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2 ORTHOGONAL POLYNOMIALS

1 Introduction

Why this paper? Why Spectral Methods? Why a Spectral Toolbox? Why Python?

2  Orthogonal Polynomials

Orthogonal polynomials can be used in order to approximate functions in space. There exist
infinite sets of orthogonal polynomials, however some of them have been studied extensively due
to their simplicity and performances.

The Spectral Toolbox includes several polynomials for bounded as well as for unbounded
domains. The available polynomials will be presented in the following. More information about
orthogonal polynomials can be found in literature (e.g. [3]).

2.1 Jacobi Polynomials
2.1.1 Legendre Polynomials
2.1.2 Chebyshev Polynomials

2.2 Hermite Polynomials

Hermite polynomials span the interval I := (—o0, 00).

2.2.1 Hermite Physicists’ Polynomials

The Hermite Physicists Polynomials denoted by H,,(z) are eigenfunctions of the Sturm-Liouville
problem:

i
e (e—wQH;(x)) A Ho(z) =0, Vo el:=(—o00,00) (1)
e Recurrence relation
H()(CE) =1
H(z) = 20 (2)

Hy1(z) =22H,(z) — 2nH,—1(x)

e Derivatives
Hﬁk) (x) = 2nH7(,,k_711)(m)
HY (2) = Hy () (3)
H(gk) (x)=0 for k>0

e Orthogonality

2

w(z) =e™” (4)
Vo = /T2"n! (5)
e Gauss Quadrature points and weights

The Gauss points {xj}é-vzo corresponding to Hy41(z) can be obtained using the Golub-
Welsh algorithm [2] where:

(6)
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The Gauss weights are obtained by:

v — Av (Hn(z),Hn(2)) _ N (7)
7 AN-1 Hy(z)Hy oy (z5) (N + 1) HE (x5)

2.2.2 Hermite Functions

Hermite Functions are used because of their better behavior respect to Hermite Polynomials at
infinity.

e Recurrence relation

Ho(z) = e=*"/2
H(z) = \ﬁxeﬂuz/2 (8)

f[nﬂ(m):x n+1 — /T Hn 1( n>1
e Derivatives

The recursion relation for the k-th derivative of the function of order n is:

k— In+1 ~
(k) \/>H( 1) 5 H’I(L+11)( ) (9)

Using this recursion formula we end up having an expression involving only Hermite Func-
tions A (x), that can be computed using the recurrence relation, and derivatives of the
first Hermite Function I:I(gk) that have the following form:

f]ék) = aoe_’cz/2 + alxe_xQ/Q + a2x26_”2/2 4+ ...+ aka:ke_”2/2 (10)

The values {ai}f:o can be found using the following table:

k [¢)) a1 a9 as Qa4 as Qg ar as
0 1

1 -1

2] -1 1

3 3 -1

4 3 -6 1

5 -15 10 -1

6| -15 45 -15 1

7 105 -105 21 -1

8 | 105 -420 210 -28 1

that can be generated iteratively using the following rules:

A(0,0) =1
Ai,§) =0 ifi <j
A, j) = A(i,j) —A(i — 1,5 - 1) if j#0
Al j) = A, J) +AG—1,j+1)(j+1) ifi>j
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e Orthogonality

w(z) =1 (11)
Tn = \/7? (12)

e Gauss Quadrature points and weights The Gauss points {ij}é-vzo corresponding to
Hy1(z) can be obtained using the Golub-Welsh algorithm [2] where:

These points are exactly the same of the Hermite Polynomials in (6).
The Gauss weights are obtained by:

I ., S— (14)
T (N +1)HE ()

2.2.3 Hermite Probabilists’ Polynomials
The Hermite Physicists Polynomials denoted by H,,(x) are eigenfunctions of the Sturm-Liouville
problem:
!/
(e_w2He;Z(x)> + )\ne_"’”zHen(x) =0, Ve el :=(—00,00) AA>0 (15)
e Recurrence relation

Heg(z) =1
Hei(z) == (16)
Hepiq(x) =xHep(x) — nHen—1(x)

e Derivatives
Hegc)(a?) = nHeglk:ll)(x)
He%o)(x) = He,(z) (17)
Heék)(z) =0 for k>0
e Orthogonality
w(z) = e~/ (18)
V2

Gauss Quadrature points and weights
The Gauss points {z; }ﬁ-v:o corresponding to Hepny1(x) can be obtained using the Golub-
Welsh algorithm [2] where:

CLj =0 bj == ] (20)

The Gauss weights are obtained by:

.
Wi =N T 1)?1@%(%) (21)
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2.3 Laguerre Polynomials

3 Generalized Polynomial Chaos

Example 3.1 (Stochastic Test Equation).
Consider the stochastic test equation

du(t,§) _
dt = —k(ﬁ)u(t, f)v U(O, 5) = Uo (22)

1 1 1

where the decay rate is uniformly distributed in I € [0,1]. Let’s apply non-normalized
Legendre-chaos on the random input as well as on the function u(t,§), where

N
{JKO’O) (5)} are the orthogonal Legendre basis functions.
i=0

3
=

N
k(E) mkn(€) = > ki (23)
=0
1
- / K(©)T OO €)w(€)de ~ ATK(g) (24)
N
ult,€) mun(t,€) = > ()" (25)
1=0
alt) = — / -t IV (Eul€)dE ~ ATu(t,) (26)
where A;; = (51 w; and {&,wl}Z o 15 a set of quadrature points. The gPC-
expansion of ( ) s given by:
B| 2G50 —B[-HOue.oI )] o)
pe(§) P (&)
duz (t f (0,0) (0,0) _
/ Z OO ()70 (€)pe (€)dé = (28)
=0
1 N
-/ IO O RIGYERIGINGE:
—1ij=0
dug(t) 1 i Y00 (0,0) (0,0)
i =y 2 ki | 10001010 Quede @)

