
MCS2

PROGRAMMER’S GUIDE

www.smaract.com

Copyright © 2018 SmarAct GmbH

Specifications are subject to change without notice. All rights reserved. Reproduction of images,

tables or diagrams prohibited.

The information given in this document was carefully checked by our team and is constantly up-

dated. Nevertheless, it is not possible to fully exclude the presence of errors. In order to always

get the latest information, please contact our technical sales team.

SmarAct GmbH, Schuette-Lanz-Strasse 9, D-26135 Oldenburg

Phone: +49 (0) 441 - 800879-0, Telefax: +49 (0) 441 - 800879-21

Internet: www.smaract.com, E-Mail: info@smaract.com

Document Version: 1.0.6

2MCS2 Programmer’s Guide

TABLE OF CONTENTS

1 Introduction ... 10

1.1 Terminologies ... 10

2 General Concepts .. 12

2.1 Connecting and Disconnecting... 12

2.1.1 Locators for Device Identification... 12

2.1.2 Finding Devices ... 13

2.1.3 Network Interface Configuration.. 13

2.2 Properties.. 14

2.3 Accessing Properties.. 14

2.3.1 Synchronous Access... 15

2.3.2 Asynchronous Access... 16

2.3.3 High-Throughput Asynchronous Access.. 18

2.3.4 Call-and-Forget Mechanism .. 20

2.3.5 Request Ready Notification... 21

2.4 Event Notifications ... 22

2.5 Positioner Types ... 23

2.5.1 Custom Positioner Types... 23

2.6 Moving Positioners... 24

2.6.1 Calibrating ... 25

2.6.2 Referencing ... 27

2.6.3 Open-Loop Movements... 27

2.6.4 Closed-Loop Movements... 28

2.6.5 Stopping Movements ... 31

2.6.6 Overwriting Movement Commands... 32

2.6.7 Movement Feedback.. 32

2.7 Defining Positions .. 34

2.7.1 Reference Marks... 35

2.7.2 Positioners With Single Reference Marks.. 36

2.7.3 Positioners With Multiple Reference Marks .. 38

2.7.4 Positioners With Endstop Reference.. 40

2.7.5 Shifting the Measuring Scale... 41

2.8 State Flags ... 41

2.8.1 Device State Flags ... 41

2.8.2 Module State Flags ... 42

2.8.3 Channel State Flags .. 44

2.9 Sensor Power Modes ... 46

2.10 PicoScale Sensor Module .. 47

2.11 Following Error Detection.. 48

2.12 Software Range Limit ... 49

3MCS2 Programmer’s Guide

TABLE OF CONTENTS

2.13 Stop Broadcasting .. 49

2.13.1 Stop Broadcast Configuration... 50

2.14 Command Groups.. 51

2.14.1 Command Groups vs. Output Buffer... 53

2.15 Trajectory Streaming.. 53

2.15.1 General Streaming Concept .. 54

2.15.2 Basic Approach ... 56

2.15.3 Options .. 56

2.15.4 Trigger Modes ... 57

2.15.5 Stream Events ... 58

2.15.6 Maximum Stream Rates .. 59

2.16 Auxiliary Inputs and Outputs .. 59

2.16.1 Digital Device Input .. 60

2.16.2 Fast Digital Outputs.. 60

2.16.3 General Purpose Digital Inputs/Outputs ... 60

2.16.4 Fast Analog Inputs.. 62

2.16.5 Using Analog Inputs as Control-Loop Feedback... 63

2.16.6 Analog Outputs... 64

2.17 Input Trigger.. 65

2.17.1 Disabled Mode.. 66

2.17.2 Emergency Stop Mode... 66

2.17.3 Stream Sync Mode.. 67

2.17.4 Command Group Sync Mode.. 68

2.17.5 Event Trigger Mode .. 69

2.18 Output Trigger .. 70

2.18.1 Constant Mode ... 71

2.18.2 Position Compare Mode.. 71

2.18.3 Target Reached Mode .. 73

2.18.4 Actively Moving Mode .. 74

2.19 Feature Permissions .. 74

3 Function Reference... 75

3.1 Function Summary... 75

3.2 Detailed Function Description .. 78

3.2.1 SA_CTL_GetFullVersionString .. 78

3.2.2 SA_CTL_GetResultInfo .. 79

3.2.3 SA_CTL_GetEventInfo ... 80

3.2.4 SA_CTL_FindDevices ... 81

3.2.5 SA_CTL_Open .. 83

3.2.6 SA_CTL_Close .. 84

3.2.7 SA_CTL_Cancel .. 85

3.2.8 SA_CTL_GetProperty_i32.. 86

3.2.9 SA_CTL_SetProperty_i32 .. 88

3.2.10 SA_CTL_SetPropertyArray_i32 ... 89

3.2.11 SA_CTL_GetProperty_i64.. 90

3.2.12 SA_CTL_SetProperty_i64 .. 91

3.2.13 SA_CTL_SetPropertyArray_i64 ... 92

3.2.14 SA_CTL_GetProperty_s ... 93

4MCS2 Programmer’s Guide

TABLE OF CONTENTS

3.2.15 SA_CTL_SetProperty_s.. 95

3.2.16 SA_CTL_RequestReadProperty.. 96

3.2.17 SA_CTL_ReadProperty_i32 ... 98

3.2.18 SA_CTL_ReadProperty_i64 ... 99

3.2.19 SA_CTL_ReadProperty_s .. 100

3.2.20 SA_CTL_RequestWriteProperty_i32 .. 102

3.2.21 SA_CTL_RequestWriteProperty_i64 .. 104

3.2.22 SA_CTL_RequestWriteProperty_s.. 105

3.2.23 SA_CTL_RequestWritePropertyArray_i32... 106

3.2.24 SA_CTL_RequestWritePropertyArray_i64... 107

3.2.25 SA_CTL_WaitForWrite ... 108

3.2.26 SA_CTL_CancelRequest .. 109

3.2.27 SA_CTL_CreateOutputBuffer ... 110

3.2.28 SA_CTL_FlushOutputBuffer ... 111

3.2.29 SA_CTL_CancelOutputBuffer... 112

3.2.30 SA_CTL_OpenCommandGroup... 113

3.2.31 SA_CTL_CloseCommandGroup ... 114

3.2.32 SA_CTL_CancelCommandGroup... 115

3.2.33 SA_CTL_WaitForEvent... 116

3.2.34 SA_CTL_Calibrate .. 118

3.2.35 SA_CTL_Reference .. 120

3.2.36 SA_CTL_Move .. 122

3.2.37 SA_CTL_Stop.. 124

3.2.38 SA_CTL_OpenStream.. 125

3.2.39 SA_CTL_StreamFrame .. 127

3.2.40 SA_CTL_CloseStream.. 129

3.2.41 SA_CTL_AbortStream.. 131

4 Property Reference... 132

4.1 Property Summary... 132

4.2 Device Properties ... 137

4.2.1 Number of Channels.. 137

4.2.2 Number of Bus Modules ... 137

4.2.3 Device State... 138

4.2.4 Device Serial Number .. 139

4.2.5 Device Name ... 140

4.2.6 Emergency Stop Mode... 141

4.2.7 Network Discover Mode .. 142

4.3 Module Properties.. 143

4.3.1 Power Supply Enabled ... 143

4.3.2 Module State... 144

4.3.3 Number of Bus Module Channels .. 145

4.4 Positioner Properties ... 145

4.4.1 Amplifier Enabled ... 145

4.4.2 Positioner Control Options.. 146

4.4.3 Actuator Mode .. 147

4.4.4 Control Loop Input ... 149

4.4.5 Sensor Input Select .. 150

5MCS2 Programmer’s Guide

TABLE OF CONTENTS

4.4.6 Positioner Type ... 151

4.4.7 Positioner Type Name.. 152

4.4.8 Move Mode.. 152

