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Stable Constellations of
Frozen Elliptical Inclined
Lunar Orbits

Todd A. Ely’

Abstract

Higher altitude orbits (in the 500 to 20,000 km range) at the Moon are dominated by Earth
perturbations and result in motions that do not ascribe to the standard notions of orbits
dominated by nonspherical gravity effects (such as from oblateness). This fact complicates
orbit design of lunar orbiter constellations that require specific and persistent coverage over
a selected lunar region. Using a combination of analytical theory and numerical simula-
tion, a technique is developed for designing a lunar constellation of three spacecraft where
two spacecraft are always in view from the lunar surface for the polar regions.

Introduction

A great deal of scientific interest exists regarding the permanently shadowed
craters near the poles of the Moon where there may be frozen volatiles [1]. These
regions, particularly the Moon’s South Pole, have been proposed for extensive ro-
botic and human exploration [2]. Unfortunately, they are typically not in view of
Earth, and would require some form of communication relay to facilitate explo-
ration via robotic and/or human missions. One solution for such a relay is a long-
lived constellation of lunar telecommunication orbiters providing focused coverage
at the pole of interest. Robust support requires this coverage to be continuous and
redundant [3]. Finally, in order to minimize costs, this constellation should have
three satellites or fewer and possess coverage properties that persist [3].

Constellation Coverage and Orbit Considerations

The combination of redundant, continuous, and focused coverage with a small
number of satellites leads to the consideration of orbits with the following orbital
characteristics:

1. Sufficiently large semimajor axis values to produce continuous single and dou-
ble coverage with a minimal number of satellites.
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2. Large eccentricity values to focus coverage near apoapsis for longer contact
durations.

3. Inclination values to orient the coverage swaths over the poles (rather than the
equator).

4. Argument of periapsis values set to either 90° or 270° depending on whether
apoapsis should be over the South Pole or North Pole, respectively.

In response to this need, a new class of stable altitude orbits at the Moon has been
found that enables the presence of a constellation of lunar orbiting telecommunica-
tion spacecraft. The orbits are elliptical with their line of apsides librating in the polar
region (a.k.a. “frozen” orbits), and exhibit lifetimes in excess of ten years, the ex-
pected mission duration for a lunar telecommunications system. This paper de-
scribes the processes for selecting the orbital parameters for the constellation and
the mechanisms behind its subsequent stable, long-term evolution. It is also shown
that, with appropriate selection of initial semimajor axis values, satellites in the
same orbital plane can maintain a relatively stable mean separation between them
with little or no orbit maintenance costs. That is, the constellation maintains a “for-
mation” using only natural gravity effects and has long-term stable constellation
coverage properties. Indeed, it is shown that a constellation of three spacecraft can
yield continuous coverage with two spacecraft continuously in view of a polar sta-
tion for the lifetime of a ten year mission.

Earth’s gravity is the most significant perturbation on high altitude lunar orbits
in the 500 to 20,000 km range (at higher altitudes the problem approaches a three-
body problem versus a two-body perturbed problem). As a result, these orbits can
possess a multitude of complex motions which are atypical of lower altitude orbits
dominated by non-spherical gravity field perturbations. Indeed, many can exhibit
unstable characteristics [4]. It is not uncommon for a near circular obit to become
near hyperbolic on the order of tens of days. A classic technique to minimize vari-
ations in eccentricity when nonspherical gravity zonal harmonic perturbations
dominate is to utilize the J» and J; nonspherical gravity terms to design an orbit
with small oscillations in eccentricity and a librating argument of periapsis (a.k.a.,
a “frozen orbit”) [5]. This approach typically yields a solution with a small eccen-
tricity, thus is not well suited to providing increased coverage to a selected polar re-
gion. Plus, because of the dominance of the Earth’s gravity field, these solutions
may not exist at higher altitudes. However, there exists another class of “frozen”
orbits due to the influence of third-body perturbations (i.e. Earth gravity perturba-
tions) that could prove useful. Ely and Howell [6] showed, in the case of Earth
elliptical orbits near the critical inclination being perturbed by the Moon, that there
exists a small region of stable libration motion in the ¢ — w phase space (e is ec-
centricity, and w is the argument of periapsis) near w = 90° and 270° that is sur-
rounded by a large region of chaotic motion. The stable libration motion is of
particular interest, because it implies that orbits can be designed to have focused
coverage at the poles. Even though the analysis was specific to the Earth, the con-
clusion is generic to any two-body orbit being perturbed by a third body. In the
present case, that would be a lunar orbit being perturbed by the Earth. In the next
section, a dynamical model with only Earth perturbations present is developed that
captures the key qualitative features of the motion, and that can be used for the ini-
tial orbit design.
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Initial Design Using an Earth Perturbation Long Period Model

