MCS2

PROGRAMMER’'S GUIDE

PN

roup 1 Group 2

Closed Loop

Ch. A1) Stopp Ingr. u;'r‘tm
el L
mfll?"? ?r?ma 1pﬂ'| :cc. onmys!
cn.B (2) MoVing o
+12 659 526 940 |
= m " n* | Fr

ch.C{3 Stopped _3!

No sensor present

SYSmarAcl

) PERFECT MOTION

www.smaract.com

gsSmarAct

PERFECT MOTION

Copyright © 2018 SmarAct GmbH
Specifications are subject to change without notice. All rights reserved. Reproduction of images,
tables or diagrams prohibited.

The information given in this document was carefully checked by our team and is constantly up-
dated. Nevertheless, it is not possible to fully exclude the presence of errors. In order to always
get the latest information, please contact our technical sales team.

SmarAct GmbH, Schuette-Lanz-Strasse 9, D-26135 Oldenburg
Phone: +49 (0) 441 - 800879-0, Telefax: +49 (0) 441 - 800879-21
Internet: www.smaract.com, E-Mail: info@smaract.com

Document Version: 1.0.6

MCS2 Programmer’s Guide n _

TABLE OF CONTENTS

T INErOAUCION ... 10
1T TEIMINOIOZIES ittt sttt e b s bbbttt e st e bt s b e s be st et et eneeneenes 10
b L= 1T o T I o T4 =T o1 TP 12
2.1 Connecting and DiSCONNECLINGcocuiiirterereetee ettt sttt sttt eat et sbeesbesbeease b 12
2.1.1 Locators for Device IdentifiCation.......ccceeveriererieiieinrerereeeeeeeee e 12
2.1.2 FINAING DBVICES .ottt sttt sttt et sttt e e ebe s 13
2.1.3 Network Interface Configuration........ccceveeeereniecieneneeereee e 13

B S (0] 01T o U= P PRSP 14
2.3 ACCESSING PrOPEITIES ..ceiiieiieiteeiteeiteste sttt ettt ettt b e bt s bt e st e st esatesate st e e sbe e beesbeesseesseesaees 14
2.3.T SYNCNIONOUS ACCESS ...eviriieiiriirieieieieitete sttt ettt st saesbeste st et esesaesbesbestensenseseneesens 15
2.3.2 ASYNCNIONOUS ACCESS...uiiuiiieiiriieienieeitete st ete ettt sttt sbe st eeesbesstebesbeensenbesasensenne 16
2.3.3 High-Throughput ASyNChronOUS ACCESSeeerieieiririenierienieieeeiesre et sseeeesaens 18
2.3.4 Call-and-Forget MeChaniSmMcociriiienienieieie sttt ettt s 20
2.3.5 Request Ready NOtifiCatioNcccccuirieeeririeeeseeee et 21

2.4 EVENt NOLIfICAtIONS .cuvveiiieiiricirteere ettt 22
2.5 POSITIONEEN TYPES ceiiiiiieiieeiteesitestest st ste st sttt st e s sbe s b e e beesbaesbeesbaesaeesatessseessessbasssaesseenseesses 23
2.5.1 CUSEOM POSITIONEE TYPES .ottt sttt s e 23

2.6 MOVING POSITIONEGIS..cuiiiiiiieeieettestertest ettt ettt ettt s e s sat e satesbeesbe e beesbeesbeesseesaees 24
2.6.T CaliBratiNg c.ecueeiieieieeeiee et b sttt ebe 25
2.6.2 REFEIBNCING ittt ettt sttt et st e bt sat et e st e snbesbesseensenbesanensenns 27
2.6.3 Open-LOOP MOVEMENTSooiiiiiiieeieeteeteeeeee sttt s e 27
2.6.4 CloSed-LOOP MOVEMENTS.....ooiriiiiriieieieritetesiesitete et ettt st eseesbesstentesbeessensesneensenne 28
2.6.5 StOPPING MOVEMENTSovieiiiiriieienieetee sttt sttt st e sr st e b b eseesbesaee e e 31
2.6.6 Overwriting Movement COMMANAS.......coceeviererirrienenteiene ettt s 32
2.6.7 Movement FEedDaCK. ..o 32

2.7 DefiNiNG POSITIONS .uviiiiiiiiiiiriiieieeesest ettt ettt ettt et sb e bt e e e s ene 34
2.7.1 Reference MarkS ... 35
2.7.2 Positioners With Single Reference Marks.........occveveirenineneneincnseseneeeeeesiens 36
2.7.3 Positioners With Multiple Reference Markscccocvvveevinirciinenenceneneeene e 38
2.7.4 Positioners With ENdstop ReferenCe........covevevieieinireneresieeenesesiese e 40
2.7.5 Shifting the Measuring SCale........cocviiririeienenteeeeeee et 41

2.8 SEALE FIAES cueouiriirieieieeeeet ettt b bbbttt b e bbb e et neeee 41
2.8.1 DeVICE StAte FIAZS ...coveieriieieieeieeiee ettt sttt et sttt ettt be s e e 41
2.8.2 MOAUIE SEAE FIAZS c.eevveveriieririirieieieeeees sttt sb e sttt ene 42
2.8.3 Channel State Flags ...ttt sttt et sttt st 44

2.9 SeNSOr POWEN MOUESccueuiiiiiiinicinict ettt 46
2.10 PicoScale SENSOr MOAUIEcouciiiiiiiiiicc e 47
2.171 FOlOWING Error DELECHION......ciivieieieriieeete sttt st e s re st sre s e e sesneeseseeensensens 48
2.12 SOftWare RANZE LiMit....coiviiiieieieiresesere ettt sttt 49

MCS2 Programmer’s Guide n _

TABLE OF CONTENTS

2.13 STOP BrOadCastiNg ..cccceeciirerierieeieierieseeestestestestestestessessestessessaessessesseessesseessessesseessessesnsensens 49
2.13.1 Stop Broadcast CoONfigUrationceeieererenenieieieenesesie ettt 50
2.14 COMMANG GIOUPS ..eviiuieiiriereeriisestestesstestesseeseessessesssessessesssessesseessessesseessessesssessesssessessesssensens 51
2.14.1 Command Groups Vs. OUtPUt BUfer.......cccviriieiiiniresesece e 53

2.15 TrajeCtory STrEAIMINEG ...cccieieerieeiiertesteste sttt ettt s bt et e bt e st e s bt e saeesatesaseebeesbeesbeesseesseesaeas 53
2.15.1 General Streaming CONCEPT ..cc.evvivieieiririereriestete ettt ettt ebe s 54
2.15.2 BASIC APPIOACK ittt ettt sttt sttt sttt ssb et sbe e b e besan et ee 56
2.15.3 OPLIONS ettt sttt sttt ettt s bttt bt et e b s bt e st e bt s bt et sbe et et e she et e b e saeeneenee 56
2.15.4 TrIGEEI MOTES ...ttt ettt sttt st be st et st sat e be s bt e b e besaaeneenee 57
2.15.5 Stre@m EVENTS ..ottt e e e e 58
2.15.6 Maximum STream RALES ...c..coiiiiiieieeeeeeeeee sttt s s 59
2.16 Auxiliary INpULS anNd OULPULScceeiirieierie e seete e ae e e e sresseessessesseessesseesseseesssessens 59
2.16.1 Digital DEVICE INPUL c..eoitirieeieieeeetee ettt sttt sttt ettt ettt eee e 60
2.16.2 Fast Digital OULPULS....cciieeieriieeeiere ettt ettt sttt ese et st ese et sreessesnesnnensenns 60
2.16.3 General Purpose Digital INPULS/OULPULScouevveieieiririeriesieieeeesesie e 60
2.16.4 FASt ANQIOE INPULS c.eouviiiiieieeeteiere ettt sttt sttt sb e sse et sreensenbesnnensene 62
2.16.5 Using Analog Inputs as Control-Loop Feedback.........cocveverenieineninenenenieieeniens 63
2.16.6 ANQIOZ OULPULS ...eivieiieierieeteie sttt ettt sttt sttt sb e st e st sbesaaesbesbeensesbesaneneenne 64

217 INPUE THIEEOE ittt ettt st e ettt st s bt et s bt e bt et s bt e b e st e s bt eatesheeatenbesbeenaenbesaeensesbeemeensens 65
2.17.1 DiSAbled MOGE.....ouiiiiiiieeieie ettt sttt ettt et s st s e b e b saeenee e 66
2.17.2 EMergency StOP MOGE......c.oviviririeieireriesieriesetete ettt sttt st ene s 66
2.17.3 SEream SYNC MOGE.... .ottt sttt st sttt st be st e e e 67
2.17.4 Command Group SYNC MOGE.....cuiiirieiirieierieseetese et sreessesesree s e 68
2.17.5 EVENE TrIZEEI MOAE ..ottt et sttt st s 69

2,18 OULPUL TIIEEEI woutieiieieiieerieesieestteste st sttt st st e s ste s be s bt e beesbaesbeesbaesaaesasesnsesnsessbessseesseenseenses 70
2.18.1 CONSLANT IMOAE ...ttt sttt be bbb sa et et ebe s 71
2.18.2 POSItion COMPAre MOAEcoivuieiiriieieiireeiere sttt sttt esee e sseebe e essesesneensenns 71
2.18.3 Target REACh@d MOTEcc.oveviiriiieieiirierieserieee ettt 73
2.18.4 ACtiVely MOVING MOcoiiiiriieiiiieteeseet ettt sttt st et st et besane e e 74

2.19 FEATUIE PEIMNISSIONS ...ueiiiriieiieiisieetestesite sttt eite et e et sbeebesbe s bt e besbesaeenbe s bt enbesbesaeesesbesmeensens 74
3 FUNCLION REFEIENCE. ...ttt sttt ettt et s be et e st e e e e nseeneeneenes 75
3.1 FUNCHON SUMIMAIY ceiiiiiieeieeeeeee ettt ettt s saee s e st e e b e e b e e b e neenbeesnees 75
3.2 Detailed FUNCLION DESCIIPLION ..ovutiiiriieieiesieeteie sttt sttt sre sttt e st saeetesaeennense s 78
3.2.1 SA_CTL_GetFUlIVErSiONSIIING c..covevieieiieierierieriesieteeeeeie ettt 78
3.2.2 SA _CTL_GeIRESUIINTO ettt ettt ettt et e e s e s esraeeeeessesesssesareeesssessnnns 79
3.2.3 SA_CTL_GEIEVENTINTO cuvviiiietiiiiitiee ettt ettt ettt ettt e s s srre e s ssabe e s s sabeesssnaaesssannas 80
3.2.4 SA _CT L _FINUDBVICES cotieeeeeeeiieeeeeeeetteee e eeeettte et e s sesssaeeeeesesssssasssesessssssssssssseeessssssnnn 81
3.2.5 SA_CTL_OPEN ettt ettt sttt sae ettt sae b sbe st e b ae e eneeneas 83
3.2.6 SA_CTL_CIOSE .ottt st 84
3.2.7 SA_CTL_CANCE .ttt sttt sb e st b e e ene 85
3.2.8 SA_CTL_GEetProperty_iB32...c ettt ettt s s s 86
3.2.9 SA_CTL_SEtPrOPertY_i32 ..cooieriiiiieeieeieeieeieeste sttt st sttt e sbe e sraesanesane e 88
3.2.10 SA_CTL_SetPropertyArray_i32coceeceereereeneeneeniee ettt ettt s e 89
3.2.171 SA_CTL_GEtPrOPertY_I64......cooieeiieieeiteeieeieeste sttt sttt ettt sbe e s s s 90
3.2.12 SA_CTL_SEtPrOPEItY_IB4 ..c..eoiirieeieieeiteiesteeteste sttt sttt ettt sbe e sbe s nee e 91
3.2.13 SA_CTL_SetPropertyArray_I64ccooceeieereeneeneenee sttt ettt sreesaeesne e 92
3.2.14 SA_CTL_GEtPIOPEITY_S oottt sttt s 93

MCS2 Programmer’s Guide — _

TABLE OF CONTENTS

3.2.T5 SA _CT L SO P O POITY _Suetiiiiiiriierieeeite ettt e sre e st esbe e sbteesreesbeessrnesssreesnenesareens 95
3.2.16 SA_CTL_RequUeStREadPIOPEITY.....ccceteriirieeieie sttt sttt ettt s 96
3.2.17 SA_CTL_REAAPIOPEItY_i32 ..oicieieieriieeeiertetesie st te e e esee et eseestesseesesreensessesnnensenns 98
3.2.18 SA_CTL_REAUAPIOPEITY_IB4oviieieiieiieieeieriesie ettt sttt sb sttt ebe s 99
3.2.19 SA_CTL_REAUPIOPEITY_S eerieierieeieeeeeterteete ettt sttt st eae st ssaebesreessessesanensens 100
3.2.20 SA_CTL_RequestWriteProperty_i32cccceeneenienieneeeeeeieeeeee e e 102
3.2.21 SA_CTL_RequestWriteProperty_iB4cccereereerieriienieeieesieeseeesreesie e e e s 104
3.2.22 SA_CTL_ReqUEStWIITEPIOPEITY S ciieieierieeierie sttt ettt s 105
3.2.23 SA_CTL_RequestWritePropertyArray_i32cceirierieriieieesieesieesreesiee et 106
3.2.24 SA_CTL_RequestWritePropertyArray 164coeeverereeneenieneeneenieeeesiesieeeesre e 107
3.2.25 SA _CTL WaAItFOIrWIIE et 108
3.2.26 SA_CTL_CanCEIREQUESTccveiieeeeieriieieeerteeterte sttt te et e e st eseesresseetesreessesaesnnensenns 109
3.2.27 SA_CTL_CreateOUtPULBUTTEI ..c.ccieieicecereieee et 110
3.2.28 SA_CTL_FIUShOULPULBUTTEN .c.eieeeeieticeeeceeee sttt s 111
3.2.29 SA_CTL_CancelOUtPULBUITEI ...cviieieieecreieee et 112
3.2.30 SA_CTL_OpenCommandGrOUPcccecueriereerieriereeriesieseesessessessessessessessessensesesssenns 113
3.2.31 SA_CTL_CloSeCOMMANAGIOUP ...ooveueeuirierierierienieiesteseesesiestestessessesessessessessensenseneenessens 114
3.2.32 SA_CTL_CancelCommandGrOUPcecueriererrieriereeiesieseeeesieesessessesssensesseessensessesssenns 115
3.2.33 SA_CTL WaAItFOIEVENT .. eevvviiiiiiieeeeeetteee e eeeeerteeee e e e s ssetre e e e e e s sssssaseesessssssssraseessssssssnnns 116
3.2.34 SA _CT L _CaliDrate coeeeeeeieeeeeeeeeeee ettt ettt e e e s e sttt et s e e ssesaaaeeeesssssssssssaseeessssssnnns 118
3.2.35 SA_CTL_REFEIENCE vooiieeiee ettt ettt ettt et e s st eess bt e s s s bt e e s sbaaesssanas 120
3.2.36 SA_CTL_IMIOVE ...uvtieteeeetee ettt ettt et e vt e tee e tve e sbe e e baeetbeesabeeebeeesaseesabesensseesareenns 122
3.2.37 SA_CTL_SEOP cvteveereinieerieeneestestesitestessbeesbeesseesseesteesanesasesasesasesnsesnsessessseessnessnesssesnsesnns 124
3.2.38 SA_CTL_OPENSTIEAM ..ceiiiiiiieite ettt st sttt b e b e sbe e saee s e sane e 125
3.2.39 SA _CTL_StreamPrame e 127
3.2.40 SA_CTL_ClOSESIIBAM c.uvveeiieeeeeeeeteee ettt e ettt e ssrteessssateesssbeessesbeeesssstesssssaeessssseessssees 129
TN Y N G I Y o o e ((=T= 1 0 0 TSRS 131

4 Property REFEIENCE. ...ttt st bbb 132
4.1 Property SUMIMAIY ...cceooceeeriierieeeieeesteesiee e et esteesreessseeesareesseessesesaseesseeesnseessesssnsnessessnnes 132
4.2 DEVICE PrOPEITIES ..ttt ettt st st st st st et e b e s beesbeesanesaeesanesane 137
4217 NUMDEr Of CRANNEIS.....oii ettt ettt eeareeeane s 137
4.2.2 NUMDEr Of BUS MOAUIESvievieriereecieccteecee ettt ereesreesreesteesvesanesaveeabeebaesveens 137
4.2.3 DOVICE STALO ...ttt e et e e eecbae e e s te e e e ettaeesebaeeesebteeesenbaaeeeaaraeeeanns 138
4.2.4 DeVvice SErial NUMDETccicciiiriereeeeree et crecreebeereesreesteesbaestvesasesaseebeebassseens 139
4.2.5 DEVICE NAMIE ..ottt e et e e e e tbe e e s be e e e sbtaeeeebseeesessteeesenbaaessassanenanns 140
4.2.6 EMErgency STOP MOGE......ccuciririrenieieieieeieeese ettt sr ettt 141
4.2.7 NetWOrk DISCOVEI IMOAEuoicieeeiiee ettt ettt ettt ere et e eetreesbeesbeeeteeeeareesenreenanes 142

4.3 MOAUIE PrOPEITIES...ciiieeieeeseeeeteste sttt et et e st e e s e et e e sreestesseeseessesseensensesseensensens 143
4.3.1 Power SUPPIY ENADIEA ..ottt 143

0 BV, oo U1 L IY = | (USRS 144
4.3.3 Number of Bus Module ChannelS..........ouiiiiirieiieriereerecnreesee e cve v v eseenveens 145

4.4 POSItIONEE PrOPEITIES ...eiiiiiieitereerte sttt ettt st st st st sttt e s e e saeesanesanesasesane 145
4417 AMPIIfier ENADIEAooiviiieieieieseeeete et st 145
4.4.2 Positioner CONtrol OPLiONS......ooivirierieneeteeeeetert sttt st b saae s 146
4,43 ACTUATON MOGE c.uiiiiiciieciieciecrecre ettt ettt s e s e b e e be b e ebeesbeesbaesbaesssesabeenbesnbesnsassrenns 147
444 CONLrOl LOOP INPUL ceitiiiiiiieeieie sttt sttt sttt sttt ettt sttt s e b b saee s 149
4,45 SensOr INPUL SEIECT ..cc.ivuiiiieieereeertee ettt sr e st eae s 150

MCS2 Programmer’s Guide

TABLE OF CONTENTS

A 4.6 POSITIONET TYPR ciiiriiiriiirieriinttste st st et e st e st e sasesasesatesbessseesbeesbassseesseesssesssesssesnsesnsenns 151
4.4.7 PoOSItIONEr TYPE NAMIB...iiiiiiieeeeee ettt ettt s e s e st e beenneens 152
4.4.8 MOVE MOGE.....c.oouiiiiiiiiiiiciec e 152
4,49 Channel STAe....ciiiririiieieeeee ettt st sttt b e bttt ebe s 154
44,10 POSITION cutiiitiiieeieeteeste ettt sttt et ettt s e st st st s ate et e ssbeesutesasesubesubesaseenseensaens 155
4417 Target POSITION .eeeiieiieciiectesteeteete ettt sttt ettt sme e s s e e e eneens 156
4. 4.2 SCAN POSITION .eiutiitieeiteeiteete ettt ettt st sttt et et e bt e be e st e satesateeaseeseenseens 156
4,473 SCAN VEIOCITY weoviiiieiiriirienieieieitei sttt ettt be s ettt ese s sbe st et se e eneenens 157
4474 HOIA TIME ittt sttt st ebe 158
4,415 MOVE VEIOCITY cvveueeiirterieieieieitet sttt sttt sttt e be bbb nne e eneas 159
4.4.16 MOVE ACCEIEIATION ..ottt ettt ettt sttt sttt st e e s besaee e e 160
4.4.17 Max Closed LOOP FrEQUENCYcvveeierieeeeeeiieeeeestt et ete e e essesse e essessesseensens 161
4.4.18 Default Max Closed LOOP FrEQUENCY ..c.cuveriririenieieieieeesiesieseeseesie st seene v 162
4.4.79 SLEP FrEOUENCY ..eveerieieiiierieeeee ettt st site e st e sbee s sbe e e sareesbeesneeesaseesseeesnsaesanessnnnens 163
4.4.20 STEP AMPLITUAE c..oviiiiiieieeet ettt sttt b e sb sttt ebe e 163
4.4.27 FOHOWING Error LIMIT..ccccoceiieierieseeeeie ettt sttt et see et s essesnesanensene 164
4.4.22 BroadCast SLOP OPLiONS....cueieiriririerieieiestetesie ettt st sttt sbe st ste st saeneeneenens 165
4.4.23 SENSOr POWEE MOTE ...c.uiiiiiiieiieiesieetete sttt ettt ettt et bt et sbesane s 166
4.4.24 SensOr POWEr SAVe DEIAYcccuviririenieieiirieeieseseseeetee sttt 167
4.4.25 POSItION MEAN STt ..ottt st st 168
4.4.26 SAfE DIFECLION .c.ceuieiieterieieieteeet sttt ettt ettt eae bbb b e sae e e e enees 169
4.4.27 Control Loop INPUL SENSOT ValU@......oouiiiiiiiiiiiiieiieeteestetese ettt e 170
4.4.28 Control Loop INPUL AUX ValUEc.ecieiiceeeecceeteeeee ettt 171
4.4.29 Target To Zero Voltage Hold Threshold.........ocoeriiiiinininiieneeeeeeeeeeene 172
4.5 SCAlE PrOPEITIES ..ocuieieieceeieste st te sttt st et e st et et e steestebesaeessessesseeseessesseessessesnsensessesnsansens 173
4.5.7 LOEZICAl SCAlE OFfSOL ..evuiiiieieiieitreseeetesee ettt st st 173
4.5.2 Logical SCAle INVEISION ..ccviiiieieiisieeeete sttt ettt st s e s saesan s e 174
4.5.3 RaANZE LIMIT N oottt ettt 175
4.5.4 RANZE LIMIT IMAX cetiiiiiiiiiiiiieieeeete ettt ettt ettt ettt e bt esbe e st e st st e eseebeenbeens 175
4.6 CalibDration ProPerti@S....c.ccirieieieiiriiriirieieietei ettt ettt ettt be bbb s e e eneeseas 176
4.6.1 Calibration OPLIONSocieiirieiieie ettt ettt sttt sttt st e b b sae e e e 176
4.6.2 Signal Correction OPLIONS.......ccevirererierieireeesesestetet ettt see et sse e e eneas 177
4.7 ReferenCing PrOPEITIES ...ccvivieieieirisierteiee ettt sttt ettt b st st be s e e neeseas 179
4.7.1 ReferencCing OPLIONScccccviieeierierierierieseetese e e ee e sreeaessesaeestessesseessessesseessessesssensenes 179
4.7.2 Distance To ReferenCe Markccoovererieirienininenieieceese sttt 180
4.7.3 Distance Code INVEIrted ..ot 180
4.8 Tuning and CUStOMIZING ProPerti€S......cccevieieieiririenierieieiee sttt ettt seeeesens 181
4.8.1 PoOSItioNer MOVEMENT TYPE ...oviiiiieiierieenieeetesie et st s te st e it esieesieesseesaeesseesasesnseesseens 181
4.8.2 POSItiONEr IS CUSTOM TYPE.uuiiiiieiieiieieeriteeee sttt ettt ettt e st sseesmeesmeesreenneens 182
4.8.3 POSItioNer Base UNiT...c...coiiiiiiiiieeieeieenteete ettt et ettt st ss e sne e 183
4.8.4 Positioner Base RESOIULION ...ccvivirierieieiriresesesetetee sttt see e 184
4.8.5 Positioner SENSOr HEad TYPE ...ttt sttt st s 185
4.8.6 POSItiONer RefErenNCe TYPE...cucirieirieieieerieeeseseset ettt bbb 186
4.8.7 POSITIONEN P GaIN c.eiiiiiiiiiiiieetee ettt ettt ettt e bt e s bt e st essee st e ebeenbeenneens 187
4.8.8 POSIIONEr | GAIN ..eovviviiiiiiiiiiiicc e 188
4.8.9 POSIIONEN D GaAIN..tiiiiiiiiiiiieiteeete ettt sttt ettt et e bt e s b e s esmeesabeebeebeenneens 189
4.8.10 POSItIONEr PID SNt .oouiiiiiiieieirisereseieee et 190
4.8.11 PoSItioner Anti WiNAUP ..c..ooueeioriireeeeeeeteeeetes ettt sttt s s 191

MCS2 Programmer’s Guide “ _

TABLE OF CONTENTS

4.8.12 Positioner ESD Distance ThreShold........cccoverereneiirinireneseeeeeseseseseeeeeee e 192
4.8.13 Positioner ESD Counter TAreshold.........cccccveviniiiiiinininiccicnceceees 193
4.8.14 Positioner Target Reached Threshold........ccvveeevinircenineeeseeee e 194
4.8.15 Positioner Target Hold Threshold........ccccvverininenicieicnesereeeeseese e 195
4.8.16 SAVE POSITIONEE TYPE .iuiiiiiiiietieieete ettt sttt et e bt e sbe e e saeesabesseeseenseens 196
4.8.17 Positioner Write Prote@CliONc.eeveeiierieriieeieseeee ettt 196
4.9 STreamMIiNG PrOPEITIES ..ooiiiiieieeitterte ettt ettt ettt st st st st st b e et e e s bt e saeesaeesanesanesaee 197
4.9.T Stream Base RAtE ..ottt s 197
4.9.2 Stream EXternal SYNC RALEcooi ittt st s 198
4.9.3 STrEam OPLIONS .ccueeiitieteterteritete sttt sttt ettt b et sbe st e b sbe st e b sre e b e besaeeneenne 199
4.9.4 Stream LOad MaXiMUIMcccciiirininienieineiteenesesee ettt 200
4,70 DiagNOStIC PrOPEITIES...cocviiieireireerie st st st ettt et e steesieesiaesaresasesasesasesssessaessaessaesanesanesasesans 200
4.70.7 CRANNEIEFTOF c.ciiiiiiiiiiiieeete sttt st st 200
4.10.2 Channel TEMPEIAtUIEcccieieririeeieieseetere ettt sre st e st et estesaeessesesreessessesnnensenns 201
4.10.3 BUS MOAUIE TEMPEIATUIE....cueeuiriiriirieieieieeieeieste ettt sttt be sttt ebe s 202
41T AUXIIAIY PrOPEITIES ...coiviieieierieeieeieste sttt ettt et stesteeste e steetesesbeestessesssensesaesnsensessesnsensens 203
4.77.17 AUX POSITIONET TYPE 1ottt e s e e e r e e 203
4.117.2 AuX POSItiONer TYPE NAMIE ...ciiiiiiieieeieerteeteee ettt ettt sttt sre e b 204
4.17.3 AUX INPUL SEIECE.....iiiiiieieete ettt st eae 204
4.11.4 AuX I/0 ModUIE INPUL INAEX c..eeiiriieierienieeieiesitetenieste ettt ettt st b saee e e 205
4.11.5 AUX DIreCtion INVEISION cc.coiuirieierieeieie sttt ettt 207
4.11.6 Aux I/0 Module INnputO / INPULT VAU ...cceouiriiiiiiiiieieerteterenteee st 208
4.11.7 AUX Digital INPUL VAlUE......iceeeeieieceeee ettt st s 208
4.11.8 Aux Digital Output Value / Set / Clarcccoereerieninieieneeeeteseseetee st 209
4.11.9 Aux Analog Output Valuel / ValUeTc.cocvvrieeeierieeeeese st 210
4.12 1/0 MOAUIE PrOPEITIES ..ovieiieiieiieitriestestestetet ettt sttt st ettt sbe st be e e ne s 211
4.12.7 1/O MOAUIE OPLIONS ...ttt sttt sttt sttt et et e stesbe et esbesseensessesanensenns 211
4.12.2 1/0 MOAUIE VOILAZE...c..iiiieieiieiiriesieseteeeee sttt sttt sb st eae s 213
4.12.3 1/0 Module Analog INPUL RANEEcovuiriiiiiiieieeesteeere sttt 213
413 INPUL TIIZEEr PrOPEITIES ..eoueiiieiieieeieeieeteste ettt sttt sttt sbe et e st s et sbe st e besbesmee b 215
4.13.1 Device INPUL TrZEEIr MOUEooviiriieieiesieetee sttt sttt sttt st s ee e 215
4.13.2 Device Input Trigger CONItiONccoeverieirirenesereieeeese et 216
474 OUELPUL THIZEEI PrOPEITIES «..eiiiiieieiiteete ettt sttt st st sttt ettt e b e saeesaeesaeesane e 217
4.14.1 Channel OULPUL TriEEr MOEcccveviereeieieeetereteee ettt sre e s 217
4.14.2 Channel OQutput Trigger POlarityccocveevierinieieniseeterestet ettt 218
4.14.3 Channel Output Trigger Pulse WIidthccccceeevieniniriereceeesesceee e 219
4.14.4 Channel Position Compare Start Threshold........ccccceivrineninenennneneeeees 220
4.14.5 Channel Position Compare INCremMeNnt......cieeerineerenereeese e 221
4.14.6 Channel Position COMPAare Dir€CtiON......cccuverirerierieieieesesienieteeeie et 221
4.14.7 Channel Position Compare Limit MiNcccociviiiinininieneneeieseseeiese e 222
4.14.8 Channel Position Compare LiMit MaXccceverirerenieieineneneneieeeesiesie e 223
4.15 Hand Control Module Properti@s ... eeierenierieriesieeiesie sttt ettt et s e st saeesenae s 224
4.15.1 Hand Control Module LOCK OPtiONS.......cceieerireneieieeeesesiesteeeeee e 224
4.15.2 Hand Control Module Default LOCK OPtioNS.......cccevveieirirenenieieieesesesiesie e 226
.16 APl PrOPEITIES .viviiiiiiieeseeiteeseese st ste st ste s e e be e e e sbaesbeesaaesasesatesasesssaensaessaensaessaesanesssesasesans 227
4.16.1 Event NOtifiCation OPLIONS ..c.cciviririirieieieeeesese ettt 227
4.16.2 AULO RECONNECL....ciiiiiiiiiiiiii e 228

MCS2 Programmer’s Guide O

TABLE OF CONTENTS

5 EVENtREFEIrENCEccoooiviiiiii e 229
5.1 EVENT SUMMIAIY oottt ettt ettt e b e bt e b e e sae e satesateembeeeeebeeneens 229
5.2 Detailed EVENT DESCIIPLION....iiiiiieciereeeeieseeteste st tese et s e e s e sesresseesesseessessesseensenns 231

5.2.1 NN ettt s b st et b e e b e e b e r e reenrees 231
5.2.2 Movement FINISNEA.........cooiiiiieiesicteeeeeeeeee ettt st ses 231
5.2.3 HOIAING ADOITEA ..ottt ettt st 231
5.2.4 Sensor State ChanZeM.......coviviiierieieieseetee ettt sttt st se e b sae s sees 232
5.2.5 Reference FOUNGcooiiiiieiirieseeeee sttt s 232
5.2.6 FOIOWING EFFOr LMt .c.coieieieieierentee ettt sttt st 233
5.2.7 Sensor Module State Changedccecveeeirininieiieieneseeeeee e 233
5.2.8 OVEIr TEMPEIAtUIE ...oocuiiiieeiieiieeite ettt ettt ettt e st e st e st e saeesate st e s be e beesbeesneesneas 233
5.2.9 High VoItage OVerlOadccceceevereeieriireeeenieeeste sttt sre s sse e saesns 234
5.2.10 AdJuStMENt FINISNEAc.ooiiiiieiee ettt 234
5.2.11 Adjustment State Changedcccoveeieriieeeieieeee ettt ees 235
5.2.12 AdJUSTMENT UPAALE ..ueiuiiiiiiieiiriesiesieieeeee ettt 235
5.2.13 Stream FINISNEAccviiiieeeeeseeee ettt sttt st b e sne e neas 235
5.2.14 Stream REAAYcoevirieieieiieieriesiestest ettt sttt sttt sttt et ettt b e bbb e e ne e 236
5.2.15 Stream TrIZEEredcuovuieieieieeeeiesestee ettt ettt ettt sbe et e sae et e sbesaeensenees 236
5.2.16 Command Group TrigEEredcocuverieiririrerierieiteieeeie sttt 237
5.2.17 Hand Control Module State Changedcccoviererinienienerteieseeteee et 237
5.2.18 Emergency StOP TrZEEIEMcoveverieieiriieierieriestetete ettt 238
5.2.19 External INPUL TrIGEOIEMovuiiuiiieriieteeeteetee ettt sttt ettt 238
5.2.20 REQUEST REAAY ...vicueeiieiieiieiesieeeee sttt sttt et sre et sre e e s re e e esseeneesseneas 238
5.2.27 CONNECTION LOST...iiiiiiiiiieiieeie ettt ettt ettt st st st st st s beesneesmeesmees 239
6 ASCIH INEEIFACE ... 241
6.7 CONNECLION SETUP c.uttettetieiteesteeett ettt ettt e bt e bt e bt e s bt e st e saeesatesat e e nbe e beesbeesneenseennees 241
6.1.1 Note On Message TerminatioNcccvvevreenieeneenienienre e ere e sseesseessaesanes 242
6.2 SCPI BASICS weeiutiiiieieeteee ettt ettt ettt ettt b e st e s b et et e b e e b e b e e b e beennees 242
6.2.1 SCPI Conformance INformation.......c.ccceeeerereneneieeeneseeeeeee e 242
6.2.2 COMMEANG SEIUCTUIE....uiiuiiietieiteie sttt ettt ettt sttt sttt sbt et b st e sbeeaeeasenees 243
6.2.3 Traversing the COmMMAaNd TrEEcccvvcievirerieieeee ettt eees 244
B.2.4 QUEIIES oottt ettt e e ererbree e e e e e e seesbbbaseeeseeesabbbaaaeeessessbbaaseeeesssssssraseeeeessssssrrreees 245
6.3 Basic Programming EXAMPIEScocviriiiiiiriciee sttt sttt ettt 245
0.3.1T GO PrOPEITY ettt st st s s e s e b e e s neesnees 245
0.3.2 SEUPTOPEITY ottt ettt et b e she e st st sae e st st e et e be e be e bt e saeesaees 246
6.3.3 CAlIDrate ..ot 246
6.3.4 REFEIENCE ..ottt sttt ettt 246
6.3.5 MOV ..ottt 246
0.3.6 STOP citiiiieiciere bbb 246
6.3.7 MOVEMENT STALEcoiiiiiiiiiiiii 247
6.3.8 ErrOr HaNAIING..c..ooueeieeieeeee ettt sttt st e 247
6.4 USING COMMANG GIrOUPS .oveeuviiieieeierieeiestestesitestesteetessesseessessesssessessesssensessesssensesssessessessensens 249
6.4.7T COMMANGA SOitiriiieieietteere sttt st sttt ettt be s bbb e e eneene 249
B.4.2 EXAMPIES oottt s sttt s he et et e ae et nas 250
6.5 STrEAMING TraJECLOMIES ..utirtietetieteeterte ettt sttt st ettt et s bt st e e sbeeae e be s bt enbe s bt st etesbesmeennens 252
6.5.T COMMANG SO ..uiiiiieieeiteee ettt ettt et st st et be s bt et e sbe et e nbesaeentenes 252
6.5.2 EXAMPIE ottt b bbb 253

MCS2 Programmer’s Guide “ _

TABLE OF CONTENTS

6.6 COMMANG SUMIMAIY ..coutitiriiiiieieiieierie st sttt ettt sttt ettt be bbbt e b eseebesbe b ense e e e enene 254
6.6.T COMMON COMMANGS ...ciutiiiiiiitieeettee ettt et e e e st e st s sbeeesateesabessnbessbaeesabesenees 254

6.6.2 MOVEMENT COMMANTS ...veiiiiiiiiieciree ettt et eare et e ebeeeeareesabeeebeeeeneeesareeennes 255

6.6.3 Property COmMMANd TrEEccovivirierieieiiriieiesteste ettt sttt st sae st 255

(I @ o I 1 o Y G o T [T 260

A Code DefinitioN REFEIENCEoovviieeieeeceeeee ettt ettt 262
N B = o T @0 Yo [T TR 262

MCS2 Programmer’s Guide n _

1 INTRODUCTION

This document describes the application programming interface (API) of the SmarAct MCS2. It may
be used to control one or more MCS2 devices by software.

While this document mainly serves as a reference when programming your own software it also
supplies some background information for a better understanding of the overall system.

1.1 Terminologies

This section defines general terminologies that are used throughout this document. This section
only gives a brief summary and the terminologies are explained in more detail later in this docu-
ment.

Closed-Loop Movements are movements where sensor data is used as feedback to control the
position, velocity and/or acceleration of a positioner. To be able to perform closed-loop
movements the targeted positioner obviously must be equipped with an integrated posi-
tion sensor. Furthermore, the sensor must not be disabled. See section 2.6.4 Closed-Loop
Movements.

Open-Loop Movements are movements that do not use sensor data as feedback. The positioner
simply moves according to the given parameters and the exact distance traveled is unde-
fined. Especially, movements in different directions, but otherwise identical parameters, will
typically result in slightly varying traveling distances. See section 2.6.3 Open-Loop Move-
ments.

Calibrating is a process where the controller analyzes the individual characteristics of a positioner
in order to optimize closed-loop behavior. The calibration data is saved to non-volatile mem-
ory. Therefore, the calibration only needs to be performed when the system setup changes,
but not necessarily on each system start-up. See section 2.6.1 Calibrating.

Referencing is a process where the controller moves a positioner to detect its absolute physical
position. After the referencing, points of interest identified in previous sessions may easily
be recalled. See section 2.6.2 Referencing.

Trajectory Streaming allows to move several positioners synchronously along a defined trajec-
tory. See section 2.15 Trajectory Streaming.

Hold Time The hold time of a closed-loop movement specifies how long the positioner will ac-
tively hold its position after reaching the target. This may be useful to compensate drift
effects.

MCS2 Programmer’s Guide “ _

1 INTRODUCTION

Max Closed-Loop Frequency When performing closed-loop movements, the control-loop uses
the current position and the commanded target position to generate a driving signal for the
piezo actuator taking the control-loop parameters (PID) into account. The maximum allowed
frequency that is generated by the control-loop depends on the actual positioner as well as
the environment. (E.g. HV and UHV requires lower allowed frequencies.) The max closed-
loop frequency defines the upper limit for the generated driving signal.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

2.1 Connecting and Disconnecting

Before being able to communicate with a device a connection must be established via a call to
SA_CTL_Open. This function connects to the device specified in the locator parameter (see sec-
tion 2.1.1) and returns a handle to the device, if the call was successful. The returned device han-
dle must be saved within the application and passed as a parameter to the other API functions.
Once the connection is established you can use the other functions to interact with the connected
device. If an application requires to connect to more then one device it must open each device
separately. The API processes all communication independently for each device handle.

A device that has been acquired by an application cannot be acquired by a second application at
the same time. You must close the connection to the device by calling SA_CTI_Close beforeitis
free to be used by other applications. Not closing a device will cause a resource leak.

If you have threads blocking on functions like SA_CTL_WaitForEvent you may unblock them
for a clean shutdown by calling SA_CTL_Cancel. The SA_CTL_WaitForEvent function will
then return with the error code SA_CTL_ERROR_CANCELED.

NOTICE

Connecting to a device via the ASCll interface uses a different mechanism. Please

refer to section 6.1 for more information.

2.1.1 Locators for Device Identification

Devices are identified with locator strings, similar to URLs used to locate web pages. The following
sections describe the syntax of these locator strings.

USB Device Locator Syntax

Devices with a USB interface can be addressed with one of the following locator syntaxes:

* usb:sn:<serial>
where <serial> is the device serial which is printed on the housing of the device.
Example: usb:sn:MCS2-00000412

MCS2 Programmer’s Guide n _

2 GENERAL CONCEPTS

* usb:ix:<n>
where the number <n> selects the nth device in the list of all currently attached devices with
a USB interface.
Example: usb:ix:0
The drawback of identifying a device with this method is that the number and the order of
connected devices may change between sessions, so the index n may not always refer to the
same device. It is only safe to do this if you have exactly one device connected to the PC.

It is recommended to use the first format for USB devices.

Network Device Locator Syntax

Devices with a network interface are addressed with one of the following locator syntaxes:

* network:sn:<serial>
where <serial> is the device serial which is printed on the housing of the device.
Example: network:sn:MCS2-00000412

* network:<ip>
where <ip> is an IPv4 address which consists of four integer numbers between 0 and 255
separated by a dot.
Example: network:192.168.1.200

NOTICE

Data transmission bandwidth and latencies over networks can vary much more

than over e.g. USB. A program should not rely on low transmission latencies.

2.1.2 Finding Devices

Devices may be connected to by using a specific locator as outlined above. To find devices auto-
matically the function SA_CTL_FindDevices may be used. It will scan the USB ports as well as
the network interfaces and return a list with the locator strings of the found devices.

Note that the Network Discover Mode property (see section 4.2.7) must be configured to active or
passive mode to make it possible to list devices with ethernet interface.

2.1.3 Network Interface Configuration

While devices with USB interface do not need any interface configuration, the ethernet interface
must be configured with the network parameters: DHCP mode, IP address, subnet mask and
gateway IP address. The MCS2 is delivered with a default IP configuration which may be adjusted
to match the users network settings.

The following table lists the default configuration:

MCS2 Programmer’s Guide n _

2 GENERAL CONCEPTS

Default Value

DHCP Mode disabled

IP Address 192.168.1.200
Subnet Mask 255.255.0.0
Gateway IP 192.168.1.1

Pass-Key smaract

The interface may be configured to use DHCP to obtain an IP address from a DHCP-server or to
use a static IP configuration. The configuration may be changed by connecting to the integrated
web server, by using the configuration menu of an MCS2 Hand Control Module or by using the
SmarActNetConfig tool for the PC.

See the MCS2 User Manual document for more details on the configuration.

2.2 Properties

Properties are configuration values that define the behavior of the device. Each property has
a data type and an access mode. Some properties may be read and written, while others are
read only or (in rare cases) write only. See chapter 4 "Property Reference" for a list of available
properties and their descriptions.

Depending on the data type a property has you must use the corresponding function variant to ac-
cess it. For example, the Number of Channels property is of type 132. Therefore, you must use the
SA_CTL_GetProperty_1i32 function to read the property. In contrast the Device Serial Num-
ber property is of type string. Therefore, you must use the SA_CTL_GetProperty_s function to
read the property.

Properties are identified by a property key that must be passed to the function call when accessing
a property. Properties are categorized into device, module and channel properties. Module and
channel properties require an additional index parameter to address a specific module or channel.
Note that the index parameter is zero-based. In case of device properties the controller is already
addressed by the device handle. Therefore, the index parameter is unused and must be set to
zero.

Most properties are non-persistent which means that modifications do not outlive a power cycle.
At device start-up they have the default value that is specified in the detailed property description.
Other properties are kept persistent in the internal non-volatile memory. Therefore, their values
are preserved and loaded at device start-up.

2.3 Accessing Properties

Modifying or retrieving property values takes a major role in controlling a device by software.
Therefore, the API offers a variety of functions to get and set property values in order to meet all
requirements an application might have. A straight forward method, though easy to use, is some-
what inefficient, while more complicated methods may greatly improve efficiency. The application

MCS2 Programmer’s Guide O

2 GENERAL CONCEPTS

may decide on a per-call basis which method to use, thus being very flexible depending on the
applications context.

The different methods of accessing properties may be categorized by their use case and are de-
scribed in the following sections. The figures illustrate the sequence of actions for getting two
property values. Green boxes indicate non-blocking API calls while red boxes indicate blocking
calls. Setting properties is very similar and is not explicitly discussed.

2.3.1 Synchronous Access

This is the easiest method for accessing properties since it consists of one simple function call
for getting one property value (e.g. SA_CTL_GetProperty_i32). When the function returns the
result is available (see figure 2.1).

Time Host Device
User Code Command
Transmission
Command
Processing
Reply
Transmission I
Command
Transmission
Command
Processing
Reply
Transmission I
v

Figure 2.1: Synchronous Property Access

When the API function is called a command is sent to the device and the function waits for a reply
from the device before it returns. From the view of the application, the function has a blocking
behavior. Depending on the transmission delays the blocking time may be in the range of several
milli seconds. During this time the user application cannot perform any other tasks. Therefore,
this access method is the slowest of all.

Functions Used

SA_CTL_GetProperty_1i32, SA_CTL_SetProperty_132
Example Read

int32_t valuel[2];

int8_t channel;

for (channel = 0; channel < 2; channel++) {
SA_CTL_Result_t result = SA_CTL_GetProperty_1i32(

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

dHandle, channel, SA_CTL_PKEY_CHANNEL_STATE, & (value [channel])
)i
if (result) {

// handle error

}
// value[0] and value[l] hold the channel state

Example Write

int32_t value[2] = {SA_CTL_MOVE_MODE_CL_ABSOLUTE,
SA_CTL_MOVE_MODE_CL_RELATIVE};
int8_t channel;
for (channel = 0; channel < 2; channel++) {
SA_CTL_Result_t result = SA_CTL_SetProperty_1i32(
dHandle, channel, SA_CTL_PKEY_MOVE_MODE, value [channel]
)
if (result) {
// handle error

2.3.2 Asynchronous Access

This method requires two function calls for getting one property value. One for requesting the
property value and one for retrieving the answer (see figure 2.2).

Time Host Device
User Code I API
LN Command
1 7| Request Transmission
1 Read
' Property
|
—> Command
"] Request Transmission
1 Read
1 Property
* N A 4 A 4
Other 1 Command
Tasks 1 Processing
I Reply
Transmission
Reply
Transmission
v

Figure 2.2: Asynchronous Property Access

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

When the API function is called a command is sent to the device and the function returns im-
mediately, allowing the application to issue another request (or perform other tasks). When the
application has finished performing other tasks (or cannot proceed until the property values are
available) it may call the API function to receive the result.

The advantage of this method is that the application may request several property values in fast
succession and then perform other tasks before blocking on the reception of the results.

Functions Used

SA_CTL_RequestReadProperty, SA_CTL_ReadProperty_i64,
SA_CTL_RequestWriteProperty_i64, SA_CTL_WaitForWrite

Example Read

SA_CTL_Result_t result;
int64_t valuel[2]; // buffer for values to read
SA_CTIL_RequestID_t rID[2]; // buffer for request IDs
int8_t channel;
// 1ssue requests for two channels
for (channel = 0; channel < 2; channel++) {
result = SA_CTL_RequestReadProperty (
dHandle, channel, SA_CTL_PKEY_POSITION, & (rID[channel]), 0
)
if (result) {
// handle error

}

// process other tasks

//
// retrieve results
for (channel = 0; channel < 2; channel++) {

result = SA_CTL_ReadProperty_1i64 (
dHandle, rID[channel], & (value[channel])
)
if (result) {
// handle error

Example Write

SA_CTL_Result_t result;

SA_CTL_RequestID_t rID[2]; // buffer for request IDs
int8_t channel;

// issue requests for two channels (set position to zero)

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

for (channel = 0; channel < 2; channel++) {
result = SA_CTL_RequestWriteProperty_i64 (
dHandle, channel, SA_CTL_PKEY_POSITION, O, & (rID[channel]), O
)
if (result) {
// handle error
}
}

// process other tasks

/...
// retrieve results
for (channel = 0; channel < 2; channel++) {

result = SA_CTL_WaitForWrite (
dHandle, rID[channel]

)i

if (result) {
// handle error

2.3.3 High-Throughput Asynchronous Access

This method is similar to the asynchronous access with the difference that request commands are
bundled (see figure 2.3).

When the API function is called the request is buffered. The function returns immediately and the
command transmission is held back until the buffer is flushed. Again, the application may request
several property values in fast succession and then perform other tasks before blocking on the
reception of the results. In addition, the underlying media is able to combine several requests into
one packet, thus further optimizing communication delays.

