
CLAM: Computational Linguistics
Application Mediator

version 0.9.7

Documentation

Maarten van Gompel
Center for Language Studies

Radboud University Nijmegen

P.O. Box 9103, NL-6500 HD Nijmegen, The Netherlands

URL: http://proycon.github.com/clam

November 4, 2013

Contents

1 Introduction 3

1.1 Intended Audience . 5

2 Documentation for Service Providers 6

2.1 Technical details . 6

2.1.1 Installation . 6

2.1.2 Using CLAM with Apache 2 10

2.1.3 Using CLAM with nginx 11

2.1.4 Using CLAM with other webservers 13

2.1.5 Troubleshooting . 13

2.2 Architecture . 14

2.3 Beginning a new CLAM project 16

2.4 Service configuration . 16

2.4.1 Server Administration 17

2.4.2 User Authentication . 18

2.4.3 Command Definition . 21

2.4.4 Paradigm: Metadata, Profiles & Parameters 22

1

2.4.5 Parameter Specification 25

2.4.6 Profile specification . 27

2.4.7 Control over filenames 31

2.4.8 Parameter Conditions 33

2.4.9 Converters . 35

2.4.10 Viewers . 35

2.4.11 Working with pre-installed data 37

2.4.12 Multiple profiles, identical input templates 38

2.4.13 Customising the web application 39

2.5 Wrapper script . 40

2.5.1 CLAM Data API . 41

3 Documentation for Service Clients 43

A RESTful specification 45

B Predefined Formats 50

2

Chapter 1

Introduction

The Computational Linguistics Application Mediator (CLAM) allows you to quickly
and transparently transform your Natural Language Processing application into a
RESTful webservice, with which automated clients can communicate, but which
at the same time also acts as a modern webapplication with which human end
users can interact. CLAM takes a description of your system and wraps itself
around the system, allowing clients or users to upload input files to your applica-
tion, start your application with specific parameters of their choice, and download
and view the output of the application. Whilst the application runs, users can
monitor its status.

CLAM is set up in a universal fashion, making it flexible enough to be wrapped
around a wide range of computational linguistic applications. These applications
are treated as a black box, of which only the parameters, input formats, and
output formats need to be described. The applications themselves need not be
network-aware in any way, nor aware of CLAM, and the handling and validation
of input can be taken care of by CLAM.

CLAM is entirely written in Python. It is set up in a modular fashion and as such
is easily extendable. It offers a rich API for writing clients and wrapper scripts.

The kind of applications that CLAM is intended for are Natural Language Pro-
cessing applications, usually of a kind that do some processing on a text corpus.
This corpus (any text file) can be uploaded by the user, or may be pre-installed
for the webservice. The NLP application is usually expected to produce a certain
output, which is subsequently made available through the webservice for viewing
and downloading.

3

The CLAM webservice is a RESTful webservice, meaning it uses the HTTP verbs
GET, POST, PUT and DELETE to manipulate resources and returns responses
using the HTTP response codes. The principal resource in CLAM is called
a project. Various users can maintain various projects, each representing one
specific run of the system, with particular input data, output data, and a set of
configured parameters.

In addition to using HTTP Error Codes for error responses, the webservice re-
sponds in the CLAM XML format. An associated XSL stylesheet can directly
transform this to xhtml in the user’s browser, thus providing a standalone web
application for humand end-users.

CLAM comes with an ample number of features, the most notable ones being:

• RESTful webservice – CLAM is a fully RESTful webservice

• Webapplication – CLAM is also a modern “web 2.0” web application,
heavily relying on technologies such as XSLT and AJAX

• Extensible – Due to a modular setup, CLAM is quite extensible

• Client and Data API – A rich Python API for writing CLAM Clients and
system wrappers

• Authentication – A user-based authentication mechanism through HTTP
Digest is provided

• Metadata and provenance data – There is extensive support for meta-
data and provenance data

• Automatic converters – Automatic converters enable conversion from
an auxiliary format into the desired input format, and conversion from the
produced output format into an auxiliary output format

• Viewers – Viewers enable web-based visualisation for a particular format.
CLAM supports both built-in python-based viewers as well as external view-
ers in the form of external (non-CLAM) webservices.

In publication of research that makes use of this software, a citation should be
given of: “Maarten van Gompel (2012). CLAM: Computational Linguistics Ap-
plication Mediator. Documentation. ILK Technical Report 12-02.
Available from http://ilk.uvt.nl/downloads/pub/papers/ilk.1202.pdf”.

4

CLAM is open-source software licensed under the GNU Public License v3, a copy
of which can be found along with the software.

1.1 Intended Audience

CLAM and this documentation are intended for 1) service providers; people who
want to build a CLAM Webservice around their tool and/or people wanting to
set up existing CLAM services on their server, and 2) webservice users; people
who want to write automated clients to communicate with CLAM webservices.

On the part of these users, a certain level of technical expertise is required and
assumed, such as familiarity with UNIX/Linux systems, software development
(programming) and system administration.

This documentation is split into two parts: a chapter for service providers, people
who want to build a CLAM Webservice around their tool, and a chapter for
service clients, users wanting to write automated clients to communicate with
the aforemented webservice.

This documentation is not intended for end-users using only the web application
interface.

5

Chapter 2

Documentation for Service
Providers

2.1 Technical details

CLAM is written in Python 2.6, and is built on the webpy framework. It can run
stand-alone thanks to the built-in cherrypy webserver; no additional webserver is
needed to test your service. In production environments, it is however strongly
recommended that CLAM is integrated into a real webserver. Supported are:
Apache, nginx or lighthttpd, though others may work too.

The software is designed for Unix-based systems (e.g. Linux or BSD) only. It
also has been verified to run on Mac OS X, although this is less well supported
and more difficult to install. Windows is not supported at all, and never will be.

2.1.1 Installation

CLAM is available from the Python Package Index; a standarised framework and
repository for the installation of all kinds of Python packages. Using the Python
Package Index, installation is easy on Debian/Ubuntu based Linux distributions:

$ sudo easy_install clam

6

This will automatically download and globally install the latest version of CLAM
for you. It it wise to repeatedly issue this command every month or so, as updates
are released on a regular basis.

In case easy install is not yet available on your system, you first need to install
it as follows on Debian/Ubuntu based distribution:

$ sudo apt-get install python-setuptools

Or for Red Hat/Fedora/CentOS:

yum install python-setuptools

For other Linux distributions, and for Mac OS X with homebrew, fink, or mac-
ports, a similar package should exist.

After installation, CLAM is installed globally alongside all other Python packages,
usually in a path such as /usr/lib/python2.7/dist-packages. The exact
path and your Python version may differ. You can verify the availability of CLAM
by opening an interactive Python interpreter and writing: ‘’import clam”

If you do not have root access on your system and instead want to install
CLAM locally in your home directory’s python package directory, then invoke
easy install with the --user flag. This will install CLAM in a path such as
/.local/lib/python2.7/site-packages.

$ easy_install --user clam

Alternatively, other custom paths can be specified using the --prefix flag, but
this forces to user to manually ensure this target directory is part of the user’s
$PYTHONPATH.

Installation Details

The following software is required to run CLAM, the easy install process explained
above should obtain and install all of these dependencies automatically, except
for Python itself:

7

• python 2.6 (or a higher 2.x version, 2.5 may also work but is less tested.
However, note that CLAM does not support 3.x yet)

• python-webpy, version 0.33 or higher

• python-lxml, version 2 or higher

• python-pycurl

• python-mysqldb (optional, needed only for MySQL support)

For development and testing, each CLAM webservice can run stand-alone on any
TCP port of your choice (make sure the port is open in your firewall) using the
built-in webserver. For production environments, it is strongly recommended you
plug CLAM into a more advanced webserver (Apache, nginx, lighttpd).

If you want to run in the supplied test units, an additional dependency is needed:
python-unittest2.

If you look in the directory where CLAM has been installed, the following files
may be of particular interest:

• clamservice.py – The webservice itself, the command to be invoked to
start it.

