
MCS - Modular Control System
Programmer's Guide

SmarAct GmbH
Schuette-Lanz-Strasse 9
D-26135 Oldenburg

Tel.: +49 (0) 441 8008 79-0
Fax: +49 (0) 441 8008 79-21

eMail: info@smaract.de
www.smaract.de

© SmarAct GmbH 2014
Subject to change without notice.

Document Version 15-01-08-616
Library Version 2.0.11

Table of Contents
1 Introduction.. 5
2 Functional Documentation... 6

2.1 Overview.. 6
2.2 Initialization.. 7

2.2.1 Locators for System Identification..7
2.2.2 Communication Modes..8

2.3 Using the Asynchronous Mode..9
2.3.1 Overview.. 9
2.3.2 Sending Commands.. 9
2.3.3 Retrieving Answers.. 10
2.3.4 Other Issues... 11

2.4 Channel Properties.. 12
2.4.1 Emergency Stop.. 12
2.4.2 Low Vibration... 13
2.4.3 Broadcast Stop.. 14
2.4.4 Position Control... 14
2.4.5 Sensor... 14

2.5 Working With Sensor Feedback..15
2.5.1 Rotary Sensors.. 15
2.5.2 Sensor Modes.. 15
2.5.3 Defining Positions.. 17
2.5.4 Software Range Limit.. 20

2.6 Controller Event System.. 22
2.6.1 Digital Inputs.. 23
2.6.2 Software Triggers... 23
2.6.3 Counters.. 23
2.6.4 Capture Buffers.. 24
2.6.5 Command Queues... 24
2.6.6 Example... 25

2.7 Miscellaneous Topics... 27
2.7.1 Overwriting Movement Commands..27
2.7.2 Dependency Chains.. 27

3 Detailed Function Description.. 28
3.1 Initialization Functions.. 28

SA_AddSystemToInitSystemsList...28
SA_CloseSystem.. 29
SA_ClearInitSystemsList.. 30
SA_FindSystems.. 31
SA_GetAvailableSystems... 32
SA_GetChannelType.. 33
SA_GetDLLVersion... 34
SA_GetInitState.. 35
SA_GetNumberOfChannels... 36
SA_GetNumberOfSystems... 37
SA_GetSystemID.. 38
SA_GetSystemLocator... 39
SA_InitSystems.. 40
SA_OpenSystem.. 41
SA_ReleaseSystems.. 42
SA_SetHCMEnabled.. 43

3.2 Functions for Synchronous Communication..44
SA_CalibrateSensor_S... 44
SA_FindReferenceMark_S... 45
SA_GetAngle_S.. 46
SA_GetAngleLimit_S.. 47
SA_GetCaptureBuffer_S.. 48
SA_GetChannelProperty_S.. 49
SA_GetClosedLoopMoveAcceleration_S...50

SmarAct GmbH - MCS Programmer's Guide Page 2 ▲ToC

SA_GetClosedLoopMoveSpeed_S...51
SA_GetEndEffectorType_S.. 52
SA_GetForce_S.. 53
SA_GetGripperOpening_S... 54
SA_GetPhysicalPositionKnown_S..55
SA_GetPosition_S.. 56
SA_GetPositionLimit_S.. 57
SA_GetSafeDirection_S... 58
SA_GetScale_S.. 59
SA_GetSensorEnabled_S.. 60
SA_GetSensorType_S.. 61
SA_GetStatus_S... 62
SA_GetVoltageLevel_S.. 63
SA_GotoAngleAbsolute_S.. 64
SA_GotoAngleRelative_S... 65
SA_GotoGripperForceAbsolute_S..66
SA_GotoGripperOpeningAbsolute_S...67
SA_GotoGripperOpeningRelative_S..68
SA_GotoPositionAbsolute_S..69
SA_GotoPositionRelative_S... 70
SA_ScanMoveAbsolute_S.. 71
SA_ScanMoveRelative_S... 72
SA_SetAccumulateRelativePositions_S...73
SA_SetAngleLimit_S.. 74
SA_SetChannelProperty_S.. 75
SA_SetClosedLoopMaxFrequency_S..76
SA_SetClosedLoopMoveAcceleration_S..77
SA_SetClosedLoopMoveSpeed_S...78
SA_SetEndEffectorType_S... 79
SA_SetPosition_S.. 80
SA_SetPositionLimit_S... 81
SA_SetSafeDirection_S.. 82
SA_SetScale_S.. 83
SA_SetSensorEnabled_S... 84
SA_SetSensorType_S.. 85
SA_SetStepWhileScan_S... 86
SA_SetZeroForce_S... 87
SA_StepMove_S.. 88
SA_Stop_S... 89

3.3 Functions for Asynchronous Communication...90
SA_AppendTriggeredCommand_A..90
SA_CancelWaitForPacket_A..91
SA_ClearTriggeredCommandQueue_A..92
SA_DiscardPacket_A... 93
SA_FlushOutput_A... 94
SA_GetAngle_A.. 95
SA_GetAngleLimit_A.. 96
SA_GetBufferedOutput_A.. 97
SA_GetCaptureBuffer_A.. 98
SA_GetChannelProperty_A.. 99
SA_GetClosedLoopMoveAcceleration_A...100
SA_GetClosedLoopMoveSpeed_A...101
SA_GetEndEffectorType_A..102
SA_GetForce_A.. 103
SA_GetGripperOpening_A... 104
SA_GetPhysicalPositionKnown_A..105
SA_GetPosition_A.. 106
SA_GetPositionLimit_A.. 107
SA_GetSafeDirection_A... 108
SA_GetScale_A.. 109
SA_GetSensorEnabled_A..110

SmarAct GmbH - MCS Programmer's Guide Page 3 ▲ToC

SA_GetSensorType_A.. 111
SA_GetStatus_A... 112
SA_GetVoltageLevel_A..113
SA_LookAtNextPacket_A... 114
SA_ReceiveNextPacket_A.. 115
SA_SetBufferedOutput_A...116
SA_SetReportOnComplete_A...117
SA_SetReportOnTriggered_A...118
SA_TriggerCommand_A... 119

3.4 Miscellaneous Functions.. 120
SA_DSV... 120
SA_EPK.. 121
SA_ESV.. 122
SA_GetStatusInfo... 123

4 Quick Reference.. 124
4.1 Initialization Functions.. 124
4.2 Configuration Functions... 125
4.3 Movement Control Functions...126
4.4 Channel Feedback Functions..127
4.5 Answer Retrieval Functions...127
4.6 Miscellaneous Functions.. 128

5 Appendix.. 129
5.1 Function Status Codes... 129
5.2 Packet Types... 133
5.3 Channel Status Codes... 135
5.4 Sensor Types... 136
5.5 Channel Properties.. 137

SmarAct GmbH - MCS Programmer's Guide Page 4 ▲ToC

1 Introduction
This document describes the usage of the MCSControl function library which is used to control one or more
MCS controller by software. It may be used for integration into existing software environments (e.g.
LabVIEW) or to provide access to the system when writing your own software. The header file that comes
along with the library summarizes the functions of the library and lists definitions like error and status codes.

While chapter 3 describes the library functions in detail, chapter 2 gives additional information on how to use
various features of the MCS and which functions to use for these features.

Chapter 4 gives an overview of all available functions of the library along with a short description. This will
give you a better orientation on which functions to use to achieve your goals.

Chapter 5 summarizes the most common definitions like status and error codes.

You may connect several MCS controller to your PC. Each of these is referred to as a “system” throughout
this document. Most function calls require a system index as parameter to address a specific system. The
system indexes are generated by the API and must be saved within the application.

Each system has a maximum number of “channels”. Channels are divided into two types: positioner
channels and end effector channels. Each channel can control a single positioner or end effector, depending
on its type. Function calls that are directed to a specific channel require a system index and a channel index
to address the selected channel. The channel indexes are zero based. Note that the number of channels is
constant for a given system and describes the number of positioners and/or end effectors that may be
connected to the system and not the number that currently are connected to the system.

Please note that all functions of the library use the cdecl calling convention. Some development
environments, such as Delphi, use stdcall by default. This must be taken into account when importing the
library functions.

SmarAct GmbH - MCS Programmer's Guide Page 5 ▲ToC

2 Functional Documentation
Besides basic features like moving and stopping positioners the MCS offers many features that are activated
or configured via additional function calls. You may refer to the Detailed Function Description on how to call
these functions, parameter ranges etc. However, some features require more information for a better
understanding. This chapter explains these features in more detail and describes some basic concepts of the
library and the MCS controller.

2.1 Overview
The functions of the library are grouped into sections. Section I is for initialization, while the functions of
section II are for the actual communication with the hardware.

Section II is split up into two parts (IIa and IIb) which must be used mutually exclusive. During initialization
you must choose between synchronous communication or asynchronous communication. Depending on this
choice, only the functions of section IIa or IIb may be called, otherwise an error is returned.

For better distinction the function names of section IIa have a suffix of _S (synchronous) while the function
names of section IIb have suffix of _A (asynchronous).

All functions of the library return a status code of type SA_STATUS. The return value indicates if the call was
successful (SA_OK) or if an error occurred. See appendix 5.1 “Function Status Codes“ for a complete list of
error codes. It is advised to check the return status of each function call. Some functions have output values
(when retrieving information from the hardware). Their values are undefined if the return status of the
function is not SA_OK. This may result in unwanted behavior if these values are further processed.

The SA_GetStatusInfo function may be used to translate a status code into a human readable text string
in case you wish to output the error to the application user.

For simplicity, all function parameters are 32 bits wide, either signed or unsigned. Note though that most
parameters have a limited valid range. See section 3 “Detailed Function Description“ for more information.

Note that most functions of section II are only callable for certain channel types. Please refer to the detailed
function description.

SmarAct GmbH - MCS Programmer's Guide Page 6 ▲ToC

Section IIa:
Synchronous

Communication

Section IIb:
Asynchronous

Communication

Section I:
Initialization

2.2 Initialization
Before being able to use a system it must be initialized with a call to SA_OpenSystem. This function
connects to the system specified in the locator parameter and returns a systemIndex (handle) to the system,
if the call was successful. The returned systemIndex must be saved within the application and passed as a
parameter to the API functions. When a connection is established you can use the functions of section II to
interact with the connected system(s).

A system that has been acquired by an application cannot be acquired by a second application at the same
time. You must close the connection to the system by calling SA_CloseSystem before it is free to be used
by other applications. Not closing a system will cause a resource leak.

The older initialization functions SA_AddSystemToInitSystemsList, SA_ClearInitSystemsList,
SA_InitSystems, SA_GetSystemID, SA_GetAvailableSystems, SA_GetNumberOfSystems, and
SA_ReleaseSystems are still available in the API version 2.0 but are deprecated. We recommend to use
only the locator-based functions SA_OpenSystem, SA_CloseSystem, SA_FindSystems and
SA_GetSystemLocator for systems management.

2.2.1 Locators for System Identification
Systems are identified with locator strings, similar to URLs used to locate web pages. Typical locators are:

usb:id:3118167233
network:192.168.1.100:5000

The first locator identifies an MCS with the given system ID connected over USB. The second one identifies
an MCS that is connected to the network.

USB Device Locator Syntax

MCS devices with USB interface can be addressed with the following locator syntax:

usb:id:<id>

where <id> is the first part of a USB devices serial number which is usually printed on the MCS controller.
MCS with a USB interface can also be addressed with the alternative locator syntax:

usb:ix:<n>

where the number <n> selects the nth device in the list of all currently attached MCS with a USB interface.
The drawback of identifying an MCS with this method is, that the number and the order of connected MCS
can change between sessions, so the index n may not always refer to the same device. It is only safe to do
this if you have exactly one MCS connected to the PC. We recommend to use the usb:id:... format for
USB systems.

For USB devices you can also use the function SA_FindSystems, which will scan the USB ports for MCS
systems and return a list with the locator strings. If you are already connected to a system you can use the
function SA_GetSystemLocator(systemIndex) to get the locator of the system with the given index.

Network Device Locator Syntax

MCS devices with a network interface are addressed with the following locator syntax:

network:<ip>:<port>

<ip> is an IPv4 address which consists of four integer numbers between 0 and 255 separated by a dot.
<port> is an integer number. For example, the locator network:192.168.1.200:5000 addresses a
device with the IP address 192.168.1.200 and TCP port 5000.

SmarAct GmbH - MCS Programmer's Guide Page 7 ▲ToC

Note: Data transmission bandwidth and latencies over networks can vary much more than over e.g. USB.
A program should not rely on low transmission latencies. Ensure that all timeout parameters in calls
to functions like SA_ReceiveNextPacket_A are adequate for the network environment.

2.2.2 Communication Modes
When calling SA_OpenSystem you must chose between two communication modes. The different modes
affect internal communication but also the way you must use the library. The synchronous communication
mode is simpler, but also less flexible. The asynchronous mode is more flexible, but requires a bit more of
programming overhead.

Generally, in the synchronous mode a function call sends a command to the hardware and blocks until a
response has been received. This may be the desired information, an error code or a simple acknowledge.
Every command sent results in exactly one answer and the library handles the answer retrieval. The blocking
time is only a few milliseconds and is therefore typically not “visible” to the programmer.

In contrast, in the asynchronous mode a function call sends a command to the hardware and returns
immediately. It is then the users responsibility to fetch the answer from the hardware. A command sent may
result in zero or more answers, depending on the command and the current status of the channel. Please
refer to section 2.3 “Using the Asynchronous Mode” for more information.

SmarAct GmbH - MCS Programmer's Guide Page 8 ▲ToC

2.3 Using the Asynchronous Mode
This section is meant to give you a better understanding of the asynchronous communication mode. It is
designed to be used in several different ways in order to fit your needs.

2.3.1 Overview
Generally, you can think of two communication lines that connect each MCS to the PC. One line is for
transmitting commands to the MCS, the other for receiving answers from the MCS. In the asynchronous
communication mode the traffic on one line is independent from the traffic on the other and the two lines
need not be in sync. Thus, when a command is sent to the hardware there might be an answer or not,
depending on what the command was or how the targeted channel is configured etc. Note that if several
commands are sent to different channels of a system, the order of answers (if any) is not defined. However,
the order of answers to commands sent to a single channel is defined by the order in which the commands
were issued.

To summarize, the usage of the asynchronous mode consists of two parts:

● Sending commands: These include movement commands, configuration commands etc.

● Retrieving and managing answers: These include status information, errors etc.

The figure below gives a structural overview. Although most users will likely have only one MCS system
connected to the PC, the library supports communicating with several systems in parallel.

2.3.2 Sending Commands
Most functions of section IIb of the library transmit a command to the hardware invoking some functionality.
The functions do not block, but return immediately. Note that even functions like SA_GetStatus_A return
immediately and do not provide the desired information right away. They only send a request to the hardware
and the answer has to be retrieved by the user (see below).

Error handling is done on two levels. The library does some valid range checks and the like before actually
sending the command. An error detected on this level will result in a status code returned by the function
other than SA_OK.

However, even if the transmission of a command is successful, the hardware might have further restrictions
or other error situations may occur. In this case the hardware will answer with an error packet. It is also the
responsibility of the user to retrieve the error packet and handle the situation properly.

SmarAct GmbH - MCS Programmer's Guide Page 9 ▲ToC

PC

MCS
Control
Library

Channel 0

MCS 0

Channel m
0

send

receive

C C C

AA
A

User
Application

Channel 0

MCS n

Channel m
n

send

receive

C C

A A A A

2.3.3 Retrieving Answers
While sending commands is straight forward (simply call a command function such as SA_StepMove_A and
pass the desired parameters) the reception of data involves a bit more overhead. The library offers several
ways of handling answer retrieval.

Generally, answers coming from an MCS are put into a receive buffer (see figure above). The library offers
access to this buffer and data packets must be retrieved by the user application in the order of their arrival.
Each MCS system has its own receive buffer. Thus, all answers from all channels of a given system are
sequentially put into the same buffer.

The receive buffer is organized as a FIFO buffer. The following functions are used to access the head of this
buffer:

● SA_ReceiveNextPacket_A: This is the standard answer retrieval function. It returns the answer
packet that is currently located in the head of the receive buffer. If the buffer is empty and no timeout
is given (timeout = 0), then a packet of type SA_NO_PACKET_TYPE is returned. If the buffer is empty
and a timeout is given, then the first packet to arrive within the specified interval will be returned. If
the time elapses before a packet arrives, a packet of type SA_NO_PACKET_TYPE is returned.
Packets that are returned by this function are consumed, thus, removed from the packet buffer.

● SA_LookAtNextPacket_A: This function behaves the same way as SA_ReceiveNextPacket_A,
with the difference that it does not consume returned packets. Packets that are returned by this
function remain the receive buffer.

● SA_DiscardPacket_A: This function consumes a packet in the receive buffer, thus removing it. If
the receive buffer is empty, the function has no effect.

Some implications:

● “Looking at” a packet stops the data flow, since the packet is not removed from the queue and you
may only look at packets at the head of the queue. In order to receive further packets, call
SA_ReceiveNextPacket_A or SA_DiscardPacket_A.

● Calling SA_LookAtNextPacket_A and then SA_DiscardPacket_A has the same effect as
calling SA_ReceiveNextPacket_A. The difference is that the application (threads) may look at a
packet as often as desired before it is consumed (potentially by the thread responsible for
processing the specific packet).

When retrieving answers e.g. with SA_ReceiveNextPacket_A you can control the blocking behavior of the
function via the timeout parameter. Generally, the function will return on one of two events:

● a packet is received or

● a timeout occurred.

When given a long or even infinite timeout (SA_TIMEOUT_INFINITE) and no packet is incoming you may
cancel the function call (unblock it) by calling SA_CancelWaitForPacket_A from another application
thread. This is typically useful when the application is to be terminated and the receiving thread must be
unblocked for a proper cleanup.

Data Packet Format

A data packet is defined by the following structure:

typedef struct SA_packet {
SA_PACKET_TYPE packetType;// type of packet
SA_INDEX channelIndex; // source channel
unsigned int data1; // data field
signed int data2; // data field
signed int data3; // data field
unsigned int data4; // data field

} SA_PACKET;

Any data packet that is returned by the packet retrieval functions should first be checked for its type. Whether
the other fields of the data packet are valid or not depends on the type field. See appendix 5.2 “Packet
Types“ for a list of packet types and their meanings.

SmarAct GmbH - MCS Programmer's Guide Page 10 ▲ToC

2.3.4 Other Issues

Report on Complete

The library function SA_SetReportOnComplete_A configures a channel to notify the software if a
movement command has been completed. If configured so and a movement has completed, the channel will
send a packet of type SA_COMPLETED_PACKET_TYPE. For clarification, the situations in which these
packets are sent are identified in the following.

The current positioner status is described by several states (see section Channel Status Codes for a list of
status codes). At any given moment the positioner is in one of these states. Generally speaking, a
“completed” notification is generated when entering the SA_STOPPED_STATUS or the SA_HOLDING_STATUS
state. This will be the case in the following situations:

● A movement command has completed normally. These commands include SA_StepMove_A,
SA_ScanMoveAbsolute_A, SA_ScanMoveRelative_A, SA_GotoPositionAbsolute_A,
SA_GotoPositionRelative_A, SA_GotoAngleAbsolute_A, SA_GotoAngleRelative_A,
SA_CalibrateSensor_A, SA_FindReferenceMark_A,
SA_GotoGripperOpeningAbsolute_A, SA_GotoGripperOpeningRelative_A,
SA_GotoGripperForceAbsolute_A and SA_SetZeroForce_A

● One of the above movement commands was aborted by an SA_Stop_A command, forcing the
positioner into the SA_STOPPED_STATUS state. Note that the stop command itself does not trigger
the notification. If the positioner is already in the stopped state, the stop command will have no
effect.
The only exception to this is when the positioner is in the SA_MOVE_DELAY_STATUS state. In this
case a stop command will not trigger a notification.

Report on Triggered

Similar to SA_SetReportOnComplete_A, the library function SA_SetReportOnTriggered_A configures
a channel to notify the software if a movement command from the command queue (see section 2.6.5
“Command Queues“) has been triggered. If configured so and a movement has been triggered, the channel
will send a packet of type SA_TRIGGERED_PACKET_TYPE.

Multiple Command Sources

It is possible to control an MCS by software while also having a Hand Control Module attached to it. A setup
like this has advantages, but also disadvantages and there are several things to consider.

All channels of a system will accept commands coming either from the PC software or from the Hand Control
Module. This makes it possible to have an automated software control system running on the PC while still
being able to perform manual position adjustments, e.g. when the software is inactive.

However, in this situation it is also possible that commands coming from the software are overridden by the
Hand Control Module and vice versa. This may result in unexpected behavior and it is the users
responsibility to take this into account when writing the software or providing manual command input while
the software is in control.

SmarAct GmbH - MCS Programmer's Guide Page 11 ▲ToC

Note: Closed-loop commands (e.g. SA_GotoPositionAbsolute_A) are considered completed
when the target position has been reached and not when the optional hold time has elapsed.

Note: Overwriting movement commands (sending movement commands before the completed
notification of the previous command has arrived) leads to a race condition. The second
command might arrive just before the first has completed, thus, only one completed notification
is generated (when the second command completes). However, if the second command
arrives just after the first has completed, two completed notifications are generated (one for
each command).

For the software running on the PC it is possible to detect such situations when using the asynchronous
communication mode. It will receive an error packet from the affected channel with the error code
SA_COMMAND_OVERRIDEN_ERROR.

Here is an example situation:

The software, using the asynchronous mode, configures a channel to report movement completion. It sends
a command to the channel to execute an absolute position movement to the zero position and waits for the
“complete” notification. While the positioner is in motion the user manually halts the movement with the Hand
Control Module. The software will not receive the expected “completed” notification, but rather an error
informing about the interruption.

To avoid situations like these the software may (temporarily) disable the Hand Control Module entirely. See
the SA_SetHCMEnabled function.

2.4 Channel Properties
Each channel of an MCS controller has various properties that affect the behavior of the channel. These can
be global parameters, operation modes etc. To manipulate these properties you may use the functions
SA_GetChannelProperty_S and SA_SetChannelProperty_S (resp. their _A variant when using the
asynchronous communication mode). When calling these functions you must supply a property key to
indicate which property you wish to read or write. A property key is a 32-bit code that refers to a property and
has the following structure:

Key

31 24 23 16 15 8 7 0

component sub component property

An MCS channel contains several functional components that may be further divided into several sub
components. Each of these (sub) components may have several properties. The header file of the library
lists definitions for various components and properties. Note that not all components may be combined with
all properties when generating property keys.

While the property keys may be generated manually it is recommended to use the SA_EPK helper function to
encode valid keys. Simply pass the desired component, sub component and property to the function and
feed the result to SA_GetChannelProperty_S or SA_SetChannelProperty_S.

For example, to configure the digital input with index 0 to generate events on rising edges use the following
code:

SA_SetChannelProperty_S(
mcsHandle, // system handle
0, // channel index
SA_EPK(SA_DIGITAL_IN,0,SA_ACTIVE_EDGE), // property key
SA_RISING_EDGE // property value

);

Please refer to the appendix (5.5 “Channel Properties“) for a list of channel properties.

Some properties are described in the following sections. Properties which are related to the Controller Event
System, e.g. Capture Buffers are described in section 2.6 .

2.4.1 Emergency Stop

The MCS controller may be equipped with a dedicated hardware TTL input signal that is used as an
emergency stop. A negative pulse on this line (ES line) may cause channels of the system to stop

SmarAct GmbH - MCS Programmer's Guide Page 12 ▲ToC

Note: This feature is not available on all MCS controllers. Please contact SmarAct for more information.

immediately. The operation mode property of the Emergency Stop component controls the behavior of a
channel in case of such an emergency.

There are four modes available:

● SA_ESM_NORMAL: This is the default mode. In this mode a falling edge on the ES line has the same
effect as issuing a single SA_Stop_S command. After such an event the system continues to
behave normally.

● SA_ESM_RESTRICTED: In this mode a falling edge on the ES line will issue a stop and make the
channel enter a locked state. In this state you may communicate with the channel normally, but all
movement commands will return an SA_MOVEMENT_LOCKED_ERROR. The locked state may be reset
by setting the operation mode to any valid value, thereby unlocking the movement again.

● SA_ESM_DISABLED: In this mode falling edges on the ES line are simply ignored.

● SA_ESM_AUTO_RELEASE: In this mode a falling edge on the ES line will issue a stop and make the
channel enter a locked state. In this state you may communicate with the channel normally, but all
movement commands will return an SA_MOVEMENT_LOCKED_ERROR. This state remains until the
channel detects a rising edge on the ES line or the operation mode is set to any valid value.

Note that the ES line will be also triggered internally when the USB cable is unplugged.

The default mode of the Emergency Stop feature can be changed with the Channel Property
SA_DEFAULT_OPERATION_MODE.

Code example:

// disable the ES line
SA_STATUS result = SA_SetChannelProperty_S(

mcsHandle, // system handle
0, // channel index
SA_EPK(SA_GENERAL,SA_EMERGENCY_STOP,SA_OPERATION_MODE), // property key
SA_ESM_DISABLED // property value

);

2.4.2 Low Vibration
SmarAct's positioners allow macroscopic movement while still offering ultra-high precision on the nanometer
scale. However, the stick-slip driving principle is accompanied by high-frequent vibrations that may cause
trouble in some applications.

For this the MCS offers a special operation mode in which movement commands are executed to produce as
little vibrations as possible. To activate this mode simply set its operation mode property to SA_ENABLED.

SA_STATUS result = SA_SetChannelProperty_S(
mcsHandle, // system handle
0, // channel index
SA_EPK(SA_GENERAL,SA_LOW_VIBRATION,SA_OPERATION_MODE), // property key
SA_ENABLED // property value

);

Note that the Low Vibration mode requires the acceleration control feature to be active (see
SA_SetClosedLoopMoveAcceleration_S). Enabling the Low Vibration mode while acceleration control
is inactive will cause the acceleration control to be implicitly activated with a default value.

Also note that a channel must be completely stopped (SA_STOPPED_STATUS) in order to be able to change
the Low Vibration operation mode. See also section 2.7.2 “Dependency Chains“.

SmarAct GmbH - MCS Programmer's Guide Page 13 ▲ToC

Note: This feature is not available on all controllers. Please contact SmarAct for more information.

2.4.3 Broadcast Stop
This feature can trigger an Emergency Stop on the MCS controller when an end stop is detected. It is
typically useful when multiple channels are moving simultaneously and an end stop on one channel should
cause a halt on all other channels. Please note that a channel whose Emergency Stop Mode is set to
SA_ESM_DISABLED is not affected by this trigger.

// trigger an emergency stop when an end stop on channel 0 occurred
SA_STATUS result = SA_SetChannelProperty_S(

mcsHandle, // system handle
0, // channel index
SA_EPK(SA_GENERAL,SA_BROADCAST_STOP,SA_OPERATION_MODE), // property key
SA_ENABLED // property value

);

2.4.4 Position Control
This sub component is used to change parameters which are associated with a channels movement
controller. Currently there is only one property available.

Forced Slip: When reaching a target position, e.g. after a SA_GotoPositionAbsolute_S was issued, the
channel will try to stop at approx. 50% of its step size, thus improving the holding feature. If this
behavior is unwanted it can be disabled with this channel property. This feature is enabled by default.

// deactivate the Forced Slip feature
SA_STATUS result = SA_SetChannelProperty_S(

mcsHandle, // system handle
0, // channel index
SA_EPK(SA_GENERAL,SA_POSITION_CONTROL,SA_FORCED_SLIP), // property key
SA_DISABLED // property value

);

2.4.5 Sensor
This sub component controls the channel parameters which specify the handling of the sensor. Please note
that this features are not available on channels without sensor.