Many authors have examined the third-body perturbation problem, some of
which include Kozai [7], Lidov [8], Lorell [9], and, recently, Broucke [10] and
Prado [11]. All these authors developed a simplified mean element model of an
orbit being perturbed by a third body that was amenable to characterizing and clas-
sifying the essential types of the integrable motions that could exist. It should be
noted that these authors did not examine the possibility that non-integrable (i.e.
chaotic) motions could exist with a more complete dynamical model. Nonetheless,
the models they developed prove useful for revealing the structure of the stable
e — o libration motion that can be utilized in designing the constellation.

Two reference frames relevant to the development of the model and the ensuing
numerical simulations include the following:

1. A frame where the reference plane is defined by the Earth’s apparent orbit around
the Moon with the x-axis of the frame defined by the intersection of Moon’s
equatorial plane with the Earth’s apparent orbital plane. Note that in this frame,
the Moon’s pole is inclined with respect to the Earth orbit normal at approxi-
mately iy ~ 6.8°. This frame is useful because it yields the simplest form for the
mean motion model when only Earth perturbations are present. An illustration of
this frame is shown in Fig. 1. The precise definition of the frame is as follows:
a. The standard IAU definition {12] of the Moon’s pole is defined as the normal

to the Moon’s equatorial plane, and the unit vector along the pole is identified
as L.
b. The z-axis unit vector of the frame is defined in the direction of the orbit nor-
mal of the “apparent” Earth orbit around the Moon using
5P = M (1)
|1‘E X VEI
where rg and vg are the Earth’s position and velocity with respect to the Moon,
respectively. The DE 405 planetary ephemerides [13] are used in the subse-
quent simulations to obtain values for the above vectors.

Lunar equatorial

‘ plane Q*
Ea.r[h’s apparenl ....................................................... 4

orbit plane

Spacecraft orbit plane

FIG. 1. The Earth Orbit Plane Frame {%°, §°°, 2°°} Shown with Respect to the Lunar Equatorial Plane,
and the Spherical Triangle that Relates the Spacecraft Orbit Plane, the Equatorial Plane, and the Earth Orbit
Frame that Determines the Relationship in Equation (4).
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c¢. The x-axis unit vector is defined as
A o
L xX2%®

gP =L
[, X 2

)

Note that this unit vector lies along the intersection of the Earth’s apparent
orbit plane around the Moon and the Moon’s equatorial plane.
d. Finally, the y-axis unit vector is defined by completing the triad using

§% = 2P X & 3)

e. Technically the Earth orbit frame “op” is not an inertial frame because of the
slow variation in time of the unit vectors with respect to Earth Mean Equator
frame of J2000 (EME2000). Therefore, subsequent numerical integrations
may define inputs and outputs in the Earth orbit frame; however, the actual in-
tegrations take place in EME2000 to ensure an inertial integration.

2. The standard IAU Moon Pole frame [12] in which the Moon’s equatorial frame is
the reference plane. This is the natural frame for designing the constellation’s cov-
erage properties.