Functions Used

SA_CTL_CreateOutputBuffer, SA_CTL_FlushOutputBuffer,
SA_CTL_RequestReadProperty, SA_CTL_ReadProperty_i64

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Time Host Device

API

User Code

Create
Output
Buffer

A 4

Request
Read

Property
(buffered)

A 4

Request
Read

a
Property
’bufPered)

Command

Flush Transmission
Output
Buffer

A 4

A 4

Command

Other Processing

Tasks

Reply
Transmission

v

Figure 2.3: High-Throughput Asynchronous Property Access

Example Read

SA_CTL_Result_t result;
int32_t valuel[2]; // buffer for values to read
SA_CTL_RequestID_t rID[2]; // buffer for request IDs
int8_t channel;
// create output buffer
SA_CTL_TransmitHandle_t tHandle;
result = SA_CTL_CreateOutputBuffer (dHandle, &tHandle) ;
if (result) {
// handle error
}
// issue requests for two channels
for (channel = 0; channel < 2; channel++) {
// by passing the transmit handle (instead of zero)
// the request is associated with the output buffer and
// therefore only sent when the buffer is flushed (see below)
result = SA_CTL_RequestReadProperty (
dHandle, channel, SA_CTL_PKEY_POSITION, & (rID[channel]), tHandle
)
if (result) {
// handle error

MCS2 Programmer’s Guide n _

2 GENERAL CONCEPTS

}
}
// flush output buffer
SA_CTL_FlushOutputBuffer (dHandle, tHandle);
// process other tasks

//
// retrieve results
for (channel = 0;channel < 2; channel++) {

result = SA_CTL_ReadProperty_1i64 (
dHandle, rID[channel], & (value[channel])
)i
if (result) {
// handle error

2.3.4 Call-and-Forget Mechanism

For property writes the result is only used to report errors. With the call-and-forget mechanism
the device does not generate a result for writes and the application can continue processing other
tasks immediately. Compared to asynchronous accesses, the application doesn't need to keep
track of open requests and collect the results at some point. This mode should be used with care
so that written values are within the valid range.

The call-and-forget mechanism is used by passing a null pointer for the request ID pointer to the
SA_CTI_RequestWriteProperty_x functions.

Functions Used

SA_CTL_RequestWriteProperty_i64
Example Write

SA_CTL_Result_t result;
int8_t channel;
// issue requests for two channels (set position to zero)
for (channel = 0; channel < 2; channel++) {
result = SA_CTL_RequestWriteProperty_i64 (
dHandle, channel, SA_CTL_PKEY_ POSITION, 0, NULL, O
)
if (result) {
// handle error

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

2.3.5 Request Ready Notification

Instead of using the blocking SA_CTL_ReadProperty_x/SA_CTL_WaitForWrite functions to
retrieve the result of an asynchronous request, the event system (see section 2.4 "Event Notifi-
cations") can be used to get a notification once the answer has been received from the device.
After receiving a Request Ready event (see there) the result of the asynchronous operation can be
retrieved without blocking using the functions mentioned above.

Note that the request ready event needs to be enabled using the Event Notification Options prop-
erty.

Example Request

// enable request ready events

result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_ _EVENT_NOTIFICATION_OPTIONS,
SA_CTL_EVT_OPT_BIT_REQUEST_READY_ ENABLED

)

if (result) { /% handle error =*/ }

// send asynchronous request
SA_CTL_RequestID_t rID;
result = SA_CTL_RequestReadProperty (
dHandle, 0, SA_CTL_PKEY CHANNEL_STATE, &rID, O
)
if (result) { /% handle error =*/ }

Example Event Processing

SA_CTL_Event_t evnt;
result = SA_CTL_WaitForEvent (dHandle, &evnt, SA_CTL_INFINITE) ;
if (result) { /% handle error =*/ }

if (evnt.type == SA_CTL_EVENT_ REQUEST_READY) {
// extract event data
SA_CTL_RequestID_t rID = SA_CTL_EVENT_REQ READY_ID (evnt.i64);
int requestType = SA_CTL_EVENT_REQ_READY_TYPE (evnt.i64);
int dataType = SA_CTL_EVENT_REQ_READY DATA_TYPE (evnt.i64);

// process read results
if (requestType == SA_CTL_EVENT_REQ_READY_ TYPE_READ) {
size_t arraySize = SA_CTL_EVENT_REQ_READY_ ARRAY_SIZE (evnt.i64);
switch (dataType) {
case SA_CTL_DTYPE_INT32:
{
std: :vector<int32_t> values (arraySize);
result = SA_CTL_ReadProperty_i32 (

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

dHandle, rID, values.data(), &arraySize
)
if (result) { /#* handle error #*/ }

values.resize (arraySize);
// property data is now stored in values
break;

}
// handle other data types

}

2.4 Event Notifications

In some situations events might occur that require further attention or reactions by the user. To
avoid that the application has to poll the occurrence of such events the MCS2 offers a notification
system. If an event occurs the MCS2 generates a notification event informing about the situation.

The application may receive events using the SA_CTL_WaitForEvent function. It returns events
in form of a pointer to the struct:

typedef struct {
uint32_t idx;
uint32_t type;
union {
int32_t i32;
int64_t i64;
uint8_t unused[24];
bi
} SA_CTL_Event_t;

The fields of the struct have the following meaning:

+ idx holds the source index that the event originated from. This may be a device, module or
channel index, depending on the event type.

* type holds the type of the event. See chapter 5 "Event Reference" for a detailed description
of the events and their parameters.

* 132 /164 / unused are parameter fields that further describe the event. The meaning
depends on the event type.

While the event type indicates "what happened" the event parameter gives a more detailed hint
why the event occurred. An event can also be translated into a human readable string by using
the SA_CTL_GetEventInfo function.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Note that all device events are enabled by default. There is no property to explicitly enable or
disable any specific device events. Only APl events are disabled by default and need to be enabled
explicitly by configuring the Event Notification Options property.

The SA_CTL_Cancel function can be used to abort a waiting SA_CTL_WaitForEvent call.

2.5 Positioner Types

During the configuration of the device each channel must be con-
figured with the type of positioner that is connected to the chan- MCS2

nel. The positioner type implicitly gives the controller information (., Positioner Type)

about how to calculate positions, handle the referencing, config- | [sheiss = oo o]

ure the control-loop, etc. Ch1 Positioner Type

SRxS156S v

The MCS2 controller provides sets of standard configuration pa- | >

. . o ositioner Type
rameters for all kinds of SmarAct positioners. For the majority of
applications these predefined types are sufficient. To configurea \)
positioner type to a channel simply set the Positioner Type prop-
erty.

NOTICE

When the positioner type of a channel is changed, the channel must be cali-

brated to ensure proper operation of the positioner. See section 2.6.1 "Calibrat-
ing" for more information.

Each channel stores the positioner type setting to non-volatile memory. Consequently, there is no
need to configure the positioner type for each session. Only when changing the physical setup
(switching positioners etc.) you must reconfigure (and calibrate) the channel again. Note that the
positioner type is represented by a generic type code instead of the descriptive name string. This
type code must be written to the Positioner Type property to configure the type. The descrip-
tive name may be read with the Positioner Type Name property. Furthermore, the Tuning and
Customizing Properties may be used to read additional information of the configured positioner

type.
Please refer to the MCS2 Positioner Types document for a list of available positioner types.

2.5.1 Custom Positioner Types

In special cases it might be necessary to modify tuning parameters of a positioner type to adapt to
an application perfectly. The MCS2 controller offers this possibility by giving access to the tuning
parameters. Once the tuning is finished the set of parameters may be saved to a custom positioner
type slot. As a safety feature, all tuning properties are write protected by default. This prevents
accidental modification of any parameters. A special key must be written to the Positioner Write

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Protection property to unlock the write access to the tuning properties. As long as the write pro-
tection is active, writing to a tuning property will return a SA_CTL_ERROR_PERMISSION_DENIED
error.

Custom positioner type slots are also used to define the control-loop parameters in case an aux-
iliary input is used as feedback signal for the control-loop. Refer to section 2.16.5 "Using Analog
Inputs as Control-Loop Feedback" for more information.

Creating Custom Positioner Types

When tuning a positioner type the first step should be to select one of the predefined positioner
types to act as a template. Note that this step is important to define several internal parameters
which are not user accessible. The predefined positioner type defines e.g. the sensor type (S,
L, M, etc.) and sensor supply voltage as well as the position calculation parameters. After this,
tuning parameters may be modified. As long as the modified positioner type was not saved to a
custom slot, the positioner type is read as 0 to indicate that the modifications are volatile. (The
Positioner Type Name property returns ‘modified’ in that case.) Powering down the device in this
state will discard the changes made. To save the modified set of parameters use the Save Posi-
tioner Type property. This will save the settings to one of four custom positioner type slots and
set the Positioner Type to the new custom type implicitly.

CAUTION

Configuring inappropriate values may result in unstable or unexpected behavior

of the positioners and potential damage of the stage. Custom tuning must be
used with caution!

The available properties for customizing a positioner type are described in section 4.8 "Tuning and
Customizing Properties".

2.6 Moving Positioners

There are several commands available that induce a movement of a positioner (movement com-
mands). Mainly these are:

Calibrating (SA_CTI_Calibrate).

Referencing (SA_CTL_Reference).

* Moving (SA_CTL_Move). Depending on the configured Move Mode this command covers:

- Open-loop movements (Scanning and Stepping)

- Closed-loop movements

+ Stopping (SA_CTL_Stop).

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

These commands are described in the following sections.

Generally, the base unit for position values is pico meters (pm) for linear positioners and nano
degrees (n°) for rotary positioners.

NOTICE

API functions that involve movement of positioners (such as SA_CTIL_Move,
SA_CTL_Calibrate and SA_CTL_Reference) are always sent to the de-
vice asynchronously. Therefore, these functions do not return an acknow-
ledge or error directly. Instead, the movement commands will always gener-

ate a SA_CTL_EVENT_MOVEMENT_FINISHED event where the event param-
eter indicates success or failure. For example, if a closed-loop movement
could not be started due to a missing sensor, the event parameter will be
SA_CTL_ERROR_NO_SENSOR_PRESENT. See section 2.6.7 "Movement Feed-
back" for more information.

2.6.1 Calibrating

Even though every positioner is categorized by its type (which is configured to the channel via
the Positioner Type property, see also section 2.5 "Positioner Types") each individual positioner
may have slightly different characteristics that require the tuning of some internal parameters for
correct operation and optimal results.

The SA_CTI_Calibrate function is used to adapt to these characteristics and automatically de-
tects parameters for an individual positioner. It must be called once for each channel if the me-
chanical setup changes (different positioners connected to different channels). The calibration
data will be saved to non-volatile memory. If the mechanical setup is unchanged, it is not nec-
essary to run the calibration on each initialization, but newly connected positioners have to be
calibrated in order to ensure proper operation.

The calibration routine is only executable by a positioner that has a sensor attached to it. The
sensor must also be enabled or in power save mode (see the Sensor Power Mode property). Oth-
erwise the SA_CTL_EVENT_MOVEMENT_FINISHED event that is generated by the channel will
hold an error code as parameter. The calibration takes a few seconds to complete. During this
time the Channel State bit SA_CTL_CH_STATE_BIT_CALIBRATING is set.

CAUTION

As a safety precaution, make sure that the positioner has enough freedom to
move without damaging other equipment.

Before calling the SA_CTL_Calibrate function the Calibration Options property should be con-
figured to define the behavior of the calibration sequence. This property holds a bit mask which is
outlined in the following table.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

I Short Description

0 Direction Defines the direction in which the positioner
will move for calibration purposes.

1 Detect Distance Code Inversion Activates a special mode that detects the indi-
vidual setup of positioners with multiple ref-
erence marks. For normal calibration this bit
should be set to 0.

2 Advanced Sensor Correction Activates a calibration routine to compensate
periodic sensor errors.

8 Limited Travel Range Allows more than one endstop while calibrat-
ing. Should be used for positioners with lim-
ited travel range, e.g. micro grippers.

3..7,9..31 Reserved These bits are reserved for future use.

Signal Correction Calibration (calibration options 0x00 or 0x01)

During this calibration routine the positioner will perform a movement of up to several mm in the
configured direction to optimize the position calculation for the sensor signals of the positioner.
The signal correction calibration should not be started near a mechanical end stop. Nonetheless
the calibration sequence automatically detects an endstop and reverts the movement direction
to continue the calibration in the opposite direction. If more than one endstop is detected the
calibration sequence is aborted with an error.

Some positioners (e.g. micro grippers) have a very limited travel range. For these positioners
the movement distance may be too small to successfully finish the calibration.

The SA_CTL_CALIB_OPT_BIT_LIMITED_TRAVEL_RANGE calibration options flag may be used
to increase the number of allowed endstops while calibrating. The calibration sequence then
moves back and forth between the two endstops to perform the signal corrections.

Positioners that are referenced via a mechanical end stop (see section 2.7.4 "Positioners With
Endstop Reference") are moved to the end stop as part of the calibration routine. For this move-
ment the configured Move Velocity and Move Acceleration are used.

Which end stop is used for referencing is defined by the configured Safe Direction instead of the
direction bit of the Calibration Options property. Note that when changing the Safe Direction the
end stop must be calibrated again for proper operation.

As a safety precaution, make sure that the positioner has enough freedom to move without dam-
aging other equipment.

Distance Code Inversion Detection (calibration options 0x02 or 0x03)

This calibration routine may be used to correct the absolute position calculation when referencing
positioners with multiple reference marks. In rare cases the reference algorithm may produce
faulty results due to a reference coding mismatch. These situations may be resolved by executing
this calibration routine.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Advanced Sensor Correction Calibration (calibration options 0x04 or 0x05)

This calibration routine is used to improve the absolute sensor accuracy by compensating the pe-
riodic sensor error. A calibration sequence is needed to generate a compensation table which is
stored in the controller. This calibration must be performed for every channel that should use the
advanced sensor correction. During this calibration routine the positioner will perform a move-
ment of up to several mm in the configured direction. The compensation may then be activated by
setting the SA_CTL_SIGNAL_CORR_OPT_BIT_ASC bit of the Signal Correction Options property.

NOTICE

The advanced sensor correction needs a feature permission to be activated on

the controller. See section 2.19 "Feature Permissions" for more information.

2.6.2 Referencing

The sA_CTL_Reference function may be used to instruct a positioner to determine its physical
position. It will start to move in the configured search direction and look for a reference. The
positioner must have a sensor attached to it and the sensor must be enabled or in power save
mode in order to perform the referencing sequence (see the Sensor Power Mode property).

Depending on the reference strategy (which is partly predefined by the positioner type and partly
configurable) as well as the individual positioner, the referencing takes some time to complete.
During this time the Channel State bit SA_CTL_CH_STATE_BIT_REFERENCING is set. In case the
reference could not be found the SA_CTI,_EVENT_MOVEMENT_FINISHED event that is generated
by the channel will hold an error code as parameter.

Before calling the SA_CTL_Reference function the Referencing Options property can be con-
figured to define the behavior of the reference sequence. This property holds a bit mask with
several options that influence the strategy of how to find the reference. Please refer to section
2.7.1 "Reference Marks" for more information.

Note that reference movements (when successful) generate two events. One when the reference
position has been determined and one after the positioner has come to a stop. The first event is
mainly useful when using the Continue On Reference Found feature (see section 2.7.1 "Reference
Marks").

2.6.3 Open-Loop Movements

There are two types of open-loop movement:

+ Scan movements allow to control the deflection of the piezo element of the positioner directly.
To perform scan movements the Move Mode property must be set to one of the values
SA_CTL_MOVE_MODE_SCAN_ABSOLUTE or SA_CTL_MOVE_MODE_SCAN_RELATIVE.

The scan velocity may be specified with the Scan Velocity property. The SA_CTL_Move func-
tion must be called to start the actual scan movement. The move value parameter of the

MCS2 Programmer’s Guide O

2 GENERAL CONCEPTS

SA_CTIL_Move function is then interpreted as target scan position to which to scan to, re-
spectively scan target increment in case of relative scan movement. The valid range for
the scan position is 0 ...65535 for absolute scan positions and -65535 ...65535 for rela-
tive scan increments. Note that for relative scan movements the movement will stop at the
boundary if the resulting absolute scan target exceeds the valid range.

+ Step movements allow to perform a burst of steps with the given frequency and amplitude.
To perform step movements the Move Mode must be set to SA_CTI,_MOVE_MODE_STEP.
Frequency and amplitude of the generated output signal may be specified with the proper-
ties Step Frequency and Step Amplitude. The SA_CTL_Move function must be called to start
the actual step movement. The move value parameter of the SA_CTL_Move function is then
interpreted as number of steps. The sign of the value codes the movement direction. The
valid range for the step parameter is —100000 ... 100 000.

The Channel State bit SA_CTL_CH_STATE_BIT_ACTIVELY_ MOVING is setwhile performingscan
or step movements.

2.6.4 Closed-Loop Movements

In order to perform a closed-loop movement the positioner must have a sensor attached to it.
The sensor must also be enabled or in power save mode (see the Sensor Power Mode property).
If this is not the case the SA_CTI_EVENT_MOVEMENT_FINISHED event that is generated by the
channel will hold an error code as parameter.

Before calling the SA_CTL_Move function the Move Mode property must be set to one of the
following values:

* SA_CTL_MOVE_MODE_CL_ABSOLUTE In this mode the move value that is passed to the
SA_CTL_Move function is interpreted as the new absolute target position the positioner
should move to.

* SA_CTL_MOVE_MODE_CL_RELATIVE In this mode the move value that is passed to the
SA_CTL_Move function is added to the current (target) position. The move value of 0 has a
special meaning in this mode: the channel aborts an ongoing movement and actively holds
the current position.

Additionally, the following properties may be configured to modify the behavior of the closed-loop
movement (see also the detailed property descriptions in chapter 4):

* Move Velocity and Move Acceleration

These properties define the velocity resp. the acceleration with which the closed-loop move-
ment is performed. If the move velocity is set to zero (default) then the velocity control is
disabled and the positioner moves to the target position as fast as possible, more precisely,
only limited by the maximum closed-loop frequency (see Max Closed Loop Frequency). Like-
wise, if the acceleration is set to zero (default) then the acceleration control is disabled and
the positioner accelerates and decelerates as fast as possible (only limited by mechanical
factors).

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

+ Max Closed Loop Frequency
Generally, the channel will not drive the positioner with frequencies above the maximum
allowed frequency. If the maximum frequency is set too low for a certain move velocity, then
the move velocity might not be reached or held. In this case the maximum frequency must
be increased. Be aware that different positioners reach different velocities. If a positioner
is not able to move as fast as the configured move velocity, then the driver will cap at the
maximum driving frequency.

* Hold Time

The channel may be instructed to hold the target position after it has been reached. This
may be useful to compensate for drift effects and the like. The positioner will implicitly
adjust the deflection of the piezo to hold the position if needed. When the piezo element
of the positioner reaches a boundary a single step is performed. While holding the position
the Channel State bit SA_CTL_CH_STATE_BIT_CLOSED_LOOP_ACTIVE is set and the bit
SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING is cleared. After the hold time elapsed the
channel is stopped.

Note that the closed-loop movement is considered finished as soon as the target position is
reached and not when the optional hold time has elapsed.

The endstop detection is still active in holding state. If a positioner is moved away from
the target position by external forces and the channel is not able to hold the target position
for a longer time an endstop is triggered. A SA_CTL_EVENT_HOLDING_ABORTED event is
generated to notify about this and the channel is stopped.

+ Control Loop Input
This property defines the feedback signal for the control-loop.

- SA_CTL_CONTROL_LOOP_INPUT_DISABLED The closed-loop operation is disabled.
A SA_CTI,_ERROR_CONTROI_ILOOP_INPUT_DISABLED error will be generated when
trying to command a closed-loop movement.

- SA_CTL_CONTROL_LOOP_INPUT_SENSOR The channel uses the integrated sensor of
a positioner to calculate the current position. This position is used as input signal for
the control-loop to allow closed-loop position control.

- SA_CTL_CONTROL_LOOP_INPUT_AUX_IN The input signal of an auxiliary input (e.g.
an analog input of an MCS2 IO module) is used as control-loop input.

+ Actuator Mode
This mode defines the type of actuator driving signal generation.

- SA_CTL_ACTUATOR_MODE_NORMAL The normal mode is the default mode. It offers
open-loop step movement as well as closed-loop movement.

- SA_CTL_ACTUATOR_MODE_QUIET The quiet mode only allows to perform closed-loop
movement and reduces the noise that is emitted from the positioners while moving. It
is useful in applications where the noise emission is disturbing. The trade-off between
the quiet and the normal mode is the higher heat-dissipation of the controller in quiet
mode. For this reason the quiet mode is not recommended for continuous operation.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

- SA_CTL_ACTUATOR_MODE_LOW_VIBRATION The low vibration mode allows to per-
form closed-loop movements which produce as little vibrations as possible. It is useful
for applications where the high-frequent vibrations of the stick-slip driving principle
cause troubles.

NOTICE

The low vibration mode needs a feature permission to be activated on the

controller. See section 2.19 "Feature Permissions" for more information.

+ Positioner Control Options
This property defines several options that apply to closed-loop movements. The property
value is a bit field containing the following independent flags:

m Short Description

0 Accumulate Relative Position Disabled Disables the relative position accumula-

tion.

1 NoSlip Forbid the execution of actuator slips
(steps).

2 No Slip While Holding Forbid the execution of actuator slips
(steps) only while holding the target po-
sition.

Forced Slip Disabled Disables the forced slip feature.

4 Stop On Following Error Stop positioner if a following error was
detected.

5 Target To Zero Voltage The driver output voltage is forced to

zero while retaining the target position
after a closed-loop movement.

Undefined flags are unused but might get a meaning in future updates. Undefined flags
should be set to zero. The flags have the following meaning:

Accumulate Relative Positions Disabled (Bit 0) This flag affects the behavior of a posi-
tioner if a relative position command is issued before a previous one has finished. If
relative position commands are to be accumulated (bit cleared, default) then all new
relative position commands are added to the previous target position. Otherwise (bit
set) the movement is executed relative to the position of the positioner at the time of
command arrival.

Example: Say the positioner is currently at its zero position. Two relative movement
commands are issued in fast succession both with +1 mm as relative target. With accu-
mulation enabled (default) the final position will be 2 mm. With accumulation disabled
the final position will vary (e.g. 1.12mm) depending on when the second command
arrives at the controller.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

No Slip (Bit 1) If this flag is set the actuator driving signal generation will never generate
slips (steps). This means that only scan movement in the range of the piezo is per-
formed for targeting. It might be useful for applications where the vibration of the
piezo slip is unwanted, e.g. while approaching to a probe in the sub micrometer range.

No Slip While Holding (Bit 2) This flag affects the behavior of a positioner if it is instructed
to hold the target position after reaching it (see the Hold Time property). The piezo de-
flection will be adjusted automatically to hold the position. Additionally it may become
necessary to do further steps to hold the position if the deflection of the piezo reaches
a boundary. However, if this is not desired, this flag may be used to forbid the execution
of steps even if this means that the position can not be held. Note that this flag has no
effect if the No Slip flag (Bit 1) or the Target To Zero Voltage flag (Bit 5) is active.

Forced Slip Disabled (Bit 3) When reaching a target position the channel will try to stop at
approx. 50% of its step size, thus improving the holding feature. This is achieved by
forcing a slip, just before reaching the target position. If this behavior is unwanted it
can be disabled with this flag.

Stop On Following Error (Bit 4) This flag defines if a closed-loop movement should be stop-
ped as soon as the configured following error is exceeded. Note that this flag has no
effect for movements without velocity control or if the Following Error Limit is set to
zero.

Target To Zero Voltage (Bit 5) If this flag is set a special holding sequence is started after a
target position was reached. The controller will then perform several piezo scan opera-
tions to force the output voltage to zero while retaining the target position. This feature
is e.g. useful for applications where the positioner should be moved to a specific target
position and then should be disconnected from the controller without additional move-
ment of the positioner carriage. (Which usually happens due to the contraction of the
piezo element while discharging from the holding voltage.) Note that the hold thresh-
old for this feature may be configured with the Target To Zero Voltage Hold Threshold
property. If a Hold Time is specified the sequence is repeated whenever the difference
between current position and target position exceeds the configured hold threshold.

Once configured, call the SA_CTI_Move function to start the actual movement. While executing
a closed-loop movement the Channel State bits SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING
and SA_CTL_CH_STATE_BIT_CLOSED_LOOP_ACTIVE are set.

2.6.5 Stopping Movements

The SA_CTL_Stop function may be used to stop any ongoing movement. It also stops the hold
position feature of a closed-loop command. Note that for closed-loop movements with enabled
acceleration control a "stop" command instructs the positioner to come to a halt by decelerating
to zero velocity. A second "stop" command triggers a hard stop.

To command the channel to abort an ongoing movement and actively hold the current position
("enter holding"), set the Move Mode property to SA_CTIL_MOVE_MODE_CI,_RELATIVE and issue
a SA_CTL_Move command with its move value parameter set to zero. The Hold Time property
must be set to a non-zero value, otherwise the channel is stopped immediately without actively
holding the position.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

A digital input of an I/0 module may be used to issue an emergency stop of all channels. See
section 2.17.2 "Emergency Stop Mode" for more information.

2.6.6 Overwriting Movement Commands

Generally, the function calls for movement commands return as soon as the command has been
transmitted to the hardware; the calls do not block as long as the command is in execution. There-
fore, the software is free to issue new commands to the hardware (potentially to other channels)
while the movement is being performed. In particular, new movement commands may also be
sent to the same channel at any time. This will cause the previous movement command to be
implicitly aborted. Note that there is no need to explicitly stop a channel before sending a new
movement command. The new command will simply overwrite the current one.

Note on working with events: Overwriting movement commands (sending movement com-
mands before the command finished event of the previous command has arrived) leads to a race
condition. The second command might arrive just before the first has completed, thus, only one
command complete event is generated (when the second command completes). However, if the
second command arrives just after the first has completed, two command complete events are
generated (one for each command).

Note on working with a Hand Control Module: Special care must be taken when using a hand
control module and a software running on a PC at the same time. The hand control module
sets several movement relevant properties (like move velocity, move acceleration, hold time, step
frequency, step amplitude, etc.) prior to commanding a movement command. Thus user software
must not rely on previously configured parameters since they may have been modified in the
meantime by the hand control module. To be on the safe side, user software may set the Hand
Control Module Lock Options property to disable the control inputs of the hand control module
while its operation.

2.6.7 Movement Feedback

Movement commands are generally executed asynchronously by the device. Particularly, the API
functions do not block for the duration of the execution of the movement. Instead, the functions
simply trigger the start of the movement and the software may perform other tasks while the
positioner is in motion (e.g. tracking the movement and continuously display the current position).

When issuing movement commands it is usually desirable to know if the movement could suc-
cessfully be started and especially when the controller has finished the movement (e.g. found the
reference mark, reached the target position, etc.). Generally, there are two methods of acquiring
this information:

+ Polling the Channel State property

* Listening to events

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Polling

The Channel State property always indicates the current state of the channel. It may be used to
check whether the positioner is moving, holding, stopped etc. The four lower state bits are of in-
terest in this context. The following table summarizes the valid combinations and their meanings:

Bit 3 Bit 2 Bit 1 Bit 0 Activity
Referencing Calibrating Closed Actively
Loop Active Moving
Stopped
0 0 0 1 Performing an open-loop movement
(stepping or scanning)
0 0 1 0 Holding the current target position
(after a closed-loop movement)
0 0 1 1 Performing a closed-loop movement
(moving to target position)
0 1 0 1 Performing a calibration sequence
1 0 1 1 Performing a reference sequence

Since movement commands are always sent asynchronously to the device, they do not return an
acknowledge or error directly. Instead, events are generated. (See next section.)

If event notifications are not used, the success or failure of a movement command may be deter-
mined by monitoring the SA_CTL_CH_STATE_BIT_ MOVEMENT_FAILED bit of the Channel State
property. The flag is set to zero if the movement could successfully be started. If the flag is read as
one an error occurred. The movement could not be started or the execution failed. The reason for
the failure may then be determined by reading the Channel Error property. Note, that the channel
error is reset to SA_CTL_ERROR_NONE by reading the property.

Further state flags may be monitored to indicate if the execution of a movement could not finish.
(E.g. if an endstop was detected while executing the movement). Their meaning is described in
section 2.8.3 "Channel State Flags".

Events

Generally, every movement command (including calibrating and referencing) generates an event
of type SA_CTL_EVENT_MOVEMENT_FINISHED when the execution has finished. Note that a
movement is also considered as "finished" if it could not be started due to an error, e.g. an invalid
parameter or a closed-loop movement could not be executed, because the sensor is offline. In
any case the event parameter will indicate the result of the movement execution. The following
event parameters are possible:

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

SA_CTL_ERROR_NONE The movement finished with no error. In this case
the event occurs at the time when the movement
has finished, e.g. when reaching the target posi-
tion.

SA_CTL_ERROR_INVALID PARAMETER The movement could not be executed because a
parameter was invalid.

SA_CTL_ERROR_ABORTED The movement was started, but then aborted by
a stop command. In this case the event occurs
at the time the controller received the stop com-

mand.
SA_CTIL_ERROR_NO_SENSOR_PRESENT, The closed-loop movement could not be started,
SA_CTL_ERROR_SENSOR_DISABLED because no sensor is (currently) available.
SA_CTL_ERROR_POWER_SUPPLY_ DISABLED, The movement could not be started, because the
SA_CTL_ERROR_AMPLIFIER_DISABLED power supply / amplifier is disabled.
SA_CTL_ERROR_END_STOP_REACHED The closed-loop movement was started, but could
not be finished normally, because an end stop was
encountered.

SA_CTL_ERROR_FOLLOWING_ERR_LIMIT The closed-loop movement was started, but could
not be finished normally, because an following er-
ror limit was exceeded.

SA_CTL_ERROR_RANGE_LIMIT_REACHED The closed-loop movement was started, but could
not be finished normally, because a range limit
was reached.

SA_CTL_ERROR_BUSY_ STREAMING The movement could not be started, because the
channel is currently participating in a trajectory
stream.

The full list of error codes may be found in the appendix A.1 "Error Codes".

2.7 Defining Positions

Since position calculation is done on an incremental basis, the MCS2 controller has no way of
knowing the physical position of a positioner after a system power-up. It simply assumes its start-
ing position as the zero position.

However, in many applications it is convenient to define a certain physical position as the zero
position. The Position property may be set for this purpose. It defines the current position to have
an arbitrary value. This can be the zero position or any other position (it is possible to have the
zero position outside the complete travel range of the positioner).

Figure 2.4 shows an example of a linear positioner. (a) shows the situation after a system power-
up. The positioner assumes its current position as zero. (b) shows the situation after the Position
property was set. The current position has been defined to +3mm and the measuring scale is
shifted accordingly.

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

5 -4-3-2-101 2 3 45
d 'Y

<

Scale :-2-1012345678k

©_©.0 © © 0.0 ©
oOo0Oo0O0 ocOQo0Oo0OoO0
© © © © © © © ©

Current Position: Omm Current Position: 3mm
(a) (b)
Figure 2.4: Scale Shift

2.7.1 Reference Marks

In the example above the physical position of a positioner must be determined by some external
method and then configured to the system. Moreover, this procedure must be done on every
system power-up.

To overcome this inconvenience the SA_CTIL_Reference function may be used to determine the
physical position in an automated fashion. After this the controller will return position values ac-
cording to the positioner’s physical measuring scale (but see section 2.7.5 "Shifting the Measuring
Scale").

Regarding the referencing, positioner types fall into one of three possible categories:

+ Single Reference Marks The reference mark of positioners with a single mark is usually
located near the middle of the travel range. The positioner will have to move to this mark in
order to know its physical position.

* Multiple Reference Marks Positioners of this type may calculate their physical position
by measuring the distance between two adjacent marks. This has the advantage that the
positioner typically only has to move a few milli meters before knowing its physical position
which is exceptionally useful when using positioners with very long travel ranges.

+ Endstop Reference Type Positioners without any reference marks may use the mechanical
endstop at the end of their travel range as a known physical position.

The behavior of the positioner while referencing depends on the positioner type that is attached
to the channel (see Positioner Type property) as well as the configured referencing options (see
Referencing Options property). The referencing options modify the behavior of the referencing
algorithm. Currently, the following bits are available:

Table 2.1 - Referencing Options Bits

I Short Description

0 Start Direction Defines the direction in which the positioner will start
to look for a reference.

Continued on next page

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Table 2.1 - Continued from previous page

B Short Description

1 Reverse Direction Only relevant for positioners that have multiple refer-
ence marks. Will reverse the search direction as soon
as the first reference mark is found.

2 Auto Zero The current position is set to zero upon finding the
reference position.

3 Abort On End Stop Will abort the referencing on the first end stop that is
encountered.

4 Continue On Reference Found Will not stop the movement of the positioner once

the reference is found. The positioner must be
stopped manually.

5 Stop On Reference Found Will stop the movement of the positioner immedi-
ately after finding the reference.

6..31 Reserved These bits are reserved for future use.

NOTICE

Basically, the different mode flags may be combined to obtain a flexible behav-
ior when referencing positioners. However, bits 4 and 5 cannot be combined.

If both bits are set then the Stop On Reference Found (bit 5) has priority over
Continue On Reference Found (bit 4). See the detailed description of the mode
flags below.

When the SA_CTL_Reference command has completed successfully, the system knows the
physical position of the positioner (see SA_CTL_CH_STATE_BIT_IS_REFERENCED of the Chan-
nel State property).

2.7.2 Positioners With Single Reference Marks

This section describes the behavior while referencing positioners with only one reference mark in
more detail. The images on the right side illustrate the behavior of an example positioner that
is being referenced. The vertical x-axis represents the travel range of the positioner. The square
brackets indicate mechanical end stops. The dashed line indicates the position of the reference
mark.

In the examples the positioner always starts at position 0 and the physical position is unknown (red
line). Once the reference mark has been found the physical position will become known (green
line). It is assumed that the physical zero position is on the reference mark.

Default Behavior (reference mode 0b00000000)

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

By default the positioner will start to move in forward (positive) direction *; X
and look for a reference mark. As soon as the positioner has passed over
the reference mark the internal position will be updated. This is indicated
by the second x-axis having a different scale shift.

t
The small overshoot represents the reaction time of the positioner stopping. J. j.
The amount of the overshoot depends on factors like the velocity with which
the referencing is performed, the mass that is mounted on the positioner
or a possibly configured acceleration control (in which case it takes some time to decelerate the
positioner).

The positioner will turn around and move to the exact location of the reference mark. After this
the referencing is complete.

Inverted Start Direction (reference mode 0b00000001)

Same as the default referencing, with the difference that the positioner will
start to move in backward direction and look for a reference mark.

>
>

In this example the positioner will encounter a physical end stop before find- ~ f---------------

ing the mark. The positioner will automatically reverse its search direction at o A
the end stop and continue to look for the reference mark. -l-\/ J_
Note: If the positioner encounters a second end stop then the reference

algorithm will be aborted. The positioner is stopped and an error event is

generated. Reasons for this situation may be a mechanical or electrical de-

fect (the controller does not register the reference signal for some reason) or the reference mark is
outside the physical range of the positioner (e.g. the positioner has bumped against an obstacle).

Abort On End Stop (reference mode 0b00001000)

As described above, by default the positioner will start to look for a reference
mark in the start direction and reverse the search direction if a physical end
stop is detected.

search direction on detecting a physical end stop. Instead it will stop and
generate an error which means that the referencing is aborted and consid-
ered as failed.

If the abort on end stop flag is set then the positioner will not reverse the Oj;

This setting may be useful when it is necessary to forbid the movement of
the positioner in a direction other than the initial search direction.

Continue On Reference Found (reference mode 0b00010000)

MCS2 Programmer's Guide O

2 GENERAL CONCEPTS

Compared to the default referencing behavior this flag causes the positioner
to continue to move in the current search direction after the reference has
been found. The positioner does not stop or even turn around to return to
the exact location of the reference mark. Instead the positioner must be
stopped manually (or it is implicitly stopped by a physical end stop).

This setting may be useful e.g. when referencing several positioners syn-

chronously that are mechanically connected in a parallel kinematic. A setup

like this could cause one positioner to block and therefore fail to reference if another positioner
has stopped because it has already found its reference mark.

Stop On Reference Found (reference mode 0b00100000)

Compared to the default referencing behavior this flag causes the positioner
to stop moving as soon as the reference has been found. The positioner
does not turn around and return to the exact location of the reference mark.
Instead the positioner simply stops where it is.

This implies that due to the small overshoot described above the positioner
will not come to stop exactly on the reference mark. Since in these examples
the zero position is on the reference mark, the position will not be zero after
the referencing has completed.

2.7.3 Positioners With Multiple Reference Marks

This section describes the behavior while referencing positioners with multiple reference marks
in more detail. The general principle is that the positioner must pass over two adjacent reference
marks. The physical position may then be determined by measuring the distance between these
two marks. This method reduces the distance a positioner has to travel to determine its physical
position compared to single reference marks, especially when operating with positioners with very
long travel ranges.

As in the previous section the images on the right side illustrate the behavior of an example po-
sitioner that is being referenced. The vertical x-axis represents the travel range of the positioner.
The square brackets indicate mechanical end stops. The dashed line indicates the positions of the
reference marks.

In the examples the positioner always starts at position 0 and the physical position is unknown (red
line). Once the reference mark has been found the physical position will become known (green
line). The auto-zero flag is assumed to be set so the position will be set to zero once the physical
position has been determined.

Default Behavior (with auto-zero, reference mode 0b00000100)

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

By default the positioner will start to move in forward (positive) direction
and look for a reference mark. When the positioner has found the first ref-
erence mark it will continue to move in forward direction and look for a
second mark. As soon as the positioner has passed over the second refer- ji;j‘ ______________ t

ence mark the internal position will be updated (in this case set to 0 due to
the auto-zero flag). This is indicated by the second x-axis having a different
scale shift.

As in the previous examples the small overshoot represents the reaction time of the positioner
stopping. The amount of the overshoot depends on factors like the velocity with which the refer-
encing is performed, the mass that is mounted on the positioner or a possibly configured acceler-
ation control (in which case it takes some time to decelerate the positioner).

The positioner will turn around and move to the exact location of the second reference mark. After
this the referencing is complete.

Inverted Start Direction (with auto-zero, reference mode 0b00000101)

Same as the default referencing, with the difference that the positioner will
start to move in backward direction and look for two reference marks.

In this example the positioner passes over the first reference mark, but en-
counters a physical end stop before finding the second mark. The positioner
will automatically reverse its search direction at the end stop and restart
looking for a first reference mark.

As in the previous section please note that if the positioner should encounter

a second end stop then the reference algorithm will be aborted. The posi-

tioner is stopped and an error event is generated. Reasons for this situation may be a mechanical
or electrical defect (the controller does not register the reference signal for some reason) or the
available travel range does not cover two reference marks (e.g. the positioner has bumped against
an obstacle).

Reverse Direction (with auto-zero, reference mode 0b00000110)

In this mode the positioner will start to move in forward (positive) direction
and look for a reference mark. When the positioner has found the first
reference mark it will reverse the movement direction and look for a second
mark. As soon as the positioner has passed over the second reference mark
the internal position will be updated (in this case set to 0 due to the auto-
zero flag). This is indicated by the second x-axis having a different scale
shift.

As in the previous examples the small overshoot represents the reaction

time of the positioner stopping. The amount of the overshoot depends on factors like the velocity
with which the referencing is performed, the mass that is mounted on the positioner or a possibly
configured acceleration control (in which case it takes some time to decelerate the positioner).

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

The positioner will turn around and move to the exact location of the second reference mark. After
this the referencing is complete.

This mode may further reduce the distance traveled by the positioner to determine its physical
position.

2.7.4 Positioners With Endstop Reference

This section describes the behavior while referencing positioners with an endstop reference type
in more detail. The general principle is to move the positioner towards one end of the travel range
until a mechanical endstop is detected. The sensor signals are then used to align the position to
the reference position with high repeat accuracy.

For these types of positioners the physical measuring scale is defined such that the zero posi-
tion lies near the mechanical end stop that is used for referencing. Note that the scale therefore
depends on the Safe Direction as well as the Logical Scale Inversion setting.

Positioners with an endstop reference type use the additional Safe Direction property to define
the direction of the referencing movement instead of the start direction bit of the Referencing
Options property.

All Referencing Options flags except the auto-zero flag are ignored when referencing towards an
endstop.

NOTICE

Note that the end stop must be calibrated with SA_CTI_Calibrate before it

can be properly used as a reference point.

Default Behavior (with auto-zero, reference mode 0b0000100)

In this mode the positioner will start moving towards the configured Safe
Direction and look for a mechanical end stop. In this example the Safe Di-
rection is assumed to be set to forward (positive) direction. 0

distance away from the end stop to find the exact reference using the posi-
tion that was determined while calibrating the endstop.

Once the positioner has found the mechanical end stop it will move a short 1

As in the previous section the images on the right side illustrate the behavior
of an example positioner that is being referenced. The vertical x-axis repre-
sents the travel range of the positioner. The square brackets indicate mechanical end stops.

In the examples the positioner starts at position 0 and the physical position is unknown (red line).
Once the positioner is referenced the physical position will become known (green line). The auto-
zero flag is assumed to be set so the position will be set to zero once the physical position has
been determined.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

2.7.5 Shifting the Measuring Scale

The physical measuring scale of a positioner is fix and cannot be changed. However, the MCS2
controller uses a logical measuring scale when calculating positions. The logical measuring scale
may be shifted and/or inverted by the user so that the controller returns a desired position value
at a certain physical position.

The relation between the physical and the logical scale is defined by two parameters. The offset
value (which represents the shift) and the inversion value (which inverts the count direction) of the
logical scale relative to the physical scale. The default value of the offset and the inversion is zero
which makes the physical and the logical scale identical.

There are two methods to modify the offset value:

« Writing the Position property sets the offset implicitly by shifting the logical scale so that the
current position equals the desired value.

+ Writing the Logical Scale Offset property sets the offset explicitly and the current position
will have a value that reflects the new scale shift.

The inversion value may be set by writing the Logical Scale Inversion property.

The offset and inversion values are stored in non-volatile memory. Once it is configured you only
need to call the SA_CTL_Reference function to restore your settings on future power-ups.

Note: The behavior of the system when writing the Position property differs slightly depending on
whether the physical position is known or not. When the physical position is unknown then writing
the Position property will not update the scale offset value in the non-volatile memory. Likewise,
writing the Logical Scale Offset property will have no immediate effect on the values read from the
Position property. The following table summarizes the behavior.

_ Physical position is known | Physical position is unknown

Set Position Set Logical Scale Set Position Set Logical Scale

offset value is written yes yes no yes
to non-volatile mem-

ory

function call has im- yes yes yes no

mediate effect on po-
sition values

2.8 State Flags

2.8.1 Device State Flags

The device state may be read from the Device State property. The following flags are defined:

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

el coemton | wask_

0 SA_CTL_DEV_STATE_BIT_HM_PRESENT 0x0001
1 SA_CTL_DEV_STATE_BIT_MOVEMENT_LOCKED 0x0002
8 SA_CTL_DEV_STATE_BIT_INTERNAL_COMM_FATILURE 0x0100
12 SA_CTL_DEV_STATE_BIT_IS_STREAMING 0x1000

HM Present (bit 0)

This flag indicates that a Hand Control Module is attached to the device.

Movement Locked (bit 1)

This flag indicates that the device is locked due to an emergency stop condition. (see section 2.17.2
"Emergency Stop Mode")

Internal Communication Failure (bit 8)

This flag indicates that an internal communication failure has occurred.

Is Streaming (bit 12)

This flag indicates that the device is currently performing a trajectory stream (see section 2.15
"Trajectory Streaming").

2.8.2 Module State Flags

The module state may be read from the Module State property. The following flags are defined:

I T S T

0 SA_CTL_MOD_STATE_BIT_SM PRESENT 0x0001
1 SA_CTL_MOD_STATE_BIT_BOOSTER_PRESENT 0x0002
2 SA_CTL_MOD_STATE_BIT _ADJUSTMENT_ACTIVE 0x0004
3 SA_CTL_MOD_STATE_BIT_IOM_PRESENT 0x0008
8 SA_CTL_MOD_STATE_BIT_INTERNAL_COMM_FAILURE 0x0100
12 SA_CTL_MOD_STATE_BIT_HIGH_VOLTAGE_FAILURE 0x1000
13 SA_CTL_MOD_STATE_BIT_HIGH_VOLTAGE_OVERLOAD 0x2000
14 SA_CTL_MOD_STATE_BIT_OVER_TEMPERATURE 0x4000

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

SM Present (bit 0)

This flag indicates whether a Sensor Module is currently attached to the Driver Module.

Booster Present (bit 1)

This flag indicates whether the Driver Module is equipped with a booster for high current signal
output.

Adjustment Active (bit 2)

This flag indicates whether the module is performing an adjustment for the SmarAct PicoScale
Laserinterferometer.

I/0 Module Present (bit 3)

This flag indicates whether the Driver Module is equipped with an I/0 Module.

Internal Communication Failure (bit 8)

This flag indicates that an internal communication error has occurred.

High Voltage Failure (bit 12)

This flag indicates that the module detected a power supply failure.

High Voltage Overload (bit 13)

This flag indicates that the module detected a power supply overload condition.

Over Temperature (bit 14)

This flag indicates that the module detected an over temperature condition.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

2.8.3 Channel State Flags

The channel state may be read from the Channel State property. The following flags are defined:

| coemgon | wask_

0 SA_CTL_CH_STATE_BIT_ACTIVELY_ MOVING 0x0001
1 SA_CTL_CH_STATE_BIT_CLOSED_LOOP_ACTIVE 0x0002
2 SA_CTL_CH_STATE_BIT_CALIBRATING 0x0004
3 SA_CTL_CH_STATE_BIT_REFERENCING 0x0008
4 SA_CTL_CH_STATE_BIT_MOVE_DELAYED 0x0010
5 SA_CTL_CH_STATE_BIT_SENSOR_PRESENT 0x0020
6 SA_CTL_CH_STATE_BIT_IS_CALIBRATED 0x0040
7 SA_CTL_CH_STATE_BIT_IS_REFERENCED 0x0080
8 SA_CTL_CH_STATE_BIT_END_STOP_REACHED 0x0100
9 SA_CTL_CH_STATE_BIT_RANGE_LIMIT_REACHED 0x0200
10 SA_CTL_CH_STATE_BIT_FOLLOWING_LIMIT_REACHED 0x0400
11 SA_CTL_CH_STATE_BIT_MOVEMENT_FAILED 0x0800
12 SA_CTL_CH_STATE_BIT_IS_STREAMING 0x1000
14 SA_CTL_CH_STATE_BIT_OVER_TEMPERATURE 0x4000
15 SA_CTL_CH_STATE_BIT_ REFERENCE_MARK 0x8000

Actively Moving (bit 0)

The channel is actively moving the positioner (open-loop or closed-loop).

Closed Loop Active (bit 1)

The channel is in closed-loop operation using sensor feedback (moving or holding the position).

Calibrating (bit 2)

The channel is busy performing a calibration sequence.

Referencing (bit 3)

The channel is busy performing a find reference sequence.

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

Move Delayed (bit 4)

The channel is waiting for the sensor to power-up before executing the movement command. This
flag may be active if the sensor is operated in power save mode.

Sensor Present (bit 5)

A positioner with integrated sensor is attached to the channel. This indicates whether closed-loop
movements may be performed.

Is Calibrated (bit 6)

The channel has valid signal correction calibration data for the configured positioner type. This flag
is cleared when the positioner type is changed. It becomes one after a signal correction calibration
sequence finished successfully.

Is Referenced (bit 7)

The channel "knows" its physical (absolute) position. After a power-up the physical position is
unknown. After the reference mark has been found by calling SA_CTL_Reference the physical
position becomes known.

End Stop Reached (bit 8)

The target position of a closed-loop movement command could not be reached because a me-
chanical end stop was detected. The positioner was stopped. The flag is cleared when a new
movement command respectively stop command is issued.

Range Limit Reached (bit 9)

The positioner left the software configured range limit. The positioner was stopped. The flag is
cleared when a new movement command respectively stop command is issued.