Power Supply

This property selects if the sensor should be enabled, disabled or in power save mode, for more details on
the operation modes refer to section 2.5.2 . Whereas the command SA_SetSensorEnabled_S sets the
property for all channels of an MCS Controller (see p. 85), this feature can be used to modify the operation
mode of a single channel.

// set the sensor on channel 0 in power save mode
SA_STATUS result = SA_SetChannelProperty(

mcsHandle, // system handle
0, // channel index
SA_EPK(SA_SENSOR,SA_POWER_SUPPLY,SA_OPERATION_MODE), // property key
SA_POWERSAVE

);

Scale

This sub component allows an alternative access to the scale settings of the channel. For more details on
this functionality refer to paragraph “Shifting the Measuring Scale“ on p.19.

// set a scale shift of 1mm on channel 0
SA_STATUS result = SA_SetChannelProperty(

mcsHandle, // system handle
0, // channel index
SA_EPK(SA_SENSOR,SA_SCALE,SA_OFFSET), // property key
1000000

);

SmarAct GmbH - MCS Programmer's Guide Page 14 ▲ToC

2.5 Working With Sensor Feedback
This section covers some features of the MCS when using positioners with integrated sensors and explains
them in more detail.

2.5.1 Rotary Sensors
In contrast to linear sensors, where the position is simply given by a single signed value, rotary sensors are
handled a little differently.

Suppose a rotary positioner is currently aligned to a 45° angle and shall be instructed to move to 90°. This
can be accomplished in two ways: clockwise or counter-clockwise. To eliminate such ambiguities, a rotary
position is defined by a combination of an angle and a revolution. The angle value is given in micro degrees
and has a valid range of 0..359,999,999. The revolution value indicates complete 360° rotations of the
positioner and has a valid range of -32,768..32,767.

If a rotary positioner starting at zero (angle = 0; revolution = 0) moves in positive direction, the angle value
will increase, reflecting the current orientation of the positioner. If the positioner moves further over the 360°
boundary, the angle value will wrap around to zero and the revolution value will be incremented by 1 to
indicate one full rotation of the positioner. The reverse direction is done accordingly.

Consequently, when issuing absolute movement commands with SA_GotoAngleRelative_S, the
movement direction is implicitly defined by the parameters given. In the example above (moving from 45° to
90°) the direction would be distinguished by specifying 0 or -1 as the revolution parameter (assuming the
current revolution is 0).

Note that the valid range of SA_GotoAngleRelative_S is extended in the negative range to
-359,999,999..359,999,999. This is simply for convenience. For example, the following commands have the
same effect:

SA_GotoAngleRelative_S(mcsHandle,0,-90000000,0,0);
SA_GotoAngleRelative_S(mcsHandle,0,270000000,-1,0);

Both commands will move the positioner 90° in negative direction.

2.5.2 Sensor Modes
In order for a positioner to track its position, its sensor needs to be supplied with power. However, since this
generates heat (causing drift effects), it might be desirable to disable the sensors in some situations
(especially in temperature critical environments). For this, there are three different modes of operation for the
sensor, which may be configured with the SA_SetSensorEnabled_S function.

● Disabled - In this mode the power supply of the sensor is turned off. This avoids the generation of
heat. Closed-loop commands such as SA_GotoPositionAbsolute_S will not be executed, but
rather an error returned informing about the sensor state. This mode may also be useful if the light
that is emitted by the sensors interferes with other components of your setup (e.g. detectors inside
an SEM chamber).

● Enabled - In this mode the sensor is supplied with power continuously. All movement commands are
executed normally.

● Power Save - If set to this mode the power supply of the sensor will be handled by the system
automatically. If the positioner is idle the sensor will be offline most of the time, avoiding unnecessary
heat generation. A movement command (open-loop or closed-loop) will cause the system to activate

SmarAct GmbH - MCS Programmer's Guide Page 15 ▲ToC

Note: Open-loop commands such as SA_StepMove_S are still executed. This implies that the position
information will become invalid, since the positioner cannot track its position during the movement. It
is the users responsibility to enable the sensors again before moving the positioner, should the
position tracking be needed. Be aware that position calculation is done incrementally. So even after
turning on the sensors again the position will be invalid if the positioner was moved while the sensor
was offline.

the sensor before the movement is started. Since it takes a few milliseconds to power-up the sensor,
the movement will be delayed during this time.

The figure below illustrates the different sensor modes and shows when the sensors are supplied with power.

In this example the sensor mode is initially set to enabled. The sensors are continuously supplied with power.
At time t1 the sensor mode is switched to power save. In this mode the system starts to pulse the power
supply of the sensors to keep the heat generation low. At time t2 a movement command is issued, which
requires the sensors to be online in order to keep track of the current position. Note that the sensor mode
stays unchanged during this time. As soon as the movement has finished (t3) the system will start to pulse
the power supply again. At time t4 the sensor mode is switched to disabled, in which the power supply is
turned off continuously. If movement commands are issued during this time then the system will not be able
to track the position. The position data will become invalid.

Notes on the power save mode:

If closed-loop commands are issued with a hold time, then the system will start to pulse the power supply of
the sensor as soon as the target position has been reached (t3 in the above example). At this point the hold
time starts. The positioner will still hold the target position and compensate for drift effects while pulsing,
although it might not be as accurate as in the enabled mode.

When a movement command is issued in power save mode the sensors have to be temporarily enabled
before the movement can begin. Powering up the sensors takes a few milliseconds. If the status of the
positioner is polled during this time the status will be SA_MOVE_DELAY_STATUS. This is a pit fall in the
following code example:

SA_SetSensorEnabled_S(mcsHandle,SA_SENSOR_POWERSAVE);
SA_StepMove_S(mcsHandle,0,1000,4095,1000);
unsigned int status;
SA_GetStatus_S(mcsHandle,0,&status);
while (status == SA_STEPPING_STATUS) {

SA_GetStatus_S(mcsHandle,0,&status);
}

It is very likely that the while-loop terminates immediately, although the movement is not yet completed
(hasn't even started). In this case it is better to use this code:

SA_SetSensorEnabled_S(mcsHandle,SA_SENSOR_POWERSAVE);
SA_StepMove_S(mcsHandle,0,1000,4095,1000);
unsigned int status;
SA_GetStatus_S(mcsHandle,0,&status);
while (status != SA_STOPPED_STATUS) {

SA_GetStatus_S(mcsHandle,0,&status);
}

SmarAct GmbH - MCS Programmer's Guide Page 16 ▲ToC

tt
4

t
3

t
2

t
1

disabledpower saveenabled
Sensor

Mode

Sensor
power
supply

on

off

on

off

Sensor
power
supply

Sensor
Mode enabled power save disabled

t
1

t
2

t
3

t
4

t

2.5.3 Defining Positions
Since position calculation is done on an incremental basis, the MCS controller has no way of knowing the
physical position of a positioner after a system power-up. It simply assumes its starting position as the zero
position.

However, in many applications it is convenient to define a certain physical position as the zero position. The
SA_SetPosition_S function may be used for this purpose. It defines the current position to have an
arbitrary value. This can be the zero position or any other position (it is possible to have the zero position
outside the complete travel range of the positioner).

The figure below shows an example of a linear positioner. (a) shows the situation after a system power-up.
The positioner assumes its current position as zero. (b) shows the situation after a call of
SA_SetPosition_S(mcsHandle,0,3000000);
The current position has been defined to +3mm and the measuring scale is shifted accordingly.

Reference Marks

In the example above the physical position of a positioner must be determined by some external method and
then configured to the system. Moreover, this procedure must be done on every system power-up.

To overcome this inconvenience the SA_FindReferenceMark_S function may be used to move a
positioner to a known physical position in an automated fashion. After this the controller will return position
values according to the positioner's physical measuring scale, but see section Shifting the Measuring Scale.

Depending on the type of your positioner it may be equipped with a single reference mark or with multiple
reference marks. Some positioners do not have a physical reference mark, but are rather referenced via a
mechanical end stop. The different search algorithms are outlined in the following:

● Single Reference Mark: In this case the reference mark (which is usually located near the middle of
the travel range) is used to determine the physical position. The positioner starts to move in the
given initial direction. As soon as the reference mark has been detected the positioner stops and the
search is successful. If the positioner detects an end stop then the search direction is reversed and
the search is continued. If a second end stop is detected before the reference mark is found the
search will abort unsuccessfully. (When using the asynchronous communication mode an error will
be generated.) If desired the reference execution can also be aborted by reaching an end stop for
the first time (see table below).
For these types of positioners (linear, but also rotary) the physical measuring scale is defined such
that the zero position is located on the reference mark.

● Distance Coded Reference Marks: In this case the distance between any two neighboring reference
marks is measured in order to determine the physical position. The positioner starts to move in the
given initial direction. When the first reference mark has been detected the current position value is
stored and the search continues for a second mark - either in the same direction (when called with
SA_FORWARD_DIRECTION or SA_BACKWARD_DIRECTION) or in reverse direction (when called with
SA_FORWARD_BACKWARD_DIRECTION or SA_BACKWARD_FORWARD_DIRECTION). When the
second reference mark has been detected then the positioner stops and the search is successful.
The distance between the two reference marks is calculated to determine the physical position.
Should the positioner detect an end stop then the search direction is reversed and the process is
repeated. If desired the reference execution can also be aborted by reaching an endstop (when
called with SA_FORWARD_DIRECTION_ABORT_ON_ENDSTOP,

SmarAct GmbH - MCS Programmer's Guide Page 17 ▲ToC

-5 -4 -3 -2 -1 0 1 2 3 4 5
Scale

Current Position: 0

(a)

-2 -1 0 1 2 3 4 5 6 7 8

Current Position: 3,000,000

(b)

SA_BACKWARD_DIRECTION_ABORT_ON_ENDSTOP,
SA_FORWARD_BACKWARD_DIRECTION_ABORT_ON_ENDSTOP or
SA_BACKWARD_FORWARD_DIRECTION_ABORT_ON_ENDSTOP). If a second end stop is detected
before two reference marks have been found the search will abort unsuccessfully. (When using the
asynchronous communication mode an error will be generated.)
For these types of positioners the physical measuring scale is defined such that half the length of the
positioner is near the middle position of the slider. (The physical zero position is unreachable, since it
lies outside the travel range.) For example, an SLC1730sc positioner that has its slider located at the
middle position will have a physical position of 15mm. Since it has a travel range of about 22mm, the
position range will be about 4mm .. 26mm.

● End Stops: In this case a mechanical end stop is used as a known physical position. The positioner
will move in the safe direction (see SA_SetSafeDirection_S) until it detects an end stop. The
sensor signals are then used to align the position to the reference position with high repeat accuracy.
Note that the configured end stop must be calibrated with SA_CalibrateSensor_S before it can
be properly used as a reference point.
For these types of positioners the physical measuring scale is defined such that the zero position lies
near the mechanical end stop that is used for referencing. Note that the scale therefore depends on
the Safe Direction setting.

When the “find reference” command has completed successfully the system knows the physical position of
the positioner (see also SA_GetPhysicalPositionKnown_S).

There are several direction options which can be used for the Find Reference Mark Command (see also
SA_FindReferenceMark_S):

Direction
ID

Macro Name Explanation

0 SA_FORWARD_DIRECTION Referencing in forward direction, after finding first reference
mark the search for second reference mark continues in
same direction. On reaching an endstop the direction is
reversed and process is repeated.

1 SA_BACKWARD_DIRECTION Referencing in backward direction, after finding first
reference mark the search for second reference mark
continues in same direction. On reaching an endstop the
direction is reversed and process is repeated.

2 SA_FORWARD_BACKWARD_
DIRECTION

Referencing in forward direction, after finding first reference
mark the search for second reference mark continues in the
inverse/backward direction. On reaching an endstop the
direction is reversed and process is repeated.

3 SA_BACKWARD_FORWARD_
DIRECTION

Referencing in backward direction, after finding first
reference mark the search for second reference mark
continues in the inverse/forward direction. On reaching an
endstop the direction is reversed and process is repeated.

4 SA_FORWARD_DIRECTION_
ABORT_ON_ENDSTOP

Referencing in forward direction, after finding first reference
mark the search for second reference mark continues in
same direction. On reaching an endstop the process
aborts.

SmarAct GmbH - MCS Programmer's Guide Page 18 ▲ToC

Direction
ID

Direction Name Explanation

5 SA_BACKWARD_DIRECTION_
ABORT_ON_ENDSTOP

Referencing in backward direction, after finding first reference
mark the search for second reference mark continues in same
direction. On reaching an endstop the process aborts.

6 SA_FORWARD_BACKWARD_
DIRECTION_ABORT_ON_
ENDSTOP

Referencing in forward direction, after finding first reference
mark the search for second reference mark continues in
inverse/backward direction. On reaching an endstop the
process aborts.

7 SA_BACKWARD_FORWARD_
DIRECTION_ABORT_ON_
ENDSTOP

Referencing in backward direction, after finding first reference
mark the search for second reference mark continues in
inverse/forward direction. On reaching an endstop the
process aborts.

Shifting the Measuring Scale

The physical measuring scale is fix for each positioner (see previous section) and cannot be changed.
However, the MCS controller uses a logical measuring scale when calculating positions to result in position
values returned by SA_GetPosition_S (or SA_GetAngle_S). The logical measuring scale may be shifted
or inverted by the user so that the controller returns a desired value at a certain physical position.

The relation between the physical and the logical scale is defined by two parameters. The offset value, which
represents the shift, and the inversion value, which inverts the count direction, of the logical scale relative to
the physical scale . The default value of the offset and the inversion is zero which makes the physical and
the logical scale identical.

There are two methods to modify the offset value:

● Calling SA_SetPosition_S sets the offset implicitly by shifting the logical scale so that the current
position equals the desired value (see example below).

● Calling SA_SetScale_S sets the offset and inversion explicitly and the current position will have a
value that reflects the new scale shift and direction.

The offset and inversion value is stored in non-volatile memory. Once it is configured you only need to call
SA_FindReferenceMark_S to restore your settings on future power-ups.

Note: The behavior of the system when calling SA_SetPosition_S or SA_SetScale_S differs slightly
depending on whether the physical position is known or not (see SA_GetPhysicalPositionKnown_S).
When the physical position is unknown a call to SA_SetPosition_S will not update the offset value in the
non-volatile memory. Likewise, a call to SA_SetScale_S will have no immediate effect on the values
returned by SA_GetPosition_S. The following table summarizes the behavior.

physical position is known physical position is unknown

SA_SetScale_S SA_SetPosition_S SA_SetScale_S SA_SetPosition_S

offset value is
written to non-

volatile memory
yes yes yes no

function call has
immediate effect

on position values
yes yes no yes

SmarAct GmbH - MCS Programmer's Guide Page 19 ▲ToC

Example

To further demonstrate the behavior of the system in different situations the figure below shows an example
of an SLC positioner with a single reference mark. The small markings indicate the location of the reference
mark. When the markings overlap the positioner is on the mark. The code section below shows the
corresponding command sequence.

SmarAct GmbH - MCS Programmer's Guide Page 20 ▲ToC

// (a) – The system is powered up. The physical position is unknown and the
// current position is assumed to be 0. The offset value is in the default
// setting.
SA_SetPosition_S(mcsHandle,0,1000000);
// (b) – The current position has been set to +1mm. Since the physical position is
// unknown, the offset value in the non-volatile memory could not be updated
// implicitly.
SA_SetScale_S(mcsHandle,0,2000000, SA_FALSE);
// (c) – The offset value in the non-volatile memory has been set to +2mm. Since
// the physical position is unknown, the current position could not
// be updated implicitly.
SA_FindReferenceMark_S(mcsHandle,0,SA_FORWARD_DIRECTION,60000,SA_NO_AUTO_ZERO);
// (d) - The positioner has moved to the reference mark. The physical position
// is now known and the position value has been updated to reflect the
// configured offset between the physical and the logical scale.
SA_SetPosition_S(mcsHandle,0,-1000000);
// (e) – The current position has been set to -1mm. Since the physical position is
// known, the offset value in the non-volatile memory was updated implicitly.
SA_SetScale_S(mcsHandle,0,-3000000, SA_FALSE);
// (f) – The offset value in the non-volatile memory has been set to -3mm. Since
// the physical position is known, the current position was updated implicitly.
// (g) – The system was shut down, the positioner was moved externally to some
// random location and the system is then powered up again. The physical
// position is unknown and the positioner assumes its current position as 0
// again.
SA_FindReferenceMark_S(mcsHandle,0,SA_BACKWARD_DIRECTION,60000,SA_NO_AUTO_ZERO);
// (h) - The positioner has moved to the reference mark. The physical position
// is now known and the position value has been updated to reflect the
// configured offset between the physical and the logical scale.
SA_SetScale_S(mcsHandle,0,0,SA_TRUE);
// (i) – The offset and inversion value in the non-volatile memory have been set to 0mm
// and SA_TRUE. Thus the counting direction of the scale got inverted. Since
// the physical position is known, the current position was updated implicitly.
SA_SetScale_S(mcsHandle,0,-3000000,SA_TRUE);
// (j) – The offset value was changed and both values were stored inside the non-volatile
// memory. Since the physical position is known, the current position is updated
// implicitly. Notice the difference between (i) and (h).

2.5.4 Software Range Limit
While linear positioners have a limited physical travel range it might be useful to further limit this range if the
positioner must not be allowed to move beyond a certain point. Rotary positioners usually have no physical
end stops, but e.g. wiring may require to limit the rotation here as well.

For these situations the MCS offers to limit the travel range of a positioner by software. The functions
SA_SetPositionLimit_S, SA_GetPositionLimit_S, SA_SetAngleLimit_S and
SA_GetAngleLimit_S offer control over this feature.

By default no range limit is set. Once it is defined the positioner will not move beyond the boundaries of the
range limit. This affects all movements except scan movements (e.g. SA_ScanMoveAbsolute_S). If a
movement command is issued that would move the positioner beyond the defined limit then the positioner is
stopped. (When using the asynchronous communication mode an error will be generated.) Further
movements are only allowed if they move the positioner in the direction pointing back inside the range limit.
This also applies if the positioner has been moved outside the defined range limit by external means. The
figure below shows an example of a linear positioner. The positioner is limited by software to move only
within zone B. Should the positioner somehow be pushed into zone A it will only be allowed to move to the
right towards zone B. The same applies to zone C accordingly.

SmarAct GmbH - MCS Programmer's Guide Page 21 ▲ToC

CBA

Software
Range Limit

Physical
Range Limit

Physical
Range Limit

Software
Range Limit

A B C

Please note the following restrictions:

● The range limit may only be set if the positioner “knows” its physical position, i.e. after the reference
mark has been found (see SA_FindReferenceMark_S). The function
SA_GetPhysicalPositionKnown_S may be used to check this special state.

● The range limit is not saved to non-volatile memory and must be configured in each session.
Typically, after a system power-up you would call SA_FindReferenceMark_S and then
SA_SetPositionLimit_S.

● The range limit has a limited accuracy. The positioner may pass over the boundary by a few micro
meters resp. milli degrees. Therefore, the range should be defined with sufficient tolerance.

The software range limit has some consequences that you might want to consider.

● Both the minimum and maximum position of the range limit behave similarly to a physical end stop.
For example, the SA_FindReferenceMark_S command will reverse its movement direction while
looking for the reference mark if a range limit boundary is reached. If the reference mark is located
outside the range limit then it will not be found.
You should also avoid calling SA_CalibrateSensor_S while near a range limit boundary.
Otherwise the calibration will be aborted.

● Calling SA_SetPosition_S does not automatically adjust the software range limit accordingly.
(The same applies to SA_SetScale_S.) This means that shifting the measurement scale of the
positioner with these commands will also shift the physical position of the software range limit. This
is illustrated in the figure below. Suppose the positioner is currently at position 0. A software range
limit is defined as indicated by the dark gray area in (a). In (b) the positioner has moved one unit to
the right. After this the current position is set to zero again (with SA_SetPosition_S) as shown in
(c). As a result, the physical position of the software range limit has moved to another location, which
enables the positioner to move beyond the boundary that was defined in (a). Therefore, care should
be taken when working with these commands.

SmarAct GmbH - MCS Programmer's Guide Page 22 ▲ToC

Software
Range Limit

Physical
Range Limit

Physical
Range Limit

Software
Range Limit

(a) (b)

(c)

2.6 Controller Event System
Each positioner channel of an MCS includes an event system that may be configured flexibly to trigger
various internal features. Generally you can think of components that can generate events (event sources)
and components that may be configured to receive events (event receivers). The latter ones may trigger
actions when an event occurs. The table below lists the currently available event sources and event
receivers.

Component
Event

Source
Event

Receiver

Digital In x

Software Trigger x

Counter x

Capture Buffer x

Command Queue x

Event sources and receivers must be configured with the SA_SetChannelProperty_S function (see also
section 2.4 “Channel Properties“). Event sources must be enabled (as they are disabled by default) and
usually given a parameter to tell them under which conditions to generate an event. Event receivers must be
“connected” to an event source (by default no source is configured) to trigger its functionality.

Note that it is insufficient to only configure an event source. If no receiver component is configured to receive
the events, then the functionality of the receiver component will not trigger.

To “connect” an event receiver component with an event source you must set its trigger source property. The
value of a trigger source property is a selector value which is (similar to property keys) a 32-bit code that
refers to an event source and has the following structure:

Selector value

31 24 23 16 15 8 7 0

unused component index

While the selector values may be generated manually it is recommended to use the SA_ESV helper function
to encode valid selectors. Simply pass the desired component and index to the function and feed the result
to SA_SetChannelProperty_S.

For example, to configure counter 0 to listen to events generated from the digital in 0 event source, use the
following code:

SA_SetChannelProperty_S(
mcsHandle, // system handle
0, // channel index
SA_EPK(SA_COUNTER,0,SA_TRIGGER_SOURCE), // property key
SA_ESV(SA_DIGITAL_IN,0) // selector value

);

To “disconnect” an event receiver component from an event source simply set its trigger source property to
SA_DISABLED.

The components that generate and receive events are described in more detail in the following sections.

SmarAct GmbH - MCS Programmer's Guide Page 23 ▲ToC

Note: The Command Queue cannot be configured with a global trigger source (it has no trigger source
property). Rather the commands in the queue are each given an individual trigger source when
calling the SA_AppendTriggeredCommand_A function. The triggerSource parameter of this
function is used in the same way as a trigger source component property, except that a value of
SA_DISABLED is not allowed.

2.6.1 Digital Inputs
A digital input is an external TTL input line that is connected to a channel of the MCS controller. It may be
used to generate internal events which may trigger other components.

A digital input's sub component is an index value which selects a specific input. Currently there are two
inputs available, so the index value must be either 0 or 1.

Digital inputs have two component properties:

● SA_OPERATION_MODE (Read/Write): Can be SA_DISABLED (default) or SA_ENABLED. Enables or
disables event generation. If disabled, event receivers connected to this event source will not receive
any events and therefore not trigger their functionality.

● SA_ACTIVE_EDGE (Read/Write): Can be SA_FALLING_EDGE (default) or SA_RISING_EDGE.
Determines on which edge events are generated.

Note that the active edge property value has no effect if the operation mode is disabled. It is recommended
to configure the active edge before enabling the input.

The table below lists the electrical specification of the digital inputs.

Input 0 Input 1

Parameter Minimum Maximum Minimum Maximum Unit

Pulse Frequency 1000 1000 Hz

Pulse Width 0.1 100 µs

Input Low Voltage -0.5 1.5 -0.5 1.5 V

Input High Voltage 3 5.5 3 5.5 V

2.6.2 Software Triggers
A software trigger is an event source that is triggered when the SA_TriggerCommand_A function is called
and is typically used in combination with command queuing (see 2.6.5 “Command Queues“) to synchronize
movement commands of several channels.

A software trigger's sub component is an index which may be used to distinguish between different triggers
(although one trigger is sufficient in most cases, so the index is typically zero).

The software trigger has no component properties and therefore cannot be configured. It is always implicitly
enabled.

2.6.3 Counters
Counters are used to count events. They may be configured with an event source to increment the counter
value every time an event is received.

A counter's sub component is an index value which selects a specific counter. Currently there is only one
counter available, so the index value must be 0.

Counters have two component properties:

● SA_TRIGGER_SOURCE (Read/Write): Selects an event source to trigger the counter. The value of
this property is a selector value. See section 2.6 “Controller Event System“.

● SA_VALUE (Read/Write): Reading this property returns the current counter value. You may also write
this property, e.g. to reset the counter to zero or set an arbitrary starting value.
The valid range is 0 .. 2,147,486,647.

SmarAct GmbH - MCS Programmer's Guide Page 24 ▲ToC

Note: This feature is not available on all MCS controllers. Please contact SmarAct for more information.

2.6.4 Capture Buffers
When reading feedback data from a channel you are normally forced to read multiple data values
consecutively which generates a time gap between the queries. However, there might be situations where
you wish to synchronize the data.

Capture buffers take snapshots of groups of internal values when events occur. Reading out the capture
buffer contents therefore enables you to perform an atomic read operation on multiple data values (see
SA_GetCaptureBuffer_S).

The type of data that a capture buffer holds cannot be configured. You may only choose a buffer via its index
to capture predefined value combinations. When a capture buffer is queried, an SA_PACKET structure is
returned that holds the capture buffer contents.

The following table lists the currently defined capture buffers and the data that they capture.

data1 (buffer index) data2 data3 data4

0 position revolution counter 0

Once an event source is configured for a capture buffer the corresponding internal values are copied to the
capture buffer if an event is received. The values in the capture buffer remain unchanged until the next event
is received.

Since the content of a capture buffer is defined by its index, capture buffers have only one property:

● SA_TRIGGER_SOURCE (Read/Write): Selects an event source to trigger the capture buffer. The value
of this property is a selector value. See section 2.6 “Controller Event System“.

2.6.5 Command Queues
Normally when a channel receives a movement command it will be executed immediately. However, it is
possible to let the execution be delayed until a certain event occurs. This allows for example to synchronize
movements with external processes.

The command queue is organized as a FIFO queue, i.e. the first command that was appended to the queue
is the first one to be executed as soon as the configured event occurs.

To append a command to the command queue you must issue two function calls consecutively:

1. Call SA_AppendTriggeredCommand_A and pass an event source that should trigger the
command. The event source is coded in form of a selector value (see section 2.6 “Controller Event
System“).

2. Call the desired movement command, e.g. SA_GotoPositionAbsolute_A. Note that calling a
non-movement command here will generate an SA_COMMAND_NOT_TRIGGERABLE_ERROR.

The movement command will not be executed immediately, but rather stored in the command queue and
executed as soon as it is triggered by the configured event source.

Please note that there is no way to read out the command queue. Therefore, you should keep track of the
queued commands and how they are triggered in your software application if necessary.

If there is at least one command in the command queue you will not be able to execute further movement
commands until the queue is empty again. You may append more commands to the queue (if not full), but
issuing movement commands without previously calling SA_AppendTriggeredCommand_A will generate
an SA_WAITING_FOR_TRIGGER_ERROR. The command queue will become empty if all commands in the
queue have been triggered. Alternatively, you may clear the queue manually by calling
SA_ClearTriggeredCommandQueue_A.

A channel may be configured to send a notification when a command has been triggered by calling
SA_SetReportOnTriggered_A (see there).

SmarAct GmbH - MCS Programmer's Guide Page 25 ▲ToC

Note: This feature is only available in the asynchronous communication mode.

Command queues have two properties:

● SA_SIZE (Read only): Indicates how many commands are currently in the queue. The value of this
property will be incremented when a command is appended to the queue and decremented when
the next command in the queue is triggered. (A queued command that is triggered is removed from
the queue. It does not reside in the queue while it is in execution.)