• clamclient.py – A very generic CLAM client, to be used from the
command-line

• clamdispatcher.py – The default dispatcher for launching wrapper scripts

• config/ – The directory containing service configuration files. Place you
service configuration here.

• config/textstats.py – An example configuration.

• common/ – Common Python modules for CLAM.

• common/parameters.py – Parameter-type definitions.

• common/format.py – Format-type definitions.

• common/data.py – CLAM Data API.

• common/client.py – CLAM Client API.

8

• static/style.css – The styling for visualisation, you can copy this to
create your own styles.

Starting the service in stand-alone mode is done by launching clamservice (or
clamservice.py) with the name of your service configuration. This standalone
mode is intended primarily for development purposes and not recommended for
production use. The below example shows how to launch the supplied “Text
Statistics” demo-service:

$ clamservice clam.config.textstats

Setting up the service to be used with an already existing webserver requires
some additional work. This is explained in later sections for Apache and nginx.

Git & Github

Though the Python Package Index is now the recommended way of installing and
maintaining CLAM up to date, all CLAM code is hosted on github and can be
cloned directly from its git repository at http://github.com/proycon/clam,
using git. Cloning this CLAM repository is done as follows:

$ git clone git://github.com/proycon/clam.git

This will create a directory clam in your current working directory. To install
CLAM globally or in your local Python packages, then you can use the included
setup.py script. Alternatively, you may work directly from this checked out
copy. The advantage of this would be that you have easier access to the sources
of CLAM and can more easily modify them. Moreover, not having a global
installation allows you to run different versions of CLAM concurrently, although
it is still always recommended to keep your CLAM copy up to date. Using git
and github is also strongly encouraged if you are a developer seeking to improve
CLAM itself, and possibly sending in patches.

Especially people migrating from earlier versions of CLAM may have already
adopted this way of working. Do note that if you do not use setup.py then the
commands clamservice and clamnewproject are only available as clamservice.py
and clamnewproject.py from within the clam directory.

9

2.1.2 Using CLAM with Apache 2

In order to run CLAM in Apache, you have to install and configure several files.
We will be using WSGI, through mod wsgi, an interface between Apache and
Python. The following instructions assume you are at least basically familiar with
Apache 2 configuration and Linux server administration in general:

1. Install mod wsgi for Apache 2, if not already present on the system. In De-
bian and Ubuntu this is available as a package named libapache2-mod-wsgi.

2. Next we need to write a simple WSGI-script, which is a Python script that
will be invoked by the webserver. Copy clam/config/example.wsgi to
something like clam/config/yourservice.wsgi and adapt the script. If
CLAM is not installed in a standard location where Python can find it, make
sure to explicitly specify its parent directory according to the instructions
in the example.

3. Configure your service configuration file as explained in Section 2.4. Take
special note of Subsection where you are instructed to configure the host-
name, port, and optionally a URL prefix to use if the service is not assigned
a virtualhost of its own. Also make sure CLAMDIR is properly set in your
service configuration file.

4. Configure Apache to let it know about WSGI and your service. I assume the
reader is acquainted with basic Apache configuration and will only elaborate
on the specifics for CLAM. Adapt and add the following to any of your sites
in /etc/apache2/sites-enabled (or optionally directly in httpd.conf),
within any VirtualHost context. Here it is assumed you configured your
service configuration file with URLPREFIX set to “yourservice”.

WSGIScriptAlias /yourservice /path/to/clam/config/yourservice.wsgi/

WSGIDaemonProcess yourservice user=proycon group=users \

home=/path/to/clam threads=15 maximum-requests=10000

WSGIProcessGroup yourservice

WSGIPassAuthorization On

Alias /yourservice/static /path/to/clam/static/

<Directory /path/to/clam/static/>

Order deny,allow

Allow from all

</Directory>

10

The WSGIDaemonProcess directive goes on one line, but was wrapped here
for presentational purposes. Needless to say, all paths need to be adapted
according to your setup and the configuration can be extended further as
desired, with for example extra authentication or more restrictive access.
You can either let CLAM handle authentication (HTTP Digest Authenti-
cation), in which case you need to set WSGIPassAuthorization On, as
by default it is disabled, or you can let Apache itself handle authentication
and not use CLAM’s authentication mechanism.

5. Restart Apache

Note that we run WSGI in Daemon mode using the WSGIDaemonProcess and
WSGIProcessGroup directives, as opposed to embedded mode. This is the rec-
ommended way of running CLAM. Whenever any code changes are made, simply
touch the WSGI file (updating its modification time), and the changes will be
immediately available. Embedded mode would require an apache restart when
modifications are made, and it may also lead to problems with the HTTP Digest
Authentication as authentication keys (nonces) may not be retainable in mem-
ory due to constant reloads. Again I’d like to emphasise tht for authentication
the line WSGIPassAuthorization On is vital, as otherwise user credentials will
never each CLAM.

For the specific options to the WSGIDaemonProcess directive you can check
http://code.google.com/p/modwsgi/wiki/ConfigurationDirectives#WSGIDaemonProcess.
Important settings are the user and group the daemon will run as, the home di-
rectory it will run in. The number of threads, processes, and maximum-requests
can also be configured to optimise performance and system resources according
to your needs.

2.1.3 Using CLAM with nginx

With nginx (version 0.8 or above), CLAM can be set up over WSGI or FastCGI.
With Apache we already explored a WSGI option above, so we will now take a
look at FastCGI:

1. Nginx misses a mime-type we need. Add the following line to /etc/nginx/mime.types:

text/xsl xsl;

11

http://code.google.com/p/modwsgi/wiki/ConfigurationDirectives#WSGIDaemonProcess

2. Configure your service configuration file as explained in Section 2.4. Take
special note of Subsection where you are instructed to configure the host-
name, port, and optionally a URL prefix to use if the service is not assigned
a virtualhost of its own.

3. Make a script start yourservice.sh which will start the daemon for
FastCGI. Change UID and GID with user ID/group ID you intend to use.
Note that the IP and port can be set to anything you like, as long as you
use the same consistently throughout the configuration.

#!/bin/bash

spawn-fcgi -u UID -g GID -d /path/to/clam \

-a 127.0.0.1 -p 9002 -- /path/to/clam/clamservice.py

4. Make a script stop yourservice.sh as a convenient shortcut to stop the
service again:

#!/bin/bash

kill ‘pgrep -f "python /path/to/clam/clamservice.py"‘

5. Add and adapt the following configuration to a server in /etc/nginx/sites-enabled.
Note that in this example we assume that URLPREFIX in the service config-
uration file is set to an empty string (or not set at all), effectively exposing
CLAM at the root of the server. You may configure a URLPREFIX when de-
sired. In that case, take care to update the below location and directives
accordingly:

root /path/to/clam;

location / {

fastcgi_param REQUEST_METHOD $request_method;

fastcgi_param QUERY_STRING $query_string;

fastcgi_param CONTENT_TYPE $content_type;

fastcgi_param CONTENT_LENGTH $content_length;

fastcgi_param GATEWAY_INTERFACE CGI/1.1;

fastcgi_param SERVER_SOFTWARE nginx/$nginx_version;

fastcgi_param REMOTE_ADDR $remote_addr;

fastcgi_param REMOTE_PORT $remote_port;

fastcgi_param SERVER_ADDR $server_addr;

fastcgi_param SERVER_PORT $server_port;

fastcgi_param SERVER_NAME $server_name;

12

fastcgi_param SERVER_PROTOCOL $server_protocol;

fastcgi_param SCRIPT_FILENAME $fastcgi_script_name;

fastcgi_param PATH_INFO $fastcgi_script_name;

fastcgi_pass 127.0.0.1:9002;

}

location /static/ {

root /path/to/clam;

if (-f $request_filename) {

rewrite ^/static/(.*)$ /static/$1 break;

}

}

6. Launch start yourservice.sh and (re)start nginx.

2.1.4 Using CLAM with other webservers

You are not limited to using either Apache with WSGI or nginx with FastCGI;
we tested only these two. It should also be possible to get CLAM working on
other Unix based webservers, such as for example lighttpd. Although we have no
CLAM-specific instructions, you may find instructions for WebPy, the framework
CLAM uses, at http://webpy.org/, and can adapt these to CLAM.