Following Limit Reached (bit 10)

The positioners following error exceeded the configured limit. The flag is cleared when a new
movement command respectively stop command is issued.

Movement Failed (bit 11)

The last movement command failed. The Channel Error property may be read to determine the
reason for the error.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Is Streaming (bit 12)

The channel is currently participating in a trajectory stream. As long as this flag is set the channel
is unavailable for movement or configuration commands.

Over Temperature (bit 14)

The channel detected an over temperature condition.

Reference Mark (bit 15)

This flag reflects the state of the reference mark signal of the sensor.

2.9 Sensor Power Modes

In order for a positioner to track its position, its sensor needs to be supplied with power. How-
ever, since this generates heat (causing drift effects), it might be desirable to disable the sensors
in some situations (especially in temperature critical environments). For this, there are three dif-
ferent modes of operation for the sensor, which may be configured individually for each channel
with the Sensor Power Mode property. The following modes are available:

+ Disabled In this mode the power supply of the sensor is turned off. This avoids the gener-
ation of heat by the sensor. Movement commands that require sensor feed back (such as
closed-loop movements, referencing or calibrating) will not be executed. Instead, the gen-
erated SA_CTL_EVENT_MOVEMENT_FINISHED event holds an error code informing about
the sensor state.

Besides avoiding heat generation this mode may also be useful if the light that is emitted
by the sensor interferes with other components of your setup (e.g. detectors inside an SEM
chamber).

+ Enabled In this mode the sensor is supplied with power continuously. All movement com-
mands are executed normally.

+ PowerSave If set to this mode the power supply of the sensor will be handled by the channel
automatically. If the positioner is idle the sensor will be offline most of the time, avoiding
unnecessary heat generation. A movement command (open-loop or closed-loop) will cause
the channel to activate the sensor before the movement is started. Since it takes a few
milliseconds to power-up the sensor, the movement will be delayed. The Channel State bit
SA_CTL_CH_STATE_BIT_MOVE_DELAYED is set during this time.

Figure 2.5 illustrates the different sensor modes and shows when the sensor is supplied with
power.

In this example the sensor mode is initially set to enabled. The sensor is continuously supplied
with power. At time t1 the sensor mode is switched to power save. In this mode the channel starts
to pulse the power supply of the sensor to keep the heat generation low. At time t, a movement
command is issued, which requires the sensor to be online in order to keep track of the current

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Sensor

Mode enabled power save disabled
Sensor

Power " " " ||| " " "

Supply ~ off

~+ Vv

t1 t2 t3 t4 t5

Figure 2.5: Sensor Modes

position. Note that the sensor mode stays unchanged during this time. After the movement has
finished (t3) an additional delay is started. While this delay the sensor stays online. (See the Sensor
Power Save Delay property.) As soon as the delay time has elapsed (t4) the channel will start to
pulse the power supply again. At time ts the sensor mode is switched to disabled, in which the
power supply is turned off continuously.

NOTICE

The sensor must be in Enabled or PowerSave mode for the sensor-present detec-
tion to be active. Accordingly, the SA_CTL_CH_STATE_BIT_SENSOR_PRESENT
is not updated as long as the sensor is Disabled.

NOTICE

When in PowerSave or Disabled mode the positioner should not be moved by
external means (e.g. by hand)! Since in these modes the power supply of the
sensor is off most of the time or even continuously, the controller is not able to
detect such movements. As a consequence the position data will become invalid.
Furthermore, no error can be generated.

2.10 PicoScale Sensor Module

The MCS2 supports the SmarAct PicoScale laser interferometer as a high precision sensor module.
This section explains the differences when using a PicoScale instead of the MCS2 sensor module.
For a detailed description and setup of the PicoScale refer to the PicoScale User Manual.

For connecting the PicoScale to the MCS2 a special adapter cable (MCS2-A-PS-CABLE-1.5M-1.5M)
is required. The adapter cable connects to the MCS2 and splits the high voltage output to three
connections for positioners and forwards the data connection to the PicoScale.

When the PicoScale is connected to the MCS2, it is reported as a connected sensor module in the
Module State Flags. Since the MCS2 only knows the sensor present flag in the Channel State Flags,
but the PicoScale uses a number of different flags to indicate the system state, these flags are
merged in the MCS2 context. For the sensor present flag to become active the following conditions
must be met:

MCS2 Programmer’s Guide O

2 GENERAL CONCEPTS

+ System stable

+ Channel enabled

* Channel data valid

* Beam not interrupted

For most of these flags to become active the channel needs to be adjusted. The adjustment can
be performed using the PicoScale GUI or the MCS2 hand control module.

By default the MCS2 will use the PicoScale position data source as input for the control-loop.
Alternatively, the calculation system can be selected as the input using the Sensor Input Select
property. Note that the mapping between PicoScale calculation systems and MCS2 channels is
static. The output of calculation system 0 of the PicoScale is used as input for channel 0 of the
MCS2. Accordingly, calcSys 1 is used for channel 1 and calcSys 2 is used for channel 2.

When using the calculation system as input the conditions for the sensor present flag are as fol-
lows:

+ System stable
+ Calculation system data not interrupted

2.11 Following Error Detection

The following error detection feature may be used to inform the application if a commanded tra-
jectory cannot be followed by a positioner precisely enough. The following error is, at a given time,
the difference between the target position and the actual position while performing closed-loop
movements. The positioner will always have a non-zero following error. The control-loop is tuned
to reduce this error to its minimum. To enable the detection:

* The Following Error Limit property must be set to a non-zero value.
+ The velocity control must be enabled (see Move Velocity).

The limit value is given in pm for linear positioners and in n® for rotary positioners. As soon as
the configured limit is exceeded during a movementa SA_CTL_EVENT_FOLLOWING_ERR_LIMIT
event is generated and the SA_CTIL_CH_STATE_BIT_FOLLOWING_LIMIT_REACHED bit of the
Channel State property will be set to one. The flag remains set until a new movement (or a
SA_CTL_Stop) is commanded. Optionally the movement may be stopped automatically if the
limit is exceeded. The SA_CTL_POS_CTRL_OPT_BIT_STOP_ON_FOLLOWING_ERR bit of the Po-
sitioner Control Options property must be set to one to stop the movement. In this case two
events are generated. Firstly, the above mentioned SA_CTL_EVENT_FOLLOWING_ERR_LIMIT,
secondly a SA_CTL_EVENT_MOVEMENT_FINISHED event. The latter will have its parameter set
to SA_CTL_ERROR_FOLLOWING_ERR_LIMIT.

Note that the detection is not active during referencing movements.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

2.12 Software Range Limit

While linear positioners have a limited physical travel range it might be useful to further limit this
range if the positioner must not be allowed to move beyond a certain point. Rotary positioners
usually have no physical end stops, but e.g. wiring may require to limit the rotation here as well.
For these situations the MCS2 controller offers to limit the travel range of a positioner by software.

By default no range limit is set. To enable the range checks, the Range Limit Max property must
be set to a higher value than the Range Limit Min property. Once the limits are set the positioner
will not move beyond the boundaries of the range limit. This affects all movements except scan
movements. If a movement command is issued that move the positioner beyond the defined
limit then the positioner is stopped. A SA_CTI_EVENT_MOVEMENT_FINISHED event with its pa-
rameter set to SA_CTL_ERROR_RANGE_LIMIT_REACHED is generated and the Channel State bit
SA_CTL_CH_STATE_BIT_RANGE_LIMIT_REACHED will be set to one. The flag remains set until
a new movement (or a SA_CTI_Stop) is commanded. Further movements are only allowed if
they move the positioner in the direction pointing back inside the range limit. This also applies if
the positioner has been moved outside the defined range limit by external means.

Both the minimum and maximum position of the range limit behave similarly to a physical end
stop. For example, the SA_CTL_Reference command will reverse its movement direction while
looking for the reference mark if a range limit boundary is reached. If the reference mark is located
outside the range limit then it will not be found.

Please note the following restrictions:

+ The Range Limit Min and Range Limit Max properties are not saved to non-volatile memory
and must be configured in each session.

* The range limits are not checked while performing the SA_CTL_Calibrate function for
the signal correction calibration.

* The range limit has a limited accuracy. The positioner may pass over the boundary by a few
micro meters resp. milli degrees. Therefore, the range should be defined with sufficient
tolerance.

NOTICE

Setting the Position (as well as the Logical Scale Offset and Logical Scale Inver-
sion properties) does not automatically adjust the software range limit accord-

ingly. This means that shifting the measurement scale of the positioner with
these commands will also shift the physical position of the software range limit.
Therefore, care should be taken when working with these commands.

2.13 Stop Broadcasting

This feature can be used to broadcast a stop command to all channels on the MCS2 controller
when a channel

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

+ detects a mechanical end stop,
+ reaches a software range limit (see section 2.12 "Software Range Limit") or

+ exceeds a following error limit (see section 2.11 "Following Error Detection").

It is typically useful when multiple channels are moving simultaneously and one of the above
conditions on one channel should cause a halt on all other channels. The channel that caused
the broadcast stop generates a SA_CTL_EVENT_MOVEMENT_FINISHED event with its parameter
holding the reason for the stop. (SA_CTL_ERROR_END_STOP_REACHED,
SA_CTL_ERROR_RANGE_LIMIT_REACHED or SA_CTL_ERROR_FOLLOWING_ERR_LIMIT)

All other (currently moving) channels will be stopped and generate a
SA_CTL_EVENT_MOVEMENT_FINISHED event with its parameter set to
SA_CTL_ERROR_ABORTED.

NOTICE

A channel's behavior for a broadcast stop is the same as when executing a sin-

gle SA_CTL_Stop command. Thus channels moving with acceleration control
active may not come to halt immediately.

2.13.1 Stop Broadcast Configuration

The Broadcast Stop Options property defines the behavior of the broadcast stop feature. It holds
a bit mask with the following mode bits:

BN N Short Description

0 End Stop Reached Broadcast stop command if a mechanical end stop was
detected.
1 Range Limit Reached Broadcast stop command if a range limit was reached.
2 Following Limit Reached* Broadcast stop command if a following error limit was ex-
ceeded.
3..31 Reserved These bits are reserved for future use. Should be set to
zero.

*Note that the SA_CTL_POS_CTRL_OPT_BIT_STOP_ON_FOLLOWING_ERR bit of the Positioner
Control Options property must be set to one to stop the movement and subsequently generate a
broadcast stop on a following error limit.

Example

The example code below configures the device to issue a broadcast stop if channel 0 reaches an
end stop or a Software Range Limit (=2mm).

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

SA_CTL_Result_t result;
result = SA_CTL_SetProperty_132(
dHandle,
Ol
SA_CTL_PKEY_RANGE_LIMIT_MIN, -2e9);
if (result) { /x handle error, abort */ }
result = SA_CTL_SetProperty_132(
dHandle,
Ol
SA_CTL_PKEY_RANGE_LIMIT MAX, 2e9);
if (result) { /# handle error, abort =/ }
result = SA_CTL_SetProperty_ 132 (
dHandle,
Ol
SA_CTL_PKEY_ BROADCAST_STOP_OPTIONS,
(SA_CTL_STOP_OPT_BIT_END_STOP_REACHED |
SA_CTL_STOP_OPT_BIT_RANGE_LIMIT_REACHED)
)
if (result) { /% handle error, abort =/ }

2.14 Command Groups

When issuing movement or configuration commands they usually target a single channel of the
device. However, when trying to move several channels synchronously communication delays
induce a time offset of the resulting movements.

Command groups offer the possibility to define an atomic group of commands that is executed
synchronously. In addition, a command group may not only be triggered via software, but alter-
natively via an external trigger.

To define a command group simply surround the commands that should be grouped with calls to
the SA_CTI_OpenCommandGroup and SA_CTIL_CloseCommandGroup functions and pass the
transmit handle received from the SA_ CTL_OpenCommandGroup function to all commands to be
grouped.

For example, consider the code sequence below that configures two channels with the closed-loop
absolute move mode and then moves both channels to some target position. (For simplicity the
function return values are not handled in this example.)

SA_CTL_RequestWriteProperty_132(
dHandle,
Ol
SA_CTL_PKEY_ MOVE_MODE,
SA_CTL_MOVE_MODE_CL_ABSOLUTE,
&r1IDO,
0
)
SA_CTL_RequestWriteProperty_ 132 (
dHandle,

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

1,
SA_CTL_PKEY_MOVE_MODE,
SA_CTL_MOVE_MODE_CL_ABSOLUTE,
&rID1,
0
)i
SA_CTL_Move (dHandle, 0,1000000,0) ;
SA_CTL_Move (dHandle, 1,2000000,0) ;
SA_CTL_WaitForWrite (dHandle, rIDO) ;
SA_CTL_WaitForWrite (dHandle, rID1)

4

The next code snippet shows the same example, but the commands are put into a command
group (changes are colored).

SA_CTL_TransmitHandle_t txHandle;
SA_CTL_OpenCommandGroup (dHandle, &txHandle
, SA_CTL_CMD_GROUP_TRIGGER_MODE_DIRECT) ;
SA_CTL_RequestWriteProperty_ 132 (

dHandle,

OI

SA_CTL_PKEY_ MOVE_MODE,

SA_CTL_MOVE_MODE_CIL_ABSOLUTE,

&rIDO,

txHandle
)
SA_CTL_RequestWriteProperty_132(

dHandle,

ll

SA_CTL_PKEY_ MOVE_MODE,

SA_CTL_MOVE_MODE_CIL_ABSOLUTE,

&rID1,

txHandle
)
SA_CTL_Move (dHandle, 0,1000000, txHandle) ;
SA_CTIL_Move (dHandle, 1,2000000, txHandle) ;
SA_CTL_CloseCommandGroup (dHandle, txHandle) ;
SA_CTL_WaitForWrite (dHandle, rIDO) ;
SA_CTL_WaitForWrite (dHandle, rID1) ;

As a result the commands are treated as one command and the movements of both channels
start synchronously (in this case as soon as the command group is closed, since the direct trigger
mode is used).

One important thing to notice is that the SA_CTIL_WaitForWrite function calls must be issued
after the command group was closed. Otherwise the function calls will block. The same applies to
commands that read properties from the device: put the SA_CTL_RequestReadProperty calls
into the command group, but issue e.g. SA_CTL_ReadProperty_1i32 calls after the group close.

Note that synchronous property accesses cannot be put into a command group. Only the following
commands may be added to command groups by passing the transmit handle to the function call:

* SA_CTL_RequestReadProperty

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

* SA_CTL_RequestWriteProperty_1i32
* SA_CTL_RequestWriteProperty_i64
* SA_CTL_RequestWriteProperty_s

* SA_CTL_Calibrate

* SA_CTL_Reference

* SA_CTL_Move

* SA_CTL_Stop

In addition note that not all properties may be added to command groups. If a property is group-
able or not is indicated in the detailed property description (See chapter 4 "Property Reference").

2.14.1 Command Groups vs. Output Buffer

Output buffer (as described in the High-Throughput Asynchronous Access for properties) are quite
similar to command groups. However, there are still some differences which are outlined in the
following.

+ Triggering While output buffer are executed as soon as they are flushed, command groups
may alternatively be triggered via an external trigger.

+ Size Limit Command groups are somewhat limited in size regarding the number of com-
mands that may be put into them. Output buffer are (theoretically) unlimited in size.

+ Atomicity Output buffer simply try to optimize communication, but still treat the commands
independently from each other. Output buffer are flushed on library level. In contrast, com-
mand groups optimize both communication and synchronized execution. They are flushed
on controller level.

2.15 Trajectory Streaming

Trajectory streaming allows a multi DoF manipulator to follow specific trajectories using the MCS2
controller. All participating positioners are moved synchronously along the defined trajectory. This
section describes the concepts of trajectory streaming and how an application program must use
the API to perform a trajectory movement.

A trajectory movement requires special (user) software to pre-calculate support points of the tra-
jectory (although the support points might also be calculated "on the fly"). These support points
are then streamed to the controller which takes care of executing a synchronized movement of all
participating channels.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

2.15.1 General Streaming Concept

A trajectory stream is defined as a sequence of support points (frames). Each frame is a tuple
of target positions for all channels that participate in the trajectory. Each target position in turn
is a tuple of a channel index and a position value. Position values are given as a 64-bit integer
value in little-endian format, representing pico meters for linear positioners and nano degrees
for rotary positioners. All values are given as absolute (not relative) position values. Figure 2.6
shows the general format of a trajectory stream and figure 2.7 shows an example trajectory with
the according binary stream data.

The timing with which the frames are executed is defined by the stream rate that is configurable by
the user. This rate is constant for the duration of the stream.

(L
Stream frame 0 I frame 1 | \\ |frame n—2|frame n—1|

-~
-
—

|
1
1
1 L =
Frame | target 0 | target 1 | \\ |target m—2|target m—1|
~ /4
l
|
|

~
\\
~

~
\;

Target ix | pos |

Figure 2.6: Trajectory Stream Format

Offset Data
Ch1 o 0x0000 [00/80841e0000000000/0180841e0000000000| Frame 0
[um] — 0x0012 [00c0c62d0000000000J0100093d0000000000] Frame 1

15 0x0024 [00404b4c000000000001808d500000000000| Frame 2
020036 [00c0cf6a000000000001c0cf6a0000000000/ Frame 3
0x0048 [0000127a0000000000[014054890000000000| Frame 4
10 0x005a [00001272000000000001c0d8a70000000000| Frame 5
0x006c [00405489000000000001405dc60000000000| Frame 6
0x007e [00c0d8a7000000000001c0e1e40000000000| Frame 7
. Frame 12 0x0090 [00405d650000000000010024£40000000000| Frame 8
0x00a2 [00c0e1e4000000000001c0ele40000000000/ Frame 9
Suun 0x00b4 [000024£40000000000001405dc60000000000| Frame 10
hrprae 0 - 0x00c6 [00c0ele4000000000001c0d8a70000000000| Frame 11
5 10 5 cho 0x00d8 [00405dc60000000000014054890000000000| Frame 12

[pm] Clhnadnenxel Position

Figure 2.7: Trajectory Stream Example

Streaming Rules

When using trajectory streaming some rules must be heeded that are described in the following:

+ Only one trajectory may be performed at a time. Suppose you have six channels available
that are divided into two XYZ manipulators (A and B). Then you could start a trajectory with
manipulator A. During this time it is not allowed to start a stream for manipulator B. If both
manipulators are to be synchronized then the stream must contain all six channels from the
beginning.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

+ The first frame of a stream defines which channels participate in the stream. All further
frames must contain the same channels (in the same order). Otherwise a stream error is
generated.

* Atrajectory stream must consist of at least two frames (start frame and end frame).

+ The movement between the support points is linearly interpolated by the controller (this
is the default setting, see subsection 2.15.3). If a manipulator is supposed to perform an
accelerated movement along the trajectory then the support points must be calculated ac-
cordingly.

+ Channels that are not participating in the stream can still be fully controlled, while channels
that are currently streamed may answer with a SA_CTI_ERROR_BUSY_STREAMING error
code (see A.1) when sending certain configuration or movement commands.

* The sensors of all participating positioners must be enabled (in particular, the power save
mode is not allowed, see section 2.9).

Flow Control

When the host transmits stream frames to the controller they are stored in a (FIFO) stream buffer
in the controller. The controller then executes the buffered frames synchronously. While the
frames are executed at a constant rate (the stream rate that the user has configured), the rate
at which the controller receives frames from the host may vary. Typically the rate is considerably
higher or frames arrive in bursts with intermissions (or both), e.g. due to USB / Ethernet latency or
application interruption by the operating system (see figure 2.8).

Host MCS2 Controller Stage
Stream Data Stream Data o
79% full o
Jinnnnn S o) o) o)
Variable Constant o
Frame Rate Frame Rate o

Figure 2.8: Flow Control

The library implements a flow control mechanism to prevent a buffer overflow on the controller:

* Ifthe SA_CTL_StreamFrame function is called faster than the configured stream rate then
the function may block from time to time, therefore implementing the flow control.

* Ifthe SA_CTL_StreamFrame function is called slower than the configured stream rate then
the streaming will eventually fail with a buffer underflow error.

The controller’s stream buffer can hold up to 1024 tuples' and while it allows a synchronized
and consistent stream, it also induces a delay to the incoming frames. This delay depends on
the controller’s buffer size, the number of channels that participate in the stream as well as the
configured stream rate and can be determined by the following formula:

'A tuple consists of a target position and it's corresponding channel, see 2.15.1 (General Streaming Concept).

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

buffer size
stream rate [Hz] « number of stream channels

execution delay [s] =

E.g. a stream with a frame containing three tuples (position data for three channels) and a config-

1024
ured stream rate of 1000 Hz would induce a constant buffer delay of ————— =0.341s.
1000 Hz * 3

2.15.2 Basic Approach

To execute a trajectory stream the following steps must be performed:

1. Configure the stream rate by writing the Stream Base Rate property (see section 4.9). This
defines the rate (in Hz) with which the frames of the trajectory are executed.

2. Move all positioners that participate in the trajectory to their starting position (first frame
of the stream). Otherwise starting the stream will likely cause unexpected behavior, since
stream frames hold absolute position values and therefore the first frame could cause very
high velocities that cannot be performed mechanically.

3. Open astream by calling the SA_CTL_OpenStream function. It returns a stream handle that
must be passed to the following function calls to associate them with the opened stream.

4. Supply the stream data by calling the SA_CTL_StreamFrame function once per frame that
should be executed. Note: This function may block if the flow control needs to throttle the
data rate. The function returns as soon as the frame was transmitted to the controller.

5. Close the stream by calling the SA_CTL_CloseStream function. To the controller this
marks the end of the stream. If the stream is not closed properly with this function call
(or aborted by calling SA_CTL_AbortStream)then the controller will generate a buffer un-
derflow error after the last frame has been executed.

NOTICE

Behavioral differences when closing or aborting a stream:

As already described, all incoming frames are stored in an intermediate buffer by
the device (see Flow Control). The basic approach, after having sent all frames

to the device, is to call SA_CTL_CloseStream. This leads to execution of all
pending frames and thus finishing the stream at the given position(s). If a stream
is to be stopped immediately, the SA_CTI_AbortStream function can be used.
This leads to a trajectory stop, while remaining frames already sent to the device
are discarded.

2.15.3 Options

Before calling the SA_CTL_Openstream function the Stream Options property can be configured
to define the stream’s behavior. This property holds a bit mask which is outlined in the following
table.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

[W] Short Description

0 Disable Linear Interpolation Disable the linear interpolation between consecutive
stream target positions.

1..31 Reserved These bits are reserved for future use.

Disable Linear Interpolation (streaming options 0x00 or 0x01)

By default, the path between consecutive stream target positions is linearly interpolated. In some
applications this behavior might be unwanted. The interpolation can therefore be disabled using
this option, resulting in a point-to-point movement with the configured stream rate.

2.15.4 Trigger Modes

A trajectory stream may be configured to be triggered (started) by various events. For example,
in some situations it can be useful to synchronize the stream rate of a trajectory with an external
clock. A camera could then take snap shots with a frequency of 10 Hz while the stage moves along
a trajectory with a time resolution of 200 Hz.

The desired trigger mode is passed to the SA_CTL_OpenStream function. The following trigger
modes are available:

* SA_CTL_STREAM TRIGGER_MODE_DIRECT (0)
* SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_ONCE (1)

* SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_SYNC (2)

Please note that in order to use the external trigger modes, the Input Trigger must be configured
accordingly. Refer to section 2.17 "Input Trigger" on how to configure the device for triggered
streaming.

Direct Mode

In this mode the stream is started as soon as the stream buffer on the controller contains enough
data or has been closed (at which pointa SA_CTL_EVENT_STREAM_READY event is generated).

External Once Mode

In this mode the stream is started by an external trigger that is fed into the device. Once the
stream buffer on the controller contains enough data or has been closed a
SA_CTL_EVENT_STREAM READY event is generated to indicate that the stream is ready to be
triggered by the external trigger. In this armed state the device waits for the trigger to occur and
then generates a SA_CTL_EVENT_STREAM_TRIGGERED event. Further triggers are ignored in
this mode.

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

External Synchronization Mode

This mode is used to synchronize the stream rate with an external clock which may be fed into
the MCS2 controller. When the Stream External Sync Rate property is configured with the external
clock rate then the trajectory stream will be synchronized with the external clock.

External Clock J_I_I_I_I_I_I_ 3 cycles
Internal Clock

motsynemonizedy —| LI LI LI L L L L LI L 10
Internal Clock
aynemonzedy | LI 1L LT LTI LT L L L L ooes

< At >

Figure 2.9: External synchronization with a 3:1 clock ratio

Figure 2.9 shows an example where the base stream rate is (should be) three times faster than the
external sync rate (e.g. external 100 Hz, internal 300 Hz). The upper clock trace shows the external
clock which makes 3 cycles within a given time window (4t). The middle clock trace shows the
internal clock while not being synchronized, being a speck too fast and making 10 cycles within
the same time window. In the lower clock trace the internal clock is synchronized, making 9 clock
cycles within the time window as desired. As a result the synchronization prevents the clocks from
drifting apart.

NOTICE

The external synchronization feature has some restrictions that should be noted:

* In order to use the external synchronization feature the MCS2 controller

must be equipped with an appropriate I/0 Module.

* The Stream Base Rate must be a whole-number multiple of the external
clock rate.

* The external clock rate may not be higher than the Stream Base Rate.

2.15.5 Stream Events

A trajectory stream that is started always generates the following events (in the order given):

1. SA_CTL_EVENT_STREAM_READY This event is generated as soon as the internal stream
buffer of the device contains enough frames to start the stream without risking an immediate
buffer underflow. The default buffer threshold is 50%. In case the stream is very short this
event is generated as soon as the stream is closed.

2. SA_CTIL_EVENT_STREAM_TRIGGERED This event is generated as soon as the device has
started to execute the stream. In case of direct streaming the Stream Ready and the Stream
Triggered events are generated at the same time. In case of externally triggered streaming
the Stream Triggered event is delayed until the external trigger is detected which effectively
starts the stream execution.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

3. SA_CTI_EVENT_STREAM_FINISHED This eventis generated when the stream has stopped
executing. The event parameter indicates the result of the streaming. This could be a nor-
mal termination (SA_CTL_ERROR_NONE when executed to the last frame) or an error code
specifying the reason for the abnormal termination.

2.15.6 Maximum Stream Rates

The maximum stable stream rate to be configured depends on the general communication load as
well as the number of involved channels. The more channels are included in the trajectory stream,
the higher the device’s stream load. Table 2.2 shows possible stream rates for different number of
streaming channels.

Stream Rate [HZ] Stream Rate [HZ] Stream Rate [HZ]
7 480 13 260

1 1000

2 1000 8 420 14 240
3 1000 9 370 15 220
4 840 10 340 16 210
5 670 11 300 17 200
6 560 12 280 18 190

Table 2.2: Stream Rate examples

For a more accurate determination of the maximum stream rate for the current setup the Stream
Load Maximum property can be monitored while streaming. The property acts like a peak detec-
tor. The highest load level generated by the currently running stream is stored and may be read
in percent with the Stream Load Maximum property. When starting the stream the load value is
reset to zero.

It is recommended to configure the trajectory stream (e.g. the Stream Base Rate) with some head-
room to the maximum load to guarantee a stable operation. If an overload is detected the trajec-
tory stream aborts with an SA_CTL_ERROR_SYNC_FAILED error.

Note that channels which are not part of the current stream can be fully controlled while a stream
is running. However, doing so always generates some peak load which must be considered. Note
further that streaming to multiple channels with high stream rates may also affect the perfor-
mance for operations concerning other channels.

2.16 Auxiliary Inputs and Outputs

The MCS2 device offers auxiliary inputs and outputs to interface to external equipment.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

NOTICE

The device must be equipped with an additional 170 module to use auxiliary in-

puts and outputs. The characteristics as well as the number of inputs and out-
puts vary depending on the specific type of I/0 module. Please refer to the MCS2
User Manual for detailed electrical specifications.

2.16.1 Digital Device Input

Digital device inputs allow to synchronize movements to external events. Synchronizing the tra-
jectory streaming or triggering command groups as well as aborting movements by triggering an
emergency stop is possible. This feature is called "Input Trigger". See section 2.17 "Input Trigger"
for the configuration of the input trigger.

2.16.2 Fast Digital Outputs

Fast digital outputs may be used to trigger external equipment like detectors or cameras depend-
ing on the current position of a positioner. This feature is called "Output Trigger". See section 2.18
"Output Trigger" for the configuration of the output trigger.

2.16.3 General Purpose Digital Inputs/Outputs

General purpose digital inputs and outputs may be used to control lights, relays, dispensers, etc.
or to read the state of safety switches, light barriers, etc.

Digital Inputs

The Aux Digital Input Value property may be used to read the digital inputs of an I/0 module. The
first bit (bit 0) of the input value corresponds to the first digital input (GP-DIN-1), the second bit (bit
1) corresponds to the second input (GP-DIN-2) and so on.

It is possible to enable an event notification for the digital inputs to be notified if an input changes.
Thus, continuous polling of the Aux Digital Input Value property can be avoided. To enable the
event set the SA_CTL_IO_MODULE_OPT_BIT_EVENTS_ENABLED bit of the I/0 Module Options
property to one. Whenever a change of one or more of the general purpose digital inputs hap-
pens the device generates a SA_CTI,_EVENT_DIGITAL_INPUT_CHANGED event with its parame-
ter holding the new state of the inputs. Note that the input state capture frequency for the event
generation is limited to approx. 100 Hz. See section 2.4 "Event Notifications" for more information
on receiving events,

Example:

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

SA_CTL_Result_t result;
// read the digital inputs
int32_t input;
result = SA_CTL_GetProperty_i32 (dHandle, O,
SA_CTL_PKEY_AUX DIGITAL_INPUT_VALUE, é&input
)i
if (result == SA_CTL_ERROR_NONE) ({
// ‘input ' holds the value of the digital inputs
}
// enable the digital input changed event
result = SA_CTL_SetProperty_ 132 (
dHandle, 0, SA_CTL_PKEY_IO_MODULE_OPTIONS,
SA_CTL_IO_MODULE_OPT_BIT_EVENTS_ENABLED
)
// —=> receive event using the SA CTIL_WaitForEvent () function

Digital Outputs

NOTICE
The digital output driver circuit is disabled by default and must be enabled by

setting the SA_CTL_IO_MODULE_OPT_BIT DIGITAL_OUTPUT_ENABLED bit
of the I/0 Module Options property.

The following properties may be used to modify the digital outputs:
+ The Aux Digital Output Value property sets all outputs at once to a defined value.

+ The Aux Digital Output Set property sets all specified outputs to one without modifying the
other ones.

+ The Aux Digital Output Clear property clears all specified outputs without modifying the
other ones.

The first bit (bit 0) of the output value corresponds to the first digital output (GP-DOUT-1), the sec-
ond bit (bit 1) corresponds to the second output (GP-DOUT-2) and so on. Note that the general
purpose outputs are designed as open-collector outputs. This means that the output logic is in-
verted. Writing a one to an output switches the output transistor on which leads to a low signal
level at the output pin. The following code shows how to modify digital outputs of an I/0 module:

SA_CTL_Result_t result;

// set the output driver voltage level to 5V

result = SA_CTL_SetProperty_i32 (dHandle, O,
SA_CTL_PKEY_TIO_MODULE_VOLTAGE, SA_CTIL_IO_MODULE_VOLTAGE_5V

)

if (result) { /* handle error, abort =/ }

// enable the digital output driver circuit of the I/O module

result = SA_CTL_SetProperty_i32 (dHandle, O,

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

SA_CTL_PKEY_TIO_MODULE_OPTIONS,
SA_CTL_TO_MODULE_OPT_BIT_DIGITAL_OUTPUTS_ENABLED

)

if (result) { /* handle error, abort =/ }

// first set all digital outputs of the I/O module to a specific value

// note: electrical levels are inverted due to the open-collector outputs

// DOUT-4 | DOUT-3 | DOUT-2 | DOUT-1 |

// H(1) [L(0) [H(I) [L(0) /

result = SA_CTL_SetProperty_i32 (dHandle, O,
SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_VALUE, 0x00000005

)i

if (result) { /% handle error, abort =*/ }

// next set output 2 (DOUT-2) without modifying the other outputs

// DOUT-4 | DOUT-3 | DOUT-2 | DOUT-1 |

// H(1) [L(0) | L(0) [L(0) /

result = SA_CTL_SetProperty_i32 (dHandle, O,
SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_SET, 0x00000002

)

if (result) { /* handle error, abort =/ }

// last clear output 1 (DOUT-1) without modifying the other outputs

// DOUT-4 | DOUT-3 | DOUT-2 | DOUT-1 |

// H(1) | L(0) I L(0) | H(I) /

result = SA_CTL_SetProperty_i32 (dHandle, O,
SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_CLEAR, 0x00000001

)

2.16.4 Fast Analog Inputs

Fast analog inputs may be used to read analog voltage signals. An application can poll the Aux I/0
Module Input0 / Input1 Value properties and use the data for further processing. The I/0 module
has a total number of six analog inputs which are mapped in groups of two to the channels of the
corresponding driver module. The following table shows the combinations of channel index and
property which must be used to read the input values of the six analog inputs:

Analog Input | Channel Index Property

AIN-1 0 SA_CTL_PKEY_AUX_IO_MODULE_INPUTO_VALUE
AIN-2 1 SA_CTL_PKEY_AUX_IO_MODULE_INPUTO_VALUE
AIN-3 2 SA_CTL_PKEY_AUX_IO_MODULE_INPUTO_VALUE
AIN-4 0 SA_CTL_PKEY_AUX_IO_MODULE_INPUT1_VALUE
AIN-5 1 SA_CTL_PKEY_AUX_IO_MODULE_INPUT1_VALUE
AIN-6 2 SA_CTL_PKEY_AUX_IO_MODULE_INPUT1_VALUE

The following code shows how to read the first analog input assigned to the second channel (chan-
nel index 1) of a device (AIN-2):

MCS2 Programmer’s Guide n _

2 GENERAL CONCEPTS

SA_CTL_Result_t result;

int64_t input;

result = SA_CTL_GetProperty_i64 (dHandle, 1,
SA_CTL_PKEY_AUX_ IO_MODULE_INPUTO_VALUE, &input

)i

if (result == SA_CTL_ERROR_NONE) {
// ‘input ' holds the value of the analog input AIN-2

}

2.16.5 Using Analog Inputs as Control-Loop Feedback

The MCS2 supports to feed external analog signals into the control-loop of a channel. This allows
to implement applications like aligning a sample depending on the light intensity of an external
light detector or force feedback for a gripper, etc. These tasks require a more complex configura-
tion which is described in the following.

Note that the total number of six analog inputs of the I/0 module are mapped in groups of two
to the channels of the corresponding driver module. This means that per channel only two of the
analog inputs may be used as control-loop feedback. (See Aux I/0 Module Input Index property).

CAUTION

It is the user’s responsibility to guarantee that a valid signal is fed into the input
and that all properties (input ranges, PID parameters, etc.) are configured to rea-

sonable values before enabling the closed-loop operation. Configuring inappro-
priate values may result in unstable or unexpected behavior of the positioners
and potential damage of the stage.

To use an auxiliary input as control-loop feedback the following properties must be configured:

+ The actual analog input must be selected with the Aux Input Select and Aux I/0 Module
Input Index properties.

* The analog input range must be selected with the 170 Module Analog Input Range property.

* The Aux Positioner Type must be set to a custom positioner type slot. This slot must be
configured with a set of PID parameters with the Tuning and Customizing Properties. Note
that not all positioner type properties have a meaning when used as auxiliary positioner
type. The following properties are of interest to configure the PID loop: Positioner P Gain,
Positioner | Gain, Positioner D Gain, Positioner Anti Windup, Positioner PID Shift.

+ Depending on the specific application and the type of feedback signal it may be necessary to
disable the endstop detection by setting the Positioner ESD Distance Threshold property to
zero. Whenever the auxiliary input value represents a set-point for the control-loop instead
of a current position of the positioner the endstop detection must be disabled. (E.g. a force
signal in a force-feedback-gripper application defines the set-point and does not follow the
actual position.)

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

+ The modifications should be saved to a custom positioner type slot with the Save Positioner
Type property.
+ The direction sense of the feedback must be defined with the Aux Direction Inversion prop-

erty. It must match the direction sense of the control-loop output. Otherwise a runaway
condition may occur when commanding a closed-loop movement.

* The Control Loop Input property must be setto SA_CTL_CONTROL_LOOP_INPUT_AUX_ IN
to feed the auxiliary input signal into the PID controller.

Using an auxiliary input as control-loop feedback has some special characteristics which need to
be considered:

* The SA_CTL_CH_STATE_BIT_SENSOR_PRESENT flag of the Channel State refers to the
position control-loop input. The auxiliary input signal is always treated as ‘present’ for the
control-loop.

+ The auxiliary input value is reflected in the ‘current position’ of a channel, even if the rep-
resentation of the input signal has a physical unit different from ‘position’. Commanding
the channels ‘target position’ with the SA_CTL_Move function always refers to the absolute
value and range of the input signal.

+ The auxiliary input signal is defined as absolute value, thus it is not possible to define a
logical scale offset, e.g. by setting the position with the Position property. Doing so affects
the position calculation of an integrated sensor of a positioner (if there is one). Several
properties give access to the position of an integrated sensor as well as the auxiliary input
values regardless of the actual signal currently used as feedback signal. Refer to figure 2.10
for the different signal paths and properties in this context.

+ Two positioner type slots are used to define the tuning parameters of the control-loop:

- The Aux Positioner Type property defines a set of tuning parameters which is used if an
auxiliary input provides the control-loop feedback.
- The Positioner Type property defines the parameters for all other configurations.

The corresponding set of parameters is configured implicitly when changing the control-loop
input. This allows to switch between two operation modes without manually reconfiguring
the control-loop tuning.

The following figure shows the auxiliary input configuration for each channel:

2.16.6 Analog Outputs

Analog outputs generate analog voltage control signals for external amplifiers, dispensers etc.

NOTICE

The analog output driver circuit is in a high-impedance

state by default and must be enabled by setting the
SA_CTL_IO_MODULE_OPT_BIT_ANALOG_OUTPUT_ENABLED bit of the 1I/0
Module Options property.

MCS2 Programmer’s Guide O

2 GENERAL CONCEPTS

Module channel: 0-n

Auxiliary-Property-Category
AUX_DIRECTION_INVERSION* »

Positioner-Property-Category

int64

L————»AUX_IO_INPUT1_VALUE

1 | I
1 | I
Sensor-Module | T I
| 1
| Position _ | [l 1 !
! Sensor * |, 1 positioner control !
: : 1 ————————— %), AUX_SM_INPUTO_VALUE 1| parameter !
1
1 1
| |
| | ———~*» AUX_SM_INPUT1_VALUE | !
‘ L , SENSOR_INPUT_SELECT* 1
I 1
: SMINPULD Mt 0 ! CONTROL_LOOP_INPUT* .
1 1
| I PID
| Aux Inputs | 1 1 szSC POSITION !
AUX_INPUT_SELECT* 1
o —_— 1 I O ! SENSOR DIA > AMP .
nputl T | — —
| | positioner |
[1 CALC_SYS R 1273
1
1 1
| AUX_SENSOR_MODULE_INPUT_INDEX* , AUX_IN 1
10-Module | AUX_IO_MODULE_INPUT_INDEX* | % e !
- 10 , |- POSITION 1
I
| : 1 0 1 !
ll0Input1/-2 /-3 - !
Jomnpd [' " POSITION_MEAN_SHIFT* ,
Analog [1 commanded target position -
‘ Inputs (] , ("Move") - TARGET_POSITION |
I
| ! 1 1 1 !
| 10Input4/-5/-6 - X \
! 1 | I
: . L, AUX_IO_INPUTO_VALUE , LIty CL_INPUT_SENSOR_VALUE !
1 1 1 1
! 1 | I
L

L&y | INPUT_AUX_VALUE

* persistent properties are marked with an asterisk, default selectors are printed in bold

Figure 2.10: Auxiliary Input Configuration (per channel)

The Aux Analog Output ValueO / Valuel properties may be used to output an analog voltage on
the 1/0 module analog outputs (AOUT-1 and AOUT-2).

The following code shows how to set both analog outputs of an I/0 module:

SA_CTL_Result_t result;

// set the output value of analog output(O (AOUT-1) to zero

// which corresponds to 0V

result = SA_CTL_SetProperty_i32 (dHandle, O,
SA_CTL_PKEY_AUX_ANALOG_OUTPUT_VALUEO, O

)

if (result) { /# handle error, abort =/ }

// set the output value of analog outputl (AOUT-2) to max

// which corresponds to +10V

result = SA_CTL_SetProperty_i32 (dHandle, O,
SA_CTL_PKEY_AUX_ANALOG_OUTPUT_VALUEl, 32768

)i

if (result) { /% handle error, abort =*/ }

2.17 Input Trigger

Digital input triggers allow to synchronize the device to external clock signals or events. The input
trigger may be used as an emergency stop input, to synchronize the trajectory streaming or to
trigger command groups (e.g. a group of movement commands).

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

NOTICE

In order to use the input trigger the device must be equipped with an additional

/0 module.

The following properties may be used to configure the input trigger:

+ The Device Input Trigger Mode property defines how the device reacts to incoming trigger
signals. The available trigger modes are described in more detail in the following sections.

+ The Device Input Trigger Condition property defines whether to react to rising or falling
edges.

2.17.1 Disabled Mode

This is the default mode in which all activities on the input line are ignored.

2.17.2 Emergency Stop Mode

The emergency stop input trigger mode allows to use the input trigger to issue an emergency stop.
In terms of the MCS2 an emergency stop stops all active movements. More precisely, the device
will hard-stop all channels and aborts active streams and command groups. Note that channels
moving with acceleration control active will also be stopped immediately. The desired behavior
how to handle the emergency stop situations can further be configured by setting the Emergency
Stop Mode property to one of the following modes:

SA_CTL_EMERGENCY_STOP_MODE_NORMAL This is the default mode. In this mode the config-
ured input trigger condition issues an emergency stop. After such an event the device con-
tinues to behave normally.

SA_CTL_EMERGENCY_STOP_MODE_RESTRICTED In this mode the configured input trigger con-
dition will issue an emergency stop and make the device enter a locked state. In this state
you may communicate with the device normally, but all movement commands will return
an SA_CTL_ERROR_MOVEMENT_LOCKED error. The locked state may be reset by setting the
emergency stop mode to any valid value, thereby unlocking the movement again.

SA_CTL_EMERGENCY_STOP_MODE_AUTO_RELEASE In this mode the configured input trigger
condition will issue an emergency stop and make the device enter a locked state. In this
state you may communicate with the device normally, but all movement commands will
return an SA_CTL_ERROR_MOVEMENT_LOCKED error. This state remains until either the
emergency stop mode is set to any valid value or the input trigger line is released (inverse
edge is detected).

The following code gives an example for the configuration of the input trigger when used as emer-
gency stop. After a successful configuration a falling edge on the input trigger will issue an emer-
gency stop. The following behavior is defined by the configured emergency stop mode (in this case
the device continues normally).

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

SA_CTL_Result_t result;
// set input trigger mode to emergency Stop
result = SA_CTL_SetProperty_132(
dHandle,
Ol
SA_CTL_PKEY_ _DEV_INPUT_TRIG_MODE,
SA_CTL_DEV_INPUT_TRIG_MODE_EMERGENCY_STOP
)
if (result) { /* handle error, abort =/ }
// set input trigger condition to falling edge
result = SA_CTL_SetProperty_132(
dHandle,
OI
SA_CTL_PKEY_ DEV_INPUT_TRIG_CONDITION,
SA_CTL_TRIGGER_CONDITION_FALLING
)i
if (result) { /# handle error, abort =/ }
// configure emergency stop mode
result = SA_CTL_SetProperty_132(
dHandle,
Ol
SA_CTL_PKEY_EMERGENCY_STOP_MODE,
SA_CTL_EMERGENCY_STOP_MODE_NORMAL
)
if (result) { /* handle error, abort =/ }

2.17.3 Stream Sync Mode

The stream sync input trigger mode allows to use the streaming’s external trigger modes. Call-
ing SA_CTL_OpenStream with either SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_ONCE or
SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_SYNC will start resp. synchronize the stream to
the input trigger. See section 2.15 "Trajectory Streaming" for more information.

The following code gives an example for the configuration of the input trigger when used to start
the stream. After a successful configuration a stream is opened with trigger mode external once
parameter. If the stream is ready (stream ready event received), a rising edge on the input trigger
will start the trajectory’s execution.

SA_CTIL_StreamHandle_t sHandle;
SA_CTL_Result_t result;
// set input trigger mode to Stream sync
result = SA_CTL_SetProperty_132(
dHandle,
0,
SA_CTL_PKEY_DEV_INPUT_TRIG_MODE,
SA_CTL_DEV_INPUT_TRIG_MODE_STREAM
)
if (result) { /* handle error, abort =/ }
// set input trigger condition to rising edge

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

result = SA_CTIL_SetProperty_132(
dHandle,
Ol
SA_CTL_PKEY_DEV_INPUT_TRIG_CONDITION,
SA_CTL_TRIGGER_CONDITION_RISING
)i
if (result) { /% handle error, abort =*/ }
// open stream with trigger mode external once
result = SA_CTL_OpenStream
dHandle,
&sHandle,
SA_CTL_STREAM TRIGGER_MODE_EXTERNAL_ONCE
)
if (result) { /* handle error, abort =/ }
VIR
// start streaming frames to the device
VA
// >> stream ready event <<
// device is now waiting for the external trigger condition to start
// the stream

2.17.4 Command Group Sync Mode

The command group sync input trigger mode allows to use the command groups external trigger
mode. Calling SA_CTL_OpenCommandGroup With the trigger mode
SA_CTL_CMD_GROUP_TRIGGER_MODE_EXTERNAL will then delay the groups execution until the
external input trigger occurs. See section 2.14 "Command Groups" for more information.

The following code gives an example for the configuration of the input trigger when used for
starting command groups. After a successful configuration of the input trigger a command group
is opened with the external trigger mode parameter, filled (e.g. with SA_CTL_Move commands)
and then closed. The groups execution though is delayed until the device detects a rising edge on
the input trigger.

SA_CTL_TransmitHandle_t tHandle;
SA_CTL_Result_t result;
// set input trigger mode to cmd group sync
result = SA_CTL_SetProperty_132(

dHandle,

Ol

SA_CTL_PKEY_DEV_INPUT_TRIG_MODE,

SA_CTL_DEV_INPUT_TRIG_MODE_CMD_GROUP
)i
if (result) { /% handle error, abort =/ }
// set input trigger condition to rising edge
result = SA_CTL_SetProperty_132(

dHandle,

0,

SA_CTL_PKEY_DEV_INPUT_TRIG_CONDITION,

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

SA_CTL_TRIGGER_CONDITION_RISING
)
if (result) { /* handle error, abort =/ }
// open command group with trigger mode external
result = SA_CTL_OpenCommandGroup (
dHandle,
&tHandle,
SA_CTL_CMD_GROUP_TRIGGER_MODE_EXTERNAL
)
if (result) { /# handle error, abort =/ }
/7
// fill command group
//
// close command group
result = SA_CTL_CloseCommandGroup (dHandle, tHandle);
if (result) { /# handle error, abort =/ }
// command group 1s now waliting for the external trigger condition

2.17.5 Event Trigger Mode

The event input trigger mode allows to get a notification whenever an electrical trigger signal was
detected on the trigger input. This mode is useful to simply inform the software about the occur-
rence of an external trigger signal without any further actions on the controller.

Note that the maximum frequency of the input signal should be limited to 500 Hz in this mode.

The following code gives an example for the configuration of the input trigger when used to get
event notifications. After a successful configuration a rising edge on the input trigger will generate
an external input triggered event.