Orbital elements defined with respect to the Earth orbit plane frame are identi-
fied with the superscript “op” (short for orbit plane), and orbital elements defined
with respect to the IAU Moon Pole frame are identified with the superscript “ep”
(short for equatorial plane). A particular relationship that proves useful in the sub-
sequent analysis relates the orbital inclinations defined in these two frames is

cos i = cos if cos i — sin i sin i cos 4

where i is the spacecraft inclination with respect to the Moon’s equatorial plane,
it is the inclination of the Earth’s orbit plane with respect to the Moon’s equatorial
plane, i is the spacecraft inclination with respect to the Earth’s orbit plane around
the Moon, and Q) is the spacecraft ascending node in the Earth’s orbit plane. The
highlighted spherical triangle in Fig. 1 illustrates the geometry associated with
equation (4). It should be noted that the orbital semimajor axis a, eccentricity e,
and mean anomaly M are the same in either frame, hence are not distinguished via
superscripts.

The model development begins with the construction of a disturbing function
that includes only the perturbing effects from the Earth. Gravity perturbations from
a nonspherical Moon and the Sun are not included. The general form of the Earth
gravity disturbing function [4] is given by

r="s <i>lpl(cos ve) 5)

e 122 \TE

where G is the universal constant of gravitation, mg is the mass of the Earth, rg
is the distance from the Moon to the Earth, r is the distance from the Moon to
the spacecraft, P;(-) is the Legendre polynomial of degree /, and i is the angle
between the spacecraft position vector r and the Earth position vector rg (i.e.,
rrg cos Y = r - re). A simplified disturbing function that is amenable to a qualita-
tive analysis is developed using the following assumptions:

1. Retain only the largest term in equation (5), that is I = 2. This is reasonable for
a qualitative analysis. For example, a spacecraft at r = 6400 km yields the ratios
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/)~

implying the term with I = 3 is 60 times smaller than the retained term.

2. Approximate the Earth’s apparent orbit around the Moon as circular. This is approx-
imately correct since the Earth’s mean eccentricity is small with a value of 0.058.

3. Short period terms dependent on the spacecraft’s mean anomaly M and the
Earth’s mean anomaly Mz are averaged out to produce a mean element model.
Any solutions generated from the resulting model produce mean elements; to get
the equivalent osculating elements requires a transformation. The impact of this
transformation is noted in the numerical results presented later.

Applying the above assumptions to equation (5) produces a disturbing function
of the form

il ynia?
16V1 — ¢

where, as indicated previously, the orbital elements are reconciled with respect

3
[(1 + 3 cos 2i%) (1 + ?e2> + 15€? sin? i° cos 2w°p] )

to the Earth orbit frame. The mass ratio is defined as y = ——— where My
mg + mm

is the mass of the Moon and the mean motion of the Earth around the Moon is

G(mg + muy)
nE= \|———.
ag

The associated differential equations for secular and long period motion of
e — w are obtained by applying Lagrange’s planetary equations to equation (7)
with the result

d 15 nk
£ = 2B N1 = & sin® i% sin 200 (8)
d 8 'n
dw® 3 &
((;t = 8W'y%[(5 cos?i® — 1 + &) + 5(1 — € — cos? i) cos 2w™]
—e
®)
. i Gmwm A
Where the mean motion of the spacecraft is n = T Solutions to equa-

tions (8) and (9) that are of particular interest are the stable librations of ¢ — ™
around the fixed point solutions where ¢ — @* remain constant (i.e., $=
dw®

de

= (). Examination of the equations reveals the fixed point solutions when the

conditions are met

sin 2w® = 0 (10)
and
(5cos?i® — 1 + €*) + 5(1 — &* — cos® i) cos 2w™ = 0 (1
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which leads to the results
5
@” = 90°,270° and &% + ? cos?i® =1 (12)

In addition to the particular fixed point solutions, equations (8) and (9) are com-
pletely integrable with the general solution

(1 —é*)cos?i®=q (13)

and

2 _i-Z-op'Z op | — _i E
e(l 2smzsmw) B 2R+8a (14)
where « is a constant of motion and is related to the z-component of the angular
momentum and S is a constant of motion related to the disturbing function R (also
a constant of motion) and « (c.f., the last term in equation (14)). Note that the fixed
point solutions given by equation (12) are included in equations (13) and (14).