● SA_CAPACITY (Read only): Indicates how many commands the queue is able to store. This value is
a constant and currently has a value of 1.

Note that the command queue has no global trigger source property. The commands in the queue each have
their own trigger source.

2.6.6 Example
This section demonstrates how to configure a channel for an example scenario.

Suppose you have an external system that generates positive TTL pulses on some event. You wish to count
the number of pulses that occurred. On each pulse you also wish to capture the current position of a channel
along with the current pulse counter value. Furthermore, the first pulse should be synchronized with a
movement of the positioner.

For this scenario you could use the following code:

SA_STATUS result;
const char loc[] = “usb:id:3118167233”;
unsigned int mcsHandle;
// Connect to system (must be async to be able to use command queue).
result = SA_OpenSystem(&mcsHandle, loc, “async”);
if (result != SA_OK) return result;
// Make the channel notify us when the positioner starts moving.
result = SA_SetReportOnTriggered_A(mcsHandle,0,SA_ENABLED);
if (result != SA_OK) return result;
// Make the channel notify us when the positioner completes the movement.
result = SA_SetReportOnComplete_A(mcsHandle,0,SA_ENABLED);
if (result != SA_OK) return result;
// Configure counter 0 to listen to digital in 0.
result = SA_SetChannelProperty_A(

mcsHandle, // system handle
0, // channel index
SA_EPK(SA_COUNTER,0,SA_TRIGGER_SOURCE), // property key
SA_ESV(SA_DIGITAL_IN,0) // selector value

);
if (result != SA_OK) return result;
// Configure capture buffer 0 to listen to digital in 0.
result = SA_SetChannelProperty_A(

mcsHandle, // system handle
0, // channel index
SA_EPK(SA_CAPTURE_BUFFER,0,SA_TRIGGER_SOURCE),// property key
SA_ESV(SA_DIGITAL_IN,0) // selector value

);
if (result != SA_OK) return result;
// Configure digital in 0 for rising edges.
result = SA_SetChannelProperty_A(

mcsHandle, // system handle
0, // channel index
SA_EPK(SA_DIGITAL_IN,0,SA_ACTIVE_EDGE), // property key
SA_RISING_EDGE // property value

);
if (result != SA_OK) return result;
// Enable digital in 0.
result = SA_SetChannelProperty_A(

mcsHandle, // system handle
0, // channel index
SA_EPK(SA_DIGITAL_IN,0,SA_OPERATION_MODE), // property key
SA_ENABLED // property value

SmarAct GmbH - MCS Programmer's Guide Page 26 ▲ToC

);
if (result != SA_OK) return result;
// Add a movement command to the command queue.
result = SA_AppendTriggeredCommand_A(

mcsHandle, // system handle
0, // channel index
SA_ESV(SA_DIGITAL_IN,0) // selector value

);
if (result != SA_OK) return result;
// The next movement command will not be executed right away,
// but fed into the command queue.
result = SA_GotoPositionAbsolute_A(mcsHandle,0,1000000,0);
if (result != SA_OK) return result;
// The channel is now “armed”. The first pulse on the digital in 0 input will cause the
// positioner to move by +1mm. Pulses will be counted and position values captured.
// Wait for the first pulse.
SA_PACKET packet;
do {

result = SA_ReceiveNextPacket_A(mcsHandle,1000,&packet);
if (result != SA_OK) return result;
// Return an error in case one of the above commands caused an error.
if (packet.packetType == SA_ERROR_PACKET_TYPE) return packet.data1;

} while (packet.packetType != SA_TRIGGERED_PACKET_TYPE);
// The positioner is on the move now.
// Read position data in a loop until the movement completes.
while (1) {

// Request capture buffer data.
result = SA_GetCaptureBuffer_A(mcsHandle,0,0);
if (result != SA_OK) return result;
// Read answer.
result = SA_ReceiveNextPacket_A(mcsHandle,1000,&packet);
if (result != SA_OK) return result;
if (packet.packetType == SA_CAPTURE_BUFFER_PACKET_TYPE) {

// Store position and counter data to some location.
logData(packet);

} else if (packet.packetType == SA_COMPLETED_PACKET_TYPE) {
// Abort loop if the movement is complete.
break;

}
msleep(20); // Only poll data with about 50Hz.

}
// Done.
SA_CloseSystem(mcsHandle);

SmarAct GmbH - MCS Programmer's Guide Page 27 ▲ToC

2.7 Miscellaneous Topics

2.7.1 Overwriting Movement Commands
Generally, the function calls for movement commands return as soon as the command has been transmitted
to the hardware (and an acknowledge received in synchronous mode); the calls do not block as long as the
command is in execution. Therefore, the software is free to issue new commands to the hardware
(potentially to other channels) while the movement is being performed. In particular, new movement
commands may also be sent to the same channel at any time. This will cause the previous movement
command to be implicitly aborted. Note that there is no need to explicitly stop a channel before sending a
new movement command. The new command will simply overwrite the current one.

However, a special situation occurs when overwriting movement commands while using the report-on-
complete-feature in the asynchronous mode. See section ?? “Report on Complete” for more information.

2.7.2 Dependency Chains
Some configuration options of a channel depend on other options to be set. Specifically, there is the
dependency chain

Speed Control  Acceleration Control  Low Vibration Mode.

The arrows represent a “requires” relation. Hence, only the following configuration combinations are valid:

State Speed Control Acceleration Control Low Vibration Mode

1 inactive inactive inactive

2 active inactive inactive

3 active active inactive

4 active active active

When activating or deactivating one of these features the system implicitly takes actions to maintain a
consistent state. E.g. when activating the low vibration mode while in state 1, the speed control and
acceleration control features will be implicitly enabled (with default settings). Likewise, deactivating the speed
control while in state 4, will implicitly deactivate the acceleration control and the low vibration mode.

Note that a channel must be completely stopped in order to change the low vibration mode. Otherwise an
SA_COMMAND_NOT_PROCESSABLE_ERROR will be generated. This implies that deactivating the speed
control may also produce this error, if the low vibration mode cannot be implicitly deactivated.

SmarAct GmbH - MCS Programmer's Guide Page 28 ▲ToC

Note: The Speed Control, Acceleration Control and Low Vibration Modes are not available on all
controllers. Please contact SmarAct for more information.

3 Detailed Function Description
Please note that all functions of the library use the cdecl calling convention. Some development
environments, such as Delphi, use stdcall by default. This must be taken into account when importing the
library functions.

3.1 Initialization Functions

SA_AddSystemToInitSystemsList

Interface:

SA_STATUS SA_AddSystemToInitSystemsList(unsigned int systemId);

Description:

This function may be used to acquire specific systems at initialization. The library manages a list of system
IDs that are to be acquired when calling SA_InitSystems. Initially, this list is empty in which case all
available systems are acquired. If you wish to acquire one or more specific systems add their system IDs to
the list with this function.

Parameters:

● systemId (unsigned 32bit), input - ID of the system that is to be added to the system ID list.

Example:

SA_ClearInitSystemsList();
SA_AddSystemToInitSystemsList(487519957);
SA_STATUS result = SA_InitSystems(SA_SYNCHRONOUS_COMMUNICATION);
if (result == SA_OK) {

// system was successfully acquired
}

See also: SA_GetAvailableSystems, SA_ClearInitSystemsList, SA_InitSystems

SmarAct GmbH - MCS Programmer's Guide Page 29 ▲ToC

Caution: This function has been deprecated. Please use the function SA_OpenSystem for initialization.
Can only be used in conjunction with SA_InitSystems . This function may be removed from
the API in the future!

SA_CloseSystem
Interface:

SA_STATUS SA_CloseSystem(SA_INDEX systemIndex);

Description:

This function closes a system initialized with SA_OpenSystem. It should be called before the application
closes. Calling this function makes the acquired systems available to other applications again. It is important
to close initialized systems. Not closed systems will cause a resource leak. An attempt to open an unclosed
MCS again will fail because the connection is still hold by the previous initialization.

SA_CloseSystem does not close systems that have been initialized with SA_InitSystems.

Parameters:

● systemIndex (SA_INDEX), input – A handle to the system which will be closed.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if(result == SA_OK){

//Closing previously aquired system
SA_CloseSystem(mcsHandle);

}

See also: SA_OpenSystem, SA_GetSystemLocator, SA_FindSystems

SmarAct GmbH - MCS Programmer's Guide Page 30 ▲ToC

SA_ClearInitSystemsList

Interface:

SA_STATUS SA_ClearInitSystemsList();

Description:

This function may be used when acquiring specific systems at initialization. It clears the system initialization
list. If SA_InitSystems is called after this, all available systems will be acquired.

Parameters:

None

Example:

SA_ClearInitSystemsList();
SA_STATUS result = SA_InitSystems(SA_SYNCHRONOUS_COMMUNICATION);
if (result == SA_OK) {

// All available systems were acquired.
// Use SA_GetNumberOfSystems and SA_GetSystemID to see
// how many and which systems these are.

}

See also: SA_GetAvailableSystems, SA_AddSystemToInitSystemsList, SA_InitSystems

SmarAct GmbH - MCS Programmer's Guide Page 31 ▲ToC

Caution: This function has been deprecated. Can only be used in conjunction with SA_InitSystems.
This function may be removed from the API in the future!

SA_FindSystems
Interface:

SA_STATUS SA_FindSystems(const char *options,
 char *outBuffer,
 unsigned int *ioBufferSize);

Description:

This function writes a list of locator strings of MCS devices that are connected to the PC into outBuffer.
Currently the function only lists MCS with a USB interface. Options contains a list of configuration options for
the find procedure (currently unused). The caller must pass a pointer to a char buffer in outBuffer and set
ioBufferSize to the size of the buffer. After the call the function has written a list of system locators into
outBuffer and the number of written bytes into ioBufferSize. If the supplied buffer is too small to contain the
generated list, the buffer will contain no valid content but ioBufferSize contains the required buffer size.

Parameters:

● options (const char), input – Options for the find procedure. Currently unused.

● outBuffer (char), output – Pointer to a buffer which holds the device locators after the function has
returned

● ioBufferSize (unsigned int), input/output – Specifies the size of outBuffer before the function call.
After the function call it holds the number of bytes written to outBuffer.

Example:

char outBuffer[4096];
unsigned int bufferSize = sizeof(outBuffer);
SA_STATUS result = SA_FindSystems(“”, outBuffer, &bufferSize);
if(result == SA_OK){

// outBuffer holds the locator strings, separated by '\n'
// bufferSize holds the number of bytes written to outBuffer

}

See also: Initialization, SA_OpenSystem

SmarAct GmbH - MCS Programmer's Guide Page 32 ▲ToC

SA_GetAvailableSystems

Interface:

SA_STATUS SA_GetAvailableSystems(unsigned int *idList,
unsigned int *idListSize);

Description:

This is an informational function only. It has no side effects. It may be used to retrieve a list of systems that
are connected to the PC and ready for acquisition at the time of the function call. This function is only
callable if no systems have been acquired yet by SA_InitSystems.
The function receives two pointers. The first one must point to an array that will hold the resulting system
IDs. The second one must point to a value that holds the size of the array so the function can assure not to
overwrite unreserved memory space. The function looks for available systems and then checks whether the
array is large enough to hold all resulting system IDs. If the array is too small the function will return an
SA_ID_LIST_TOO_SMALL_ERROR. Otherwise it will write the IDs to the array and set the idListSize
parameter to the number of elements written.

Parameters:

● idList (unsigned 32bit), output - This parameter must be a pointer to an array of 32bit values. If the
function call was successful, the list holds the system IDs of all connected systems that are ready for
acquisition.

● idListSize (unsigned 32bit), input/output - This parameter must hold the size of the array that the
idList pointer points to. When the function returns, this parameter will always hold the number of
system IDs that have been written to the array. If an error occurred, it will be zero.

Example:

#define LIST_SIZE 16
unsigned int idList[LIST_SIZE];
unsigned int listSize = LIST_SIZE;
SA_STATUS result = SA_GetAvailableSystems(idList,&listSize);
if (result == SA_OK) {

// listSize holds the number of systems
// idList array holds the systems IDs

}

See also: SA_AddSystemToInitSystemsList, SA_ClearInitSystemsList, SA_InitSystems

SmarAct GmbH - MCS Programmer's Guide Page 33 ▲ToC

Caution: This function has been deprecated. Please use the function SA_FindSystems for a list of
available systems. This function may be removed from the API in the future!

SA_GetChannelType
Interface:

SA_STATUS SA_GetChannelType(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int *type);

Description:

This function may be used to determine the type of a channel of a system. Each channel of a system has a
specific type. Currently there are two types of channels: positioner channels and end effector channels. Most
functions of section II are only callable for certain channel types. The function descriptions list for which types
they may be called.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● type (unsigned 32bit), output - If the call was successful this parameter holds the channel type of the
selected channel. Possible values are SA_POSITIONER_CHANNEL_TYPE and
SA_END_EFFECTOR_CHANNEL_TYPE.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
unsigned int type;
result = SA_GetChannelType(mcsHandle,0,&type);
if (result == SA_OK) {

// type holds the channel type of the first channel of the first system
}

SmarAct GmbH - MCS Programmer's Guide Page 34 ▲ToC

SA_GetDLLVersion
Interface:

SA_STATUS SA_GetDLLVersion(unsigned int *version);

Description:

This function may be called to retrieve the version code of the library. It is useful to check if changes have
been made to the software interface. An application may check the version in order to ensure that the library
behaves as the application expects it to do.

The returned 32bit code is divided into three fields:

31 24 23 16 15 8 7 0

Version High Version Low Version Build

This function does not require the library to be initialized (see SA_OpenSystem) and will always return a
status code of SA_OK.

Parameters:

● version (unsigned 32bit), output - Holds the version code. The higher the value the newer the
version.

Example:

unsigned int version;
SA_GetDLLVersion(&version);

SmarAct GmbH - MCS Programmer's Guide Page 35 ▲ToC

SA_GetInitState

Interface:

SA_STATUS SA_GetInitState(unsigned int *initMode);

Description:

This function may be used to check the initialization state of the library. If the library is not initialized then the
returned mode will be SA_INIT_STATE_NONE. Otherwise either SA_INIT_STATE_SYNC or
SA_INIT_STATE_ASYNC, depending on which parameter you passed to SA_InitSystems.

The return status of this function will always be SA_OK.

Parameters:

● initMode (unsigned 32bit), output - Returns the current initialization mode of the library. Will be one of
SA_INIT_STATE_NONE, SA_INIT_STATE_SYNC or SA_INIT_STATE_ASYNC.

Example:

unsigned int mode;
SA_GetInitState(&mode);
if (mode == SA_INIT_STATE_NONE) {

SA_STATUS result = SA_InitSystems(SA_SYNCHRONOUS_COMMUNICATION);
if (result == SA_OK) {

SA_GetInitState(&mode);
// mode is SA_INIT_STATE_SYNC

}
}

See also: SA_InitSystems, SA_ReleaseSystems

SmarAct GmbH - MCS Programmer's Guide Page 36 ▲ToC

Caution: This function has been deprecated. Can only be used in conjunction with SA_InitSystems.
This function may be removed from the API in the future!

SA_GetNumberOfChannels
Interface:

SA_STATUS SA_GetNumberOfChannels(SA_INDEX systemIndex,
unsigned int *channels);

Description:

This function may be used to determine how many channels are available on a system. This includes
positioner channels and end effector channels. Each channel is of a specific type. Use the
SA_GetChannelType function to determine the types of the channels.

Note that the number of channels does not represent the number positioners and/or end effectors that are
currently connected to the system.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channels (unsigned 32bit), output - If the call was successful this value holds the number of
positioners and/or end effectors that may be connected to the given system.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
unsigned int number;
result = SA_GetNumberOfChannels(mcsHandle,&number);
if (result == SA_OK) {

// number holds the number of channels of the system
}

SmarAct GmbH - MCS Programmer's Guide Page 37 ▲ToC

SA_GetNumberOfSystems

Interface:

SA_STATUS SA_GetNumberOfSystems(unsigned int *number);

Description:

This function may be used to determine how many systems have been acquired by a previously and
successfully called SA_InitSystems.

Parameters:

● number (unsigned 32bit), output - If the call was successful this value holds the number of systems
detected.

Example:

SA_STATUS result = SA_InitSystems(SA_SYNCHRONOUS_COMMUNICATION);
if (result != SA_OK) {

// handle error...
}
unsigned int number;
result = SA_GetNumberOfSystems(&number);
if (result == SA_OK {

// number holds the number of systems that were acquired
}

SmarAct GmbH - MCS Programmer's Guide Page 38 ▲ToC

Caution: This function has been deprecated. Can only be used in conjunction with SA_InitSystems.
This function may be removed from the API in the future!

SA_GetSystemID

Interface:

SA_STATUS SA_GetSystemID(SA_INDEX systemIndex,
unsigned int *id);

Description:

This function may be used to physically identify a system connected to the PC. Each system has a unique ID
which makes it possible to distinguish one from another. Once systems have been acquired by
SA_InitSystems you may call this function to read out the system IDs of the acquired systems.

Parameters:

● systemIndex (unsigned 32bit), input - Selects the system. The index is zero based.

● id (unsigned 32bit), output - If the call was successful this value holds the system ID of the selected
system. The ID is a generic, unique number.

Example:

SA_STATUS result = SA_InitSystems(SA_SYNCHRONOUS_COMMUNICATION);
if (result != SA_OK) {

// handle error...
}
unsigned int id;
result = SA_GetSystemID(0,&id);
if (result == SA_OK) {

// id holds the system ID
}

SmarAct GmbH - MCS Programmer's Guide Page 39 ▲ToC

Caution: This function has been deprecated. Can only be used in conjunction with SA_InitSystems.
This function may be removed from the API in the future!

SA_GetSystemLocator
Interface:

SA_STATUS SA_GetSystemLocator(SA_INDEX systemIndex,
char *outBuffer,
unsigned int *ioBufferSize);

Description:

Returns the locator of the initialized system systemIndex in outBuffer. When calling this function the caller
must pass a buffer with a sufficient size and write the buffer size in ioBufferSize. After the call the function
has written the system locator into outBuffer and the number of bytes written into ioBufferSize.

Parameters:

● systemIndex (SA_INDEX), input – Handle to an initialized system.

● outBuffer (char pointer), output – Pointer to a buffer which holds the device locator after the function
has returned

● ioBufferSize (unsigned int pointer), input/output – Specifies the size of outBuffer before the function
call. After the function call it holds the number of bytes written to outBuffer.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
char outBuffer[4096];
unsigned int bufferSize = sizeof(outBuffer);
SA_STATUS result = SA_GetSystemLocator(mcsHandle, outBuffer, &bufferSize);
if(result == SA_OK){

// outBuffer holds the locator string
// bufferSize holds the number of bytes written to outBuffer

}

See also: Initialization, SA_OpenSystem, SA_FindSystems

SmarAct GmbH - MCS Programmer's Guide Page 40 ▲ToC

SA_InitSystems

Interface:

SA_STATUS SA_InitSystems(unsigned int configuration);

Description:

This is the global initialization function. It must be called before any other functions are called. If the library is
not initialized all other functions will return a SA_NOT_INITIALIZED status code. The only exceptions to this
rule are the functions SA_GetDLLVersion, SA_GetInitState, SA_GetAvailableSystems,
SA_AddSystemToInitSystemsList and SA_ClearInitSystemsList.

If the library is already initialized an implicit SA_ReleaseSystems call is made before (re-)initializing the
library. If successful, all systems that are connected to the PC are acquired and can not be used by other
software applications until SA_ReleaseSystems is called.

Optionally you may use the functions SA_AddSystemToInitSystemsList and
SA_ClearInitSystemsList before calling SA_InitSystems to acquire specific systems.

When calling this function you must chose between one of two modes. If synchronous mode is selected, only
functions of section IIa that have the suffix _S may be called thereafter. If asynchronous mode is selected,
only functions of section IIb that have the suffix _A may be called.

Once systems have been acquired you may use the functions SA_GetNumberOfSystems,
SA_GetSystemID, SA_GetNumberOfChannels and SA_GetChannelType (see there) to retrieve
information about the systems that were acquired.

Parameters:

● configuration (unsigned 32bit), input - This parameter selects between the synchronous and the
asynchronous communication. Possible values are SA_SYNCHRONOUS_COMMUNICATION and
SA_ASYNCHRONOUS_COMMUNICATION. Optionally an SA_HARDWARE_RESET may be ORed to the
value which sends a reset command to all systems. It has the same effect as a power-down/power-
up cycle.

Example:

SA_STATUS result = SA_InitSystems(SA_SYNCHRONOUS_COMMUNICATION | SA_HARDWARE_RESET);
if (result != SA_OK) {

// handle error...
}

See also: SA_ReleaseSystems, SA_GetInitState

SmarAct GmbH - MCS Programmer's Guide Page 41 ▲ToC

Caution: This function has been deprecated. Please us the function SA_OpenSystem instead. This
function may be removed from the API in the future!

SA_OpenSystem
Interface:

SA_STATUS SA_OpenSystem(SA_INDEX *systemIndex,
const char *systemLocator,

 const char *options);

Description:

Initializes one MCS specified in systemLocator, systemIndex is a handle to the opened system that is
returned after a successful execution. It must be passed in the systemIndex parameter to the API functions.
options is a string parameter that contains a list of configuration options. The options must be separated by a
comma or a newline.

The following options are available:

● reset the MCS is reset on open. A reset has the same effect as a power-
down/power-up cycle.

● async, sync use the async option to set the communication mode to asynchronous, sync
for synchronous communication. See “Communication Modes“ on p.8.

● open-timeout <t> only available for network interfaces. <t> is the maximum time in
milliseconds the PC tries to connect to the MCS. Default is 3000
milliseconds. The maximum timeout may be limited by operating system
default parameters.

Systems that have been initialized with SA_OpenSystem must be released with SA_CloseSystem.
SA_ReleaseSystems does not close them!

Parameters:

● systemIndex (SA_INDEX), output – returns a handle to the opened system.

● systemLocator (const char pointer), input – locator string that specifies the system.

● options (const char pointer), input – options for the initialization function. See list above.

Example:

const char loc1[] = “usb:id:3118167233”;
const char loc2[] = “network:192.168.1.200:5000”;

SA_STATUS result;
SA_INDEX mcsHandle1,mcsHandle2;

// connect to a USB interface for async. communication and reset the system
result = SA_OpenSystem(&mcsHandle1, loc1, “async,reset”);
if(result != SA_OK){

// handle error
}
// connect to a network interface for sync. communication with 1.5 sec timeout
result = SA_OpenSystem(&mcsHandle2, loc2, “sync,open-timeout 1500”);
if(result != SA_OK){

// handle error
}

See also: SA_FindSystems, SA_GetSystemLocator, SA_CloseSystem

SmarAct GmbH - MCS Programmer's Guide Page 42 ▲ToC

SA_ReleaseSystems

Interface:

SA_STATUS SA_ReleaseSystems();

Description:

Inverse function to SA_InitSystems. This function should be called before the application closes. Calling
this function makes the acquired systems available to other applications again.

Parameters:

None

Example:

SA_STATUS result = SA_ReleaseSystems();

See also: SA_InitSystems

SmarAct GmbH - MCS Programmer's Guide Page 43 ▲ToC

Caution: This function has been deprecated. Can only be used in conjunction with SA_InitSystems.
Please us the function SA_CloseSystem instead. This function may be removed from the API
in the future!

SA_SetHCMEnabled
Interface:

SA_STATUS SA_SetHCMEnabled(SA_INDEX systemIndex,
unsigned int enabled);

Description:

This function may be used to enable or disable a Hand Control Module that is attached to the system to
avoid interference while the software is in control of the system. (See also section ?? “Multiple Command
Sources”.) There are three possible modes to set:

● SA_HCM_DISABLED: In this mode the Hand Control Module is disabled. It may not be used to control
the system.

● SA_HCM_ENABLED: This is the default setting and the normal operation mode of the Hand Control
Module.

● SA_HCM_CONTROLS_DISABLED: In this mode the Hand Control Module cannot be used to control
the system. However, if there are positioners with sensors attached, their position data will still be
displayed.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● enabled (unsigned 32bit), input - Selects the mode. Must be one of SA_HCM_DISABLED,
SA_HCM_ENABLED or SA_HCM_CONTROLS_DISABLED.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
// disable the Hand Control Module
result = SA_SetHCMEnabled(mcsHandle,SA_HCM_DISABLED);

SmarAct GmbH - MCS Programmer's Guide Page 44 ▲ToC

3.2 Functions for Synchronous Communication
General note: all functions of the synchronous communication mode are thread safe.

For functions that address a specific channel the channel type for which the function is callable is given.

SA_CalibrateSensor_S
Channel type: Positioner

Interface:

SA_STATUS SA_CalibrateSensor_S(SA_INDEX systemIndex,
SA_INDEX channelIndex);

Description:

This function may be used to increase the accuracy of the position calculation. It is only executable by a
positioner that has a sensor attached to it. The sensor must also be enabled or in power save mode (see
SA_SetSensorEnabled_S). If this is not the case the channel will return an error.

This function should be called once for each channel if the mechanical setup changes (different positioners
connected to different channels). The calibration data will be saved to non-volatile memory. If the mechanical
setup is unchanged, it is not necessary to call this function on each initialization, but newly connected
positioners have to be calibrated in order to ensure proper operation.

During the calibration the positioner will perform a movement of up to several mm. You must ensure, that the
command is not executed while the positioner is near a mechanical end stop. Otherwise the calibration might
fail and lead to unexpected behavior when executing closed-loop commands. As a safety precaution, also
make sure that the positioner has enough freedom to move without damaging other equipment.

The calibration takes a few seconds to complete. During this time the positioner will report a status of
SA_CALIBRATING_STATUS (see SA_GetStatus_S).

Positioners that are referenced via a mechanical end stop (see 5.4 “Sensor Types“) are moved to the end
stop as part of the calibration routine. Which end stop is used for referencing is configured by
SA_SetSafeDirection_S. Note that when changing the safe direction the end stop must be calibrated
again for proper operation.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
// start calibration routine
result = SA_CalibrateSensor_S(mcsHandle,0);
unsigned int status;
do {

SA_GetStatus_S(mcsHandle,0,&status);
} while (status != SA_STOPPED_STATUS);
// done calibrating

SmarAct GmbH - MCS Programmer's Guide Page 45 ▲ToC

SA_FindReferenceMark_S
Channel type: Positioner

Interface:

SA_STATUS SA_FindReferenceMark_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int direction,
unsigned int holdTime
unsigned int autoZero);

Description:

For positioners that are equipped with sensor feedback, this function may be used to move the positioner to
a known physical position of the positioner. Some sensor types are equipped with a physical reference mark,
others are referenced via a mechanical end stop (see appendix 5.4 “Sensor Types“). For latter types you
must configure the safe direction with SA_SetSafeDirection_S and call SA_CalibrateSensor_S
before the positioner can be properly referenced. The safe direction is then used instead of the direction
parameter described below.

If the auto zero flag is set, the current position resp. angle is set to zero after the reference position has been
reached. Otherwise the position is set according to the information stored in non-volatile memory of the last
SA_SetPosition_S call. See section 2.5.3 “Defining Positions“ for more information.

As a safety precaution, make sure that the positioner has enough freedom to move without damaging other
equipment.

The positioner may be instructed to hold the position of the reference mark after it has been reached. This
behavior is similar to that of the other closed-loop commands, e.g. SA_GotoPositionAbsolute_S. See
there for more information.

While executing the command the positioner will have a movement status of SA_FINDING_REF_STATUS.
While holding the position the positioner will have a movement status of SA_HOLDING_STATUS (see
SA_GetStatus_S).