SA_CTL_Result_t result;
// set input trigger mode to event trigger
result = SA_CTL_SetProperty_132(
dHandle,
Ol
SA_CTL_PKEY_DEV_INPUT_TRIG_MODE,
SA_CTL_DEV_INPUT_TRIG_MODE_EVENT
)
if (result) { /% handle error, abort =/ }
// set input trigger condition to rising edge
result = SA_CTL_SetProperty_132(
dHandle,
0,
SA_CTL_PKEY_DEV_INPUT_TRIG_CONDITION,
SA_CTL_TRIGGER_CONDITION_RISING
)
if (result) { /# handle error, abort =/ }
// wait for events
SA_CTL_Event_t event;
result = SA_CTL_WaitForEvent (dHandle, &event, SA_CTL_INFINITE) ;

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

if (result) { /# handle error, abort =/ }
/) ...

2.18 Output Trigger

In some applications itis useful to have the controller output a trigger signal each time the position
of a channel has made a certain increment or the target position has been reached. The trigger
signals may then be used by external logic (e.g. to trigger a camera).

NOTICE

In order to use the output trigger signals the device must be equipped with an

additional 1/0 module. Since each I/0 module is connected to a specific driver
module the output trigger signals are assigned to the channels of the corre-
sponding driver module.

The following properties may be used to configure the output trigger:

* The Channel Output Trigger Mode property defines what is output to the corresponding
output pin. The available trigger modes are described in more detail in the following sec-
tions.

« The Channel Output Trigger Polarity property defines the polarity of the output trigger
signal.

« The Channel Output Trigger Pulse Width property specifies the pulse width of a trigger
output pulse.

* The 1/0 Module Options property bit
SA_CTL_ IO MODULE_OPT_BIT DIGITAL_ OUTPUT_ENABLED must be set to enable the
output driver circuit.

+ The I/0 Module Voltage selects the output voltage of the pin.

Note that the I/O module settings are global for all output channels of the I/0 module. The follow-
ing example code enables the output trigger and configures the output voltage to 5V.

SA_CTL_Result_t result;
// set the output driver voltage level to 5V
result = SA_CTL_SetProperty_132(
dHandle,
0 4
SA_CTL_PKEY_ TO_MODULE_VOLTAGE,
SA_CTL_TIO_MODULE_VOLTAGE_5V
)
if (result) { /* handle error, abort =/ }
// enable the output driver circuit of the I/O module

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

result = SA_CTIL_SetProperty_132(
dHandle,
Ol
SA_CTL_PKEY_ IO_MODULE_OPTIONS,
SA_CTL_TIO_MODULE_OPT_BIT DIGITAL_OUTPUT_ENABLED
)i
if (result) { /% handle error, abort =/ }

2.18.1 Constant Mode

This is the default mode in which a constant level is output. The level corresponds to the inactive
state of the configured Channel Output Trigger Polarity.

The following example shows how user defined levels can be output in this mode.

SA_CTL_Result_t result;
result = SA_CTL_SetProperty_132(
dHandle,
2!
SA_CTL_PKEY_ CH_OUTPUT_TRIG_POLARITY,
SA_CTL_TRIGGER_POLARITY ACTIVE_HIGH
)
if (result) { /% handle error, abort =/ }
result = SA_CTL_SetProperty_132(
dHandle,
2!
SA_CTL_PKEY_ _CH_OUTPUT_TRIG_MODE,
SA_CTL_CH_OUTPUT_TRIG_MODE_CONSTANT
)
if (result) { /* handle error, abort =/ }
// output of channel 2 level is now low
// perform some tasks...
result = SA_CTL_SetProperty_132(
dHandle,
2!
SA_CTL_PKEY_ CH_OUTPUT_TRIG_POLARITY,
SA_CTL_TRIGGER_POLARITY ACTIVE_LOW
)i
if (result) { /x handle error, abort */ }
// output of channel 2 level is now high

2.18.2 Position Compare Mode

The position compare mode allows to generate trigger signals according to the current position of
a positioner. One independent trigger per channel is available.

The Channel Position Compare Limit Min and Channel Position Compare Limit Max properties are
used to define the working range for the trigger generation. This is especially useful to implement

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

raster scanning applications where e.g. an X/Y stage moves a sample along a specific trajectory
and a detector must be triggered according to the current position of a sample.

Once a limit was passed by the positioner the direction of the position increment is reverted or
reset to the starting threshold to define the next trigger position. If the Channel Position Com-
pare Direction is set to SA_CTL_EITHER_DIRECTION the increment is reversed to continuously
generate pulses on the way back to the starting position. This is known as ‘snake scanning’. Other-
wise the increment is reset to the defined start threshold to restart the pulse generation after the
positioner was moved back and reversed its movement direction. This is known as ‘line scanning'.

Note that the reversal positions of the movement trajectory should be defined with sufficient tol-
erance to reliably pass the limits while moving.

The following code gives an example for the configuration of the output trigger for channel 1.
The movement is commanded with its reversal points defined to 0 and 5 mm. After enabling the
trigger the channel will generate a 1 ps pulse (0.5 ps high, 0.5 ps low) once the position of channel
1 passed 1 mm in forward direction. Furthermore every 100 pm consecutive pulses are output
until the max limit of 4.5 mm was passed. This is repeated for every movement starting from zero
position.

SA_CTL_Result_t result;
result = SA_CTL_SetProperty_164 (
dHandle, 1,
SA_CTL_PKEY_CH_POS_COMP_START_THRESHOLD, 1e9
)i
if (result) { /# handle error, abort =/ }
result = SA_CTL_SetProperty_164 (
dHandle, 1,
SA_CTL_PKEY_CH_POS_COMP_INCREMENT, 100e6
)
if (result) { /# handle error, abort =/ }
result = SA_CTL_SetProperty_ 132 (
dHandle, 1,
SA_CTL_PKEY_ _CH_POS_COMP_DIRECTION,
SA_CTL_FORWARD_DIRECTION
)i
if (result) { /x handle error, abort */ }

result = SA_CTL_SetProperty_164 (
dHandle, 1,
SA_CTL_PKEY_CH_POS_COMP_LIMIT_MIN, 500e6
)i
if (result) { /# handle error, abort =/ }
result = SA_CTL_SetProperty_164 (
dHandle, 1,
SA_CTL_PKEY_CH_POS_COMP_LIMIT_MAX, 4500e6
)i
if (result) { /% handle error, abort =*/ }
result = SA_CTL_SetProperty_132(
dHandle, 1,
SA_CTL_PKEY_ _CH_OUTPUT_TRIG_POLARITY,
SA_CTL_TRIGGER_POLARITY ACTIVE_HIGH

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

)i
if (result) { /x handle error, abort */ }
result = SA_CTL_SetProperty_132(
dHandle, 1,
SA_CTL_PKEY_CH_OUTPUT_TRIG_PULSE_WIDTH, 1000
)i
if (result) { /% handle error, abort =*/ }
result = SA_CTL_SetProperty_132(
dHandle, 1,
SA_CTL_PKEY_ CH_OUTPUT_TRIG_MODE,
SA_CTL_CH_OUTPUT_TRIG_MODE_POSITION_COMPARE
)i
if (result) { /% handle error, abort =/ }
// start movement between position 0 and 5mm

2.18.3 Target Reached Mode

The target reached mode allows to generate a pulse once a closed-loop movement command
finished and the positioner reached its target position. The pulse is only generated for successfully
finished movement commands.

The following code gives an example for the configuration of the target reached output trigger for
channel 1. After enabling the trigger the output of the channel will generate a pulse of defined
length once the target position of a movement has been reached.

SA_CTL_Result_t result;
result = SA_CTL_SetProperty_132(
dHandle,
ll
SA_CTL_PKEY_CH_OUTPUT_TRIG_POLARITY,
SA_CTL_TRIGGER_POLARITY ACTIVE_HIGH
)i
if (result) { /% handle error, abort =/ }
result = SA_CTL_SetProperty_132(
dHandle,
ll
SA_CTL_PKEY CH_OUTPUT_TRIG_PULSE_WIDTH,
1000
)
if (result) { /* handle error, abort =/ }
result = SA_CTL_SetProperty_132(
dHandle,
1,
SA_CTL_PKEY_CH_OUTPUT_TRIG_MODE,
SA_CTL_CH_OUTPUT_TRIG_MODE_TARGET_REACHED
)
if (result) { /# handle error, abort =/ }

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

2.18.4 Actively Moving Mode

The actively moving mode generates an output level similar to the actively moving Channel State
bit. The output level is in the active state while the positioner is moving and inactive otherwise.

The following example code configures channel 2 to output a high level while the positioner is
moving.

SA_CTL_Result_t result;
result = SA_CTL_SetProperty_132(
dHandle,
2 ’
SA_CTL_PKEY_ _CH_OUTPUT_TRIG_POLARITY,
SA_CTL_TRIGGER_POLARITY ACTIVE_HIGH
)
if (result) { /# handle error, abort =/ }
result = SA_CTL_SetProperty_132(
dHandle,
2 4
SA_CTL_PKEY_ _CH_OUTPUT_TRIG_MODE,
SA_CTL_CH_OUTPUT_TRIG_MODE_ACTIVELY_ _MOVING
)i
if (result) { /% handle error, abort =/ }

2.19 Feature Permissions

The MCS2 has a feature permission system which allows to activate special features via an soft-
ware activation process without physically returning the controller to SmarAct. New features may
be unlocked by upgrading the controller with an upgrade file. The MCS2 Service Tool is used to
perform this upgrade. Please contact SmarAct for the details on purchasing a feature upgrade.

Currently the following features are available:

+ Low Vibration Actuator Mode (Actuator Mode property)

+ Advanced Sensor Correction (Signal Correction Options property)

In case that a feature is not activated on a controller, trying to enable it will generate a
SA_CTL_ERROR_PERMISSION_DENIED error.

MCS2 Programmer’s Guide _

3 FUNCTION REFERENCE

3.1 Function Summary

Table 3.1 - Function Summary

SA_CTL_GetFullVersionString Returns the version of the library asa 78
human readable string.

SA_CTL_GetResultInfo Returns a human readable error string 79
for the given error code.

SA_CTL_GetEventInfo Returns a human readable info string 80
for the given event.

SA_CTL_FindDevices Returns a list of locator strings of con- 81
nected devices.

SA_CTL_Open Opens a connection to a device. 83

SA_CTL_Close Closes a connection to a device. 84

SA_CTL_Cancel Unblocks all blocking API calls. 85

SA_CTL_GetProperty_i32 Directly returns the value of a 32 bitin- 86
teger property.

SA_CTL_SetProperty_1i32 Directly sets the value of a 32 bitinteger 88
property.

SA_CTIL_SetPropertyArray_1i32 Directly sets the value of a 32 bit integer 89
array property.

SA_CTL_GetProperty_i64 Directly returns the value of a 64 bit in- 90
teger property.

SA_CTL_SetProperty_1i64 Directly sets the value of a 64 bitinteger 91
property.

SA_CTL_SetPropertyArray_i64 Directly sets the value of a 64 bitinteger 92
array property.

SA_CTL_GetProperty_s Directly returns the value of a string 93
property.

SA_CTL_SetProperty_s Directly sets the value of a string prop- 95
erty.

Continued on next page

MCS2 Programmer’s Guide _

3 FUNCTION REFERENCE

Table 3.1 - Continued from previous page

SA_CTL_RequestReadProperty Requests the value of a property (non- 96
blocking).
SA_CTL_ReadProperty_i32 Reads the value of a requested 32 bit 98
integer property.
SA_CTL_ReadProperty_1i64 Reads the value of a requested 64 bit 99
integer property.
SA_CTL_ReadProperty_s Reads the value of a requested string 100
property.
SA_CTL_RequestWriteProperty 132 Requests to write the value of a 32 bit 102
integer property (non-blocking).
SA_CTL_RequestWriteProperty 1i64 Requests to write the value of a 64 bit 104
integer property (non-blocking).
SA_CTL_RequestWriteProperty_s Requests to write the value of a string 105
property (non-blocking).
SA_CTL_RequestWritePropertyArray i32 Requests to write the value of a 32 bit 106
integer array property (non-blocking).
SA_CTL_RequestWritePropertyArray_i64 Requests to write the value of a 64 bit 107
integer array property (non-blocking).
SA_CTL_WaitForWrite Waits until a write operation has fin- 108
ished.
SA_CTL_CancelRequest Cancels a non-blocking read or write re- 109
quest.
SA_CTL_CreateOutputBuffer Opens up an output buffer for delayed 110
transmission of several commands.
SA_CTL_FlushOutputBuffer Flushes an output buffer and triggers 111
the transmission to the device.
SA_CTL_CancelOutputBuffer Cancels an output buffer and discards 112
buffered commands.
SA_CTL_OpenCommandGroup Opens up an atomic command group. 113
SA_CTL_CloseCommandGroup Flushes a command group and makes 114
all commands of the group take effect.
SA_CTL_CancelCommandGroup Cancels a command group and discards 115
buffered commands.
SA_CTL_WaitForEvent Listens to events from the device. 116
SA_CTL_Calibrate Performs a calibration. 118
SA_CTL_Reference Performs a finding of a reference mark. 120

Continued on next page

MCS2 Programmer’s Guide _

3 FUNCTION REFERENCE

Table 3.1 - Continued from previous page

SA_CTL_Move Performs a movement. 122

SA_CTL_Stop Aborts all ongoing movements. 124

SA_CTL_OpenStream Opens a stream. 125

SA_CTL_StreamFrame Sends a previously assembled frame to 127
the device.

SA_CTL_CloseStream Closes a stream. 129

SA_CTL_AbortStream Aborts a stream. 131

MCS2 Programmer’s Guide _

3 FUNCTION REFERENCE

3.2 Detailed Function Description

3.2.1 SA_CTL_GetFullVersionString
Interface:

const charx SA_CTL_GetFullVersionString();

Description:

This function returns the version of the library as a null terminated string.

Parameters:

none
Example:

cout << "version is: " << SA_CTL_GetFullVersionString() << endl;

MCS2 Programmer’s Guide _

3 FUNCTION REFERENCE

3.2.2 SA_CTL_GetResultinfo

Interface:

const charx SA_CTL_GetResultInfo(
SA_CTL_Result_t result
)

Description:

All functions of the library return a result code that indicates success or failure of execution. This
function may be used to translate a result code into a human readable text string, e.g. to be output
on a console or a GUI element.

Parameters:

* result (SA_CTL_Result_t), input: The error code.

Example:

SA_CTL_Result_t result;
SA_CTL_DeviceHandle_t dHandle;

result = SA_CTL_Open (&dHandle, "usb:sn:MCS2-00000001", "");
if (result != SA_CTL_ERROR_NONE) {
cout << "Error occurred: " << SA_CTL_GetResultInfo(result) << endl;

MCS2 Programmer’s Guide _

3 FUNCTION REFERENCE

3.2.3 SA_CTL_GetEventinfo

Interface:

const charx SA_CTL_GetEventInfo (
const SA_CTL_Event_t =xevent
)

Description:

On successful return of a call to SA_CTI,_WaitForEvent this function may be used to translate
an event into a human readable text string, e.g. to be output on a console or a GUI element.

NOTICE

The string returned by this function resides in thread-local storage and remains

valid only until the next call of this function.

Parameters:

* event (const SA_CTL_Event_t *), input: Pointer to a buffer which holds an event returned
from SA_CTL_WaitForEvent

Example:

SA_CTL_Event_t event;
SA_CTL_Result_t result = SA_CTL_WaitForEvent (
dHandle,
&event,
SA_CTL_INFINITE
)
if (result == SA_CTL_ERROR_NONE) {
cout << "Received Event: " << SA_CTL_GetEventInfo (&event) ;
cout << endl;

See also:

SA_CTL_WaitForEvent

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

3.2.4 SA _CTL_FindDevices

Interface:

SA_CTL_Result_t SA_CTIL_FindDevices (
const char xoptions,
char xdevicelist,
size_t *devicelistLen

)i

Description:

This function writes a list of locator strings of devices that are connected to the PC into devicelist.
The function lists devices with a USB or ethernet interface. The options parameter contains a list
of configuration options for the find procedure. The caller must pass a pointer to a char buffer
in deviceList and set devicelistLen to the size of the buffer. On success the function writes a list
of device locators into devicelist and the number of characters written into devicelistLen. If the
supplied buffer is too small to contain the generated list, the buffer will contain no valid content
but devicelistLen contains the required buffer size (in characters).

NOTICE

For devices with ethernet interface the Network Discover Mode must be set to

passive or active mode to enable the find procedure.

Parameters:

* options (const char *), input: Options for the find procedure. Currently unused.

* devicelList (char *), output: Pointer to a buffer which holds the device locators after the func-
tion has returned. The locator strings are separated by a newline character.

* devicelistLen (size_t *), input/output: Specifies the size (in bytes) of outList before the func-
tion call. After the function call it holds the number of characters written to deviceList.

Example:

char buffer[4096];
size_t bufferSize = sizeof (buffer);
SA_CTL_Result_t result = SA_CTL_FindDevices ("",buffer, &é8bufferSize);
if (result == SA_CTL_ERROR_NONE) {
// buffer holds the locator strings, separated by ’‘\n’
// bufferSize holds the number of characters written to the buffer

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

See also:

4.2.7 Network Discover Mode

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

3.2.5 SA_CTL_Open

Interface:

SA_CTL_Result_t SA_CTL_Open (
SA_CTL_DeviceHandle_t =*dHandle,
const char =xlocator,
const char xconfig

)7

Description:

Establishes a connection to a device for communication. Note that the overall device state is not
changed. For example, settings made in previous sessions are preserved. Even ongoing move-
ments are not interrupted by connecting to or disconnecting from the device.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t *), output: Handle to the device. Must be passed to fol-
lowing function calls.
* locator (const char *), input: Specifies the device (see section 2.1.1).

* config (const char *), input: Currently unused.
Example:

SA_CTL_Result_t result;
SA_CTL_DeviceHandle_t dHandle;
result = SA_CTL_Open (&dHandle, "usb:sn:MCS2-00000001", "");
if (result == SA_CTL_ERROR_NONE) {
// success

See also:

SA_CTL _Close

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

3.2.6 SA _CTL_Close

Interface:

SA_CTL_Result_t SA_CTL_Close(
SA_CTL_DeviceHandle_t dHandle

) ;

Description:

Closes a previously established connection to a device.

It is safe to call this function while other threads are still using the device, e.g., waiting for an event
with SA_CTL_WaitForEvent. All blocking functions will be unblocked and will return with an
SA_CTL_ERROR_CANCELED error.

After calling this function the device handle becomes invalid.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
Example:

SA_CTL_Result_t result;
SA_CTL_DeviceHandle_t dHandle;
result = SA_CTL_Open (&dHandle, "usb:sn:MCS2-00000001", "");
if (result == SA_CTL_ERROR_NONE) {
// success
result = SA_CTL_Close (dHandle) ;

See also:

SA_CTL_Open

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

3.2.7 SA _CTL_Cancel

Interface:

SA_CTL_Result_t SA_CTL_Cancel (
SA_CTL_DeviceHandle_t dHandle
)

Description:

This function unblocks a waiting SA_CTL_WaitForEvent call. If no thread is currently waiting,
the next callto SA_CTL_WaitForEvent will be canceled. The unblocked function will return with
an SA_CTL_ERROR_CANCELED error.

Calling this function before SA_CTIL_Close is not required for proper cleanup.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

See also:

SA_CTL_WaitForEvent, SA_CTIL_Close

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

3.2.8 SA_CTL_GetProperty_i32

Interface:

SA_CTL_Result_t SA_CTL_GetProperty_1i32(
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,

SA_CTL_PropertyKey_t pkey,
int32_t =*value,
size_t =xioArraySize

) ;

Description:

This function retrieves a 32-bit integer property value (array) from the device. The caller must
supply a pointer to a buffer where the result should be written to as well as a size information
which indicates how many values may be written into the buffer. The function then writes the
resulting value(s) into the buffer and sets the size information to the number of values written.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

* idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).
+ pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

* value (int32_t *), output: Pointer to a buffer where the result should be written to.

* i0ArraySize (size_t *), input/output: Pointer to a size value that must contain the size of
the value buffer (in number of elements, not number of bytes) when the function is called.
On function return it contains the number of values written to the buffer. A null pointer is
allowed which implicitly indicates an array size of 1.

Example:

// get single value (number of bus modules)
int32_t numModules;
SA_CTIL_Result_t result;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_NUMBER_OF_BRUS_MODULES, &numModules, O
)i
if (result == SA_CTL_ERROR_NONE) {
// numModules holds the number of modules
}
// get value array
// firmware version properties are arrays of four int32 values

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

int32_t fwVersion([4];
size_t ioArraySize = 4;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_ FIRMWARE_VERSION, fwVersion, &§ioArraySize
)i
if (result == SA_CTL_ERROR_NONE) {
// 10ArraySize holds the number of elements
// fwVersion holds the firmware version (rev., update, minor, major)

See also:

SA_CTL_SetProperty_1i32, SA_CTL_GetProperty_1i64,
SA_CTL_GetProperty_s

MCS2 Programmer’s Guide _

3 FUNCTION REFERENCE

3.2.9 SA_CTL_SetProperty_i32
Interface:
SA_CTL_Result_t SA_CTL_SetProperty_1i32(
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_PropertyKey_t pkey,

int32_t wvalue

)7

Description:

This function writes a 32-bit integer property value to the device.

Parameters:

dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

value (int32_t), input: Value that should be written.
Example:

// set move mode
SA_CTL_Result_t result;
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_MOVE_MODE, SA_CTL_MOVE_MODE_STEP
)
if (result == SA_CTL_ERROR_NONE) {
// move mode for channel 0 is set to step mode (open—loop)

}

See also:

SA_CTL_GetProperty_1i32, SA_CTL_SetProperty_1i64,
SA_CTL_SetProperty_s

MCS2 Programmer’s Guide _

3 FUNCTION REFERENCE

3.2.10 SA_CTL_SetPropertyArray_i32

Interface:

SA_CTL_Result_t SA_CTL_SetPropertyArray_1i32(
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_PropertyKey_t pkey,
const 1nt32_t =xvalues
size_t arraySize

) ;

Description:

This function writes multiple 32-bit integer values to the device and is used for setting array type
properties. The caller must supply a pointer to a buffer containing the values as well as a size
information which indicates how many values reside in the buffer.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.
* values (const int32_t *), input: Pointer to a buffer that must contain the values to be written.

* arraySize (size_t), input: Size value that must contain the size of the value buffer (in number
of elements, not number of bytes) when the function is called.

See also:

SA_CTL_GetProperty_1i32, SA_CTL_SetPropertyArray_1i64

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

3.2.11 SA_CTL_GetProperty_ i64

Interface:

SA_CTL_Result_t SA_CTL_GetProperty_1i64(
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,

SA_CTL_PropertyKey_t pkey,
int64_t =*value,
size_t =xioArraySize

) ;

Description:

This function retrieves a 64-bit integer property value (array) from the device. The caller must
supply a pointer to a buffer where the result should be written to as well as a size information
which indicates how many values may be written into the buffer. The function then writes the
resulting value(s) into the buffer and sets the size information to the number of values written.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

* idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).
+ pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

* value (int64_t *), output: Pointer to a buffer where the result should be written to.

* i0ArraySize (size_t *), input/output: Pointer to a size value that must contain the size of
the value buffer (in number of elements, not number of bytes) when the function is called.
On function return it contains the number of values written to the buffer. A null pointer is
allowed which implicitly indicates an array size of 1.

Example:

See example on page 86.

See also:

SA_CTL_SetProperty_i64, SA_CTL_GetProperty_1i32,
SA_CTL_GetProperty_s

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

3.2.12 SA_CTL_SetProperty_i64

Interface:

SA_CTL_Result_t SA_CTL_SetProperty_i64(
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,

SA_CTL_PropertyKey_t pkey,
int6e4_t wvalue

)7

Description:

This function writes a 64-bit integer property value to the device.

Parameters:

dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

value (int64_t), input: Value that should be written.

Example:

See example on page 88.

See also:

SA_CTL_GetProperty_1i64, SA_CTL_SetProperty_i32,
SA_CTL_SetProperty_s

MCS2 Programmer’s Guide _

3 FUNCTION REFERENCE

3.2.13 SA_CTL_SetPropertyArray_i64

Interface:

SA_CTL_Result_t SA_CTL_SetPropertyArray_1i64 (
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_PropertyKey_t pkey,
const 1int64_t =xvalues
size_t arraySize

) ;

Description:

This function writes multiple 64-bit integer values to the device and is used for setting array type
properties. The caller must supply a pointer to a buffer containing the values as well as a size
information which indicates how many values reside in the buffer.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.
* values (const int64_t *), input: Pointer to a buffer that must contain the values to be written.

* arraySize (size_t), input: Size value that must contain the size of the value buffer (in number
of elements, not number of bytes) when the function is called.

See also:

SA_CTL_GetProperty_i64, SA_CTL_SetPropertyArray_1i32

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

3.2.14 SA_CTL_GetProperty_s

Interface:

SA_CTL_Result_t SA_CTL_GetProperty_s(
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_PropertyKey_t pkey,
char =xvalue,
size_t =xioArraySize

) ;

Description:

This function retrieves a string property value (array) from the device. The caller must supply
a pointer to a buffer where the result should be written to as well as a size information which
indicates how many bytes may be written into the buffer. The function then writes the resulting
string(s) into the buffer and sets the size information to the number of characters written. The
null termination of a string implicitly serves as a separator in case multiple strings are returned.

Parameters:

dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

value (char *), output: Pointer to a buffer where the result should be written to.

ioArraySize (size_t *), input/output: Pointer to a size value that must contain size of the value
buffer (in bytes) when the function is called. On function return it contains the number of
characters written to the buffer.

Example:

char deviceSerial[128];
size_t len = sizeof (deviceSerial);
SA_CTL_Result_t result;
result = SA_CTL_GetProperty_s(
dHandle, 0, SA_CTL_PKEY_DEVICE_SERIAL_NUMBER,deviceSerial, &len
)
if (result == SA_CTL_ERROR_NONE) {
// deviceSerial holds the unique serial number of the device
// len holds the length of the string
}

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

See also:

SA_CTL_SetProperty_s, SA_CTL_GetProperty_i32,
SA_CTL_GetProperty_i64

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

3.2.15 SA_CTL_SetProperty_s

Interface:

SA_CTL_Result_t SA_CTL_SetProperty_1i32(
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,

SA_CTL_PropertyKey_t pkey,
const char =xvalue

)7

Description:

This function writes a string property value to the device. Note that the length of strings may never
exceed 63 characters (plus a null terminator).

Parameters:

dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

* value (const char *), input: String that should be written.
Example:

SA_CTL_Result_t result;
result = SA_CTL_SetProperty_s(
dHandle, 0, SA_CTL_PKEY_DEVICE_NAME, "MyFavoriteController"
)
if (result == SA_CTL_ERROR_NONE) {
// success

See also:

SA_CTL_GetProperty_s, SA_CTL_SetProperty_i32,
SA_CTL_SetProperty_1i64

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

3.2.16 SA_CTL_RequestReadProperty

Interface:

SA_CTL_Result_t SA_CTL_RequestReadProperty (
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_PropertyKey_t pkey,
SA_CTL_RequestID_t *rID,
SA_CTL_TransmitHandle_t tHandle

)i

Description:

This function requests to read a property value (array) from the device and can be used for asyn-
chronous (non-blocking) access. The caller must supply a pointer to a buffer where the request ID
should be written to. Received values can be accessed later via the obtained request ID and the
corresponding SA_CTL_ReadProperty_x functions.

The advantage of this method is that the application may request several property values in fast
succession and then perform other tasks before blocking on the reception of the results.

NOTICE

The correct SA_CTL_ReadProperty_x function must be used depending on

the data type of the requested property. Otherwise the read will fail with a
SA_CTL_ERROR_INVALID_DATA_TYPE errofr.

Parameters:

dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

pkey (SA_CTL_PropertyKey_t), input: Key of the property that is requested.

riD (SA_CTL_RequestID_t *), output: Pointer to a request ID.

tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to
zero.

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

Example:

// Note: to keep the example clear, we omit processing the result codes
SA_CTL_Request_t rID[2];
int64_t position;
int32_t state;
// Issue requests for the two properties "position" and "channel state"
SA_CTL_RequestReadProperty (
dHandle, 0, SA_CTL_PKEY_POSITION, &rID[O], O
)
SA_CTL_RequestReadProperty (
dHandle, 0, SA_CTL_PKEY CHANNEL_STATE, &rID[1], O
)
// process other tasks
//
// Receive the results
SA_CTL_ReadProperty_i64 (dHandle, rID[O0], &position, O0);
SA_CTL_ReadProperty_i32 (dHandle, rID[1l], &state, 0);

See also:

SA_CTL_ReadProperty_i32, SA_CTL_ReadProperty_i64,
SA_CTL_ReadProperty_s

MCS2 Programmer’s Guide _

3 FUNCTION REFERENCE

3.2.17 SA_CTL_ReadProperty_i32

Interface:

SA_CTL_Result_t SA_CTL_ReadProperty_ 132 (
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_RequestID_t rID,
int32_t =*value,
size_t xioArraySize

)7

Description:

This function reads a 32-bit integer property value (array) that has previously been requested using
SA_CTL_RequestReadProperty.

NOTICE

While the request-function is non-blocking the read functions block until the de-

sired data has arrived.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* rID (SA_CTL_RequestID_t), input: ID of the addressed request.
* value (int32_t *), output: Pointer to a buffer where the result should be written to.

* [oArraySize (size_t *), input/output: Pointer to a size value that must contain the size of
the value buffer (in number of elements, not number of bytes) when the function is called.
On function return it contains the number of values written to the buffer. A null pointer is
allowed which implicitly indicates an array size of 1.

Example:

See example on page 97.

See also:

SA_CTL_RequestReadProperty, SA_CTL_ReadProperty_1i64,
SA_CTL_ReadProperty_s

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

3.2.18 SA_CTL_ReadProperty_i64

Interface:

SA_CTL_Result_t SA_CTL_ReadProperty_ 164 (
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_RequestID_t rID,
int64_t =*value,
size_t xioArraySize

)7

Description:

This function reads a 64-bit integer property value (array) that has previously been requested using
SA_CTL_RequestReadProperty.

NOTICE

While the request-function is non-blocking the read functions block until the de-

sired data has arrived.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* rID (SA_CTL_RequestID_t), input: ID of the addressed request.
* value (int64_t *), output: Pointer to a buffer where the result should be written to.

* [oArraySize (size_t *), input/output: Pointer to a size value that must contain the size of
the value buffer (in number of elements, not number of bytes) when the function is called.
On function return it contains the number of values written to the buffer. A null pointer is
allowed which implicitly indicates an array size of 1.

Example:

See example on page 97.

See also:

SA_CTL_RequestReadProperty, SA_CTL_ReadProperty_i32,
SA_CTL_ReadProperty_s

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

3.2.19 SA_CTL_ReadProperty s

Interface:

SA_CTL_Result_t SA_CTL_ReadProperty_s(
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_RequestID_t rID,
char =xvalue,
size_t xioStringSize

)7

Description:

This function reads a string property value (array) that has previously been requested using
SA_CTL_RequestReadProperty.

NOTICE

While the request-function is non-blocking the read functions block until the de-

sired data has arrived.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* rID (SA_CTL_RequestID_t), input: ID of the addressed request.
* value (char *), output: Pointer to a buffer where the result should be written to.

* joStringSize (size_t *), input/output: Pointer to a size value that must contain size of the
value buffer (in bytes) when the function is called. On function return it contains the number
of characters written to the buffer.

Example:

// Note: to keep the example simple, we omit processing the result codes
SA_CTL_Request_t rID;
char deviceSerial[128];
size_t len = sizeof (deviceSerial);
// Issue request for the "device serial number" property
SA_CTL_RequestReadProperty (
dHandle, 0, SA_CTL_PKEY_DEVICE_SERIAL_NUMBER, &rID, O
)
// process other tasks

/Y oo

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

// Receive the result
SA_CTL_ReadProperty_s (dHandle, rID, deviceSerial, &len);

See also:

SA_CTL_RequestReadProperty, SA_CTL_ReadProperty_i32,
SA_CTL_ReadProperty_i64

MCS2 Programmer’s Guide i

3 FUNCTION REFERENCE

3.2.20 SA_CTL_RequestWriteProperty_i32

Interface:

SA_CTL_Result_t SA_CTL_RequestWriteProperty_132 (
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_PropertyKey_t pkey,
int32_t wvalue,
SA_CTL_RequestID_t *rID,
SA _CTL_TransmitHandle_ t tHandle
)i

Description:

This function writes a 32-bit integer value to the device and can be used for asynchronous (non-
blocking) access. The caller can supply a pointer to a buffer where the request ID should be written
to. The result (whether the write was successful or not) can be accessed later by passing the
obtained request ID to the SA_CTI,_WaitForWrite function.

The advantage of this method is that the application may write several property values in fast
succession and then perform other tasks before blocking on the reception of the results.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

* idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

* pkey (SA_CTL_PropertyKey_t), input: Key of the property that should be accessed.
* value (int32_t), input: Value that should be written.

* rID (SA_CTL_RequestID_t *), output: Pointer to a request ID. Can be null pointer for call-and-
forget mechanism (see section 2.3.4).

* tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to
zero.

Example:

SA_CTL_Result_t result;
SA_CTL_RequestID_t rID;
int8_t channel;
int64_t holdTime = 5000;
// Request to set hold time to 5 seconds
result = SA_CTL_RequestWriteProperty_ 132 (
dHandle, channel, SA_CTL_PKEY_ _HOLD_TIME, holdTime, &rID, O

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

)i
// process other tasks

//
// Wait for the result to arrive
result = SA_CTL_WaitForWrite (dHandle, rID);

See also:

SA_CTL_WaitForWrite, SA_CTL_RequestWriteProperty_ 164,
SA_CTL_RequestWriteProperty_s

MCS2 Programmer’s Guide 103 _

3 FUNCTION REFERENCE

3.2.21 SA_CTL_RequestWriteProperty_i64

Interface:

SA_CTL_Result_t SA_CTL_RequestWriteProperty_1i64 (
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_PropertyKey_t pkey,
int64_t wvalue,
SA_CTL_RequestID_t *rID,
SA _CTL_TransmitHandle_ t tHandle
)i

Description:

This function writes a 64-bit integer value to the device and can be used for asynchronous (non-
blocking) access. The caller can supply a pointer to a buffer where the request ID should be written
to. The result (whether the write was successful or not) can be accessed later by passing the
obtained request ID to the SA_CTI,_WaitForWrite function.

The advantage of this method is that the application may write several property values in fast
succession and then perform other tasks before blocking on the reception of the results.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

* idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

* pkey (SA_CTL_PropertyKey_t), input: Key of the property that should be accessed.
* value (int64_t), input: Value that should be written.

* rID (SA_CTL_RequestID_t *), output: Pointer to a request ID. Can be null pointer for call-and-
forget mechanism (see section 2.3.4).

* tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to
zero.

Example:

See example on page 102.

See also:

SA_CTL_WaitForWrite, SA_CTL_RequestWriteProperty_1i32,
SA_CTL_RequestWriteProperty_s

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.22 SA_CTL_RequestWriteProperty_s

Interface:

SA_CTL_Result_t SA_CTL_RequestWriteProperty_s (
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_PropertyKey_t pkey,
const char =*value,
SA_CTL_RequestID_t *rID,
SA _CTL_TransmitHandle_ t tHandle
)i

Description:

This function writes a string value to the device and can be used for asynchronous (non-blocking)
access. The caller can supply a pointer to a buffer where the request ID should be written to. The
result (whether the write was successful or not) can be accessed later by passing the obtained
request ID to the SA_CTI_WaitForWrite function.

The advantage of this method is that the application may write several property values in fast
succession and then perform other tasks before blocking on the reception of the results.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

* idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

* pkey (SA_CTL_PropertyKey_t), input: Key of the property that should be accessed.
* value (const char *), input: Value that should be written.

* rID (SA_CTL_RequestID_t *), output: Pointer to a request ID. Can be null pointer for call-and-
forget mechanism (see section 2.3.4).

* tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to
zero.

Example:

See example on page 102.

See also:

SA_CTL_WaitForWrite, SA_CTL_RequestWriteProperty_1i32,
SA_CTL_RequestWriteProperty_i64

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.23 SA_CTL_RequestWritePropertyArray_i32

Interface:

SA_CTL_Result_t SA_CTL_RequestWritePropertyArray_1i32 (
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_PropertyKey_t pkey,
int32_t =*values,
size_t arraySize,
SA_CTL_RequestID_t *rID,
SA_CTL_TransmitHandle_t tHandle
) ;

Description:

This function writes multiple 32-bit integer values to the device and can be used for asynchronous
(non-blocking) access of array type properties. The caller must supply a pointer to a buffer con-
taining the values as well as a size information which indicates how many values reside in the
buffer. Furthermore a pointer to a buffer where the request ID should be written to can be pro-
vided. The result (whether the write was successful or not) can be accessed later by passing the
obtained request ID to the SA_CTL_WaitForWrite function.

The advantage of this method is that the application may write several property values in fast
succession and then perform other tasks before blocking on the reception of the results.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

* idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

*+ pkey (SA_CTL_PropertyKey_t), input: Key of the property that should be accessed.

* values (int32_t *), input: Pointer to a buffer that must contain the values to be written.

* arraySize (size_t), input: Size value that must contain the size of the value buffer (in number
of elements, not number of bytes) when the function is called.

* rID (SA_CTL_RequestID_t *), output: Pointer to a request ID. Can be null pointer for call-and-
forget mechanism (see section 2.3.4).

* tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to
zero.

See also:

SA_CTL_WaitForWrite, SA_CTL_RequestWritePropertyArray_ 164

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.24 SA_CTL_RequestWritePropertyArray_i64

Interface:

SA_CTL_Result_t SA_CTL_RequestWritePropertyArray_1i64 (
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_PropertyKey_t pkey,
int64_t *values,
size_t arraySize,
SA_CTL_RequestID_t *rID,
SA_CTL_TransmitHandle_t tHandle
) ;

Description:

This function writes multiple 64-bit integer values to the device and can be used for asynchronous
(non-blocking) access of array type properties. The caller must supply a pointer to a buffer con-
taining the values as well as a size information which indicates how many values reside in the
buffer. Furthermore a pointer to a buffer where the request ID should be written to can be pro-
vided. The result (whether the write was successful or not) can be accessed later by passing the
obtained request ID to the SA_CTL_WaitForWrite function.

The advantage of this method is that the application may write several property values in fast
succession and then perform other tasks before blocking on the reception of the results.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

* idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

*+ pkey (SA_CTL_PropertyKey_t), input: Key of the property that should be accessed.

* values (int64_t *), input: Pointer to a buffer that must contain the values to be written.

* arraySize (size_t), input: Size value that must contain the size of the value buffer (in number
of elements, not number of bytes) when the function is called.

* rID (SA_CTL_RequestID_t *), output: Pointer to a request ID. Can be null pointer for call-and-
forget mechanism (see section 2.3.4).

* tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to
zero.

See also:

SA_CTL_WaitForWrite, SA_CTL_RequestWritePropertyArray_ 132

MCS2 Programmer’s Guide i

3 FUNCTION REFERENCE

3.2.25 SA _CTL_WaitForWrite

Interface:

SA_CTL_Result_t SA CTL_WaitForWrite (
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_RequestID_t rID

)i

Description:

This function returns the result of a property write access that has previously been requested
using the data type specific SA_CTL_RequestWriteProperty_x function.

NOTICE

While the request function is non-blocking the SA_CTL_WaitForWrite func-

tion blocks until the desired result has arrived.

Parameters:
* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* rID (SA_CTL_RequestID_t), input: ID of the addressed request.

Example:

See example on page 102.

See also:

SA_CTL_RequestWriteProperty_i32, SA_CTL_RequestWriteProperty_ 164,
SA_CTL_RequestWriteProperty_s

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.26 SA_CTL_CancelRequest

Interface:
SA_CTL_Result_t SA_CTL_CancelRequest (
SA_CTL_DeviceHandle_t dHandle,

SA_CTL_RequestID_t rID
)i

Description:

This function cancels a non-blocking read or write request.

NOTICE

Without output buffering the request has already been sent. In this case only

the answer/result will be discarded but property writes will still be executed.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* rID (SA_CTL_RequestID_t), input: ID of the addressed request.

Example:

SA_CTL_Result_t result;
SA_CTL_RequestID_t rID;
// Request to set hold time to 5 seconds
result = SA_CTL_RequestWriteProperty_ 132 (
dHandle, 0, SA_CTL_PKEY_ _HOLD_TIME, 5000, &rID, O
)
// process other tasks
VI
// We are not interested in the result anymore and discard the request
result = SA_CTL_CancelRequest (dHandle, rID);

See also:

SA_CTL_RequestWriteProperty_i32, SA_CTL_RequestWriteProperty_1i64,
SA_CTL_RequestWriteProperty_s, SA_CTL_RequestReadProperty

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.27 SA_CTL_CreateOutputBuffer

Interface:

SA_CTL_Result_t SA_CTL_CreateOutputBuffer (
SA_CTL_DeviceHandle_t dHandle,
SA _CTL_TransmitHandle t xtHandle

)i

Description:

Creates an output buffer for optimizing communication throughput with the device using the
asynchronous command set. After creation the retrieved transmit handle can be used to choose
whether a command is to be buffered or sent directly. A buffered command is not sent to the de-
viceimmediately. Instead, the data is held back and stored in the internal buffer. You may accumu-
late several commands and then call SA_CTIL_FlushOutputBuffer to initiate the transmission
or SA_CTL_CancelOutputBuffer to cancel the output buffer.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* tHandle (SA_CTL_TransmitHandle_t *), output: Pointer to a transmit handle.

Example:

// Note: to keep the example simple, we omit processing the result codes
SA_CTL_TransmitHandle_t tHandle;

SA_CTL_CreateOutputBuffer (dHandle, &tHandle);

SA_CTL_Move (dHandle, 0, 1000000, tHandle);

SA_CTL_Move (dHandle, 1, -1000000, tHandle);

// move commands have not been transmitted yet.
SA_CTL_FlushOutputBuffer (dHandle, tHandle);

// move commands have been transmitted and will be executed.

See also:

SA_CTL_FlushOutputBuffer, SA_CTL_CancelOutputBuffer

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.28 SA_CTL_FlushOutputBuffer

Interface:

SA_CTL_Result_t SA_CTL_FlushOutputBuffer (
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_TransmitHandle_ t tHandle

)i

Description:

Initiates the transmission of all commands stored in the output buffer that is associated with the
given transmit handle.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer.

Example:

SA_CTL_Result_t result;
SA_CTL_TransmitHandle_t tHandle;
result = SA_CTL_CreateOutputBuffer (dHandle, &tHandle);
if (result == SA_CTL_ERROR_NONE) {
// tHandle now holds a valid transmit handle
}
// append commands to buffer here
result = SA_CTL_FlushBuffer (dHandle, tHandle);
if (result == SA_CTL_ERROR_NONE) {
// buffer is now flushed and the transmit handle released
}

// process generated answers/events

See also:

SA_CTL_CreateOutputBuffer, SA_CTL_CancelOutputBuffer

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.29 SA_CTL_CancelOutputBuffer

Interface:

SA_CTL_Result_t SA_CTL_CancelOutputBuffer (
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_TransmitHandle_ t tHandle

)i

Description:

Discards all buffered commands and releases the associated transmit handle.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer.

Example:

SA_CTL_Result_t result;
SA_CTL_TransmitHandle_t tHandle;
result = SA_CTL_CreateOutputBuffer (dHandle, &tHandle);
if (result == SA_CTL_ERROR_NONE) {
// tHandle now holds a valid transmit handle
}
// append commands to buffer here
result = SA_CTL_CancelBuffer (dHandle, tHandle);
if (result == SA_CTL_ERROR_NONE) {
// all buffered commands are discarded and the transmit handle released

See also:

SA_CTL_CreateOutputBuffer, SA_CTL_FlushOutputBuffer

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.30 SA_CTL_OpenCommandGroup

Interface:

SA_CTL_Result_t SA_CTL_OpenCommandGroup (
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_TransmitHandle_t =*tHandle,
uint32_t triggerMode

) ;

Description:

Opens a command group that can be used to combine multiple asynchronous commands into
an atomic group. A trigger mode can be set to select between different modes to start the
groups execution. After creation the retrieved transmit handle can be used to choose whether
a command is to be grouped or sent directly. You may accumulate several commands and then
call SA_CTL_CloseCommandGroup to activate or SA_CTIL_CancelCommandGroup to cancel the
command group.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* tHandle (SA_CTL_TransmitHandle_t *), output: Pointer to a transmit handle.

* triggerMode (uint32_t), input: Desired trigger mode for this command group. Must be either
SA_CTL_CMD_GROUP_TRIGGER_MODE_DIRECT (0) or
SA_CTL_CMD_GROUP_TRIGGER_MODE_EXTERNAL (1).

Example:

SA_CTL_Result_t result;
SA_CTL_TransmitHandle_t tHandle;
result = SA_CTL_OpenCommandGroup (
dHandle, &tHandle, SA_CTL_CMD_GROUP_TRIGGER_MODE_DIRECT
)
if (result == SA_CTL_ERROR_NONE) {
// tHandle now holds a valid transmit handle

See also:

SA_CTL_CloseCommandGroup, SA_CTL_CancelCommandGroup

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.31 SA_CTL_CloseCommandGroup

Interface:

SA_CTL_Result_t SA_CTL_CloseCommandGroup (
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_TransmitHandle_t tHandle

)i

Description:

Closes and eventually executes the assembled command group depending on the configured trig-
ger mode.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer.

Example:

SA_CTL_Result_t result;
SA_CTL_TransmitHandle_t tHandle;
result = SA_CTL_OpenCommandGroup (
dHandle, &tHandle, SA_CTL_CMD_GROUP_TRIGGER_MODE_DIRECT
)
if (result == SA_CTL_ERROR_NONE) {
// tHandle now holds a valid transmit handle
}
// append commands to buffer here
result = SA_CTL_CloseCommandGroup (dHandle, tHandle);
if (result == SA_CTL_ERROR_NONE) ({
// command group 1is now activated. since the command group 1is
// triggered directly, it 1is executed right away.
}
// process other tasks
//
// optional: wait for the SA CTIL EVENT_CMD_GROUP_TRIGGERED event
// process answers/events to commands

See also:

SA_CTL_OpenCommandGroup, SA_CTL_CancelCommandGroup

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.32 SA_CTL_CancelCommandGroup

Interface:

SA_CTL_Result_t SA_CTL_CancelCommandGroup (
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_TransmitHandle_t tHandle

)i

Description:

Discards all buffered commands and releases the associated transmit handle.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer.

Example:

SA_CTL_Result_t result;
SA_CTL_TransmitHandle_t tHandle;
result = SA_CTL_OpenCommandGroup (
dHandle, &tHandle, SA_CTL_CMD_GROUP_TRIGGER_MODE_DIRECT
)i
if (result == SA_CTL_ERROR_NONE) {
// tHandle now holds a valid transmit handle
}
// append commands to buffer here
result = SA_CTL_CancelCommandGroup (dHandle, tHandle);
if (result == SA_CTL_ERROR_NONE) {
// all buffered commands are discarded and the transmit handle released

See also:

SA_CTL_OpenCommandGroup, SA_CTL_CloseCommandGroup

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.33 SA _CTL_WaitForEvent

Interface:

SA_CTL_Result_t SA_CTL_WaitForEvent (
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_Event_t =xevent,
uint32_t timeout

) ;

Description:

This function blocks until the device reports an event. Usually this function is used in a separate
thread. The function returns when:

* An event has occurred within the given timeout. In this case the return value of the func-
tion will be SA_CTL_ERROR_NONE and the output parameter event will hold the event that
occurred. See section 2.4 "Event Notifications" for the structure of events.

* No event occurred within the given timeout. In this case the return value of the function will
be SA_CTL_ERROR_TIMEOUT and the event parameter is undefined.

* The call is canceled with a call of SA_CTL_Cancel from another application thread. In this
case the return value of the function will be SA_CTI_ERROR_CANCELED and the event pa-
rameter is undefined. This is typically useful when the application is to be terminated and
the event handling thread must be unblocked for a proper cleanup.

