
pySDC Tutorial @ PinT12
Before we start...

If you want to participate actively:

Go to the README file and start the installation process:
http://bit.ly/pySDC23

Ideally, you end up with. . .
A suitable (and virtual!) Python environment
A working Jupyter Notebook installation
A copy of the pySDC code, e.g., by cloning from GitHub
A passing test suite

Thomas will be here to help you

Don’t worry if something doesn’t work, the tutorial can also be done on your own, at your own pace.

Member of the Helmholtz Association July 19, 2023 Slide 1

http://bit.ly/pySDC23


pySDC Tutorial @ PinT12

July 19, 2023 Robert Speck, Thomas Baumann Jülich Supercomputing Centre

Member of the Helmholtz Association



Acknowledgements

This project has received funding from the European
High-Performance Computing Joint Undertaking (JU) under grant
agreement No 955701. The JU receives support from the European
Union’s Horizon 2020 research and innovation programme and
Belgium, France, Germany, Switzerland.

This project has received funding from the German Federal Ministry
of Education and Research through the ParaPhase project within
the framework “IKT 2020 - Forschung für Innovationen” (project
number 01IH15005A).

Member of the Helmholtz Association July 19, 2023 Slide 2



SDC and PFASST implementations
FAQ: “Is it hard to use SDC/PFASST?”

Yes
... if you already have a full-fledged application or
... if you need/want your own time integrator

No
... if your code allows access to the ODE’s right-hand side etc. or
... if you have a lot of time (or Oompa Loompas)

To cover as many scenarios as possible, you can choose between (at least) 3 codes:
1 the prototyping framework pySDC

the “playground”

2 the standalone HPC code libpfasst

the “library”

3 the DUNE module dune-PFASST

the “specialist”

Member of the Helmholtz Association July 19, 2023 Slide 3



SDC and PFASST implementations
FAQ: “Is it hard to use SDC/PFASST?”

Yes
... if you already have a full-fledged application or
... if you need/want your own time integrator

No
... if your code allows access to the ODE’s right-hand side etc. or
... if you have a lot of time (or Oompa Loompas)

To cover as many scenarios as possible, you can choose between (at least) 3 codes:
1 the prototyping framework pySDC the “playground”
2 the standalone HPC code libpfasst the “library”
3 the DUNE module dune-PFASST the “specialist”

Member of the Helmholtz Association July 19, 2023 Slide 3



pySDC - the playground

Landing page: https://parallel-in-time.org/pySDC

Properties:
purpose: prototyping, education, easy access, “test before you invest”
not (very) optimized, but well-documented, Python

Features:
many variants of SDC and PFASST
many examples, from heat equation to particles in an electromagnetic field
can use whatever data structure and solvers you want (e.g. FEniCS, PETSc)

Member of the Helmholtz Association July 19, 2023 Slide 4

https://parallel-in-time.org/pySDC


Some pySDC features
Tutorials and examples

Ships with a lot of examples
Results clearly defined
Copy from there ...
... no White Paper Syndrome

PETSc+FEniCS integration

Use their data structures,
discretization, solvers, ...
Use PETSc’s parallelization
Work in progress...

Parallel and serial
Serial algorithms
Pseudo-parallel algorithms
Time-parallel algorithms
Space-time parallel algorithms

CI/CD/CT

GitHub Pages...
...and GitHub Actions
Core features testing
Reproduce paper results

Member of the Helmholtz Association July 19, 2023 Slide 5



Why have more codes?
pySDC’s pros

many features from the SDC and PFASST universe
code is close to formulas in publications
well-documented, tutorials, many examples to copy from
easy to install, easy to port, easy to use
close-to-optimal time-to-simulation

pySDC’s cons
no memory optimization, no tuning for time-to-solution
hard to convince people to use Python for production (on this level)
hard to use within large, existing applications

Member of the Helmholtz Association July 19, 2023 Slide 6



Separation of concerns
Prototypes vs Specialists

Pro prototypes
Focus on math, numerics, algorithms
Fast(er) results here
No predetermination of a “field”

Pro specialists
Larger-scale applications possible
Some problems only show up “in real life”
HPC requires more thoughts/care

Alternative: Implement within existing time-integration framework (e.g. SUNDIALS, PETSc)
After initial struggles, code may be used for prototyping
After careful implementation, code can be used for applications
Broad user base, established software engineering workflows

Key obstacle: severe initial porting effort (which will probably pay off big time, though)

Member of the Helmholtz Association July 19, 2023 Slide 7



And now..

Let’s get going!

Member of the Helmholtz Association July 19, 2023 Slide 8



pySDC Tutorial @ PinT12

July 19, 2023 Robert Speck, Thomas Baumann Jülich Supercomputing Centre

Member of the Helmholtz Association