Before discussing solutions to equations (13) and (14), it is useful to discuss an-
other class of frozen orbits that exist due to the zonal harmonics. A recent study by
Elipe [16] investigated families of low altitude (<500 km) frozen orbits at the
Moon for zonal harmonics up to degree 20. Their results showed that for inclina-
tions i*? (with respect to the equatorial plane) up to 63° there exist continuous fam-
ilies of frozen orbits with stable librations of ¢ — @™ for certain paired values of
eccentricity and inclination. At higher inclinations there exist families of stable and
unstable frozen orbits (unstable means the argument of periapsis circulates). As
noted previously, the zonal harmonics are less significant than the Earth perturba-
tions in the current study. Nevertheless, the equatorial inclination of 63° was se-
lected for the initial constellation design because it brings the orbital plane as close
as possible to the pole, and still yields stable ¢ — « librations due to the zonal har-
monics. As will be seen, the equivalent inclination in the Earth orbit plane i also
yields stable e — @™ librations from Earth perturbations.

Figure 2 illustrates some example trajectories resulting from solutions to equa-
tions (13) and (14) in the ¢ — w phase plane. Note that two types of trajectories for
e — o motion are illustrated: closed librations and open circulations. The paired
sets of numbers shown on figure are the initial eccentricity and inclination for each
trajectory; all trajectories begin with an initial argument of periapsis value that is
either 90° or 270°. The division between open or closed motions occurs when
B = 0 which exists either for ¢ = 0 or for i = sin"( \/2/5) = 39.2° (which is
often called the “critical inclination” in the third-body perturbed problem). A solu-
tion of particular interest that is shown in Fig. 2 is the closed libration with

(€0, iF) = (0.6,56.2°) & O* = 0° — (e,, i) = (0.6,63°) (15)
with & = 0.198414 and B = —0.26098. Using equation (12), the fixed point solu-

tion at i’ = 56.2° is found to have an eccentricity of e ~ 0.7. In Fig. 2 this value
of eccentricity is at top of the loop formed by the solution in equation (15), and
represents an upper bound to the largest value that this solution will have. The
minimal value seen in the figure is the initial value of ¢ ~ 0.6. The variation in
inclination seen by this orbit can be ascertained from equation (13), and leads
to (if8n, ithx) = (51.4°,56.2°). This range of values is useful for selecting a nominal

semimajor axis value that satisfies the constellation coverage requirements and
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0.8 1
(0.9, 20°)
. ‘ (0.8, 20°)
0.6 / \ ...... 5
(0.6, 20°)
(5]

0.4 | 1}0.4, 56.2°) ]
£l [ (0.4, 20°)
—/ \

0 (0.2, 56.2°) |

T — ] [ (0.2, 20°)

(0.0, 56.2°)
0t: , - - , - 1(0.0, 20°)
0 45 90 135 180 225 270 315 360
w (deg)

FIG. 2. Trajectories in the e — ™ phase plane for selected initial values of eccentricity and inclination
(es, i%). All trajectories have initial arguments of periapses @® = 90° or 270°. In general, trajectories with
initial inclinations above 39.6° will librate, and below will circulate.

has a sufficient periapsis altitude. First, to ensure periapsis altitudes are above a
minimal altitude and apoapsis altitudes are less than a maximal altitude the constraints

a(l e emax) . RM = hmin & a(l + emax) o RM = hmax (16)

must be met where Ru is the mean radius of the Moon. A value for Ami, = 225 km
has been selected and leads to a semimajor axis value of @ ~ 6541.4 km; and at
apoapsis Am.x = 9382 km. Coverage characteristics of this orbit are examined later
in the constellation design step using numerical integrated trajectories being per-
turbed by a complete gravity model that includes the lunar nonspherical gravity, the
Earth’s gravity, and the Sun’s gravity.

To summarize, the preceding development yielded an initial orbit selection with
the initial values

{a,e,i®, Q%*, 0} = {6541.4 km, 0.6, 56.2°,0°,90°} amn

This selection has been made using the analytical solution given by equa-
tions (13) and (14) and results in a “frozen” orbit in ¢ — w® phase space with an
eccentricity variation of Ae ~ +0.1 and an inclination variation of Ai®® ~ —4.8°.
It is useful to examine the long-term stability of this orbit using a set of dynamical
models of ever increasing fidelity.