NOTICE

This function cannot be called simultaneously using multiple threads (for the

same device handle). If a second thread tries to call this function, then a
SA_CTL_FRROR_THREAD_LIMIT_ REACHED error will be returned.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
+ event (SA_CTL_Event_t *), output: Event that occurred.

* timeout (uint32_t), input: Maximum time to wait for an event to occur. The timeout is given
in milliseconds. The special value SA_CTIL_INFINITE is also valid.

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

Example:

// thread 1:
SA_CTL_Event_t event;
SA_CTL_Result_t result;
result = SA_CTL_WaitForEvent (dHandle, &event, SA_CTL_INFINITE) ;
if (result == SA_CTL_ERROR_CANCELED) {
// SA CTL WaitForEvent was canceled before an event occurred

// thread 2:
// wake up waiting thread 1
SA_CTL_Result_t result = SA_CTL_Cancel (dHandle) ;

See also:

SA_CTL_Cancel

MCS2 Programmer’s Guide 117 _

3 FUNCTION REFERENCE

3.2.34 SA CTL_Calibrate

Interface:

SA_CTL_Result_t SA_CTIL_Calibrate(
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_TransmitHandle_t tHandle

) ;

Description:

This movement function performs a calibration routine for a channel. Before calling this function
the calibration options should be configured. See section 2.6.1 "Calibrating" for more information.

NOTICE

The function call returns immediately, without waiting for the movement to com-
plete. The calibration may however take a few seconds to complete. Therefore
the SA_CTL_CH_STATE_BIT_CALIBRATING in the Channel State can be mon-
itored to determine the end of the calibration sequence.

CAUTION
As a safety precaution, make sure that the positioner has enough freedom to
move without damaging other equipment.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* idx (int8_t), input: Index of the addressed channel.

* tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer. If un-
used set to zero.

Example:

SA_CTL_Result_t result;
// Set calibration mode for channel 0 (start direction: forward)
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_CALIBRATION_OPTIONS, O
)

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

if (result == SA_CTL_ERROR_NONE) {
// calibration mode is now set
}
// Start calibration sequence
result = SA_CTL_Calibrate (dHandle, 0, 0);
if (result == SA_CTL_ERROR_NONE) {
// calibration is now started (function call returns immediately)

MCS2 Programmer’s Guide 119

3 FUNCTION REFERENCE

3.2.35 SA _CTL_Reference

Interface:

SA_CTL_Result_t SA_CTL_Reference (
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_TransmitHandle_t tHandle

) ;

Description:

This movement function may be used to move the positioner to a known physical position. Before
calling this function the reference options should be configured. See section 2.6.2 "Referencing"
for more information.

NOTICE

The function call returns immediately, without waiting for the movement to com-
plete. The SA_CTL_CH_STATE_BIT_REFERENCING in the Channel State can
be monitored to determine the end of the referencing sequence. If the com-
mand was successful the SA_CTL_CH_STATE_BIT_IS_REFERENCED in the
Channel State will be set. This bit can also be checked to determine whether
it is necessary to perform the referencing sequence.

CAUTION

As a safety precaution, make sure that the positioner has enough freedom to
move without damaging other equipment.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* idx (int8_t), input: Index of the addressed channel.

* tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer. If un-
used set to zero.

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

Example:

SA_CTL_Result_t result;
// Set find reference mode for channel 0 (default is 0)
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_REFERENCING_OPTIONS, O
)i
if (result == SA_CTL_ERROR_NONE) {
// desired reference mode 1is now set
}
// Start referencing sequence
result = SA_CTL_Reference (dHandle, 0, 0);
if (result == SA_CTL_ERROR_NONE) {
// referencing sequence has started (function call returns immediately)

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.36 SA_CTL_Move

Interface:

SA_CTL_Result_t SA_CTL_Move (
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
int64_t moveValue,
SA_CTL_TransmitHandle_ t tHandle

)

Description:

This function instructs a positioner to move according to the current move configuration. The
move mode as well as corresponding parameters (e.g. Frequency, Velocity, HoldTime, etc.) have to
be configured beforehand using the SA_CTL_SetProperty_x functions. See section 2.6 "Mov-
ing Positioners" for more information.

NOTICE

The function call returns immediately, without waiting for the movement to com-

plete. The Channel State bits SA_CTL_CH_STATE_BIT_ACTIVELY_ MOVING
and SA_CTIL_CH STATE BIT CLOSED LOOP_ACTIVE can be monitored to
determine the end of the movement.

Parameters:

dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

idx (int8_t), input: Index of the addressed channel.

* moveValue (int64_t), input: Interpretation depends on the configured move mode.

tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer. If un-
used set to zero.

Example:

// Note: to keep the example simple, we omit processing the result codes
// Set move mode
SA_CTL_SetProperty_1i32(
dHandle, 0, SA_CTL_PKEY_MOVE_MODE, SA_CTL_MOVE_MODE_CIL_RELATIVE
)i
// Set move velocity [in pm/s]
SA_CTL_SetProperty_164 (

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

dHandle, 0, SA_CTL_PKEY MOVE_VELOCITY, 500000000
)
// Set move acceleration [in pm/s2],
// a value of 0 disables the acceleration control
SA_CTL_SetProperty_1i64 (
dHandle, 0, SA_CTL_PKEY MOVE_ACCELERATION, O
)i
// Start actual movement, moveValue holds relative position (in pm)
SA_CTL_Move (dhandle, 0, 500000000, 0);

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.37 SA_CTL_Stop

Interface:

SA_CTL_Result_t SA_CTL_Stop(
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_TransmitHandle_t tHandle

) ;

Description:

This function stops any ongoing movement of a positioner. It also stops the hold position feature
of a closed-loop command.

Note for closed-loop movements with acceleration control enabled: The first st op command sent
while moving triggers the positioner to come to a halt by decelerating to zero. A second stop
command triggers a hard stop (emergency stop).

NOTICE

The function call returns immediately, without waiting for the stop to complete.

The SA_ CTL_CH_STATE_BIT ACTIVELY MOVING inthe Channel State can be
monitored to determine the end of the movement.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* idx (int8_t), input: Index of the addressed channel.

* tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer. If un-
used set to zero.

Example:

int8_t channel = 0;
SA_CTL_Result_t result;
result = SA_CTL_Stop(dHandle, channel, 0);
if (result == SA_CTL_ERROR_NONE) {
// stop command is now being executed

}

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.38 SA_CTL_OpenStream

Interface:

SA_CTL_Result_t SA_CTL_OpenStream
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_StreamHandle_t <+sHandle,
uint32_t triggerMode

) ;

Description:

This function opens a stream to the device. It is used for trajectory streaming (see section 2.15).
The caller must supply a pointer to a buffer where the stream handle should be written to. A
trigger mode can be set to select between different modes to start and synchronize the streaming
process.

NOTICE

The desired stream base rate has to be configured before calling this function.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* SsHandle (SA_CTL_StreamHandle_t *), output: Pointer to a stream handle.

* triggerMode (uint32_t), input: Desired trigger mode. May be one of
SA_CTL_STREAM_TRIGGER_MODE_DIRECT (0),
SA_CTL_STREAM TRIGGER_MODE_EXTERNAL_ONCE (1),
SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_SYNC (2).

Example:

SA_CTL_Result_t result;
SA_CTL_StreamHandle_t sHandle;
result = SA_CTL_OpenStream (
dHandle,
&sHandle,
SA_CTL_STREAM TRIGGER_MODE_DIRECT
)
if (result == SA_CTL_ERROR_NONE) {
// stream is now opened

}

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

See also:

SA_CTL_StreamFrame, SA_CTL_CloseStream, SA_CTL_AbortStream

MCS2 Programmer’s Guide 2

3 FUNCTION REFERENCE

3.2.39 SA CTL_StreamFrame

Interface:

SA_CTL_Result_t SA_CTL_StreamFrame (
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_StreamHandle_t sHandle,
uint8_t «frameData,
uint32_t frameSize

)7

Description:

This function supplies the device with stream data by sending one frame per function call. A frame
contains the data for one interpolation point which must be assembled by concatenating elements
of the following tuple:

* Channel Index (1 byte): The channel that receives the following position.

* Position (8 byte): A position that belongs to the current interpolation point.

See section 2.15 "Trajectory Streaming" for more information.

NOTICE

This function may block if the flow control needs to throttle the data rate. The

function returns as soon as the frame was transmitted to the controller.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* sHandle (SA_CTL_StreamHandle_t), input: Handle of the addressed stream.
* frameData (uint8_t *), input: Pointer to the frame data buffer.

* frameSize (uint32_t), input: Size of the given frame (in bytes).
Example:

SA_CTL_Result_t result;

// create frame data array for 2 channel/position tuples
uint8_t frameData[2* (1+8)];

// fill frame with data

/S

// send frame

MCS2 Programmer’s Guide =

3 FUNCTION REFERENCE

result = SA_CTL_StreamFrame (

dHandle, sHandle, frameData, sizeof (frameData)
)
if (result == SA_CTL_ERROR_NONE) {

// frame successfully sent to the device

See also:

SA_CTL_OpenStream, SA_CTL_CloseStream, SA_CTL_AbortStream

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.40 SA CTL_CloseStream

Interface:

SA_CTL_Result_t SA _CTL_CloseStream
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_StreamHandle_t sHandle

)i

Description:

This function closes a stream. For the device this marks the end of the stream. After having
processed the remaining buffered interpolation points the stream is finished. See section 2.15 for
more information.

NOTICE

If the stream is not closed properly, the device will generate a buffer underflow

error after the last frame has been processed.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* sHandle (SA_CTL_StreamHandle_t), input: Handle of the addressed stream.

Example:

SA_CTIL_StreamHandle_t sHandle;
SA_CTL_Result_t result;
result = SA_CTL_OpenStream
dHandle,
&sHandle,
SA_CTL_STREAM_TRIGGER_MODE_DIRECT
)
if (result != SA_CTL_ERROR_NONE) {
// handle error
}
// stream frames
V2R
result = SA_CTL_CloseStream(dHandle, sHandle);
// remaining interpolation points are now processed

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

See also:

SA_CTL_OpenStream, SA_CTL_StreamFrame, SA_CTL_AbortStream

MCS2 Programmer’s Guide 130 _

3 FUNCTION REFERENCE

3.2.41 SA _CTL_AbortStream

Interface:

SA_CTL_Result_t SA _CTL_AbortStream
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_StreamHandle_t sHandle

)i

Description:

This function aborts a stream. Thus all movements are stopped immediately and remaining
buffered interpolation points are discarded.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* sHandle (SA_CTL_StreamHandle_t), input: Handle of the addressed stream.

Example:

SA_CTL_StreamHandle_t sHandle;

SA_CTL_Result_t result;

result = SA_CTL_OpenStream
dHandle,
&sHandle,
SA_CTL_STREAM_TRIGGER_MODE_DIRECT

)

if (result != SA_CTL_ERROR_NONE) {
// handle error

}

// stream frames

VAR

result = SA_CTL_AbortStream(dHandle, sHandle);

// stream is aborted immediately

See also:

SA_CTL_OpenStream, SA_CTL_StreamFrame, SA_CTL_CloseStream

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.1 Property Summary

Table 4.1 - Property Summary

T ety | code T rype | o [cees | ca'| e[rage

Device Properties

Number of Channels 0x020F0017 132 Dev R - - 137
Number of Bus Modules 0x020F0016 132 Dev R - - 137
Device State 0x020F000F 132 Dev R - - 138
Device Serial Number 0x020F005E String Dev R - - 139
Device Name 0x020F003D String Dev RW - X 140
Emergency Stop Mode 0x020F0088 132 Dev RW - - 141
Network Discover Mode 0x020F0159 132 Dev RW - X 142
Module Properties
Power Supply Enabled 0x02030010 132 Mod RW - 143
Module State 0x0203000F 132 Mod - 144
Number of Bus Module 0x02030017 132 Mod X - 145
Channels
Positioner Properties

Amplifier Enabled 0x0302000D 132 Ch RW - 145
Positioner Control Options 0x0302005D 132 Ch RW X 146
Actuator Mode 0x03020019 132 Ch RW - - 147
Control Loop Input 0x03020018 132 Ch RW X X 149
Sensor Input Select 0x03020018 132 Ch RW X X 149
Positioner Type 0x0302003C 132 Ch RW X X 151
Positioner Type Name 0x0302003D String Ch R - - 152
Move Mode 0x03050087 132 Ch RW X - 152
Channel State 0x0305000F 132 Ch R X - 154
Position 0x0305001D 164 Ch RW X - 155

Continued on next page

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Table 4.1 - Continued from previous page

I T T T e T

Target Position 0x0305001E 156
Scan Position 0x0305001F 64 Ch R X - 156
Scan Velocity 0x03050022 l64 Ch RW X - 157
Hold Time 0x03050028 132 Ch RW X = 158
Move Velocity 0x03050029 164 Ch RW X - 159
Move Acceleration 0x0305002B 164 Ch RW X - 160
Max Closed Loop Frequency 0x0305002F 132 Ch RW X - 161
Default Max Closed Loop 0x03050057 132 Ch RW X X 162
Frequency

Step Frequency 0x0305002E 132 Ch RW X - 163
Step Amplitude 0x03050030 132 Ch RW X - 163
Following Error Limit 0x03050055 164 Ch RW X X 164
Broadcast Stop Options 0x0305005D 132 Ch RW X - 165
Sensor Power Mode 0x03080019 32 Ch RW X X 166
Sensor Power Save Delay 0x03080054 132 Ch RW X X 167
Position Mean Shift 0x03090022 132 Ch RW X X 168
Safe Direction 0x03090027 132 Ch RW X X 169
Control Loop Input Sensor 0x0302001D 164 Ch R X - 170
Value

Control Loop Input Aux Value 0x030200B2 |64 Ch R X - 171
Target To Zero Voltage Hold 0x030200B9 132 Ch RW X 172
Threshold

Scale Properties
Logical Scale Offset 0x02040024 |64 Ch RW X 173
Logical Scale Inversion 0x02040025 132 Ch RW X 174
Range Limit Min 0x02040020 164 Ch RW X = 175
Range Limit Max 0x02040021 164 Ch RW X - 175
Calibration Properties
Calibration Options 0x0306005D 132 Ch RW - 176
Signal Correction Options 0x0306001C 132 Ch RW X 177
Referencing Properties

Referencing Options 0x0307005D 132 Ch RW X - 179

Continued on next page

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Table 4.1 - Continued from previous page

I T T T e T
164

Distance To Reference Mark 0x030700A2 - 180

Distance Code Inverted

0x0307000E

132

Ch

RW X X 180

Positioner Tuning and Customizing Properties

Positioner Movement Type 0x0309003F 132 Ch R(W) X (X) 181
Positioner Is Custom Type 0x03090041 132 Ch R(W) X X) 182
Positioner Base Unit 0x03090042 132 Ch R(W) X X) 183
Positioner Base Resolution 0x03090043 132 Ch R(W) X X) 184
Positioner Sensor Head Type 0x0309008E 132 Ch R(W) X X) 185
Positioner Reference Type 0x03090048 132 Ch R(W) X X) 186
Positioner P Gain 0x0309004B 132 Ch R(W) X X) 187
Positioner | Gain 0x0309004C 132 Ch R(W) X X) 188
Positioner D Gain 0x0309004D 132 Ch R(W) X X) 189
Positioner PID Shift 0x0309004E 132 Ch R(W) X (X) 190
Positioner Anti Windup 0x0309004F 132 Ch R(W) X X) 191
Positioner ESD Distance 0x03090050 132 Ch R(W) X (X) 192
Threshold

Positioner ESD Counter 0x03090051 132 Ch R(W) X (X) 193
Threshold

Positioner Target Reached 0x03090052 132 Ch R(W) X (X) 194
Threshold

Positioner Target Hold 0x03090053 132 Ch R(W) X X) 195
Threshold

Save Positioner Type 0x0309000Aa 132 Ch W X - 196
Positioner Write Protection 0x0309000D 132 Ch RW X - 196

Streaming Properties
Stream Base Rate 0x040F002C 132 Dev RW - - 197
Stream External Sync Rate 0x040F002D 132 Dev RW - - 198
Stream Options 0x040F005D 132 Dev RW - - 199
Stream Load Maximum 0x040F0301 132 Dev R - - 200
Diagnostic Properties

Channel Error 0x05020072a 132 Ch X - 200
Channel Temperature 0x05020034 132 Ch X - 201
Bus Module Temperature 0x05030034 132 Mod R X - 202

Continued on next page

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Table 4.1 - Continued from previous page

T ety cose [ype | o [cees o' | e[roge

Auxiliary Properties

Aux Positioner Type 0x0802003C 132 Ch RW X X 203
Aux Positioner Type Name 0x0802003D String Ch R - - 204
Aux Input Select 0x08020018 132 Ch RW X X 204
Aux I/0 Module Input Index 0x081100A2 132 Ch RW X X 205
Aux Direction Inversion 0x0809000E 132 Ch RW X X 207
Aux I/0 Module Input0 / Input1T 0x08110000 164 Ch R X - 208
Value

Aux I/0 Module Input0 / Input1T 0x08110001 164 Ch R X - 208
Value

Aux Digital Input Value 0x080300AD 132 Mod R - 208
Aux Digital Output Value / Set/ 0x080300AE 132 Mod RW - 209
Clear

Aux Digital Output Value /Set/ 0x080300B0 132 Mod W X - 209
Clear

Aux Digital Output Value /Set/ 0x080300B1 132 Mod W X - 209
Clear

Aux Analog Output ValueO / 0x08030000 132 Mod RW X - 210
Value1

Aux Analog Output ValueO / 0x08030001 132 Mod RW X - 210
Value1

I/0 Module Properties
I/0 Module Options 0x0603005D 132 Mod RW X - 211
I/0 Module Voltage 0x06030031 132 Mod RW X - 213
I/0 Module Analog Input Range 0x060300A0 132 Mod RW X X 213
Input Trigger Properties
Device Input Trigger Mode 0x060D0087 132 Dev RW = = 215
Device Input Trigger Condition 0x060D005A 132 Dev RW - - 216
Output Trigger Properties

Channel Output Trigger Mode 0x060E0087 132 Ch RW X - 217
Channel Output Trigger Polarity 0x060E005B 132 Ch RW X - 218
Channel Output Trigger Pulse 0x060E005C 132 Ch RW X - 219

Width

Continued on next page

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Table 4.1 - Continued from previous page

I T T T e T
164

Channel Position Compare 0x060E0058 220
Start Threshold

Channel Position Compare 0x060E0059 |64 Ch RW X - 221
Increment

Channel Position Compare 0x060E0026 132 Ch RW X - 221
Direction

Channel Position Compare 0x060E0020 164 Ch RW X - 222
Limit Min

Channel Position Compare 0x060E0021 64 Ch RW X - 223
Limit Max

Hand Control Module Properties

Hand Control Module Lock 0x020C0083 132 Dev RW - - 224
Options
Hand Control Module Default 0x020Cc0084 132 Dev RW - X 226
Lock Options

API Properties
Event Notification Options 0xF010005D 132 API RW - - 227
Auto Reconnect 0xF01000A1 32 API RW - - 228

'Command Group: This column defines if a property may be used in command groups. See section 2.14 "Command
Groups" for more information.

2Non-Volatile: This column defines if a property is stored in non-volatile memory. Non-Volatile properties need not be
configured on every power-up.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.2 Device Properties

4.2.1 Number of Channels

Definition
| cieLonel i Lnces | o
SA_CTL_PKEY NUMBER_OF_CHANNELS 0x020F0017 132 Dev

ASCll Command: [:PROPerty] :DEVice:NOCHannels

Description

This property holds the total number of channels the connected device has. It defines the valid
range for channel index parameters. The channel index is zero based. Therefore, the maximum
index is number of channels - 1.

Note that the number of channels does not represent the number of positioners that are currently
connected to the device.

Example

SA_CTL_Result_t result;
int32_t channels;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_NUMBER_OF_CHANNELS, &channels, O
)
if (result == SA_CTL_ERROR_NONE) {
// ’channels’ holds the number of available channels of the device

}

See Also

4.2.2 Number of Bus Modules, 4.3.3 Number of Bus Module Channels

4.2.2 Number of Bus Modules

Definition
BT
SA_CTL_PKEY NUMBER_OF_BUS_MODULES 0x020F0016 132 Dev

ASCll Command: [:PROPerty] :DEVice :NOBModules

MCS2 Programmer’s Guide _

4 PROPERTY REFERENCE

Description

This property holds the number of modules the connected device has. It defines the valid range
for module index parameters. The module index is zero based. Therefore, the maximum index is
number of modules - 1.

Example

SA_CTL_Result_t result;
int32_t modules;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_ NUMBER_OF_BUS_MODULES, &modules
)i
if (result == SA_CTL_ERROR_NONE) {
// ’‘modules’ holds the number of available modules of the device

}

See Also

4.3.3 Number of Bus Module Channels

4.2.3 Device State

Definition
e Lome e e [
SA_CTL_PKEY DEVICE_STATE 0x020F000F 132 Dev

ASCll Command: [:PROPerty] :DEVice:STATe

Description

This property holds the device state. The value is a bit field containing independent flags. Their
meanings are described in section 2.8.1 "Device State Flags".

Undefined flags are reserved for future use. Therefore, the user software should not rely on a
static value of undefined flags.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Example

SA_CTL_Result_t result;
int32_t state;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_DEVICE_STATE, &state
)i
if (result == SA_CTL_ERROR_NONE) {
// use bit masking to extract the needed information from the state
if (state & SA_CTL_DEV_STATE_BIT HM PRESENT) {
// a hand controller is connected to the device

See Also

4.3.2 Module State, 4.4.9 Channel State

4.2.4 Device Serial Number

Definition
B
SA_CTL_PKEY DEVICE_ SERIAI_ NUMBER 0x020F005E String Dev

ASCIl Command: [:PROPerty] :DEVice:SNUMber

Description

This property may be used to identify a device connected to the PC. Each device has a unique
serial number which makes it possible to distinguish one from another. The device serial number
consists of the global device name (‘MCS2’) and an individual number.

Example

SA_CTL_Result_t result;
char deviceSn[SA_CTL_STRING_MAX_ LENGTH];
size_t ioStrSize = sizeof (deviceSn);
result = SA_CTL_GetProperty_s(
dHandle, 0, SA_CTL_PKEY_DEVICE_SERIAL_NUMBER,deviceSn, &ioStrSize
)
if (result == SA_CTL_ERROR_NONE) {
// ’deviceSn’ holds the serial number string, e.g. "MCS2-00000001"

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.2.5 Device Name

4.2.5 Device Name

Definition
| cose | owe Lioe nces co
SA_CTL_PKEY DEVICE_NAME 0x020F003D String Dev

ASCll Command: [:PROPerty] :DEVice :NAME

Description

This property may be used to identify a device connected to the PC. In contrast to the device serial
number, the device name is writable by the user. The name is stored to non-volatile memory. By
default, the device name is set to the device serial number string. Note that the device name is not
reset to its default when performing a firmware update.

Example

SA_CTL_Result_t result;
char deviceName [SA_CTL_STRING_MAX_LENGTH];
size_t ioStringSize = sizeof (deviceName) ;
result = SA_CTL_GetProperty_s(
dHandle, 0, SA_CTL_PKEY DEVICE_NAME, deviceName, &ioStringSize
)
if (result == SA_CTL_ERROR_NONE) {
// ’deviceName’ holds the user defined name of the device

See Also

4.2.4 Device Serial Number

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.2.6 Emergency Stop Mode

Definition
e _Lome e e [
SA_CTL_PKEY EMERGENCY STOP_MODE 0x020F0088 132 Dev

ASCIl Command: [:PROPerty] :DEVice:ESTop:MODE

Description

This property specifies the emergency stop mode of the device. See section 2.17.2 "Emergency
Stop Mode" for more information.

The default value is SA_CTIL._EMERGENCY_STOP_MODE_NORMAL (0).
Valid Range
SA_CTL_EMERGENCY_STOP_MODE_NORMAL (0),

SA_CTL_EMERGENCY_STOP_MODE_RESTRICTED (1),
SA_CTL_EMERGENCY_STOP_MODE_AUTO_RELEASE (2)

Example

// set emergency stop mode to normal mode
result = SA_CTL_SetProperty_132(
dHandle,
O 4
SA_CTL_PKEY_ EMERGENCY_STOP_MODE,
SA_CTL_EMERGENCY_STOP_MODE_NORMAL

See Also

4.13.1 Device Input Trigger Mode

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.2.7 Network Discover Mode

Definition
e o e e e
SA_CTL_PKEY NETWORK_DISCOVER_MODE 0x020F0159 132 Dev

ASCIl Command: [:PROPerty] :DEVice:NETWork:DISCover :MODE

Description

This property specifies the discover mode for devices with ethernet interface. The discover feature
allows to use the sSA_CTL_FindDevices function to list devices with ethernet interface without
knowing the actual IP address. The MCS2 devices use broadcast packets to inform about their
presence in the network and for the discovery mechanism. This technique is quite common for
network devices like switches, routers, etc. However, some users might wish to limit the traffic in
a restricted network. Therefore, the behavior of the discovery mechanism is configurable.

The following modes are available:

Y I R -

0 SA_CTIL_NETWORK_DISCOVER_MODE_DISABLED The discover feature is disabled. No
broadcast packets will be generated.
Devices will not be found by the
SA_CTL_FindDevices function.

1 SA_CTL_NETWORK_DISCOVER_MODE_PASSIVE The device will not generate packets
to inform about its presence but still
reacts to direct discover requests.

2 SA_CTL_NETWORK_DISCOVER_MODE_ACTIVE The device informs about its pres-
ence and reacts to all discover re-
quests.

See section 2.1 "Connecting and Disconnecting" for more information.

The default value is SA_CTL_NETWORK_DISCOVER_MODE_ACTIVE (2). This property is stored to
non-volatile memory and need not be configured on every power-up.

Example

// disable the network discover feature
result = SA_CTL_SetProperty_ 132 (
dHandle,
0,
SA_CTL_PKEY_NETWORK_DISCOVER_MODE,
SA_CTL_NETWORK_DISCOVER_MODE_DISABLED

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

3.2.4 SA_CTL_FindDevices

4.3 Module Properties

4.3.1 Power Supply Enabled

Definition
| coie Lo ox Laces | o'
SA_CTL_PKEY POWER_SUPPLY ENABLED 0x02030010 132 Mod RW

ASCll Command: [:PROPerty] :MODule#:PSUPply [:ENABled]

Description

This property enables or disables the positioner driver power supply of the module. Of course the
power supply must be enabled to perform positioner movements. Otherwise, if a movement is
commanded, the SA_CTL_EVENT_MOVEMENT_FINISHED event that is generated by the channel
will hold a SA_CTL_ERROR_POWER_SUPPLY_DISABLED error as parameter.

The default value is SA_CTIL_ENABLED (0x01).

Valid Range

SA_CTL_DISABLED (0x00), SA_CTL_ENABLED (0x01)
Example

// switch off the driver power supply of the first module
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_POWER_SUPPLY_ ENABLED, SA_CTL_DISABLED
)i

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.4.1 Amplifier Enabled

4.3.2 Module State

Definition
| coie Lomeiix Lo o0
SA_CTL_PKEY MODULE_STATE 0x0203000F 132 Mod R

ASCll Command: [:PROPerty] :MODule#:STATe

Description

This property holds the module state. The value is a bit field containing independent flags. Their
meanings are described in section 2.8.2 "Module State Flags".

Undefined flags are reserved for future use. Therefore, the user software should not rely on a
static value of undefined flags.

Example

SA_CTL_Result_t result;
int32_t state;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY MODULE_STATE, &state
)
if (result == SA_CTL_ERROR_NONE) {
// use bit masking to extract the needed information from the state
if (state & SA_CTL_MOD_STATE_BIT_SM PRESENT) ({
// a sensor module 1is connected to the module

}

See Also

4.2.3 Device State, 4.4.9 Channel State

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.3.3 Number of Bus Module Channels

Definition
o Lme i Lo [0
SA_CTL_PKEY_ NUMBER_OF_BUS_MODULE_CHANNELS 0x02030017 132 Mod R

ASCll Command: [:PROPerty] :MODule#:NOMChannels

Description

This property holds the number of channels the addressed module has.
Example

SA_CTL_Result_t result;
int32_t modChannels;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_NUMBER_OF_BUS_MODULE_CHANNELS, &modChannels
)
if (result == SA_CTL_ERROR_NONE) {

// ’‘modChannels’ holds the number of channel of the module 0
}

See Also

4.2.2 Number of Bus Modules, 4.2.1 Number of Channels

4.4 Positioner Properties

4.4.1 Amplifier Enabled

Definition
| coieLome [ox s o
SA_CTL_PKEY AMPLIFIER_ ENABLED 0x0302000D 132

ASCll Command: [:PROPerty] :CHANnel#:AMPLifier[:ENABled]

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Description

This property enables or disables the positioner driver amplifier of the channel. Of course, the
amplifier must be enabled to perform positioner movements. Otherwise, if a movement is com-
manded, the SA_CTL_EVENT_MOVEMENT_FINISHED event that is generated by the channel will
hold a SA_CTL_ERROR_AMPLIFIER_DISABLED error as parameter.

The default value is SA_ CTI. ENABLED (0x01).
Valid Range

SA_CTL_DISABLED (0x00), SA_CTL_ENABLED (0x01)
Example

// switch off the driver power amplifier of the first channel
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_AMPLIFIER_ENABLED, SA_CTL_DISABLED

)i

See Also

4.3.1 Power Supply Enabled

4.4.2 Positioner Control Options

Definition

I S T T 0)

SA_CTL_PKEY_ POSITIONER_CONTROL_OPTIONS 0x0302005D 132

ASCll Command: [:PROPerty] : CHANnel#:PCONtrol:0OPTions

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Description

This property defines several positioner control related options. The value is a bit field containing
independent flags. The following flags are available:

il coefmtn | Code |

0 SA_CTL_POS_CTRL_OPT_BIT_ACC_REL_POS_DIS 0x00000001
1 SA_CTL_POS_CTRL_OPT_BIT_NO_SLIP 0x00000002
2 SA_CTL_POS_CTRL_OPT_BIT_NO_SLIP_WHILE_HOLDING 0x00000004
3 SA_CTL_POS_CTRL_OPT_BIT_FORCED_SLIP_DIS 0x00000008
4 SA_CTL_POS_CTRL_OPT_BIT_STOP_ON_FOLLOWING_ERR 0x00000010
5 SA_CTL_POS_CTRL_OPT_BIT_TARGET_TO_ZERO_VOLTAGE 0x00000020

Undefined flags are reserved and should be set to zero. See section 2.6.4 "Closed-Loop Move-
ments" for a more detailed description of the positioner control options flags.

This property is stored to nonvolatile memory and need not be configured on every power-up.
The default value is 0 (all flags cleared).

Example

// enable the "no-slip-while-holding" feature for channel 0
result = SA_CTL_SetProperty_132(
dHandle,
0 ’
SA_CTL_PKEY_POSITIONER_CONTROL_OPTIONS,
SA_CTL_POS_CTRL_OPT_BIT_NO_SLIP_WHILE_HOLDING
)i

See Also

4.4.8 Move Mode, 4.4.3 Actuator Mode

4.4.3 Actuator Mode

Definition
e Lime e s '
SA_CTL_PKEY ACTUATOR_MODE 0x03020019 132

ASCIl Command: [:PROPerty] : CHANnel#:ACTuator :MODE

MCS2 Programmer’s Guide _

4 PROPERTY REFERENCE

Description

This property specifies the type of driving signal generation. See section 2.6.4 "Closed-Loop Move-
ments" for a more detailed description of the actuator modes. It is not allowed to change the
actuator mode during an ongoing movement. In that case a SA_CTL_ERROR_BUSY_MOVING er-
ror is returned.

Note that the low vibration mode requires the velocity and acceleration control to be active. If the
velocity control is not already enabled (move velocity != 0), the move velocity is set implicitly to a
default velocity of 10 x 10°. If the acceleration control is not already enabled (move acceleration
I= 0), the move acceleration is set implicitly to a default acceleration of 100 x 10°.

Note that all referencing movements are performed with the normal mode even if this property is
configured to SA_CTL_ACTUATOR_MODE_LOW_VIBRATION.

The default mode is SA_ CTL_ACTUATOR_MODE_NORMAL (0).

Valid Range

SA_CTL_ACTUATOR_MODE_NORMAL (0),
SA_CTL_ACTUATOR_MODE_QUIET (1),
SA_CTL_ACTUATOR_MODE_LOW_VIBRATION (2)

NOTICE

The low vibration actuator mode needs a feature permission to be activated on

the controller. See section 2.19 "Feature Permissions" for more information.

Example

SA_CTL_Result_t result;
int8_t channelldx = 0;
// configure the ‘quiet ‘' actuator mode for channel 0
result = SA_CTL_SetProperty_1i32(
dHandle,
channellIdx,
SA_CTL_PKEY_ACTUATOR_MODE,
SA_CTL_ACTUATOR_MODE_QUIET
)

See Also

4.4.15 Move Velocity, 4.4.16 Move Acceleration, 4.4.8 Move Mode, 4.4.2 Positioner Control Options

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.4.4 Control Loop Input

Definition
| coieLome e s |
SA_CTL_PKEY CONTROL_LOOP_INPUT 0x03020018 132

ASCll Command: [:PROPerty] : CHANnel#:CLINput

Description

This property specifies which signal is used as input for the control-loop. For the majority of appli-
cations this property will be set to SA_CTL_CONTROL_LOOP_INPUT_SENSOR, meaning the inte-
grated sensor of the positioner is used as feedback signal for the control-loop.

Nonetheless it is also possible to use external signals. E.g. an analog voltage derived from a force
sensor can be feed into an analog input of the MCS2 1/0 module to implement a force feedback
control for a gripper. Set this property to SA_CTI,_CONTROL_LOOP_INPUT_AUX_TIN to use one
of the auxiliary inputs as control-loop feedback. Please refer to section 2.16.5 "Using Analog Inputs
as Control-Loop Feedback" for more information on the auxiliary configuration.

In some cases it may be useful to prohibit the closed-loop operation of a channel. This can be
achieved by setting this property to SA_CTL_CONTROL_LOOP_INPUT_DISABLED.

A SA_CTL_ERROR_CONTROL_LOOP_INPUT_DISABLED error will be generated when trying to
command a closed-loop movement in this case.

The defaultinputis SA_CTL_CONTROL_LOOP_INPUT_SENSOR (1). This property is stored to non-
volatile memory and need not be configured on every power-up.

Valid Range

SA_CTL_CONTROL_LOOP_INPUT_DISABLED (0),
SA_CTL_CONTROL_LOOP_INPUT_SENSOR (1),
SA_CTL_CONTROL_LOOP_INPUT_AUX_IN(2)

Example

SA_CTL_Result_t result;
int8_t channelldx = 0;
// configure the sensor as input for the control-loop for channel 0
result = SA_CTL_SetProperty_132(
dHandle,
channellIdx,
SA_CTL_PKEY_CONTROL_LOOP_INPUT,
SA_CTL_CONTROL_LOOP_INPUT_SENSOR
)

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.4.5 Sensor Input Select

4.4.5 Sensor Input Select

Definition
| coieLome Lox s oo
SA_CTL_PKEY SENSOR_INPUT_ SELECT 0x0302009D 132

ASCll Command: [:PROPerty] : CHANnel#:CLINput

Description

This property specifies which sensor signal is used for the ‘sensor’ input of the control-loop input
mux. (See Control Loop Input property.) The property is only relevant if a SmarAct PicoScale laser
interferometer is connected as sensor module. The PicoScale calculation system can perform var-
ious calculations with different values of the device, in particular even from different channels.
The calculation system may then be used to generate a control-loop input signal for the MCS2
channel. Set this property to SA_CTL_SENSOR_INPUT_SELECT_CALC_SYS to configure the cal-
culation system. Please refer to section 2.10 "PicoScale Sensor Module" and figure 2.10 "Auxiliary
Input Configuration (per channel)" for more information.

The default inputis SA_CTL_SENSOR_INPUT_SELECT_POSITION (0). This property is stored to
non-volatile memory and need not be configured on every power-up.

Valid Range

SA_CTL_SENSOR_INPUT_SELECT_POSITION (0),
SA_CTL_SENSOR_INPUT_SELECT_CALC_SYS (1)

Example

SA_CTL_Result_t result;
int8_t channelldx = 0;
// configure the PSC calculation system as input
// for the control-loop for channel 0
result = SA_CTIL_SetProperty_132(
dHandle,
channelIdx,
SA_CTL_PKEY_SENSOR_INPUT_SELECT,
SA_CTL_SENSOR_INPUT_SELECT_CALC_SYS
)i

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.4.4 Control Loop Input

4.4.6 Positioner Type

Definition
| coie Lome x| oo
SA_CTL_PKEY POSITIONER_TYPE 0x0302003C 132

ASCll Command: [:PROPerty] :CHANnel#:PTYPe[:CODE]

Description

This property is used to tell the channel what type of positioner is connected. The type implic-
itly gives the controller information about how to calculate positions, handle the referencing and
configure the control-loop.

Each channel stores this setting to non-volatile memory. Consequently, there is no need to set
this property on every initialization. If the positioner type of a channel is changed, the positioner
is stopped implicitly. Furthermore the calibration becomes invalid and the physical position be-
comes unknown. (The Channel State bits SA_CTL_CH_STATE_BIT_IS_CALIBRATED and
SA_CTL_CH_STATE_BIT_IS_REFERENCED are reset to zero.)

Note that SA_CTL_Calibrate must be called to ensure proper operation of the positioner if the
positioner type was changed.

See section 2.5 "Positioner Types" for more information on positioner types.

Valid Range

Please refer to the MCS2 Positioner Types document for a list of valid positioner type codes.
Example

// set the positioner type ‘SLxS1SS‘' (type code 300) for channel 0
result = SA_CTIL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY POSITIONER_TYPE, 300
)

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.4.7 Positioner Type Name

Definition
| cose L pe Lo e | oo
SA_CTL_PKEY POSITIONER_TYPE NAME 0x0302003D String Ch R

ASCIl Command: [:PROPerty] : CHANnel#:PTYPe :NAME

Description

This property holds a descriptive name of the configured positioner type. The positioner type
name is a null terminated string. Note that the name is read-only.

Example

SA_CTL_Result_t result;
char name[SA_CTL_STRING_MAX_ LENGTH];
size_t ioStringSize = sizeof (name);
result = SA_CTL_GetProperty_s(
dHandle, 0, SA_CTL_PKEY_ POSITIONER_TYPE_NAME, name, &ioStringSize
)i
if (result == SA_CTL_ERROR_NONE) ({
// ’‘name’ holds the name of the configured positioner type

See Also

4.4.6 Positioner Type

4.4.8 Move Mode

Definition
N 7 [=
SA_CTL_PKEY_ MOVE_MODE 0x03050087 132

ASCll Command: [:PROPerty] : CHANnel# :MMODe

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Description

This property specifies which movement mode is used when commanding a positioner movement
using SA_CTL_Move. Depending on the configured move mode the move value parameter of the
SA_CTL_Move function is interpreted differently. See section 2.6.3 "Open-Loop Movements" and
2.6.4 "Closed-Loop Movements" for a description of all related properties for the different move
modes.

The default mode is SA_CTIL_MOVE_MODE_CL_ABSOLUTE (0).

Valid Range

SA_CTL_MOVE_MODE_CL_ABSOLUTE (0),
SA_CTL_MOVE_MODE_CL_RELATIVE (1),
SA_CTL_MOVE_MODE_SCAN_ABSOLUTE(2),
SA_CTL_MOVE_MODE_SCAN_RELATIVE(3),
SA_CTL_MOVE_MODE_STEP (4)

Example

SA_CTL_Result_t result;
int8_t channelldx = 0;
// configure an open-loop step movement with full amplitude at 2kHz
result = SA_CTL_SetProperty_132(

dHandle, channelIdx, SA_CTL_PKEY_MOVE_MODE, SA_CTIL_MOVE_MODE_STEP
)
if (result) {// handle error, abort}
result = SA_CTL_SetProperty_132(

dHandle, channelIdx, SA_CTL_PKEY_ STEP_AMPLITUDE, 65535
)
if (result) {// handle error, abort}
result = SA_CTL_SetProperty_132(

dHandle, channelIdx, SA_CTL_PKEY_STEP_FREQUENCY, 2000
)i
if (result == SA_CTL_ERROR_NONE) ({

// perform 100 steps

result = SA_CTL_Move (

dHandle, channellIdx, 100
)

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.4.9 Channel State

Definition
I) 7))
SA_CTL_PKEY CHANNEL_STATE 0x0305000F 32

ASCIl Command: [:PROPerty] :CHANnel#:STATe

Description

This property holds the channel state. The value is a bit field containing independent flags. Their
meaning is described in section 2.8.3 "Channel State Flags".

Undefined flags are reserved for future use. Therefore, the user software should not rely on a
static value of undefined flags.

Example

SA_CTL_Result_t result;

int8_t channelldx = 0;

int32_t state;

result = SA_CTL_GetProperty_132(
dHandle, channelldx, SA_CTL_PKEY CHANNEL_STATE, &state

)

if (result == SA_CTL_ERROR_NONE) {
// use bit masking to determine the channels movement state
if ((state & (SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING |

SA_CTL_CH_STATE_BIT_CLOSED_LOOP_ACTIVE)) == 0) {
// positioner is stopped

See Also

4.2.3 Device State, 4.3.2 Module State

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.4.10 Position

Definition
e Lo e Lo i
SA_CTL_PKEY POSITION 0x0305001D |64

ASCll Command: [:PROPerty] : CHANnel#:POSition[:CURRent]

Description

This property holds the current position of a positioner. Note that it can only be used for posi-
tioners that have a sensor attached to it. To determine if a sensor is present the Channel State bit
SA_CTL_CH_STATE_BIT_SENSOR_PRESENT may be polled.

The interpretation of the read position value depends on the configured positioner type. The unit
is pico meter (pm) for linear positioners and nano degree (n°) for rotatory positioners.

Read the Positioner Base Unit property to distinguish between linear and rotatory positioner type.

Valid Range

-100 x 10"%...100 x 10'? pm or n°.
Example

SA_CTL_Result_t result;
int64_t position;
result = SA_CTL_GetProperty_164 (
dHandle, 0, SA_CTL_PKEY_POSITION, &position
)i
if (result == SA_CTL_ERROR_NONE) ({
// ‘position' holds the current position of channel 0

}

See Also

4.8.3 Positioner Base Unit, 4.8.4 Positioner Base Resolution

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.4.11 Target Position

Definition
e Lo e L L6
SA_CTL_PKEY TARGET POSITION 0x0305001E 164

ASCll Command: [:PROPerty] : CHANnel#:POSition:TARGet

Description

This property holds the target position of a positioner.

See Also

4.4.10 Position

4.4.12 Scan Position

Definition
| coie Lome Lox s o
SA_CTL_PKEY SCAN POSITION 0x0305001F 164

ASCll Command: [:PROPerty] : CHANnel#:POSition:SCAN

Description
This property holds the current scan position of a positioner. The scan position represents the
voltage level that is currently applied to the piezo element of a positioner.

This property is mainly of interest when using the SA_CTL_MOVE_MODE_SCAN_ABSOLUTE and
SA_CTL_MOVE_MODE_SCAN_RELATIVE Move Modes, since these modes are used to control the
scan position.

The scan position is given in 16-bit increments from 0 ...65 535, where 0 corresponds to 0V and
65535 to 100 V.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Example

SA_CTL_Result_t result;
int64_t position;
result = SA_CTL_GetProperty_164(
dHandle, 0, SA_CTL_PKEY_SCAN_POSITION, &position
)i
if (result == SA_CTL_ERROR_NONE) {
// ‘position' holds the current scan position of channel 0

}

See Also

4.4.13 Scan Velocity, 4.4.8 Move Mode

4.4.13 Scan Velocity

Definition
| ceie L e Lo 6
SA_CTL_PKEY SCAN_VELOCITY 0x0305002A 164

ASCll Command: [:PROPerty] : CHANnel#:SCAN:VELocity

Description

This property specifies the scan velocity of a positioner. The scan velocity is given in 16-bit in-
crements per second. With a value of 1 a scan over the full range from 0 to 65535 takes 65535
seconds while at maximum velocity the scan is performed in one micro second.

To perform a scan movement via the SA_CTL_Move function, the Move Mode property must be
setto SA_CTL_MOVE_MODE_SCAN_ABSOLUTE or SA_CTL_MOVE_MODE_SCAN_RELATIVE first.

The default value is 65 535.

Valid Range

..65535000000

MCS2 Programmer’s Guide 2

4 PROPERTY REFERENCE

Example

// set the scan velocity for channel 0
// (full range scan in 1 second)
result = SA_CTL_SetProperty_164 (
dHandle, 0, SA_CTL_PKEY_SCAN_VELOCITY, 65535
)i

See Also

4.4.12 Scan Position, 4.4.8 Move Mode

4.4.14 Hold Time

Definition
| coie L ome Lo s o
SA_ CTL_PKEY HOLD_ TIME 0x03050028 132

ASCll Command: [:PROPerty] :CHANnel#:HOLDtime

Description

This property specifies how long (in ms) the position is actively held after reaching the target posi-
tion. After the hold time elapsed the channel is stopped.

The Channel State bit SA_ CTL_CH_STATE_BIT CLOSED_LOOP_ACTIVE will be read as one as
long as the the position is actively held.

A value of 0 deactivates this feature, a value of SA_ CTL_INFINITE (Oxffffffff)setsthe chan-
nel to infinite holding. (until manually stopped with SA_CTL_Stop).

Note that the end stop detection is still active in holding state. If a positioner is moved away from
the target position by external forces and the channel is not able to hold the target position for a
longer time an end stop is triggered. A SA_CTL_EVENT_HOLDING_ABORTED event is generated
to notify about this and the channel is stopped.

The default hold time is SA_ CTL_INFINITE.

Valid Range

0...0xffffffff

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Example

// set hold time for channel 0 to infinite holding
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_HOLD_TIME, SA_CTL_INFINITE
)i

See Also

4.4.8 Move Mode

4.4.15 Move Velocity

Definition
| coieLome Lox s |6
SA_CTL_PKEY MOVE_VELOCITY 0x03050029 164

ASCll Command: [:PROPerty] :CHANnel#:VELocity

Description

This property specifies the velocity of a positioner for closed-loop movement commands. The
value is given in pms™ for linear positioners and in n°s™" for rotary positioners. If a velocity > 0 is
configured, all following closed-loop movement commands will be executed with velocity control.

Note that the channel will not drive the positioner with frequencies above the maximum allowed
frequency (see Max Closed Loop Frequency). If the maximum frequency is set too low for a certain
velocity, then the velocity might not be reached or held since the driver will cap at the maximum
driving frequency. In this case increase the maximum frequency.

Note that the move velocity also applies to movements executed during the find reference se-
guence (see SA_CTL_Reference).

The default value is 0, meaning that the velocity control is inactive. In this state the behavior of
closed-loop commands is influenced by the maximum driving frequency (see Max Closed Loop
Frequency).

Itis not allowed to enable or disable the velocity control during an ongoing movement. In that case
a SA_CTL_ERROR_BUSY_MOVING error is returned. Anyway, modifying the velocity of an ongoing
movement is possible.

Valid Range

0...100 x 10°

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Example

// enable velocity control by configuring Imm/s for channel 0
result = SA_CTL_SetProperty_164 (

dHandle, 0, SA_CTL_PKEY_MOVE_VELOCITY, 1le?9
)i

See Also

4.4.16 Move Acceleration, 4.4.8 Move Mode, 4.4.17 Max Closed Loop Frequency

4.4.16 Move Acceleration

Definition
| coieLome Lox s |6
SA_CTL_PKEY MOVE_ACCELERATION 0x0305002B 164

ASCIl Command: [:PROPerty] : CHANnel#:ACCeleration

Description

This property specifies the acceleration of a positioner for closed-loop movement commands. The
value is given in pm s~ for linear positioner and in n° s for rotary positioners. If an acceleration >
0 is configured, all following closed-loop movement commands will be executed with acceleration
control. The acceleration control requires the velocity control to be enabled (Move Velocity > 0).