2.1.5 Troubleshooting

You may possibly encounter one of the following issues when attempting to access
your CLAM service through a browser:

1. Apache gives an Internal Server Error (HTTP 500) – Check your
Apache error log to see what happened. For additional debug output by
CLAM, set DEBUG=True in your CLAM service configuration file.

2. I get an empty white page – There is probably an error in loading the
XSL stylesheet that renders the web application. Please use Firefox to
verify, instead of Google Chrome or Internet Explorer, as it provides more
detailed error output on XSLT transformations.

13

http://webpy.org/

3. I get an error loading stylesheet – The XSL stylesheet that renders the
web-application can not be loaded. This is most likely due to a mismatch
in URLs. The URL at which the webservice is accessed has to correspond
with the URL configured in the service configuration file. Browsers refuse
to load stylesheets from other source for security reasons. Check your
settings for HOST, PORT, and URLPREFIX, and whether you accessed
the service by the same URL.

4. I get an error “No template named response” – Check whether
CLAMDIR is set in your service configuration file and whether it points to
the directory in which CLAM resides (the directory containing clamservice.py)

5. I’m using CLAM through Apache and WSGI, but authentication
does not work and I am always logged in as anonymous – Check
that WSGIPassAuthorization On is set in your Apache configuration,
and USERS is configured in your service configuration file.

Note that we strongly recommend developing your services using the built-in
webserver, and migrating to Apache, nginx or another webserver, when deploying
your final service.

2.2 Architecture

CLAM has a layered architecture, with at the core the NLP application(s) you
want to turn into a webservice. The application itself can remain untouched and
unaware of CLAM. The scheme in Figure 2.1 illustrates the various layers:

The workflow interface layer is not provided nor necessary, but shows a possible
use-case.

A CLAM webservice needs the following three components from the service de-
veloper:

1. A service configuration file;

2. A wrapper script for your NLP application;

3. An NLP application.

14

Figure 2.1: The CLAM Architecture

The wrapper script is not strictly mandatory if the NLP application can be directly
invoked by CLAM. However, for more complex applications, writing a wrapper
script is strongly recommended, as it offers more flexibility and better integration,
and allows you to keep the actual NLP application unmodified. The wrapper
scripts can be seen as the “glue” between CLAM and your application, taking
care of any translation steps.

15

2.3 Beginning a new CLAM project

You start a new CLAM project using the clamnewproject tool. It takes one
argument: an identifier for your system. This identifier is for internal use and
for use in filenames and may not contain any spaces or other special characters.
Mind that this ID is case sensitive, so it is recommended to keep it all lower case.
Example:

$ clamnewproject myfirstproject

The tool will create a directory named after the identifier, in which two template
files are created which are similarly named after the chosen identifier. Both are
Python scripts which you are expected to edit:

1. myfirstproject.py - Service Configuration FIle

2. myfirstproject-wrapper.py - System Wrapper Script.

These template files then need to be edited for your particular application. They
are heavily commented to guide you. An INSTRUCTIONS file will be created in
your project directory, containing instructions on what files to edit and how to
start the clam service for your specific project.

You can choose not to make use of the system wrapper script and instead either
write one from scratch in another language of your choice, or directly let CLAM
invoke your application.

The next section will provide a detailed overview on the various ways to configure
the service configuration file, and the section thereafter will deal with the system
wrapper file.

2.4 Service configuration

The service configuration consists of a description of your NLP application, or
rather, a description of the system wrapper script that surrounds it. It specifies
what parameters the system can take, and what input and output formats are

16

expected under what circumstances. The service configuration is itself a Python
script, but knowledge of Python is not essential to be able to make your own
service configurations.

The server configuration files reside in the config/ directory. Making a new
webservice starts with copying the sample template.py and editing your copy.
When reading this section, it may help your understanding to inspect this file
alongside.

One of the first things to configure is the root path (ROOT). All projects will be
confined to the projects/ directory within this root path, each project having
its own subdirectory. When your NLP application or wrapper script is launched,
the current working directory will be set to this project directory. Pre-installed
corpora should be put in the corpora/ directory. The ROOT will be automatically
created upon the first run.

2.4.1 Server Administration

The hostname and port of the webserver can be configured in the service con-
figuration file. Note that the hostname has to match exactly with what the
end users will use. An attempt will be made to detect this automatically if no
hostname is specified. A mismatch in the name you define and the hostname
the user uses may result in unexpected behaviour1. CLAM comes with a built-in
webserver, which will be used when invoked directly from the command-line2.

When CLAM runs in an existing webserver without its own virtual host, it is
often configured at a different URL rather than the webserver root. In this case
the value of URLPREFIX should be configured accordingly.

In order to keep server load manageable, three methods are configurable in the
service configuration file. First, you can set the variable REQUIREMEMORY to the
minumum amount of free memory that has to be available (in megabytes, and
not considering swap memory!). If not enough memory is free, users will not
be able to launch new processes, but will receive an HTTP 500 error instead.
Second, there is the MAXLOADAVG variable; if the 5-minute load average exceeds
this number, new processes will also be rejected. Third, there is MINDISKSPACE
and DISK. This sets a constraint on the minimum amount of free disk space in

1Most likely, the XSLT stylesheet will refuse to render the web application interface
due to this mismatch

2unless FastCGI mode is enabled

17

megabytes on the specified DISK (for example: /dev/sda1), which should be
the disk holding ROOT. If any of these values is set to zero, they are disabled.
Note though that this makes your system vulnerable to denial-of-service attacks
by possibly malicious users, especially if no user authentication is configured!

Extra resource control is handled by the CLAM Dispatcher; a small program that
launches and monitors your wrapper script. In your service configuration file you
can configure the variable DISPATCHER MAXRESMEM and DISPATCHER MAXTIME.
The former is the maximum memory consumption of your process, in megabytes.
The latter is the maximum run-time of your process in seconds. Programs that
exceed this limit will be automatically aborted. The dispatcher will check with
a certain interval, configured in DISPATCHER POLLINTERVAL (in seconds), if the
limits have been exceeded and will take necessary action.

If you for some reason do not want to make use of the web application in
CLAM, then you can disable it by setting ENABLEWEBAPP = False. If you
want to make the webservice available at a different URL than the webappli-
cation, then there is a small trick you can apply by setting WEBSERVICEGHOST

to a prefix that the webservice will be made available on without webapplication
support. If you set for example WEBSERVICEGHOST = ’ws’ then there will be
an additional “ghosted” webservice without webapplication interface running on
http://yourdomain.com/ws/. This option is included to accomodate the wish
to apply two distinct authentication schemes outside of CLAM.

2.4.2 User Authentication

Being a RESTful webservice, user authentication proceeds over HTTP itself.
CLAM implements HTTP Digest Authentication, which as opposed to HTTP
Basic Authentication computes a hash of the username and password client-side
and transmits that hash, rather than a plaintext password. User passwords are
therefore only available to CLAM in hashed form. User authentication is not
mandatory, but for any world-accessible environment it is most strongly recom-
mended, for obvious security reasons.

A list of user accounts and passwords can be defined in USERS in the service
configuration file itself. This is a simple method allowing you to quickly define
users, but it is not a very scalable method. The USERS variable is a dictionary
of usernames mapped to an md5 hash computed on the basis of the username,
a string representing the security realm (by default the system ID), and the

18

password. Projects will only be accessible and visible to their owners, unless no
authentication is used at all, in which case everybody can see all projects. An
example of a configuration with plain text password, converted on the fly to
hashes, is found below:

USERS = {

’bob’: pwhash(’bob’, SYSTEM_ID, ’secret’),

’alice’: pwhash(’alice’, SYSTEM_ID, ’secret2’),

}

However, computing hashes on-the-fly like in the above example is quite insecure
and not recommended. You should pre-compute the hashes add those instead:

USERS = {

’bob’: ’6d72b6376858cf3c618c826fab1b0109’,

’alice’: ’e445370f57e19a8bfa454404ba3892cc’,

}

This precomputation can be done in an interactive python session, executed from
the CLAM directory. Make sure to change yourconfig in the below example to
your actual service configuration file:

$ python

>>> from clam.common.digestauth import pwhash

>>> import clam.config.yourconfig as settings

>>> pwhash(’alice’, settings.SYSTEM_ID, ’secret’)

’e445370f57e19a8bfa454404ba3892cc’

Extra security may also be provided on a more global webserver level, rather than
in CLAM itself.