If this command was successful, then the physical position of the positioner becomes known. See
SA_GetPhysicalPositionKnown_S.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the system. The index is zero based.

● direction (unsigned 32bit), input - Specifies the initial search direction. (See Table in 2.5.3 Defining
Positions for valid values and explanations). Note that this parameter is ignored for sensor types that
are referenced via a mechanical end stop. Set the direction via SA_SetSafeDirection_S instead.

● holdTime (unsigned 32bit), input - Specifies how long (in milliseconds) the position is actively held
after reaching the target. The valid range is 0..60,000. A 0 deactivates this feature, a value of 60,000
is infinite (until manually stopped, see SA_Stop_S).

● autoZero (unsigned 32bit), input - Must be one of SA_NO_AUTO_ZERO or SA_AUTO_ZERO. The latter
will reset the current position resp. angle to zero upon reaching the reference mark (see also
SA_SetPosition_S).

Example:

// move to reference mark and set to zero
result = SA_FindReferenceMark_S(mcsHandle,0,SA_FORWARD_DIRECTION,0,SA_AUTO_ZERO);
unsigned int status;
do {

SA_GetStatus_S(mcsHandle,0,&status);
} while (status != SA_STOPPED_STATUS);

SmarAct GmbH - MCS Programmer's Guide Page 46 ▲ToC

SA_GetAngle_S
Channel type: Positioner

Interface:

SA_STATUS SA_GetAngle_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int *angle,
signed int *revolution);

Description:

Returns the current angle of a positioner. This function is only executable by a positioner that has a sensor
attached to it. The sensor must also be enabled or in power save mode (see SA_SetSensorEnabled_S). If
this is not the case the channel will return an error. Additionally, the command is only executable if the
addressed channel is configured to be of type rotary (see SA_SetSensorType_S). A linear channel will
return an error.

A rotary position is defined by a combination of an angle and a revolution. One revolution equals a full 360°
turn. The angle value returned will always be in the range 0..359,999,999. If the positioner moves over a zero
boundary, the angle value will wrap around accordingly and the revolution value will be incremented resp.
decremented.

Please refer to section 2.5.1 “Rotary Sensors” for more information on the angle and revolution parameters.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● angle (unsigned 32bit), output - If the call was successful this value holds the current angle of the
positioner in micro degrees.

● revolution (signed 32bit), output - If the call was successful this value holds the current revolution of
the positioner.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
// get current position
signed int angle, revolution;
result = SA_GetAngle_S(mcsHandle,0,&angle,&revolution);
if (result == SA_OK) {

// angle and revolution parameters have been updated
}

See also: SA_GetPosition_S

SmarAct GmbH - MCS Programmer's Guide Page 47 ▲ToC

SA_GetAngleLimit_S
Channel type: Positioner

Interface:

SA_STATUS SA_GetAngleLimit_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int *minAngle,
signed int *minRevolution,
unsigned int *maxAngle,
signed int *maxRevolution);

Description:

Inverse function to SA_SetAngleLimit_S. May be used to read out the travel range limit that is currently
configured for a rotary channel.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● minAngle (unsigned 32bit), output - If the call was successful, this parameter holds the absolute
minimum angle given in micro degrees.

● minRevolution (signed 32bit), output - If the call was successful, this parameter holds the absolute
minimum revolution.

● maxAngle (unsigned 32bit), output - If the call was successful, this parameter holds the absolute
maximum angle given in micro degrees.

● maxRevolution (signed 32bit), output - If the call was successful, this parameter holds the absolute
maximum revolution.

Example:

// retrieve the travel range limit of positioner 0
unsigned int min,max;
signed int minR, maxR;
result = SA_GetAngleLimit_S(mcsHandle,0,&min,&minR,&max,&maxR);

See also: SA_SetAngleLimit_S, SA_GetPositionLimit_S

SmarAct GmbH - MCS Programmer's Guide Page 48 ▲ToC

Note: If no limit is set then all output parameters will be 0.

SA_GetCaptureBuffer_S
Channel type: Positioner

Interface:

SA_STATUS SA_GetCaptureBuffer_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int bufferIndex,
SA_PACKET *buffer);

Description:

Retrieves the contents of a capture buffer. Capture buffers capture (groups of) internal values on certain
events and may be used to synchronize the reading of values.

The function returns the data in form of an SA_PACKET (see header file). The data1 field will always contain
the buffer index that the packet represents (same as given in the bufferIndex parameter). The values of the
other fields hold the capture buffer contents. See section 2.6.4 “Capture Buffers“ for a list of currently defined
capture buffers.

Parameters:

● systemIndex (unsigned 32bit), input – Handle to an initialized system.

● channelIndex (unsigned 32bit), input – Selects the channel of the selected system. The index is zero
based.

● bufferIndex (unsigned 32bit), input – Selects the buffer of the selected channel.

● buffer (SA_PACKET), output – If the call was successful this parameter holds the buffer contents.

Example:

SA_PACKET packet;
result = SA_GetCaptureBuffer_S(mcsHandle,0,0,&packet);
if (result == SA_OK) {

// packet.data1 holds the buffer index (0)
// packet.data2 holds the position value
// packet.data3 holds the revolution value
// packet.data4 holds the counter 0 value

}

SmarAct GmbH - MCS Programmer's Guide Page 49 ▲ToC

SA_GetChannelProperty_S
Channel type: Positioner

Interface:

SA_STATUS SA_GetChannelProperty_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int key,
signed int *value);

Description:

Retrieves a configuration value from a channel. This is a universal function to read out various channel
properties. The property which is to be read is selected via the key parameter. This 32-bit parameter codes a
combination of values and has the following structure:

31 24 23 16 15 8 7 0

component sub component property

The SA_EPK helper function may be used to encode the key. See the header file for a list of component
selectors and properties. The sub component selector is usually an index, but there can also be special sub
component selectors. Note that not all properties are valid for all components. Please refer to section 2.4
“Channel Properties“ for more information.

Parameters:

● systemIndex (unsigned 32bit), input – Handle to an initialized system.

● channelIndex (unsigned 32bit), input – Selects the channel of the selected system. The index is zero
based.

● key (unsigned 32bit), input – Selects the property of which the value should be returned.

● value (signed 32bit), output – If the call was successful holds the value of the selected property.

Example:

// get current command queue size
unsigned int size;
result = SA_GetChannelProperty_S(

mcsHandle, // system handle
0, // channel index
SA_EPK(SA_COMMAND_QUEUE,0,SA_SIZE), // property key
&size // property value

);
if (result == SA_OK) {

// size holds the current command queue size
}

See also: SA_SetChannelProperty_S

SmarAct GmbH - MCS Programmer's Guide Page 50 ▲ToC

SA_GetClosedLoopMoveAcceleration_S
Channel type: Positioner

Interface:

SA_STATUS SA_GetClosedLoopMoveAcceleration_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int *acceleration);

Description:

Returns the movement acceleration that is currently configured for a channel. See
SA_SetClosedLoopMoveAcceleration_S for more information.

Parameters:

● systemIndex (unsigned 32bit), input – Handle to an initialized system.

● channelIndex (unsigned 32bit), input – Selects the channel of the selected system. The index is zero
based.

● acceleration (unsigned 32bit), output – If the call was successful, this parameter holds the movement
acceleration that is currently configured for the given channel. The value is given in µm/s2 for linear
positioners and in m°/s2 for rotary positioners. The valid range is 0..10,000,000. A value of 0 (default)
indicates that the acceleration control feature is deactivated.

Example:

// get current movement acceleration for channel 1 of system 0
unsigned int acceleration;
result = SA_GetClosedLoopMoveAcceleration_S(mcsHandle,1,&acceleration);
if (result == SA_OK) {

// acceleration holds the current movement acceleration
}

See also: SA_SetClosedLoopMoveAcceleration_S, SA_GetClosedLoopMoveSpeed_S

SmarAct GmbH - MCS Programmer's Guide Page 51 ▲ToC

Note: This Command is not available on all controllers. Please contact SmarAct for more information.

SA_GetClosedLoopMoveSpeed_S
Channel type: Positioner

Interface:

SA_STATUS SA_GetClosedLoopMoveSpeed_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int *speed);

Description:

Returns the movement speed that is currently configured for a channel. See
SA_SetClosedLoopMoveSpeed_S for more information.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● speed (unsigned 32bit), output - If the call was successful, this parameter holds the movement
speed that is currently configured for the given channel. The value is given in nanometers per
second for linear positioners and in micro degrees per second for rotary positioners. The valid range
is 0..100,000,000. A value of 0 (default) means that the speed control feature is deactivated.

Example:

// get current movement speed for channel 2
unsigned int speed;
result = SA_GetClosedLoopMoveSpeed_S(mcsHandle,2,&speed);
if (result == SA_OK) {

// speed holds the current movement speed
}

See also: SA_SetClosedLoopMoveSpeed_S, SA_GetClosedLoopMoveAcceleration_S

SmarAct GmbH - MCS Programmer's Guide Page 52 ▲ToC

Note: This Command is not available on all controllers. Please contact SmarAct for more information.

SA_GetEndEffectorType_S
Channel type: End effector

Interface:

SA_STATUS SA_GetEndEffectorType_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int *type,
signed int *param1,
signed int *param2);

Description:

This function may be used to retrieve the current end effector type configuration of an end effector channel.

See SA_SetEndEffectorType_S for more information.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● type (unsigned 32bit), output - If the call was successful this parameter holds the type of end effector
that is currently configured for the channel. Possible values are
SA_GRIPPER_END_EFFECTOR_TYPE, SA_FORCE_SENSOR_END_EFFECTOR_TYPE and
SA_FORCE_GRIPPER_END_EFFECTOR_TYPE.

● param1 (signed 32bit), output - The meaning and valid range of this parameter depends on the type
(see table on page 80).

● param2 (signed 32bit), output - The meaning and valid range of this parameter depends on the type
(see table on page 80).

Example:

// get end effector type for channel three
unsigned int endEffectorType;
signed int param1, param2;
result = SA_GetEndEffectorType_S(mcsHandle,3,&endEffectorType,¶m1,¶m2);
if (result == SA_OK) {

// refer to table on page 80 for the meaning of the output values
}

See also: SA_SetEndEffectorType_S

SmarAct GmbH - MCS Programmer's Guide Page 53 ▲ToC

SA_GetForce_S
Channel type: End effector

Interface:

SA_STATUS SA_GetForce_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
signed int *force);

Description:

This command is only executable if the end effector that is connected to the select channel has a force
sensor (see SA_SetEndEffectorType_S). The function returns the force that is currently measured by the
sensor. Note that the sensor must be calibrated in order to provide proper measurement values. See
SA_SetZeroForce_S.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● force (signed 32bit), output - If the call was successful this value holds the force that is currently
measured by the sensor. The value is given in 1/10 µN.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
// get current status
unsigned int status;
result = SA_GetForce_S(mcsHandle,0,&status);

See also: SA_SetZeroForce_S

SmarAct GmbH - MCS Programmer's Guide Page 54 ▲ToC

SA_GetGripperOpening_S
Channel type: End effector

Interface:

SA_STATUS SA_GetGripperOpening_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int *opening);

Description:

This command is only executable if the end effector that is connected to the selected channel is a gripper
(see SA_SetEndEffectorType_S). The function returns the voltage that is currently applied to the gripper.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● opening (unsigned 32bit), output - If the call was successful this value holds the current voltage that
is applied to the gripper. The value is given in 1/100 Volts.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
// get current voltage
unsigned int voltage;
result = SA_GetGripperOpening_S(mcsHandle,0,&voltage);

See also: SA_GotoGripperOpeningAbsolute_S, SA_GotoGripperOpeningRelative_S

SmarAct GmbH - MCS Programmer's Guide Page 55 ▲ToC

SA_GetPhysicalPositionKnown_S
Channel type: Positioner

Interface:

SA_STATUS SA_GetPhysicalPositionKnown_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int *known);

Description:

Returns whether the positioner “knows” its physical position. After a power-up the physical position is
unknown and the current position is implicitly assumed to be the zero position. After the reference mark has
been found by calling SA_FindReferenceMark_S the physical position becomes known.

This function can be useful if the software application restarts and connects to a system that has stayed
online. If the physical position is already known, traveling to the reference mark again may be omitted.

See also 2.5.3 “Defining Positions“.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● known (unsigned 32bit), output - If the call was successful, this parameter will be either
SA_PHYSICAL_POSITION_UNKNOWN or SA_PHYSICAL_POSITION_KNOWN.

Example:

// check whether the physical position of channel 2 is known
unsigned int known;
result = SA_GetPhysicalPositionKnown_S(mcsHandle,2,&known);
if (result == SA_OK) {

// known holds the result
}

See also: SA_FindReferenceMark_S, SA_SetPosition_S, SA_SetScale_S

SmarAct GmbH - MCS Programmer's Guide Page 56 ▲ToC

SA_GetPosition_S
Channel type: Positioner

Interface:

SA_STATUS SA_GetPosition_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
signed int *position);

Description:

Returns the current position of a positioner. This function is only executable by a positioner that has a sensor
attached to it. The sensor must also be enabled or in power save mode (see SA_SetSensorEnabled_S). If
this is not the case the channel will return an error. Additionally, the command is only executable if the
addressed channel is configured to be of type linear (see SA_SetSensorType_S). A rotary channel will
return an error (use SA_GetAngle_S instead).

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● position (signed 32bit), output - If the call was successful this value holds the current position of the
positioner in nano meters.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
// get current position
signed int position;
result = SA_GetPosition_S(mcsHandle,0,&position);
if (result == SA_OK) {

// current position is in position variable
}

See also: SA_GetAngle_S

SmarAct GmbH - MCS Programmer's Guide Page 57 ▲ToC

SA_GetPositionLimit_S
Channel type: Positioner

Interface:

SA_STATUS SA_GetPositionLimit_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
signed int *minPosition,
signed int *maxPosition);

Description:

Inverse function to SA_SetPositionLimit_S. May be used to read out the travel range limit that is
currently configured for a linear channel.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● minPosition (signed 32bit), output - If the call was successful, this parameter holds the absolute
minimum position given in nanometers.

● maxPosition (signed 32bit), output - If the call was successful, this parameter holds the absolute
maximum position given in nanometers.

Note: If no limit is set then both minPosition and maxPosition will be 0.

Example:

// retrieve the travel range limit of positioner 0
signed int min,max;
result = SA_GetPositionLimit_S(mcsHandle,0,&min,&max);
if (result == SA_OK) {

// min and max hold the range limit
}

See also: SA_SetPositionLimit_S, SA_GetAngleLimit_S

SmarAct GmbH - MCS Programmer's Guide Page 58 ▲ToC

SA_GetSafeDirection_S
Channel type: Positioner

Interface:

SA_STATUS SA_GetSafeDirection_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int *direction);

Description:

Retrieves the currently configured safe direction of a channel. See SA_SetSafeDirection_S for more
information.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● direction (unsigned 32bit), output - If the call was successful, this parameter holds the currently
configured safe direction. Will be either SA_FORWARD_DIRECTION or SA_BACKWARD_DIRECTION.

Example:

unsigned int direction;
SA_STATUS result = SA_GetSafeDirection_S(mcsHandle,1,&direction);
if (result == SA_OK) {

// direction holds the safe direction
}

See also: SA_SetSafeDirection_S

SmarAct GmbH - MCS Programmer's Guide Page 59 ▲ToC

SA_GetScale_S
Channel type: Positioner

Interface:

SA_STATUS SA_GetScale_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
signed int *scale,
unsigned int *inverted);

Description:

Retrieves the currently configured scale of a channel. See SA_SetScale_S for more information.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● scale (signed 32bit), output - If the call was successful, this parameter holds the currently configured
scale.

● inverted (unsigned 32bit) – If the call was successful, this parameter hold the currently configured
scale inversion. Will be either SA_FALSE or SA_TRUE.

Example:

signed int scale;
unsigned int inverted;
SA_STATUS result = SA_GetScale_S(mcsHandle,1,&scale,&inverted);
if (result == SA_OK) {

// scale holds the configured scale
// inverted holds the scale inversion setting

}

See also: SA_SetScale_S

SmarAct GmbH - MCS Programmer's Guide Page 60 ▲ToC

Caution: Please note that only the logical scale of the positioner will be inverted when the inverted
value has changed. Parameters like the SafeDirection will not be altered. Thus the positioner will
move in the opposite direction when e.g. calling SA_FindReferenceMark_S with the same
parameters prior to the inversion change.

SA_GetSensorEnabled_S
Interface:

SA_STATUS SA_GetSensorEnabled_S(SA_INDEX systemIndex,
unsigned int *enabled);

Description:

This function may be used to read the sensor operation mode that is currently configured for the sensors that
are attached to the positioners of a system. The mode is system global and applies to all positioner channels
of a system equally.

Please refer to section 2.5.2 “Sensor Modes” for more information on the sensor modes.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● enabled (unsigned 32bit), output - If the call was successful, this parameter holds the current sensor
mode (SA_SENSOR_DISABLED, SA_SENSOR_ENABLED or SA_SENSOR_POWERSAVE).

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
// read sensor mode
unsigned int enabled;
result = SA_GetSensorEnabled_S(mcsHandle,&enabled);

See also: SA_SetSensorEnabled_S

SmarAct GmbH - MCS Programmer's Guide Page 61 ▲ToC

SA_GetSensorType_S
Channel type: Positioner

Interface:

SA_STATUS SA_GetSensorType_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int *type);

Description:

Returns the type of sensor that is configured for the given channel (see SA_SetSensorType_S). The
returned type will be one of the types listed in the appendix (5.4 “Sensor Types“).

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● type (unsigned 32bit), output - If the call was successful, this parameter holds the type of the sensor.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
// get sensor type for second channel
unsigned int sensorType;
result = SA_GetSensorType_S(mcsHandle,1,&sensorType);

See also: SA_SetSensorType_S, SA_GetPosition_S, SA_GetAngle_S

SmarAct GmbH - MCS Programmer's Guide Page 62 ▲ToC

SA_GetStatus_S
Channel type: Positioner, End effector

Interface:

SA_STATUS SA_GetStatus_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int *status);

Description:

Returns the current movement status of a positioner or end effector (see appendix 5.3 “Channel Status
Codes“ for a list of movement status codes). This function can be used to check whether a previously issued
movement command has been completed.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● status (unsigned 32bit), output - If the call was successful this value holds the current status of the
positioner. Please refer to the appendix for a list of status codes.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
// get current status
unsigned int status;
result = SA_GetStatus_S(0,0,&status);

SmarAct GmbH - MCS Programmer's Guide Page 63 ▲ToC

SA_GetVoltageLevel_S
Channel type: Positioner

Interface:

SA_STATUS SA_GetVoltageLevel_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int *level);

Description:

Returns the voltage level that is currently applied to the piezo element of a positioner. This function is mainly
of interest in conjunction with SA_ScanMoveAbsolute_S and SA_ScanMoveRelative_S, since these are
used to control the voltage level.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● level (unsigned 32bit), output - If the call was successful this value holds the current voltage level
that is applied to the piezo element of the positioner. It ranges from 0..4,095, where 0 corresponds to
0V and 4,095 to 100V.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
// get current voltage level
unsigned int level;
result = SA_GetVoltageLevel_S(mcsHandle,0,&level);
if (result == SA_OK) {

// voltage level is in level variable
}

See also: SA_ScanMoveAbsolute_S, SA_ScanMoveRelative_S

SmarAct GmbH - MCS Programmer's Guide Page 64 ▲ToC

SA_GotoAngleAbsolute_S
Channel type: Positioner

Interface:

SA_STATUS SA_GotoAngleAbsolute_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int angle,
signed int revolution,
unsigned int holdTime);

Description:

Instructs a positioner to turn to a specific angle. This function is only executable by a positioner that has a
sensor attached to it. The sensor must also be enabled or in power save mode (see
SA_SetSensorEnabled_S). If this is not the case an error will be returned. Additionally, the command is
only executable if the addressed channel is configured to be of type rotary (see SA_SetSensorType_S). A
linear channel will return an error (use SA_GotoPositionAbsolute_S instead).

The positioner may be instructed to hold the target angle after it has been reached. This may be useful to
compensate for drift effects and the like. Note that the positioner will use the scan mode to hold the angle if
needed. When the piezo element of the positioner reaches a scanning boundary a single step is performed.
However, if this behavior is not desired the correction steps can be disabled with the
SA_SetStepWhileScan_S command (see there). Note though that disabling the steps might mean that the
angle cannot be held.

While executing the command the positioner will have a movement status of SA_TARGET_STATUS. While
holding the target position the positioner will have a movement status of SA_HOLDING_STATUS (see
SA_GetStatus_S).

If a mechanical end stop is detected while the command is in execution, the movement will be aborted. Note
that in asynchronous communication mode an error will be reported.

Please refer to section 2.5.1 “Rotary Sensors” for more information on the angle and revolution parameters.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● angle (unsigned 32bit), input - Absolute angle to move to in micro degrees. The valid range is
0..359,999,999.

● revolution (signed 32bit), input - Absolute revolution to move to. The valid range is
-32,768..32,767.

● holdTime (unsigned 32bit), input - Specifies how long (in milliseconds) the angle is actively held after
reaching the target. The valid range is 0..60,000. A 0 deactivates this feature, a value of 60,000 is
infinite (until manually stopped, see SA_Stop_S).

Example:

// move to 90° angle and hold position for one second
result = SA_GotoAngleAbsolute_S(mcsHandle,0,90000000,0,1000);

See also: SA_GotoAngleRelative_S, SA_GotoPositionAbsolute_S, SA_GetAngle_S

SmarAct GmbH - MCS Programmer's Guide Page 65 ▲ToC

SA_GotoAngleRelative_S
Channel type: Positioner

Interface:

SA_STATUS SA_GotoAngleRelative_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
signed int angleDiff,
signed int revolutionDiff,
unsigned int holdTime);

Description:

Instructs a positioner to move to an angle relative to its current angle. This function is only executable by a
positioner that has a sensor attached to it. The sensor must also be enabled or in power save mode (see
SA_SetSensorEnabled_S). If this is not the case the channel will return an error. Additionally, the
command is only executable if the addressed channel is configured to be of type rotary (see
SA_SetSensorType_S). A linear channel will return an error (use SA_GotoPositionRelative_S
instead).

If a relative positioning command is issued before a previous one has finished, normally the relative targets
are accumulated. If this is not desired it can be disabled with SA_SetAccumulateRelativePositions_S
(see there for more information).

The positioner may be instructed to hold the target angle after it has been reached. See
SA_GotoAngleAbsolute_S for more information.

While executing the command the positioner will have a movement status of SA_TARGET_STATUS. While
holding the target angle the positioner will have a movement status of SA_HOLDING_STATUS (see
SA_GetStatus_S).

If a mechanical end stop is detected while the command is in execution, the movement will be aborted. Note
that in asynchronous communication mode an error will be reported.

Please refer to section 2.5.1 “Rotary Sensors” for more information on the angle and revolution parameters.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● angleDiff (signed 32bit), input - Relative angle to move to in micro degrees. The valid range is
-359,999,999..359,999,999.

● revolutionDiff (signed 32bit), input - Relative revolution to move to. The valid range is
-32,768..32,767.

● holdTime (unsigned 32bit), input - Specifies how long (in milliseconds) the angle is actively held after
reaching the target. The valid range is 0..60,000. A 0 deactivates this feature, a value of 60,000 is
infinite (until manually stopped, see SA_Stop_S).

Example:

// do one full turn plus another 45° in negative direction
result = SA_GotoAngleRelative_S(mcsHandle,0,-45000000,-1,0);

See also: SA_GotoAngleAbsolute_S, SA_GotoPositionRelative_S, SA_GetAngle_S

SmarAct GmbH - MCS Programmer's Guide Page 66 ▲ToC

SA_GotoGripperForceAbsolute_S
Channel type: End effector

Interface:

SA_STATUS SA_GotoGripperForceAbsolute_S(SA_INDEX systemIndex,
 SA_INDEX channelIndex,
 signed int force,
 unsigned int speed,
 unsigned int holdTime);

Description:

This closed-loop command is only executable if the end effector that is connected to the channel is a gripper
with an integrated force sensor. The function may be used to grab an object with a defined and constant
force. The channel will adjust the output voltage of the gripper so that the force sensor measures the given
force.

Note that the force sensor must be calibrated in order for this command to function properly. See
SA_SetZeroForce_S.

While executing the command the end effector will have a status of SA_TARGET_STATUS (see
SA_GetStatus_S). Once the target force is reached it will try to hold the given force and have a status of
SA_HOLDING_STATUS until the channel is explicitly stopped (see SA_Stop_S).

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● force (signed 32bit), input - Specifies the force that is to be applied. It is given in tenths of µN, e.g. a
value of 100 would be 10µN. The valid range for this parameter is -100,000 ..100,000.

● speed (unsigned 32bit), input - This parameter may be used to limit the speed with which the gripper
is opened or closed. It is given in Volts per second. The valid range for this parameter is 1 .. 225,000.

● holdTime (unsigned 32bit), input - THIS PARAMETER HAS NOT BEEN IMPLEMENTED YET.

Example:

// grab with 20µN, do not move the gripper faster than 100 V/s
SA_GotoGripperForceAbsolute_S(mcsHandle,0,200,100,0);

See also: SA_SetZeroForce_S

SmarAct GmbH - MCS Programmer's Guide Page 67 ▲ToC

SA_GotoGripperOpeningAbsolute_S
Channel type: End effector

Interface:

SA_STATUS SA_GotoGripperOpeningAbsolute_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int opening,
unsigned int speed);

Description:

For end effectors that have a gripper this function may be used to open or close the gripper. For this a
voltage is applied to it. Applying 0V will open the gripper all the way. The higher the applied voltage the
further the gripper will close. The maximum allowed voltage depends on the gripper type (see
SA_SetEndEffectorType_S). If the given voltage is higher than the allowed voltage for the currently
configured end effector the channel will stop at the maximum voltage.

While executing the command the end effector will have a status of SA_OPENING_STATUS (see
SA_GetStatus_S).

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● opening (unsigned 32bit), input - Specifies the target voltage which is given in 1/100 Volts, e.g. a
value of 10,000 would be 100V. The valid range for this parameter is 0 .. 22,500.

● speed (unsigned 32bit), input - Specifies the speed of the voltage adjustment. It is given in Volts per
second. The valid range for this parameter is 1.. 225,000.

Example:

unsigned int status;
// open gripper all the way (very fast)
SA_GotoGripperOpeningAbsolute_S(mcsHandle,0,0,10000);
// wait until gripper is open
do {

SA_GetStatus_S(mcsHandle,0,&status);
} while (status != SA_STOPPED_STATUS);
// close gripper to 50V within two seconds
SA_GotoGripperOpeningAbsolute_S(mcsHandle,0,5000,25);

See also: SA_GotoGripperOpeningRelative_S

SmarAct GmbH - MCS Programmer's Guide Page 68 ▲ToC

SA_GotoGripperOpeningRelative_S
Channel type: End effector

Interface:

SA_STATUS SA_GotoGripperOpeningRelative_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
signed int diff,
unsigned int speed);

Description:

This function is similar to SA_GotoGripperOpeningAbsolute_S (see there) with the difference that a
relative movement is performed. If the resulting target voltage exceeds the allowed range (below zero or
above the maximum voltage for the currently configured gripper type) the channel will stop at the boundary.

While executing the command the end effector will have a status of SA_OPENING_STATUS (see
SA_GetStatus_S).

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● diff (signed 32bit), input - Specifies the relative target voltage which is given in 1/100 Volts, e.g. a
value of -1,000 would "open the gripper by 10V". The valid range for this parameter is -22,500 ..
22,500.

● speed (unsigned 32bit), input - Specifies the speed of the voltage adjustment. It is given in Volts per
second. The valid range for this parameter is 1.. 225,000.