4.4.9 Channel State.. 154

4.4.10 Position .. 155

4.4.11 Target Position .. 156

4.4.12 Scan Position... 156

4.4.13 Scan Velocity ... 157

4.4.14 Hold Time .. 158

4.4.15 Move Velocity .. 159

4.4.16 Move Acceleration .. 160

4.4.17 Max Closed Loop Frequency ... 161

4.4.18 Default Max Closed Loop Frequency ... 162

4.4.19 Step Frequency ... 163

4.4.20 Step Amplitude ... 163

4.4.21 Following Error Limit .. 164

4.4.22 Broadcast Stop Options... 165

4.4.23 Sensor Power Mode ... 166

4.4.24 Sensor Power Save Delay .. 167

4.4.25 Position Mean Shift .. 168

4.4.26 Safe Direction.. 169

4.4.27 Control Loop Input Sensor Value.. 170

4.4.28 Control Loop Input Aux Value... 171

4.4.29 Target To Zero Voltage Hold Threshold.. 172

4.5 Scale Properties.. 173

4.5.1 Logical Scale Offset .. 173

4.5.2 Logical Scale Inversion... 174

4.5.3 Range Limit Min .. 175

4.5.4 Range Limit Max ... 175

4.6 Calibration Properties.. 176

4.6.1 Calibration Options .. 176

4.6.2 Signal Correction Options.. 177

4.7 Referencing Properties .. 179

4.7.1 Referencing Options .. 179

4.7.2 Distance To Reference Mark ... 180

4.7.3 Distance Code Inverted ... 180

4.8 Tuning and Customizing Properties... 181

4.8.1 Positioner Movement Type ... 181

4.8.2 Positioner Is Custom Type... 182

4.8.3 Positioner Base Unit... 183

4.8.4 Positioner Base Resolution ... 184

4.8.5 Positioner Sensor Head Type.. 185

4.8.6 Positioner Reference Type... 186

4.8.7 Positioner P Gain .. 187

4.8.8 Positioner I Gain ... 188

4.8.9 Positioner D Gain.. 189

4.8.10 Positioner PID Shift .. 190

4.8.11 Positioner Anti Windup.. 191

6MCS2 Programmer’s Guide

TABLE OF CONTENTS

4.8.12 Positioner ESD Distance Threshold.. 192

4.8.13 Positioner ESD Counter Threshold... 193

4.8.14 Positioner Target Reached Threshold .. 194

4.8.15 Positioner Target Hold Threshold... 195

4.8.16 Save Positioner Type.. 196

4.8.17 Positioner Write Protection ... 196

4.9 Streaming Properties ... 197

4.9.1 Stream Base Rate ... 197

4.9.2 Stream External Sync Rate .. 198

4.9.3 Stream Options... 199

4.9.4 Stream Load Maximum ... 200

4.10 Diagnostic Properties... 200

4.10.1 Channel Error.. 200

4.10.2 Channel Temperature .. 201

4.10.3 Bus Module Temperature.. 202

4.11 Auxiliary Properties.. 203

4.11.1 Aux Positioner Type ... 203

4.11.2 Aux Positioner Type Name.. 204

4.11.3 Aux Input Select .. 204

4.11.4 Aux I/O Module Input Index .. 205

4.11.5 Aux Direction Inversion ... 207

4.11.6 Aux I/O Module Input0 / Input1 Value ... 208

4.11.7 Aux Digital Input Value... 208

4.11.8 Aux Digital Output Value / Set / Clear .. 209

4.11.9 Aux Analog Output Value0 / Value1 ... 210

4.12 I/O Module Properties ... 211

4.12.1 I/O Module Options.. 211

4.12.2 I/O Module Voltage... 213

4.12.3 I/O Module Analog Input Range ... 213

4.13 Input Trigger Properties .. 215

4.13.1 Device Input Trigger Mode .. 215

4.13.2 Device Input Trigger Condition ... 216

4.14 Output Trigger Properties ... 217

4.14.1 Channel Output Trigger Mode .. 217

4.14.2 Channel Output Trigger Polarity... 218

4.14.3 Channel Output Trigger Pulse Width ... 219

4.14.4 Channel Position Compare Start Threshold.. 220

4.14.5 Channel Position Compare Increment... 221

4.14.6 Channel Position Compare Direction... 221

4.14.7 Channel Position Compare Limit Min .. 222

4.14.8 Channel Position Compare Limit Max ... 223

4.15 Hand Control Module Properties ... 224

4.15.1 Hand Control Module Lock Options... 224

4.15.2 Hand Control Module Default Lock Options... 226

4.16 API Properties ... 227

4.16.1 Event Notification Options .. 227

4.16.2 Auto Reconnect... 228

7MCS2 Programmer’s Guide

TABLE OF CONTENTS

5 Event Reference .. 229

5.1 Event Summary .. 229

5.2 Detailed Event Description.. 231

5.2.1 None... 231

5.2.2 Movement Finished.. 231

5.2.3 Holding Aborted ... 231

5.2.4 Sensor State Changed.. 232

5.2.5 Reference Found .. 232

5.2.6 Following Error Limit .. 233

5.2.7 Sensor Module State Changed ... 233

5.2.8 Over Temperature .. 233

5.2.9 High Voltage Overload ... 234

5.2.10 Adjustment Finished .. 234

5.2.11 Adjustment State Changed ... 235

5.2.12 Adjustment Update .. 235

5.2.13 Stream Finished.. 235

5.2.14 Stream Ready.. 236

5.2.15 Stream Triggered .. 236

5.2.16 Command Group Triggered .. 237

5.2.17 Hand Control Module State Changed .. 237

5.2.18 Emergency Stop Triggered .. 238

5.2.19 External Input Triggered .. 238

5.2.20 Request Ready .. 238

5.2.21 Connection Lost.. 239

6 ASCII Interface ... 241

6.1 Connection Setup... 241

6.1.1 Note On Message Termination... 242

6.2 SCPI Basics .. 242

6.2.1 SCPI Conformance Information.. 242

6.2.2 Command Structure... 243

6.2.3 Traversing the Command Tree ... 244

6.2.4 Queries .. 245

6.3 Basic Programming Examples .. 245

6.3.1 Get Property.. 245

6.3.2 Set Property .. 246

6.3.3 Calibrate .. 246

6.3.4 Reference... 246

6.3.5 Move... 246

6.3.6 Stop .. 246

6.3.7 Movement State ... 247

6.3.8 Error Handling... 247

6.4 Using Command Groups... 249

6.4.1 Command Set ... 249

6.4.2 Examples ... 250

6.5 Streaming Trajectories... 252

6.5.1 Command Set ... 252

6.5.2 Example ... 253

8MCS2 Programmer’s Guide

TABLE OF CONTENTS

6.6 Command Summary.. 254

6.6.1 Common Commands... 254

6.6.2 Movement Commands .. 255

6.6.3 Property Command Tree ... 255

6.7 SCPI Error Codes... 260

A Code Definition Reference .. 262

A.1 Error Codes ... 262

9MCS2 Programmer’s Guide

1 INTRODUCTION

This document describes the application programming interface (API) of the SmarAct MCS2. It may

be used to control one or more MCS2 devices by software.