The ability to view and set parameters can be restricted to certain users. You
can use the extra parameter options allowusers= or denyusers= to set this.
See section 2.4.6. A common use would be to define one user to be the guest
user, for instance the user named “guest”, and set denyusers=[’guest’] on
the parameters you do not want the guest user to use.

19

Rather than using USERS to define a user database in your service configuration
file, a more sophisticated method is available using MySQL. The configuration
variable USERS MYSQL can be configured, instead of USERS, to point to a table
in a MySQL database somewhere; the fields “username” and “password” in this
table will subsequently be used to authenticate against. Custom field names
are also possible. This approach allows you to use existing MySQL-based user
databases. The password field is again a hashed password in the same fashion
as in USERS, so it never contains a plaintext password. USERS MYSQL is set as a
Python dictionary with the following configurable keys:

USERS_MYSQL = {

’host’: ’localhost’, #(default)

’user’: ’mysql_user’,

’password’: ’secret_mysql_password’,

’database’: ’clamopener’,

’table’: ’clamusers_clamusers’,

’userfield’: ’username’, #(default)

’passwordfield’: ’password’, #(default)

}

For advanced service providers wanting to use external authentication schemes,
CLAM supports the PREAUTHHEADER configuration directive, the value of which
is a string containing an HTTP header which CLAM may read to obtain the
authenticated username. This should be set by an authentication system prior to
passing control to CLAM. An example of such a system is Shibboleth. Multiple
headers may be specified in PREAUTHHEADER, using space as delimiter, effec-
tively creating a fallback chain. When PREAUTHONLY is set to False (default),
the ultimate fallback will be CLAM’s built-in user system, unless this is set to
None. When such a scheme is used, proper care has to be taken to ensure that
the HTTP headers can not be forged by end-users themselves! If usernames
that come from external pre-authentication methods are different from those in
the internal USERS map (if used at all), then an explicit mapping between the
two may be specified in the PREAUTHMAPPING dictionary. Note that this pre-
authentication mechanism never applies to the “ghosted” webservice, if enabled
through WEBSERVICEGHOST. Only the regular authentication method is supported
for the webservice ghost.

The below example shows an Apache configuration for a proxy/entry server that
forwards to another server on which a CLAM service runs, mediated through
Shibboleth:

20

<Location /yourclamservice>

AuthType shibboleth

ShibRequireSession On

ShibUseHeaders On

require valid-user

ProxyPass http://realserver/yourclamservice

ProxyPassReverse http://realserver/yourclamservice

</Location>

The actual server, if it runs Apache, must always contain the directive WSGIPassAuthorization
On.

The CLAM service configuration file can in turn be restricted to only except
Shibboleth authenticated users using the following settings:

PREAUTHHEADER = ’HTTP_EDUPERSONPRINCIPALNAME’

PREAUTHONLY = True

Replace HTTP EDUPERSONPRINCIPALNAME with the proper HTTP header, this is
just an example in a CLARIN-NL context.

2.4.3 Command Definition

Central in the configuration file is the command that CLAM will execute. This
command should start the actual NLP application, or preferably a script wrapped
around it. Full shell syntax is supported. In addition there are some special
variables you can use that will be automatically set by CLAM.

• $INPUTDIRECTORY – The absolute path to the input directory where all
the input files from the user will be stored (possibly in subdirectories). This
input directory is the input/ subdirectory in the project directory.

• $OUTPUTDIRECTORY – The absolute path to the output directory. Your
system should output all of its files here, as otherwise they are not accessible
through CLAM. This output directory is the output/ subdirectory in the
project directory.

21

• $STATUSFILE – The absolute path to a status file. Your system may
write a short message to this status file, indicating the current status.
This message will be displayed to the user in CLAM’s interface. The
status file contains a full log of all status messages, thus your system
should write to this file in append mode. Each status message consists of
one line terminated by a newline character. The line may contain three
tab delimited elements that will be automatically detected: a percentage
indicating the progress until completion (two digits with a % sign), a Unix
timestamp (a long number), and the status message itself (a UTF-8 string).

• $PARAMETERS – This variable will contain all parameter flags and the pa-
rameter values that have been selected by the user. It is recommended
however to use $DATAFILE instead.

• $DATAFILE – The absolute path to the data file that CLAM outputs in
the project directory. This data file, in CLAM XML format, contains all
parameters along with their selected values. Furthermore it contains the in-
putformats and outputformats, and a listing of uploaded input files and/or
pre-installed corpora. System wrapper scripts can read this file to obtain
all necessary information, and as such this method is preferred over using
$PARAMETERS. If the system wrapper script is written in Python, the
CLAM Data API can be used to read this file, requiring little effort on the
part of the developer.

• $USERNAME – The username of the logged-in user.

Make sure the actual command is an absolute path, or that the executable
is in the $PATH of the user clamservice.py will run as. Upon launch, the
current working directory will be automatically set to the specific project directory.
Within this directory, there will be an input/ and output/ directory, but use the
full path as stored in $INPUTDIRECTORY and $OUTPUTDIRECTORY/. All uploaded
user input will be in this input directory, and all output that users should be able
to view or download, should be in this output directory. Your wrapper script
and NLP tool are of course free to use any other locations on the filesystem for
whatever other purposes.

2.4.4 Paradigm: Metadata, Profiles & Parameters

In order to explain how to build service configuration files for the tools you want
to make into webservices, we first need to clarify the paradigm CLAM uses. We

22

shall start with a word about metadata. Metadata is data about your data, i.e.
data about your input and output files. Take the example of a plain text file:
metadata for such a file can be for example the character encoding the text is
in, and the language the text is written in. Such data is not necessarily encoded
within the file itself, as is also not the case in the example of plain text files.
CLAM therefore builds external metadata files for each input and output file.
These files contain all metadata of the files they describe. These are stored in
the CLAM Metadata XML format, a very simple and straightforward format3

Metadata simply consists out of metadata fields and associated values.

Metadata in CLAM is tied to a particular file format (such as plain text format,
CSV format, etc.). A format defines what kind of metadata it absolutely needs,
but usually still offers a lot of freedom for extra metadata fields to the service
provider, or even to the end user.

When a user or automated client uploads a new input file, metadata is often
not available yet. The user or client is therefore asked to provide this. In the
webapplication a form is presented with all possible metadata parameters; the
system will take care of generating the metadata files according to the choices
made. If the service provider does not want to make use of any metadata
description at all, then that is of course an option as well, though this may
come at the cost of your service not providing enough information to interact
with others.

In a webservice it is important to precisely define what kind of input goes in, and
what kind of output goes out: this results in a deterministic and thus predictable
webservice. It is also necessary to define exactly how the output metadata is
based on the input metadata, if that is the case. These definitions are made in
so-called profiles. A profile defines input templates and output templates. The
input templates and output template can be seen as “slots” for certain filetypes
and metadata. An analogy from childhood memory may facilitate understanding
this, as shown and explained in Figure 2.2:

A profile is thus a precise specification of what output files will be produced given
what input files, it specifies exactly how the metadata for the outputfiles can be
constructed given the metadata of the inputfiles. The generation of metadata
for output files is fully handled by CLAM, outside of your wrapper script and
NLP application.

3It is in essence a simple XML representation of key–value pairs. These metadata files
are named .filename.METADATA, in which filename is the name of the file it describes and
reside in the very same input/output directory.

23

Figure 2.2: Box and blocks analogy from childhood memory: the holes on
one end correspond to input templates, the holes on the other end correspond
to output templates. Imagine blocks going in through one and out through
the other. The blocks themselves correspond to input or output files with
attached metadata. Profiles describe how one or more input blocks are trans-
formed into output blocks, which may differ in type and number.Granted,
I’m stretching the analogy here; your childhood toy did not have this magic
feature of course!