2N IO () I () 100 () wi=esjin

The initial conditions for the gPC-expansion are:

0 1>1

1 s
(0) = — / u(0,€) 7 (€)w(€)de = {“O =0 (30)
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The expectation of the solution is given by

Eu(t,€)],, = / u(t, €)pe (€)dé ~ / ()70 (€)pe(€)dé (31)

N
=3 a( / T (e w()de = ii(t)

i=0 -

The variance of the solution is given by

Varlu(t, )l = B (1) = m )] (32)

~ E[u?\l t g)]pg(&) — 2uu () Elun (2, 6)];)& + lu'u( )

1 N
- / > @) (01" € ©)pe(€)de — i (®)

—Lij=0
1 1
=3 > az(t)yy —ag(t) = 3 PN AGR?
=0 =1

If normalized Legendre-chaos is employed, then some modiﬁcatzons to the equations

- 0)
have to be considered. The normalized basis are given by JZ.(O’O)(ﬁ) = \ﬁ(g) thus

b= [ HOTCV ()i ~ ATkE) (33)

u(t) = / u(t, €) 700 (€)w(€)de ~ ATu(t, ) (34)

-1

where Aj; = ji(o’o)(fj)wj and {ﬁi,wi}ij\io is a set of quadrature points. The gPC-
expansion is then written as

Ll Z kil (¢ / TN TN €I w(e)d (35)

~X Y T (6) I ()T (€ wi=eigi
The initial conditions are given by

uo Z

1
:(0) = / u(0,€) 7 (€)w(€)de = {iﬁ . (36)

I
o
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The expectation and the variance of the solution for the normalized gPC' are given by
1 1 N -(0.0)
Elu(t.&)l, = [ ut Ot~ [ Y a@I O @pelde (3D
=1 —1i=o
N . 1 N
Uz(t) ]. / (0 0) U(](t)
= 5| Ji T (Quw(§)dE =
Dy IR
Var(u(t, §)]pe(e) = B |(u(t, ) — 1 ()] (38)
pe(€)
~ E[uf; (t, )] pe(e) — 20 (O)Elun (£, )] 6) + 1 (t)
1 N
- [ Y an@ 071V @pee)ds - i)
=1 =0
1 1Y
= S @ - a0 =5 a0
i=0 i=1
An advantage of using orthonormal polynomials is that we don’t need to compute {'yi}f-vzl
values that involve factorials and can become hard to compute accurately for big N values.

3.1 Time Dependent generalized Polynomial Chaos

In order to improve the performances on time dependent ODEs, one can employ Time Dependent
generalized Polynomial Chaos (TDgPC) first introduced in [1].
Stop criteria

masx (| (0)], . | n (9)]) lju10<t>| (39)
Integral relation
/I 95 Fy (63t = /1 o(T(E)) fe(€)de (10)

where T (€) is the composition Tj o- - - o Tj of transformations from the variable £ to the variables

[CIRRRRC

Example 3.2 (Stochastic Test Equation - continuing example 3.1).
Consider the solution u(t;,v;—1) at time t; that satisfy the stopping criteria (39). Let’s
define a new random variable 1; corresponding to such solution:

-

Y =T;(§) = ulty,Pj-1) = [jqﬁi(t)} [j—l@(wj*l)] (41)

=0

I
.MZ

s
Il
=

[i—18®][j-16:(T;-1(£))]
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We now seek for the best set of orthonormal polynomials in order to describe the distribu-
tion of this random variable. We use a generalized version of Gram-Schmidt orthog-

onalization algorithm [4] for weighted normed spaces. The orthogonalization is started

with the Vandermonde matriz of 1. We finally obtain a set {jgbi (wj)}f\io of basis functions
s.t.
SN o, 6)0 = Gy forisk =0, N (42)

We now need to rewrite the system of ODE with respect to this basis functions. First we
rewrite the initial conditions, that are given by:

N
u(t, ) = > [ @O0 (%;)] (43)

1=0

1

Ju(ty) = / wty, )5 (7)) o, ()00 (44)

Loy, i, )
“ e, J | s O @ sece)de

~ YN u(t; T, G, (T(e)wi

where Q) determines the precision of the quadrature rule, that is used for estimating an
integral that can possibly not be a polynomial. We now rewrite the ODE in terms of
the new polynomials. For the parameter k(§) the expansion (33) can still be used, while
the new expansion (43) will be used for u(t,v;). We plug these expansion in the weak
formulation of gPC, obtaining

B| G0 = BIHOue s, (45)
dit®) _ 1 e [ 500
=Tl ) | IO QLT s T (o

A28 TV ()] D (T (€] By (T(En)) wn=e1ik

The mean and the variance can now be computed using

E[u(t,wmfwjzzﬂ ® [ Lo T@I©s (a7

%En=0 [j (bi (T(gn))]wn

Var [u(t, v,)], =

SN G (TEN]] G (T(En)]wn
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4 Probabilistic Collocation Method

Probabilitsic collocation is a non-intrusive approach used to solve stochastic problems.
Let
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