While this document mainly serves as a reference when programming your own software it also

supplies some background information for a better understanding of the overall system.

1.1 Terminologies

This section defines general terminologies that are used throughout this document. This section

only gives a brief summary and the terminologies are explained in more detail later in this docu-

ment.

Closed-Loop Movements are movements where sensor data is used as feedback to control the

position, velocity and/or acceleration of a positioner. To be able to perform closed-loop

movements the targeted positioner obviously must be equipped with an integrated posi-

tion sensor. Furthermore, the sensor must not be disabled. See section 2.6.4 Closed-Loop

Movements.

Open-Loop Movements are movements that do not use sensor data as feedback. The positioner

simply moves according to the given parameters and the exact distance traveled is unde-

fined. Especially, movements in different directions, but otherwise identical parameters, will

typically result in slightly varying traveling distances. See section 2.6.3 Open-Loop Move-

ments.

Calibrating is a process where the controller analyzes the individual characteristics of a positioner

in order to optimize closed-loop behavior. The calibration data is saved to non-volatile mem-

ory. Therefore, the calibration only needs to be performed when the system setup changes,

but not necessarily on each system start-up. See section 2.6.1 Calibrating.

Referencing is a process where the controller moves a positioner to detect its absolute physical

position. After the referencing, points of interest identified in previous sessions may easily

be recalled. See section 2.6.2 Referencing.

Trajectory Streaming allows to move several positioners synchronously along a defined trajec-

tory. See section 2.15 Trajectory Streaming.

Hold Time The hold time of a closed-loop movement specifies how long the positioner will ac-

tively hold its position after reaching the target. This may be useful to compensate drift

effects.

10MCS2 Programmer’s Guide

1 INTRODUCTION

Max Closed-Loop Frequency When performing closed-loop movements, the control-loop uses

the current position and the commanded target position to generate a driving signal for the

piezo actuator taking the control-loop parameters (PID) into account. The maximum allowed

frequency that is generated by the control-loop depends on the actual positioner as well as

the environment. (E.g. HV and UHV requires lower allowed frequencies.) The max closed-

loop frequency defines the upper limit for the generated driving signal.

11MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.1 Connecting and Disconnecting

Before being able to communicate with a device a connection must be established via a call to

SA_CTL_Open. This function connects to the device specified in the locator parameter (see sec-

tion 2.1.1) and returns a handle to the device, if the call was successful. The returned device han-

dle must be saved within the application and passed as a parameter to the other API functions.

Once the connection is established you can use the other functions to interact with the connected

device. If an application requires to connect to more then one device it must open each device

separately. The API processes all communication independently for each device handle.

A device that has been acquired by an application cannot be acquired by a second application at

the same time. You must close the connection to the device by calling SA_CTL_Close before it is

free to be used by other applications. Not closing a device will cause a resource leak.

If you have threads blocking on functions like SA_CTL_WaitForEvent you may unblock them

for a clean shutdown by calling SA_CTL_Cancel. The SA_CTL_WaitForEvent function will

then return with the error code SA_CTL_ERROR_CANCELED.

NOTICE
Connecting to a device via the ASCII interface uses a differentmechanism. Please

refer to section 6.1 for more information.

2.1.1 Locators for Device Identification

Devices are identified with locator strings, similar to URLs used to locate web pages. The following

sections describe the syntax of these locator strings.

USB Device Locator Syntax

Devices with a USB interface can be addressed with one of the following locator syntaxes:

• usb:sn:<serial>

where <serial> is the device serial which is printed on the housing of the device.

Example: usb:sn:MCS2-00000412

12MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

• usb:ix:<n>

where the number <n> selects the nth device in the list of all currently attached devices with

a USB interface.

Example: usb:ix:0

The drawback of identifying a device with this method is that the number and the order of

connected devices may change between sessions, so the index nmay not always refer to the

same device. It is only safe to do this if you have exactly one device connected to the PC.

It is recommended to use the first format for USB devices.

Network Device Locator Syntax

Devices with a network interface are addressed with one of the following locator syntaxes:

• network:sn:<serial>

where <serial> is the device serial which is printed on the housing of the device.

Example: network:sn:MCS2-00000412

• network:<ip>

where <ip> is an IPv4 address which consists of four integer numbers between 0 and 255

separated by a dot.

Example: network:192.168.1.200

NOTICE
Data transmission bandwidth and latencies over networks can vary much more

than over e.g. USB. A program should not rely on low transmission latencies.

2.1.2 Finding Devices

Devices may be connected to by using a specific locator as outlined above. To find devices auto-

matically the function SA_CTL_FindDevices may be used. It will scan the USB ports as well as

the network interfaces and return a list with the locator strings of the found devices.

Note that the Network Discover Mode property (see section 4.2.7) must be configured to active or

passive mode to make it possible to list devices with ethernet interface.

2.1.3 Network Interface Configuration

While devices with USB interface do not need any interface configuration, the ethernet interface

must be configured with the network parameters: DHCP mode, IP address, subnet mask and

gateway IP address. The MCS2 is delivered with a default IP configuration which may be adjusted

to match the users network settings.

The following table lists the default configuration:

13MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Parameter Default Value

DHCP Mode disabled

IP Address 192.168.1.200

Subnet Mask 255.255.0.0

Gateway IP 192.168.1.1

Pass-Key smaract

The interface may be configured to use DHCP to obtain an IP address from a DHCP-server or to

use a static IP configuration. The configuration may be changed by connecting to the integrated

web server, by using the configuration menu of an MCS2 Hand Control Module or by using the

SmarActNetConfig tool for the PC.

See the MCS2 User Manual document for more details on the configuration.

2.2 Properties

Properties are configuration values that define the behavior of the device. Each property has

a data type and an access mode. Some properties may be read and written, while others are

read only or (in rare cases) write only. See chapter 4 "Property Reference" for a list of available

properties and their descriptions.

Depending on the data type a property has youmust use the corresponding function variant to ac-

cess it. For example, the Number of Channels property is of type I32. Therefore, you must use the

SA_CTL_GetProperty_i32 function to read the property. In contrast the Device Serial Num-

ber property is of type string. Therefore, you must use the SA_CTL_GetProperty_s function to

read the property.

Properties are identified by a property key that must be passed to the function call when accessing

a property. Properties are categorized into device, module and channel properties. Module and

channel properties require an additional index parameter to address a specific module or channel.

Note that the index parameter is zero-based. In case of device properties the controller is already

addressed by the device handle. Therefore, the index parameter is unused and must be set to

zero.

Most properties are non-persistent which means that modifications do not outlive a power cycle.

At device start-up they have the default value that is specified in the detailed property description.

Other properties are kept persistent in the internal non-volatile memory. Therefore, their values

are preserved and loaded at device start-up.

2.3 Accessing Properties

Modifying or retrieving property values takes a major role in controlling a device by software.

Therefore, the API offers a variety of functions to get and set property values in order to meet all

requirements an application might have. A straight forward method, though easy to use, is some-

what inefficient, while more complicated methods may greatly improve efficiency. The application

14MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

may decide on a per-call basis which method to use, thus being very flexible depending on the

applications context.

The different methods of accessing properties may be categorized by their use case and are de-

scribed in the following sections. The figures illustrate the sequence of actions for getting two

property values. Green boxes indicate non-blocking API calls while red boxes indicate blocking

calls. Setting properties is very similar and is not explicitly discussed.

2.3.1 Synchronous Access

This is the easiest method for accessing properties since it consists of one simple function call

for getting one property value (e.g. SA_CTL_GetProperty_i32). When the function returns the

result is available (see figure 2.1).

