))
end

v = h
∑s
j=1 bjkj

yn+1 = Φ(v, yn)

WhenΦ(u, y) = u+ y, this reduces to the well known classical setting:

ki = ξ
(
tn + cih, yn + h

∑s
j=1aijkj

)
, i = 1, 2, . . . , s,

yn+1 = yn + h
s∑
j=1

bjkj .

If Φ is a general group action, this method attains at most order2 on an arbitrary manifold.

A.2.2 Munthe-Kaas methods

The Munthe-Kaas methods were first described in [28]. In the succeeding paper [29], the methods were
refined until their final formulation appeared in [30].

A large class of numerical algorithms are based on the assumption that the mapsΦ(φ(ξ),m) can be com-
puted efficiently. The Munthe-Kaas methods in [30] are based on the choiceφ(ξ) = exp(ξ). More general
φs are discussed in [5].
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The following commutative diagram, which is thoroughly discussed in [5], illustrates the relations used as
a framework for these algorithms:

Tg
TΦy0◦Tφ−−−−−−→ TM

dφu
−1◦ξ◦Φy0◦φ

x xF=ξM

g −−−−→
Φy0◦φ

M

Herey0 ∈ M is the initial point,u ∈ g, Φy0(u) = Φ(u, y0) anddφu−1 : g → g is the right trivialized
tangent ofφ. If φ = exp, thendφ−1

u = dexpu
−1 can be expressed in terms of Lie brackets. For more

generalφ one needs an efficient algorithm for computingdφu−1, see [5, 36] for different choices. This
yields the following algorithm:

Algorithm A.2.2 (General Munthe-Kaas methods)
Given a differential equation in the form (A.1), this algorithm produces a qth order approximation to the
solution, using step size h:

• Find an approximation u1 ≈ u(t0 + h) by integrating the following differential equation on g

u′ = dφ−1
u

(
ξ
(
t,Φ(φ(u), y0)

))
, u(0) = 0,

from t0 to t0 + h using one step with a qth order Runge–Kutta method.

• Advance the solution onM to y1 = Φ(φ(u1), y0)
))
≈ y(t0 + h).

• Repeat with new initial values y0 := y1, t0 := t0 + h.

Whenφ = exp, this algorithm reduces to the Munthe-Kaas methods presented in [30].

Algorithm A.2.3 (Munthe-Kaas methods based on the exponential mapping)
Let A = (aij), b = (bj) and c = (cj) be the coefficients of an s-stage, qth order classical Runge–Kutta
method. The following algorithm integrates (A.1) from t = tn to t = tn + h:

Assume thatyn ≈ y(tn) is available

for i = 1, 2, . . . , s
ui = h

∑s
j=1 aij k̃j

ki = ξ
(
tn + cih,Φ

(
exp(ui), yn

))
k̃i = dexpinv(ui, ki, q)

end

v = h
∑s
j=1 bj k̃j

yn+1 = Φ
(

exp(v), yn
)

Here, aqth order truncation of the dexpinv function is defined by

dexpinv(u, v, q) = v − 1
2

[u, v] +
q−1∑
k=2

Bk
k!

k︷ ︸︸ ︷
[u, [u, [. . . , [u, v]]],

where[·, ·] is the matrix commutator defined by[A,B] = AB − BA whenA andB are matrices, andBk
is thekth Bernoulli number.

This method has at least orderq on any manifold. In Eucliden space this algorithm reduces to the classical
Runge–Kutta algorithm.



A.2 Computing flows of vector fields 49

A.2.3 Magnus series methods

The solution of Lie type ordinary differential matrix equations,

y′ = ξM(t), y(0) = p ∈M, (A.2)

whereξ : R+ → g for everyt ≥ 0, andM = G is a matrix Lie group, was recently studied by Iserles
and Nørsett [19]. These methods can be viewed as a particular case of the Munthe-Kaas methods. The
following commutative diagram shows the framework:

Tg
TΦy0◦T exp
−−−−−−−−→ TM

dexpu
−1◦ξ◦Φy0◦exp

x xF=ξM

g −−−−−→
Φy0◦exp

M

Again, y0 ∈ M is the initial point,u ∈ g, Φy0(exp(u)) = Φ(exp(u), y0) and dexp−1
u : g → g is the

right trivialized tangent ofexp. By applying an implicit Runge–Kutta method to the ordinary differen-
tial equation ong and, sinceξ = ξ(t), performing Picard iteration, an infinite sum of integrals appears.
Magnus [20] observed thatu(t) can be expressed as an infinite sum of elements ing:

u(t) =
∫ t

0

ξ(κ)dκ+ 1
2

∫ t

0

[
ξ(κ),

∫ κ

0

ξ(α)dα
]

dκ

+ 1
4

∫ t

0

[
ξ(κ),

∫ κ

0

[
ξ(α),

∫ α

0

ξ(η)dη
]

dα
]

dκ (A.3)

+ 1
12

∫ t

0

[[
ξ(κ),

∫ κ

0

ξ(α)dα
]
,

∫ κ

0

ξ(η)dη
]

dκ+ · · · .