Example:

unsigned int status;
// open gripper all the way (very fast)
SA_GotoGripperOpeningAbsolute_S(mcsHandle,0,0,10000);
// wait until gripper is open
do {

SA_GetStatus_S(mcsHandle,0,&status);
} while (status != SA_STOPPED_STATUS);
// close gripper by 25V within half a second
SA_GotoGripperOpeningRelative_S(mcsHandle,0,2500,50);

See also: SA_GotoGripperOpeningAbsolute_S

SmarAct GmbH - MCS Programmer's Guide Page 69 ▲ToC

SA_GotoPositionAbsolute_S
Channel type: Positioner

Interface:

SA_STATUS SA_GotoPositionAbsolute_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
signed int position,
unsigned int holdTime);

Description:

Instructs a positioner to move to a specific position. This function is only executable by a positioner that has
a sensor attached to it. The sensor must also be enabled or in power save mode (see
SA_SetSensorEnabled_S). If this is not the case an error will be returned. Additionally, the command is
only executable if the addressed channel is configured to be of type linear (see SA_SetSensorType_S). A
rotary channel will return an error (use SA_GotoAngleAbsolute_S instead).

The positioner may be instructed to hold the target position after it has been reached. This may be useful to
compensate for drift effects and the like. Note that the positioner will use the scan mode to hold the position if
needed. When the piezo element of the positioner reaches a scanning boundary a single step is performed.
However, if this behavior is not desired the correction steps can be disabled with the
SA_SetStepWhileScan_S command (see there). Note though that disabling the steps might mean that the
position cannot be held.

While executing the command the positioner will have a movement status of SA_TARGET_STATUS. While
holding the target position the positioner will have a movement status of SA_HOLDING_STATUS (see
SA_GetStatus_S).

If a mechanical end stop is detected while the command is in execution, the movement will be aborted. Note
that in asynchronous communication mode an error will be reported.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● position (signed 32bit), input - Absolute position to move to in nano meters.

● holdTime (unsigned 32bit), input - Specifies how long (in milliseconds) the position is actively held
after reaching the target. The valid range is 0..60,000. A 0 deactivates this feature, a value of 60,000
is infinite (until manually stopped, see SA_Stop_S).

Example:

// move to zero position
result = SA_GotoPositionAbsolute_S(mcsHandle,0,0,0);

See also: SA_GotoPositionRelative_S, SA_GotoAngleAbsolute_S, SA_GetPosition_S

SmarAct GmbH - MCS Programmer's Guide Page 70 ▲ToC

SA_GotoPositionRelative_S
Channel type: Positioner

Interface:

SA_STATUS SA_GotoPositionRelative_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
signed int diff,
unsigned int holdTime);

Description:

Instructs a positioner to move to a position relative to its current position. This function is only executable by
a positioner that has a sensor attached to it. The sensor must also be enabled or in power save mode (see
SA_SetSensorEnabled_S). If this is not the case the channel will return an error. Additionally, the
command is only executable if the addressed channel is configured to be of type linear (see
SA_SetSensorType_S). A rotary channel will return an error (use SA_GotoAngleRelative_S instead).

If a relative positioning command is issued before a previous one has finished, normally the relative targets
are accumulated. If this is not desired it can be disabled with SA_SetAccumulateRelativePositions_S
(see there for more information).

The positioner may be instructed to hold the target position after it has been reached. See
SA_GotoPositionAbsolute_S for more information.

While executing the command the positioner will have a movement status of SA_TARGET_STATUS. While
holding the target position the positioner will have a movement status of SA_HOLDING_STATUS (see
SA_GetStatus_S).

If a mechanical end stop is detected while the command is in execution, the movement will be aborted. Note
that in asynchronous communication mode an error will be reported.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● position (signed 32bit), input - Relative position to move to in nano meters.

● holdTime (unsigned 32bit), input - Specifies how long (in milliseconds) the position is actively held
after reaching the target. The valid range is 0..60,000. A 0 deactivates this feature, a value of 60,000
is infinite (until manually stopped, see SA_Stop_S).

Example:

// move 2 micro meters in negative direction
result = SA_GotoPositionRelative_S(mcsHandle,0,-2000,0);

See also: SA_GotoPositionAbsolute_S, SA_GotoAngleRelative_S, SA_GetPosition_S

SmarAct GmbH - MCS Programmer's Guide Page 71 ▲ToC

SA_ScanMoveAbsolute_S
Channel type: Positioner

Interface:

SA_STATUS SA_ScanMoveAbsolute_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int target,
unsigned int scanSpeed);

Description:

Performs a scanning movement of a positioner to a specific target scan position. This function may be used
to directly control the deflection of the piezo of the positioner.

While executing the command the positioner will have a movement status of SA_SCANNING_STATUS (see
SA_GetStatus_S).

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● target (unsigned 32bit), input - Target scan position to which to scan to. The value is given as a 12bit
value (range 0..4,095). 0 corresponds to 0V, 4,095 to 100V.

● scanSpeed (unsigned 32bit), input - The valid range is 1 .. 4,095,000,000 and represents single 12bit
increments per second. With a value of 1 a scan over the full range from 0 to 4,095 takes 4,095
seconds while at full speed the scan is performed in one micro second.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
// scan to 50V
result = SA_ScanMoveAbsolute_S(mcsHandle,0,2048,10000);
// scan to 0V within two seconds
result = SA_ScanMoveAbsolute_S(mcsHandle,0,0,1024);

See also: SA_ScanMoveRelative_S, SA_GetVoltageLevel_S

SmarAct GmbH - MCS Programmer's Guide Page 72 ▲ToC

Note: This Command is not available on all controllers. Please contact SmarAct for more information.

SA_ScanMoveRelative_S
Channel type: Positioner

Interface:

SA_STATUS SA_ScanMoveRelative_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
signed int diff,
unsigned int scanSpeed);

Description:

Performs a relative scanning movement of a positioner.

While executing the command the positioner will have a movement status of SA_SCANNING_STATUS (see
SA_GetStatus_S).

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● diff (signed 32bit), input - Relative scan target to which to scan to. The valid range is -4,095 .. 4,095.
If the resulting absolute scan target exceeds the valid range of 0..4,095 the scan movement will stop
at the boundary.

● scanSpeed (unsigned 32bit), input - The valid range is 1 .. 4,095,000,000 and represents single 12bit
increments per second. With a value of 1 a scan over the full range from 0 to 4,095 takes 4,095
seconds while at full speed the scan is performed in one micro second.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
// scan to 50V
result = SA_ScanMoveAbsolute_S(mcsHandle,0,2048,10000);
// scan to 25V within one second
result = SA_ScanMoveRelative_S(mcsHandle,0,-1024,1024);
// scan to (automatically stop at) 0V
result = SA_ScanMoveRelative_S(mcsHandle,0,-3000,1024);

See also: SA_ScanMoveAbsolute_S, SA_GetVoltageLevel_S

SmarAct GmbH - MCS Programmer's Guide Page 73 ▲ToC

SA_SetAccumulateRelativePositions_S
Channel type: Positioner

Interface:

SA_STATUS SA_SetAccumulateRelativePositions_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int accumulate);

Description:

This function is of interest in conjunction with the closed-loop commands SA_GotoPositionRelative_S
and SA_GotoAngleRelative_S (see there). It sets a flag that affects the behavior of a positioner if a
relative position command is issued before a previous one has finished. If relative position commands are to
be accumulated all new relative position commands are added to the previous target position. Otherwise the
movement is executed relative to the position of the positioner at the time of command arrival.

Example: Say the positioner is currently at its zero position. Two relative movement commands are issued in
fast succession both with +1mm as relative target. With accumulation active the final position will be 2mm.
With accumulation inactive the final position will vary (e.g. 1.12mm) depending on when the second
command arrives.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● accumulate (unsigned 32bit), input - Selects the mode. Must be either
SA_NO_ACCUMULATE_RELATIVE_POSITIONS or SA_ACCUMULATE_RELATIVE_POSITIONS. The
latter is the default.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
// disable accumulation of relative movement commands in closed-loop mode
result = SA_SetAccumulateRelativePositions_S(mcsHandle,

 0,SA_NO_ACCUMULATE_RELATIVE_POSITIONS);

See also: SA_GotoPositionRelative_S, SA_GotoAngleRelative_S

SmarAct GmbH - MCS Programmer's Guide Page 74 ▲ToC

SA_SetAngleLimit_S
Channel type: Positioner

Interface:

SA_STATUS SA_SetAngleLimit_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int minAngle,
signed int minRevolution,
unsigned int maxAngle,
signed int maxRevolution);

Description:

For positioners with integrated sensors this function may be used to limit the travel range of a rotary
positioner by software. (For linear positioners see SA_SetPositionLimit_S.) By default there is no limit
set. If defined the positioner will not move beyond the limit. This affects open-loop as well as closed-loop
movements.
Note that the limit may only be set if the physical position is known at the time of the call (see
SA_FindReferenceMark_S, SA_GetPhysicalPositionKnown_S).

See section 2.5.1 “Rotary Sensors“ and 2.5.4 “Software Range Limit“ for more information.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● minAngle (unsigned 32bit), input - Absolute minimum angle given in micro degrees. The valid range
is 0 .. 359,999,999.

● minRevolution (signed 32bit), input - Absolute minimum revolution. The valid range is
-32768 .. 32767.

● maxAngle (unsigned 32bit), input - Absolute maximum angle given in micro degrees. The valid range
is 0 .. 359,999,999.

● maxRevolution (signed 32bit), input - Absolute maximum revolution. The valid range is
-32768 .. 32767.

Note: The maxAngle / maxRevolution pair must be greater than the minAngle / minRevolution pair, otherwise
the positioner will not move at all. If both pairs have the same value then the software range limit is disabled.

Example:

// limit the travel range of positioner 0 to +/- 10° around the zero angle
result = SA_SetAngleLimit_S(mcsHandle,0,350000000,-1,10000000,0);

See also: SA_GetAngleLimit_S, SA_SetPositionLimit_S, SA_FindReferenceMark_S

SmarAct GmbH - MCS Programmer's Guide Page 75 ▲ToC

SA_SetChannelProperty_S
Channel type: Positioner

Interface:

SA_STATUS SA_SetChannelProperty_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int key,
signed int value);

Description:

Sets a configuration value of a channel. This is a universal function to configure various channel properties.
The property which is to be set is selected via the key parameter. This 32-bit parameter codes a combination
of values and has the following structure:

31 24 23 16 15 8 7 0

component sub component property

The SA_EPK helper function may be used to encode the key. See the header file for a list of component
selectors and properties. The sub component selector is usually an index, but there can also be special sub
component selectors. Note that not all properties are valid for all components. Please refer to section 2.4
“Channel Properties“ for more information.

Parameters:

● systemIndex (unsigned 32bit), input – Handle to an initialized system.

● channelIndex (unsigned 32bit), input – Selects the channel of the selected system. The index is zero
based.

● key (unsigned 32bit), input – Selects the property of which the value should be set.

● value (signed 32bit), input – Defines the value that the selected property should have.

Example:

SA_STATUS result;
// reset event counter 0 to zero
result = SA_SetChannelProperty_S(

mcsHandle, // system handle
0, // channel index
SA_EPK(SA_COUNTER,0,SA_VALUE), // property key
0 // property value

);

See also: SA_GetChannelProperty_S

SmarAct GmbH - MCS Programmer's Guide Page 76 ▲ToC

SA_SetClosedLoopMaxFrequency_S
Channel type: Positioner

Interface:

SA_STATUS SA_SetClosedLoopMaxFrequency_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int frequency);

Description:

For positioners that have a sensor installed, this function may be used to define the maximum frequency that
the positioners are driven with when issuing closed-loop movement commands (e.g.
SA_GotoPositionAbsolute_S). This parameter may be set for each channel independently. Once set, all
subsequent closed-loop commands will execute with the new setting.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● frequency (unsigned 32bit), input - Defines the maximum driving frequency in Hz. The valid range is
50 .. 18,500.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
// set maximum closed-loop frequency of first positioner connected to the
// system to 3kHz.
result = SA_SetClosedLoopMaxFrequency_S(mcsHandle,0,3000);

SmarAct GmbH - MCS Programmer's Guide Page 77 ▲ToC

SA_SetClosedLoopMoveAcceleration_S
Channel type: Positioner

Interface:

SA_STATUS SA_SetClosedLoopMoveAcceleration_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int acceleration);

Description:

This function configures the acceleration control feature of a channel for closed-loop commands such as
SA_GotoPositionAbsolute_S. By default the acceleration control is inactive. If activated, all following
closed-loop commands will be executed with the new acceleration.

Note that the acceleration control feature requires the speed control feature. Enabling acceleration control
will implicitly enable the speed control should it be inactive.

Likewise, the acceleration control is required by the Low Vibration mode (see 2.4.2 “Low Vibration“).
Disabling the acceleration control will cause the Low Vibration mode to be implicitly disabled as well.

See also section 2.7.2 “Dependency Chains“.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● acceleration (unsigned 32bit), input - Sets the movement acceleration for closed-loop commands
which is given in µm/s² for linear positioners and in m°/s² for rotary positioners. The valid range is
0..10,000,000. A value of 0 (default) deactivates the acceleration control feature.

Example:

SA_STATUS result;
// set the acceleration to 1 mm/s²
result = SA_SetClosedLoopMoveAcceleration_S(mcsHandle,0,1000);

See also: SA_GetClosedLoopMoveAcceleration_S, SA_SetClosedLoopMoveSpeed_S

SmarAct GmbH - MCS Programmer's Guide Page 78 ▲ToC

Note: This Command is not available on all controllers. Please contact SmarAct for more information.

SA_SetClosedLoopMoveSpeed_S
Channel type: Positioner

Interface:

SA_STATUS SA_SetClosedLoopMoveSpeed_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int speed);

Description:

This function configures the speed control feature of a channel for closed-loop commands such as
SA_GotoPositionAbsolute_S. By default the speed control is inactive. In this state the behavior of
closed-loop commands is influenced by the maximum driving frequency (see
SA_SetClosedLoopMaxFrequency_S). If a movement speed is configured, all following closed-loop
commands will be executed with the new speed. Note that the channel will not drive the positioner with
frequencies above the maximum allowed frequency. If the maximum frequency is set too low for a certain
movement speed, then the movement speed might not be reached or held. In this case increase the
maximum frequency.

Be aware that different positioners reach different speeds. If a positioner is not able to move as fast as the
configured move speed, then the driver will cap at the maximum driving frequency.

Note that the speed control feature is required by the acceleration control feature (see
SA_SetClosedLoopMoveAcceleration_S). Disabling the speed control will cause the acceleration
control to be implicitly disabled as well.

See also section 2.7.2 “Dependency Chains“.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● speed (unsigned 32bit), input - Sets the movement speed for closed-loop commands which is given
in nanometers per second for linear positioners and in micro degrees per second for rotary
positioners. The valid range is 0..100,000,000. A value of 0 (default) deactivates the speed control
feature.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
// move to zero position with 0,5 mm/s
result = SA_SetClosedLoopMoveSpeed_S(mcsHandle,0,500000);
result = SA_GotoPositionAbsolute_S(mcsHandle,0,0,0);

See also: SA_GetClosedLoopMoveSpeed_S, SA_SetClosedLoopMoveAcceleration_S,
SA_SetClosedLoopMaxFrequency_S

SmarAct GmbH - MCS Programmer's Guide Page 79 ▲ToC

Note: This Command is not available on all controllers. Please contact SmarAct for more information.

SA_SetEndEffectorType_S
Channel type: End effector

Interface:

SA_STATUS SA_SetEndEffectorType_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int type,
signed int param1,
signed int param2);

Description:

Each end effector channel must be configured with the type of end effector that is connected to it before it
can be used. This function configures the type along with its parameters depending on the type. There are
three types of end effectors:

● Gripper

● Force sensor

● Gripper with integrated force sensor

The parameters that the end effectors must be configured with are taken from the data sheets that come
along with the end effectors.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● type (unsigned 32bit), input - Specifies the type of the end effector. Possible values are
SA_GRIPPER_END_EFFECTOR_TYPE, SA_FORCE_SENSOR_END_EFFECTOR_TYPE and
SA_FORCE_GRIPPER_END_EFFECTOR_TYPE.

● param1 (signed 32bit), input - The meaning and valid range of this parameter depends on the type
given (see table below).

● param2 (signed 32bit), input - The meaning and valid range of this parameter depends on the type
given (see table below).

Type param1 param2

Meaning Valid Range Meaning Valid Range

Gripper (1) maximum voltage
[1/100 V]

100 – 22,500
(1 - 225V)

none 0

Force Sensor (2) sensor gain
[1/10 µN/V]

1 – 10,000
(0.1 – 1000.0 µN/V)

none 0

Force Gripper (3) sensor gain
[1/10 µN/V]

1 – 10,000
(0.1 – 1,000.0 µN/V)

maximum voltage
[1/100 V]

100 – 22,500
(1 - 225V)

Example:

// configures channel three of the system to be a force gripper with a
// sensor gain of 42µN/V and a maximum gripper voltage of 150V.
result = SA_SetEndEffectorType_S(mcsHandle,3,

SA_FORCE_GRIPPER_END_EFFECTOR_TYPE,420,15000);

See also: SA_GetEndEffectorType_S

SmarAct GmbH - MCS Programmer's Guide Page 80 ▲ToC

SA_SetPosition_S
Channel type: Positioner

Interface:

SA_STATUS SA_SetPosition_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
signed int position);

Description:

For positioners that have a sensor installed, this function may be used to define the current position resp.
angle of the positioner to have a specific value. The measuring scale of the positioner is shifted accordingly.

If the positioner “knows” its physical position (via SA_FindReferenceMark_S) when calling this function,
the resulting scale shift will be saved to non-volatile memory. On future power-ups it will recall its position
automatically after calling SA_FindReferenceMark_S. See section 2.5.3 “Defining Positions” for more
information.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● position (signed 32bit), input - Defines the value that the current position of the positioner should
have. In case of a rotary positioner the range of this parameter is limited to 0 .. 359,999,999. Note
that the revolution implicitly will always be set to 0.

Example:

// set the position of the first positioner connected to the system to 3.5mm
result = SA_SetPosition_S(mcsHandle,0,3500000);

See also: SA_GetPhysicalPositionKnown_S, SA_FindReferenceMark_S, SA_SetScale_S

SmarAct GmbH - MCS Programmer's Guide Page 81 ▲ToC

SA_SetPositionLimit_S
Channel type: Positioner

Interface:

SA_STATUS SA_SetPositionLimit_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
signed int minPosition,
signed int maxPosition);

Description:

For positioners with integrated sensors this function may be used to limit the travel range of a linear
positioner by software. (For rotary positioners see SA_SetAngleLimit_S.) By default there is no limit set. If
defined the positioner will not move beyond the limit. This affects open-loop as well as closed-loop
movements.
Note that the limit may only be set if the physical position is known at the time of the call (see
SA_FindReferenceMark_S, SA_GetPhysicalPositionKnown_S).

See section 2.5.4 “Software Range Limit“ for more information.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● minPosition (signed 32bit), input - Absolute minimum position given in nanometers.

● maxPosition (signed 32bit), input - Absolute maximum position given in nanometers.

Note: maxPosition must be greater than minPosition, otherwise the positioner will not move at all. If both
parameters have the same value then the software range limit is disabled.

Example:

// limit the travel range of positioner 0 to +/- 3mm
result = SA_SetPositionLimit_S(mcsHandle,0,-3000000,3000000);

See also: SA_GetPositionLimit_S, SA_SetAngleLimit_S, SA_FindReferenceMark_S

SmarAct GmbH - MCS Programmer's Guide Page 82 ▲ToC

SA_SetSafeDirection_S
Channel type: Positioner

Interface:

SA_STATUS SA_SetSafeDirection_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int direction);

Description:

Some sensor types are not equipped with a physical reference mark. For these positioners a mechanical end
stop is used as a reference point when calling SA_FindReferenceMark_S. Which end stop is used is
configured by the safe direction. This should be the direction in which the positioner may safely move without
endangering the physical setup of your manipulator system.

Since the end stop must be calibrated before it can be properly used as a reference point, the safe direction
setting also affects the behavior of SA_CalibrateSensor_S. Positioners that are referenced via an end
stop also move to the configured end stop as part of the calibration routine. Please be aware though that the
calibration routine must not start near a mechanical end stop. Otherwise the calibration might fail and cause
unexpected behavior in closed-loop mode.

The safe direction setting is a global parameter for a channel and affects SA_CalibrateSensor_S as well
as SA_FindReferenceMark_S. Please note that latter function will ignore its direction parameter for
positioners that are referenced via an end stop and will implicitly use the safe direction parameter instead.

This function has no effect on channels that have a sensor type configured that is referenced via a reference
mark. See appendix 5.4 “Sensor Types“ in the appendix for a list of sensor types and their reference marks.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● direction (unsigned 32bit), input - Sets the safe direction. Must be either SA_FORWARD_DIRECTION
or SA_BACKWARD_DIRECTION.

Example:

SA_STATUS result = SA_SetSafeDirection_S(mcsHandle,1,SA_FORWARD_DIRECTION);
// The positioner will move in forward direction when referencing.

See also: SA_GetSafeDirection_S, SA_CalibrateSensor_S, SA_FindReferenceMark_S,
SA_SetSensorType_S

SmarAct GmbH - MCS Programmer's Guide Page 83 ▲ToC

SA_SetScale_S
Channel type: Positioner

Interface:

SA_STATUS SA_SetScale_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
signed int scale,
unsigned int inverted);

Description:

This command may be used to the shift and invert the measuring scale of a positioner. Please see section
2.5.3 “Defining Positions“ for more information.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● scale (signed 32bit), input - Sets the desired scale shift relative to the physical scale of the
positioner. The value is given in nano meters for linear positioners and in micro degrees for rotary
positioners.

● inverted (unsigned 32bit) - Sets the scale inversion. Must be either SA_FALSE or SA_TRUE.

Example:

SA_STATUS result = SA_SetScale_S(mcsHandle,1,1000000,SA_FALSE);
// Sets the scale shift to +1mm relative to the physical scale.

See also: SA_GetScale_S, SA_SetPosition_S

SmarAct GmbH - MCS Programmer's Guide Page 84 ▲ToC

Caution: Please note that only the logical scale of the positioner will be inverted when the inverted
value has changed. Parameters like the SafeDirection will not be altered. Thus the positioner will
move in the opposite direction when e.g. calling SA_FindReferenceMark_S with the same
parameters prior to the inversion change.

SA_SetSensorEnabled_S
Interface:

SA_STATUS SA_SetSensorEnabled_S(SA_INDEX systemIndex,
unsigned int enabled);

Description:

This function may be used to activate or deactivate the sensors that are attached to the positioners of a
system. The command is system global and affects all positioner channels of a system equally. It effectively
turns the power supply of the sensors on or off. Please refer to section 2.5.2 “Sensor Modes” for more
information on the sensor modes. End effector channels are not affected by this function.

If this command is issued, all positioner channels of the system are implicitly stopped.

This setting is stored to non-volatile memory immediately and need not be configured on every power-up.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● enabled (unsigned 32bit), input - Sets the mode. Must be either SA_SENSOR_DISABLED,
SA_SENSOR_ENABLED or SA_SENSOR_POWERSAVE.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
// disable sensors
result = SA_SetSensorEnabled_S(mcsHandle,SA_SENSOR_DISABLED);

See also: SA_GetSensorEnabled_S

SmarAct GmbH - MCS Programmer's Guide Page 85 ▲ToC

SA_SetSensorType_S
Channel type: Positioner

Interface:

SA_STATUS SA_SetSensorType_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int type);

Description:

When using positioners with integrated sensors, this function is used to tell a channel what type of positioner
is connected. The type affects position calculation and functions that may be called for a channel (see for
example SA_GetPosition_S and SA_GetAngle_S).

Please refer to appendix 5.4 “Sensor Types“ for a list of available sensor types.

Note that each channel stores this setting to non-volatile memory. Consequently, there is no need to call this
function on every initialization. If the sensor type of a channel is changed, you must call
SA_CalibrateSensor_S to ensure proper operation of the sensor.

If this command is issued, the positioner is implicitly stopped.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● type (unsigned 32bit), input - Specifies the type of the sensor (see appendix 5.4 “Sensor Types“).

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
// configure SR sensor for 2nd channel
result = SA_SetSensorType_S(mcsHandle,1,SA_SR_SENSOR_TYPE);

See also: SA_GetSensorType_S, SA_GetPosition_S, SA_GetAngle_S

SmarAct GmbH - MCS Programmer's Guide Page 86 ▲ToC

SA_SetStepWhileScan_S
Channel type: Positioner

Interface:

SA_STATUS SA_SetStepWhileScan_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int step);

Description:

This function is of interest in conjunction with closed-loop commands (e.g. SA_GotoPositionAbsolute_S,
see there) and sets a flag that affects the behavior of a positioner. If the positioner is instructed to hold the
target position after reaching it, the scanning mode will primarily be used to hold the position. In this mode it
may become necessary to do further steps to hold the position if the deflection of the piezo reaches a
boundary. However, if this is not desired, this function may be used to forbid the execution of steps even if
this means that the position can not be held.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● step (unsigned 32bit), input - Selects the mode. Must be either SA_NO_STEP_WHILE_SCAN or
SA_STEP_WHILE_SCAN. The latter is the default.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
// forbid to do correction steps while holding position
result = SA_SetStepWhileScan_S(mcsHandle,0,SA_NO_STEP_WHILE_SCAN);

See also: SA_GotoPositionAbsolute_S, SA_GotoPositionRelative_S,
SA_GotoAngleAbsolute_S, SA_GotoAngleRelative_S

SmarAct GmbH - MCS Programmer's Guide Page 87 ▲ToC

Note: This Command is not available on all controllers. Please contact SmarAct for more information.

SA_SetZeroForce_S
Channel type: End effector

Interface:

SA_STATUS SA_SetZeroForce_S(SA_INDEX systemIndex,
SA_INDEX channelIndex);

Description:

End effectors that have a force sensor do not measure absolute force, but rather a change of force. For
proper force measurement this function may be used to set the measured force to zero and should be called
when the force sensor is mechanically unstressed.
Setting the zero force takes about one second. During this time the end effector will report a status of
SA_CALIBRATING_STATUS. Note that in the asynchronous mode the channel will report completion of the
command if configured so with the SA_SetReportOnComplete_A function (see there).

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

Example:

unsigned int status;
SA_SetZeroForce_S(0,1);
// wait until finished
do {

SA_GetStatus_S(mcsHandle,1,&status);
} while (status != SA_STOPPED_STATUS);
// force sensor is set to zero

SmarAct GmbH - MCS Programmer's Guide Page 88 ▲ToC

SA_StepMove_S
Channel type: Positioner

Interface:

SA_STATUS SA_StepMove_S(SA_INDEX systemIndex,
SA_INDEX channelIndex,
signed int steps,
unsigned int amplitude,
unsigned int frequency);

Description:

This is an open-loop command. It performs a burst of steps with the given parameters. Note that a single
step is atomic. When interrupting a burst with SA_Stop_S the positioner will finish the current step before
stopping. This implies that the piezo element of the positioner is always at its resting potential after a step
command.

While executing the command the positioner will have a movement status of SA_STEPPING_STATUS (see
SA_GetStatus_S).

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● steps (signed 32bit), input - Number and direction of steps to perform. The valid range is
-30,000..30,000. A value of 0 stops the positioner, but see SA_Stop_S. A value of 30,000 or -30,000
performs an unbounded move. This should be used with caution since the positioner will only stop
on a SA_Stop_S command.