Figure 2.1: Synchronous Property Access

When the API function is called a command is sent to the device and the function waits for a reply

from the device before it returns. From the view of the application, the function has a blocking

behavior. Depending on the transmission delays the blocking time may be in the range of several

milli seconds. During this time the user application cannot perform any other tasks. Therefore,

this access method is the slowest of all.

Functions Used

SA_CTL_GetProperty_i32, SA_CTL_SetProperty_i32

Example Read

int32_t value[2];

int8_t channel;

for (channel = 0; channel < 2; channel++) {

SA_CTL_Result_t result = SA_CTL_GetProperty_i32(

15MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

dHandle,channel,SA_CTL_PKEY_CHANNEL_STATE,&(value[channel])

);

if (result) {

// handle error

}

}

// value[0] and value[1] hold the channel state

Example Write

int32_t value[2] = {SA_CTL_MOVE_MODE_CL_ABSOLUTE,

SA_CTL_MOVE_MODE_CL_RELATIVE};

int8_t channel;

for (channel = 0; channel < 2; channel++) {

SA_CTL_Result_t result = SA_CTL_SetProperty_i32(

dHandle,channel,SA_CTL_PKEY_MOVE_MODE,value[channel]

);

if (result) {

// handle error

}

}

2.3.2 Asynchronous Access

This method requires two function calls for getting one property value. One for requesting the

property value and one for retrieving the answer (see figure 2.2).

Figure 2.2: Asynchronous Property Access

16MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

When the API function is called a command is sent to the device and the function returns im-

mediately, allowing the application to issue another request (or perform other tasks). When the

application has finished performing other tasks (or cannot proceed until the property values are

available) it may call the API function to receive the result.

The advantage of this method is that the application may request several property values in fast

succession and then perform other tasks before blocking on the reception of the results.

Functions Used

SA_CTL_RequestReadProperty, SA_CTL_ReadProperty_i64,

SA_CTL_RequestWriteProperty_i64, SA_CTL_WaitForWrite

Example Read

SA_CTL_Result_t result;

int64_t value[2]; // buffer for values to read

SA_CTL_RequestID_t rID[2]; // buffer for request IDs

int8_t channel;

// issue requests for two channels

for (channel = 0; channel < 2; channel++) {

result = SA_CTL_RequestReadProperty(

dHandle,channel,SA_CTL_PKEY_POSITION,&(rID[channel]),0

);

if (result) {

// handle error

}

}

// process other tasks

// ...

// retrieve results

for (channel = 0; channel < 2; channel++) {

result = SA_CTL_ReadProperty_i64(

dHandle,rID[channel],&(value[channel])

);

if (result) {

// handle error

}

}

Example Write

SA_CTL_Result_t result;

SA_CTL_RequestID_t rID[2]; // buffer for request IDs

int8_t channel;

// issue requests for two channels (set position to zero)

17MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

for (channel = 0; channel < 2; channel++) {

result = SA_CTL_RequestWriteProperty_i64(

dHandle,channel,SA_CTL_PKEY_POSITION,0,&(rID[channel]),0

);

if (result) {

// handle error

}

}

// process other tasks

// ...

// retrieve results

for (channel = 0; channel < 2; channel++) {

result = SA_CTL_WaitForWrite(

dHandle,rID[channel]

);

if (result) {

// handle error

}

}

2.3.3 High-Throughput Asynchronous Access

This method is similar to the asynchronous access with the difference that request commands are

bundled (see figure 2.3).

When the API function is called the request is buffered. The function returns immediately and the

command transmission is held back until the buffer is flushed. Again, the application may request

several property values in fast succession and then perform other tasks before blocking on the

reception of the results. In addition, the underlying media is able to combine several requests into

one packet, thus further optimizing communication delays.

Functions Used

SA_CTL_CreateOutputBuffer, SA_CTL_FlushOutputBuffer,

SA_CTL_RequestReadProperty, SA_CTL_ReadProperty_i64

18MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Figure 2.3: High-Throughput Asynchronous Property Access

Example Read

SA_CTL_Result_t result;

int32_t value[2]; // buffer for values to read

SA_CTL_RequestID_t rID[2]; // buffer for request IDs

int8_t channel;

// create output buffer

SA_CTL_TransmitHandle_t tHandle;

result = SA_CTL_CreateOutputBuffer(dHandle,&tHandle);

if (result) {

// handle error

}

// issue requests for two channels

for (channel = 0; channel < 2; channel++) {

// by passing the transmit handle (instead of zero)

// the request is associated with the output buffer and

// therefore only sent when the buffer is flushed (see below)

result = SA_CTL_RequestReadProperty(

dHandle,channel,SA_CTL_PKEY_POSITION,&(rID[channel]),tHandle

);

if (result) {

// handle error

19MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

}

}

// flush output buffer

SA_CTL_FlushOutputBuffer(dHandle, tHandle);

// process other tasks

// ...

// retrieve results

for (channel = 0;channel < 2; channel++) {

result = SA_CTL_ReadProperty_i64(

dHandle,rID[channel],&(value[channel])

);

if (result) {

// handle error

}

}

2.3.4 Call-and-Forget Mechanism

For property writes the result is only used to report errors. With the call-and-forget mechanism

the device does not generate a result for writes and the application can continue processing other

tasks immediately. Compared to asynchronous accesses, the application doesn’t need to keep

track of open requests and collect the results at some point. This mode should be used with care

so that written values are within the valid range.

The call-and-forget mechanism is used by passing a null pointer for the request ID pointer to the

SA_CTL_RequestWriteProperty_x functions.

Functions Used

SA_CTL_RequestWriteProperty_i64

Example Write

SA_CTL_Result_t result;

int8_t channel;

// issue requests for two channels (set position to zero)

for (channel = 0; channel < 2; channel++) {

result = SA_CTL_RequestWriteProperty_i64(

dHandle,channel,SA_CTL_PKEY_POSITION,0,NULL,0

);

if (result) {

// handle error

}

}

20MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.3.5 Request Ready Notification

Instead of using the blocking SA_CTL_ReadProperty_x/SA_CTL_WaitForWrite functions to

retrieve the result of an asynchronous request, the event system (see section 2.4 "Event Notifi-

cations") can be used to get a notification once the answer has been received from the device.

After receiving a Request Ready event (see there) the result of the asynchronous operation can be

retrieved without blocking using the functions mentioned above.

Note that the request ready event needs to be enabled using the Event Notification Options prop-

erty.

Example Request

// enable request ready events

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_EVENT_NOTIFICATION_OPTIONS,

SA_CTL_EVT_OPT_BIT_REQUEST_READY_ENABLED

);

if (result) { /* handle error */ }

// send asynchronous request

SA_CTL_RequestID_t rID;

result = SA_CTL_RequestReadProperty(

dHandle, 0, SA_CTL_PKEY_CHANNEL_STATE, &rID, 0

);

if (result) { /* handle error */ }

Example Event Processing

SA_CTL_Event_t evnt;

result = SA_CTL_WaitForEvent(dHandle, &evnt, SA_CTL_INFINITE);

if (result) { /* handle error */ }

if (evnt.type == SA_CTL_EVENT_REQUEST_READY) {

// extract event data

SA_CTL_RequestID_t rID = SA_CTL_EVENT_REQ_READY_ID(evnt.i64);

int requestType = SA_CTL_EVENT_REQ_READY_TYPE(evnt.i64);

int dataType = SA_CTL_EVENT_REQ_READY_DATA_TYPE(evnt.i64);

// process read results

if (requestType == SA_CTL_EVENT_REQ_READY_TYPE_READ) {

size_t arraySize = SA_CTL_EVENT_REQ_READY_ARRAY_SIZE(evnt.i64);

switch (dataType) {

case SA_CTL_DTYPE_INT32:

{

std::vector<int32_t> values(arraySize);

result = SA_CTL_ReadProperty_i32(

21MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

dHandle, rID, values.data(), &arraySize

);

if (result) { /* handle error */ }

values.resize(arraySize);

// property data is now stored in values

break;

}

// handle other data types

}

}

}

2.4 Event Notifications

In some situations events might occur that require further attention or reactions by the user. To

avoid that the application has to poll the occurrence of such events the MCS2 offers a notification

system. If an event occurs the MCS2 generates a notification event informing about the situation.