Iserles and Nørsett analysed this sum and presented the devices necessary to make it a useful numerical
method – or rather a whole family of methods – namedMagnus series methods. Implementation issues and
error control of these numerical methods were discussed in [17].

Whenu is approximated bỹu, say, the solution is advanced according to

yn+1 = Φ(exp(ũ), yn).

Algorithm A.2.4 (A fourth-order Magnus series method)
Let c1 and c2 be the Gauss–Legendre points

c1 = 1
2 −

√
3

6 and c2 = 1
2 +

√
3

6 ,

and evaluate ξ at these abscissae values:

ξ1 = ξ(tn + c1h) and ξ2 = ξ(tn + c2h).

A fourth-order approximation to u is then given as

u[4] = 1
2h(ξ1 + ξ2)−

√
3

12 h
2[ξ1, ξ2].

The solution is advanced according to

yn+1 = Φ(exp(u[4]), yn).

Algorithm A.2.5 (A sixth-order Magnus series method)
Let c1, c2 and c3 be the Gauss–Legendre points

c1 = 1
2 −

√
15

10 , c2 = 1
2 , and c3 = 1

2 +
√

15
10 ,
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and evaluate ξ at these abscissae values:

ξ1 = ξ(tn + c1h), ξ2 = ξ(tn + c2h) and ξ3 = ξ(tn + c3h).

A sixth-order approximation to u is then given by the following equations:

K1 = h
18 (5ξ1 + 8ξ2 + 5ξ3)

K2 = −
√

15
108 h

2(2ξ12 + ξ13 + 2ξ23)

K3 = h3

432 ([ξ1 − 5ξ3, ξ12] + [5ξ1 − ξ3, ξ23])

K4 =
√

15
2160h

4[ξ1, [ξ3, ξ13]]

u[6] = K1 +K2 +K3 +K4,

where ξij = [ξi, ξj ]. The solution is advanced according to

yn+1 = φ(exp(u[6]), yn).

The generalized Magnus series methods that solvey′ = ξG(t, y), y(0) = y0 ∈ G, are implemented
according to the algorithms presented in [43, 42]. These methods are based on the collocation idea.

Assume that approximationsξi ≈ ξ
(
tn+ cih, y(tn+ cih)

)
, i = 1, . . . , s, are known. Based in these values

we approximate the functionξ, in the vector spaceg, aroundt = tn with its Lagrangian interpolating
polynomial at the abscissae valuesc1, . . . , cs:

ξ(t, y(t)) ≈
s∑
i=1

Li

( t− tn
h

)
ξi, (A.4)

where

Li(t) =
s∏
k=1
k 6=i

t− ck
ci − ck

.

By inserting the interpolating polynomial into the Magnus series, a method solving the general problem is
obtained. As in the classical case, the collocation methods are necessarily implicit. However, it is possible
to derive relaxed collocation schemes that are explicit.

The two collocation based Magnus methods inDiffMan 2.0 areMRC3 andMC4:

MRC3: (Magnus series method of order3 based on relaxed collocation)

Y1 = yn, ξ1 = ξ(tn, Y1),
Y2 = Φ(exp

(
h
2 ξ1
)
, yn), ξ2 = ξ

(
tn + h

2 , Y2

)
,

Y3 = Φ(exp
(
h(−ξ1 + 2ξ2)

)
, yn), ξ3 = ξ

(
tn + h, Y3

)
,

with
yn+1 = Φ

(
exp

(
h
(

1
6ξ1 + 2

3ξ2 + 1
6ξ3
)
− h2

2

[
ξ1 − ξ3, 2

15ξ2 + 1
30ξ3

])
, yn

)
.