Numerical Simulations of the Initial Orbit Design

These numerical investigation illustrate the impact of adding perturbations (i.e.
adding nonspherical gravity effects and the Sun), changing to the IAU Moon Pole
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frame, and the overall stability of the orbit for a ten-year lifetime of the reference
orbit defined by equation (17). There are a number of different cases examined. In
all cases, the numerical simulations integrate a set of differential equations that al-
ways include at least the inverse square effect and the Earth perturbation as given
by equation (5). Note that the Earth perturbation is the complete term that includes
all secular, long period, and short period effects, as opposed to equation (7) which
only includes the lowest order secular and long period effects. The implication of
this is the numerical simulations yield osculating elements rather than mean ele-
ments. Unless noted all orbits start with initial conditions given by equation (17)
with a starting epoch of 1-July-2009 1:00:00. Details of each case follow:

1. Case 1: Two-year propagation with Earth as the only perturbation. The orbit of
the Earth is exactly circular, and all the results are reconciled in the Earth orbit
plane. This case illustrates the basic motions predicted by equations (13) and
(14), except with the addition of short period and higher order Earth effects.

2. Case 2: The same as Case 1 except now the true ephemeris for the Earth is used
(DE405s). This case examines the impact of introducing eccentricity to the Earth
orbit.

3. Case 3: The same as Case 2 except now perturbations from the Earth, Sun, and
zonal harmonics through J; are included. This case examines the impact of in-
troducing additional perturbations.

4. Case 4: The same as Case 3 except now the frame has been switched to IAU
Moon Pole. This examines the effect of switching from the Earth orbital plane to
the Moon’s equatorial plane.

5. Case 5: The same as Case 4 except now a complete 50 X 50 lunar gravity field
is used. This case examines the effect of the additional zonals and tesseral har-
monics on the evolution of the trajectory.

6. Case 6: The same as Case 4 except now the propagation interval is ten years.
This case illustrates the long-term stability of the orbit and later will be used to
demonstrate the coverage properties of the entire constellation.

Figure 3 shows the time histories of the osculating orbital eccentricity and incli-
nation for Case 1. The first thing to note about the plots is the predominant long
period (~1.25 years) oscillation with Ae ~ 0.095 and Ai® ~ 4° which is indicative
of the libration motion predicted by the mean element model. Also note the presence
of a small amplitude (Ae ~ 0.02), faster eccentricity oscillation which indicates the

0.70

0.68

0.66

a

0.64} - -fllifee e 2

0.62 /114

0.60

G 100 200 300 400 500 600 700 0100 200 300 400 500 600 700
Days past 15-IUL-2009 01:00:00.0000 ET Days past 15-1UL-2009 01:006:00.0000 ET

FIG. 3. Case 1 Eccentricity and Inclination Time Histories in the Earth Orbit Frame.
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presence of the short periodic gravity effects that are not included in the mean
element model. Indeed, the mean elements presented in Fig. 3 can be estimated to
have initial values near e, ~ 0.61 and > ~ 55.9° with mean value oscillations of
Ae ~ 0.07 and Ai® ~ 3.4°, Using these values in equations (13) and (14) the pre-
dicted mean element variations are Ae ~ 0.08 and Ai® ~ 3.7° which is a close
match. The remaining differences are most likely attributable to the neglected
higher order terms in the analytical model. These results validate the qualitative
mean element model as a good representation of the numerical simulated model
when only Earth gravity is present.

The next set of results examines the ¢ — w phase plane motion for the six cases.
This reveals the overall stability of the libration motion under more realistic as-
sumptions. The results are shown in Fig. 4. Examination of all cases shows that the

Case 1: Circ E Orbit; E Grav; Orbit Frame Case 2: DE405 Eph; E Grav; Orbit Frame
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70 75 80 85 90 95 100 105 110 70 75 80 85 90 95 100 105 110
Case 3: DE40S Eph; E, S, 7x1 Grav; Orbit Frame Case 4: DE405 Eph; E, S, 7x1 Grav; 1AU Frame