The application may receive events using the SA_CTL_WaitForEvent function. It returns events

in form of a pointer to the struct:

typedef struct {

uint32_t idx;

uint32_t type;

union {

int32_t i32;

int64_t i64;

uint8_t unused[24];

};

} SA_CTL_Event_t;

The fields of the struct have the following meaning:

• idx holds the source index that the event originated from. This may be a device, module or

channel index, depending on the event type.

• type holds the type of the event. See chapter 5 "Event Reference" for a detailed description

of the events and their parameters.

• i32 / i64 / unused are parameter fields that further describe the event. The meaning

depends on the event type.

While the event type indicates "what happened" the event parameter gives a more detailed hint

why the event occurred. An event can also be translated into a human readable string by using

the SA_CTL_GetEventInfo function.

22MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Note that all device events are enabled by default. There is no property to explicitly enable or

disable any specific device events. Only API events are disabled by default and need to be enabled

explicitly by configuring the Event Notification Options property.

The SA_CTL_Cancel function can be used to abort a waiting SA_CTL_WaitForEvent call.

2.5 Positioner Types

Ch0 Positioner Type

SLxS1SS

SRxS1S6S

SLxS1SS

MCS2

Ch1 Positioner Type

Ch2 Positioner Type

During the configuration of the device each channel must be con-

figured with the type of positioner that is connected to the chan-

nel. The positioner type implicitly gives the controller information

about how to calculate positions, handle the referencing, config-

ure the control-loop, etc.

The MCS2 controller provides sets of standard configuration pa-

rameters for all kinds of SmarAct positioners. For the majority of

applications these predefined types are sufficient. To configure a

positioner type to a channel simply set the Positioner Type prop-

erty.

NOTICE
When the positioner type of a channel is changed, the channel must be cali-

brated to ensure proper operation of the positioner. See section 2.6.1 "Calibrat-

ing" for more information.

Each channel stores the positioner type setting to non-volatile memory. Consequently, there is no

need to configure the positioner type for each session. Only when changing the physical setup

(switching positioners etc.) you must reconfigure (and calibrate) the channel again. Note that the

positioner type is represented by a generic type code instead of the descriptive name string. This

type code must be written to the Positioner Type property to configure the type. The descrip-

tive name may be read with the Positioner Type Name property. Furthermore, the Tuning and

Customizing Properties may be used to read additional information of the configured positioner

type.

Please refer to the MCS2 Positioner Types document for a list of available positioner types.

2.5.1 Custom Positioner Types

In special cases it might be necessary to modify tuning parameters of a positioner type to adapt to

an application perfectly. The MCS2 controller offers this possibility by giving access to the tuning

parameters. Once the tuning is finished the set of parameters may be saved to a custom positioner

type slot. As a safety feature, all tuning properties are write protected by default. This prevents

accidental modification of any parameters. A special key must be written to the Positioner Write

23MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Protection property to unlock the write access to the tuning properties. As long as the write pro-

tection is active, writing to a tuning property will return a SA_CTL_ERROR_PERMISSION_DENIED

error.

Custom positioner type slots are also used to define the control-loop parameters in case an aux-

iliary input is used as feedback signal for the control-loop. Refer to section 2.16.5 "Using Analog

Inputs as Control-Loop Feedback" for more information.

Creating Custom Positioner Types

When tuning a positioner type the first step should be to select one of the predefined positioner

types to act as a template. Note that this step is important to define several internal parameters

which are not user accessible. The predefined positioner type defines e.g. the sensor type (S,

L, M, etc.) and sensor supply voltage as well as the position calculation parameters. After this,

tuning parameters may be modified. As long as the modified positioner type was not saved to a

custom slot, the positioner type is read as 0 to indicate that the modifications are volatile. (The

Positioner Type Name property returns ‘modified‘ in that case.) Powering down the device in this

state will discard the changes made. To save the modified set of parameters use the Save Posi-

tioner Type property. This will save the settings to one of four custom positioner type slots and

set the Positioner Type to the new custom type implicitly.

CAUTION
Configuring inappropriate values may result in unstable or unexpected behavior

of the positioners and potential damage of the stage. Custom tuning must be

used with caution!

The available properties for customizing a positioner type are described in section 4.8 "Tuning and

Customizing Properties".

2.6 Moving Positioners

There are several commands available that induce a movement of a positioner (movement com-

mands). Mainly these are:

• Calibrating (SA_CTL_Calibrate).

• Referencing (SA_CTL_Reference).

• Moving (SA_CTL_Move). Depending on the configured Move Mode this command covers:

– Open-loop movements (Scanning and Stepping)

– Closed-loop movements

• Stopping (SA_CTL_Stop).

24MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

These commands are described in the following sections.

Generally, the base unit for position values is pico meters (pm) for linear positioners and nano

degrees (n°) for rotary positioners.

NOTICE
API functions that involve movement of positioners (such as SA_CTL_Move,

SA_CTL_Calibrate and SA_CTL_Reference) are always sent to the de-

vice asynchronously. Therefore, these functions do not return an acknow-

ledge or error directly. Instead, the movement commands will always gener-

ate a SA_CTL_EVENT_MOVEMENT_FINISHED event where the event param-

eter indicates success or failure. For example, if a closed-loop movement

could not be started due to a missing sensor, the event parameter will be

SA_CTL_ERROR_NO_SENSOR_PRESENT. See section 2.6.7 "Movement Feed-

back" for more information.

2.6.1 Calibrating

Even though every positioner is categorized by its type (which is configured to the channel via

the Positioner Type property, see also section 2.5 "Positioner Types") each individual positioner

may have slightly different characteristics that require the tuning of some internal parameters for

correct operation and optimal results.

The SA_CTL_Calibrate function is used to adapt to these characteristics and automatically de-

tects parameters for an individual positioner. It must be called once for each channel if the me-

chanical setup changes (different positioners connected to different channels). The calibration

data will be saved to non-volatile memory. If the mechanical setup is unchanged, it is not nec-

essary to run the calibration on each initialization, but newly connected positioners have to be

calibrated in order to ensure proper operation.

The calibration routine is only executable by a positioner that has a sensor attached to it. The

sensor must also be enabled or in power save mode (see the Sensor Power Mode property). Oth-

erwise the SA_CTL_EVENT_MOVEMENT_FINISHED event that is generated by the channel will

hold an error code as parameter. The calibration takes a few seconds to complete. During this

time the Channel State bit SA_CTL_CH_STATE_BIT_CALIBRATING is set.

CAUTION
As a safety precaution, make sure that the positioner has enough freedom to

move without damaging other equipment.

Before calling the SA_CTL_Calibrate function the Calibration Options property should be con-

figured to define the behavior of the calibration sequence. This property holds a bit mask which is

outlined in the following table.

25MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Bit Name Short Description

0 Direction Defines the direction in which the positioner

will move for calibration purposes.

1 Detect Distance Code Inversion Activates a special mode that detects the indi-

vidual setup of positioners with multiple ref-

erence marks. For normal calibration this bit

should be set to 0.

2 Advanced Sensor Correction Activates a calibration routine to compensate

periodic sensor errors.

8 Limited Travel Range Allows more than one endstop while calibrat-

ing. Should be used for positioners with lim-

ited travel range, e.g. micro grippers.

3 .. 7, 9 .. 31 Reserved These bits are reserved for future use.

Signal Correction Calibration (calibration options 0x00 or 0x01)

During this calibration routine the positioner will perform a movement of up to several mm in the

configured direction to optimize the position calculation for the sensor signals of the positioner.

The signal correction calibration should not be started near a mechanical end stop. Nonetheless

the calibration sequence automatically detects an endstop and reverts the movement direction

to continue the calibration in the opposite direction. If more than one endstop is detected the

calibration sequence is aborted with an error.

Some positioners (e.g. micro grippers) have a very limited travel range. For these positioners

the movement distance may be too small to successfully finish the calibration.

The SA_CTL_CALIB_OPT_BIT_LIMITED_TRAVEL_RANGE calibration options flag may be used

to increase the number of allowed endstops while calibrating. The calibration sequence then

moves back and forth between the two endstops to perform the signal corrections.

Positioners that are referenced via a mechanical end stop (see section 2.7.4 "Positioners With

Endstop Reference") are moved to the end stop as part of the calibration routine. For this move-

ment the configured Move Velocity and Move Acceleration are used.

Which end stop is used for referencing is defined by the configured Safe Direction instead of the

direction bit of the Calibration Options property. Note that when changing the Safe Direction the

end stop must be calibrated again for proper operation.

As a safety precaution, make sure that the positioner has enough freedom to move without dam-

aging other equipment.

Distance Code Inversion Detection (calibration options 0x02 or 0x03)

This calibration routine may be used to correct the absolute position calculation when referencing

positioners with multiple reference marks. In rare cases the reference algorithm may produce

faulty results due to a reference coding mismatch. These situations may be resolved by executing

this calibration routine.

26MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Advanced Sensor Correction Calibration (calibration options 0x04 or 0x05)

This calibration routine is used to improve the absolute sensor accuracy by compensating the pe-

riodic sensor error. A calibration sequence is needed to generate a compensation table which is

stored in the controller. This calibration must be performed for every channel that should use the

advanced sensor correction. During this calibration routine the positioner will perform a move-

ment of up to several mm in the configured direction. The compensationmay then be activated by

setting the SA_CTL_SIGNAL_CORR_OPT_BIT_ASC bit of the Signal Correction Options property.

NOTICE
The advanced sensor correction needs a feature permission to be activated on

the controller. See section 2.19 "Feature Permissions" for more information.

2.6.2 Referencing

The SA_CTL_Reference function may be used to instruct a positioner to determine its physical

position. It will start to move in the configured search direction and look for a reference. The

positioner must have a sensor attached to it and the sensor must be enabled or in power save

mode in order to perform the referencing sequence (see the Sensor Power Mode property).

Depending on the reference strategy (which is partly predefined by the positioner type and partly

configurable) as well as the individual positioner, the referencing takes some time to complete.

During this time the Channel State bit SA_CTL_CH_STATE_BIT_REFERENCING is set. In case the

reference could not be found the SA_CTL_EVENT_MOVEMENT_FINISHED event that is generated

by the channel will hold an error code as parameter.

Before calling the SA_CTL_Reference function the Referencing Options property can be con-

figured to define the behavior of the reference sequence. This property holds a bit mask with

several options that influence the strategy of how to find the reference. Please refer to section

2.7.1 "Reference Marks" for more information.

Note that reference movements (when successful) generate two events. One when the reference

position has been determined and one after the positioner has come to a stop. The first event is

mainly useful when using the Continue On Reference Found feature (see section 2.7.1 "Reference

Marks").

2.6.3 Open-Loop Movements

There are two types of open-loop movement:

• Scanmovements allow to control the deflection of the piezo element of the positioner directly.

To perform scan movements the Move Mode property must be set to one of the values

SA_CTL_MOVE_MODE_SCAN_ABSOLUTE or SA_CTL_MOVE_MODE_SCAN_RELATIVE.

The scan velocity may be specified with the Scan Velocity property. The SA_CTL_Move func-

tion must be called to start the actual scan movement. The move value parameter of the

27MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

SA_CTL_Move function is then interpreted as target scan position to which to scan to, re-

spectively scan target increment in case of relative scan movement. The valid range for

the scan position is 0 . . . 65 535 for absolute scan positions and −65535 . . . 65 535 for rela-

tive scan increments. Note that for relative scan movements the movement will stop at the

boundary if the resulting absolute scan target exceeds the valid range.

• Step movements allow to perform a burst of steps with the given frequency and amplitude.

To perform step movements the Move Mode must be set to SA_CTL_MOVE_MODE_STEP.

Frequency and amplitude of the generated output signal may be specified with the proper-

ties Step Frequency and Step Amplitude. The SA_CTL_Move function must be called to start

the actual step movement. Themove value parameter of the SA_CTL_Move function is then

interpreted as number of steps. The sign of the value codes the movement direction. The

valid range for the step parameter is −100000 . . . 100000.

The Channel State bit SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING is set while performing scan

or step movements.

2.6.4 Closed-Loop Movements

In order to perform a closed-loop movement the positioner must have a sensor attached to it.

The sensor must also be enabled or in power save mode (see the Sensor Power Mode property).

If this is not the case the SA_CTL_EVENT_MOVEMENT_FINISHED event that is generated by the

channel will hold an error code as parameter.

Before calling the SA_CTL_Move function the Move Mode property must be set to one of the

following values:

• SA_CTL_MOVE_MODE_CL_ABSOLUTE In this mode the move value that is passed to the

SA_CTL_Move function is interpreted as the new absolute target position the positioner

should move to.

• SA_CTL_MOVE_MODE_CL_RELATIVE In this mode the move value that is passed to the

SA_CTL_Move function is added to the current (target) position. The move value of 0 has a

special meaning in this mode: the channel aborts an ongoing movement and actively holds

the current position.

Additionally, the following properties may be configured to modify the behavior of the closed-loop

movement (see also the detailed property descriptions in chapter 4):

• Move Velocity and Move Acceleration

These properties define the velocity resp. the acceleration with which the closed-loop move-

ment is performed. If the move velocity is set to zero (default) then the velocity control is

disabled and the positioner moves to the target position as fast as possible, more precisely,

only limited by the maximum closed-loop frequency (see Max Closed Loop Frequency). Like-

wise, if the acceleration is set to zero (default) then the acceleration control is disabled and

the positioner accelerates and decelerates as fast as possible (only limited by mechanical

factors).

28MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

• Max Closed Loop Frequency

Generally, the channel will not drive the positioner with frequencies above the maximum

allowed frequency. If the maximum frequency is set too low for a certain move velocity, then

the move velocity might not be reached or held. In this case the maximum frequency must

be increased. Be aware that different positioners reach different velocities. If a positioner

is not able to move as fast as the configured move velocity, then the driver will cap at the

maximum driving frequency.