MC4: (Magnus series method of order4 based on collocation and order4 Gauss-Legendre points)
Solve the following system

Y1 = Φ
(

exp
(
h
(

1
4ξ1 +

(
1
4 −

√
3

6

)
ξ2
)

+
(

5
144 −

√
3

48

)
h2ξ12

)
, yn

)
,

Y2 = Φ
(

exp
(
h
((

1
4 +

√
3

6

)
ξ1 + 1

4ξ2
)
−
(

5
144 +

√
3

48

)
h2ξ12

)
, yn

)
,

whereξi = ξ(tn + cih, Yi), i = 1, 2, andξ12 = [ξ1, ξ2]. Advance the solution by computing

yn+1 = Φ
(

exp
(
h
2 (ξ1 + ξ2)−

√
3

12 h
2[ξ1, ξ2]

)
, yn

)
.
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A.2.4 Quadrature methods on quadratic Lie groups

The quadrature methods based on the Cayley transform are similar to the Magnus series methods. They
are discussed in [25]. We again consider the solution of Lie type ordinary differential matrix equations,

y′ = ξM(t), y(0) = p ∈M,

whereξ : R+ → g for everyt ≥ 0. For any matrixv ∈ Rn×n a subalgebra ofgl(n) is

gv =
{
u ∈ gl(n) : vu+ uT v = 0

}
.

Such Lie algebras are called quadratic Lie algebras. Roughly speaking, the Lie groups,G, obtained by
exponentiation of these Lie algebras are called quadratic Lie groups. We immediately see that by choosing
v to be

In or

[
0 In/2
−In/2 0

]
(whenn is even),

we recover the Lie algebrasso(n) andsp(n), respectively. It is well known that the computation of matrix
exponentials in general is a costly operation. When constructing numerical integrators for differential
equations evolving on quadratic Lie groups, we exploit the fact that there exist other mappings between the
Lie algebra and the Lie group than the exponential mapping. Celledoni and Iserles [3] showed that ifφ is
any analytic function that satisfiesφ(z) · φ(−z) = 1, thenφ(gv) ⊂ G.

There exist a large number of such functions, but we shall focus on the Cayley transform

cay(z) = (1− z
2 )−1(1 + z

2 ).

The following commutative diagram shows the framework for the methods:

Tg
TΦy0◦Tcay
−−−−−−−→ TM

dcayu
−1◦ξ◦Φy0◦cay

x xF=ξM

g −−−−−→
Φy0◦cay

M

Again, y0 ∈ M is the initial point,u ∈ g, Φy0(cay(u)) = Φ(cay(u), y0) anddcay−1
u : g → g is the

right trivialized tangent ofcay. By applying an implicit Runge–Kutta method to the ordinary differential
equation ong and, sinceξ = ξ(t), performing Picard iteration, an infinite sum appears. The numerical
methods below are based on truncations of this sum.

The two timesteppers of the above kind implemented inDiffMan 2.0 areqq4aandqq6a:

qq4a: (quadrature method of order four on quadratic Lie groups)
Consider the Gauss-Legendre weights of order4: c1 = 1

2 −α andc2 = 1
2 +α with α =

√
3

6 . Let ξni
be the functionξ evaluated at the abscissae values,ξni = ξ(tn + cih), i = 1, 2. The resulting fourth
order quadrature method based on the Cayley transform is then given by

un4 = 1
2h(ξn1 + ξn2 )− 1

4
√

3
h2[ξn1 , ξ

n
2 ]− 1

96h
3(ξn1 + ξn2 )3

yn+1 = Φ(cay(un4 ), yn).

qq6a: (quadrature method of order six on quadratic Lie groups)
Consider the Gauss-Legendre weights of order6: c1 = 1

2 − α, c2 = 1
2 and c3 = 1

2 + α with

α =
√

15
10 , and let againξni = ξ(tn + cih), i = 1, . . . , 3, be the functionξ evaluated at the abscissae

values. Letωn1 , ωn2 andωn3 be defined as follows:

ξn1 = ωn1 − αhωn2 + (αh)2ωn3 , ξn2 = ωn1 and ξn3 = ωn1 + αhωn2 + (αh)2ωn3 .
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The resulting sixth order quadrature method based on the Cayley transform is then given by

un6 = hω1 + 1
12h

3(ω3 − [ω1, ω2]− ω3
1)

+ h5
(

1
240

(
[ω2, ω3]− [ω2, [ω1, ω2]]− ω2

1ω3 − ω3ω
2
1 + [ω1ω2ω1, ω1]

)
− 1

80ω1ω3ω1 + 1
120 ([ω3

1 , ω2] + ω5
1)
)

yn+1 = Φ(cay(un6 ), yn).

