
INFINITE GROUP PROBLEM CODE:

FIGURES TEST SUITE

Abstract. The purpose of this file is to verify that changes to the code do not cause regressions in the plotting output. In

particular, we verify that the code samples in figure captions of published papers can create the same (or improved) figures.

This file should be visually inspected periodically.

1. Figures from Light on the Infinite Group Relaxation

Figure 1. The hierarchy of valid, minimal, and extreme functions by example. . . Even without checking the
dominance, it is easy to see that some functions cannot be minimal: they have some function values larger
than 1 (international orange), but minimal valid functions are upper bounded by 1.

Figure 2. This function (h = not_extreme_1()) is minimal, but not extreme (and hence also not a facet),
as proved by extremality_test(h, show_plots=True). The procedure first shows that for any distinct
minimal ⇡1 = ⇡+ ⇡̄ (blue), ⇡2 = ⇡� ⇡̄ (red) such that ⇡ = 1

2⇡
1+ 1

2⇡
2, the functions ⇡1 and ⇡2 are continuous

piecewise linear with the same breakpoints as ⇡. A finite-dimensional extremality test then finds two linearly
independent perturbations ⇡̄ (magenta), as shown.
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2 INFINITE GROUP PROBLEM CODE: FIGURES TEST SUITE

Figure 3. Two diagrams of a function (blue graphs on the top and the left) and its polyhedral complex
�P (gray solid lines), as plotted by the command plot_2d_diagram(h). Left, h = gj_forward_3_slope()

(left). Right, h = not_minimal_2(). The set E(⇡) in both cases is the union of the faces shaded in green.
The heavy diagonal green line x + y = f corresponds to the symmetry condition. Vertices of �P do not
necessarily project (dotted gray lines) to breakpoints. Vertices of the complex on which �⇡ < 0 are shown as
red dots. At the borders, the projections pi(F ) of two-dimensional additive faces are shown as gray shadows :
p1(F ) at the top border, p2(F ) at the left border, p3(F ) at the bottom and the right borders.

Figure 4. Diagram of a function (blue graphs on the top and the left) on the evenly spaced complex P 1
10Z

and the corresponding complex �P 1
10Z (gray solid lines), as plotted by the command plot_2d_diagram(h),

where h = not_extreme_1(). Faces of the complex on which �⇡ = 0, i.e., additivity holds, are shaded

green. The heavy diagonal green lines x+ y = f and x+ y = 1 + f correspond to the symmetry condition.
At the borders, the projections pi(F ) of two-dimensional additive faces are shown as gray shadows : p1(F ) at
the top border, p2(F ) at the left border, p3(F ) at the bottom and the right borders. Since the breakpoints
of P 1

10Z are equally spaced, also �P 1
10Z is very uniform, consisting only of points, lines, and triangles, and

the projections are either a breakpoint in P 1
10Z or an interval in P 1

10Z; compare with Figure 3.
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Figure 5. A diagram of a function of the type gmic (blue graphs on the top and the left) and its polyhe-
dral complex �P (gray solid lines), as plotted by the command plot_2d_diagram(gmic(f=2/3)). There
are three combinatorial types of these diagrams, depending on whether f <

1
2 , f = 1

2 , or f >

1
2 . No

matter what f is, the additivity domain E(⇡) is the union of the faces F1 = F ([0, f ], [0, f ], [0, f ]) and
F2 = F ([f, 1], [f, 1], [1 + f, 2]), shaded in green. At the borders of each diagram, the projections pi(F ) of
two-dimensional additive faces are shown as gray shadows: p1(F ) at the top border, p2(F ) at the left border,
p3(F ) at the bottom and the right borders.

�!