• Hold Time

The channel may be instructed to hold the target position after it has been reached. This

may be useful to compensate for drift effects and the like. The positioner will implicitly

adjust the deflection of the piezo to hold the position if needed. When the piezo element

of the positioner reaches a boundary a single step is performed. While holding the position

the Channel State bit SA_CTL_CH_STATE_BIT_CLOSED_LOOP_ACTIVE is set and the bit

SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING is cleared. After the hold time elapsed the

channel is stopped.

Note that the closed-loop movement is considered finished as soon as the target position is

reached and not when the optional hold time has elapsed.

The endstop detection is still active in holding state. If a positioner is moved away from

the target position by external forces and the channel is not able to hold the target position

for a longer time an endstop is triggered. A SA_CTL_EVENT_HOLDING_ABORTED event is

generated to notify about this and the channel is stopped.

• Control Loop Input

This property defines the feedback signal for the control-loop.

– SA_CTL_CONTROL_LOOP_INPUT_DISABLED The closed-loop operation is disabled.

A SA_CTL_ERROR_CONTROL_LOOP_INPUT_DISABLED error will be generated when

trying to command a closed-loop movement.

– SA_CTL_CONTROL_LOOP_INPUT_SENSOR The channel uses the integrated sensor of

a positioner to calculate the current position. This position is used as input signal for

the control-loop to allow closed-loop position control.

– SA_CTL_CONTROL_LOOP_INPUT_AUX_IN The input signal of an auxiliary input (e.g.

an analog input of an MCS2 IO module) is used as control-loop input.

• Actuator Mode

This mode defines the type of actuator driving signal generation.

– SA_CTL_ACTUATOR_MODE_NORMAL The normal mode is the default mode. It offers

open-loop step movement as well as closed-loop movement.

– SA_CTL_ACTUATOR_MODE_QUIET The quiet mode only allows to perform closed-loop

movement and reduces the noise that is emitted from the positioners while moving. It

is useful in applications where the noise emission is disturbing. The trade-off between

the quiet and the normal mode is the higher heat-dissipation of the controller in quiet

mode. For this reason the quiet mode is not recommended for continuous operation.

29MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

– SA_CTL_ACTUATOR_MODE_LOW_VIBRATION The low vibration mode allows to per-

form closed-loop movements which produce as little vibrations as possible. It is useful

for applications where the high-frequent vibrations of the stick-slip driving principle

cause troubles.

NOTICE
The low vibration mode needs a feature permission to be activated on the

controller. See section 2.19 "Feature Permissions" for more information.

• Positioner Control Options

This property defines several options that apply to closed-loop movements. The property

value is a bit field containing the following independent flags:

Bit Name Short Description

0 Accumulate Relative Position Disabled Disables the relative position accumula-

tion.

1 No Slip Forbid the execution of actuator slips

(steps).

2 No Slip While Holding Forbid the execution of actuator slips

(steps) only while holding the target po-

sition.

3 Forced Slip Disabled Disables the forced slip feature.

4 Stop On Following Error Stop positioner if a following error was

detected.

5 Target To Zero Voltage The driver output voltage is forced to

zero while retaining the target position

after a closed-loop movement.

Undefined flags are unused but might get a meaning in future updates. Undefined flags

should be set to zero. The flags have the following meaning:

Accumulate Relative Positions Disabled (Bit 0) This flag affects the behavior of a posi-

tioner if a relative position command is issued before a previous one has finished. If

relative position commands are to be accumulated (bit cleared, default) then all new

relative position commands are added to the previous target position. Otherwise (bit

set) the movement is executed relative to the position of the positioner at the time of

command arrival.

Example: Say the positioner is currently at its zero position. Two relative movement

commands are issued in fast succession both with +1mm as relative target. With accu-

mulation enabled (default) the final position will be 2mm. With accumulation disabled

the final position will vary (e.g. 1.12mm) depending on when the second command

arrives at the controller.

30MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

No Slip (Bit 1) If this flag is set the actuator driving signal generation will never generate

slips (steps). This means that only scan movement in the range of the piezo is per-

formed for targeting. It might be useful for applications where the vibration of the

piezo slip is unwanted, e.g. while approaching to a probe in the sub micrometer range.

No Slip While Holding (Bit 2) This flag affects the behavior of a positioner if it is instructed

to hold the target position after reaching it (see the Hold Time property). The piezo de-

flection will be adjusted automatically to hold the position. Additionally it may become

necessary to do further steps to hold the position if the deflection of the piezo reaches

a boundary. However, if this is not desired, this flagmay be used to forbid the execution

of steps even if this means that the position can not be held. Note that this flag has no

effect if the No Slip flag (Bit 1) or the Target To Zero Voltage flag (Bit 5) is active.

Forced Slip Disabled (Bit 3) When reaching a target position the channel will try to stop at

approx. 50% of its step size, thus improving the holding feature. This is achieved by

forcing a slip, just before reaching the target position. If this behavior is unwanted it

can be disabled with this flag.

Stop On Following Error (Bit 4) This flag defines if a closed-loopmovement should be stop-

ped as soon as the configured following error is exceeded. Note that this flag has no

effect for movements without velocity control or if the Following Error Limit is set to

zero.

Target To Zero Voltage (Bit 5) If this flag is set a special holding sequence is started after a

target position was reached. The controller will then perform several piezo scan opera-

tions to force the output voltage to zero while retaining the target position. This feature

is e.g. useful for applications where the positioner should be moved to a specific target

position and then should be disconnected from the controller without additional move-

ment of the positioner carriage. (Which usually happens due to the contraction of the

piezo element while discharging from the holding voltage.) Note that the hold thresh-

old for this feature may be configured with the Target To Zero Voltage Hold Threshold

property. If a Hold Time is specified the sequence is repeated whenever the difference

between current position and target position exceeds the configured hold threshold.

Once configured, call the SA_CTL_Move function to start the actual movement. While executing

a closed-loop movement the Channel State bits SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING

and SA_CTL_CH_STATE_BIT_CLOSED_LOOP_ACTIVE are set.

2.6.5 Stopping Movements

The SA_CTL_Stop function may be used to stop any ongoing movement. It also stops the hold

position feature of a closed-loop command. Note that for closed-loop movements with enabled

acceleration control a "stop" command instructs the positioner to come to a halt by decelerating

to zero velocity. A second "stop" command triggers a hard stop.

To command the channel to abort an ongoing movement and actively hold the current position

("enter holding"), set the Move Mode property to SA_CTL_MOVE_MODE_CL_RELATIVE and issue

a SA_CTL_Move command with its move value parameter set to zero. The Hold Time property

must be set to a non-zero value, otherwise the channel is stopped immediately without actively

holding the position.

31MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

A digital input of an I/O module may be used to issue an emergency stop of all channels. See

section 2.17.2 "Emergency Stop Mode" for more information.

2.6.6 Overwriting Movement Commands

Generally, the function calls for movement commands return as soon as the command has been

transmitted to the hardware; the calls do not block as long as the command is in execution. There-

fore, the software is free to issue new commands to the hardware (potentially to other channels)

while the movement is being performed. In particular, new movement commands may also be

sent to the same channel at any time. This will cause the previous movement command to be

implicitly aborted. Note that there is no need to explicitly stop a channel before sending a new

movement command. The new command will simply overwrite the current one.

Note on working with events: Overwriting movement commands (sending movement com-

mands before the command finished event of the previous command has arrived) leads to a race

condition. The second command might arrive just before the first has completed, thus, only one

command complete event is generated (when the second command completes). However, if the

second command arrives just after the first has completed, two command complete events are

generated (one for each command).