A.2.5 Fer expansion methods

The Fer expansion was introduced by Fer [11] as a method of solving matrix differential equations in
Euclidean space of the form

y′ = f(t)y, y(0) = y0. (A.5)

Iserles [16] proposed numerical methods based on a similar construction. They both showed that the
solution of (A.5) can be expressed as an infinite product of exponentials:

y(t) = lim
n→∞

exp
(
B0(t)

)
exp

(
B1(t)

)
· · · exp

(
Bn(t)

)
y0, (A.6)

in a neighborhood of0. TheBi are matrix valued functions, and they can be computed iteratively. By
lettingA0(t) = f(t), we obtainB0(t) =

∫ t
0
A0(τ) dτ . Furthermore, we constructC0,k asC0,0(t) = A0(t)

andC0,i+1(t) = [C0,i(t), B0(t)], i = 0, 1, . . .. Here,[·, ·] denotes the matrix commutator.Ak+1(t) and
Bk+1(t) are now computed as follows:

Ak+1(t) =
∞∑
i=1

i

(i+ 1)!
Ck,i(t),

whereCk,0(t) = Ak(t) andCk,i+1(t) = [Ck,i(t), Bk(t)], i = 0, 1, . . ., withBk+1(t) =
∫ t

0
Ak+1(τ) dτ .

In DiffMan, we view the differential equation in a generalized setting:

y′ = ξM(t), y(0) = y0 ∈M. (A.7)

The numerical procedure generates at each step an elementgn ∈ G which we use to advance the numerical
solution fromyn to yn+1:

yn+1 = Φ(gn, yn)

This procedure is only valid whenξ is a function oft only. It is, however, possible to extend this algorithm
to also cope withy-dependent functions. This has been analysed in [43, 42].

The Fer expansion methods integrating problem (A.7) are implemented according to the algorithms pre-
sented in [16]. The implementation of the algorithm is not straight-forward. We have, therefore, only
implemented inDiffMan methods up to order6 with n ≤ 2 in (A.6). The algorithm is as follows (see
also [16]):

Let A0(t) = ξ(t). Assume we are given the coefficientsc(j)i andw(j)
i , i = 1, . . . , s and

j = 1, . . . ,m. Setc(2)
0 = 0 andB0(t0, 0) = 0. Evaluate, for every1 ≤ i ≤ s,

B0

(
t0, c

(2)
i h

)
=B0

(
t0, c

(2)
i−1h

)
+
(
c
(2)
i − c

(2)
i−1

)
h

s∑
j=1

w
(1)
j A0

(
t0 +

(
c
(2)
i−1 + (c(2)

i − c
(2)
i−1)c(1)

j

)
h
)
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and

C0,0

(
t0 + c

(2)
i h

)
= A0

(
t0 + c

(2)
i

)
C0,k

(
t0 + c

(2)
i h

)
=
[
C0,k−1

(
t0 + c

(2)
i h

)
, B0

(
t0, c

(2)
i h

)]
, 1 ≤ k ≤ p− 1.

Then

A1

(
t0 + c

(2)
i h

)
=

p−1∑
k=1

k

(k + 1)!
C0,k

(
t0 + c

(2)
i h

)
,

and

B1(t0, h) = h
s∑
i=1

w
(2)
i A1

(
t0 + c

(2)
i h

)
.

The generalized Fer expansion methods that solvey′ = ξM(t, y), y(0) = y0 ∈ M, are implemented
according to the algorithms presented in [43, 42]. These methods are based on the collocation idea. Again,
the general implementation procedure is not straight-forward, so we have only implemented a few particular
methods.

Assume that approximationsξi ≈ ξ
(
tn+ cih, y(tn+ cih)

)
, i = 1, . . . , s, are known. Based in these values

we approximate the functionξ aroundt = tn, with its Lagrangian interpolating polynomial at the abscissae
valuesc1, . . . , cs as in (A.4). By inserting the interpolating polynomial into the Fer expansion, a method
solving the general problem is obtained. As in the classical case, the collocation methods are necessarily
implicit. However, it is possible to derive relaxed collocation schemes that are explicit.