● amplitude (unsigned 32bit), input - Amplitude that the steps are performed with. Lower amplitude
values result in a smaller step width. The parameter must be given as a 12bit value (range 0..4,095).
0 corresponds to 0V, 4,095 to 100V.

● frequency (unsigned 32bit), input - Frequency in Hz that the steps are performed with. The valid
range is 1..18,500.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
// perform 100 steps with full amplitude at 1kHz
result = SA_StepMove_S(mcsHandle,0,100,4095,1000);

SmarAct GmbH - MCS Programmer's Guide Page 89 ▲ToC

WARNING: It is strongly discouraged to use unbounded moves, especially at high frequencies! Positioners
develop heat when they are driven and may take permanent damage if constantly driven over
a long period of time (> 1 minute), especially in environments with weak thermal coupling. Be
aware that if driven in the ultra sonic frequency range there is the risk of an unintended
unbounded move to go unnoticed!

SA_Stop_S
Channel type: Positioner, End effector

Interface:

SA_STATUS SA_Stop_S(SA_INDEX systemIndex,
SA_INDEX channelIndex);

Description:

Stops any ongoing movement of a positioner or end effector. Note that if a stepping movement is performed
with a positioner the current step is completed before the positioner is stopped. This command also stops the
hold position feature of closed-loop commands, such as SA_GotoPositionAbsolute_S or even
SA_FindReferenceMark_S.

A positioner or end effector that is stopped will have a movement status of SA_STOPPED_STATUS (see
SA_GetStatus_S).

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

// handle error...
}
// perform 1,000 steps with half amplitude at 1kHz
result = SA_StepMove_S(mcsHandle,0,1000,2048,1000);
// stop
result = SA_Stop_S(mcsHandle,0);
/*
Note: In this example the positioner will start executing 1,000 steps after the
SA_StepMove_S command. Since SA_Stop_S is called right away, the number of steps actually
executed (before the movement is aborted) is a timing issue and may depend on your PC
machine speed and/or the USB connection to the hardware.
*/

SmarAct GmbH - MCS Programmer's Guide Page 90 ▲ToC

3.3 Functions for Asynchronous Communication
Most functions of the asynchronous communication mode have the same functionality as their counterparts
of the synchronous mode. The main difference is the suffix of the function name. Please refer to the
synchronous functions for details. However, there are a few functions that differ in their interface and also
some additional functions which are described below.

All functions of the asynchronous communication mode are thread safe.

For functions that address a specific channel the channel type for which the function is callable is given.

SA_AppendTriggeredCommand_A
Channel type: Positioner

Interface:

SA_STATUS SA_AppendTriggeredCommand_A(SA_INDEX systemIndex,
SA_INDEX channelIndex,
signed int triggerSource);

Description:

This function is used in combination with movement commands to fill the command queue with commands.
Queued movement commands are not executed right away, but rather triggered by a configurable event
source. Please refer to section 2.6.5 “Command Queues“ for more information.

After calling SA_AppendTriggeredCommand_A, the next movement command will be put into the
command queue for later execution.

The triggerSource parameter must be given in form of a selector value which is a 32-bit code that refers to
an event source and has the following structure:

31 24 23 16 15 8 7 0

unused component index

It is recommended to use the SA_ESV helper function to encode the value. See also section 2.6 “Controller
Event System“.

Parameters:

● systemIndex (unsigned 32bit), input – Handle to an initialized system.

● channelIndex (unsigned 32bit), input – Selects the channel of the selected system. The index is zero
based.

● triggerSource (signed 32bit), input – Defines the event source that should be used to trigger the
command. This parameter is coded in form of a selector value that refers to an event source.

Example:

// indicate to the channel that the next movement command should not be executed
// right away, but rather queued for later execution.
SA_STATUS result = SA_AppendTriggeredCommand_A(

mcsHandle, // system handle
0, // channel index
SA_ESV(SA_DIGITAL_IN,0) // trigger source (selector value)

);
// now append the command to the queue
result = SA_GotoPositionAbsolute_A(mcsHandle,0,1000,0);

See also: SA_ClearTriggeredCommandQueue_A, SA_SetReportOnTriggered_A,
SA_TriggerCommand_A

SmarAct GmbH - MCS Programmer's Guide Page 91 ▲ToC

SA_CancelWaitForPacket_A
Interface:

SA_STATUS SA_CancelWaitForPacket_A(SA_INDEX systemIndex);

Description:

This function may be used in conjunction with SA_LookAtNextPacket_A or
SA_ReceiveNextPacket_A. These functions block until a data packet is received from a system or a
specified timeout occurs. Especially for an infinite timeout (SA_TIMEOUT_INFINITE)
SA_CancelWaitForPacket_A may be called from a different thread to unblock the functions listed above
and let them return an SA_CANCELED_ERROR.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “async”);
if (result != SA_OK) {

// handle error...
}
//
SA_PACKET dataPacket;
SA_STATUS result;
result = SA_ReceiveNextPacket_A(mcsHandle,SA_TIMEOUT_INFINITE,&dataPacket);
switch (result) {

case SA_OK:
// handle received packet
break;

case SA_CANCELED_ERROR:
// a different thread has called the SA_CancelWaitForPacket_A function to
// manually unblock SA_ReceiveNextPacket_A above
break;

default:
// handle other errors
break;

}

See also: SA_LookAtNextPacket_A, SA_ReceiveNextPacket_A

SmarAct GmbH - MCS Programmer's Guide Page 92 ▲ToC

SA_ClearTriggeredCommandQueue_A
Channel type: Positioner

Interface:

SA_STATUS SA_ClearTriggeredCommandQueue_A(SA_INDEX systemIndex,
SA_INDEX channelIndex);

Description:

This function is used in conjunction with command queuing (see section 2.6.5 “Command Queues“). If there
are movement commands in the command queue then it is not possible to issue (non-queued) movement
commands until the queue is empty again (all commands in the queue must have been triggered).

This function may be used to cancel all commands that are in the command queue. The commands will not
be executed, but simply removed from the queue. After this the queue size will be zero.

Parameters:

● systemIndex (unsigned 32bit), input – Handle to an initialized system.

● channelIndex (unsigned 32bit), input – Selects the channel of the selected system. The index is zero
based.

Example:

// cancel all commands in the command queue
SA_STATUS result = SA_ClearTriggeredCommandQueue_A(mcsHandle,0);

See also: SA_AppendTriggeredCommand_A

SmarAct GmbH - MCS Programmer's Guide Page 93 ▲ToC

SA_DiscardPacket_A
Interface:

SA_STATUS SA_DiscardPacket_A(SA_INDEX systemIndex);

Description:

This function can be used to discard a received data packet. If a data packet was received earlier, but not
consumed (removed from the receive buffer) it may be dropped by this function. If the receive buffer is
empty, this function has no effect. See section 2.3.3 “Retrieving Answers” for more information.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

Example:

// request position of positioner
result = SA_GetPosition_A(mcsHandle,0);
// poll until answer is there
SA_PACKET packet;
packet.packetType = SA_NO_PACKET_TYPE;
while (packet.packetType != SA_POSITION_PACKET_TYPE) {

result = SA_LookAtNextPacket_A(mcsHandle,1000,&packet);
if (packet.packetType != SA_POSITION_PACKET_TYPE)

SA_DiscardPacket_A(mcsHandle);
}

See also: SA_ReceiveNextPacket_A, SA_LookAtNextPacket_A

SmarAct GmbH - MCS Programmer's Guide Page 94 ▲ToC

SA_FlushOutput_A
Interface:

SA_STATUS SA_FlushOutput_A(SA_INDEX systemIndex);

Description:

When buffered output is used (see SA_SetBufferedOutput_A) this function may be used to initiate the
transmission of the commands that are stored in the output buffer. After this the buffer of the given system is
cleared.

Please note that when using buffered output this function should be called regularly. If too many commands
are accumulated in the buffer an SA_OUTPUT_BUFFER_OVERFLOW_ERROR will be returned by the function
that caused the buffer to overflow.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

Example: see example of SA_SetBufferedOutput_A

See also: SA_SetBufferedOutput_A

SmarAct GmbH - MCS Programmer's Guide Page 95 ▲ToC

SA_GetAngle_A
Channel type: Positioner

Interface:

SA_STATUS SA_GetAngle_A(SA_INDEX systemIndex,
SA_INDEX channelIndex);

Description:

In contrast to the synchronous version of this function, this function sends a query to a channel to return the
current positioner angle. The actual answer must be retrieved via other functions, e.g.
SA_ReceiveNextPacket_A.

This command is only executable by a positioner that has a sensor attached to it. The sensor must also be
enabled or in power save mode (see SA_SetSensorEnabled_S). If this is not the case the channel will
return an error. Additionally, the command is only executable if the addressed channel is configured to be of
type rotary (see SA_SetSensorType_S). A linear channel will return an error (use SA_GetPosition_A
instead).

The addressed channel will reply with a packet of type SA_ANGLE_PACKET_TYPE. The data1 field will hold
the positioner angle and the data2 field will hold the positioner revolution.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “async”);
if (result != SA_OK) {

// handle error...
}
// request current angle
result = SA_GetAngle_A(mcsHandle,0);
SA_PACKET packet;
// wait for answer, but not longer than one second
result = SA_ReceiveNextPacket_A(mcsHandle,1000,&packet);
if (result != SA_OK) {

// handle error
} else {

if ((packet.packetType == SA_ANGLE_PACKET_TYPE) &&
(packet.channelIndex == 0)) {
// packet.data1 holds current angle
// packet.data2 holds current revolution

} else {
// handle packet otherwise

}
}

See also: SA_GetAngle_S, SA_GetPosition_S

SmarAct GmbH - MCS Programmer's Guide Page 96 ▲ToC

SA_GetAngleLimit_A
Channel type: Positioner

Interface:

SA_STATUS SA_GetAngleLimit_A(SA_INDEX systemIndex,
SA_INDEX channelIndex);

Description:

In contrast to the synchronous version of this function, this function sends a query to a channel to return the
travel range limit that is currently configured for a rotary positioner. The actual answer must be retrieved via
other functions, e.g. SA_ReceiveNextPacket_A.

The addressed channel will reply with a packet of type SA_ANGLE_LIMIT_PACKET_TYPE. The data1 field
will hold the minimum angle, the data2 field will hold the minimum revolution, the data4 field will hold the
maximum angle and the data3 field will hold the maximum revolution.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

Example:

// request range limit
result = SA_GetAngleLimit_A(mcsHandle,0);
SA_PACKET packet;
// wait for answer, but not longer than one second
result = SA_ReceiveNextPacket_A(mcsHandle,1000,&packet);
if (result != SA_OK) {

// handle error
} else {

if ((packet.packetType == SA_ANGLE_LIMIT_PACKET_TYPE) &&
(packet.channelIndex == 0)) {
// minimum angle is in packet.data1
// minimum revolution is in packet.data2
// maximum angle is in packet.data4
// maximum revolution is in packet.data3

} else {
// handle packet otherwise

}
}

See also: SA_GetAngleLimit_S

SmarAct GmbH - MCS Programmer's Guide Page 97 ▲ToC

SA_GetBufferedOutput_A
Interface:

SA_STATUS SA_GetBufferedOutput_A(SA_INDEX systemIndex,
unsigned int *mode);

Description:

Inverse function to SA_SetBufferedOutput_A (see there). Returns the current output buffer mode.

Parameters:

● systemIndex (unsigned 32bit), input – Handle to an initialized system.

● mode (unsigned 32bit), output – Holds the current buffer mode. Will be either
SA_UNBUFFERED_OUTPUT or SA_BUFFERED_OUTPUT.

Example:

// check current buffer mode
unsigned int mode;
result = SA_GetBufferedOutput_A(mcsHandle,&mode);
if (result == SA_OK) {

// mode holds the current buffer mode
}

See also: SA_SetBufferedOutput_A

SmarAct GmbH - MCS Programmer's Guide Page 98 ▲ToC

SA_GetCaptureBuffer_A
Channel type: Positioner

Interface:

SA_STATUS SA_GetCaptureBuffer_A(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int bufferIndex);

Description:

In contrast to the synchronous version of this function, this function sends a query to a channel to return the
contents of a capture buffer. The actual answer must be retrieved via other functions, e.g.
SA_ReceiveNextPacket_A.

The addressed channel will reply with a packet of type SA_CAPTURE_BUFFER_PACKET_TYPE. The data1
field will always contain the buffer index that the packet represents (same as given in the bufferIndex
parameter when requesting the packet). The values of the other fields hold the capture buffer contents
(please see SA_GetCaptureBuffer_S).

Parameters:

● systemIndex (unsigned 32bit), input – Handle to an initialized system.

● channelIndex (unsigned 32bit), input – Selects the channel of the selected system. The index is zero
based.

● bufferIndex (unsigned 32bit): input – Selects the buffer.

Example:

// request capture buffer 0
SA_STATUS result = SA_GetCaptureBuffer_A(mcsHandle,0,0);
// receive answer
SA_PACKET packet;
result = SA_ReceiveNextPacket_A(mcsHandle,0,1000,&packet);

See also: SA_GetCaptureBuffer_S

SmarAct GmbH - MCS Programmer's Guide Page 99 ▲ToC

SA_GetChannelProperty_A
Channel type: Positioner

Interface:

SA_STATUS SA_GetChannelProperty_A(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int key);

Description:

In contrast to the synchronous version of this function, this function sends a query to a channel to return the
value of a property. The actual answer must be retrieved via other functions, e.g.
SA_ReceiveNextPacket_A.

The property which is to be read is selected via the key parameter. This 32-bit parameter codes a
combination of values and has the following structure:

31 24 23 16 15 8 7 0

component sub component property

The SA_EPK helper function may be used to encode the key. See the header file for a list of component
selectors and properties. The sub component selector is usually an index, but there can also be special sub
component selectors. Note that not all properties are valid for all components. Please refer to section 2.4
“Channel Properties“ for more information.

The addressed channel will reply with a packet of type SA_CHANNEL_PROPERTY_PACKET_TYPE. The data1
field will contain the property key that the packet represents (same as given in the key parameter when
requesting the packet). The data2 field will contain the value of the property.

Parameters:

● systemIndex (unsigned 32bit), input – Handle to an initialized system.

● channelIndex (unsigned 32bit), input – Selects the channel of the selected system. The index is zero
based.

● key (unsigned 32bit), input – Specifies the property key from which the value should be read.

Example:

// request command queue capacity
SA_STATUS result = SA_GetChannelProperty_A(mcsHandle,
 0,
 SA_EPK(SA_COMMAND_QUEUE,0,SA_CAPACITY));
// receive answer
SA_PACKET packet;
result = SA_ReceiveNextPacket_A(mcsHandle,0,1000,&packet);
if (packet.packetType == SA_CHANNEL_PROPERTY_PACKET_TYPE) {

// queue capacity is in packet.data2
}

See also: SA_SetChannelProperty_S

SmarAct GmbH - MCS Programmer's Guide Page 100 ▲ToC

SA_GetClosedLoopMoveAcceleration_A
Channel type: Positioner

Interface:

SA_STATUS SA_GetClosedLoopMoveAcceleration_A(SA_INDEX systemIndex,
SA_INDEX channelIndex);

Description:

In contrast to the synchronous version of this function, this function sends a query to a channel to return the
movement acceleration that is currently configured for the channel (see
SA_SetClosedLoopMoveAcceleration_S). The actual answer must be retrieved via other functions, e.g.
SA_ReceiveNextPacket_A.

The addressed channel will reply with a packet of type SA_MOVE_ACCELERATION_PACKET_TYPE. The
data1 field will hold the movement acceleration. The unit is µm/s² for linear positioners and in m°/s² for rotary
positioners.

Parameters:

● systemIndex (unsigned 32bit), input – Handle to an initialized system.

● channelIndex (unsigned 32bit), input – Selects the channel of the selected system. The index is zero
based.

Example:

// request currently configured acceleration
SA_STATUS result = SA_GetClosedLoopMoveAcceleration_A(mcsHandle,0);
// receive answer
SA_PACKET packet;
result = SA_ReceiveNextPacket_A(mcsHandle,0,1000,&packet);
if (packet.packetType == SA_MOVE_ACCELERATION_PACKET_TYPE) {

// acceleration is in packet.data1
}

See also: SA_SetClosedLoopMoveAcceleration_S

SmarAct GmbH - MCS Programmer's Guide Page 101 ▲ToC

Note: This Command is not available on all controllers. Please contact SmarAct for more information.

SA_GetClosedLoopMoveSpeed_A
Channel type: Positioner

Interface:

SA_STATUS SA_GetClosedLoopMoveSpeed_A(SA_INDEX systemIndex,
SA_INDEX channelIndex);

Description:

In contrast to the synchronous version of this function, this function sends a query to a channel to return the
movement speed that is currently configured for the channel (see SA_SetClosedLoopMoveSpeed_S). The
actual answer must be retrieved via other functions, e.g. SA_ReceiveNextPacket_A.

The addressed channel will reply with a packet of type SA_MOVE_SPEED_PACKET_TYPE. The data1 field will
hold the movement speed in nm/s for linear positioner and in µ°/s for rotary positioners.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “async”);
if (result != SA_OK) {

// handle error...
}
// request current movement speed
result = SA_GetClosedLoopMoveSpeed_A(mcsHandle,0);
SA_PACKET packet;
// wait for answer, but not longer than one second
result = SA_ReceiveNextPacket_A(mcsHandle,1000,&packet);
if (result != SA_OK) {

// handle error
} else {

if ((packet.packetType == SA_MOVE_SPEED_PACKET_TYPE) &&
(packet.channelIndex == 0)) {
// movement speed is in packet.data1

} else {
// handle packet otherwise

}
}

See also: SA_SetClosedLoopMoveSpeed_S

SmarAct GmbH - MCS Programmer's Guide Page 102 ▲ToC

Note: This Command is not available on all controllers. Please contact SmarAct for more information.

SA_GetEndEffectorType_A
Channel type: End effector

Interface:

SA_STATUS SA_GetEndEffectorType_A(SA_INDEX systemIndex,
SA_INDEX channelIndex);

Description:

In contrast to the synchronous version of this function, this function sends a query to a channel to return the
end effector type that is currently configured for the channel (see SA_SetEndEffectorType_S). The actual
answer must be retrieved via other functions, e.g. SA_ReceiveNextPacket_A.

The addressed channel will reply with a packet of type SA_END_EFFECTOR_TYPE_PACKET_TYPE. The
data1 field will hold the end effector type. The fields data2 and data3 will hold the type parameters. See
SA_SetEndEffectorType_S for more information on these parameters.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “async”);
if (result != SA_OK) {

// handle error...
}
// request current end effector type
result = SA_GetEndEffectorType_A(mcsHandle,0);
SA_PACKET packet;
// wait for answer, but not longer than one second
result = SA_ReceiveNextPacket_A(mcsHandle,1000,&packet);
if (result != SA_OK) {

// handle error
} else {

if ((packet.packetType == SA_END_EFFECTOR_TYPE_PACKET_TYPE) &&
(packet.channelIndex == 0)) {
// end effector type is in packet.data1
// param1 is in packet.data2
// param2 is in packet.data3

} else {
// handle packet otherwise

}
}

See also: SA_SetEndEffectorType_S

SmarAct GmbH - MCS Programmer's Guide Page 103 ▲ToC

SA_GetForce_A
Channel type: End effector

Interface:

SA_STATUS SA_GetForce_A(SA_INDEX systemIndex,
SA_INDEX channelIndex);

Description:

In contrast to the synchronous version of this function, this function sends a query to a channel to return the
force that is currently measured by the force sensor. The actual answer must be retrieved via other functions,
e.g. SA_ReceiveNextPacket_A.

The addressed channel will reply with a packet of type SA_FORCE_PACKET_TYPE. The data2 field will hold
the force given in 1/10 µN.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “async”);
if (result != SA_OK) {

// handle error...
}
// request current force
result = SA_GetForce_A(mcsHandle,0);
SA_PACKET packet;
// wait for answer, but not longer than one second
result = SA_ReceiveNextPacket_A(mcsHandle,1000,&packet);
if (result != SA_OK) {

// handle error
} else {

if ((packet.packetType == SA_FORCE_PACKET_TYPE) &&
(packet.channelIndex == 0)) {
// force is in packet.data2

} else {
// handle packet otherwise

}
}

SmarAct GmbH - MCS Programmer's Guide Page 104 ▲ToC

SA_GetGripperOpening_A
Channel type: End effector

Interface:

SA_STATUS SA_GetGripperOpening_A(SA_INDEX systemIndex,
SA_INDEX channelIndex);

Description:

In contrast to the synchronous version of this function, this function sends a query to a channel to return the
voltage that is currently applied to the gripper. The actual answer must be retrieved via other functions, e.g.
SA_ReceiveNextPacket_A.

The addressed channel will reply with a packet of type SA_GRIPPER_OPENING_PACKET_TYPE. The data1
field will hold the voltage given in 1/100 Volts.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “async”);
if (result != SA_OK) {

// handle error...
}
// request current gripper position
result = SA_GetGripperOpening_A(mcsHandle,0);
SA_PACKET packet;
// wait for answer, but not longer than one second
result = SA_ReceiveNextPacket_A(mcsHandle,1000,&packet);
if (result != SA_OK) {

// handle error
} else {

if ((packet.packetType == SA_GRIPPER_OPENING_PACKET_TYPE) &&
(packet.channelIndex == 0)) {
// voltage is in packet.data1

} else {
// handle packet otherwise

}
}

See also: SA_GotoGripperOpeningAbsolute_S, SA_GotoGripperOpeningRelative_S

SmarAct GmbH - MCS Programmer's Guide Page 105 ▲ToC

SA_GetPhysicalPositionKnown_A
Channel type: Positioner

Interface:

SA_STATUS SA_GetPhysicalPositionKnown_A(SA_INDEX systemIndex,
SA_INDEX channelIndex);

Description:

In contrast to the synchronous version of this function, this function sends a query to a channel to return
whether the positioner “knows” its physical position or not. The actual answer must be retrieved via other
functions, e.g. SA_ReceiveNextPacket_A.

The addressed channel will reply with a packet of type SA_PHYSICAL_POSITION_KNOWN_PACKET_TYPE.
The data1 field will hold the known-status.

See also 2.5.3 “Defining Positions“.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

Example:

// request known-status
result = SA_GetPhysicalPositionKnown_A(mcsHandle,0);
SA_PACKET packet;
// wait for answer, but not longer than one second
result = SA_ReceiveNextPacket_A(mcsHandle,1000,&packet);
if (result != SA_OK) {

// handle error
} else {

if ((packet.packetType == SA_PHYSICAL_POSITION_KNOWN_PACKET_TYPE) &&
(packet.channelIndex == 0)) {
// known-status is in packet.data1

} else {
// handle packet otherwise

}
}

See also: SA_GetPhysicalPositionKnown_S

SmarAct GmbH - MCS Programmer's Guide Page 106 ▲ToC

SA_GetPosition_A
Channel type: Positioner

Interface:

SA_STATUS SA_GetPosition_A(SA_INDEX systemIndex,
SA_INDEX channelIndex);

Description:

In contrast to the synchronous version of this function, this function sends a query to a channel to return the
current position of the positioner. The actual answer must be retrieved via other functions, e.g.
SA_ReceiveNextPacket_A.

This command is only executable by a positioner that has a sensor attached to it. The sensor must also be
enabled or in power save mode (see SA_SetSensorEnabled_S). If this is not the case the channel will
return an error. Additionally, the command is only executable if the addressed channel is configured to be of
type linear (see SA_SetSensorType_S). A rotary channel will return an error (use SA_GetAngle_A
instead).

The addressed channel will reply with a packet of type SA_POSITION_PACKET_TYPE. The data2 field will
hold the current position.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “async”);
if (result != SA_OK) {

// handle error...
}
// request current position
result = SA_GetPosition_A(mcsHandle,0);
SA_PACKET packet;
// wait for answer, but not longer than one second
result = SA_ReceiveNextPacket_A(mcsHandle,1000,&packet);
if (result != SA_OK) {

// handle error
} else {

if ((packet.packetType == SA_POSITION_PACKET_TYPE) &&
(packet.channelIndex == 0)) {
// current position is in packet.data2

} else {
// handle packet otherwise

}
}

See also: SA_GetPosition_S, SA_GetAngle_S

SmarAct GmbH - MCS Programmer's Guide Page 107 ▲ToC

SA_GetPositionLimit_A
Channel type: Positioner

Interface:

SA_STATUS SA_GetPositionLimit_A(SA_INDEX systemIndex,
SA_INDEX channelIndex);

Description:

In contrast to the synchronous version of this function, this function sends a query to a channel to return the
travel range limit that is currently configured for a linear positioner. The actual answer must be retrieved via
other functions, e.g. SA_ReceiveNextPacket_A.

The addressed channel will reply with a packet of type SA_POSITION_LIMIT_PACKET_TYPE. The data2
field will hold the minimum position and the data3 field will hold the maximum position.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

Example:

// request range limit
result = SA_GetPositionLimit_A(mcsHandle,0);
SA_PACKET packet;
// wait for answer, but not longer than one second
result = SA_ReceiveNextPacket_A(mcsHandle,1000,&packet);
if (result != SA_OK) {

// handle error
} else {

if ((packet.packetType == SA_POSITION_LIMIT_PACKET_TYPE) &&
(packet.channelIndex == 0)) {
// minimum position is in packet.data2
// maximum position is in packet.data3

} else {
// handle packet otherwise

}
}

See also: SA_GetPositionLimit_S

SmarAct GmbH - MCS Programmer's Guide Page 108 ▲ToC

SA_GetSafeDirection_A
Channel type: Positioner

Interface:

SA_STATUS SA_GetStatus_A(SA_INDEX systemIndex,
SA_INDEX channelIndex);

Description:

In contrast to the synchronous version of this function, this function sends a query to a channel to return the
currently configured safe direction. The actual answer must be retrieved via other functions, e.g.
SA_ReceiveNextPacket_A.

The addressed channel will reply with a packet of type SA_SAFE_DIRECTION_PACKET_TYPE. The data1
field will hold the current safe direction.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “async”);
if (result != SA_OK) {

// handle error...
}
// request current status
result = SA_GetSafeDirection_A(mcsHandle,0);
SA_PACKET packet;
// wait for answer, but not longer than one second
result = SA_ReceiveNextPacket_A(mcsHandle,1000,&packet);
if (result != SA_OK) {

// handle error
} else {

if ((packet.packetType == SA_SAFE_DIRECTION_PACKET_TYPE) &&
(packet.channelIndex == 0)) {
// safe direction is in packet.data1

} else {
// handle packet otherwise

}
}

SmarAct GmbH - MCS Programmer's Guide Page 109 ▲ToC

SA_GetScale_A
Channel type: Positioner

Interface:

SA_STATUS SA_GetScale_A(SA_INDEX systemIndex,
SA_INDEX channelIndex);

Description:

In contrast to the synchronous version of this function, this function sends a query to a channel to return the
scale shift and inversion that is currently configured for a linear positioner. The actual answer must be
retrieved via other functions, e.g. SA_ReceiveNextPacket_A.

The addressed channel will reply with a packet of type SA_SCALE_PACKET_TYPE. The data2 field will hold
the scale shift.

Please see section 2.5.3 “Defining Positions“ for more information.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

Example:

// request scale shift
result = SA_GetScale_A(mcsHandle,0);
SA_PACKET packet;
// wait for answer, but not longer than one second
result = SA_ReceiveNextPacket_A(mcsHandle,1000,&packet);
if (result != SA_OK) {

// handle error
} else {

if ((packet.packetType == SA_SCALE_PACKET_TYPE) &&
(packet.channelIndex == 0)) {
// scale shift is in packet.data2
// inversion is in packet.data1

} else {
// handle packet otherwise

}
}

See also: SA_GetScale_S, SA_SetSafeDirection_S

SmarAct GmbH - MCS Programmer's Guide Page 110 ▲ToC

Caution: Please note that only the logical scale of the positioner will be inverted when the inverted
value has changed. Parameters like the SafeDirection will not be altered. Thus the positioner will
move in the opposite direction when e.g. calling SA_FindReferenceMark_S with the same
parameters prior to the inversion change.