Input templates are specified in part as a collection of parameters for which the
user/client is expected to choose a value in the predetermined range. Output
templates are specified as a collection of “metafields”, which simply assign a
value, unassign a value, or copy a value from an inputtemplate or from a global
parameter. Through these templates, the actual metadata can be constructed.
Input templates and output templates always have a label describing their func-
tion. Upon input, this provides the means for the user to recognise and select the
desired input template, and upon output, it allows the user to easily recognise
the type of output file. How all this is specified exactly will be demonstrated in
detail later.

24

In addition to input files and the associated metadata parameters, there is another
source of data input: global parameters. A webservice may define a set of
parameters that it takes. We will start by explaining this part in the next section.

2.4.5 Parameter Specification

The parameters which an NLP application, or rather the wrapper script, can take,
are defined in the service configuration. First of all parameters can be subdivided
into parameter groups, but these serve only presentational purposes.

There are seven parameter types available, though custom types can be easily
added4. Each parameter type is a Python class taking the following mandatory
arguments:

1. id – An id for internal use only.

2. name – The name of this parameter, this will be shown to the user in the
interface.

3. description – A description of this parameter, meant for the end-user.

The seven parameter types are:

• BooleanParameter – A parameter that can only be turned on or off, repre-
sented in the interface by a checkbox. If it is turned on, the parameter flag
is included in $PARAMETERS, if it is turned off, it is not. If reverse=True
is set, it will do the inverse.

• IntegerParameter – A parameter expecting an integer number. Use
minrange=, and maxrange= to restrict the range if desired.

• FloatParameter – A parameter expecting a float number. Use minrange=,
and maxrange= to restrict the range if desired.

• StringParameter – A parameter taking a string value. Use maxlength=

if you want to restrict the maximum length.

• TextParameter – A parameter taking multiple lines of text.

4to common/parameters.py

25

• ChoiceParameter – A multiple-choice parameter. The choices must be
specified as a list of (ID, label) tuples, in which ID is the internal
value, and label the text the user sees. For example, suppose a parameter
with flag -c is defined. choices=[(’r’,’red’),(’g’,’green’),(’b’,
’blue)], and the user selects “green”, then -c g will be added to $PARAMETERS.
The default choice can be set with default=, and then the ID of the
choice. If you want the user to be able to select multiple parameters,
then you can set the option multi=True. The IDs will be concatenated
together in the parameter value. A delimiter (a comma by default) can
be specified with delimiter=. If you do not use multi=True, but you
do want all options to be visible in one view, then you can set the option
showall=True.

• StaticParameter – A parameter with a fixed immutable value. This may
seem a bit of a contradiction, but it serves a purpose in forcing a parameter
or metadata parameter to have a specific non-variable value.

All parameters can take the following extra keyword arguments:

• paramflag – The parameter flag. This flag will be added to $PARAMETERS

when the parameter is set. Consequently, it is mandatory if you use the
$PARAMETERS variable in your COMMAND definition. It is customary for
parameter flags to consist of a hyphen and a letter or two hyphens and a
string. Parameter flags could be for example be formed like: -p ,--pages,
--pages=. There will be a space between the parameter flag and its
value, unless it ends in a = sign or nospace=True is set. Multi-word string
values will automatically be enclosed in quotation marks for the shell to
correctly parse them. Technically, you are also allowed to specify an empty
parameter flag, in which case only the value will be outputted as if it were
an argument.

• default – Set a default value.

• required – Set to True to make this parameter required rather than
optional.

• require – Set this to a list of parameter IDs. If this parameter is set, so
must all others in this list. If not, an error will be returned.

• forbid – Set this to a list of parameter IDs. If this parameter is set, none
of the others in the list may be set. If not, an error will be returned.

26

• allowusers – Allow only the specified lists of usernames to see and set
this parameter. If unset, all users will have access. You can decide whether
to use this option or denyusers, or to allow access for all.

• denyusers – Disallow the specified lists of usernames to see and set this
parameter. If unset, no users are blocked from having access. You can
decide whether to use this option or allowusers, or to allow access for
all.

The following example defines a boolean parameter with a parameter flag:

BooleanParameter(

id=’createlexicon’,

name=’Create Lexicon’,

description=’Generate a separate overall lexicon?’,

paramflag=’-l’

)

Thus, if this parameter is set, the invoked command will have $PARAMETERS set
to -l 1 (plus any additional parameters).

2.4.6 Profile specification

Multiple profiles may be specified, and all profiles are always assumed to be
independent of each other. Dependencies should be together in one profile,
as each profile describes how a certain type of input file is transformed into a
certain type of output file. For each profile, you need to define input templates
and output templates. All matching profiles are assumed to be delivered as
promised. A profile matches if all input files according to the input templates
of that profile are provided and if it generates output. If no input templates
have been defined at all for a profile, then it will match as well, to allow for the
option of producing output files that are not dependent on input files. A profile
is allowed to mismatch, but if none of the profiles match, the system will produce
an error, as it can not perform any actions.

The profile specification skeleton looks as follows. Note that there may be mul-
tiple input templates and/or multiple output templates:

PROFILES = [

27

Profile(InputTemplate(...), OutputTemplate(...))

]

The definition for InputTemplate takes three mandatory arguments:

1. id – An ID for the InputTemplate. This will be used internally and by
automated clients.

2. format – This points to a Format class, indicating the kind of format that
this inputtemplate accepts. Formats are defined in clam/common/formats.py.
Custom formats can be added there.

3. label – A human readable label for the input template. This is how it will
be known to users in the web application and on the basis of which they
will select it.

Subsequently you may specify any of the Parameter types to indicate the ac-
cepted/required metadata. Use any of the types from Section .

After specifying any such parameters, there are some possible keyword arguments:

1. unique – Set to True or False, this indicates whether the input template
may be used only once or multiple times. unique=True is the default if
not specified.

2. multi – The logical inverse of the above; you can whichever you prefer.
multi=False is the default if not specified.

3. filename – Files uploaded through this input template will receive this
filename (regardless of how the original file on the client is called). If you
set multi=True or its alias unique=False, insert the variable $SEQNR

into the filename, which will be replaced by a number in sequence. After
all, we cannot have multiple files with the same name. You can also use
any of the metadata parameters as variable in the filename; as explained
in section 2.4.7.

4. extension – Files uploaded through this input template are expected to
have this extension, but can have whatever filename. Here it doesn’t matter
whether you specify the extension with or without the prefixing period.
Note that in the web application, the extension is appended automatically
regardless of the filename of the source file. Automated clients do have to
take care to submit with the proper extension right away.

28

5. acceptarchive – This is a boolean which can be set to True if you want to
accept the upload of archives to instantly upload multiple files for the same
input template. The file must be in zip, tar.gz or tar.bz2 format. Archives
will be automatically extracted and the files within renamed according to
the input template’s specifications if necessary. Using this option implies
that the exact same metadata will be associated with all uploaded files!
This option can only be used in combination with multi=True. Note that
archives can only be uploaded when all files therein fit the same input
template!

Take a look at the following example of an input template for plaintext documents
for an automatic translation system:

InputTemplate(’maininput’, PlainTextFormat,"Translator input: Plain-text document",

StaticParameter(

id=’encoding’,name=’Encoding’,description=’The character encoding of the file’,

value=’utf-8’

),

ChoiceParameter(

id=’language’,name=’Language’,description=’The language the text is in’,

choices=[(’en’,’English’),(’nl’,’Dutch’),(’fr’,’French’)]),

),

extension=’.txt’,

multi=True

)

For OutputTemplate, the syntax is similar. It takes the three mandatory argu-
ments id, format and label, and it also takes the four keyword arguments laid
out above. If no explicit filename has been specified for an output template,
then it needs to find out what name the output filename will get from another
source. This other source is the input template that acts as the parent. The
output template will thus inherit the filename from the input template that is
its parent. In this way, the user may upload a particular file, and get that very
same file back with the same name. If you specify extension, it will append
an extra extension to this inherited filename. Prior to appending an extension,
you may often want to remove existing extension, you can do that with the
removeextension attribute. As there may be multiple input templates, it is not
always clear what input template is the parent. The system will automatically
select the first defined input template with the same value for unique/multi the
output template has. If this is not what you want, you can explicitly set a parent
using the parent keyword, which takes the value of the input template’s ID.