The two collocation based Fer methods inDiffMan 2.0 areFRC3 andFC4:

FRC3: (Fer expansion method of order3 based on relaxed collocation)

Y1 = yn, ξ1 = ξ(tn, Y1),
Y2 = Φ

(
exp

(
h
2 ξ1
)
, yn
)
, ξ2 = ξ

(
tn + h

2 , Y2

)
,

Y3 = Φ
(

exp
(
h(−ξ1 + 2ξ2)

)
, yn
)
, ξ3 = ξ

(
tn + h, Y3

)
,

with

yn+1 = Φ
(

exp
(
h
(

1
6ξ1 + 2

3ξ2 + 1
6ξ3
))

exp
(
− h2

2

[
ξ1 − ξ3, 2

15ξ2 + 1
30ξ3

])
, yn
)
.

FC4: (Fer expansion method of order4 based on collocation)
Solve the following system

ξ12 = [ξ1, ξ2], ξ13 = [ξ1, ξ3], ξ23 = [ξ2, ξ3]

Y1 = yn

K1 = 5
24ξ1 + 1

3ξ2 −
1
24ξ3, K2 = − 11

240ξ12 + 1
240ξ13 − 1

240ξ23

Y2 = Φ(exp(hK1) exp
(
h2

2 K2

)
, yn)

K1 = 1
6ξ1 + 2

3ξ2 + 1
6ξ3, K2 = − 2

15ξ12 − 1
30ξ13 − 2

15ξ23

Y3 = Φ(exp(hK1) exp
(
h2

2 K2

)
, yn),
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whereξi = ξ(tn + cih, Yi), i = 1, 2, 3. Advance the solution by computing

U1 = h
(

1
6ξ1 + 2

3ξ2 + 1
6ξ3
)

K12 = [ξ1, ξ2], K13 = [ξ1, ξ3], K23 = [ξ2, ξ3]

U2 = h2

2

(
− 2

15K12 − 1
30K13 − 2

15K23

)
Ỹ1 = − 8

315ξ1 −
17
315ξ2 −

17
5670ξ3, K1 = [K12, Ỹ1],

Ỹ2 = − 1
168ξ1 −

1
45ξ2 + 13

5670ξ3, K2 = [K13, Ỹ2],

Ỹ3 = − 1
42ξ1 −

5
63ξ2 −

1
126ξ3, K3 = [K23, Ỹ3]

U3 = h3

3 (K1 +K2 +K3),

and finally,

yn+1 = Φ(exp(U1) exp(U2 + U3), yn).

A.2.6 Crouch–Grossman methods

The Crouch–Grossman methods were first described in [4], and a general theory describing the order
conditions was presented in [37].

Assume that there exists a frame on the manifoldM, i.e. a set of vector fieldsE1, . . . , Ed onM, which at
each pointp ∈ M span the tangent spaceTM|p. A differential equation onM can be written in terms of
this frame as

y′ = Fy(y) =
d∑
i=1

fi(y)Ei, wherefi :M→ R are smooth functions. (A.8)

LetFp denote the vector field with coefficients frozen atp relative to the frame:

Fp(y) =
d∑
i=1

fi(p)Ei.

Let g be the Lie algebra generated by the frameE1, . . . , Ed and letG ⊂ Diff(M) be the collection of
flows onM generated by exponentiatingg. Furthermore, letλ : g ×M → M be the flow operator, i.e.
y(t) = λ(tF, q) is the solution ofy′ = F (y) with y(0) = q. Since

d
dt

∣∣∣∣
t=0

λ(tFy, q) = Fy
(
y(t)

)∣∣
t=0

= Fy(q),

it follows that (A.8) is an equation of the form (A.1).

Algorithm A.2.6 (Crouch–Grossman methods)
LetA = (aij), b = (bj) and c = (cj) be the coefficients of an s-stage, qth order Crouch–Grossman method
(see e.g. [37]). The following algorithm integrates (A.8) from t = tn to t = tn + h:
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Assume thatyn ≈ y(tn) is available

for i = 1, 2, . . . , s
Yi = yn

for j = 1, 2, . . . , s
Yi = λ(haijFYj , Yi)

end

end

yn+1 = yn

for i = 1, 2, . . . , s
yn+1 = λ(hbiFYi , yn+1)

end

The flow operatorλ is given asλ(v, p) = Φ
(

exp(v), p
)
. In Eucliden space this algorithm reduces to the

classical Runge–Kutta algorithm.