Figure 6. A pointwise limit of extreme functions that is not extreme. Consider the sequence of continuous
extreme functions of type gj_2_slope_repeat set up for any n 2 Z+ by h = drlm_gj_2_slope_extreme_

limit_to_nonextreme(n). For example, n = 3 (left) and n = 50 (center). This sequence converges to a
non-extreme discontinuous minimal valid function, set up with h = drlm_gj_2_slope_extreme_limit_to_

nonextreme() (right). The limit function ⇡ (black) is shown with two minimal functions ⇡1 (blue), ⇡2 (red)
such that ⇡ = 1

2 (⇡
1 + ⇡

2).
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�!

Figure 7. A uniform limit of extreme functions that is not extreme. The sequence of extreme functions
of type bhk_irrational, set up with h = bhk_irrational_extreme_limit_to_rational_nonextreme(n)

where n = 1 (left), n = 2 (center), . . . converges to a non-extreme function, set up with h = bhk_

irrational_extreme_limit_to_rational_nonextreme() (right). The limit function ⇡ (black) is shown
with two minimal functions ⇡1 (blue), ⇡2 (red) such that ⇡ = 1

2 (⇡
1 + ⇡

2) and a scaling of the perturbation
function ⇡̄ = ⇡

1 � ⇡ (magenta).

�!

Figure 8. First steps ( 0 = gmic(),  1,  2) in the construction of the continuous non–piecewise linear
limit function  = bccz_counterexample().

Figure 9. This function (h = drlm_not_extreme_1()) is minimal, but not extreme (and hence also not
a facet), as proved by extremality_test(h, show_plots=True) by demonstrating a perturbation. The
red and blue perturbations describe the minimal functions ⇡1

,⇡

2 that verify that ⇡ is not extreme. These
minimal functions necessarily have more breakpoints than ⇡. This is because ⇡| 1

qZ with q = 7, as depicted

in the middle figure, is extreme for the finite group problem Rf (
1
qZ,Z). However, ⇡| 1

2qZ is not extreme for

Rf (
1
2qZ,Z). The discrete perturbations, depicted on the right, are interpolated to obtain the continuous

functions ⇡1
,⇡

2.
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Table 1. An updated compendium of known extreme functions for the infinite group problem V. Procedures.

Graphs

Procedurea From To Notes

automorphism From Johnson

multiplicative_homomorphism

projected_sequential_merge Operation ⌃1
n from Dey–Richard

restrict_to_finite_group Restrictions to finite group problems
Rf (

1
qZ,Z) preserve extremality if f

and all breakpoints lie in 1
qZ.

restrict_to_finite_group

(oversampling=3)

If oversampling by a factor m �
3, the restriction is extreme for
Rf (

1
mqZ,Z) if and only if the original

function is extreme.

interpolate_to_infinite_group Interpolation from finite group prob-
lems Rf (

1
qZ,Z) preserves minimality,

but in general not extremality.

two_slope_fill_in Described by Gomory–Johnson,
Johnson. For k = 1, if minimal, equal
to interpolate_to_infinite_

group (above).

a
A procedure name shown in typewriter font is the name of the corresponding function in the accompanying Sage program.



2. Figures from An electronic compendium of extreme functions for the Gomory–Johnson infinite group problem

Figure 1. Diagram of the function rlm_dpl1_extreme_3a (blue graphs on the top and the left) and its
polyhedral complex �P (gray solid lines). The set E(⇡) is the union of the faces shaded in green. The heavy
diagonal green line x+ y = 1 + f corresponds to the symmetry condition (the line x+ y = f appears as an
edge of F1). Vertices of �P do not necessarily project (dotted gray lines) to breakpoints. At the borders,
the projections pi(F ) of two-dimensional additive faces are shown as gray shadows : p1(F ) at the top border,
p2(F ) at the left border, p3(F ) at the bottom and the right borders.