] PR S LT L e R Mtret - YL Ly T b LT

070 - i-mooeieree- b pemgemne oo beceieo . 070

0.65f -~ o LR oo 3NN ] 065

© : :

0.60}----3----- ARy R 0.60

R O 'S A

0.55f -3 ormmdoee g TR 0.55

e I L G T O | OO s T A
70 75 80 85 90 95 100 105 110 70 75 80 85 90 95 100 105 110
Case 5: DE405 Eph; E, S, 50x50 Grav; IAU Frame Case 6: 10 year Propagation of Case 4
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FIG.4. e — o Phase Plane Plots for the Six Cases.
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e — w libration motion is persistent, but significantly changes its characteristics
in proceeding from Case 1 to 6. First note that the addition of the true ephemeris in
Case 2 increases the size of the libration. For instance, the overall eccentricity vari-
ation grows to Ae ~ 0.15 from a value of 0.095 in Case 1. In Case 3 the addition
of Sun gravity and zonal gravity in Case 3 do not significantly affect the motion
over Case 2. In Cases 4, 5, and 6 the frame has changed to the IAU Moon Pole and
the libration increases in complexity by adding some long period loops, however the
motion is still bounded and the amplitude of the eccentricity variation remains
about the same as in Cases 2 and 3 in the Earth orbit frame. It is worth noting that the
addition of the complete 50 X 50 field had no significant impact on the overall results.

Better insight into what has happened to the solution in switching planes can be
understood by examining the inclination time histories between Case 3 and Case 4.
This is shown in Fig. 5 where the first thing to note is that in Case 3 Ai®® ~ 5° and
in Case 4 the variation increases to Ai®® ~ 15°. The explanation for this change can
be ascertained by examining equation (4), and noting that the ascending node varies
secularly with time () (at a rate of —0.36°/day). This, combined with the long pe-
riod oscillation of i, leads to a quasiperiodic motion in i’ that increases the over-
all amplitude of Ai®®. So when i* is at its minimum on 11-Apr-2011, Q% = 127°
and i = 52° and, using equation (4), leads to a predicted value i*® = 48°, which
matches the value shown in Fig. 5. A similar impact to the argument of periapsis
o in the equatorial frame is expected. In other words, the dynamics have not
changed in switching to the equatorial frame, but the behavior of the elements rec-
onciled in the new frame has. Indeed, comparison of the eccentricity time histories
between frames shows no difference, which is as expected because eccentricity is
frame independent.

Results for Case 6, the ten-year propagation, verify the long-term stability of
the motion, indicating that this class of orbit is amenable to constellation design. The
complete set of orbital elements for this case is shown in Fig. 6. Note that periapsis
altitude remains above 100 km for the ten-year period.> Again the characteristics of
the inclination i and argument of periapsis w® are complicated by switching
planes. The semimajor axis variations are due predominantly to short periodic effects;

i i i i i i i HI i i i i i
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Days past 15-1UL-2009 01:00:00.0000 ET Days past 15-1UL-2009 01:00:00.0000 ET

FIG. 5. Inclination Time Histories for Case 3 in the Earth Orbit Frame (Left) and Case 4 in the
IAU Moon Pole Frame (Right).

*Preliminary results of 100 year propagations suggest the qualitative characteristics (i.e., libration) found with
the ten-year propagations persist. A more detailed examination of longer period propagations is part of a fu-
ture study.
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FIG. 6. Case 6 Orbital Element Time Histories in the IAU Moon Pole Frame.

any observed long period effects are minor. This indicates that the mean value of
the semimajor axis is constant even in the presence of a complete gravity field.
Since the mean motion # of the spacecraft is related to its semimajor axis value via
\V Gmg/a? its average value is nearly constant, as well. Furthermore since the mean
anomaly M is related to the mean motion n via M = n(t — 1,), an average relative
mean motion difference An between two spacecraft yields a secular variation
in their relative mean anomalies (i.e., AM = Anr). The implication of this is that
the average relative mean motion between spacecraft An can be designed to ap-
proach zero and the resulting average relative mean anomaly AM will be constant.
This will turn out to be instrumental in designing a constellation with stable cover-
age properties.