Appendix B

Available time stepper schemes

The schemes available inDiffMan 2.0 are

Classical Runge-Kutta coefficients: explicit methods

1 ’E1’ - Explicit Euler, order 1
2 ’ME2’ - Modified Euler, order 2
3 ’heun2’ - Heun’s 2nd order method
4 ’ode23’ - The method implemented in the MATLAB

ode23 routine
5 ’moan25’ - Moan’s method, order 2(5)
6 ’moan35’ - Moan’s method, order 3(5)
7 ’RK4’ - "The" Runge-Kutta method, order 4
8 ’rk45’ - Runge-Kutta method, order 4(5)
9 ’RKF34’ - Fehlberg’s method of order 3(4)

10 ’RKF43’ - Fehlberg’s method of order 4(3)
11 ’RKF45a’ - Fehlberg’s method of order 4(5) (a)
12 ’RKF54a’ - Fehlberg’s method of order 5(4) (a)
13 ’RKF45b’ - Fehlberg’s method of order 4(5) (b)
14 ’RKF54b’ - Fehlberg’s method of order 5(4) (b)
15 ’dopri45’ - Dormand and Prince’s method of order 4(5)
16 ’dopri54’ - Dormand and Prince’s method of order 5(4)
17 ’butcher6’ - Butcher’s method, order 6
18 ’RKF78’ - Fehlberg’s method of order 7(8)
19 ’RKF87’ - Fehlberg’s method of order 8(7)
20 ’dopri78’ - Dormand and Prince’s method of order 7(8)
21 ’dopri87’ - Dormand and Prince’s method of order 8(7)

Classical Runge-Kutta coefficients: implicit methods

300 ’IE1’ - Implicit Euler, order 1
301 ’GL2’ ’IM2’ - Gauss-Legendre/implicit midpoint, order 2
302 ’GL4’ - Gauss-Legendre, order 4
303 ’GL6’ - Gauss-Legendre, order 6
304 ’TRAP2’ - Trapozoidal rule of 2nd order.
305 ’GL4S’ - Time symmetric GL method of order 4
306 ’GL6S’ - Time symmetric GL method of order 6
307 ’LobattoIIIA4’ - Lobatto IIIA method of order 4.
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308 ’LobattoIIIA6’ - Lobatto IIIA method of order 6.

Crouch-Grossman methods

500 ’CG23’ - Crouch-Grossman method of order 2(3)
501 ’CG3a’ - Crouch-Grossman method of order 3
502 ’CG43’ - Crouch-Grossman method of order 4(3)
503 ’CG34’ - Crouch-Grossman method of order 3(4)
504 ’CG4a’ - Crouch-Grossman method of order 4
505 ’CG5a’ - Crouch-Grossman method of order 5.

From: jackiewicz1999cor.
506 ’CG4test’ - Symmetric Crouch-Grossman method of

order 4

Magnus type methods

600 ’M4a’ - Magnus method of order 4
601 ’M6a’ - Magnus method of order 6
602 ’MRC3’ - Magnus method of order 3 based on

relaxed collocation
603 ’MRC4’ - Magnus method of order 4 based on

relaxed collocation

Fer type methods

700 ’fer2a’ - Fer method of order 2
701 ’fer4G2’ - Fer method of order 4 based on

Gaussian quadrature
702 ’fer5GR’ - Fer method of order 5 based on

Gauss-Radau quadrature
703 ’fer6G3’ - Fer method of order 6 based on

Gaussian quadrature
704 ’fer6GLR’ - Fer method of order 6 based on

Gaussian quadrature
705 ’FRC3’ - Fer method of order 3 based on

relaxed collocation
706 ’FRC4’ - Fer method of order 4 based on

relaxed collocation

Special kind of coefficients for particular methods

1000 ’qq4a’ - Quadrature method for quadratic Lie
groups. Order 4.

1001 ’qq6a’ - Quadrature method for quadratic Lie
groups. Order 6.

1002 ’SE1’ - Partitioned Munthe-Kaas method. Based
on the Euler coefficients. Order 1.

1003 ’VER2’ - Partitioned Munthe-Kaas
method. Based on the Euler
coefficients. Order 2.

1004 ’LobattoIII4’ - Partitioned Munthe-Kaas method. Based
on the Lobatto III coefficients. Order 4.