Note that the move acceleration also applies to movements executed during the find reference
sequence (see SA_CTL_Reference).

The default value is 0, meaning that the acceleration control is inactive.

It is not allowed to enable or disable the acceleration control during an ongoing movement. In that
case a SA_CTL_ERROR_BUSY_MOVING error is returned. Anyway, modifying the acceleration of
an ongoing movement is possible.

NOTICE

For closed-loop movements with enabled acceleration control a SA_CTL_Stop

command instructs the positioner to come to a halt by decelerating to zero ve-
locity. A second "stop" command triggers a hard stop.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Valid Range

0...10 x 10"

Example

// enable acceleration control by configuring lmm/s2 for channel 0
result = SA_CTL_SetProperty_164 (

dHandle, 0, SA_CTL_PKEY_MOVE_ACCELERATION, 1le9
)i

See Also

4.4.15 Move Velocity, 4.4.8 Move Mode

4.4.17 Max Closed Loop Frequency

Definition
| coieLome Lox s o
SA_CTL_PKEY MAX CL_FREQUENCY 0x0305002F 132

ASCll Command: [:PROPerty] :CHANnel#:MCLFrequency [: CURRent]

Description

This property specifies the maximum frequency that the positioner is driven with when issuing
closed-loop movement commands.

The maximum allowed frequency depends on the actual positioner as well as the environment.
(E.g. HV and UHV environment requires lower allowed frequencies.)

This property is not held in non-volatile memory but the default value at device startup is config-
urable (see Default Max Closed Loop Frequency).

Valid Range

50...20000Hz

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Example

// set maximum closed—-loop frequency to 3kHz for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_MAX_CL_FREQUENCY, 3000
)i

See Also

4.4.18 Default Max Closed Loop Frequency

4.4.18 Default Max Closed Loop Frequency

Definition
| coieLome Lox s oo
SA_CTL_PKEY DEFAULT_MAX CL_FREQUENCY 0x03050057 132

ASCIl Command: [:PROPerty] :CHANnel#:MCLFrequency:DEFault

Description

This property specifies the default value at device startup for the maximum closed-loop frequency.

Valid Range

50...20000 Hz
Example

// set default maximum closed-loop frequency
// at start up to 6kHz for channel 0
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_DEFAULT_MAX_ CL_FREQUENCY, 6000
)i

See Also

4.4.17 Max Closed Loop Frequency

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.4.19 Step Frequency

Definition
e Lo e Lo i
SA_CTL_PKEY STEP_FREQUENCY 0x0305002E 132

ASCIl Command: [:PROPerty] :CHANnel#:STEP :FREQuency

Description
This property specifies the frequency in Hz that open-loop steps are performed with. To perform
open-loop steps by using the SA_CTL_Move function, the Move Mode property must be set to

SA_CTL_MOVE_MODE_STEP first. See section 2.6.3 "Open-Loop Movements" for more informa-
tion.

The default frequency is 1000 Hz.

Valid Range

..20000Hz

Example

// set the step frequency to lkHz for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_ STEP_FREQUENCY, 1000
)i

See Also

4.4.20 Step Amplitude, 4.4.8 Move Mode

4.4.20 Step Amplitude

Definition
BT
SA_CTL_PKEY STEP AMPLITUDE 0x03050030 132

ASCIl Command: [:PROPerty] : CHANnel#:STEP:AMPLitude

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Description

This property specifies the amplitude that open-loop steps are performed with. The Move Mode
property must be set to SA_CTL_MOVE_MODE_STEP first, before open-loop steps may be per-
formed with the SA_CTL_Move function. See section 2.6.3 "Open-Loop Movements" for more
information.

Lower amplitude values result in a smaller step width. The step amplitude is a 16bit value from 1
..65535, where 65535 corresponds to 100 V.

The default amplitude is 65535 (100 V).

Valid Range

..65535

Example

// set the step amplitude to maximum (100V) for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_ _STEP_AMPLITUDE, 65535
)

See Also

4.4.19 Step Frequency, 4.4.8 Move Mode

4.4.21 Following Error Limit

Definition
BT ED
SA_CTL_PKEY FOLLOWING_ERROR_LIMIT 0x03050055 |64

ASCll Command: [:PROPerty] :CHANnel#:FELimit

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Description
This property specifies the limit for the following error detection. The value is given in pm for linear

positioners and in n° for rotary positioners. Setting the following error limit to zero disables the
detection. Please refer to section 2.11 "Following Error Detection" for more information.

This property is stored to non-volatile memory and need not be configured on every power-up.
The default value is 0 (disabled).

Valid Range

0...100 x 102
Example

// set following error limit to 100um for channel 0
result = SA_CTIL_SetProperty_164 (
dHandle, 0, SA_CTL_PKEY_ FOLLOWING_ERROR_LIMIT, 100000000

)i

See Also

4.4.2 Positioner Control Options, 4.4.15 Move Velocity

4.4.22 Broadcast Stop Options

Definition

I S N T 0)

SA_CTL_PKEY_ BROADCAST_STOP_OPTIONS 0x0305005D 132

ASCll Command: [:PROPerty] : CHANnel#:BSTop:0PTions

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Description

This property specifies the behavior of a broadcast stop of a channel. It is typically useful when
multiple channels are moving simultaneously and an end stop (or range limit) on one channel
should cause a halt on all other channels. Please refer to section 2.13 "Stop Broadcasting" for
more information.

The value is a bit field containing independent flags with the following meaning:

] I short Description

0 SA_CTL _STOP_OPT_BIT_END_STOP_REACHED Broadcast stop command if a me-
chanical end stop was detected.

1 SA_CTL_STOP_OPT_BIT_RANGE_LIMIT_REACHED Broadcast stop command if a range
limit was reached.

2 SA_CTI_STOP_OPT_BIT_FOLLOWING_LIMIT_REACHED Broadcast stop command if a follow-
ing error limit was exceeded.

Undefined flags are unused but might get a meaning in future updates. Undefined flags should
be set to zero.

The default value is 0.
Example

// enable stop broadcasting of channel 0 for end stops and range limits
result = SA_CTL_SetProperty_132(
dHandle,
0 ’
SA_CTL_PKEY_BROADCAST_STOP_OPTIONS,
(SA_CTL_STOP_OPT_BIT_END_STOP_REACHED |
SA_CTL_STOP_OPT_BIT RANGE_LIMIT_ REACHED)

4.4.23 Sensor Power Mode

Definition
| coie L me Lo s o
SA_CTL_PKEY SENSOR_POWER MODE 0x03080019 132

ASCIl Command: [:PROPerty] : CHANnel#:SENSor:PMODe

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Description
This property specifies the sensor power mode. It may be used to activate or deactivate the sensor
that is attached to the positioner. It effectively turns the power supply of the sensor on or off.

Please refer to section 2.9 "Sensor Power Modes" for more information on the sensor power
modes.

This property is stored to non-volatile memory and need not be configured on every power-up.

The following sensor power modes are available:

Gmial 0 BEse] Short Description

0 SA_CTL_SENSOR_MODE_DISABLED The sensor power supply is turned off con-
tinuously.

1 SA_CTL_SENSOR_MODE_ENABLED The sensor is continuously supplied with
power.

2 SA_CTL_SENSOR_MODE_POWER_SAVE The sensor power supply is pulsed to keep

the heat generation low.

Example

// set power save mode for the sensor of channel 0
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_SENSOR_POWER_MODE, SA_CTL_SENSOR_MODE_POWER_SAVE

)i

See Also

4.4.24 Sensor Power Save Delay

4.4.24 Sensor Power Save Delay

Definition

[e | e Joefeefoesfe

SA_CTL_PKEY_SENSOR_POWER_SAVE_DELAY 0x03080054 132

ASCll Command: [:PROPerty] : CHANnel#:SENSor:PSDelay

MCS2 Programmer’s Guide _

4 PROPERTY REFERENCE

Description

This property specifies the time in ms before the channel disables the sensor after a movement
has finished. It has no meaning if the Sensor Power Mode is not configured to power save mode.
In power save mode the sensor is disabled most of the time. Before a movement can be started
it must be enabled by the channel to keep track of the current position. Once the movement has
finished the sensor can be disabled again. The sensor power save delay configures an additional
delay before the sensor power is disabled. If a new movement is started while this delay is run-
ning, the sensor is still enabled and the movement can be started directly. Since it takes a few
milliseconds to enable the sensor, this setting may be used to optimize the timing of a movement
sequence.

Please refer to section 2.9 "Sensor Power Modes" for more information on the sensor power save
mode.

This property is stored to non-volatile memory and need not be configured on every power-up.
The default value is 100 ms.

Valid Range

0...5000

Example

// set power save delay for the sensor of channel 0 to 200 ms
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_ SENSOR_POWER_SAVE_DELAY, 200
)i

See Also

4.4.23 Sensor Power Mode

4.4.25 Position Mean Shift

Definition
| coieLome Lox s oo
SA_CTL_PKEY POSITION MEAN SHIFT 0x03090022 132

ASCIl Command: [:PROPerty] : CHANnel#:POSition:MSHift

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Description

This property specifies the filter averaging factor for the position mean filter. The averaging factor
must be set as a left-shift value by a power of two. Thus the resulting averaging factor may be
calculated by the formula: factor = 2meanshift,

This property is stored to non-volatile memory and need not be configured on every power-up.
The default value is 5 (32-fold position averaging).

Valid Range

0...7

Example

// set position mean filter to 0 (disabled) for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY POSITION_MEAN_SHIFT, O
)

4.4.26 Safe Direction

Definition
| coieLome Lox s o
SA_CTL_PKEY SAFE DIRECTION 0x03090027 132

ASCll Command: [:PROPerty] : CHANnel#:SDIRection

Description

This property specifies the safe direction used for calibration and referencing of positioner types
that are referenced via a mechanical end stop.

Some positioners are not equipped with a physical reference mark. For these positioners a me-
chanical end stop is used as a reference point when calling SA_CTL_Reference. Which end stop
is used is configured by the safe direction as well as the current Logical Scale Inversion. This should
be the direction in which the positioner may safely move without endangering the physical setup
of your manipulator system. Since the end stop must be calibrated before it can be properly used
as a reference point, the direction settings also affect the behavior of SA_CTI,_Calibrate. Po-
sitioners that are referenced via an end stop also move to the configured end stop as part of the
calibration routine. This movement will use the configured Move Velocity and Move Acceleration.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Please note that the SA_CTI,_Reference and SA_CTI_Calibrate functions will ignore their
configured start directions for positioners that are referenced via a mechanical end stop and will
implicitly use the direction configured by the safe direction and Logical Scale Inversion instead.
Please refer to the MCS2 Positioner Types document for a list of available positioner types and their
reference marks.

Note that when changing the safe direction the positioner must be calibrated again for proper
operation.

This property is stored to non-volatile memory and need not be configured on every power-up.

Valid Range

SA_CTL_FORWARD_DIRECTION (0x00), SA_CTL_BACKWARD_DIRECTION (0x01)

Example

// set safe direction to forward for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_ SAFE_DIRECTION, SA_CTL_FORWARD_DIRECTION
)i

4.4.27 Control Loop Input Sensor Value

Definition
BT ED
SA_CTL_PKEY CL_INPUT_ SENSOR_VALUE 0x0302001D |64

ASCll Command: [:PROPerty] : CHANnel#:CLINput :SENSor[:VALue]

Description

This property always returns the ‘sensor’ value regardless of the configured control-loop input.
Note that an error is returned if no sensor module or no sensor is present. Please refer to section
2.16.5 "Using Analog Inputs as Control-Loop Feedback" for more information.

Example

SA_CTL_Result_t result;
int64_t wval;
result = SA_CTL_GetProperty_164(

MCS2 Programmer’s Guide N

4 PROPERTY REFERENCE

dHandle, 0, SA_CTL_PKEY_CIL_INPUT_SENSOR_VALUE, &val
)
if (result == SA_CTL_ERROR_NONE) {
// ‘val' holds the current sensor position of channel 0

See Also

4.4.28 Control Loop Input Aux Value

4.4.28 Control Loop Input Aux Value

Definition
| coieLme Lo e o
SA_CTL_PKEY CL_INPUT AUX VALUE 0x030200B2 164

ASCIl Command: [:PROPerty] : CHANnel#:CLINput:AUXiliary[:VALue]

Description

This property always returns the ‘auxiliary input’ value regardless of the configured control-loop
input. Note that an error is returned if no sensor module or no I/0 module is available (depending
on the configured Aux Input Select property). Please refer to section 2.16.5 "Using Analog Inputs
as Control-Loop Feedback" for more information on using auxiliary inputs.

Example

SA_CTL_Result_t result;
int64_t wval;
result = SA_CTL_GetProperty_164 (
dHandle, 0, SA_CTL_PKEY_CL_INPUT_AUX_VALUE, &val
)
if (result == SA_CTL_ERROR_NONE) {
// ‘val' holds the auxiliary input value of channel 0

See Also

4.4.27 Control Loop Input Sensor Value

MCS2 Programmer’s Guide 171 _

4 PROPERTY REFERENCE

4.4.29 Target To Zero Voltage Hold Threshold

Definition

I S T T T)

SA_CTL_PKEY_TARGET_TO_ZERO_VOLTAGE_HOLD_TH 0x030200B9 32

ASCll Command: [:PROPerty] : CHANnel#:TTZVoltage:THReshold[:HOLD]

Description

This property specifies the hold threshold in pm or n° for the target-to-zero-voltage feature. The
threshold defines the maximum allowed remaining position error (distance to the target position)
for the sequence to terminate. As a guiding value the threshold should be in the range of about
ten times the target reached threshold of the configured positioner type but could be also much
lower in the particular case. If the threshold is too low the sequence will not terminate.

If a Hold Time is specified the sequence is repeated whenever the difference between current
position and target position exceeds the configured threshold. After the hold time elapsed the
last sequence is still finished and the channel is stopped.

Note that the target-to-zero-voltage feature must be enabled by setting the
SA_CTL_POS_CTRL_OPT_BIT_TARGET_TO_ZERO_VOLTAGE flag of the Positioner Control Op-
tions property. It has no meaning if the target-to-zero-voltage feature is disabled. If this property
is set to 0 the hold threshold value is derived from the Positioner Target Reached Threshold pa-
rameter of the configured positioner type.

This property is stored to non-volatile memory and need not be configured on every power-up.
The default value is 0.

Please refer to section 2.6.4 "Closed-Loop Movements" for more information on the target-to-zero-
voltage feature.

Valid Range

0...10 x 106,
Example

// set the target to zero voltage hold threshold to 25nm for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_ TARGET_TO_ZERO_VOLTAGE_HOLD_TH, 25000
)

MCS2 Programmer’s Guide iz

4 PROPERTY REFERENCE

See Also

4.4.2 Positioner Control Options

4.5 Scale Properties

4.5.1 Logical Scale Offset

Definition
| coieLme Lo s o
SA_CTL_PKEY LOGICAL_SCALE_OFFSET 0x02040024 164

ASCIl Command: [:PROPerty] :CHANnel#:LSCale:0OFFset

Description

This property specifies the logical scale offset. The value is given in pm for linear positioners
and in n° for rotary positioners. It is used to define the relation between the physical and the
logical scale. The logical scale offset can be set directly with this property but is also updated by
setting the Position property. Please refer to section 2.7.5 "Shifting the Measuring Scale" for more
information on defining positions.

This property is stored to non-volatile memory. The default value is 0.
Valid Range

-100 x 10" ...100 x 102
Example

// set the scale shift of channel 0 to +Imm relative
// to the physical scale
result = SA_CTL_SetProperty_164 (

dHandle, 0, SA_CTL_PKEY_ LOGICAL_SCALE_OFFSET, 1le9
)

See Also

4.5.2 Logical Scale Inversion

MCS2 Programmer’s Guide 173

4 PROPERTY REFERENCE

4.5.2 Logical Scale Inversion

Definition

I S I T 0)

SA_CTL_PKEY_LOGICAL_SCALE_INVERSION 0x02040025 132

ASCll Command: [:PROPerty] :CHANnel#:LSCale:INVersion

Description

This property specifies the logical scale inversion. It is used to define the count direction of the
logical scale relative to the physical scale. Note that the scale inversion should be defined before
the absolute position is determined with the SA_CTL_Reference function.

Further note that only the logical scale will be inverted. The Safe Direction setting will not be
changed. Thus Positioners With Endstop Reference will move in the opposite direction when exe-
cuting SA_CTL_Calibrate or SA_CTL_Reference.

Please refer to section 2.7.5 "Shifting the Measuring Scale" for more information on defining posi-
tions.

This property is stored to non-volatile memory. The default value is SA_CTL_NON_INVERTED
(0x00).

Valid Range

SA_CTL_NON_INVERTED (0x00), SA_CTL_INVERTED (0x01)
Example

// enable the scale inversion for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY LOGICAL_SCALE_INVERSION, SA_CTL_INVERTED
)i

See Also

4.5.1 Logical Scale Offset

MCS2 Programmer’s Guide 174 _

4 PROPERTY REFERENCE

4.5.3 Range Limit Min

Definition
e Lo e Lo i
SA_CTIL_PKEY RANGE_LIMIT MIN 0x02040020 164

ASCll Command: [:PROPerty] : CHANnel#:RLIMit :MIN

Description

This property specifies the software range limit minimum position. Note that the Range Limit Max
must be set to a higher value than the Range Limit Min to enable the limit check.

Please refer to section 2.12 "Software Range Limit" for more information on software range limits.
The default value is 0.

Valid Range

-100 x 10"2...100 x 10'?

Example

// set the min range limit to —-10mm for channel 0
result = SA_CTL_SetProperty_164 (

dHandle, 0, SA_CTL_PKEY_RANGE_LIMIT_MIN, -10000000000
)

See Also

4.5.4 Range Limit Max

4.5.4 Range Limit Max

Definition
| coieLome Lox s oo
SA_CTL_PKEY RANGE LIMIT MAX 0x02040021 164

ASCIl Command: [:PROPerty] : CHANnel#:RLIMit :MAX

MCS2 Programmer’s Guide _

4 PROPERTY REFERENCE

Description

This property specifies the software range limit maximum position. Note that the Range Limit Max
must be set to a higher value than the Range Limit Min to enable the limit check.

Please refer to section 2.12 "Software Range Limit" for more information on software range limits.

The default value is 0.

Valid Range

-100 x 10"2...100 x 10'?
Example

// set the max range limit to +10mm for channel 0
result = SA_CTL_SetProperty_164 (
dHandle, 0, SA_CTL_PKEY_RANGE_LIMIT_MAX, 10000000000

)i

See Also

4.5.3 Range Limit Min

4.6 Calibration Properties

4.6.1 Calibration Options

Definition
| coieLome Lo s o
SA_CTL_PKEY CALIBRATION_OPTIONS 0x0306005D 132

ASCIl Command: [:PROPerty] :CHANnel#:CALibration:0PTions

MCS2 Programmer’s Guide _

4 PROPERTY REFERENCE

Description

This property specifies the calibration options. It is used to define the behavior of the calibration
routine when calling the SA_CTI,_Calibrate function.

The value is a bit field containing independent flags. Please refer to section 2.6.1 "Calibrating" for
more information on the calibration sequence. Undefined flags are reserved for future use. These
flags should be set to zero.

The default value is 0 (all flags cleared).

Example

SA_CTL_Result_t result;
int8_t channelldx = 1;
// set calibration options of channel 1 (signal correction sequence)
result = SA_CTL_SetProperty_132(
dHandle, channelIdx, SA_CTL_PKEY_ CALIBRATION_OPTIONS, O
)
if (result == SA_CTL_ERROR_NONE) {
// start signal correction calibration sequence
result = SA_CTL_Calibrate (dHandle, channelIdx, 0);

4.6.2 Signal Correction Options

Definition
| ceie Lo i Lo [
SA_CTL_PKEY_ SIGNAL_CORRECTION_OPTIONS 0x0306001C 132

ASCll Command: [:PROPerty] : CHANnel#:SCORrection:0OPTions

Description

This property specifies the sensor signal correction options. The value is a bit field containing
independent flags with the following meaning:

MCS2 Programmer’s Guide 177 _

4 PROPERTY REFERENCE

I = Short Description

0 Reserved This bit is reserved and always read as one.

1 Dynamic Amplitude Error Correction Enables the dynamic sensor amplitude error
correction.

2 Reserved This bit is reserved and always read as one.

3 Dynamic Phase Error Correction Enables the dynamic sensor phase error cor-
rection.

4 Advanced Sensor Correction Enables the advanced signal correction fea-
ture.

5..31 Reserved These bits are reserved for future use.

This property is stored to non-volatile memory. The default value is 0xOf (15) with means that the
amplitude and phase error corrections are active.

Disabling the Dynamic Amplitude and Phase Error Correction might be useful for some spe-
cial applications to achieve a higher position repeatability with the trade-off off a lower absolute
position accuracy.

The Advanced Sensor Correction allows to compensate periodic sensor errors. The correction
requires an additional calibration routine which must be performed once for every channel. This
routine generates a compensation table for the sensor data which is applied to the position cal-
culation if the SA_CTL_SIGNAL_CORR_OPT_BIT_ASC (bit 4) flag is set to one. See section 2.6.1
"Advanced Sensor Correction Calibration (calibration options 0x04 or 0x05)" for the details on the
calibration routine.

NOTICE

The advanced sensor correction needs a feature permission to be activated on

the controller. See section 2.19 "Feature Permissions" for more information.

Example

// disable the dynamic amplitude and phase error correction for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_SIGNAL_CORRECTION_OPTIONS, O
)

MCS2 Programmer’s Guide 173 @

4 PROPERTY REFERENCE

4.7 Referencing Properties

4.7.1 Referencing Options

Definition
| coie L ome Lo e o
SA_CTL_PKEY REFERENCING_OPTIONS 0x0307005D 132

ASCIl Command: [:PROPerty] :CHANnel#:REFerencing:0PTions

Description

This property specifies the find reference mode. It is used to define the behavior of the find
reference routine when calling the SA_CTL_Reference function.

Note that the find reference sequence is also influenced by the Move Velocity and Move Accelera-
tion properties (see there).

The value is a bit field containing independent flags. Please refer to section 2.7.1 "Reference
Marks" for more information on the find reference sequence.

Undefined flags are reserved for future use. These flags should be set to zero.

The default mode is 0 (all flags cleared).
Example

SA_CTL_Result_t result;
int8_t channelldx = 2;
// set find reference mode of channel 2 (start direction: backwards)
result = SA_CTL_SetProperty_132(
dHandle,
channelIdx,
SA_CTL_PKEY_ REFERENCING_OPTIONS,
SA_CTL_REF_OPT_BIT_ START_DIR
)i
if (result) {// handle error, abort}
// set velocity to lmm/s
result = SA_CTL_SetProperty_164(
dHandle, channelIdx, SA_CTL_PKEY_MOVE_VELOCITY, le9
)i
if (result) {// handle error, abort}
// disable acceleration control
result = SA_CTL_SetProperty_164(
dHandle, channelIdx, SA_CTL_PKEY_ MOVE_ACCELERATION, O
)i
if (result == SA_CTL_ERROR_NONE) {

MCS2 Programmer’s Guide iy

4 PROPERTY REFERENCE

// start searching for the reference with the previously
// set parameters
result = SA_CTL_Reference (dHandle, channellIdx, 0);

4.7.2 Distance To Reference Mark

Definition
| coieLme Lo s o
SA_CTL_PKEY DISTANCE TO_REF_MARK 0x030700A2 164

ASCll Command: [:PROPerty] :CHANnel#:REFerencing:DTRMark

Description

This property holds the distance between the start of a referencing movement and the reference
mark. Note that the position of the reference mark is not necessarily the position where the po-
sitioner comes to halt. The behavior depends on the Referencing Options. See section 2.6.2 "Ref-
erencing" for more information. The value is updated whenever a referencing sequence finished.
The unit is pico meter (pm) for linear positioners and nano degree (n°) for rotatory positioners.

See Also

4.7.1 Referencing Options

4.7.3 Distance Code Inverted

Definition
| coieLome Lo s o
SA_CTL_PKEY DIST CODE_INVERTED 0x0307000E 132

ASCIl Command: [:PROPerty] : CHANnel#:REFerencing:DCINverted

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Description

This property is used to correct the absolute position calculation when referencing positioners
with multiple reference marks. In rare cases the reference algorithm may produce faulty results
due to a reference coding mismatch. The correct setting is determined by an automatic calibration
routine, thus it is usually not necessary to manually modify this property.

This property is stored to non-volatile memory and need not be configured on every power-up.

See section 2.6.1 "Calibrating" for more information.

Valid Range

SA_CTL_NON_INVERTED (0x00), SA_CTL_INVERTED (0x01)

4.8 Tuning and Customizing Properties

4.8.1 Positioner Movement Type

Definition
| coieLme Lo s o
SA_CTL_PKEY POS_MOVEMENT TYPE 0x0309003F 132 Ch R(W)

ASCIl Command: [:PROPerty] : CHANnel#:TUNing:MTYPe

Description

This property holds the positioner movement type. It may be used to determine the type of posi-
tioner (linear, rotatory, goniometer or tip-tilt) that is configured for the channel. This property has
informational character only.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Valid Range

SA_CTL_POS_MOVEMENT_TYPE_LINEAR (0),
SA_CTL_POS_MOVEMENT_TYPE_ROTATORY (1),
SA_CTL_POS_MOVEMENT_TYPE_GONIOMETER (2),
SA_CTL_POS_MOVEMENT_TYPE_TIP_TILT (3)

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Example

SA_CTL_Result_t result;
int32_t type;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_POS_MOVEMENT_TYPE, &type
)i
if (result == SA_CTL_ERROR_NONE) {
if (type == SA_CTL_POS_MOVEMENT_TYPE_GONIOMETER) {
// goniometer type configured

See Also

4.8.3 Positioner Base Unit, 4.8.4 Positioner Base Resolution

4.8.2 Positioner Is Custom Type

Definition
| coie Lome Lo s o
SA_CTL_PKEY POS_IS CUSTOM TYPE 0x03090041 132

ASCIl Command: [:PROPerty] : CHANnel#:TUNing:CUSTom

Description

This property may be used to determine if the currently configured positioner type is a custom
type.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Example

SA_CTL_Result_t result;
int32_t custom;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_ POS_IS_CUSTOM_TYPE, &custom

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

)i

if (result == SA_CTL_ERROR_NONE) ({
if (custom) // custom positioner type configured
else // predefined positioner type configured

See Also

4.4.6 Positioner Type

4.8.3 Positioner Base Unit

Definition
| coieLome Lo s o
SA_CTL_PKEY POS_BASE_UNIT 0x03090042 132 Ch R(W)

ASCll Command: [:PROPerty] :CHANnel#:TUNing:BASE:UNIT

Description

This property holds the basic unit of the position values a channel uses. (e.g. meter, degree). Note
that this property has informational character only. Setting it to a different value wont influence
the position calculation.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Valid Range

SA_CTL_UNIT_METER (0x00000002), SA_CTL_UNIT DEGREE (0x00000003)
Example

SA_CTL_Result_t result;
int32_t unit;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_POS_BASE_UNIT, &unit
)

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

if (result == SA_CTL_ERROR_NONE) {
if (unit == SA_CTL_UNIT_METER) // linear positioner type configured
else // rotatory/goniometer positioner type configured

See Also

4.8.4 Positioner Base Resolution

4.8.4 Positioner Base Resolution

Definition
| coie L me Lo s o
SA_CTL_PKEY POS_BASE_RESOLUTION 0x03090043 132 Ch R(W)

ASCIl Command: [:PROPerty] : CHANnel#:TUNing:BASE:RESolution

Description

This property holds the basic resolution of the position value in powers of 10. It may be used
to programmatically determine the interpretation of the position value of a channel. The reso-
lution depends on the configured positioner type. (see Positioner Type) For example, a channel
configured as linear positioner type has a base unit of Meter and a base resolution of -12. So a po-
sition value of 100 000 000 would correspond to 100 pm. Note that this property has informational
character only. Setting it to a different value wont influence the position calculation.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Valid Range

-12...0.
Example

SA_CTL_Result_t result;
int32_t resolution;
result = SA_CTL_GetProperty_132(

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

dHandle, 0, SA_CTL_PKEY_POS_BASE_RESOLUTION, &resolution
)i
if (result == SA_CTL_ERROR_NONE) {

// ’resolution’ holds the base resolution of channel 0

}

See Also

4.8.3 Positioner Base Unit

4.8.5 Positioner Sensor Head Type

Definition
| coieLome Lo s o
SA_CTL_PKEY POS_HEAD TYPE 0x0309008E 132 Ch R(W)

ASCIl Command: [:PROPerty] : CHANnel#:TUNing:HTYPe

Description

This property specifies the sensor head type. This property is only relevant if a SmarAct PicoScale
interferometer is used as sensor module. The head type is set to the PicoScale when an adjust-
ment sequence is started with the MCS2 hand control module.

For more information on head types refer to the PicoScale User Manual.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Valid Range

CO01, C02, CO3, FO1

See Also

4.8.17 Positioner Write Protection, 4.8.16 Save Positioner Type

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.8.6 Positioner Reference Type

Definition
e Lo e Lo Lo
SA_CTL_PKEY POS_REF_TYPE 0x03090048 132 Ch R(W)

ASCIl Command: [:PROPerty] : CHANnel#:TUNing:RTYPe

Description

This property specifies the reference type of the positioner. The reference type is used by the
SA_CTL_Reference function to determine the physical position. See section 2.7.1 "Reference
Marks" for more information.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Valid Range

SA_CTL_REF_TYPE_NONE (0),
SA_CTL_REF_TYPE_END_STOP (1),
SA_CTL_REF_TYPE_SINGLE_CODED (2),
SA_CTL_REF_TYPE_DISTANCE_CODED (3)

Example

SA_CTL_Result_t result;
int32_t type;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_POS_REF_TYPE, &type
)i
if (result == SA_CTL_ERROR_NONE) {
if (type == SA_CTL_REF_TYPE_SINGLE_CODED) {
// single coded reference type configured

See Also

4.8.17 Positioner Write Protection, 4.8.16 Save Positioner Type

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.8.7 Positioner P Gain

Definition
e Lo e Lo Lo
SA_CTL_PKEY POS_P_GAIN 0x0309004B 132 Ch R(W)

ASCIl Command: [:PROPerty] : CHANnel#:TUNing:GAIN:P

Description

This property specifies the proportional gain of the control-loop. Note that the resulting gain is
also influenced by the Positioner PID Shift property.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Valid Range

0...2 x10°
Example

// set the P gain to 100 for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_POS_P_GAIN, 100
)i

See Also

4.8.8 Positioner | Gain, 4.8.9 Positioner D Gain, 4.8.10 Positioner PID Shift

MCS2 Programmer’s Guide i

4 PROPERTY REFERENCE

4.8.8 Positioner | Gain

Definition
e Lo e Lo [
SA_CTL_PKEY POS_I_ GAIN 0x0309004C 132 Ch R(W)

ASCIl Command: [:PROPerty] :CHANnel#:TUNing:GAIN:I

Description

This property specifies the integral gain of the control-loop. The Positioner Anti Windup must be
set to a non-zero value to activate the | gain of the control-loop. Note that the resulting gain is also
influenced by the Positioner PID Shift property.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Valid Range

0...2x10°
Example

// set the I gain to 0 for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY POS_I GAIN, O
)i

See Also

4.8.7 Positioner P Gain, 4.8.9 Positioner D Gain, 4.8.10 Positioner PID Shift, 4.8.11 Positioner Anti
Windup

MCS2 Programmer’s Guide 188 _

4 PROPERTY REFERENCE

4.8.9 Positioner D Gain

Definition
e Lo e Lo i
SA_CTL_PKEY_ POS_D_GAIN 0x0309004D 132 Ch R(W)

ASCIl Command: [:PROPerty] : CHANnel#:TUNing:GAIN:D

Description

This property specifies the differential gain of the control-loop. Note that the resulting gain is also
influenced by the Positioner PID Shift property.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Valid Range

0...2 x10°
Example

// set the D gain to 10 for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_POS_P_GAIN, 10
)i

See Also

4.8.7 Positioner P Gain, 4.8.8 Positioner | Gain, 4.8.10 Positioner PID Shift

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.8.10 Positioner PID Shift

Definition
e Lo e Lo Lo
SA_CTL_PKEY POS_PID SHIFT 0x0309004E 132 Ch R(W)

ASCIl Command: [:PROPerty] : CHANnel#:TUNing:GAIN:SHIFt

Description

This property specifies a shift value for the PID controller output. Since PID parameters are con-
figured as integer values they are right shifted internally to be able to set gains lower than one. It
must be given in powers of 2.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

The default value is 10.

Valid Range

0...16.
Example

// set the PID shift to 10 (default) for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY POS_PID_SHIFT, 10
)i

See Also

4.8.7 Positioner P Gain, 4.8.8 Positioner | Gain, 4.8.9 Positioner D Gain

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.8.11 Positioner Anti Windup

Definition
e Lo e Lo Lo
SA_CTL_PKEY POS_ANTI WINDUP 0x0309004F 132 Ch R(W)

ASCll Command: [:PROPerty] : CHANnel#:TUNing:AWINdup

Description

This property specifies the anti windup limit for the integral gain of the control-loop. It has no
meaning if the Positioner | Gain property is set to zero.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

The default value is 0.

Valid Range

0...2x10%
Example

// set the anti windup to default for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_POS_ANTI_WINDUP, O
)

See Also

4.8.7 Positioner P Gain, 4.8.8 Positioner | Gain, 4.8.9 Positioner D Gain, 4.8.10 Positioner PID Shift

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.8.12 Positioner ESD Distance Threshold

Definition
| coieLome e s |
SA_CTL_PKEY POS_ESD DIST_TH 0x03090050 132 Ch R(W)

ASCll Command: [:PROPerty] :CHANnel#:TUNing:ESDetection:DISTance

Description

This property specifies the end stop detection distance threshold in pm or n°. This property in
conjunction with the Positioner ESD Counter Threshold configure the end stop detection respon-
sible to detect a physical end stop as well as a mechanical blockage of a positioner for closed-loop
movements. An end stop condition leads to a stop of the channel.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Generally, there is no need to modify the end stop detection configuration. The configured Posi-
tioner Type defines appropriate values for all kinds of SmarAct positioners. Nonetheless it may
be necessary to disable the end stop detection in some special cases. E.g. if an auxiliary input
is used as feedback for the control-loop and the actual input value represents a set-point for the
control-loop instead of a current position of the positioner.

The default value depends on the configured positioner type. The special value 0 disables the end
stop detection.

CAUTION
Configuring inappropriate values or disabling the end stop detection prevents

the channel from stopping the positioner in case of a mechanical blockage. The
end stop detection configuration properties must be used with caution!

Valid Range

0...1x10°

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Example

// set the end stop detection distance threshold to 1000000 for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_POS_ESD_DIST_TH, 1000000
)

See Also

4.8.13 Positioner ESD Counter Threshold

4.8.13 Positioner ESD Counter Threshold

Definition
| coieLome Lox s oo
SA_CTL_PKEY POS_ESD_ COUNTER_TH 0x03090051 132 Ch R(W)

ASCll Command: [:PROPerty] : CHANnel#:TUNing:ESDetection:COUNter

Description

This property specifies the end stop detection counter threshold.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Valid Range

4% 100,
Example

// set the end stop detection counter value to 100000 for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_POS_ESD_COUNTER_TH, 100000
)

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.8.12 Positioner ESD Distance Threshold

4.8.14 Positioner Target Reached Threshold

Definition
| coieLome e s oo
SA_CTL_PKEY POS_TARGET REACHED_ TH 0x03090052 132 Ch R(W)

ASCll Command: [:PROPerty] :CHANnel#:TUNing: THReshold:TREached

Description

This property specifies the target reached threshold in pm or n°. A closed-loop movement is
considered to be finished once the target position =+ the target reached threshold is reached.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Valid Range

0...1x 106
Example

// set the target reached threshold to 5nm for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_ POS_TARGET_REACHED_TH, 5000
)

See Also

4.8.15 Positioner Target Hold Threshold

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.8.15 Positioner Target Hold Threshold

Definition
e Lo e Lo e
SA_CTL_PKEY POS_TARGET_HOLD_TH 0x03090053 132 Ch R(W)

ASCll Command: [:PROPerty] : CHANnel#:TUNing: THReshold:THOLd

Description

This property specifies the target hold threshold in pm or n°. The hold threshold defines a dead
zone around the control-loop input signal where the output does not change. This parameter
is typically used in a system where the resolution of the sensor is significantly lower then the
resolution of the actor. The dead zone then prevents oscillation or "hunting" of the control-loop.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

The default value is 0.

Valid Range

0...1x 106,
Example

// set the target hold threshold to 100nm for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_POS_TARGET_HOLD_TH, 100000
)i

See Also

4.8.14 Positioner Target Reached Threshold

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.8.16 Save Positioner Type

Definition
N) 7))
SA_CTL_PKEY_ POS_SAVE 0x0309000A 32

ASCIl Command: [:PROPerty] : CHANnel#:TUNing:SAVE

Description

This property is used to save a modified positioner type to a custom slot of a channel. Currently
four custom slots per channel are available. Saving the positioner type makes the parameters
persistent and implicit sets the Positioner Type to the given custom type.

Valid Range

SA_CTL_POSITIONER_TYPE_CUSTOMO (250), SA_CTL_POSITIONER_TYPE_CUSTOMI (251),
SA_CTL_POSITIONER_TYPE_CUSTOM?Z (252), SA_CTL_POSITIONER_TYPE_CUSTOM3 (253)

Example

// save a modified positioner type of channel 0 to custom slot 1
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_POS_SAVE, SA_CTL_POSITIONER_TYPE_CUSTOMO
)i

See Also

4.8.17 Positioner Write Protection

4.8.17 Positioner Write Protection

Definition
o Lo Lo s Lo
SA_CTL_PKEY POS_WRITE_ PROTECTION 0x0309000D 132

ASCIl Command: [:PROPerty] : CHANnel#:TUNing:WPRotection

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Description

This property is used to unlock the write access to the tuning parameters. A special key must be
written to this property to unlock the write access to the tuning properties. Write any other value
to this property to enable the protection again. Otherwise the write protection remains unlocked
for the channel until the device is restarted. The write protection key is:
SA_CTL_POS_WRITE_PROTECTION_KEY (0x534D4152)

Example

// disable tuning parameter write protection of channel 0
result = SA_CTL_SetProperty_132(
dHandle,
OI
SA_CTL_PKEY_POS_WRITE_PROTECTION,
SA_CTL_POS_WRITE_PROTECTION_KEY
)
// set tuning parameters like P gain, etc.

See Also

4.8.16 Save Positioner Type

4.9 Streaming Properties

4.9.1 Stream Base Rate

Definition
| ceie Lol s | o
SA_CTL_PKEY STREAM BASE_RATE 0x040F002C 132 Dev

ASCIl Command: [:PROPerty] :DEVice:STReaming:BASerate

Description

This property specifies the stream base rate in Hz for the trajectory streaming. Please refer to
section 2.15 "Trajectory Streaming" for more information.

The default stream base rate is 1000 Hz.

MCS2 Programmer’s Guide _

4 PROPERTY REFERENCE

Valid Range

10...1000Hz

Example

// set the stream rate to 1 kHz
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY STREAM BASE_RATE, 1000
)

See Also

4.9.2 Stream External Sync Rate, 4.13.1 Device Input Trigger Mode

4.9.2 Stream External Sync Rate

Definition
| ceie Lol s | o
SA_CTL_PKEY STREAM EXT_ SYNC_ RATE 0x040F002D 132 Dev

ASCIl Command: [:PROPerty] :DEVice:STReaming:SYNCrate

Description

This property specifies the external stream synchronization rate in Hz for the trajectory streaming.
It may be used to synchronize the internal position streaming clock to an external clock signal.
Note that the configured Stream Base Rate must be a whole-number multiple of the external sync
rate.

The default value is 1.

Valid Range

..1000 Hz

NOTICE

In order to use the external stream synchronization the device must be equipped

with an trigger input connector.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Example

// configure external stream synchronization rate to 100Hz
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY STREAM EXT_SYNC_RATE, 100
)i

See Also

4.9.1 Stream Base Rate, 4.13.1 Device Input Trigger Mode

4.9.3 Stream Options

Definition
| ceie ome | ox] s o
SA_CTL_PKEY STREAM OPTIONS 0x040F005D 132 Dev

ASCIl Command: [:PROPerty] :DEVice:STReaming:0PTions

Description

This property specifies the stream’s options. It is used to define the behavior of the stream before
calling the SA_CTL_OpenStream function

The value is a bit field containing independent flags. Please refer to the subsection 2.15.3 "Op-
tions" for more information. Undefined flags are unused but might get a meaning in future up-
dates. Undefined flags should be set to zero. The default value is O (all flags cleared).

Example

// disable the target position interpolation for the trajectory streaming
result = SA_CTL_SetProperty_132(

dHandle,

0,

SA_CTL_PKEY_ STREAM OPTIONS,

SA_CTL_STREAM _OPT_BIT_INTERPOLATION_DIS
)i

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.9.1 Stream Base Rate

4.9.4 Stream Load Maximum

Definition
e ome o pcs co
SA_CTL_PKEY STREAM LOAD_MAX 0x040F0301 132 Dev

ASCIl Command: N/A

Description
This property reports the maximum load generated by the current stream in percent. The property
acts like a peak detector. The highest load level generated by the currently running stream is

stored. When starting the stream the load value is reset to zero. Please refer to section 2.15
"Trajectory Streaming" for more information.

Valid Range

0...100%
Example

SA_CTL_Result_t result;
int32_t maximumLoad;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_STREAM_LOAD_MAX, &maximumLoad
)i

4.10 Diagnostic Properties

4.10.1 Channel Error

Definition
o Lo e s Lo
SA_CTL_PKEY_ CHANNEL_ERROR 0x05020072a 132

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

ASCIl Command: [:PROPerty] : CHANnel#:ERRor

Description

This property holds the last error of a channel. Generally, event notifications are used to inform
about channel errors. (See section 2.6.7 "Movement Feedback" for more information.) However,
if event notifications are not used in an application the Channel State bit
SA_CTL_CH_STATE_BIT_MOVEMENT_FAILED can be monitored to detect channel errors. This
property may be read then to determine the reason of the error.

Note that the channel error is reset to SA_CTL_ERROR_NONE after reading this property.

Example

SA_CTL_Result_t result;
int32_t chError;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTIL_PKEY_ CHANNEL_FERROR, &chError
)
if (result == SA_CTL_ERROR_NONE) {
// ’chError’ holds the last error code of channel 0

See Also

4.4.9 Channel State

4.10.2 Channel Temperature

Definition
[e o e
SA_CTL_PKEY CHANNEL_TEMPERATURE 0x05020034 132

ASCIl Command: [:PROPerty] : CHANnel#: TEMPerature

Description

This property holds the amplifier temperature in °C. The temperature is measured near the chan-
nels driver amplifier.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Example

SA_CTL_Result_t result;
int32_t chTemp;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_ CHANNEL_TEMPERATURE, &chTemp
)i
if (result == SA_CTL_ERROR_NONE) {
// ‘chTemp’ holds the temperature of the amplifier of channel 0

See Also

4.10.3 Bus Module Temperature

4.10.3 Bus Module Temperature
Definition
I T T T

SA_CTL_PKEY_BUS_MODULE_TEMPERATURE 0x05030034

ASCll Command: [:PROPerty] :MODule#:TEMPerature

Description

This property holds the temperature of a bus module in °C.
Example

SA_CTL_Result_t result;
int32_t modTemp;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_BUS_MODULE_TEMPERATURE, &modTemp
)
if (result == SA_CTL_ERROR_NONE) {
// ‘modTemp’ holds the temperature of the driver module 0

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.10.2 Channel Temperature

4.11 Auxiliary Properties

4.11.1 Aux Positioner Type

Definition
| coieLme Lo s o
SA_CTL_PKEY AUX POSITIONER_ TYPE 0x0802003C 132

ASCIl Command: [:PROPerty] :CHANnel#:AUXiliary:PTYPe

Description

This property is used to tell the channel which set of control-loop parameters (PID gains, etc.) is
used when an auxiliary input is configured as input for the control-loop. More precisely, if the
Control Loop Input property is set to SA_CTL_CONTROL_LOOP_INPUT_AUX_IN the auxiliary po-
sitioner type parameters are implicitly configured, otherwise the regular positioner type param-
eters are used. This way it is possible to switch between two control modes without manually
changing all individual parameters. Typically a custom positioner type slot will be used here to
define the necessary parameters.

Please refer to section 2.16.5 "Using Analog Inputs as Control-Loop Feedback" for more informa-
tion on using auxiliary inputs.

This property is stored to non-volatile memory and need not be configured on every power-up.

Valid Range

SA_CTL_POSITIONER_TYPE_CUSTOMO (250),
SA_CTL_POSITIONER_TYPE_CUSTOMI1 (251),
SA_CTL_POSITIONER_TYPE_CUSTOM?2 (252),
SA_CTL_POSITIONER_TYPE_CUSTOMS3 (253)

Example

// select the ‘CUSTOM0O' positioner type (type code 250) for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_AUX_ POSITIONER_TYPE, 250
)

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.4.6 Positioner Type

4.11.2 Aux Positioner Type Name

Definition
| cose L pe [rece [
SA_CTL_PKEY AUX POSITIONER_TYPE_ NAME 0x0802003D String Ch R

ASCll Command: [:PROPerty] :CHANnel#:AUXiliary:PTName

Description

This property holds a descriptive name of the configured auxiliary positioner type. The positioner
type name is a null terminated string. Note that the name is read-only.

Example

SA_CTL_Result_t result;
char name[SA_CTL_STRING_MAX_LENGTH];
size_t ioStringSize = sizeof (name);
result = SA_CTL_GetProperty_s(
dHandle, 0, SA_CTL_PKEY_AUX POSITIONER_TYPE_NAME, name, &ioStringSize
)
if (result == SA_CTL_ERROR_NONE) {
// ’name’ holds the name of the configured auxiliary positioner type

See Also

4.11.1 Aux Positioner Type, 4.4.6 Positioner Type

4.11.3 Aux Input Select

Definition
| coieLome Lo e o
SA_CTL_PKEY AUX_ INPUT_ SELECT 0x08020018 132

ASCll Command: [:PROPerty] :CHANnel#:AUXiliary:ISELect

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Description

This property selects the auxiliary input component. Note that the Aux I/0 Module Input Index
property must be configured too to select a specific analog input.

Note that the additional sensor module inputs are not available on all sensor module types. Please
refer to section 2.16 "Auxiliary Inputs and Outputs" for more information on using auxiliary inputs.

This property is stored to non-volatile memory and need not be configured on every power-up.
The default value is SA_CTL_AUX_INPUT_SELECT_IO_MODULE (0).

Valid Range

SA_CTL_AUX_INPUT_SELECT_IO_MODULE (0),
SA_CTL_AUX_INPUT_SELECT_SENSOR_MODULE (1)

Example

// set the auxiliary input selection to ‘I/0 module‘' for channel 0
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_ AUX_INPUT_SELECT,
SA_CTL_AUX_INPUT_SELECT_IO_MODULE
)

See Also

4.11.4 Aux I/0 Module Input Index, 4.11.5 Aux Direction Inversion, 4.4.28 Control Loop Input Aux
Value, 4.4.4 Control Loop Input

4.11.4 Aux 1/0 Module Input Index

Definition

I N T I

SA_CTL_PKEY AUX_TIO_MODULE_INPUT_INDEX 0x081100AA 32

ASCIl Command: [:PROPerty] :CHANnel#:AUXiliary:IOModule:INPut: INDex

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Description

This property specifies which input of an analog I/0 module is used as input for the auxiliary
control-loop input.