Constellation Design for Polar Coverage

The design for the constellation will use the concept of an “eccentric street of
coverage” (ESOC) as introduced by Ely, Crossley, and Williams [17] in which



312 Ely

satellites in the same plane equally spaced in initial mean anomaly are capable of
providing focused coverage over a latitude range of interest. In the present study
this latitude range is limited to a pole. To be specific the South Pole is selected for
the remainder of the discussion. Before a detailed constellation design can begin,
coverage by a single satellite to a South Pole station needs to be ascertained. In par-
ticular, the minimal coverage circle at apoapsis can be computed using the ten-year
time history shown in Fig. 6. The relationship for the Moon central angle 6 associ-
ated with the coverage circle has the relationship

Rm __ Rmcos B
RM+hCOSB—a(1 —é%)

where B is the minimum elevation angle that a ground station can view the space-
craft, h is the spacecraft altitude, and fis spacecraft true anomaly. An illustration of
the coverage circle geometry is shown in Fig. 7. For this study 8 is set to 10°. At an
apoapsis of f = 180°, equation (18) reduces to

6— cos-l[w] _B (19)

cos(f + B) = (1 + ecosf) (18)

a(l + ¢

For fixed B and g, equation (19) is minimized when e is smallest, which is
~0.55. Using this value for e and a mean a of 6543 km leads to 6§ ~ 70°. Even at
the largest inclination, this coverage circle lies over the South Pole (i.e.,
6 — (90° — i*®*) > 0°). This verifies that over the ten-year mission a spacecraft in
this orbit will see the South Pole during every orbital revolution.

Now to utilize the ESOC concept, a sufficient number of spacecraft must be
placed in an orbital plane to provide continuous single and double fold coverage
over the South Pole. Furthermore, because of the complex dynamics illustrated by
the ten-year trajectory a central question is, “Does any design (ESOC or some other
approach) yield stable coverage as the constellation evolves over time?” Because of
the complexity of the motion it is nearly impossible to ascertain the coverage and
stability of the design analytically, however, via numerical simulation, a design can
be found that does provide stable two-fold coverage. The steps are as follows:

satellite

FIG. 7. Illustration of Coverage Circle Geometry.
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1. Place n-spacecraft in the same initial orbits with initial mean anomaly separa-
tions of 360°/n. An initial selection for n can be made by analyzing coverage
properties associated with the constellation using only Keplerian orbits.

2. Simulate the trajectories for a period of time that is sufficient to determine the
average relative mean motion (and, by implication, the average relative semi-
major axis differences) that are causing the spacecraft to drift apart in mean
anomaly M. As indicated previously, this drift is essentially secular.

3. Estimate delta semimajor axis values for each spacecraft (other than the lead
spacecraft) that will arrest the relative mean anomaly drift. That is, determine
(Aa;) = {(a; — ay) for each spacecraft i € (2,n) such that (AM;) = (M; — M,) are
constants, where {-) is an average operation.

4. Iterate Steps 2 and 3 until (AM;) is sufficiently constant.

5. Simulate the constellation with the adjusted values for g; and calculate the cov-
erage statistics to a polar station of interest. Reduce/increase the number of
spacecraft to achieve the desired coverage (presently, this is two-fold coverage).

This design process is illustrated with the current orbit selection for South Pole
coverage:

1. Three spacecraft are selected with the following initial conditions:
{ay, 1,1, QF, 0P, M1} = {6541.4 km, 0.6, 56.2°,0°,90°, 0°},
{as, €2, i, QF, 0P, M} = {6541.4 km, 0.6, 56.2°,0°,90°, 120°},
{as, €3, i, QOF, 0P, M3} = {6541.4 km, 0.6, 56.2°,0°,90°, 240°} (20)
It can be shown that this constellation using only Keplerian orbits provides the
desired one-fold and two-fold continuous coverage statistics.
2. These spacecraft trajectories are simulated for two years and the relative mean
anomaly differences AM, and AM; are shown in Fig. 8. Note the secular change

in the mean anomalies.
3. and 4. Iterating yields the adjustments to the semimajor axis values

a = Aa; + a) = 6541.623458 km
a3 = Aaz + a; = 6539.069348 km 21)

~
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FIG. 8. Mean Anomaly Differences Between the Second Spacecraft (LTO2) and the First (LTO1),
Left Figure, and the Third Spacecraft (LTO3) and the First, Right Figure, for the Constellation with
No Phasing Adjustments.
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No other adjustments to the elements are required. A two-year propagation of the
relative mean anomaly differences AM; and AM; is shown in Fig. 9. Note that
now the relative mean anomalies oscillate around a mean value that appears
nearly constant. Hence, the spacecraft mean spacing is persistent in time with no
additional orbit control required.