You can refer to either the number of the method or to its abbreviated name. The following fields are
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returned:

.RKname - name of the method

.RKa - matrix A from the method’s Butcher tableau

.RKb - vector b from the method’s Butcher tableau

.RKc - vector c from the method’s Butcher tableau or the
abscissae values in case of Magnus methods

.RKns - number of stages in the method

.RKord - order of the method

.RKtype - type of the method (’explicit’, ’implicit’, ’SDIRK’)

.RKbhat - vector bhat from the method’s Butcher tableau
(used in error estimation)

You may add new schemes in the file:
DiffMan/flow/timestepper/@timestepper/setmethod.m
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Summary of virtual superclass
functions

C.1 Functions in@liealgebra

basis(a,i)
Returns the i’th basis vector in the Lie algebra.

dcay(a,b,ord)
The differential of the Cayley transform.

dcaycay(x,z,ord)
The differential of the Cayley coordinates of the second kind.

dcaycayinv(x,z,ord)
Inverse of the differential of Cayley coord. of the second kind.

dcayinv(a,b,ord)
The inverse of the differential of the Cayley transform.

dexp(a,b,ord)
The ord’th order approximation of the differential of exp.

dexpexp(x,z,ord)
The differential of canonical coordinates of the second kind.

dexpexpinv(x,z,ord)
Inverse of differential of canonical coord. of the second kind.

dexpinv(a,b,ord)
The ord’th order approximation of the inverse differential of exp.

dexpinvtest(a,b,ord)
The ord’th order approximation of the inverse differential of exp.

dimension(a)
Returns the dimension of the Lie algebra vectorspace.

display(obj)
Display a LIEALGEBRA object, or objects from a daugther class.

dist(a,b)
Distance metric function on the Lie algebra.

dpade22(x,z,ord)
Differential of the (2,2) Pade’ approximation of exponential map.

dpade22inv(x,z,ord)
Inverse differential of the (2,2) Pade’ approximation.

eig(a)
Overloaded version of the MATLAB built-in eigenvalue function.

getdata(g)
Returns the data that represents the element g in the Lie algebra.
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getmatrix(g)
Returns the matrix representation of g in the Lie algebra.

getshape(g)
Returns shape information if the Lie algebra is dynamically subtyped.

getvector(g)
Returns a column vector representing g in the Lie algebra.

hasmatrix(g)
Checks if the Lie algebra has a matrix representation.

hasshape(g)
Checks if the Lie algebra has dynamic shape information.

horzcat(a,b)
Commutator in Lie algebra.

isabelian(a)
Checks whether or not a Lie algebra is Abelian.

isdata(a,m)
Checks if m could be data for an element in Lie algebra.

ismatrix(a,m)
Checks if m is a possible matrix representation in the Lie algebra.

liealgebra(varargin)
Constructor for virtual superclass of all liealgebras.

liegroup(a)
Picks out the liegroup corresponding to the liealgebra.

minus(u,v)
Vector subtraction in Lie algebra.

mtimes(u,v)
Scalar multiplication in Lie algebra.

norm(a,alt)
Overloaded version of the MATLAB built-in norm function.

plus(u,v)
Vector addition in Lie algebra.

project(a,m)
Returns a matrix v which is acceptable by the Lie algebra.

random(lalg)
Creates a random object in the Lie algebra.

sameshape(a,b)
Chechs if a and b belong to the same Lie algebra.

setdata(a,m)
Sets m to be the data of a.

setmatrix(a,m)
Sets m to be the matrix data of a.

setshape(a,sh)
Sets shape information in g.

setvector(a,v)
Sets v to be the vector data of a.

uminus(u)
Unary minus in Lie algebra.

zero(lalg)
Create the zero object in a Lie algebra.

zeros(obj,sz)
Creating an array of objects initalized to zero(obj).
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C.2 Functions in@liegroup

cay(lgr,a)
Computes the Cayley transform from Lie algebra to Lie group.

caycay(lgr,a)
Computes Cayley coordinates of the second kind.

display(obj)
Display a LIEGROUP object, or objects from a daugther class.

dist(a,b)
Distance metric function on the Lie group.

eig(a)
Overloaded version of the MATLAB built-in eigenvalue function.

exp(lgr,a)
Computes the exponential from the Lie algebra to the Lie group.

expexp(lgr,a)
Computes canonical coordinates of the second kind.

getdata(g)
Returns data that represents the element g in the Lie group.

getmatrix(g)
Returns matrix data that represents the element in the Lie group.

getshape(g)
Returns shape information if the Lie group is dynamically subtyped.

hasmatrix(g)
Returns if the Lie group has a matrix representation.

hasshape(g)
Checks if the Lie group has dynamic shape information.

identity(a)
Returns the identity object in the Lie group of a.