29

Whereas for InputTemplate you can specify various parameter types, out-
put templates work differently. Output templates define what metadata fields
(metafields for short) they want to set with what values, and from where to
get these values. In some situations the output file is an extension of the in-
put file, and you want it to inherit the metadata from the input file. Set
copymetadata=True to accomplish this: now all metadata will be inherited
from the parent, but you can still make modifications.

To set (or unset) particular metadata fields you specify so-called “metafield ac-
tors”. Each metafield actor sets or unsets a particular metadata attribute. There
are four different types of metafield actors:

• SetMetaField(key,value) – Set metafield key to the specified value.

• UnsetMetaField(key [,value]) – If a value is specified: Unset this
metafield if it has the specified value. If no value is specified: Unset the
metafield regardless of value. This only makes sense if you set copymetadata=True.

• CopyMetaField(key, inputtemplate.key) – Copy metadata from one
of the input template’s metadata. Here inputtemplate is the ID of one of
inputtemplates in the profile, and the key part is the metadata field to
copy. This allows you to combine metadata from multiple input source
into your output metadata.

• ParameterMetaField(key, parameter−id) – Get the value for this
metadata field from a global parameter with the specified ID.

Take a look at the following example for a ficticious automatic translation system,
translating to Esperanto. If an input file x.txt is uploaded, the output file will
be named x.translation.

OutputTemplate(’translationoutput’, PlainTextFormat,"Translator output: Plain-text document",

CopyMetaField(’encoding’,’maininput.encoding’)

SetMetaField(’language’,’eo’),

removeextension=’.txt’,

extension=’.translation’,

multi=True

)

Putting it all together, we obtain the following profile definition describing a
fictitious machine translation system from English, Dutch or French to Esperanto,
where the system accepts and produces UTF-8 encoded plain-text files.

30

PROFILES = [

Profile(

InputTemplate(’maininput’, PlainTextFormat,"Translator input (Plain-text document)",

StaticParameter(

id=’encoding’,name=’Encoding’,description=’The character encoding of the file’,

value=’utf-8’

),

ChoiceParameter(

id=’language’,name=’Language’,description=’The language the text is in’,

choices=[(’en’,’English’),(’nl’,’Dutch’),(’fr’,’French’)]

),

extension=’.txt’,

multi=True

),

OutputTemplate(’translationoutput’, PlainTextFormat,

"Esperanto translation (Plain-text document)",

CopyMetaField(’encoding’,’maininput.encoding’)

SetMetaField(’language’,’eo’),

removeextension=’.txt’,

extension=’.translation’,

multi=True

)

)

]

2.4.7 Control over filenames

There are several ways of controlling the way input and output files within a
profile are named. As illustrated in the previous section, each Output Template
has an Input Template as parent, from which it inherits the filename if no explicit
filename is specified. This is a very important aspect that has to be realised By
default, if no filename=, extension= or removeextension= is specified for an
Output Template, it will use the same filename as the parent Input Template. If
filename= and extension= are not specified for the Input Template, then the
file the user uploads will simply maintain the very same name as it is uploaded
with. If extension= is specified, then the input file is required to have the
specified extension, the web application and CLAM Client API takes care of this
automatically if not the case.

In a previous section, we mentioned the use of the variable $SEQNR that will insert
a number in when the Input Template or Output Template is in multi-mode. In
addition to this, other variables can also be used. Here is an overview:

31

• $SEQNR - The sequence number of the file. Valid only if unique=True or
multi=False.

• $PROJECT - The ID of the project.

• $INPUTFILENAME - The filename of the associated input file. Valid only in
Output Templates.

• $INPUTSTRIPPEDFILENAME - The filename of the associated input file
without any extensions. Valid only in Output Templates.

• $INPUTEXTENSION - The extension of the associated input file (without
the initial period). Valid only in Output Templates.

Other than these variables pre-defined by CLAM, you can in input templates use
any of the metadata parameters as variables in the filename. To this end, use a
dollar sign followed by the ID of the parameter in the filename specification. For
Output Templates, you can use metafield IDs or global parameter IDs (in that
order of priority) in the same way. This syntax is valid in both filename= and
extension=.

The following example illustrates a translation system that encodes the character
encoding and language in the filename itself. Note also the use of the special
variable $SEQNR, which assigns a sequence number as the templates are both in
multi mode.

PROFILES = [

Profile(

InputTemplate(’maininput’, PlainTextFormat,"Translator input (Plain-text document)",

StaticParameter(

id=’encoding’,name=’Encoding’,description=’The character encoding of the file’,

value=’utf-8’

),

ChoiceParameter(

id=’language’,name=’Language’,description=’The language the text is in’,

choices=[(’en’,’English’),(’nl’,’Dutch’),(’fr’,’French’)]

),

filename=’input$SEQNR.$language.$encoding.txt’

multi=True

),

OutputTemplate(’translationoutput’, PlainTextFormat,

"Esperanto translation (Plain-text document)",

CopyMetaField(’encoding’,’maininput.encoding’)

SetMetaField(’language’,’eo’),

32

filename=’output$SEQNR.$language.$encoding.txt’

multi=True

)

)

]

In addition to variables that refer to global or local parameters. There are some
additional variables set by CLAM which you can use:

• $PROJECT - Is set to the project ID.

• $INPUTFILE - Is set to the project ID.

2.4.8 Parameter Conditions

It is not always possible to define all output templates straight away. Sometimes
output templates are dependent on certain global parameters. For example, given
a global parameter that toggles the generation of a lexicon, you want to only in-
clude the output template that describes this lexicon, if the parameter is enabled.
CLAM offers a solution for such situations using the ParameterCondition di-
rective.

Assume you have the following global parameter:

BooleanParameter(

id=’createlexicon’,name=’Create Lexicon’,description=’Create lexicon files’,

)

We can then turn an output template into an output template conditional on
this parameter using the following construction:

ParameterCondition(createlexicon=True,

then=OutputTemplate(’lexiconoutput’, PlainTextFormat,

"Lexicon (Plain-text document)",

unique=True

)

)

33

The first argument of ParameterCondition is the condition. Here you use the ID
of the parameter and the value you want to check against. The above example
illustrates an equality comparison, but other comparisons are also possible:

• ID=value – Equality; matches if the global parameter with the specified
ID has the specified value.

• ID equals=value – Same as above, the above is an alias.

• ID notequals=value – The reverse of the above, matches if the value
is not equal

• ID lessthan=number – Matches if the parameter with the specified ID
is less than then specified number

• ID greaterthan=number – Matches if the parameter with the specified
ID is greater than then specified number

• ID lessequalthan=number – Matches if the parameter with the speci-
fied ID is equal or less than then specified number

• ID greaterequalthan=number – Matches if the parameter with the
specified ID is equal or greater than then specified number

After the condition you specify then= and optionally also else=, and then you
specify an OutputTemplate or yet another ParameterCondition—they can be
nested at will.

Parameter conditions can not only be used around output templates, but also
be around metafield actors, inside the output template specification. In other
words, you can make metadata fields conditional on global parameters.

Parameter conditions can not be used around input templates, for the simple
reason that in CLAM the parameters are set after the input files are uploaded.
However, input templates can be optional, by setting optional=True. This
means that providing such input files is optional, this also implies that any output
templates that have this optional input template as a parent are also conditional
on the presence of those input files.

34

2.4.9 Converters

Users do not always have their files in the format you desire as input, and ask-
ing users to convert their data may be problematic. Similarly, users may not
always like the output format you offer. CLAM therefore introduces a converter
framework that can do two things:

1. Convert input files from auxiliary formats to your desired format, upon
upload;

2. Convert output files from your output format to secondary formats.

A converter, using the above-mentioned class names, can be included in input
templates (for situation 1), and in output templates (for situation 2). Include
them directly after any Parameter fields or Metafield actors.