5. Finally, the coverage statistics are computed using the constellation’s ten-year
propagated trajectories to a station located at the South Pole and a 10° minimum
elevation angle with the results shown in Table 1. The rows include statistics for
the mean pass, mean gap, and percent coverage. The columns include statistics
for each satellite, and then one- and two-fold statistics for the entire constella-
tion. The computation of the mean pass for the specified satellite is the average
of its individual passes over the ten-year propagation period; the mean gap is the
average period of time between passes for the specified satellite; and the percent
coverage is the ratio of the sum of the passes over the entire period. Regarding
the one- and two-fold constellation statistics, the one-fold mean pass is the average
time that at least one satellite is in-view; and two-fold mean pass is the average time
that at least two satellites are in-view. Similarly, the mean gap is the average
time one or two satellites of the constellation are not in-view. Clearly, the con-
stellation has the desired single and double fold coverage over the entire ten-year
span. An example of the folds of coverage over the entire planet at the initial
epoch is illustrated in Fig. 10, which clearly shows the two-fold coverage at the
South Pole. The coverage at higher latitudes is very dynamic in time; hence gen-
eral conclusions can not be drawn from this single snapshot. Additional analysis

160 300 300 400 500 600
Days Past 15-JUL-2009 01:00:00.0000 ET

160 200 300 4 0 700
g Days Past 15-JUL-2009 01:00:00.0000 ET

FIG. 9. Mean Anomaly Differences Between the Second Spacecraft (LTO2) and the First (LTO1),
Left Figure, and the Third Spacecraft (LTO3) and the First, Right Figure, for the Phased Constellation.

TABLE 1. Coverage Statistics of a South Polar Station by each Spacecraft and
the Constellation

Satellite 1 ~ Satellite 2 Satellite 3 Constellation Constellation

1-Fold Coverage  2-Fold Coverage

Mean Pass (hrs) 10.572 10.582 10.579 Total Span Total Span
Mean Gap (hrs) 3513 3.507 3.509 0 0
% Coverage 73.350 73.399 73.375 100 100
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FIG. 10. Example illustrating the folds of coverage of the phased constellation for the initial epoch. The
colorbar indicates the color associated with each integral fold of coverage.

has shown for the selected initial conditions that three spacecraft are the minimal
number to achieve 100% two-fold coverage at the South Pole. Increasing the mini-
mum elevation angle to 15° also reveals that this constellation still has 100% one-
fold coverage, and 99.468% two-fold coverage.

Conclusion

A method has been developed for designing a high altitude lunar constellation
that provides stable and redundant coverage to a selected pole at the Moon. The ap-
proach is guided by analytical techniques for initial orbit selection, and then a nu-
merical procedure for tuning the coverage of the constellation to achieve a final
design. The resulting constellation design yields stable orbits with lifetimes in ex-
cess of ten years, and a stable “formation.” Under the influence of only gravity ef-
fects, the constellation requires no additional orbit control in order to maintain its
formation. It is anticipated that a small amount of control will be required to ac-
commodate other perturbations, such as solar radiation pressure, momentum desat-
uration errors, etc. Further work on the design methodology includes:

1. Analyze focused coverage at other latitude regions using the ESOC technique
with this class of orbits.

2. Develop a semianalytical technique to establish the tuned initial semimajor
axis values.

3. Analyze the effect of additional perturbations.

4. Conduct propagations for spans that are greater than ten years.
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5. Determine any required formation maintenance approaches that might be re-
quired to minimize the impact of these perturbations.
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