inv(a)
The invers of an element in the Lie group.

invcay(a)
Computes the inverse Cayley coordinates of the first kind.

invcaycay(a)
Computes the inverse Cayley coordinates of the second kind.

invexpexp(a)
Computes inverse Canonical coordinates of the second kind.

invpade22(a)
The inverse (2,2) diagonal Pade’ coordinates of first kind.

isabelian(a)
Returns if the Lie group is Abelian or not.

isdata(a,m)
Checks if m is data representation for the Lie group.

ismatrix(a,m)
Checks if m is a matrix representation for the Lie group.

liealgebra(a)
Picks out the liealgebra corresponding to the lie group.

liegroup(varargin)
Constructor for LIEGROUP objects.

log(a)
Computes the logarithm from the Lie group to the Lie algebra.

mtimes(a,b)
The binary operation of two elements in the Lie group.

norm(a,alt)
Overloaded version of the MATLAB built-in norm function.

pade22(lgr,a)
Computes the (2,2) Pade’ approximation of the exponential.
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project(a,m)
Returns a matrix v acceptable by the Lie group.

random(a)
Creates a random object in the Lie group.

sameshape(a,b)
Chechs if a and b belong to the same Lie group.

setdata(a,m)
Sets m to be the data repr. of a.

setmatrix(a,m)
Sets m to be the matrix repr. of a.

setshape(a,sh)
Sets shape information in g.
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C.3 Functions in@hmanifold

display(obj)
Display a HMANIFOLD object, or objects from daugther classes.

dist(a,b)
Distance metric function on the homogeneous manifold.

getdata(g)
Returns data representation of element in homogeneous space.

getshape(g)
Returns shape information of the homogeneous space.

hasshape(g)
Checks if the homogeneous space has dynamic shape information.

hmanifold(varargin)
Constructor for HMANIFOLD-objects.

invlambda(p,q)
Returns an object v in the Lie algebra such that lambda(v,p) = q.

isdata(a,m)
Checks if m is a data representation for the homogeneous space.

lambda(a,m,coord)
The action of the Lie algebra on the manifold.

liealgebra(a)
Picks out the liealgebra of the homogeneous space.

origin(a)
Returns the origin in the homogeneous space.

project(a,m)
Projects to a matrix acceptable in the homogeneous space.

random(a)
Creates a random object in the homogeneous space.

sameshape(a,b)
Checks if input has the same shape information.

setdata(a,m)
Sets the data representation of a homogenous space object.

setshape(a,sh)
Sets the shape information in a homogeneous space object.

stabilizer(a)
Returns a matrix spanning the stabilizer subalgebra.

zeros(obj,sz)
Creates an array of objects initalized to the origin object.
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C.4 Functions in@vectorfield

display(obj)
Display a VECTORFIELD object.

getdomain(f)
Returns object in domain over which the vector field is defined.

geteqntype(f)
Returns the type of the equation.

getfm2g(f)
Returns the map describing the vector field.

setdomain(vf,dom)
Sets dom to be the domain of the vector field vf.

seteqntype(vf,type)
Sets the equation-type-field of vf equal to ’type’.

setfm2g(vf,map)
Sets the map describing the differential equation.

vectorfield(varargin)
Constructor for the vector field class.
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C.5 Functions in@flow

display(obj)
Display a FLOW object.

flow(varargin)
Constructor for the flow class.

getdefaults(f)
Returns the default values of the flow object.

gettimestepper(f)
Returns the timestepper used by the flow.

getvectorfield(f)
Returns the vector field defining the flow.

newstepsize(fl,varargin)
Computes a new step size to be used by time stepper objects.

setdefaults(f,varargin)
Sets the defaults of the flow f to ts.

settimestepper(f,ts)
Sets the timestepper of the flow f to ts.

setvectorfield(f,vf)
Sets the vector field of the flow f to vf.

subsref(f,s)
Overloads the parenthesis for flow objects.
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C.6 Functions in@timestepper

display(obj)
Display a TIMESTEPPER object.

getcoordinate(ts)
Returns the coordinates used by the timestepper object.

getmethod(ts)
Returns the name of the integration scheme used.

setcoordinate(ts,coord)
Sets the coordinates to be used by the timestepper object.

setmethod(ts,method)
Assignes the numerical scheme to be used by the timestepper object.

subsref(ts,s)
This function overloads the parenthesis of a timestepper object.

timestepper(varargin)
Constructor TIMESTEPPER virtual superclass.
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