Figure 2. The function chen_3_slope_not_extreme is minimal, but not extreme, as proved by
extremality_test(h, show_plots=True). The procedure first shows that for any distinct minimal
⇡

1 = ⇡ + ⇡̄ (blue), ⇡

2 = ⇡ � ⇡̄ (red) such that ⇡ = 1
2⇡

1 + 1
2⇡

2, the functions ⇡

1 and ⇡

2 are continu-
ous piecewise linear with the same breakpoints as ⇡. A finite-dimensional extremality test then finds a
perturbation ⇡̄ (magenta), as shown.
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Figure 3. The drlm_backward_3_slope function

Figure 4. The kf_n_step_mir function



3. Electronic compendium

Table 1. An overview of the Electronic Compendium of extreme functions, available at https://github.
com/mkoeppe/infinite-group-relaxation-code

gmic gj_2_slope gj_2_slope_repeat dg_2_step_mir kf_n_step_mir

bccz_counterexample gj_forward_3_slope drlm_backward_3_slope dr_projected_sequential_merge_

3_slope

bhk_irrational

chen_4_slope hildebrand_5_slope_22_1 ll_strong_fractional dg_2_step_mir_limit drlm_2_slope_limit

drlm_3_slope_limit rlm_dpl1_extreme_3a hildebrand_2_sided_discont_1_

slope_1

hildebrand_2_sided_discont_2_

slope_1

hildebrand_discont_3_slope_1

hildebrand_5_slope_22_1 kzh_7_slope_1 kzh_28_slope_1

1



4. Figures from New computer-based search strategies for extreme functions

of the Gomory–Johnson infinite group problem

Figure 1. The 2-slope extreme function gj_2_slope, discovered by Gomory and Johnson. Left, gj_2_
slope for the finite group problem with q = 5 and f = 3

5 , obtained by restrict_to_finite_group(gj_

2_slope()). It is a discrete function whose interpolation is the right subfigure. Right, gj_2_slope for the
infinite group problem with f = 3

5 . It is a continuous piecewise linear function with two slopes, although it

has four pieces. Its restriction to 1
5Z is the left subfigure.

Figure 2. The q ⇥ v grid discretization of the space of continuous piecewise linear functions with rational
data. Here q = 8 and v = 6.
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https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_2_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_2_slope(%22
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Figure 3. A 28-slope extreme function kzh_28_slope_1 found by our search code. Each color in the
plotting corresponds to a di↵erent slope value.

Figure 4. The example kzh_2q_example_1, showing that an oversampling factor of m = 3 is best possible.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_28_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_2q_example_1(%22
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Figure 9. The 5-slope extreme function kzh_5_slope_fulldim_1 found by our search code
(left). Its two-dimensional polyhedral complex �P (right), as plotted by the command plot_2d_

diagram(h,colorful=True), does not have any lower-dimensional maximal additive faces except for the
symmetry reflection or x = 0 or y = 0.

Figure 11. Special patterns on the two-dimensional polyhedral complex �P 1
qZ. Left, the �P 1

qZ of the

6-slope extreme function kzh_6_slope_1 with q = 58. We observe that the additive triangles are located in
the lower left and upper right corners. The function has the same slopes on the intervals that are projections
of the same color additive triangles. The 6-pointed star patterns appear several times. Right, the lower-left
corner of �P 1

qZ of the 10-slope extreme function kzh_10_slope_1 with q = 166, where we see that the 6-

pointed stars are actually the result of additivity patterns within certain intersecting quadrilaterals (black),
which connect like links of three chains.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_5_slope_fulldim_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+plot_2d_diagram(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+plot_2d_diagram(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_6_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_10_slope_1(%22


5. Figures from Equivariant Perturbation in Gomory and Johnson’s Infinite Group Problem. V. Software for the

continuous and discontinuous 1-row case

Figure 1. Two piecewise linear functions, as plotted by the command plot_with_colored_slopes(h).
Left, continuous extreme function h = gmic(). Right, random discontinuous function h = equiv5_random_

discont_1(), generated by random_piecewise_function(xgrid=5, ygrid=5, continuous_proba=1/3,

symmetry=True).