The I/0 module has a total number of six analog inputs which are mapped in groups of two to the
channels of the corresponding driver module. The input index refers to the analog inputs assigned
to a specific channel as follows:

m Channel Index | Analog Input

0 0(3)(6) AIN-1
0 1(4)(7) AIN-2
0 2(5)(8) AIN-3
1 0(3)(6) AIN-4
1 1(4)(7) AIN-5
1 2(5)(8) AIN-6

Note that input indexes refer to a module (start with zero for each module) while the channel
indexes refer to the entire device. Channel indexes in brackets refer to a second respectively third
module of the device.

Please refer to section 2.16 "Auxiliary Inputs and Outputs" for more information on using auxiliary
inputs. See the MCS2 User Manual for the pin assignment of the I/0 module connector.

This property is stored to non-volatile memory and need not be configured on every power-up.
The default input index is 0.

Valid Range

0...1
Example

// set the auxiliary I/0 module input index to 0 for channel 0
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_AUX_IO_MODULE_INPUT_INDEX, O

)i

See Also

4.11.3 Aux Input Select, 4.11.5 Aux Direction Inversion, 4.11.6 Aux I/0 Module Input0 / Input1 Value

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.11.5 Aux Direction Inversion

Definition

I S I T 0)

SA_CTL_PKEY_AUX_DIRECTION_INVERSION 0x0809000E 132

ASCIl Command: [:PROPerty] :CHANnel#:AUXiliary:DINVersion

Description

This property specifies the feedback direction sense for the control-loop in case an auxiliary input
is used as input for the control-loop. The direction sense of the feedback must match the direction
sense of the control-loop output. Otherwise a runaway condition may occur when commanding a
closed-loop movement. The end stop detection (if not disabled) will typically abort the movement
in that case. While the direction sense is determined automatically by the calibration routine when
using the position as feedback signal, this setting must be defined manually using this property
when using an auxiliary input. This property has no meaning if the Control Loop Input is not
configured to auxiliary input.

Please refer to section 2.16.5 "Using Analog Inputs as Control-Loop Feedback" for more informa-
tion on using auxiliary inputs.

This property is stored to non-volatile memory and need not be configured on every power-up.
The defaultis SA_CTL_NON_INVERTED (0x00).

Valid Range

SA_CTL_NON_INVERTED (0x00), SA_CTL_INVERTED (0x01)
Example

// set the auxiliary direction inversion to ‘inverted' for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_AUX_DIRECTION_INVERSION, SA_CTL_INVERTED
)

See Also

4.11.3 Aux Input Select, 4.11.6 Aux I/0 Module InputO / Input1 Value, 4.4.4 Control Loop Input

MCS2 Programmer’s Guide 207

4 PROPERTY REFERENCE

4.11.6 Aux 1/0 Module Input0 / Input1 Value

Definition
o Lo Lo e Lo
SA_CTL_PKEY_AUX_IO_MODULE_INPUTO_VALUE 0x08110000 64
SA_CTL_PKEY_ AUX_IO_MODULE_INPUT1_VALUE 0x08110001 164 Ch R X

ASCll Command: [:PROPerty] :CHANnel#:AUXiliary:IOModule:INPut :VALue#

Description

These properties hold the input values of the analog inputs of an analog I/0 module. Note that an
error is returned if no I/0 module is available.

Note further that the interpretation of the value depends on the configured 1/0 Module Analog
Input Range of the I/0 module. Please refer to section 2.16 "Auxiliary Inputs and Outputs" for
more information on using auxiliary inputs.

Example

SA_CTL_Result_t result;
int64_t inputvVval;
result = SA_CTL_GetProperty_164 (
dHandle, 0, SA_CTL_PKEY_AUX_IO_MODULE_INPUTO_VALUE, &inputVal
)
if (result == SA_CTL_ERROR_NONE) {
// ‘inputVal‘ holds the current input value of the first
// I/0 module input of channel 0

See Also

4.11.3 Aux Input Select, 4.4.28 Control Loop Input Aux Value, 4.4.27 Control Loop Input Sensor
Value, 4.11.6 Aux I/0 Module Input0 / Input1 Value, 4.4.4 Control Loop Input

4.11.7 Aux Digital Input Value

Definition
| cose Lo L o
SA_CTL_PKEY_ AUX_ DIGITAL_INPUT_VALUE 0x080300AD 32 Mod R

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

ASCll Command: [:PROPerty] :MODule#:AUXiliary:DINPut [:VALue]

Description

This property holds a bit mask that represents the input levels of the general purpose digital inputs
of an I/0 module.

Please refer to section 2.16 "Auxiliary Inputs and Outputs" for more information.
Example

SA_CTL_Result_t result;

// read the digital inputs

int32_t input;

result = SA_CTL_GetProperty_i32 (dHandle, O,
SA_CTL_PKEY_ AUX_DIGITAL_INPUT_VALUE, &input

)i

if (result == SA_CTL_ERROR_NONE) ({
// ‘input ' holds the value of the digital inputs

}

See Also

4.11.8 Aux Digital Output Value / Set / Clear

4.11.8 Aux Digital Output Value / Set / Clear

Definition
e Lol Lo
SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_VALUE 0x080300AE 32 Mod
SA_CTL_PKEY AUX_DIGITAL_OUTPUT_SET 0x080300BO 132 Mod W X
SA_CTI_PKEY AUX DIGITAL_OUTPUT_CLEAR 0x080300B1 132 Mod W X

ASCIl Command: [:PROPerty] :MODule#:AUXiliary:DOUTput [: VALue]
ASCll Command: [:PROPerty] :MODule#:AUXiliary:DOUTput :SET
ASCIl Command: [:PROPerty] :MODule#:AUXiliary:DOUTput :CLEar

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Description

These properties hold bit masks that may be used to modify the general purpose digital outputs
of an I/0 module. Note that the digital output driver circuit is disabled by default and must be
enabled by setting the SA_CTL_TIO_MODULE_OPT_BIT_DIGITAL_OUTPUT_ENABLED bit of the
I/0 Module Options property.

Please refer to section 2.16 "Auxiliary Inputs and Outputs" for more information.

Example

SA_CTL_Result_t result;

// set all digital output of the I/O module to a specific value

// DOUT-4 | DOUT-3 | DOUT-2 | DOUT-1 |

// L(0) [H(1) [L(0) [H(I) /

result = SA_CTL_SetProperty_i32 (dHandle, O,
SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_VALUE, 0x00000005

)i

See Also

4.11.7 Aux Digital Input Value, 4.12.1 1/0 Module Options

4.11.9 Aux Analog Output Value0 / Value1

Definition
| coie Lo o Lo Lo
SA_CTIL_PKEY AUX_ ANALOG_OUTPUT_VALUEO 0x08030000 132 Mod RW
SA_CTL_PKEY_ AUX_ANALOG_OUTPUT_VALUEL 0x08030001 32 Mod RW X

ASCIl Command: [:PROPerty] :MODule#:AUXiliary:AOUTput :VALue#

Description

These properties specify the output values of the analog outputs of an I/0 module. Note that the
analog output driver circuit is in a high-impedance state by default and must be enabled by setting
the SA_CTL_TIO_MODULE_OPT_BIT_ANALOG_OUTPUT_ENABLED bit of the I/O Module Options

property.

The output values are given as signed 16-bit values from -32768 to 32767, where —32768 corre-
sponds to -10V and 32767 to 10V output voltage.

The default value is 0 which corresponds to an output voltage of OV.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Valid Range

-32768...32767
Example

SA_CTL_Result_t result;

// set the output value of analog output(O (AOUT-1) to zero

// which corresponds to 0V

result = SA_CTL_SetProperty_i32 (dHandle, O,
SA_CTL_PKEY_AUX_ANALOG_OUTPUT_VALUEO, O

)i

See Also

4.11.6 Aux I/0 Module Input0 / Input1 Value, 4.12.1 1/0 Module Options

4.12 1/0 Module Properties

4.12.1 1/0 Module Options

Definition
oo L Lo
SA_CTL_PKEY IO MODULE_OPTIONS 0x0603005D 132 Mod RW

ASCIl Command: [:PROPerty] :MODule#:I0OModule:0PTions

Description

This property specifies the I1/0 module options. The value is a bit field containing independent
flags with the following meaning:

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

I = R

0 SA_CTL_IO_MODULE_OPT_BIT DIGITAL_OUTPUT_ENABLED Enables or disables the
digital output driver cir-
cuit on the I/0 module.

1 SA_CTL_IO_MODULE_OPT_BIT_EVENTS_ENABLED Enables or disables the
event notification for the
digital inputs of an 1/0
module.

2 SA CTL_IO MODULE OPT BIT ANALOG OUTPUT ENABLED Enables or disables the
analog output driver cir-
cuit on the I/0 module.

3..31 Reserved These bits are reserved
for future use.

All options are disabled by default, which means that all digital and analog outputs are in a high-
impedance state and the digital input events are disabled.

NOTICE

Note that the events enabled bit refers to the general purpose digital inputs of the

I/0 module and not to the digital device trigger input. See section 2.17 "Input
Trigger" for the event notification configuration of the device input trigger.

Note that the I/0 Module Voltage property should be set first to define the voltage level of the
digital outputs.

Example

// enable the digital and analog output driver circuit of the I/0 module
result = SA_CTIL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_TIO_MODULE_OPTIONS,
(SA_CTL_TIO_MODULE_OPT_BIT_DIGITAL_OUTPUT_ENABLED |
SA_CTL_TIO_MODULE_OPT_BIT_ANALOG_OUTPUT_ENABLED)

See Also

4.12.2 1/0 Module Voltage

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.12.2 1/0 Module Voltage

Definition
| cede Lo e Lacows Lo
SA_CTL_PKEY IO MODULE_VOLTAGE 0x06030031 132 Mod RW

ASCll Command: [:PROPerty] :MODule#:I0Module:VOLTage

Description
This property specifies the I/0 module output voltage for the digital outputs. The output voltage

should be set before enabling the outputs of the I/0 module. Note that the voltage setting is global
for all digital output channels of the I/0 module.

The default value is SA_CTIL._I0_MODULE_VOLTAGE_3V3 (0).
Valid Range

SA_CTL_IO_MODULE_VOLTAGE_3V3 (0),
SA_CTL_IO_MODULE_VOLTAGE_5V (1)

Example

// set the output driver voltage level to 5V
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_ IO _MODULE_VOLTAGE,
SA_CTL_IO_MODULE_VOLTAGE_5V
)

See Also

4.12.1 1/0 Module Options

4.12.3 1/0 Module Analog Input Range

Definition
o Lme i Lo [0
SA_CTL_PKEY_IO_MODULE_ANALOG_INPUT_RANGE 0x060300A0 32 Mod RW

ASCll Command: [:PROPerty] :MODule#:I0Module:AINPut : RANGe

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Description

This property specifies the I/0 module analog input range. This setting configures the analog gain
settings of the ADCs of the I/0 module. The inputs allow bipolar as well as unipolar operation. To
achieve the best performance of the ADC it is recommended to always use the lowest full range
setting that fits the desired analog input range.

Note that the range setting does not influence the digital representation of the input value. The
signed value of 2'7 corresponds to a bipolar full range input of 10.24V. This means that e.g. an
analog voltage of 2.56V always returns a digital value of 32767 regardless of the actual range
setting. The advantage of this representation is that e.g. configured PID gains or threshold limits
must not be adjusted after changing the input range while the best matching analog gain is used
for the analog to digital conversion. The following table summarizes the digital representations of
the analog input voltage and their maximum values for the different gain settings:

Analog Voltage | Bipol. £10V | Bipol. +5V | Bipol. £2.5V | Unipol. 10V | Unipol. 5V

+10.24V 131071 65535 32767 131071 65535
+5.12V 65535 65535 32767 65535 65535
+2.56V 32767 32767 32767 32767 32767
ov 0 0 0 0 0
-2.56V -32768 -32768 -32768 0 0
-5.12V -65536 -65536 -32768 0 0
-10.24V -131072 -65536 -32768 0 0

Note that the input range setting is global for all analog inputs of the I/0 module.

This property is stored to non-volatile memory and need not be configured on every power-up.
The default value is SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_BI_10V (0).

Valid Range

SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_BI_10V (0),
SA_CTL_IO MODULE_ANALOG_INPUT_RANGE_BI_5V (1),
SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_BI_2_5V (2),
SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_UNI_10V (3),
SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_UNI_S5V (4)

Example

// set the analog input range to +/-5V

result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_TIO_MODULE_ANALOG_INPUT_RANGE,
SA_CTL_TIO_MODULE_ANALOG_INPUT_RANGE_BI_5V

)

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.12.1 1/0 Module Options, 4.11.6 Aux I/0 Module Input0 / Input1 Value

4.13 Input Trigger Properties

4.13.1 Device Input Trigger Mode

Definition
B
SA_CTL_PKEY DEV_INPUT_TRIG_MODE 0x060D0087 132 Dev

ASCll Command: [:PROPerty] :DEVice:TRIGger: INPut : MODE

Description

This property specifies the input trigger mode of the device. The input trigger may be used to
synchronize the device to external events. If no I/O module is available this property returns a
SA_CTL_ERROR_NO_IOM_PRESENT error. Please refer to section 2.17 "Input Trigger" for more
information.

The default value is SA_CTIL_DEV_INPUT_TRIG_MODE_DISABLED (0).

Valid Range

SA_CTL_DEV_INPUT_TRIG_MODE_DISABLED (0),
SA_CTL_DEV_INPUT_TRIG_MODE_EMERGENCY_STOP (1),
SA_CTL_DEV_INPUT_TRIG_MODE_STREAM (2),
SA_CTL_DEV_INPUT_TRIG_MODE_CMD_GROUP (3)
SA_CTL_DEV_INPUT_TRIG_MODE_EVENT (4)

Example

// set input trigger mode to external stream sync
result = SA_CTL_SetProperty_1i32(
dHandle,
0 l4
SA_CTL_PKEY_DEV_INPUT_TRIG_MODE,
SA_CTL_DEV_INPUT_TRIG_MODE_STREAM

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.13.2 Device Input Trigger Condition, 4.9.1 Stream Base Rate, 4.9.2 Stream External Sync Rate

4.13.2 Device Input Trigger Condition

Definition
e Lol i [ncies | o
SA_CTL_PKEY DEV_INPUT_TRIG_CONDITION 0x060D005A 132 Dev

ASCll Command: [:PROPerty] :DEVice:TRIGger:INPut :CONDition

Description

This property defines the active edge for the input trigger signal.
The default value is SA_CTL_TRIGGER_CONDITION_RISING (0).
Valid Range

SA_CTL_TRIGGER_CONDITION_RISING (0), SA_CTL_TRIGGER_CONDITION_FALLING (1)
Example

// set input trigger condition to "rising"
result = SA_CTL_SetProperty_132(
dHandle,
0 ’
SA_CTL_PKEY_DEV_INPUT_TRIG_CONDITION,
SA_CTL_TRIGGER_CONDITION_RISING

See Also

4.13.1 Device Input Trigger Mode, 4.9.1 Stream Base Rate, 4.9.2 Stream External Sync Rate

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.14 Output Trigger Properties

4.14.1 Channel Output Trigger Mode

Definition
| coie L me Lo e o
SA_CTL_PKEY CH OUTPUT_TRIG MODE 0x060E0087 132

ASCIl Command: [:PROPerty] : CHANnel#:TRIGger :OUTPut : MODE

Description

This property specifies the output trigger mode of a channel. Note that further configuration of
the output trigger should be done before it is enabled. If no I/0 module is available this property
returns a SA_CTL_ERROR_NO_IOM_PRESENT error.

Note for the position compare mode: if the Channel Position Compare Limit Max is set to a lower
value than the Channel Position Compare Limit Min then this misconfiguration is indicated by a
returned SA_CTL_ERROR_INVALID_CONFIGURATION error.

Please refer to section 2.18 "Output Trigger" for more information.

The default value is SA_CTIL_CH_OUTPUT_TRIG_MODE_CONSTANT (0).

Valid Range

SA_CTL_CH_OUTPUT_TRIG_MODE_CONSTANT (0),
SA_CTL_CH_OUTPUT_TRIG_MODE_POSITION_COMPARE (1),
SA_CTL_CH_OUTPUT_TRIG_MODE_TARGET_REACHED (2),
SA_CTL_CH_OUTPUT_TRIG_MODE_ACTIVELY_MOVING (3)

Example

// set output trigger mode for channel 1
result = SA_CTL_SetProperty_132(
dHandle,
1 ’
SA_CTL_PKEY_CH_OUTPUT_TRIG_MODE,
SA_CTL_CH_OUTPUT_TRIG_MODE_POSITION_COMPARE
)

MCS2 Programmer’s Guide v T

4 PROPERTY REFERENCE

See Also

4.14.4 Channel Position Compare Start Threshold, 4.14.5 Channel Position Compare Increment,
4.14.6 Channel Position Compare Direction, 4.14.2 Channel Output Trigger Polarity, 4.14.3 Channel
Output Trigger Pulse Width

4.14.2 Channel Output Trigger Polarity

Definition

I S 7S 7 Y £

SA_CTL_PKEY_CH_OUTPUT_TRIG_POLARITY O0x060E005B 132

ASCll Command: [:PROPerty] : CHANnel#:TRIGger:0UTPut :POLarity

Description

This property defines the polarity of the output trigger signal. If set to active high then the idle level
is low and a high pulse is generated when the trigger occurs. If set to active low then the idle level
is high and a low pulse is generated when the trigger occurs.

The default polarity is SA_CTL_TRIGGER_POLARITY_ ACTIVE_HIGH(1).

Valid Range

SA_CTL_TRIGGER_POLARITY_ACTIVE_LOW (0),
SA_CTL_TRIGGER_POLARITY_ACTIVE_HIGH (1)

Example

// set output trigger polarity for channel 1 to ‘active high
result = SA_CTL_SetProperty_132(
dHandle,
1,
SA_CTL_PKEY_CH_OUTPUT_TRIG_POLARITY,
SA_CTL_TRIGGER_POLARITY_ACTIVE_HIGH
)

See Also

4.14.1 Channel Output Trigger Mode, 4.14.4 Channel Position Compare Start Threshold, 4.14.5
Channel Position Compare Increment, 4.14.6 Channel Position Compare Direction, 4.14.3 Channel
Output Trigger Pulse Width

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.14.3 Channel Output Trigger Pulse Width
Definition

I S T T T)

SA_CTL_PKEY CH_OUTPUT_TRIG_PULSE_WIDTH 0x060E005C 132

ASCIl Command: [:PROPerty] : CHANnel#:TRIGger :OUTPut : PWIDth

Description

This property specifies the pulse width of the trigger output pulse in ns.

Note that the configured pulse width includes the duration of the pulse as well as the duration of
the pause. E.g. when setting the Channel Output Trigger Pulse Width to 1000 ns pulses with 500 ns
high level and 500 ns low level will be generated.

The default pulse width is 1000 ns.

Valid Range

100ns...4 x 10°ns
Example

// set output trigger pulse width for channel 1 to lus
result = SA_CTL_SetProperty_132(

dHandle, 1, SA_CTL_PKEY_CH_OUTPUT_TRIG_PULSE_WIDTH, 1000
)i

See Also

4.14.1 Channel Output Trigger Mode, 4.14.4 Channel Position Compare Start Threshold, 4.14.5
Channel Position Compare Increment, 4.14.6 Channel Position Compare Direction, 4.14.2 Channel
Output Trigger Polarity

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.14.4 Channel Position Compare Start Threshold

Definition
o Lo Lo e Lo
SA_CTL_PKEY_ CH_POS_COMP_START_ THRESHOLD 0x060E0058 164

ASCll Command: [:PROPerty] :CHANnel#:TRIGger:PCOMpare: THReshold[:STARt]

Description

This property defines the start threshold value in pm or n° for the position compare output trigger.
As soon as the position passes this threshold in the configured direction (see Channel Position
Compare Direction) an output pulse is generated. Additionally the threshold is incremented by
the value of the Channel Position Compare Increment to define the next trigger threshold. Please
refer to section 2.18 "Output Trigger" for more information.

The default value is 1 x 10°.
Valid Range

-100 x 10"%...100 x 10'2 pm or n°.
Example

// set output trigger start threshold for channel 1 to Imm
result = SA_CTL_SetProperty_164(

dHandle, 1, SA_CTL_PKEY_CH_POS_COMP_START_THRESHOLD, 1e9
)

See Also

4.14.1 Channel Output Trigger Mode, 4.14.5 Channel Position Compare Increment, 4.14.6 Channel
Position Compare Direction, 4.14.2 Channel Output Trigger Polarity, 4.14.3 Channel Output Trigger
Pulse Width

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.14.5 Channel Position Compare Increment

Definition
e Lo e Lo i
SA_CTL_PKEY CH POS_COMP_INCREMENT 0x060E0059 164

ASCll Command: [:PROPerty] : CHANnel#:TRIGger:PCOMpare: INCRement

Description

This property defines the position compare output trigger increment in pm or n°. Please refer to
section 2.18 "Output Trigger" for more information.

The default value is 1 x 10°.
Valid Range

1...1x 10" pmorn°,

Example

// set position compare increment for channel 1 to 100um
result = SA_CTL_SetProperty_164 (

dHandle, 1, SA_CTL_PKEY_CH_POS_COMP_INCREMENT, 100e6
)

See Also

4.14.1 Channel Output Trigger Mode, 4.14.4 Channel Position Compare Start Threshold, 4.14.6
Channel Position Compare Direction, 4.14.2 Channel Output Trigger Polarity, 4.14.3 Channel Out-
put Trigger Pulse Width

4.14.6 Channel Position Compare Direction

Definition
| ceie L e L L6
SA_CTL_PKEY CH POS_COMP_DIRECTION 0x060E0026 132

ASCll Command: [:PROPerty] : CHANnel#:TRIGger:PCOMpare:DIRection

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Description
This property defines how the position value and the configured trigger threshold are compared
against each other.

The following trigger conditions are available:

0x00 SA_CTL_FORWARD_DIRECTION The trigger pulse is output when the position
value passes the threshold from below.

0x01 SA_CTL_BACKWARD_DIRECTION The trigger pulse is output when the position
value passes the threshold from above.

0x02 SA_CTL_EITHER_DIRECTION The trigger pulse is output when the posi-
tion value passes the threshold from below or
above.

Please refer to section 2.18 "Output Trigger" for more information.

The default direction is SA_ CTL_FORWARD_DIRECTION (0x00).

Example

// set output trigger condition for channel 1 to forward
result = SA_CTL_SetProperty_132(
dHandle,
1 ’
SA_CTL_PKEY_CH_POS_COMP_DIRECTION,
SA_CTL_FORWARD_DIRECTION

See Also

4.14.1 Channel Output Trigger Mode, 4.14.4 Channel Position Compare Start Threshold, 4.14.5
Channel Position Compare Increment, 4.14.2 Channel Output Trigger Polarity, 4.14.3 Channel Out-
put Trigger Pulse Width 4.14.7 Channel Position Compare Limit Min, 4.14.8 Channel Position Com-
pare Limit Max

4.14.7 Channel Position Compare Limit Min

Definition
| coie L me Lo s o
SA_CTL_PKEY CH POS_COMP_LIMIT MIN 0x060E0020 164

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

ASCll Command: [:PROPerty] : CHANnel#:TRIGger:PCOMpare: LMIN

Description

This property defines the lower limit for the position compare output trigger in pm or n°. The limits
act as an additional gate for the generation of output pulses. Output pulses are only generated
when the current position lies between the configured minimum and maximum limits. Note that
the maximum limit must be configured to a higher value than the minimum limit for the limit
checks to be active. If both limits are set to the same value the checks are disabled and output
pulses are generated according to the configured start threshold, increment and direction. Please
refer to section 2.18 "Output Trigger" for more information.

The default value is 0.

Valid Range

-100 x 10"%...100 x 10'? pm or n°.

Example

// set position compare lower limit for channel 1 to Imm
result = SA_CTL_SetProperty_164 (

dHandle, 1, SA_CTL_PKEY CH_POS_COMP_LIMIT_MIN, 1le9
)

See Also

4.14.1 Channel Output Trigger Mode, 4.14.4 Channel Position Compare Start Threshold, 4.14.5
Channel Position Compare Increment, 4.14.6 Channel Position Compare Direction, 4.14.2 Chan-
nel Output Trigger Polarity, 4.14.3 Channel Output Trigger Pulse Width, 4.14.8 Channel Position
Compare Limit Max

4.14.8 Channel Position Compare Limit Max

Definition
| coieLome Lo s o
SA_CTL_PKEY CH POS_COMP_LIMIT MAX 0x060E0021 164

ASCll Command: [:PROPerty] : CHANnel#:TRIGger :PCOMpare : LMAX

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Description

This property defines the upper limit for the position compare output trigger in pm or n°. The
limits act as an additional gate for the generation of output pulses. Output pulses are only gener-
ated when the current position lies between the configured minimum and maximum limits. Note
that the maximum limit must be configured to a higher value than the minimum limit for the limit
checks to be active. If both limits are set to the same value the checks are disabled and output
pulses are generated according to the configured start threshold, increment and direction. Please
refer to section 2.18 "Output Trigger" for more information.

The default value is 0.

Valid Range

-100 x 10"%...100 x 10'2 pm or n°.
Example

// set position compare upper limit for channel 1 to 2mm
result = SA_CTL_SetProperty_164 (

dHandle, 1, SA_CTL_PKEY_CH_POS_COMP_LIMIT_MAX, 2e9
)

See Also
4.14.1 Channel Output Trigger Mode, 4.14.4 Channel Position Compare Start Threshold, 4.14.5
Channel Position Compare Increment, 4.14.6 Channel Position Compare Direction, 4.14.2 Chan-

nel Output Trigger Polarity, 4.14.3 Channel Output Trigger Pulse Width, 4.14.7 Channel Position
Compare Limit Min

4.15 Hand Control Module Properties

4.15.1 Hand Control Module Lock Options

Definition
B EEIED
SA_CTL_PKEY HM LOCK _OPTIONS 0x020C0083 132 Dev

ASCIl Command: [:PROPerty] :DEVice:HMODule:LOPTions [: CURRent]

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Description

This property defines the different possible lock states of an attached hand control module. The
value is a bit field containing independent flags with the following meaning:

0

O 00 4 o U b

13
14
15
16
17

18

19

20

Table 4.2 - Hand Control Module Lock Options Bits

=] = short Description

SA_CTL_HM1_TLOCK_OPT_BIT_GLOBAL

SA_CTL_HM1_ LOCK_OPT_BIT_CONTROL

SA_CTL_HM1_LOCK_OPT_BIT_CHANNEL_MENU
SA_CTL_HM1_LOCK_OPT_BIT_GROUP_MENU

SA_CTL_HM1_LOCK_OPT_BIT_ SETTINGS_MENU
SA_CTL_HM1_TLOCK_OPT_BIT_ LOAD_CFG_MENU
SA_CTL_HM1_LOCK_OPT_BIT_ SAVE_CFG_MENU

SA_CTL_HM1_LOCK_OPT_BIT_ CTRI_MODE_PARAM MENU

SA_CTL_HMI1_LOCK_OPT_BIT_CHANNEL_ NAME

SA_CTL_HM1_LOCK_OPT_BIT_POS_TYPE
SA_CTL_HM1_TLOCK_OPT_BIT_SAFE_DIR
SA_CTL_HM1_TLOCK_OPT_BIT_CALIBRATE
SA_CTL_HM1_ILOCK_OPT_BIT_REFERENCE

SA_CTL_HMI_LOCK_OPT_BIT_SET_POSITION

SA_CTL_HM1_ LOCK_OPT_BIT_MAX CLF

SA_CTL_HM1_LOCK_OPT_BIT_ POWER_MODE

SA_CTL_HM1_TLOCK_OPT_BIT_ACTUATOR_MODE

Fully disables control over the hand
controller.

Disables the control inputs (Encoder,
Joystick, etc.).

Hides the Channel Settings menu.
Hides the Group Settings menu.
Hides the General Settings menu.
Hides the Load Config menu.
Hides the Save Config menu.

Hides the generic control mode pa-
rameter menu.

Hides the Set Channel Name menu
entry.

Hides the Positioner Type menu entry.
Hides the Safe Direction menu entry.
Hides the Sensor Calibration menu.

Hides the Find Reference menu entry.

Hides the Set Zero Position menu en-
try.

Hides the Max Closed-Loop Frequency
menu entry.

Hides the Sensor Power Mode menu
entry.

Hides the Actuator Mode menu entry.

Note that this property is volatile. In order to alter the lock bits across sessions use the Hand
Control Module Default Lock Options property instead.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Example

// disable control inputs for the hand control module
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_HM_ LOCK_OPTIONS,SA_CTL_HMI1_LOCK_OPT_BIT_CONTROL
)i

See Also

4.15.2 Hand Control Module Default Lock Options

4.15.2 Hand Control Module Default Lock Options

Definition
e e e Lpcs
SA_CTL_PKEY HM DEFAULT_LOCK_OPTIONS 0x020C0084 132 Dev

ASCll Command: [:PROPerty] :DEVice:HMODule:LOPTions:DEFault

Description

This property specifies the default lock state of the hand control module at startup. It is the non-
volatile version of the Hand Control Module Lock Options property. See table 4.2 for a description
of the bit field.

Example

// hide channel and group menu by default
int32_t defaultLockState = (SA_CTL_HM1l_LOCK_OPT_BIT_CHANNEL_MENU |
SA_CTL_HM1_ TLOCK_OPT_BIT_GROUP_MENU) ;
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_HM_DEFAULT_LOCK_OPTIONS, defaultLockState
)i

See Also

4.15.1 Hand Control Module Lock Options

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.16 API Properties

4.16.1 Event Notification Options

Definition

oL e Lo

SA_CTL_PKEY EVENT NOTIFICATION_OPTIONS 0xF010005D 32 API

ASCIl Command: N/A

Description

This property may be used to configure the event notifications of the API.

The value is a bit field containing independent flags. Undefined flags are reserved for future use.
These flags should be set to zero. The default value is 0 (all API events disabled).

NOTICE

Although this property is a setting of the API, an active connection to a device is

still required. The setting applies to every individual device connection indepen-
dently. Closing the connection to a device resets the setting to its default.

Table 4.3 - Event Notification Option Bits

m Short Description

0 SA_CTL_EVT_OPT_BIT_REQUEST_READY_ENABLED Enable generation of request ready
events.

Please refer to section 2.3.5 "Request Ready Notification" for more information on the request
ready notifications.

Changing this property affects only new requests sent out after changing this property, not re-
guests that were sent out before but have not received an answer yet.

Example

// enable the request ready events of the API

result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_EVENT_NOTIFICATION_OPTIONS,
SA_CTL_EVT_OPT_BIT_REQUEST_READY_ENABLED

)

MCS2 Programmer’s Guide e T

4 PROPERTY REFERENCE

See Also

2.4 Event Notifications, 2.3.5 Request Ready Notification, 5.2.20 Request Ready Event

4.16.2 Auto Reconnect

Definition
 coie e e s o
SA_CTL_PKEY AUTO_RECONNECT 0xF01000A1 32 API

ASCIl Command: N/A

Description

This property configures the automatic reconnect feature of the API. In the default configuration
the reconnect feature is disabled. When enabled the API detects lost connections and tries to
reconnect to the device. Note that during the reconnect all device requests functions block until
the reconnect is finished.

NOTICE

Although this property is a setting of the API, an active connection to a device is

still required. The setting applies to every individual device connection indepen-
dently. Closing the connection to a device resets the setting to its default.

Valid Range

SA_CTL_ENABLED (0x01), SA_CTL_DISABLED (0x00)
Example

// enable automatic reconnect
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY AUTO_RECONNECT, SA_CTL_ENABLED) ;

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

5.1 Event Summary

An event always carries a 32-bit parameter. The meaning of this parameter depends on the event.
The last column in the following table indicates the usage of the parameter.

Table 5.1 - Event Summary

IS N) T

None 0x0000 231
Movement Finished 0x0001 Ch Result Code 231
Sensor State Changed 0x0002 Ch New State 232
Reference Found 0x0003 Ch N/A 232
Following Error Limit 0x0004 Ch N/A 233
Holding Aborted 0x0005 Ch Result Code 231
Sensor Module State Changed 0x4000 Mod New State 233
Over Temperature 0x4001 Mod Temperature 233
High Voltage Overload 0x4002 Mod N/A 234
Adjustment Finished 0x4010 Mod Result Code 234
Adjustment State Changed 0x4011 Mod New State 235
Adjustment Update 0x4012 Mod Result Code 235
Stream Finished 0x8000 Dev Stream Handle, Index, 235
Result Code
Stream Ready 0x8001 Dev Stream Handle 236
Stream Triggered 0x8002 Dev Stream Handle 236
Command Group Triggered 0x8010 Dev Transmit Handle, Res. Code 237
Hand Control Module State Changed 0x8020 Dev New State 237
Emergency Stop Triggered 0x8030 Dev N/A 238
External Input Triggered 0x8040 Dev InputIndex 238
Request Ready 0xf000 Any RequestID, Request Type, 238

Data Type, Array Size,
Property Key

Continued on next page

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

Table 5.1 - Continued from previous page

e — L

Connection Lost 0xf001

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

5.2 Detailed Event Description

5.2.1 None
Definition
C Definition mmmm-
SA_CTL_EVENT_NONE 0x0000
Description:

This event type is a place holder indicating that no event occurred. The index and parameter fields
are undefined.

5.2.2 Movement Finished

Definition
C Definition mmmm-
SA_CTL_EVENT MOVEMENT FINISHED 0x0001 Result Code
Description:

This event is generated when a channel has finished a movement command (either successful or
unsuccessful). See also section 2.6.7 "Movement Feedback".

Parameter:

The event parameter holds the result code. If the movement command finished successfully then
the result is SA_CTL_ERROR_NONE. Otherwise the result code indicates what caused the failure.
See table A.1 for a list of result codes.

5.2.3 Holding Aborted

Definition
C Definition mmmm-
SA_CTL_EVENT HOLDING_ABORTED 0x0005 Result Code

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

Description:

This event is generated when a channel detects an endstop (or a configured following error limit
is exceeded) while in holding state.

Parameter:

The event parameter holds the result code: SA_CTI_ERROR_END_STOP_REACHED in case the
holding was aborted due to an endstop or SA_CTL_ERROR_FOLLOWING_ERR_LIMIT in case the
holding was aborted due to exceeding a following error limit.

5.2.4 Sensor State Changed

Definition

C Definition mmmm-
SA_CTL_EVENT_SENSOR_STATE_CHANGED 0x0002 New State
Description:

A sensor was attached to or detached from a sensor module.

Parameter:

The parameter value will be one of:
SA_CTL_EVENT_PARAM ATTACHED (0x00000001),
SA_CTL_EVENT_PARAM_DETACHED (0x00000000)

5.2.5 Reference Found

Definition
C Definition mmmm-
SA_CTL_EVENT_REFERENCE_FOUND 0x0003
Description:

This event is generated during a reference movement. It is generated at the moment the physical
position has been determined. Depending on the configuration of the referencing the movement
might be continued and stopped at a later time. See section 2.6.2 "Referencing" for more infor-
mation.

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

5.2.6 Following Error Limit

Definition

mmmm-

SA_CTL_EVENT_FOLLOWING_ERR_LIMIT 0x0004

Description:

This event is generated if the configured following error limit is exceeded during a closed-loop
movement. See section 2.11 "Following Error Detection" for more information.

5.2.7 Sensor Module State Changed

Definition
SA_CTL_EVENT_SM_STATE_CHANGED 0x4000 Mod New State
Description:

A sensor module was attached to or detached from a driver module.

Parameter:

The parameter value will be one of:
SA_CTL_EVENT_PARAM ATTACHED (0x00000001),
SA_CTL_EVENT_PARAM DETACHED (0x00000000)

5.2.8 Over Temperature

Definition
SA_CTL_EVENT OVER_TEMPERATURE 0x4001 Mod Temperature

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

Description:

The module detected an over-temperature condition of a driver amplifier. Note that the amplifier
circuit is automatically disabled at the occurrence of an over-temperature condition. The device
must be cooled down before being able to continue to use the device. The Module State property
(SA_CTIL_MOD_STATE_BIT_OVER_TEMPERATURE) may be polled to know when the over tem-
perature condition has passed by.

Parameter:

The parameter holds the measured temperature in °C.

5.2.9 High Voltage Overload

Definition
SA_CTL_EVENT_HIGH_VOLTAGE_OVERLOAD 0x4002 Mod
Description:

The module detected an overload condition of the high voltage power supply.

5.2.10 Adjustment Finished

Definition
SA_CTL_EVENT_ADJUSTMENT_FINISHED 0x4010 Mod Result Code
Description:

This event is generated when a module adjustment process has finished (either successful or un-
successful).

Parameter:

The event parameter holds the result code. If the adjustment finished successfully then the result
is SA_ CTL_ERROR_NONE. Otherwise the result code indicates what caused the failure. See table
A.1 for a list of result codes.

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

5.2.11 Adjustment State Changed

Definition
SA_CTL_EVENT_ADJUSTMENT_ STATE_CHANGED 0x4011 Mod New State
Description:

This event is generated when a module adjustment state changes.

Parameter:

The event parameter holds the new state of the adjustment process.

5.2.12 Adjustment Update

Definition
SA_CTL_EVENT_ADJUSTMENT_UPDATE 0x4012 Mod Result Code
Description:

This event is generated when a module adjustment update occurs.

Parameter:

The event parameter holds the result code. If the adjustment update finished successfully then
the result is SA_CTL_ERROR_NONE. Otherwise the result code indicates what caused the failure.
See table A.1 for a list of result codes.

5.2.13 Stream Finished

Definition
SA_CTL_EVENT STREAM FINISHED 0x8000 Dev Handle Index Result Code

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

Description:

This event indicates that a trajectory stream has come to an end. See section 2.15 "Trajectory
Streaming" for more information.

Parameter:

The parameter holds information to further specify the event.

+ Stream Handle The corresponding stream handle.
+ Index The device/channel index that caused the given result code.

* Result Code The result of the trajectory streaming. If it finished successfully then the result
is SA_CTL_ERROR_NONE. Otherwise the result code indicates what caused the failure. See
table A.1 for a list of result codes.

5.2.14 Stream Ready

Definition
SA_CTL_EVENT_STREAM READY 0x8001 Dev Handle Reserved
Description:

This event indicates that the internal trajectory stream buffer contains enough data to start the
stream. In case of direct streaming the stream will start automatically. Otherwise the device is
ready to receive a start trigger for the stream. See section 2.15 "Trajectory Streaming" for more
information.

Parameter:

The parameter holds the corresponding stream handle.

5.2.15 Stream Triggered

Definition
SA_CTL_EVENT STREAM TRIGGERED 0x8002 Dev Handle Reserved

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

Description:

This event indicates that the controller has started to execute the trajectory stream. See section
2.15 "Trajectory Streaming" for more information.

Parameter:

The parameter holds the corresponding stream handle.

5.2.16 Command Group Triggered

Definition
SA_CTL_EVENT_CMD_GROUP_TRIGGERED 0x8010 Dev Handle Reserved Result Code
Description:

This event notifies that a command group has been executed (either directly or via a configured
external trigger). See section 2.14 "Command Groups" for more information.

Parameter:

The parameter holds the corresponding transmit handle and result code.

5.2.17 Hand Control Module State Changed

Definition
SA_CTL_EVENT_SM_STATE_CHANGED 0x4000 Dev New State
Description:

A hand control module was attached to or detached from the device.

Parameter:

The parameter value will be one of:
SA_CTL_EVENT_PARAM ATTACHED (0x00000001),
SA_CTL_EVENT_PARAM DETACHED (0x00000000)

MCS2 Programmer’s Guide _

5 EVENT REFERENCE

5.2.18 Emergency Stop Triggered

Definition

mmmm-

SA_CTL_EVENT_EMERGENCY_STOP_TRIGGERED 0x8030

Description:

This event notifies that an emergency stop condition has been detected. See section 2.17.2 "Emer-
gency Stop Mode" for more information.

5.2.19 External Input Triggered

Definition
SA_CTL_EVENT_EXT_INPUT_TRIGGERED 0x8040 Input Index
Description:

This event notifies that an falling or rising edge was detected on the external trigger input. See
section 2.17.5 "Event Trigger Mode" for more information.

Parameter:

The parameter holds the index of the input trigger (currently always 0).

5.2.20 Request Ready

Definition
SA_CTL_EVENT_REQUEST_READY 0x£000 Property Key

| TR

Size Data Type RqQ. Type Rg. ID

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

Description:

The request ready event is generated by the APl when the result of an asynchronous request
is received. The event is also generated in case of a request timeout or any other error. After
the event has been received the result of the asynchronous operation can be retrieved using the
SA_CTL_ReadProperty_x, SA_CTL_WaitForWrite functions. By waiting for this event, it is
guaranteed that these functions won't block and return a result immediately. This event is not
generated if the retrieve function for this request has already been called.

This event needs to be enabled using the Event Notification Options property.

Parameter:

The parameters store information needed to retrieve the result of the asynchronous request. The
index parameter is same index as passed to the request function. Depending on the property key
this is either a device, module or channel index.

* Rq. ID The request ID is identical to the one returned by the asynchronous request function
and can be used to associate this event with open requests.

* Rq. Type The request type allows to differentiate between read and write requests. Possible
values are SA_CTL_EVENT_REQ_READY_TYPE_READ (0x00) or
SA_CTL_EVENT_REQ_READY_ TYPE_WRITE (0x01)

+ Data Type Indicates the type of the requested property. This information is needed to
call the correct SA_CTIL_ReadProperty_x function. If the property read failed, the data
type is unknown and has a value of SA_CTL_DTYPE_NONE (0xff). In this case any of the
SA_CTL_ReadProperty_x functions can be used to retrieve the error code.

+ Size The array size stores the size of the received value. For integer properties this is the
number of elements and for string properties the number of characters. Note that for strings
the required buffer size is one byte larger because of the null terminator. This field is only
set for successful property read requests.

* Property Key Key of the requested property.

Parameters can be extracted using the following macros:
SA_CTL_EVENT_REQ_READY_ID (),
SA_CTL_EVENT_REQ_READY_TYPE (),
SA_CTL_EVENT_REQ_READY_DATA_TYPE (),
SA_CTL_EVENT_REQ_READY_ ARRAY_SIZE(),
SA_CTL_EVENT_REQ_READY_ PROPERTY_KEY ()

5.2.21 Connection Lost

Definition
C Definition mmmm-
SA_CTL_EVENT CONNECTION_LOST 0xf001

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

Description:

The connection to the device has been lost. All functions requiring communication with the de-
vice will fail with SA_CTI_ERROR_COMMUNICATION_FATLED. After receiving this event the device

should be closed using SA_CTL_Close.

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

As an alternative to control the MCS2 using the SmarActCTL library, the device also supports con-
trol using an ASCII protocol. To simplify the entry and overall operation this protocol is (with some
exceptions) strongly orientated towards the well established SCPI ' standard.

NOTICE

The ASCII Interface is only available for devices with an ethernet port. For general

information on how to configure the ethernet interface please refer to the MCS2
User Manual document.

6.1 Connection Setup

A connection to the device can be established via raw TCP/IP or by using a telnet client. The settings
needed to access the ASCII Interface include:

» the current IP address (default is 192.168.1.200).
+ the fixed port number 55551.

One way to connect and communicate with the device through the ASCII Interface is by using a
telnet client. In the following steps we will use the multipurpose client PuTTY? to read the serial
number of an attached MCS2 controller.

—_

. Download and start PUTTY (www . putty.org)

In the tree view to the left select the session category
Select telnet as connection type (see figure 6.1a)

Fill in the device's IP address and the correct port (55551)
Name and save the session options (optional)

A click on open will start the session (see figure 6.1b)

N o v o~ W N

You are now ready to communicate with the device
(e.g. to query the serial number).

'Standard Commands for Programmable Instruments (www . ivifoundation.org/scpi)
20Open source SSH and telnet client PUTTY (www .putty.org)

MCS2 Programmer’s Guide m _

www.putty.org
www.ivifoundation.org/scpi
www.putty.org

6 ASCII INTERFACE

#8 PuTTY Configuration >
Category:

= Sgssion Basic options for your PuTTY session
- Llogging . .
| Termingl Specify the destination you want to connect to B 192168120 puTTY - - <

.. Keyboard Host Mame (or IP address) Port

Bel [192.168.1.200 | [35551

i Features Connection type:
= Window ORaw ®Telnet ORlogin O5SH O Serial
o Appea!ance Load, save or delete a stored session

- Behaviour

Translation Saved Sessions

- Selection |mcs2_telnet |
P Colours Default Settings =]
=) Connection mcs2 raw =

- Data T

. Proxy

.. Telnet Delete

- Rlogin

+- 55H

- Seid Close window on exit:

(O Aways (O Never (® Onlyon clean exit
(b) PUTTY Terminal Window

About Cpen Cancel

(a) PuTTY Configuration Window

Figure 6.1: Communicating with the MCS2 using PuTTY

6.1.1 Note On Message Termination

When communicating with the device via raw TCP/IP make sure to use the correct message ter-
mination for commands sent to and answers received from the device. The message termination
characters used by the MCS2 are <CR><LF> (carriage return + line feed).

6.2 SCPI Basics

Initially developed due to the need of a common interface language between computers and in-
struments, SCPI is nowadays a well established open standard to communicate with all kinds of
devices. Due to it's easy to learn and mostly self-explanatory ASCII syntax it is usable with any
computer language or application environment.

The following sections will give an overview on how to get started using SCPI with the MCS2. More
information on the SCPI specification can be found on the IVI Foundation websites 3.

6.2.1 SCPI Conformance Information

Although being strongly orientated towards the SCPI standard (especially concerning the com-
mand syntax rules) we do not claim to be fully conform. Due to its rich set of functions and
flexibility, the MCS2 does not fit in a predefined instrument class, but uses the well defined SCPI
syntax and communication mechanisms for a convenient operation experience.

Swww.ivifoundation.org/specifications/

MCS2 Programmer’s Guide m _

www.ivifoundation.org/specifications/

6 ASCII INTERFACE

6.2.2 Command Structure

SCPI differentiates between common and instrument commands. Common commands always
start with an asterisk (*) and only consist of one keyword.

Common Command *IDN?

The behavior of these commands is mostly predefined by the standard and incorporates some
general mechanisms like issuing a reset or reading global status bytes. Section 6.6.1 holds a table
describing the common commands supported by the MCS2.

To access all the different properties and functions the MCS2 provides, instrument commands
are used. These commands are device-dependent and follow a hierarchical tree system approach.
Associated properties are therefore grouped into different subsystems (branches) creating a com-
mand tree like the one below.

[:PROPerty] /! "root"
:DEVice // "branch"

: SNUMber // "leaf"

:STATe // "leaf"
:CHANnel# // "branch"

:VELocity // "leaf"

As an example we now want to read the device’s serial number. The assembling of a command
always starts at the root of the tree. To obtain the value of a particular leaf the full path to it
must be specified. This is achieved by traversing the command tree from root (: PROPerty) to
leaf (: SNUMber) and concatenate the different keywords on the way from left to right. As result
we get the full command string:

Instrument Command :PROPerty:DEVice:SNUMber?

Each command has both a long and a short form. Only the exact long or the exact short form
will be accepted with lower- and uppercase letters being ignored (case-insensitive).

The following commands would all be accepted by the MCS2.

Long Form (mixed case) :PROPerty:DEVice: SNUMber?
Long Form (all lower-case) :property:device:snumber?
Short Form (all upper-case) :PROP:DEV:SNUM?
Short Form (all lower-case) :prop:dev:snum?

NOTICE

To keep track of long and short command forms, all of the following examples

will use upper case letters for short commands and lower case letters for the
remaining part of the corresponding long form.

A setup containing an MCS2 normally holds a variable number of channels and/or modules. To
address a particular module or channel, the corresponding index has to be added when as-
sembling the command. In general, if a command tree keyword contains a hash symbol (#) , that

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

symbol must be replaced by the desired module or channel index. Thus a : CHANnel# keyword
becomes : CHANnel2 when addressing the channel with index 2.

Many commands take an additional command parameter (e.g. to set a channel’s velocity). Com-
mand and parameter must be separated by at least one space character. Command parameters
can be of type numeric (int32/64) or type string and must be given according to the base unit (e.g.
pm or n°).