SA_GetSensorEnabled_A
Interface:

SA_STATUS SA_GetSensorEnabled_A(SA_INDEX systemIndex);

Description:

In contrast to the synchronous version of this function, this function sends a query to a system to return the
current sensor mode (see SA_SetSensorEnabled_S). The actual answer must be retrieved via other
functions, e.g. SA_ReceiveNextPacket_A.

The addressed system will reply with a packet of type SA_SENSOR_ENABLED_PACKET_TYPE. The data1
field will hold the sensor mode.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “async”);
if (result != SA_OK) {

// handle error...
}
// request current sensor mode
result = SA_GetSensorEnabled_A(mcsHandle,0);
SA_PACKET packet;
// wait for answer, but not longer than one second
result = SA_ReceiveNextPacket_A(mscHandle,1000,&packet);
if (result != SA_OK) {

// handle error
} else {

if (packet.packetType == SA_SENSOR_ENABLED_PACKET_TYPE) {
// sensor mode is in packet.data1

} else {
// handle packet otherwise

}
}

See also: SA_SetSensorEnabled_S

SmarAct GmbH - MCS Programmer's Guide Page 111 ▲ToC

SA_GetSensorType_A
Channel type: Positioner

Interface:

SA_STATUS SA_GetSensorType_A(SA_INDEX systemIndex,
SA_INDEX channelIndex);

Description:

In contrast to the synchronous version of this function, this function sends a query to a channel to return the
sensor type that is currently configured for the channel (see SA_SetSensorType_S). The actual answer
must be retrieved via other functions, e.g. SA_ReceiveNextPacket_A.

The addressed channel will reply with a packet of type SA_SENSOR_TYPE_PACKET_TYPE. The data1 field
will hold the sensor type.

Please refer to SA_SetSensorType_S for more information on the sensor types.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “async”);
if (result != SA_OK) {

// handle error...
}
// request current sensor type
result = SA_GetSensorType_A(mcsHandle,0);
SA_PACKET packet;
// wait for answer, but not longer than one second
result = SA_ReceiveNextPacket_A(mcsHandle,1000,&packet);
if (result != SA_OK) {

// handle error
} else {

if ((packet.packetType == SA_SENSOR_TYPE_PACKET_TYPE) &&
(packet.channelIndex == 0)) {
// sensor type is in packet.data1

} else {
// handle packet otherwise

}
}

See also: SA_SetSensorType_S

SmarAct GmbH - MCS Programmer's Guide Page 112 ▲ToC

SA_GetStatus_A
Channel type: Positioner, End effector

Interface:

SA_STATUS SA_GetStatus_A(SA_INDEX systemIndex,
SA_INDEX channelIndex);

Description:

In contrast to the synchronous version of this function, this function sends a query to a channel to return the
current positioner movement status. The actual answer must be retrieved via other functions, e.g.
SA_ReceiveNextPacket_A.

The addressed channel will reply with a packet of type SA_STATUS_PACKET_TYPE. The data1 field will hold
the current movement status of the positioner.

Please refer to appendix 5.3 “Channel Status Codes“ for a list of status codes.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “async”);
if (result != SA_OK) {

// handle error...
}
// request current status
result = SA_GetStatus_A(mcsHandle,0);
SA_PACKET packet;
// wait for answer, but not longer than one second
result = SA_ReceiveNextPacket_A(mcsHandle,1000,&packet);
if (result != SA_OK) {

// handle error
} else {

if ((packet.packetType == SA_STATUS_PACKET_TYPE) &&
(packet.channelIndex == 0)) {
// positioner movement status code is in packet.data1

} else {
// handle packet otherwise

}
}

SmarAct GmbH - MCS Programmer's Guide Page 113 ▲ToC

SA_GetVoltageLevel_A
Channel type: Positioner

Interface:

SA_STATUS SA_GetVoltageLevel_A(SA_INDEX systemIndex,
SA_INDEX channelIndex);

Description:

In contrast to the synchronous version of this function, this function sends a query to a channel to return the
voltage level that is currently applied to the piezo element. The actual answer must be retrieved via other
functions, e.g. SA_ReceiveNextPacket_A.

The addressed channel will reply with a packet of type SA_VOLTAGE_LEVEL_PACKET_TYPE. The data1 field
will hold the voltage level.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “async”);
if (result != SA_OK) {

// handle error...
}
// request current voltage level
result = SA_GetVoltageLevel_A(mcsHandle,0);
SA_PACKET packet;
// wait for answer, but not longer than one second
result = SA_ReceiveNextPacket_A(mcsHandle,1000,&packet);
if (result != SA_OK) {

// handle error
} else {

if ((packet.packetType == SA_VOLTAGE_LEVEL_PACKET_TYPE) &&
(packet.channelIndex == 0)) {
// voltage level is in packet.data1

} else {
// handle packet otherwise

}
}

See also: SA_ScanMoveAbsolute_S, SA_ScanMoveRelative_S

SmarAct GmbH - MCS Programmer's Guide Page 114 ▲ToC

SA_LookAtNextPacket_A
Interface:

SA_STATUS SA_LookAtNextPacket_A(SA_INDEX systemIndex,
unsigned int timeout,
SA_PACKET *packet);

Description:

This function may be used to receive a data packet from the MCS without actually consuming it. Depending
on the timeout parameter the function will block or not (see below). If no packet was received then a packet
of type SA_NO_PACKET_TYPE is returned. If a packet is received then it is returned, but not removed from
the receive buffer. The packet may be “looked at” as often as desired. It is consumed by either calling
SA_ReceiveNextPacket_A or SA_DiscardPacket_A (see there). See section 2.3.3 “Retrieving
Answers” for more information.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● timeout (unsigned 32bit), input - Specifies how long to wait for incoming data. If no data is received
after timeout milli seconds the function will return with a packet type of SA_NO_PACKET_TYPE. A
value of SA_TIMEOUT_INFINITE will only let the function return when a packet is received. In this
case the function may be unblocked manually by SA_CancelWaitForPacket_A.

● packet (SA_PACKET), output - If the call was successful this value holds the received data packet.
Depending on the packet type the various fields of the packet are valid or not. See the appendix for a
reference.

Example:

// request position of positioner
SA_GetPosition_A(mcsHandle,0);
// wait until answer is there
SA_PACKET packet;
SA_LookAtNextPacket_A(mcsHandle,1000,&packet);
SA_DiscardPacket_A();
if ((packet.packetType == SA_POSITION_PACKET_TYPE) && (packet.channelIndex == 0)) {

// position is in packet.data2
}

See also: SA_ReceiveNextPacket_A, SA_DiscardPacket_A, SA_CancelWaitForPacket_A

SmarAct GmbH - MCS Programmer's Guide Page 115 ▲ToC

SA_ReceiveNextPacket_A
Interface:

SA_STATUS SA_ReceiveNextPacket_A(SA_INDEX systemIndex,
unsigned int timeout,
SA_PACKET *packet);

Description:

This function may be used to receive a data packet from the MCS. Depending on the timeout parameter the
function will block or not (see below). If a packet is received it is returned and consumed by the call. If no
packet was received a packet of type SA_NO_PACKET_TYPE is returned. See section 2.3.3 “Retrieving
Answers” for more information.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● timeout (unsigned 32bit), input - Specifies how long to wait for incoming data. If no data is received
after timeout milli seconds the function will return with a packet type of SA_NO_PACKET_TYPE. A
value of SA_TIMEOUT_INFINITE will only let the function return when a packet is received. In this
case the function may be unblocked manually by SA_CancelWaitForPacket_A.

● packet (SA_PACKET), output - If the call was successful this value holds the received data packet.
Depending on the packet type the various fields of the packet are valid or not. See the appendix for a
reference.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “async”);
if (result != SA_OK) {

// handle error...
}
// request position of positioner
result = SA_GetPosition_A(msHandle,0);
// receive answer, but don't wait longer than five seconds
SA_PACKET packet;
result = SA_ReceiveNextPacket_A(mcsHandle,5000,&packet);

See also: SA_LookAtNextPacket_A, SA_DiscardPacket_A, SA_CancelWaitForPacket_A

SmarAct GmbH - MCS Programmer's Guide Page 116 ▲ToC

SA_SetBufferedOutput_A
Interface:

SA_STATUS SA_SetBufferedOutput_A(SA_INDEX systemIndex,
unsigned int mode);

Description:

This function may be used to optimize the communication with the hardware in asynchronous communication
mode. It selects between one of two modes that affect the way commands are sent.

● Unbuffered – This is the default mode. In this mode commands are sent to the hardware as soon as
you call its function. When calling multiple functions in fast succession there may be a delay between
them due to the way the underlying USB communication works.

● Buffered – In this mode commands are not sent to the hardware immediately. Instead, the data is
held back and stored in an internal buffer. You may accumulate several commands and then call
SA_FlushOutput_A to initiate the transmission of the stored commands.

Note that each system has a separate output buffer.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● mode (unsigned 32bit), input - Selects the mode. Must be either SA_UNBUFFERED_OUTPUT or
SA_BUFFERED_OUTPUT.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “async”);
if (result != SA_OK) {

// handle error...
}
// set buffered output mode
SA_SetBufferedOutput_A(mcsHandle,SA_BUFFERED_OUTPUT);
// send movement commands to channels
SA_GotoPositionRelative_A(mcsHandle,0,1000000,0); // channel 0: move 1mm forward
SA_GotoPositionRelative_A(mcsHandle,1,-1000000,0); // channel 1: move 1mm backward
// up until here no movement is executed.
// now flush the buffer
SA_FlushOutput_A(mcsHandle);
// now both movement commands are executed.

See also: SA_GetBufferedOutput_A, SA_FlushOutput_A

SmarAct GmbH - MCS Programmer's Guide Page 117 ▲ToC

SA_SetReportOnComplete_A
Channel type: Positioner, End effector

Interface:

SA_STATUS SA_SetReportOnComplete_A(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int report);

Description:

This function tells a channel whether or not to report the completion of the last movement command. If set to
true, the channel will send a packet of type SA_COMPLETED_PACKET_TYPE when it has completed the
movement. See section ?? “Report on Complete” for more information. The default behavior is no reporting.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● report (unsigned 32bit), input - Must be SA_DISABLED or SA_ENABLED.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “async”);
if (result != SA_OK) {

// handle error...
}
result = SA_SetReportOnComplete_A(mcsHandle,0,SA_ENABLED);
result = SA_GotoPositionAbsolute_A(mcsHandle,0,1000,0);
// positioner is moving. wait for completion
SA_PACKET packet;
result = SA_ReceiveNextPacket_A(mcsHandle, //this call blocks

 SA_TIMEOUT_INFINITE, // until a packet
 &packet); // is received

if (result != SA_OK) {
// handle error

}
if ((packet.packetType == SA_COMPLETED_PACKET_TYPE) && (packet.channelIndex == 0)) {

// movement command has completed
}

SmarAct GmbH - MCS Programmer's Guide Page 118 ▲ToC

SA_SetReportOnTriggered_A
Channel type: Positioner

Interface:

SA_STATUS SA_SetReportOnTriggered_A(SA_INDEX systemIndex,
SA_INDEX channelIndex,
unsigned int report);

Description:

This function tells a channel whether or not to report when a movement command from the command queue
has been triggered (see section 2.6.5 “Command Queues“ for more information). If set to true, the channel
will send a packet of type SA_TRIGGERED_PACKET_TYPE when the next command in the queue has been
triggered. The default behavior is no reporting.

Parameters:

● systemIndex (unsigned 32bit), input - Handle to an initialized system.

● channelIndex (unsigned 32bit), input - Selects the channel of the selected system. The index is zero
based.

● report (unsigned 32bit), input - Must be SA_DISABLED or SA_ENABLED.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “async”);
if (result != SA_OK) {

// handle error...
}
result = SA_SetReportOnTriggered_A(mscHandle,0,SA_ENABLED);

See also: SA_AppendTriggeredCommand_A, SA_TriggerCommand_A

SmarAct GmbH - MCS Programmer's Guide Page 119 ▲ToC

SA_TriggerCommand_A
Channel type: Positioner

Interface:

SA_STATUS SA_TriggerCommand_A(SA_INDEX systemIndex,
unsigned int triggerIndex);

Description:

This command triggers commands that were loaded into the command queue with
SA_AppendTriggeredCommand_A (see chapter 2.6.5 “Command Queues“) while specifying the software
trigger as event source. Note that this command is global to a system and is sent to all channels of a system
simultaneously. However, the command will only be triggered if the index that was given while specifying the
event source is the same as the triggerIndex passed to SA_TriggerCommand_A. This mechanism enables
you to e.g. preload all channels of a system with movement commands, but group different sets of channels
that should start their movement at different times.

Parameters:

● systemIndex (unsigned 32bit), input – Handle to an initialized system.

● triggerIndex (unsigned 32bit), input – Index of the trigger command. Only commands that were
loaded with this index are actually triggered. The valid range is 0 .. 255.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “async”);
if (result != SA_OK) {

// handle error...
}
result = SA_AppendTriggeredCommand_A(mcsHandle,0,SA_ESV(SA_SOFTWARE_TRIGGER,12));
// next movement command will be queued and triggered by software, index 12
result = SA_GotoPositionAbsolute_A(mcsHandle,0,10000,0);
// command is queued. positioner is not moving yet
result = SA_TriggerCommand_A(mcsHandle,12); // index must be same as above
// command is now in execution

See also: SA_AppendTriggeredCommand_A

SmarAct GmbH - MCS Programmer's Guide Page 120 ▲ToC

3.4 Miscellaneous Functions

SA_DSV
Interface:

void SA_DSV(signed int value,
unsigned int *selector,
unsigned int *subSelector);

Description:

This function (Decode Selector Value) is used in conjunction with SA_GetChannelProperty_S. Some
component property values represent a selector value. Selector values are references to other components
and have the following structure:

31 24 23 16 15 8 7 0

unused component index

When reading selector values SA_GetChannelProperty_S returns a 32-bit value which may be decoded
and split up into its fields with this function.

See also chapter 2.4 “Channel Properties“.

Parameters:

● value (signed 32bit), input – The value returned by SA_GetChannelProperty_S to be decoded.

● selector (unsigned 32bit), output – The decoded selector value referring to a component.

● subSelector (unsigned 32bit), output – The decoded sub selector value referring to a sub
component.

Example:

// read trigger source of counter 0
signed int value;
SA_STATUS result = SA_GetChannelProperty_S(

mcsHandle, // system handle
0, // channel index
SA_EPK(SA_COUNTER,0,SA_TRIGGER_SOURCE), // property key
&value // property value

);
unsigned int selector, subSelector;
SA_DSV(value,&selector,&subSelector);
// selector refers to the component, e.g. SA_DIGITAL_IN
// subSelector refers to the sub component, e.g. 0 (index)

See also: SA_ESV, SA_GetChannelProperty_S

SmarAct GmbH - MCS Programmer's Guide Page 121 ▲ToC

SA_EPK
Interface:

unsigned int SA_EPK(unsigned int selector,
unsigned int subSelector,
unsigned int property);

Description:

This function (Encode Property Key) is used in conjunction with SA_GetChannelProperty_S and
SA_SetChannelProperty_S. The property which is to be read or written is selected via the key parameter.
This 32-bit parameter codes a combination of values and has the following structure:

31 24 23 16 15 8 7 0

component sub component property

The SA_EPK helper function may be used to encode the key. See the header file for a list of component
selectors and properties. The sub component selector is usually an index, but there can also be special sub
component selectors. Note that not all properties are valid for all components. Please refer to section 2.4
“Channel Properties“ for more information.

Parameters:

● selector (unsigned 32bit), input – The component that should be referenced to.

● subSelector (unsigned 32bit), input – The sub component that should be referenced to.

● property (unsigned 32bit), input – The property of the component.

Returns the encoded property key.

Example:

// set trigger source of counter 0 to digital in 0
SA_STATUS result = SA_SetChannelProperty_S(

mcsHandle, // system handle
0, // channel index
SA_EPK(SA_COUNTER,0,SA_TRIGGER_SOURCE), // property key
SA_ESV(SA_DIGITAL_IN,0) // property value (selector)

);

See also: SA_GetChannelProperty_S, SA_SetChannelProperty_S

SmarAct GmbH - MCS Programmer's Guide Page 122 ▲ToC

SA_ESV
Interface:

signed int SA_ESV(unsigned int selector,
unsigned int subSelector);

Description:

This function (Encode Selector Value) is used in conjunction with SA_SetChannelProperty_S. Some
component property values represent a selector value. Selector values are references to other components
and have the following structure:

31 24 23 16 15 8 7 0

unused component index

When setting selector values SA_SetChannelProperty_S expects a value that codes a reference to
another component which may be encoded with this function.

See also chapter 2.4 “Channel Properties“.

Parameters:

● selector (unsigned 32bit), input – The component that should be referenced to.

● subSelector (unsigned 32bit), input – The sub component that should be referenced to.

Returns the encoded value that may be passed directly to SA_SetChannelProperty_S.

Example:

// set trigger source of counter 0 to digital in 0
SA_STATUS result = SA_SetChannelProperty_S(

mcsHandle, // system handle
0, // channel index
SA_EPK(SA_COUNTER,0,SA_TRIGGER_SOURCE), // property key
SA_ESV(SA_DIGITAL_IN,0) // selector value

);

See also: SA_DSV, SA_SetChannelProperty_S

SmarAct GmbH - MCS Programmer's Guide Page 123 ▲ToC

SA_GetStatusInfo
Interface:

SA_STATUS SA_GetStatusInfo(SA_STATUS status,
const char **info);

Description:

All functions of the library return a status code that indicates success or failure of execution. The
SA_GetStatusInfo function may be used to translate a status code into a human readable text string, e.g.
to be output on a console or a GUI element.

Please refer to appendix 5.1 “Function Status Codes“ for a list of function status codes.

Parameters:

● status (unsigned 32bit), input – A status code that was returned by a library function call.

● info (pointer to char), output – Pointer to a null terminated string that describes the error code.

Example:

unsigned int mcsHandle;
const char loc[] = “usb:id:3118167233”;
SA_STATUS result = SA_OpenSystem(&mcsHandle, loc, “sync”);
if (result != SA_OK) {

const char *errorText
SA_GetStatusInfo(result,&errorText);
// errorText points to a descriptive text

}

SmarAct GmbH - MCS Programmer's Guide Page 124 ▲ToC

4 Quick Reference
This section gives an overview of the available functions along with a brief description. They are grouped by
their general purpose and each group is sorted alphabetically.

4.1 Initialization Functions
Function Name Page

Short Description

SA_AddSystemToInitSystemsList - Deprecated 29
Select a system for explicit acquisition at initialization.

SA_CloseSystem 30
Disconnects from an connected system.

SA_ClearInitSystemsList - Deprecated 31
Deselect all systems for explicit acquisition at initialization.

SA_FindSystems 32
Checks USB Ports for available systems.

SA_GetAvailableSystems - Deprecated 33
Check which systems are detected by the library.

SA_GetChannelType 34
Check the type of a channel (positioner or end effector).

SA_GetDLLVersion 35
Check the version of the library.

SA_GetInitState - Deprecated 36
Check the initialization state of the library.

SA_GetNumberOfChannels 37
Check how many channels a given system has.

SA_GetNumberOfSystems - Deprecated 38
Check how many systems are detected by the library.

SA_GetSystemID - Deprecated 39
Returns the system ID of a given system (by index).

SA_GetSystemLocator 40
Returns the locator string of the given system.

SA_InitSystems - Deprecated 41
Establish connection to the hardware.

SA_OpenSystem 42
Connects to the given system.

SA_ReleaseSystems - Deprecated 43
Disconnect from the hardware.

SA_SetHCMEnabled 44
Enables or disables the Hand Control Module of a system.

SmarAct GmbH - MCS Programmer's Guide Page 125 ▲ToC

4.2 Configuration Functions
Function Name Page

Short Description

SA_AppendTriggeredCommand_A 91
Call this function followed by a movement command in order to delay the execution until an event
occurs.

SA_ClearTriggeredCommandQueue_A 93
Clears the internal queue of delayed commands.

SA_FlushOutput_A 95
When using buffered output, this function flushes the output buffer and sends all accumulated
commands to the system.

SA_GetAngleLimit_S 48
Returns the currently configured angle limit for rotary positioners (software range limitation).

SA_GetBufferedOutput_A 98
Inverse function to SA_SetBufferedOutput_A.

SA_GetChannelProperty_S 50
Returns various properties (configuration values) from a channel.

SA_GetClosedLoopMoveAcceleration_S 51
Returns the currently configured maximum movement acceleration (acceleration control).

SA_GetClosedLoopMoveSpeed_S 52
Returns the currently configured maximum movement speed (speed control).

SA_GetEndEffectorType_S 53
Returns the currently configured end effector type of an end effector channel.

SA_GetPositionLimit_S 58
Returns the currently configured angle limit for linear positioners (software range limitation).

SA_GetSafeDirection_S 59
Returns the currently configured safe direction.

SA_GetScale_S 60
Returns the currently configured scale shift of the logical scale relative to the physical scale.

SA_GetSensorEnabled_S 61
Returns the currently configured sensor mode of a system.

SA_GetSensorType_S 62
Returns the currently configured sensor type of a positioner channel.

SA_SetAccumulateRelativePositions_S 74
Sets a flag whether relative movement commands (closed-loop) should be accumulated or not.

SA_SetAngleLimit_S 75
Sets an angle limit for rotary positioners (software range limitation).

SA_SetBufferedOutput_A 117
May be used to optimize the communication with the hardware in asynchronous communication
mode.

SA_SetChannelProperty_S 76
Set various properties (configuration values) for a channel.

SA_SetClosedLoopMaxFrequency_S 77
Sets the maximum driving frequency for closed-loop commands.

SA_SetClosedLoopMoveAcceleration_S 78
Sets the maximum movement acceleration for closed-loop commands (acceleration control).

SmarAct GmbH - MCS Programmer's Guide Page 126 ▲ToC

SA_SetClosedLoopMoveSpeed_S 79
Sets the maximum movement speed for closed-loop commands (speed control).

SA_SetEndEffectorType_S 80
Configures the end effector type for an end effector channel.

SA_SetPosition_S 81
Sets the current position of a positioner to an arbitrary value.

SA_SetPositionLimit_S 82
Sets a position limit for linear positioners (software range limitation).

SA_SetReportOnComplete_A 118
Lets a channel report the completion of movement commands.

SA_SetReportOnTriggered_A 119
Lets a channel report when a queued command was triggered.

SA_SetSafeDirection_S 83
Sets the safe direction for positioners without a physical reference mark.

SA_SetScale_S 84
Sets the logical scale relative to the physical scale of the positioner.

SA_SetSensorEnabled_S 85
Configures the sensor mode of a system.

SA_SetSensorType_S 86
Configures the sensor type for a positioner channel.

SA_SetStepWhileScan_S 87
Sets a flag whether step movements are allowed while holding the position of closed-loop
commands.

SA_SetZeroForce_S 88
Defines the currently measured force of an end effector channel to be zero.

4.3 Movement Control Functions
Function Name Page

Short Description

SA_CalibrateSensor_S 45
Calibrate the sensor of a positioner channel for proper operation of the sensor.

SA_FindReferenceMark_S 46
Move the positioner to the known physical position (positioners with sensor feedback only).

SA_GotoAngleAbsolute_S 65
Move the positioner to an absolute angle using closed-loop control (rotary positioners with sensor
feedback only).

SA_GotoAngleRelative_S 66
Move the positioner to a relative angle using closed-loop control (rotary positioners with sensor
feedback only).

SA_GotoGripperForceAbsolute_S 67
Grab an object with a defined force using closed-loop control (grippers with force feedback only).

SA_GotoGripperOpeningAbsolute_S 68
Open or close the jaws of the gripper (open-loop control).

SA_GotoGripperOpeningRelative_S 69
Open or close the jaws of the gripper (open-loop control).

SA_GotoPositionAbsolute_S 70
Move the positioner to an absolute position using closed-loop control (linear positioners with sensor
feedback only).

SmarAct GmbH - MCS Programmer's Guide Page 127 ▲ToC

SA_GotoPositionRelative_S 71
Move the positioner to a relative position using closed-loop control (linear positioners with sensor
feedback only).

SA_ScanMoveAbsolute_S 72
Deflect the piezo of the positioner (open-loop control).

SA_ScanMoveRelative_S 73
Deflect the piezo of the positioner (open-loop control).

SA_StepMove_S 89
Perform a stepping movement of the positioner (open-loop control).

SA_Stop_S 90
Stop the positioner.

SA_TriggerCommand_A 120
Triggers a queued command via software.

4.4 Channel Feedback Functions
Function Name Page

Short Description

SA_GetAngle_S 47
Get the current angle of a positioner (rotary positioners with sensor feedback only).

SA_GetCaptureBuffer_S 49
Get the contents of a capture buffer.

SA_GetForce_S 54
Get the current force measured by the gripper (grippers with force feedback only).

SA_GetGripperOpening_S 55
Get the current gripper opening.

SA_GetPhysicalPositionKnown_S 56
Returns whether a channel knows its physical position or not.

SA_GetPosition_S 57
Get the current position of a positioner (linear positioners only).

SA_GetStatus_S 63
Get the status of a channel.

SA_GetVoltageLevel_S 64
Get the current deflection of the piezo of the positioner.

4.5 Answer Retrieval Functions
Function Name Page

Short Description

SA_CancelWaitForPacket_A 92
Unblocks a packet receiving function.

SA_DiscardPacket_A 94
Removes a received packet from the packet queue.

SA_LookAtNextPacket_A 115
Returns the first packet in the receive queue, not removing it.

SA_ReceiveNextPacket_A 116
Returns the first packet in the receive queue, removing it.

SmarAct GmbH - MCS Programmer's Guide Page 128 ▲ToC

4.6 Miscellaneous Functions
Function Name Page

Short Description

SA_DSV 121
Decode a selector value from SA_GetChannelProperty_S.

SA_EPK 122
Encode a property key for SA_GetChannelProperty_S or SA_SetChannelProperty_S.

SA_ESV 123
Encode a selector value for SA_SetChannelProperty_S.

SA_GetStatusInfo 124
Translate a function return code into a human readable text.

SmarAct GmbH - MCS Programmer's Guide Page 129 ▲ToC

5 Appendix

5.1 Function Status Codes
All library functions return a status code that indicates success or failure of execution. This chapter lists all
possible status codes and gives a short description.

Code Symbol
 Description

0 SA_OK
The function call was successful.

1 SA_INITIALIZATION_ERROR
An error occurred while initializing the library. All systems should be disconnected and reset before
the next attempt is made.

2 SA_NOT_INITIALIZED_ERROR
A function call has been made for an uninitialized system. Call SA_OpenSystem before
communicating with the hardware.

3 SA_NO_SYSTEMS_FOUND_ERROR
May occur at initialization if no Modular Control Systems have been detected on the PC system.
Check the connection of the USB cable and make sure the drivers are installed properly. Note: After
power-up / USB connection it may take several seconds for the system to be detectable.

4 SA_TOO_MANY_SYSTEMS_ERROR
The number of allowed systems connected to the PC is limited to 32. If you have more connected,
disconnect some.

5 SA_INVALID_SYSTEM_INDEX_ERROR
An invalid system index has been passed to a function. The system index parameter of various
functions is zero based. If N is the number of acquired systems, then the valid range for the system
index is 0..(N-1).