It is important to note that the converters convert only the files themselves and
not the associated metadata. This implies that these converters are intended
primarily for end users and not as much for automated clients.

For most purposes, you will need to write your own converters. These are to be
implemented in clam/common/converters.py. Some converters however will
be provided out of the box. Note that the actual conversion will be performed
by 3rd party software in most cases.

• MSWordConverter – Convert MS Word files to plain text

• PDFConverter – Convert PDF to plain text.

• CharEncodingConverter – Convert between plain text files in different
character encodings.

Note that specific converters take specific parameters, consult the API reference
for details.

2.4.10 Viewers

Viewers are intended for human end users, and enable visualisation of a particular
file format. CLAM offers a viewer framework that enables you to write viewers

35

for your format. Viewers may either be written within the CLAM framework,
using Python, but they can also be external (non-CLAM) webservices, hosted
elsewhere.

Viewers can be included in output templates. Include them directly after any
metafield actors.

36

Development Notes
To be completed still...

2.4.11 Working with pre-installed data

Rather than letting users upload files, CLAM also offers the possibility of pre-
installing input data on the server. This feature is ideally suited for dealing
with data for a demo, or for offering a selection of pre-installed corpora that are
too big to transfer over network. Furthermore, pre-installed data is also suited in
situations where you want the user to be able to choose from several pre-installed
resources, such as lexicons, grammars, etc., instead of having to upload files they
may not have available.

Pre-installed data sources are called “input sources” in CLAM, not to be confused
with input templates. Input sources can be specified either in an input template,
or more globally.

Take a look at the following example:

InputTemplate(’lexicon’, PlainTextFormat,"Input Lexicon",

StaticParameter(id=’encoding’,name=’Encoding’,description=’Character encoding’,

value=’utf-8’),

ChoiceParameter(id=’language’,name=’Language’,description=’The language the text is in’,

choices=[(’en’,’English’),(’nl’,’Dutch’),(’fr’,’French’)]),

InputSource(id=’lexiconA’, label="Lexicon A",

path="/path/to/lexiconA.txt",

metadata=PlainTextFormat(None, encoding=’utf-8’,language=’en’)

),

InputSource(id=’lexiconB’, label="Lexicon B",

path="/path/to/lexiconB.txt",

metadata=PlainTextFormat(None, encoding=’utf-8’,language=’en’)

),

onlyinputsource=False

),

This defines an input template for some kind of lexicon, with two pre-defined
input sources: “lexicon A” and “lexicon B”. The user can choose between these,
or alternatively upload a lexicon of his own. If, however, onlyinputsource is

37

set to True, then the user is forced to choose only from the input sources, and
can’t upload his own version.

Metadata can be provided either in the inputsource configuration, or by simply
adding a CLAM metadata file alongside the actual file. For the file /path/to/lexiconA.txt,
the metadata file would be /path/to/.lexiconA.txt.METADATA (note the ini-
tial period; metadata files are hidden).

Input sources can also be defined globally, and correspond to multiple files, i.e.
they point to a directory containing multiple files instead of pointing to a single
file. Let us take the example of a spelling correction demo, in which a test set
consisting out of many text documents is the input source:

INPUTSOURCES = [

InputSource(id=’demotexts’, label="Demo texts",

path="/path/to/demotextdir/",

metadata=PlainTextFormat(None, encoding=’utf-8’,language=’en’),

inputtemplate=’maininput’,

),

]

In these cases, it is essential to fill the inputtemplate= parameter. All files in
the directory must be formatted according to this input template. Adding input
sources for multiple input templates is done by simply defining multiple input
sources.

2.4.12 Multiple profiles, identical input templates

It is possible and sometimes necessary to define more than one profile. Recall
that each profile defines what output will be generated given what input, and
how the metadata is translated. Multiple profiles come into the picture as soon
as you have a a disjunction of possible inputs. Imagine a spelling check system
that can take either plain text as input, or a kind of XML file. In this situation
you have two profiles; one for the plain-text variant, and one for the XML variant.

Now suppose there is another kind of mandatory input, a lexicon against which
spell checking occurs, that is relevant for both profiles, and exactly the same for
both profiles. In such circumstances, you could simply respecify the full input

38

template, with the same ID as in the other profile. The most elegant solution
however, is to instantiate the input template in a variable, prior to the profile
definition, and then use this variable in both profiles.

2.4.13 Customising the web application

The CLAM web application offers a single uniform interface for all kinds of
services. However, a certain degree of customisation is possible. One thing you
may want is to include more HTML text on the pages, possibly enriched with
images and hyperlinks to external sites. It is an ideal way to add extra instructions
for your users. Doing this is very straightforward, by adding some custom HTML
files to static/custom/, the HTML files should be named as follows, where
SYSTEMID should be replaced by the ID of your system, as configured in your
service configuration file.

• static/custom/SYSTEMID index.html - This file will be included in the
index view, the overview of all projects.

• static/custom/SYSTEMID projectstart.html - This file will be in-
cluded in the project view where the user can upload files and select pa-
rameters.

• static/custom/SYSTEMID projectdone.html - This file will be included
in the project view when the project is done and output is ready to be
viewed/downloaded.

As the HTML pages will be embedded on the fly, take care not to include any
headers, only tags that go within the HTML body are permitted! Always use
the UTF-8 encoding.

A second kind of customisation is customisation of the style, this can be achieved
by creating new CSS themes. CLAM gets shipped with the default “classic” style
(which did receive a significant overhaul in CLAM 0.9). Copy, rename and adapt
style/classic.css to create your own style. And set STYLE accordingly in
your service configuration file.

In your service configuration file you can set a variable INTERFACEOPTIONS, this
string is a space-separated list in which you can use the following directives to
customise certain aspects of the web-interface:

39

• simpleupload – Use the simple uploader instead of the more advanced
javascript-based. The simple uploader does not support multiple files but
does provide full HTTP Digest Security whereas the default and more
advanced uploader relies on a less sophisticated security mechanism.

• simplepolling – Uses a simpler polling mechanism in the stage in which
CLAM awaits the completion of a procress. This method simply refreshes
the page periodically, whilst the default method is asynchronous but relies
on a less sophisticated security mechanism.

• secureonly – Equals to simpleupload and simplepolling, forcing only
methods that fully support HTTP Digest Authentication.

• disablefileupload – Disables the file uploader in the interface (do note
that this is merely cosmetic and not a security mechanism, the RESTful
webservice API will continue to support file uploads).

• inputfromweb – Enables downloading an input file from the web (do note
that this is merely cosmetic and not a security mechanism, the RESTUL
webservice API always supports this regardless of visibility in the interface).

• disableliveinput – Disables adding input through the live in-browser
editor.

2.5 Wrapper script

Service providers are encouraged to write a wrapper script that acts as the glue
between CLAM and the NLP Application(s). CLAM will execute the wrapper
script, and the wrapper script will in turn invoke the actual NLP Application(s).
Using a wrapper script offers more flexibility than letting CLAM directly invoke
the NLP Application, and allows the NLP Application itself to be totally inde-
pendent of CLAM.

The wrapper script takes the arguments as specified in COMMAND in the service
configuration file; see Section 2.4.3. There are some important things to take
into account:

• All user-provided input has to be read from the specified input directory.
A full listing of this input will be provided in the clam.xml data file. If
you choose not to use this, but use $PARAMETERS instead, then you must

40

take care that your application can identify the file formats by filename,
extension or otherwise.

• All user-viewable output must be put in the specified output directory.
Output files must be generated in accordance with the profiles that describe
this generation.

• The wrapper should periodically output a small status message to $STATUSFILE.
Whilst this is not mandatory, it offers valuable feedback to the user on the
state of the system.

• The wrapper script is always started with the current working directory set
to the selected project directory.

The wrapper script can be written in any language. Python developers will have
the big advantage that they can directly tie into the CLAM Data API, which
handles things such as reading the clam.xml data file, and makes all parameters
and input files (with metadata) directly accessible.