The following command needs the channel's move velocity as a parameter given in &7,
Set velocity for channel 0 to 17" :PROPerty:CHANnelO:VELocity 1000000000

For properties that are (also) readable, the query form of a command is generated by appending
a question mark (?) to the command. However, not all commands have a query form, and some
commands exist only in query form, see subsection 6.2.4 (Queries).

Query velocity for Channel 0 :PROPerty:CHANnelO:VELocity?
Response (in &) 1000000000

6.2.3 Traversing the Command Tree

As stated in the previous section 6.2.2 (Command Structure) commands are created by concate-
nating keywords along the command tree. This section is intended to explain some more rules
and possibilities on how to create proper commands.

* When assembling commands, colons (:) are used to separate the different keywords.

+ Square brackets ([]) enclose a keyword that is optional (default) and may be omitted. Thus
a command tree, starting with the root [:PROPerty] may lead to the following commands:

- :PROPerty:DEVice:SNUMber?

- :DEVice:SNUMber?
+ Multiple commands may be sent in one message to the device (compound command).

The first command must always be referenced to the root node (e.g. :CHANnelQ). Subsequent
commands however, are referenced to the same tree level as the previous command in a message.
These commands have to be separated by a semicolon (;) to the previous command.

Set channel 0 move mode :CHANnel0:MMODe 1

Set channel 0 velocity :CHANnelO:VELocity 10000

Set channel 0 acceleration :CHANnelO:ACCeleration 0

Set all in one message :CHANnel0:MMODe 1;VELocity 10000;ACCeleration 0

Set channel O positioner type :CHANnelO:PTYPe 300

Note that sending a compound command message to the device may complicate error handling
if one of the containing commands fails. It is therefore recommended to send each command as
a single message to ensure a deterministic and stable program sequence.

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

6.2.4 Queries

To read the value of a specific device, module or channel property a query command has to be
sent to the MCS2. Queries are generated by traversing the command tree and appending the final
command with a question mark (?). When the device receives a valid query form of a command, a
response is generated containing the current setting or value associated with the property.

Further note that
+ query responses do not include the command header but only the requested value.
« for numeric properties, the result is returned as an int32/64 type (see Property Summary).
« for string properties, the result is returned as string.

* responses to compound query messages are separated by a semicolon ;).

Single query :CHANnelO:PTYPe?
Response 300

Single query : CHANnelO0:MMODe?
Response 2

Compound Query :CHANnelO:PTYPe?;MMODe?
Response 300; 2

To check whether a property is readable, writable or both, see section 6.6.3 (Property Command
Tree).

6.3 Basic Programming Examples

This section shows a few examples how communication with the device might look using the short
command forms and omitting the optional (default) : PROPerty command tree keyword. For
more info on long and short command forms, see 6.2.2 (Command Structure). Note that com-
mands are only executed after the device receives the <NL> character, see 6.1.1 (Note On Message
Termination).

6.3.1 Get Property

// get number of bus modules from device
>> :DEV:NOMO?

// response

<< 1

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

6.3.2 Set Property

// set move mode to open—-loop step mode (4) for channel 0
>> :CHANO:MMOD 4

6.3.3 Calibrate

// set calibration mode for channel 0 (start direction: forward)
>> :CHANO:CAL:OPT O

// start calibration sequence

>> :CALO

6.3.4 Reference

// set find reference mode for channel 0 (default is 0)
>> :CHANO:REF:0PT O

// start referencing sequence

>> :REFO

6.3.5 Move

// set move mode to closed-loop relative (1) for channel 0
>> :CHANO:MMOD 1

// set move velocity [in pm/s]

>> :CHANO:VEL 500000000

// disable acceleration control

>> :CHANO:ACC O

// start actual movement, value is interpreted as

// relative position (in pm)

>> :MOVEO 500000000

6.3.6 Stop

// send stop command to channel 0
>> :STOPO

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

6.3.7 Movement State

// get current state for channel 0

>> :CHANO:STAT?

// response holds the state bitmask as int32 value

<< 37

// decoding the value leads us to the following active state bits
// — channel 0 is actively moving (bit 0 is set)

// — channel 0 is calibrating (bit 2 is set)

// — channel 0 has a sensor present (bit 5 is set)

6.3.8 Error Handling

To access information on errors due to either incorrect assembling of command messages or
general handling with the device, the ASCII Interface holds a user accessible error queue.

This queue is implemented as FIFO* and can be accessed by the : SYSTem:ERRor subsystem.
Errors that occur during run-time can therefore be detected by executing the following queries.

:SYSTem:ERRor:COUNt? Returns the number of errors the queue contains
:SYSTem:ERRor [:NEXT]? Returns the NEXT error and removes it from the queue
(will return 0, "No Error" if empty)

Error codes returned are divided in
+ a No Error Code which is equal to zero.
* SCPI error codes which are less than zero, see 6.4.
+ and SmarActControl error codes which are greater than zero, see A.1.

A program sequence with error checking might look like the following:

// try to get current state for channel 0

>> :CHANO:STAT?!

// due to an invalid character in this command (!), there is no response
// by checking the error count

>> :SYST:ERR:COUN?

// we see that there is one error inside the error queue
<< 1

// to get more information we retrieve this error

>> :SYST:ERR:NEXT?

// and get the following response

<< =101, "Invalid character"

“First error In will be the First error Out

MCS2 Programmer’s Guide 27

6 ASCII INTERFACE

NOTICE

Note that when working with the error queue, it might already hold errors gener-

ated by previous commands. An incorrect command can even result in multiple
errors being added to the queue. It is therefore good practice to query all possi-
ble errors before sending the next command.

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

6.4 Using Command Groups

Command groups offer the possibility to define an atomic group of commands that is executed
synchronously. In addition, a command group may not only be triggered via software, but alter-
natively via an external trigger. For more general information on Command Groups please refer
to section 2.14.

This section describes how to take advantage of Command Groups when using the ASCIl interface.

6.4.1 Command Set

The following commands and queries are used to control a Command Group.

:CGRoup:OPEN <triggerMode> Opens a Command Group using the given trigger mode.

:CGRoup:CLOSe Closes a previously opened Command Group.

:CGRoup:ABORt Aborts a previously opened Command Group.
:CGRoup:FINished? Indicates whether the Command Group is finished.
:CGRoup:VALues? Requests the values that were queried inside a Command Group.

Note that, when using the ASCII interface, the number of concurrently active Command Groups is
limited to one. Figure 6.2 show the general process for either writing or reading multiple properties
using a Command Group.

e
Open Command Group
with desired Trigger Mode

~

>> :CGR:OPEN <trigger mode>
\ % g,

Y Y

/Append Commands N\ /Append Queries N
>> :CHANO:MMOD 1 >> :CHANO:POS?
>> :MOVEO 1000000 >> :CHAN1:POS?
>> :CHAN1:MMOD 1

\>> :MOVE1 2000000 J _)

Y Y

P
(Close Command Group Close Command Group

>> :CGR:CLOS >> :CGR:CLOS

Y Y

(Wait For Finished Flag h (Wait For Finished Flag h
>> :CGR:FIN? >> :CGR:FIN?
(<< 1) =< 1 ¢ J
(Query Value(s) h
>> :CGR:VAL?
=< 1000000; 2000000)

Figure 6.2: Command Group procedure(s)

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

The CGR:0PEN command is used to activate a Command Group using the given trigger mode.
All of the following commands and queries will be appended to this Command Group. Note that
properties missing the Groupable flag will lead to an error when put into a Command Group. Send-
ing the CGR:CLOS command either starts the Command Group’s execution immediately (trigger
mode direct) or defers the execution until an external event occurs (trigger mode external).

The CGR:FIN query is used to check if execution of all grouped commands has been started or if
the requested values are available.

For finished Command Groups that contained at least one query, the CGR: VAL query is used to
read the resulting values from the device.

6.4.2 Examples

This section contains some examples to further demonstrate the different use cases of Command
Groups.

Synchronized movement using direct trigger

The following sequence uses a Command Group to synchronize the Closed-Loop movement of
two channels. By using the Direct Trigger mode, the commands execution starts right after closing
the Command Group.

// open command group in direct trigger mode (0)

// (every following command is not executed but put into the group)
>> :CGR:0PEN 0

// set move modes of channel 0 and 1 to closed-loop relative (1)
>> :CHANO:MMOD 1

>> :CHAN1:MMOD 1

// move channel 0 to +1mm

>> :MOVEO 1000000000

// move channel 1 to +0.5mm

>> :MOVE1l 500000000

// close command group

// (execution of grouped commands starts now)

>> :CGR:CLOS

// the command group’s finished value signalizes

// that the command group has been processed

>> :CGR:FIN?

<< 1

Synchronized position query using direct trigger

The following sequence uses a Command Group to synchronize the position sampling of two chan-
nels. By using the Direct Trigger mode, the queries’ execution starts right after closing the Com-
mand Group.

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

// open command group in direct trigger mode (0)
// (every following query 1s not executed but put into the group)
>> :CGR:0PEN 0

// query positions of channel 0 and 1

>> :CHANO:POS?

>> :CHAN1:POS?

// close command group

// (execution of grouped commands starts now)

>> :CGR:CLOS

// the command group’s finished value signalizes
// that the command group has been processed

>> :CGR:FIN?

<< 1

// we can now query the resulting value (s)

>> :CGR:VAL?

<< 1000000000; 500000000

Synchronized movement using external trigger

The following sequence uses a Command Group to synchronize the Closed-Loop movement of
two channels. By using the External Trigger mode, the commands execution is deferred until the
external event occurs. Note that the Input Trigger has to be configured accordingly in advance.
See section 2.17 for more information.

// open command group in external trigger mode (1)

// (every following command 1s not executed but put into the group)
>> :CGR:0PEN 1

// set move modes of channel 0 and 1 to closed-loop relative (1)

>> :CHANO:MMOD 1

>> :CHAN1:MMOD 1

// move channel 0 to +I1mm

>> :MOVEO 1000000000

// move channel 1 to +0.5mm

>> :MOVE1l 500000000

// close command group

// (execution of grouped commands 1is deferred)

>> :CGR:CLOS

// the command group’s finished value signalizes

// that the command group has NOT been processed yet

>> :CGR:FIN?

<< 0

//

// process some other commands/queries

/..
—> external event occurs

// the command group’s finished value signalizes
// that the command group has now been processed
>> :CGR:FIN?

<< 1

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

6.5 Streaming Trajectories

Trajectory streaming allows a multi DoF manipulator to follow specific trajectories using the MCS2
controller. All participating positioners are moved synchronously along the defined trajectory. For
more general information on Streaming please refer to 2.15.

This section describes how to take advantage of Trajectory Streaming when using the ASCII inter-
face.

6.5.1 Command Set

The following commands and queries are used to control a trajectory stream.

:STReam:OPEN <triggerMode> Opens a stream using the given trigger mode.

:STReam:BFREe? Returns the number of free buffer slots.
:STReam:FRAMe <frameData> Transmits the desired frame.
:STReam:CLOSe Closes a running stream.
:STReam:ABORt Aborts a running stream.

Before starting a stream make sure to configure the properties below as desired:
Stream Base Rate Configures the stream base rate in Hz, see 197.
Stream Sync Rate Configures the external synchronization rate in Hz, see 198.

Stream Options Configures the stream behavior, see 199.

NOTICE

When using the ASCII interface, the maximum reachable streaming frequency is
reduced, depending on the number of involved channels and the programming

sequence.
To prevent buffer under-/overruns, make sure to always supply enough stream
frames according to the remaining free buffer slots.

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

Figure 6.3 shows the general procedure for a complete streaming sequence.

v

Open Stream
with desired Trigger Mode

>> :STR:OPEN <triggerMode>

(Check the number of free)
buffer slots

A

>> :STR:BFRE?
<< "number of free slots"

AN J

{

/Send frames to device N\

>> :STR:FRAM <frame 0>
>> :STR:FRAM <frame 1>
>> :STR:FRAM <frame 2>
>> ...

Close Stream |

>> :STR:CLOS

:

Figure 6.3: Streaming sequence

The STR:0PEN command is used to open a stream using the given trigger mode.

By reading the number of available buffer slots using the STR: BFRE query, the number of frames
that can currently be transferred to the device can be calculated. The number of free buffer slots
is given in positions, thus a stream containing two channels would take up two buffer slots. Using
the STR:FRAM command, the device is now provided with the desired positions for each chan-
nel. A frame is assembled using a channel index following the corresponding absolute position,
separated by comma. This mechanism is used until all frames have been sent to the device.

The STR:CLOS command is used to close the stream.

6.5.2 Example

The following example configures and sends a stream to the device containing positions for chan-
nel0and 1.

// configure the streaming base rate to 100Hz

>> :DEV:STR:BAS 100

// configure the streaming options to default (0)
>> :DEV:STR:0PT O

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

// open stream in direct trigger mode (0)

>> :STR:0OPEN O

// check the current buffer level

>> :STR:BFRE?

<< 1024

// We have 1024 position buffer slots available.

// (This effectively results in 1024/numberOfChannels=512 frame slots)
// Now we transmit our frames containing positions for channel 0 and 1.
>> STR:FRAM 0,1000000,1,100000

>> STR:FRAM 0,2000000,1,150000

>> STR:FRAM 0,3000000,1,200000

>> L.

// Streaming starts as soon as enough data has been received by the
// device. Repeat this process until all desired frames have been

// sent to the device.

// If all frames have been transferred, close the stream.

>> :STR:CLOS

// The remaining frames are processed until the stream is completed.

6.6 Command Summary

Section 6.6.1 contains an overview of the supported set of SCPI common commands and their
behavior in context of the MCS2. The following tables in section 6.2 and 6.3 show the command
hierarchy as well as the necessary information to assemble all instrument commands available
through the ASCII Interface.

6.6.1 Common Commands

In general, the ASCII Interface supports all mandatory common commands required by the SCPI
standard. Nevertheless most of them are not needed for controlling the device. Table 6.1 shows
an overview of the implemented common commands and their utilization.

Table 6.1 - Common Commands

Canemonic | ame 1 pesarpion

*CLS Clear Status Command This command clears all status data
structures.

*ESE Standard Event Status Enable Command This command has no effect.

*ESE? Standard Event Status Enable Query This command has no effect.

*ESR Standard Event Status Register Query This command has no effect.

*IDN? Identification Query This command returns information

about the device such as
manufacturer and serial number.

Continued on next page

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

Table 6.1 - Continued from previous page

Cnemonic | ame " oescipion

*OPC Operation Complete Command This command has no effect.

*OPC? Operation Complete Query This command has no effect (will
always return 1).

*RST Reset Command Resets the device (reconnect
necessary!).

*SRE Service Request Enable Command This command has no effect.

*SRE? Service Request Enable Query This command has no effect.

*STB? Read Status Byte Query Returns the status byte.

*TST? Self-Test Query This command has no effect (will

always return 0).

*WAI Wait-to-Continue Command This command has no effect.

6.6.2 Movement Commands

Table 6.2 shows the commands that generate or stop movement. For detailed information on a
movement command please follow the corresponding page to the Function Reference chapter.

Table 6.2 - Movement Summary

S ommand e e e s e

:MOVE # 164 W 122
:STOP# - Ch W 124
:CALibrate# - Ch W 118
:REFerence# - Cch W 120

6.6.3 Property Command Tree

Table 6.3 shows the command hierarchy to access all the properties available for a proper device
configuration. For detailed information on a property please follow the corresponding page to the
Property Reference chapter.

Table 6.3 - Property Summary

R K K) T)

:PROPerty]
:DEVice
:NOCHannels 132 Dev R Number of Channels 137
Continued on next page

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

Table 6.3 - Continued from previous page

R T N T

:NOBModules R Number of Bus Modules 137
:STATe 132 Dev R Device State 138
: SNUMber String Dev R Device Serial Number 139
: NAME String Dev R Device Name 140
:ESTop

:MODE 132 Dev RW Emergency Stop Mode 141
:NETWork
:DISCover
:MODE 132 Dev RW Network Discover Mode 142
:STReaming
:BASerate 132 Dev RW Stream Base Rate 197
:SYNCrate 132 Dev RW Stream External Sync Rate 198
:OPTions 132 Dev RW Stream Options 199
:HMODule
:LOPTions
[: CURRent] 132 Dev RW Hand Control Module Lock Options 224
:DEFault 132 Dev RW Hand Control Module Default Lock Options 226
: TRIGger
: INPut
:MODE 132 Dev RW Device Input Trigger Mode 215
:CONDition 132 Dev RW Device Input Trigger Condition 216
:MODule#
:PSUPply
[:ENABled] 132 Mod RW Power Supply Enabled 143
:STATe 132 Mod R Module State 144
:NOMChannels 132 Mod R Number of Bus Module Channels 145
:TEMPerature 132 Mod R Bus Module Temperature 202
:IOModule
:0PTions 132 Mod RW I/0 Module Options 211
:VOLTage 132 Mod RW I/0 Module Voltage 213
:AINPut
:RANGe 132 Mod RW I/0 Module Analog Input Range 213
:AUXiliary

Continued on next page

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

Table 6.3 - Continued from previous page

" ScpiCommand Tee | Type | lx | Access | propery | page.

:DINPut
[:VALue] 132 Mod R Aux Digital Input Value 208
:DOUTput
[:VALue] 132 Mod RW Aux Digital Output Value / Set / Clear 209
:SET 132 Mod RW Aux Digital Output Value / Set / Clear 209
:CLEar 132 Mod RW Aux Digital Output Value / Set / Clear 209
:AOUTput
[:VALuel # 132 Mod RW Aux Analog Output ValueO / Value1 210
:CHANnel#
:AMPLifier
[:ENABled] 132 Ch RW Amplifier Enabled 145
:PCONtrol
:OPTions 132 Ch RW Positioner Control Options 146
:ACTuator
:MODE 132 Ch RW Actuator Mode 147
:CLINput
[:SELect] 132 Ch RW Control Loop Input 149
:SENSor
:SELect 132 Ch RW Sensor Input Select 150
[:VALue] 64 Ch R Control Loop Input Sensor Value 170
:AUXiliary
[:VALue] 164 Ch R Control Loop Input Aux Value 171
:PTYPe
[:CODE] 132 Ch RW Positioner Type 151
:NAME String Ch R Positioner Type Name 152
:MMODe 132 Ch RW Move Mode 152
:STATe 132 Ch R Channel State 154
:POSition
[:CURRent] 164 Ch RW Position 155
: TARGet 64 Ch R Target Position 156
: SCAN 64 Ch R Scan Position 156
:MSHift 132 Ch RW Position Mean Shift 168
: SCAN

Continued on next page

MCS2 Programmer’s Guide o

6 ASCII INTERFACE

Table 6.3 - Continued from previous page

I T R)

:VELocity Scan Velocity 157
:HOLDtime 132 Ch RW Hold Time 158
:VELocity 164 Ch RW Move Velocity 159
:ACCeleration 164 Ch RW Move Acceleration 160
:MCLFrequency

[: CURRent] 132 Ch RW Max Closed Loop Frequency 161

:DEFault 132 Ch RW Default Max Closed Loop Frequency 162
: STEP

:FREQuency 132 Ch RW Step Frequency 163

:AMPLitude 132 Ch RW Step Amplitude 163
:FELimit 164 Ch RW Following Error Limit 164
:BSTop

:OPtions 132 Ch RW Broadcast Stop Options 165
:SENSor

:PMODe 132 Ch RW Sensor Power Mode 166

:PSDhelay 132 Ch RW Sensor Power Save Delay 167
:SDIRection 132 Ch RW Safe Direction 169
:LSCale

:OFFset 64 Ch RW Logical Scale Offset 173

:INVersion 132 Ch RW Logical Scale Inversion 174
:RLIMit

:MIN 164 Ch RW Range Limit Min 175

:MAX 164 Ch RW Range Limit Max 175
:CALibration

:OPTions 132 Ch RW Calibration Options 176
:SCORrection

:OPTions 132 Ch RW Signal Correction Options 177
:REFerencing

:0PTions 132 Ch RW Referencing Options 179

:DTRMark 132 Ch RW Distance To Reference Mark 180

:DCINverted 132 Ch RW Distance Code Inverted 180
:ERRor 132 Ch R Channel Error 200

Continued on next page

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

Table 6.3 - Continued from previous page

I T R)
132

:TEMPerature Channel Temperature 201
:TTZVoltage
: THReshold 132 Ch RW Target To Zero Voltage Hold Threshold 172
:AUXiliary
:PTYPe 132 Ch RW Aux Positioner Type 203
:PTName String Ch R Aux Positioner Type Name 204
:ISELect 132 Ch RW Aux Input Select 204
:IO0Module
: INPut
: INDex 132 Ch RW Aux I/0 Module Input Index 205
[:VALuel# 132 Ch R Aux I/0 Module Input0 / Input1 Value 208
:DINVersion 132 Ch RW Aux Direction Inversion 207
: TRIGger
:OUTPut
:MODE 132 Ch RW Channel Output Trigger Mode 217
:POLarity 132 Ch RW Channel Output Trigger Polarity 218
:PWidth 132 Ch RW Channel Output Trigger Pulse Width 219
:PCOMpare
:THReshold
[:STARt] 132 Ch RW Channel Position Compare Start Threshold 220
: INCRement 132 Ch RW Channel Position Compare Increment 221
:DIRection 132 Ch RW Channel Position Compare Direction 221
:LMIN 164 Ch RW Channel Position Compare Limit Min 222
: LMAX 164 Ch RW Channel Position Compare Limit Max 223
: TUNing
:MTYPe 132 Ch R(W) Positioner Movement Type 181
:CUSTom 132 Ch R(W) Positioner Is Custom Type 182
:BASE
:UNIT 132 Ch R(W) Positioner Base Unit 183
:RESolution 132 Ch R(W) Positioner Base Resolution 184
:HTYPe 132 Ch R(W) Positioner Sensor Head Type 185
:RTYPe 132 Ch R(W) Positioner Reference Type 186

Continued on next page

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

Table 6.3 - Continued from previous page

" SchiCommand Tree | Type | lx | Access | propery | page.

:GAIN

:P 132 Ch R(W) Positioner P Gain 187

g1 132 Ch R(W) Positioner | Gain 188

:D 132 Ch R(W) Positioner D Gain 189

:SHIFt 132 Ch R(W) Positioner PID Shift 190
: AWINdup 132 Ch R(W) Positioner Anti Windup 191
: SAVE 132 Ch W Save Positioner Type 196
:WPRotection 132 Ch RW Positioner Write Protection 196
:ESDetection

:DISTance 132 Ch R(W) Positioner ESD Distance Threshold 192

:COUNter 132 Ch R(W) Positioner ESD Counter Threshold 193
:THReshold

: TREached 132 Ch R(W) Positioner Target Reached Threshold 194

: THOLA 132 Ch R(W) Positioner Target Hold Threshold 195

6.7 SCPI Error Codes

Table 6.4 - SCPI Error Codes

Definition / Description

0 SCPI_ERROR_NO_ERROR
No error occurred. Corresponds to an acknowledge.

-101 SCPI_ERROR_INVALID_CHARACTER
The command message contained an invalid character.

-103 SCPI_ERROR_INVALID_SEPARATOR
The command message contained an invalid separator.

-104 SCPI_ERROR_DATA_TYPE_ERROR
The command message contained an illegal data type.

-108 SCPI_ERROR_PARAMETER_NOT_ALLOWED
The command message contained illegal parameter.

-109 SCPI_ERROR_MISSING_PARAMETER
The command message is missing a parameter.

-113 SCPI_ERROR_UNDEFINED_HEADER
The command message does not exist for this device.

Continued on next page

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

Table 6.4 - Continued from previous page

Definition / Description

-151 SCPI_ERROR_INVALID_STRING_DATA
The given string data is invalid.

-350 SCPI_ERROR_QUEUE_OVERFLOW
An internal error queue overflow occurred.

-363 SCPI_ERROR_INPUT_BUFFER_OVERRUN
An input buffer overrun occurred.

MCS2 Programmer’s Guide m _

A CODE DEFINITION REFERENCE

A.1 Error Codes

Table A.1 - Error Codes

C-Definition / Description

0x0000 SA_CTL_ERROR_NONE
No error occurred. Corresponds to an acknowledge.

0x0001 SA_CTL_ERROR_UNKNOWN_COMMAND
An unknown command opcode was received and the packet was dropped.

0x0002 SA_CTL_ERROR_INVALID_PACKET_SIZE
Indicates that the size field of a packet does not match the packet structure.

0x0004 SA_CTL_ERROR_TIMEOUT
A timeout occurred while receiving a complete packet.

0x0005 SA_CTL_ERROR_INVALID_ PROTOCOL
A packet was received that does not comply to a supported protocol.

0x000c SA_CTL_ERROR_BUFFER_UNDERFLOW
The targeted buffer is empty.

0x000d SA_CTL_ERROR_BUFFER_OVERFLOW
The targeted buffer is filled and has no more space for further data.

0x000e SA_CTL_ERROR_INVALID_ FRAME_SIZE
The frame size of the packet is invalid.

0x0010 SA_CTL_ERROR_INVALID_PACKET
A packet with an inconsistent structure was received.

0x0012 SA_CTL_ERROR_INVALID_KEY
The given property key could not be resolved.

0x0013 SA_CTL_ERROR_INVALID_ PARAMETER
The passed parameter is not in the valid range.

0x0016 SA_CTL_ERROR_INVALID_DATA_TYPE
Indicates that the data type of a parameter is invalid.

0x0017 SA_CTL_ERROR_INVALID_DATA
The command could not be processed due to invalid data. (E.g. a calibration routine
finished but could not generate valid data.)

Continued on next page

MCS2 Programmer’s Guide m _

A CODE DEFINITION REFERENCE

Table A.1 - Continued from previous page

C-Definition / Description

0x0018 SA_CTL_ERROR_HANDLE_LIMIT_ REACHED
The command could not be processed because all available handles are currently in
use.
0x0019 SA_CTL_ERROR_ABORTED
The command has been aborted.
0x0020 SA_CTL_ERROR_INVALID_DEVICE_INDEX
An invalid device index has been passed.

0x0021 SA_CTL_ERROR_INVALID_ MODULE_INDEX
An invalid module index has been passed.

0x0022 SA_CTL_ERROR_INVALID_CHANNEL_INDEX
An invalid channel index has been passed.

0x0023 SA_CTL_ERROR_PERMISSION_DENIED
The request cannot be processed due to an access violation.

0x0024 SA_CTL_ERROR_COMMAND_NOT_GROUPABLE
The given command cannot be part of a command group.

0x0025 SA_CTL_ERROR_MOVEMENT_LOCKED
The given command cannot be processed due to movements being locked.

0x0026 SA_CTL_ERROR_SYNC_FAILED
A synchronization requirement could not be met. (E.g. the trajectory streaming was
aborted due to a stream overload.)

0x0027 SA_CTL_ERROR_INVALID_ARRAY SIZE
The number of array elements is invalid for a given write array property command.

0x0028 SA_CTL_ERROR_OVERRANGE
An over-range condition occurred.

0x0029 SA_CTL_ERROR_INVALID_CONFIGURATION
The operation could not be started due to an invalid configuration of the component.
(E.g. some other properties are not configured properly for the configured operation
mode.)

0x0100 SA_CTL_ERROR_NO_HM_ PRESENT
The command could not be processed because no Hand-Control-Module is present.

0x0101 SA_CTL_ERROR_NO_IOM_PRESENT
The command could not be processed because no I/0-Module is present.

0x0102 SA_CTL_ERROR_NO_SM PRESENT
The command could not be processed because no Sensor-Module is present.

0x0103 SA_CTL_ERROR_NO_SENSOR_PRESENT
The command could not be processed because no sensor is present.

0x0104 SA_CTL_ERROR_SENSOR_DISABLED
The command could not be processed because the sensor is disabled.

Continued on next page

MCS2 Programmer’s Guide m _

A CODE DEFINITION REFERENCE

Table A.1 - Continued from previous page

C-Definition / Description

0x0105 SA_CTL_ERROR_POWER_SUPPLY DISABLED
The command could not be processed because the power supply is disabled.

0x0106 SA_CTL_ERROR_AMPLIFIER _DISABLED
The command could not be processed because the amplifier is disabled.

0x0107 SA_CTL_ERROR_INVALID_SENSOR_MODE
The command could not be processed with the current sensor mode setting. (E.g.
the power save mode is not allowed while trajectory streaming.)

0x0108 SA_CTL_ERROR_INVALID_ACTUATOR_MODE
The command could not be processed with the current actuator mode setting.

0x0109 SA_CTL_ERROR_INVALID_INPUT_TRIG_MODE
The command could not be processed with the current input trigger mode setting.

0x010a SA_CTL_ERROR_INVALID_CONTROL_OPTIONS
The command could not be processed with the current control options setting.

0x010b SA_CTL_ERROR_INVALID_REFERENCE_TYPE
The command could not be processed with the current reference type of the posi-
tioner.

0x010c SA_CTL_ERROR_INVALID_ADJUSTMENT_STATE
The command could not be processed with the current adjustment state.

0x010e SA_CTL_ERROR _NO_FULL_ACCESS
The command could not be processed because the MCS2 has not full access connec-
tion to a connected Picoscale sensor.

0x010f SA_CTL_ERROR_ADJUSTMENT_FAILED
An adjustment sequence failed.

0x0110 SA_CTL_ERROR_MOVEMENT_ OVERRIDDEN
A software commands a movement which is then interrupted by the Hand Control
Module before it finished or vice versa.

0x0111 SA_CTL_ERROR_NOT_CALIBRATED
The command could not be processed because the channel is not calibrated.

0x0112 SA_CTL_ERROR_NOT_REFERENCED
The command could not be processed because the channel is not referenced.

0x0113 SA_CTL_ERROR_NOT_ADJUSTED
The command could not be processed because the channel is not adjusted.

0x0114 SA_CTL_ERROR_SENSOR_TYPE_NOT_SUPPORTED
The command could not be processed because the sensor type of the configured
positioner is not supported from the hardware (e.g. from the sensor module).

0x0115 SA_CTL_ERROR_CONTROL_LOOP_INPUT_DISABLED
The command could not be processed because the control-loop input is disabled.
(See Control Loop Input property.)

Continued on next page

MCS2 Programmer’s Guide m _

A CODE DEFINITION REFERENCE

Table A.1 - Continued from previous page

C-Definition / Description

0x0116 SA_CTL_ERROR_INVALID_ CONTROL_LOOP_INPUT
The command could not be processed because the control-loop input is invalid for
the command. (E.g. the calibration and referencing movements cannot be started
when the control-loop input is configured to ‘aux in'.)

0x0117 SA_CTL_ERROR_UNEXPECTED_SENSOR_DATA
The calibration routine could not be processed due to unexpected data from the
position sensor.

0x0150 SA_CTL_ERROR_BUSY_MOVING
The command could not be processed because the channel is currently busy per-
forming a movement command. (E.g. disabling the velocity control while moving is
not permitted.)

0x0151 SA_CTL_ERROR_BUSY_CALIBRATING
The command could not be processed because the channel is currently busy per-
forming a calibration sequence.

0x0152 SA_CTL_ERROR_BUSY_REFERENCING
The command could not be processed because the channel is currently busy per-
forming a referencing sequence.

0x0153 SA_CTL_ERROR_BUSY_ADJUSTING
The command could not be processed because the channel is currently busy per-
forming an adjustment sequence.

0x0200 SA_CTL_ERROR_END_STOP_REACHED
An endstop was detected.

0x0201 SA_CTL_ERROR_FOLLOWING_ERR_LIMIT
The following error exceeded the configured limit.

0x0202 SA_CTL_ERROR_RANGE_LIMIT_REACHED
A configured position limit was hit.

0x0300 SA_CTL_ERROR_INVALID_STREAM_ HANDLE
The given stream handle is invalid.

0x0301 SA_CTL_ERROR_INVALID_STREAM CONFIGURATION
The configured streaming parameters are not supported by all modules.

0x0302 SA_CTL_ERROR_INSUFFICIENT_FRAMES
This error is generated if the trajectory streaming was started without providing the
minimum amount of frames.
(A trajectory stream must consist of at least two frames.)

0x0303 SA_CTL_ERROR_BUSY_STREAMING
The command could not be processed because the channel is currently participating
in a trajectory stream.

0x0400 SA_CTL_ERROR_HM_ INVALID_SLOT_INDEX
An invalid slot index has been passed to the hand control module.

Continued on next page

MCS2 Programmer’s Guide m _

A CODE DEFINITION REFERENCE

Table A.1 - Continued from previous page

C-Definition / Description

0x0401 SA_CTL_ERROR_HM INVALID_ CHANNEL_INDEX
An invalid channel index has been passed to the hand control module.

0x0402 SA_CTL_ERROR_HM_ INVALID_GROUP_INDEX
An invalid group index has been passed to the hand control module.

0x0403 SA_CTL_ERROR_HM_ INVALID_CH_GRP_INDEX
An invalid channel group index has been passed to the hand control module.

0x0500 SA_CTL_ERROR_INTERNAL_COMMUNICATION
An internal communication error occurred.
0x7ffd SA_CTL_ERROR_FEATURE_NOT_SUPPORTED
Indicates that a requested feature is not available on the connected device.

Ox7ffe SA_CTL_ERROR_FEATURE_NOT_IMPLEMENTED
Indicates that a feature is not yet implemented. The device may have to be update
to a newer version.

0xf000 SA_CTL_ERROR_DEVICE_LIMIT_REACHED
The maximum number of devices has been opened.

0xf001 SA_CTL_ERROR_INVALID_LOCATOR
An invalid locator string has been passed.

0xf002 SA_CTL_ERROR_INITIALIZATION_FAILED
Initialization of the desired device failed.

0xf003 SA_CTL_ERROR_NOT_INITIALIZED
The device has not been initialized yet.

0xf004 SA_CTL_ERROR_COMMUNICATION_FAILED
Communication with the device failed.

0xf006 SA_CTL_ERROR_INVALID_QUERYBUFFER_SIZE
The provided array size does not meet the required size.

0xf007 SA_CTL_ERROR_INVALID_ DEVICE_HANDLE
An invalid device handle has been passed.

0xf008 SA_CTL_ERROR_INVALID_TRANSMIT_ HANDLE
An invalid transmit handle has been passed.

0xf00f SA_CTL_ERROR_UNEXPECTED_PACKET_RECEIVED
An unexpected packet has been received.

0xf010 SA_CTL_ERROR_CANCELED
The function call has been canceled.

0xf013 SA CTL_ERROR_DRIVER FAILED
The device could not be found due to a driver failure.

0xf016 SA_CTL_ERROR_BUFFER_LIMIT REACHED
The limit of available buffers has been reached.

Continued on next page

MCS2 Programmer’s Guide m _

A CODE DEFINITION REFERENCE

Table A.1 - Continued from previous page

C-Definition / Description

0xf017 SA_CTL_ERROR_INVALID_ PROTOCOL_VERSION
A protocol version mismatch has been detected.

0xf018 SA_CTL_ERROR_DEVICE_RESET_FAILED
The device software reset failed.
0xf019 SA_CTL_ERROR_BUFFER_EMPTY
Action is not allowed with empty buffers (e.g. empty command group buffer).

O0xf0la SA_CTL_ERROR_DEVICE_NOT_FOUND
The device specified in the locator could not be found.

0xf0lb SA_CTL_ERROR_THREAD LIMIT REACHED
The maximum number of simultaneous calls for this function was reached.

MCS2 Programmer’s Guide 2 T

Sales partner / Contacts

Headquarters

SmarAct GmbH

Schuette-Lanz-Strasse 9
26135 Oldenburg
Germany

T: +49 441 - 800 87 90
Email: info-de@smaract.com
www.smaract.com

Japan
Physix Technology Inc.

Ichikawa-Business-Plaza
4-2-5 Minami-yawata,
Ichikawa-shi

272-0023 Chiba

Japan

T/F: +81 47 - 370 86 00
Email: info-jp@smaract.com
www.physix-tech.com

France

SmarAct GmbH

Schuette-Lanz-Strasse 9
26135 Oldenburg
Germany

T: +49 441 - 80 08 79 956
Email: info-fr@smaract.com
www.smaract.com

South Korea

SEUM Tronics

801, 1, Gasan digital 1-ro
Geumcheon-gu

Seoul, 08594,

Korea

T:+82 2868 -1002
Email: info-kr@smaract.com
www.seumtronics.com

Israel

Trico Israel Ltd.

P.O.Box 6172
46150 Herzeliya
Israel

T:+9729-95060 74
Email: info-il@smaract.com
www.trico.co.il

USA

SmarAct Inc.

2140 Shattuck Ave. Suite 1103
Berkeley, CA 94704
United States of America

T:+1 415 - 766 9006
Email: info-us@smaract.com
www.smaract.com

MCS2 Programmer’s Guide m _

	1 Introduction
	1.1 Terminologies

	2 General Concepts
	2.1 Connecting and Disconnecting
	2.1.1 Locators for Device Identification
	2.1.2 Finding Devices
	2.1.3 Network Interface Configuration

	2.2 Properties
	2.3 Accessing Properties
	2.3.1 Synchronous Access
	2.3.2 Asynchronous Access
	2.3.3 High-Throughput Asynchronous Access
	2.3.4 Call-and-Forget Mechanism
	2.3.5 Request Ready Notification

	2.4 Event Notifications
	2.5 Positioner Types
	2.5.1 Custom Positioner Types

	2.6 Moving Positioners
	2.6.1 Calibrating
	2.6.2 Referencing
	2.6.3 Open-Loop Movements
	2.6.4 Closed-Loop Movements
	2.6.5 Stopping Movements
	2.6.6 Overwriting Movement Commands
	2.6.7 Movement Feedback

	2.7 Defining Positions
	2.7.1 Reference Marks
	2.7.2 Positioners With Single Reference Marks
	2.7.3 Positioners With Multiple Reference Marks
	2.7.4 Positioners With Endstop Reference
	2.7.5 Shifting the Measuring Scale

	2.8 State Flags
	2.8.1 Device State Flags
	2.8.2 Module State Flags
	2.8.3 Channel State Flags

	2.9 Sensor Power Modes
	2.10 PicoScale Sensor Module
	2.11 Following Error Detection
	2.12 Software Range Limit
	2.13 Stop Broadcasting
	2.13.1 Stop Broadcast Configuration

	2.14 Command Groups
	2.14.1 Command Groups vs. Output Buffer

	2.15 Trajectory Streaming
	2.15.1 General Streaming Concept
	2.15.2 Basic Approach
	2.15.3 Options
	2.15.4 Trigger Modes
	2.15.5 Stream Events
	2.15.6 Maximum Stream Rates

	2.16 Auxiliary Inputs and Outputs
	2.16.1 Digital Device Input
	2.16.2 Fast Digital Outputs
	2.16.3 General Purpose Digital Inputs/Outputs
	2.16.4 Fast Analog Inputs
	2.16.5 Using Analog Inputs as Control-Loop Feedback
	2.16.6 Analog Outputs

	2.17 Input Trigger
	2.17.1 Disabled Mode
	2.17.2 Emergency Stop Mode
	2.17.3 Stream Sync Mode
	2.17.4 Command Group Sync Mode
	2.17.5 Event Trigger Mode

	2.18 Output Trigger
	2.18.1 Constant Mode
	2.18.2 Position Compare Mode
	2.18.3 Target Reached Mode
	2.18.4 Actively Moving Mode

	2.19 Feature Permissions

	3 Function Reference
	3.1 Function Summary
	3.2 Detailed Function Description
	3.2.1 SA_CTL_GetFullVersionString
	3.2.2 SA_CTL_GetResultInfo
	3.2.3 SA_CTL_GetEventInfo
	3.2.4 SA_CTL_FindDevices
	3.2.5 SA_CTL_Open
	3.2.6 SA_CTL_Close
	3.2.7 SA_CTL_Cancel
	3.2.8 SA_CTL_GetProperty_i32
	3.2.9 SA_CTL_SetProperty_i32
	3.2.10 SA_CTL_SetPropertyArray_i32
	3.2.11 SA_CTL_GetProperty_i64
	3.2.12 SA_CTL_SetProperty_i64
	3.2.13 SA_CTL_SetPropertyArray_i64
	3.2.14 SA_CTL_GetProperty_s
	3.2.15 SA_CTL_SetProperty_s
	3.2.16 SA_CTL_RequestReadProperty
	3.2.17 SA_CTL_ReadProperty_i32
	3.2.18 SA_CTL_ReadProperty_i64
	3.2.19 SA_CTL_ReadProperty_s
	3.2.20 SA_CTL_RequestWriteProperty_i32
	3.2.21 SA_CTL_RequestWriteProperty_i64
	3.2.22 SA_CTL_RequestWriteProperty_s
	3.2.23 SA_CTL_RequestWritePropertyArray_i32
	3.2.24 SA_CTL_RequestWritePropertyArray_i64
	3.2.25 SA_CTL_WaitForWrite
	3.2.26 SA_CTL_CancelRequest
	3.2.27 SA_CTL_CreateOutputBuffer
	3.2.28 SA_CTL_FlushOutputBuffer
	3.2.29 SA_CTL_CancelOutputBuffer
	3.2.30 SA_CTL_OpenCommandGroup
	3.2.31 SA_CTL_CloseCommandGroup
	3.2.32 SA_CTL_CancelCommandGroup
	3.2.33 SA_CTL_WaitForEvent
	3.2.34 SA_CTL_Calibrate
	3.2.35 SA_CTL_Reference
	3.2.36 SA_CTL_Move
	3.2.37 SA_CTL_Stop
	3.2.38 SA_CTL_OpenStream
	3.2.39 SA_CTL_StreamFrame
	3.2.40 SA_CTL_CloseStream
	3.2.41 SA_CTL_AbortStream

	4 Property Reference
	4.1 Property Summary
	4.2 Device Properties
	4.2.1 Number of Channels
	4.2.2 Number of Bus Modules
	4.2.3 Device State
	4.2.4 Device Serial Number
	4.2.5 Device Name
	4.2.6 Emergency Stop Mode
	4.2.7 Network Discover Mode

	4.3 Module Properties
	4.3.1 Power Supply Enabled
	4.3.2 Module State
	4.3.3 Number of Bus Module Channels

	4.4 Positioner Properties
	4.4.1 Amplifier Enabled
	4.4.2 Positioner Control Options
	4.4.3 Actuator Mode
	4.4.4 Control Loop Input
	4.4.5 Sensor Input Select
	4.4.6 Positioner Type
	4.4.7 Positioner Type Name
	4.4.8 Move Mode
	4.4.9 Channel State
	4.4.10 Position
	4.4.11 Target Position
	4.4.12 Scan Position
	4.4.13 Scan Velocity
	4.4.14 Hold Time
	4.4.15 Move Velocity
	4.4.16 Move Acceleration
	4.4.17 Max Closed Loop Frequency
	4.4.18 Default Max Closed Loop Frequency
	4.4.19 Step Frequency
	4.4.20 Step Amplitude
	4.4.21 Following Error Limit
	4.4.22 Broadcast Stop Options
	4.4.23 Sensor Power Mode
	4.4.24 Sensor Power Save Delay
	4.4.25 Position Mean Shift
	4.4.26 Safe Direction
	4.4.27 Control Loop Input Sensor Value
	4.4.28 Control Loop Input Aux Value
	4.4.29 Target To Zero Voltage Hold Threshold

	4.5 Scale Properties
	4.5.1 Logical Scale Offset
	4.5.2 Logical Scale Inversion
	4.5.3 Range Limit Min
	4.5.4 Range Limit Max

	4.6 Calibration Properties
	4.6.1 Calibration Options
	4.6.2 Signal Correction Options

	4.7 Referencing Properties
	4.7.1 Referencing Options
	4.7.2 Distance To Reference Mark
	4.7.3 Distance Code Inverted

	4.8 Tuning and Customizing Properties
	4.8.1 Positioner Movement Type
	4.8.2 Positioner Is Custom Type
	4.8.3 Positioner Base Unit
	4.8.4 Positioner Base Resolution
	4.8.5 Positioner Sensor Head Type
	4.8.6 Positioner Reference Type
	4.8.7 Positioner P Gain
	4.8.8 Positioner I Gain
	4.8.9 Positioner D Gain
	4.8.10 Positioner PID Shift
	4.8.11 Positioner Anti Windup
	4.8.12 Positioner ESD Distance Threshold
	4.8.13 Positioner ESD Counter Threshold
	4.8.14 Positioner Target Reached Threshold
	4.8.15 Positioner Target Hold Threshold
	4.8.16 Save Positioner Type
	4.8.17 Positioner Write Protection

	4.9 Streaming Properties
	4.9.1 Stream Base Rate
	4.9.2 Stream External Sync Rate
	4.9.3 Stream Options
	4.9.4 Stream Load Maximum

	4.10 Diagnostic Properties
	4.10.1 Channel Error
	4.10.2 Channel Temperature
	4.10.3 Bus Module Temperature

	4.11 Auxiliary Properties
	4.11.1 Aux Positioner Type
	4.11.2 Aux Positioner Type Name
	4.11.3 Aux Input Select
	4.11.4 Aux I/O Module Input Index
	4.11.5 Aux Direction Inversion
	4.11.6 Aux I/O Module Input0 / Input1 Value
	4.11.7 Aux Digital Input Value
	4.11.8 Aux Digital Output Value / Set / Clear
	4.11.9 Aux Analog Output Value0 / Value1

	4.12 I/O Module Properties
	4.12.1 I/O Module Options
	4.12.2 I/O Module Voltage
	4.12.3 I/O Module Analog Input Range

	4.13 Input Trigger Properties
	4.13.1 Device Input Trigger Mode
	4.13.2 Device Input Trigger Condition

	4.14 Output Trigger Properties
	4.14.1 Channel Output Trigger Mode
	4.14.2 Channel Output Trigger Polarity
	4.14.3 Channel Output Trigger Pulse Width
	4.14.4 Channel Position Compare Start Threshold
	4.14.5 Channel Position Compare Increment
	4.14.6 Channel Position Compare Direction
	4.14.7 Channel Position Compare Limit Min
	4.14.8 Channel Position Compare Limit Max

	4.15 Hand Control Module Properties
	4.15.1 Hand Control Module Lock Options
	4.15.2 Hand Control Module Default Lock Options

	4.16 API Properties
	4.16.1 Event Notification Options
	4.16.2 Auto Reconnect

	5 Event Reference
	5.1 Event Summary
	5.2 Detailed Event Description
	5.2.1 None
	5.2.2 Movement Finished
	5.2.3 Holding Aborted
	5.2.4 Sensor State Changed
	5.2.5 Reference Found
	5.2.6 Following Error Limit
	5.2.7 Sensor Module State Changed
	5.2.8 Over Temperature
	5.2.9 High Voltage Overload
	5.2.10 Adjustment Finished
	5.2.11 Adjustment State Changed
	5.2.12 Adjustment Update
	5.2.13 Stream Finished
	5.2.14 Stream Ready
	5.2.15 Stream Triggered
	5.2.16 Command Group Triggered
	5.2.17 Hand Control Module State Changed
	5.2.18 Emergency Stop Triggered
	5.2.19 External Input Triggered
	5.2.20 Request Ready
	5.2.21 Connection Lost

	6 ASCII Interface
	6.1 Connection Setup
	6.1.1 Note On Message Termination

	6.2 SCPI Basics
	6.2.1 SCPI Conformance Information
	6.2.2 Command Structure
	6.2.3 Traversing the Command Tree
	6.2.4 Queries

	6.3 Basic Programming Examples
	6.3.1 Get Property
	6.3.2 Set Property
	6.3.3 Calibrate
	6.3.4 Reference
	6.3.5 Move
	6.3.6 Stop
	6.3.7 Movement State
	6.3.8 Error Handling

	6.4 Using Command Groups
	6.4.1 Command Set
	6.4.2 Examples

	6.5 Streaming Trajectories
	6.5.1 Command Set
	6.5.2 Example

	6.6 Command Summary
	6.6.1 Common Commands
	6.6.2 Movement Commands
	6.6.3 Property Command Tree

	6.7 SCPI Error Codes

	A Code Definition Reference
	A.1 Error Codes