6 SA_INVALID_CHANNEL_INDEX_ERROR
An invalid channel index has been passed to a function. The channel index parameter of various
functions is zero based. If N is the number of channels available on a system, then the valid range
for the channel index is 0..(N-1).

7 SA_TRANSMIT_ERROR
An error occurred while sending data to the hardware. The system should be reset.

8 SA_WRITE_ERROR
An error occurred while sending data to the hardware. The system should be reset.

9 SA_INVALID_PARAMETER_ERROR
An invalid parameter has been passed to a function. Check the function documentation for valid
ranges.

10 SA_READ_ERROR
An error occurred while receiving data from the hardware. The system should be reset.

12 SA_INTERNAL_ERROR
An internal communication error occurred. The system should be reset.

13 SA_WRONG_MODE_ERROR
The called function does not match the communication mode that was selected at initialization (see
2.2.2 – “Communication Modes“). In synchronous communication mode only functions of sections I
and IIa may be called. In asynchronous communication mode only functions of sections I and IIb
may be called.

14 SA_PROTOCOL_ERROR
An internal protocol error occurred. The system should be reset.

SmarAct GmbH - MCS Programmer's Guide Page 130 ▲ToC

15 SA_TIMEOUT_ERROR
The hardware did not respond. Make sure that all cables are connected properly and reset the
system.

17 SA_ID_LIST_TOO_SMALL_ERROR
When calling SA_GetAvailableSystems you must pass a pointer to an array that is large enough
to hold the system IDs of all connected systems. If the number of detected systems is larger than the
array, this error will be generated.

18 SA_SYSTEM_ALREADY_ADDED_ERROR
In order to acquire specific systems you must call SA_AddSystemToInitSystemsList before
calling SA_InitSystems. A system ID may only be added once to the list of systems to be
acquired. Multiple calls with the same ID lead to this error.

19 SA_WRONG_CHANNEL_TYPE_ERROR
Most functions of section II are only callable for certain channel types. For example, calling
SA_StepMove_S for a channel that is an end effector channel will lead to this error. The detailed
function description notes the types of channels that the function may be called for.

20 SA_CANCELED_ERROR
The functions SA_ReceiveNextPacket_A and SA_LookAtNextPacket_A return this code if they
were blocking while waiting for an incoming packet and then were manually unblocked by calling
SA_CancelWaitForPacket_A.

21 SA_INVALID_SYSTEM_LOCATOR_ERROR
Returned by SA_OpenSystem if the locator string does not comply with the supported locator
formats.

22 SA_INPUT_BUFFER_OVERFLOW_ERROR
This error occurs when the input buffer for storing packets that have been received from a system is
full. To avoid this error remove packets from the input buffer frequently with
SA_ReceiveNextPacket_A.

23 SA_QUERYBUFFER_SIZE_ERROR
Returned by functions that write data in a binary or char buffer (e.g. SA_FindSystems) if the user-
supplied buffer is too small to hold the returned data.

24 SA_DRIVER_ERROR
Returned by functions, if a driver, that is required to communicate to a controller over a certain
hardware interface, is not available.

129 SA_NO_SENSOR_PRESENT_ERROR
This error occurs if a function was called that requires sensor feedback, but the addressed positioner
has none attached.

130 SA_AMPLITUDE_TOO_LOW_ERROR
The amplitude parameter that was given is too low.

131 SA_AMPLITUDE_TOO_HIGH_ERROR
The amplitude parameter that was given is too high.

132 SA_FREQUENCY_TOO_LOW_ERROR
The frequency parameter that was given is too low.

133 SA_FREQUENCY_TOO_HIGH_ERROR
The frequency parameter that was given is too high.

135 SA_SCAN_TARGET_TOO_HIGH_ERROR
The target position for a scanning movement that was given is too high.

136 SA_SCAN_SPEED_TOO_LOW_ERROR
The scan speed parameter that was given for a scan movement command is too low.

137 SA_SCAN_SPEED_TOO_HIGH_ERROR

SmarAct GmbH - MCS Programmer's Guide Page 131 ▲ToC

The scan speed parameter that was given for a scan movement command is too high.

140 SA_SENSOR_DISABLED_ERROR
This error occurs if an addressed positioner has a sensor attached, but it is disabled. See
SA_SetSensorEnabled_S.

141 SA_COMMAND_OVERRIDEN_ERROR
This error is only generated in the asynchronous communication mode. When the software
commands a movement which is then interrupted by the Hand Control Module, an error of this type
is generated.

142 SA_END_STOP_REACHED_ERROR
This error is generated by a positioner channel in asynchronous mode if the target position of a
closed-loop command could not be reached because a mechanical end stop was detected. After this
error the positioner will have the SA_STOPPED_STATUS status code.

143 SA_WRONG_SENSOR_TYPE_ERROR
This error occurs if a closed-loop command does not match the sensor type that is currently
configured for the addressed channel. For example, calling SA_GetPosition_S while the targeted
channel is configured as rotary will lead to this error.

144 SA_COULD_NOT_FIND_REF_ERROR
This error is generated in asynchronous mode if the search for a reference mark was aborted. See
section ?? “Reference Marks” for more information.

145 SA_WRONG_END_EFFECTOR_TYPE_ERROR
This error occurs if a command does not match the end effector type that is currently configured for
the addressed channel. For example, calling SA_GetForce_S while the targeted channel is
configured for a gripper will lead to this error.

146 SA_MOVEMENT_LOCKED_ERROR
Generated either if a movement command was aborted due to an emergency stop or a movement
command was issued while the channel is in the locked state. See 2.4.1 “Emergency Stop“.

147 SA_RANGE_LIMIT_REACHED_ERROR
If a range limit is defined by SA_SetPositionLimit_A or SA_SetAngleLimit_A and the
positioner is about to move beyond this limit, then the positioner will stop and report this error. After
this error the positioner will have the SA_STOPPED_STATUS status code.

148 SA_PHYSICAL_POSITION_UNKNOWN_ERROR
A range limit is only allowed to be defined if the positioner “knows” its physical position. If this is not
the case, the functions SA_SetPositionLimit_X and SA_SetAngleLimit_X will return this
error code.

149 SA_OUTPUT_BUFFER_OVERFLOW_ERROR
When using buffered output in asynchronous communication mode, this error is returned if too many
commands were accumulated in the output buffer. Call SA_FlushOutput_A to prevent this. See
SA_SetBufferedOutput_A for more information.

150 SA_COMMAND_NOT_PROCESSABLE_ERROR
This error is generated if a command is sent to a channel when it is in a state where the command
cannot be processed. For example, to change the sensor type of a channel the addressed channel
must be completely stopped. In this case send a stop command before changing the type.

151 SA_WAITING_FOR_TRIGGER_ERROR
If there is at least one command queued in the command queue then you may only append more
commands (if the queue is not full), but you may not issue movement commands for immediate
execution. Doing so will generate this error. See section 2.6.5 "Command Queues".

152 SA_COMMAND_NOT_TRIGGERABLE_ERROR
After calling SA_AppendTriggeredCommand_A you are required to issue a movement command
that is to be triggered by the given event source. Commands that cannot be triggered will generate
this error.

153 SA_COMMAND_QUEUE_FULL_ERROR

SmarAct GmbH - MCS Programmer's Guide Page 132 ▲ToC

This error is generated if you attempt to append more commands to the command queue, but the
queue cannot hold anymore commands. The queue capacity may be read out with
SA_GetChannelProperty_S (see there).

154 SA_INVALID_COMPONENT_ERROR
Indicates that a component was selected that does not exist.

155 SA_INVALID_SUB_COMPONENT_ERROR
Indicates that a sub component was selected that does not exist.

156 SA_INVALID_PROPERTY_ERROR
Indicates that the selected component does not have the selected property.

157 SA_PERMISSION_DENIED_ERROR
This error is generated when you call a functionality which is not unlocked for the system (e.g. Low
Vibration Mode).

161 SA_INCOMPLETE_PACKET_ERROR
This error is generated by the hardware if a packet was not received completely and thus a timeout
occurs.

164 SA_RX_BUFFER_OVERFLOW_ERROR
The system could not process all incoming command packets and an internal buffer overflow
occures. This indicates to a potential misuse of the programming API. Too many commands were
send without reading the returned answer packets. The system went to an error state where further
communication is blocked until the system is restarted.

240 SA_UNKNOWN_COMMAND_ERROR
This error occurs if the library sends a command that is not supported by the system it is sent to.
This may be the case when using a newer library with an older firmware version. Please be sure only
to use the library that is shipped with your system to avoid compatibility problems.

255 SA_OTHER_ERROR
An error that can't be otherwise categorized.

SmarAct GmbH - MCS Programmer's Guide Page 133 ▲ToC

5.2 Packet Types
Note: The packet type determines which fields of the packet hold valid values. It is therefore advised to first
check the type of the packet before making any further checks.

Code Symbol Valid fields
 Description

0 SA_NO_PACKET_TYPE None
A packet of this type does not represent an actual data packet. It simply indicates that no packet was
received. None of the other fields are valid.

1 SA_ERROR_PACKET_TYPE channelIndex, data1
If a command could not be executed or some other error occurred, an error is generated. The
channelIndex field holds the source channel and the data1 field the error code (see listing above).

2 SA_POSITION_PACKET_TYPE channelIndex, data2
This packet type results from a SA_GetPosition_A function call. The channelIndex holds the
source channel and the data2 field holds the current position in nano meters.

3 SA_COMPLETED_PACKET_TYPE channelIndex
If a channel has been configured to report the completion of a movement command, a packet of this
type is generated on this event (see SA_SetReportOnComplete_A). The channelIndex field holds
the source channel.

4 SA_STATUS_PACKET_TYPE channelIndex, data1
This packet type results from a SA_GetStatus_S function call. The channelIndex holds the source
channel and the data1 field holds the current movement status code (see listing below).

5 SA_ANGLE_PACKET_TYPE channelIndex, data1, data2
This packet type results from a SA_GetAngle_A function call. The channelIndex holds the source
channel, the data1 field holds the angle in micro degrees and the data2 field holds the revolution.

6 SA_VOLTAGE_LEVEL_PACKET_TYPE channelIndex, data1
This packet type results from a SA_GetVoltageLevel_A function call. The channelIndex holds the
source channel and the data1 field holds the current voltage level that is applied to the piezo element
of the positioner. The returned value ranges from 0..4,095. A 0 corresponds to 0V, a 4,095 to 100V.

7 SA_SENSOR_TYPE_PACKET_TYPE channelIndex, data1
This packet type results from a SA_GetSensorType_A function call. The channelIndex holds the
source channel and the data1 field holds the sensor type, which will be SA_S_SENSOR_TYPE,
SA_SR_SENSOR_TYPE, SA_ML_SENSOR_TYPE, SA_MR_SENSOR_TYPE or SA_SP_SENSOR_TYPE.
If the connected positioner is not equipped with a sensor, SA_NO_SENSOR_TYPE will be returned.

8 SA_SENSOR_ENABLED_PACKET_TYPE channelIndex, data1
This packet type results from a SA_GetSensorEnabled_A function call. Since the answer is
system global, the channelIndex is not defined in packets of this type. The data1 field holds the
currently configured sensor mode and will be one of SA_SENSOR_DISABLED,
SA_SENSOR_ENABLED or SA_SENSOR_POWERSAVE.

9 SA_END_EFFECTOR_TYPE_PACKET_TYPE channelIndex, data1, data2, data3
This packet type results from a SA_GetEndEffectorType_A function call. The channelIndex
holds the source channel and the data1 field holds the currently configured end effector type, which
will be SA_ANALOG_SENSOR_END_EFFECTOR_TYPE, SA_GRIPPER_END_EFFECTOR_TYPE,
SA_FORCE_SENSOR_END_EFFECTOR_TYPE or SA_FORCE_GRIPPER_END_EFFECTOR_TYPE. The
fields data2 and data3 hold the type parameters, which depend on the end effector type.

10 SA_GRIPPER_OPENING_PACKET_TYPE channelIndex, data1
This packet type results from a SA_GetGripperOpening_A function call. The channelIndex holds
the source channel and the data1 field holds the voltage given in 1/100 Volts.

11 SA_FORCE_PACKET_TYPE channelIndex, data2
This packet type results from a SA_GetForce_A function call. The channelIndex holds the source
channel and the data2 field holds the force given in 1/10 µN.

SmarAct GmbH - MCS Programmer's Guide Page 134 ▲ToC

12 SA_MOVE_SPEED_PACKET_TYPE channelIndex, data1
This packet type results from a SA_GetClosedLoopMoveSpeed_A function call. The
channelIndex holds the source channel and the data1 field holds the movement speed. The unit is
nm/s for linear positioners and µ°/s for rotary positioners.

13 SA_PHYSICAL_POSITION_KNOWN_PACKET_TYPE channelIndex, data1
This packet type results from a SA_GetPhysicalPositionKnown_A function call. The
channelIndex holds the source channel. The data1 field will be either
SA_PHYSICAL_POSITION_UNKNOWN or SA_PHYSICAL_POSITION_KNOWN.

14 SA_POSITION_LIMIT_PACKET_TYPE channelIndex, data2, data3
This packet type results from a SA_GetPositionLimit_A function call. The channelIndex holds
the source channel, the data2 field holds the minimum position and the data3 field holds the
maximum position.

15 SA_ANGLE_LIMIT_PACKET_TYPE channelIndex, data1, data2, data3, data4
This packet type results from a SA_GetAngleLimit_A function call. The channelIndex holds the
source channel, the data1 field holds the minimum angle, the data2 field holds the minimum
revolution, the data4 field holds the maximum angle and the data3 field holds the maximum
revolution.

16 SA_SAFE_DIRECTION_PACKET_TYPE channelIndex, data1
This packet type results from a SA_GetSafeDirection_A function call. The channelIndex holds
the source channel and the data1 field holds the currently configured safe direction of the channel.

17 SA_SCALE_PACKET_TYPE channelIndex, data2
This packet type results from a SA_GetScale_A function call. The channelIndex holds the source
channel and the data2 field holds the currently configured scale shift of the channel.

18 SA_MOVE_ACCELERATION_PACKET_TYPE channelIndex, data1
This packet type results from a SA_GetClosedLoopMoveAcceleration_A function call. The
channelIndex holds the source channel and the data1 field holds the currently configured movement
acceleration. The unit is µm/s² for linear positioners and m°/s² for rotary positioners.

19 SA_CHANNEL_PROPERTY_PACKET_TYPE channelIndex, data1, data2
This packet type results from a SA_GetChannelProperty_A function call. The channelIndex holds
the source channel, the data1 field holds the property key and the data2 field holds the property
value.

20 SA_CAPTURE_BUFFER_PACKET_TYPE channelIndex, data1 (data2, data3, data4)
This packet type results from a SA_GetCaptureBuffer_A function call. The channelIndex holds
the source channel and the data1 field holds the capture buffer index. The value of the other data
fields depend on which capture buffer was retrieved. Please refer to the table at
SA_GetCaptureBuffer_S.

21 SA_TRIGGERED_PACKET_TYPE channelIndex
If a channel has been configured to report whether a movement command has been triggered, a
packet of this type is generated on this event (see SA_SetReportOnTriggered_A). The
channelIndex field holds the source channel.

255 SA_INVALID_PACKET_TYPE
This dummy type indicates that the received packet is not a valid packet.

SmarAct GmbH - MCS Programmer's Guide Page 135 ▲ToC

5.3 Channel Status Codes
The table below lists the status codes of positioners or end effectors that are returned by SA_GetStatus_S.

Code Symbol
 Description

0 SA_STOPPED_STATUS
The positioner or end effector is currently not performing active movement.

1 SA_STEPPING_STATUS
The positioner is currently performing an open-loop movement (see SA_StepMove_S).

2 SA_SCANNING_STATUS
The positioner is currently performing a scanning movement (e.g. SA_ScanMoveAbsolute_S).

3 SA_HOLDING_STATUS
The positioner or end effector is holding its current target (see closed-loop commands, e.g.
SA_GotoPositionAbsolute_S, SA_GotoAngleAbsolute_S,
SA_GotoGripperForceAbsolute_S) or is holding the reference mark (see
SA_FindReferenceMark_S).

4 SA_TARGET_STATUS
The positioner or end effector is currently performing a closed-loop movement.

5 SA_MOVE_DELAY_STATUS
The positioner is currently waiting for the sensors to power-up before executing the movement
command. This status may be returned if the the sensors are operated in power save mode.

6 SA_CALIBRATING_STATUS
The positioner or end effector is busy calibrating its sensor.

7 SA_FINDING_REF_STATUS
The positioner is moving to find the reference mark.

8 SA_OPENING_STATUS
The end effector (gripper) is closing or opening its jaws.

SmarAct GmbH - MCS Programmer's Guide Page 136 ▲ToC

5.4 Sensor Types
The following table lists the currently available sensor types that may be configured with
SA_SetSensorType_S (pass the type code when calling the function, see also the header file of the library
for definitions).

The reference type indicates the way the positioner is referenced when calling
SA_FindReferenceMark_S. Positioners with 'mark' are referenced via a physical reference mark that is
typically located near the middle of the complete travel range. Positioners with 'end stop' are referenced via a
mechanical end stop (see SA_SetSafeDirection_S for more information). Positioners with 'none' cannot
be referenced.

Symbol Type
Code

Positioner Series Comment Reference
Type

S 1 SLCxxxxs linear positioner with nano sensor mark

SR 2 SR36xxs, SR3511s,
SR5714s, SR7021s,
SR2812s

rotary positioner with nano sensor mark

SP 5 SLCxxxxrs linear positioner with nano sensor, large actuator mark

SC 6 SLCxxxxsc linear positioner with nano sensor, distance coded reference
marks

mark*

SR20 8 SR2013s, SR1612s rotary positioner with nano sensor mark

M 9 SLCxxxxm linear positioner with micro sensor end stop

GD 11 SGO60.5m goniometer with micro sensor (60.5mm radius) end stop

GE 12 SGO77.5m goniometer with micro sensor (77.5mm radius) end stop

GF 14 SR1209m rotary positioner with micro sensor end stop

G605S 16 SGO60.5s goniometer with nano sensor (60.5mm radius) mark

G775S 17 SGO77.5s, SGO70.5s goniometer with nano sensor (77.5mm or 70.5mm radius) mark

SC500 18 SLLxxsc linear positioner with nano sensor, distance coded reference
marks

mark*

G955S 19 SGO95.5s goniometer with nano sensor (95.5mm radius) mark

SR77 20 SR77xxs rotary positioner with nano sensor mark

SD 21 SLCxxxxds, SLLxxs like S, but with extended scanning Range mark

R20ME 22 SR2013sx, SR1410sx rotary positioner with micro sensor mark

SR2 23 SR36xxs, SR3511s,
SR5714s, SR7021s,
SR2812s

like SR, for high applied masses mark

SCD 24 SLCxxxxdsc like SP, but with distance coded reference marks mark*

SRC 25 SR7021sc like SR, but with distance coded reference marks mark*

SR36M 26 SR3610m rotary positioner, no end stops none

SR36ME 27 SR3610m rotary positioner with end stops end stop

SR50M 28 SR5018m rotary positioner, no end stops none

SR50ME 29 SR5018m rotary positioner with end stops end stop

G1045S 30 SGO104.5s goniometer with nano sensor (104.5mm radius) mark

G1395S 31 SGO139.5s goniometer with nano sensor (139.5mm radius) mark

MD 32 SLCxxxxdme like M, but with large actuator end stop

G935M 33 SGO93.5me Goniometer with micro sensor (93.5mm radius) end stop

SHL20 34 SHL-20 High load vertical positioner mark

SCT 35 SLCxxxxscu like SCD, but with even larger actuator mark*

* These positioners are equipped with multiple reference marks. The positioner will only have to move a few
millimeters to know its physical position. See also 2.5.3 Defining Positions.

SmarAct GmbH - MCS Programmer's Guide Page 137 ▲ToC

5.5 Channel Properties
The table below lists the valid component, sub component and property combinations. If a component has an
index as sub component then the table entry lists the currently available index values. Some component
properties are read-only which is indicated in the “Access” column. These keys may only be passed to
SA_GetChannelProperty_S, but not to SA_SetChannelProperty_S.

Component Sub Component Property Access Valid Value Range Page

SA_GENERAL

SA_EMERGENCY_STOP

SA_OPERATION_MODE R / W

SA_ESM_NORMAL*,
SA_ESM_RESTRICTED,
SA_ESM_DISABLED,
SA_ESM_AUTO_RELEASE

12

SA_DEFAULT_OPERATION_MODE R / W

SA_ESM_NORMAL*,
SA_ESM_RESTRICTED,
SA_ESM_DISABLED,
SA_ESM_AUTO_RELEASE

12

SA_LOW_VIBRATION (1) SA_OPERATION_MODE R / W
SA_DISABLED*,
SA_ENABLED

13

SA_BROADCAST_STOP SA_OPERATION_MODE R / W
SA_DISABLED*,
SA_ENABLED

14

SA_POSITION_CONTROL SA_FORCED_SLIP R / W
SA_DISABLED,
SA_ENABLED*

14

SA_SENSOR

SA_POWER_SUPPLY SA_OPERATION_MODE R / W
SA_DISABLED,
SA_ENABLED,
SA_POWERSAVE*

14

SA_SCALE

SA_OFFSET R / W ±2,000,000,000 14

SA_INVERTED R / W
SA_FALSE*,
SA_TRUE

14

Controller Event System related Channel Properties

Component Sub Component Property Access Valid Value Range Page

SA_DIGITAL_IN 0

SA_OPERATION_MODE R / W
SA_DISABLED*,
SA_ENABLED

24

SA_ACTIVE_EDGE R / W
SA_FALLING_EDGE*,
SA_RISING_EDGE

SA_COUNTER 0
SA_TRIGGER_SOURCE R / W

SA_DISABLED*,
<Selector Value> 24

SA_VALUE R / W 0* .. 2,147,486,647

SA_CAPTURE_BUFFER 0 SA_TRIGGER_SOURCE R / W
SA_DISABLED*,
<Selector Value>

25

SA_COMMAND_QUEUE 0
SA_SIZE R 0* .. n

25
SA_CAPACITY R n

SA_SOFTWARE_TRIGGER (2) 0 .. 255 none N/A N/A 24

* indicates default values of the properties

(1) This feature is not available on all controllers. Please contact SmarAct for more information.

(2) This component has no properties and may only be used as a trigger source.

SmarAct GmbH - MCS Programmer's Guide Page 138 ▲ToC

	1 Introduction
	2 Functional Documentation
	2.1 Overview
	2.2 Initialization
	2.2.1 Locators for System Identification
	2.2.2 Communication Modes

	2.3 Using the Asynchronous Mode
	2.3.1 Overview
	2.3.2 Sending Commands
	2.3.3 Retrieving Answers
	2.3.4 Other Issues

	2.4 Channel Properties
	2.4.1 Emergency Stop
	2.4.2 Low Vibration
	2.4.3 Broadcast Stop
	2.4.4 Position Control
	2.4.5 Sensor

	2.5 Working With Sensor Feedback
	2.5.1 Rotary Sensors
	2.5.2 Sensor Modes
	2.5.3 Defining Positions
	2.5.4 Software Range Limit

	2.6 Controller Event System
	2.6.1 Digital Inputs
	2.6.2 Software Triggers
	2.6.3 Counters
	2.6.4 Capture Buffers
	2.6.5 Command Queues
	2.6.6 Example

	2.7 Miscellaneous Topics
	2.7.1 Overwriting Movement Commands
	2.7.2 Dependency Chains

	3 Detailed Function Description
	3.1 Initialization Functions
	SA_AddSystemToInitSystemsList
	SA_CloseSystem
	SA_ClearInitSystemsList
	SA_FindSystems
	SA_GetAvailableSystems
	SA_GetChannelType
	SA_GetDLLVersion
	SA_GetInitState
	SA_GetNumberOfChannels
	SA_GetNumberOfSystems
	SA_GetSystemID
	SA_GetSystemLocator
	SA_InitSystems
	SA_OpenSystem
	SA_ReleaseSystems
	SA_SetHCMEnabled

	3.2 Functions for Synchronous Communication
	SA_CalibrateSensor_S
	SA_FindReferenceMark_S
	SA_GetAngle_S
	SA_GetAngleLimit_S
	SA_GetCaptureBuffer_S
	SA_GetChannelProperty_S
	SA_GetClosedLoopMoveAcceleration_S
	SA_GetClosedLoopMoveSpeed_S
	SA_GetEndEffectorType_S
	SA_GetForce_S
	SA_GetGripperOpening_S
	SA_GetPhysicalPositionKnown_S
	SA_GetPosition_S
	SA_GetPositionLimit_S
	SA_GetSafeDirection_S
	SA_GetScale_S
	SA_GetSensorEnabled_S
	SA_GetSensorType_S
	SA_GetStatus_S
	SA_GetVoltageLevel_S
	SA_GotoAngleAbsolute_S
	SA_GotoAngleRelative_S
	SA_GotoGripperForceAbsolute_S
	SA_GotoGripperOpeningAbsolute_S
	SA_GotoGripperOpeningRelative_S
	SA_GotoPositionAbsolute_S
	SA_GotoPositionRelative_S
	SA_ScanMoveAbsolute_S
	SA_ScanMoveRelative_S
	SA_SetAccumulateRelativePositions_S
	SA_SetAngleLimit_S
	SA_SetChannelProperty_S
	SA_SetClosedLoopMaxFrequency_S
	SA_SetClosedLoopMoveAcceleration_S
	SA_SetClosedLoopMoveSpeed_S
	SA_SetEndEffectorType_S
	SA_SetPosition_S
	SA_SetPositionLimit_S
	SA_SetSafeDirection_S
	SA_SetScale_S
	SA_SetSensorEnabled_S
	SA_SetSensorType_S
	SA_SetStepWhileScan_S
	SA_SetZeroForce_S
	SA_StepMove_S
	SA_Stop_S

	3.3 Functions for Asynchronous Communication
	SA_AppendTriggeredCommand_A
	SA_CancelWaitForPacket_A
	SA_ClearTriggeredCommandQueue_A
	SA_DiscardPacket_A
	SA_FlushOutput_A
	SA_GetAngle_A
	SA_GetAngleLimit_A
	SA_GetBufferedOutput_A
	SA_GetCaptureBuffer_A
	SA_GetChannelProperty_A
	SA_GetClosedLoopMoveAcceleration_A
	SA_GetClosedLoopMoveSpeed_A
	SA_GetEndEffectorType_A
	SA_GetForce_A
	SA_GetGripperOpening_A
	SA_GetPhysicalPositionKnown_A
	SA_GetPosition_A
	SA_GetPositionLimit_A
	SA_GetSafeDirection_A
	SA_GetScale_A
	SA_GetSensorEnabled_A
	SA_GetSensorType_A
	SA_GetStatus_A
	SA_GetVoltageLevel_A
	SA_LookAtNextPacket_A
	SA_ReceiveNextPacket_A
	SA_SetBufferedOutput_A
	SA_SetReportOnComplete_A
	SA_SetReportOnTriggered_A
	SA_TriggerCommand_A

	3.4 Miscellaneous Functions
	SA_DSV
	SA_EPK
	SA_ESV
	SA_GetStatusInfo

	4 Quick Reference
	4.1 Initialization Functions
	4.2 Configuration Functions
	4.3 Movement Control Functions
	4.4 Channel Feedback Functions
	4.5 Answer Retrieval Functions
	4.6 Miscellaneous Functions

	5 Appendix
	5.1 Function Status Codes
	5.2 Packet Types
	5.3 Channel Status Codes
	5.4 Sensor Types
	5.5 Channel Properties