2.5.1 CLAM Data API

The key function of CLAM Data API is parsing the CLAM XML Data file that
the clam webservice uses to communicate with clients. This data is parsed and
all its components are made available in an instance of a CLAMData class.

Suppose your wrapper script is called with the following command definition:

COMMAND = "/path/to/wrapperscript.py $DATAFILE $STATUSFILE $OUTPUTDIRECTORY"

Your wrapper scripts then typically starts in the following fashion:

import sys

import clam.common.data

datafile = sys.argv[1]

statusfile = sys.argv[2]

outputdir = sys.argv[3]

clamdata = clam.common.data.getclamdata(datafile)

41

The first statements parse the command line arguments. The last statement
returns a CLAMData instance, containing all data your wrapper might need.

For an extensive overview of the CLAMData class, we refer to the CLAM Data
API Documentation at http://packages.python.org/CLAM.

42

http://packages.python.org/CLAM

Chapter 3

Documentation for Service
Clients

CLAM is designed as a RESTful webservice, which implies that usage of the four
HTTP verbs (GET/POST/PUT/DELETE) on pre-defined URLs is how you can
communicate with a CLAM webservice. The webservice will in turn respond with
standard HTTP response codes and, where applicable, in CLAM XML format.

When writing a client for a CLAM webservice, Python users benefit greatly from
the CLAM Client API, which in addition to the CLAM Data API provides a
friendly high-level interface for communication with a CLAM webservice and the
handling of its data. Both are shipped as an integral part of CLAM by default.
Using this API greatly facilitates writing a client for your webservice in a limited
amount of time, so it is an approach to be recommended. Nevertheless, there
are many valid reasons one might wish to write a client from scratch, not least
as this allows you to use any programming language of your choice, or better
integrate a CLAM webservice as a part of an existing application.

Appendix A of this documentation provides a full specification of the RESTful
API, which will provide the technical details necessary for an implementation of
a client. Moreover, each CLAM service offers an automatically tailored REST-
ful specification specific to the service, and example client code in Python, by
pointing your browser to your service on the path /info/.

Users of the CLAM Client API can study the example client provided with CLAM:
clam/clients/textstats.py. This client is heavily commented. Moreover, an
API reference can be found at http://packages.python.org/CLAM .

43

http://packages.python.org/CLAM

There is also a generic CLAM Client, clam/clamclient.py, which offers a
command line interface to any CLAM service.

44

Appendix A

RESTful specification

This appendix provides a full specification of the RESTful interface to CLAM:

URL /

Get index of all projects
Method GET

Querystring -
Response 200 - OK & CLAM XML, 401 - Unauthorised

URL /[project]/

Get a project
Method GET

Querystring -
Response 200 - OK & CLAM XML, 401 - Unauthorised, 404 -

Not Found

Description This returns the current state of the project in CLAM XML
format. Depending on the state this contains a specifi-
cation of all accepted parameters, all input files, and all
output files. Note that errors in parameter validation are
encoded in the CLAM XML response; the system will still
return a 200 response.

45

Create new empty project
Method PUT

Querystring -
Response 201 - Created, 401 - Unauthorised, 403 -

Forbidden (Invalid project ID), 403 - Forbidden

(No project name)
Description This is necessary before attempting to upload any files; it

initialises an empty new project.
Start a project with specified parameters

Method POST

Querystring Accepted parameters are defined in the Service Configura-
tion file (and thus differs per service). The parameter ID
corresponds to the parameter keys in the querystring

Response 202 - Accepted & CLAM XML, 401 - Unauthorised,
404 - Not Found, 403 - Permission Denied &
CLAM XML, 500 - Internal Server Error

Description This starts the running of a project, i.e. starts the
actual background program with the specified service-
specific parameters and provided input files. The pa-
rameters are provided in the query string; the in-
put files are provided in separate POST requests to
/[project]/input/[filename], prior to this query. If
any parameter errors occur or no profiles match the in-
put files and parameters, a 403 response will be returned
with errors marked in the CLAM XML. If a 500 - Server

Error is returned, then CLAM most likely is not able to
invoke the underlying application or the server has insuffi-
cient free resources.

46

Delete a project
Method DELETE

Querystring -
Response 200 - OK, 401 - Unauthorised, 404 - Not Found

Description Deletes a project. Any running processes will be aborted.

URL /[project]/input/[filename]

Get an input file
Method GET

Querystring -
Response 200 - OK & File contents, 401 - Unauthorised, 404 -

Not Found

Description Retrieves the specified input file.
Delete an input file

Method DELETE

Querystring -
Response 200 - OK & File contents, 401 - Unauthorised, 404 -

Not Found

Description Deletes the specified input file.
Add/upload a new input file

URL /[project]/input/[filename] or
/[project]/input/[inputtemplate]/[filename]

Method POST

Querystring inputtemplate= [inputtemplateid]
file=[HTTPfile]∗
url= [download − url]∗
contents= [text − content]∗
metafile=[HTTPfile]
metadata=[CLAMMetadataXML]
Other accepted parameters are defined in the various
Input Templates in the Service Configuration file (and thus
differs per service and input template). The parameter ID
corresponds to the parameter keys in the query string.

47

Response 200 - OK & CLAM-Upload XML,403 - Permission

Denied & CLAM-Upload XML, 401 - Unauthorised,
404 - Not Found

Description This method adds a new input file. Response is returned
in CLAM-Upload XML (distinct from CLAM XML!) Two
arguments are mandatory: the input template, which des-
ignates what kind of file will be added and points to one
of the InputTemplate IDs the webservice supports, and one
of the query arguments marked with an asterisk. Adding a
file can proceed either by uploading it from the client ma-
chine (file), by downloading it from another URL (url),
or by passing the contents in the POST message itself
(contents). Only one of these can be used at a time.
Metadata can be passed in three different ways: 1) by sim-
ply specifying a metadata field as parameter to the querys-
tring, with the same ID as defined in the input template.
2) setting the metafile attribute to a HTTP file, or 3) by
setting metadata to the full XML string of the metadata
specification.

URL /[project]/output/[filename]

Get an output file
Method GET

Querystring -
Response 200 - OK & File contents, 401 - Unauthorised, 404 -

Not Found

Description Retrieves the specified output file.
Delete an output file

Method DELETE

Querystring -
Response 200 - OK & File contents, 401 - Unauthorised, 404 -

Not Found

Description Deletes the specified output file.

URL /[project]/output/[filename]/metadata

Get the metadat for an output file
Method GET

Querystring -
Response 200 - OK & CLAM Metadata XML, 401 -

Unauthorised, 404 - Not Found

48

Description Retrieves the metadata for the specified output file.

URL /[project]/input/[filename]/metadata

Get the metadata for an input file
Method GET

Querystring -
Response 200 - OK & CLAM Metadata XML, 401 -

Unauthorised, 404 - Not Found

Description Retrieves the metadata for the specified input file.

URL /[project]/output/

Retrieve all output files as an archive
Method GET

Querystring format= zip|tar.gz|tar.bz2
Response 200 - OK & File contents, 401 - Unauthorised, 404 -

Not Found

Delete all output files
Method DELETE

Querystring -
Response 200 - OK & File contents, 401 - Unauthorised

Description Deletes all output files and resets the project for another
run.

49

Appendix B

Predefined Formats

The following formats are pre-defined in CLAM. Each is a python class derived
from CLAMMetaData, and defined in clam/common/formats.py:

50

Development Notes
To be written still...

51

	Introduction
	Intended Audience

	Documentation for Service Providers
	Technical details
	Installation
	Using CLAM with Apache 2
	Using CLAM with nginx
	Using CLAM with other webservers
	Troubleshooting

	Architecture
	Beginning a new CLAM project
	Service configuration
	Server Administration
	User Authentication
	Command Definition
	Paradigm: Metadata, Profiles & Parameters
	Parameter Specification
	Profile specification
	Control over filenames
	Parameter Conditions
	Converters
	Viewers
	Working with pre-installed data
	Multiple profiles, identical input templates
	Customising the web application

	Wrapper script
	CLAM Data API

	Documentation for Service Clients
	RESTful specification
	Predefined Formats