Figure 2. An example of a face F = F (I, J,K) of the 2-dimensional polyhedral complex �P, set up by F =

Face([[0.2, 0.3], [0.75, 0.85], [1, 1.2]]). It has vertices (blue) (0.2, 0.85), (0.3, 0.75), (0.3, 0.85),
(0.2, 0.8), (0.25, 0.75), whereas the other basic solutions (red) (0.2, 0.75), (0.2, 1), (0.3, 0.9), (0.35, 0.85),
(0.45, 0.75) are filtered out because they are infeasible. The face F has projections (gray shadows) I

0 =
p1(F ) = [0.2, 0.3] (top border), J 0 = p2(F ) = [0.75, 0.85] (left border), and K

0 = p3(F ) = [1, 1.15] (right
border). Note that K 0 ( K.
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Figure 3. Two diagrams of functions and their polyhedral complexes�P with colored cones at vert(�P), as
plotted by the command plot_2d_diagram_with_cones(h). Left, continuous function h = not_minimal_

2(). Right, random discontinuous function h = equiv5_random_discont_1().

Figure 4. Diagrams of �P of a continuous function h = example7slopecoarse2(), with (left) additive
vertices as plotted by the command plot_2d_diagram_with_cones(h); (right) maximal additive faces as
plotted by the command plot_2d_diagram(h).
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Figure 5. Diagrams of�P of a discontinuous function h = hildebrand_discont_3_slope_1(), with (left)
additive limiting cones as plotted by the command plot_2d_diagram_with_cones(h); (right) additive faces
as plotted by the command plot_2d_diagram(h).

Figure 6. Compute the (directly) covered intervals for ⇡ = gj_2_slope(3/5,1/3).



15

Figure 7. Compute the (directly and indirectly) covered intervals for ⇡ = hildebrand_discont_3_slope_1()

Table 3. A sample Sage session on the extremality test

Table 4. A sample Sage session on discrete functions for the finite group problem.



6. Figures from Equivariant Perturbation in Gomory and Johnson’s Infinite

Group Problem. VI. The Curious Case of Two-Sided Discontinuous Minimal

Valid Functions

Figure 1. This function, ⇡ = zhou two sided discontinuous

cannot assume any continuity, is minimal, but not extreme, as

proved by extremality test(⇡, show plots=True). The procedure

first shows that for any distinct minimal ⇡1
= ⇡ + ⇡̄ (blue),

⇡2
= ⇡ � ⇡̄ (red) such that ⇡ =

1
2⇡

1
+

1
2⇡

2
, the functions ⇡1

and ⇡2
are piecewise linear with the same breakpoints as ⇡ and

possible additional breakpoints at

1
4 and

3
4 . The open intervals

between these breakpoints are covered. A finite-dimensional ex-

tremality test then finds exactly one linearly independent pertur-

bation ⇡̄ (magenta), as shown. Thus all nontrivial perturbations

are discontinuous at

3
4 , a point where ⇡ is continuous.

Figure 2. This function, ⇡ = kzh minimal has only crazy

perturbation 1, has three slopes (blue, green, red) and is discon-

tinuous on both sides of the origin. It is a non-extreme minimal

valid function, but in order to demonstrate non-extremality, one

needs to use a highly discontinuous (locally microperiodic) pertur-

bation. We construct a simple explicit example perturbation "⇡̄
(magenta). It takes three values, ", 0, and �" (horizontal magenta

line segments) where " = 0.0003; in the figure it has been rescaled

to amplitude

1
10 .
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Case 1

Case 3

Case 2

Figure 3. Illustration of the proof for U . Three partial dia-

grams of �P, where the tangent cone C of a two-dimensional face

F 2 �P at vertex (u, v) is a (left, Case 1): right-angle cone (first

quadrant); (bottom, Case 2): obtuse-angle cone; (right, Case 3):

sharp-angle cone (contained in a second quadrant). The light green

area C⌘ is contained in the face F . The green sector at (u, v) in-
dicates that �⇡F (u, v) = 0. The black points inside the light green

area show the sequences used in the proof.

Case 1 and Case 2

Case 3

Figure 4. Illustration of the proof for V .
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Case 1 and Case 2

Case 3a

Case 3b

Figure 5. Illustration of the proof for W