Note on working with a Hand Control Module: Special care must be taken when using a hand

control module and a software running on a PC at the same time. The hand control module

sets several movement relevant properties (like move velocity, move acceleration, hold time, step

frequency, step amplitude, etc.) prior to commanding a movement command. Thus user software

must not rely on previously configured parameters since they may have been modified in the

meantime by the hand control module. To be on the safe side, user software may set the Hand

Control Module Lock Options property to disable the control inputs of the hand control module

while its operation.

2.6.7 Movement Feedback

Movement commands are generally executed asynchronously by the device. Particularly, the API

functions do not block for the duration of the execution of the movement. Instead, the functions

simply trigger the start of the movement and the software may perform other tasks while the

positioner is in motion (e.g. tracking the movement and continuously display the current position).

When issuing movement commands it is usually desirable to know if the movement could suc-

cessfully be started and especially when the controller has finished the movement (e.g. found the

reference mark, reached the target position, etc.). Generally, there are two methods of acquiring

this information:

• Polling the Channel State property

• Listening to events

32MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Polling

The Channel State property always indicates the current state of the channel. It may be used to

check whether the positioner is moving, holding, stopped etc. The four lower state bits are of in-

terest in this context. The following table summarizes the valid combinations and their meanings:

Bit 3
Referencing

Bit 2
Calibrating

Bit 1
Closed

Loop Active

Bit 0
Actively

Moving

Activity

0 0 0 0 Stopped

0 0 0 1 Performing an open-loop movement

(stepping or scanning)

0 0 1 0 Holding the current target position

(after a closed-loop movement)

0 0 1 1 Performing a closed-loop movement

(moving to target position)

0 1 0 1 Performing a calibration sequence

1 0 1 1 Performing a reference sequence

Since movement commands are always sent asynchronously to the device, they do not return an

acknowledge or error directly. Instead, events are generated. (See next section.)

If event notifications are not used, the success or failure of a movement command may be deter-

mined by monitoring the SA_CTL_CH_STATE_BIT_MOVEMENT_FAILED bit of the Channel State

property. The flag is set to zero if the movement could successfully be started. If the flag is read as

one an error occurred. The movement could not be started or the execution failed. The reason for

the failure may then be determined by reading the Channel Error property. Note, that the channel

error is reset to SA_CTL_ERROR_NONE by reading the property.

Further state flags may be monitored to indicate if the execution of a movement could not finish.

(E.g. if an endstop was detected while executing the movement). Their meaning is described in

section 2.8.3 "Channel State Flags".

Events

Generally, every movement command (including calibrating and referencing) generates an event

of type SA_CTL_EVENT_MOVEMENT_FINISHED when the execution has finished. Note that a

movement is also considered as "finished" if it could not be started due to an error, e.g. an invalid

parameter or a closed-loop movement could not be executed, because the sensor is offline. In

any case the event parameter will indicate the result of the movement execution. The following

event parameters are possible:

33MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Parameter Meaning

SA_CTL_ERROR_NONE The movement finished with no error. In this case

the event occurs at the time when the movement

has finished, e.g. when reaching the target posi-

tion.

SA_CTL_ERROR_INVALID_PARAMETER The movement could not be executed because a

parameter was invalid.

SA_CTL_ERROR_ABORTED The movement was started, but then aborted by

a stop command. In this case the event occurs

at the time the controller received the stop com-

mand.

SA_CTL_ERROR_NO_SENSOR_PRESENT,

SA_CTL_ERROR_SENSOR_DISABLED

The closed-loop movement could not be started,

because no sensor is (currently) available.

SA_CTL_ERROR_POWER_SUPPLY_DISABLED,

SA_CTL_ERROR_AMPLIFIER_DISABLED

The movement could not be started, because the

power supply / amplifier is disabled.

SA_CTL_ERROR_END_STOP_REACHED The closed-loop movement was started, but could

not be finished normally, because an end stop was

encountered.

SA_CTL_ERROR_FOLLOWING_ERR_LIMIT The closed-loop movement was started, but could

not be finished normally, because an following er-

ror limit was exceeded.

SA_CTL_ERROR_RANGE_LIMIT_REACHED The closed-loop movement was started, but could

not be finished normally, because a range limit

was reached.

SA_CTL_ERROR_BUSY_STREAMING The movement could not be started, because the

channel is currently participating in a trajectory

stream.

The full list of error codes may be found in the appendix A.1 "Error Codes".

2.7 Defining Positions

Since position calculation is done on an incremental basis, the MCS2 controller has no way of

knowing the physical position of a positioner after a system power-up. It simply assumes its start-

ing position as the zero position.

However, in many applications it is convenient to define a certain physical position as the zero

position. The Position property may be set for this purpose. It defines the current position to have

an arbitrary value. This can be the zero position or any other position (it is possible to have the

zero position outside the complete travel range of the positioner).

Figure 2.4 shows an example of a linear positioner. (a) shows the situation after a system power-

up. The positioner assumes its current position as zero. (b) shows the situation after the Position

property was set. The current position has been defined to +3mm and the measuring scale is

shifted accordingly.

34MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Figure 2.4: Scale Shift

2.7.1 Reference Marks

In the example above the physical position of a positioner must be determined by some external

method and then configured to the system. Moreover, this procedure must be done on every

system power-up.

To overcome this inconvenience the SA_CTL_Reference function may be used to determine the

physical position in an automated fashion. After this the controller will return position values ac-

cording to the positioner’s physical measuring scale (but see section 2.7.5 "Shifting the Measuring

Scale").

Regarding the referencing, positioner types fall into one of three possible categories:

• Single Reference Marks The reference mark of positioners with a single mark is usually

located near the middle of the travel range. The positioner will have to move to this mark in

order to know its physical position.

• Multiple Reference Marks Positioners of this type may calculate their physical position

by measuring the distance between two adjacent marks. This has the advantage that the

positioner typically only has to move a few milli meters before knowing its physical position

which is exceptionally useful when using positioners with very long travel ranges.

• Endstop Reference Type Positioners without any reference marks may use the mechanical

endstop at the end of their travel range as a known physical position.

The behavior of the positioner while referencing depends on the positioner type that is attached

to the channel (see Positioner Type property) as well as the configured referencing options (see

Referencing Options property). The referencing options modify the behavior of the referencing

algorithm. Currently, the following bits are available:

Table 2.1 – Referencing Options Bits

Bit Name Short Description

0 Start Direction Defines the direction in which the positioner will start

to look for a reference.

Continued on next page

35MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Table 2.1 – Continued from previous page

Bit Name Short Description

1 Reverse Direction Only relevant for positioners that have multiple refer-

ence marks. Will reverse the search direction as soon

as the first reference mark is found.

2 Auto Zero The current position is set to zero upon finding the

reference position.

3 Abort On End Stop Will abort the referencing on the first end stop that is

encountered.

4 Continue On Reference Found Will not stop the movement of the positioner once

the reference is found. The positioner must be

stopped manually.

5 Stop On Reference Found Will stop the movement of the positioner immedi-

ately after finding the reference.

6 .. 31 Reserved These bits are reserved for future use.

NOTICE
Basically, the different mode flags may be combined to obtain a flexible behav-

ior when referencing positioners. However, bits 4 and 5 cannot be combined.

If both bits are set then the Stop On Reference Found (bit 5) has priority over

Continue On Reference Found (bit 4). See the detailed description of the mode

flags below.

When the SA_CTL_Reference command has completed successfully, the system knows the

physical position of the positioner (see SA_CTL_CH_STATE_BIT_IS_REFERENCED of the Chan-

nel State property).

2.7.2 Positioners With Single Reference Marks

This section describes the behavior while referencing positioners with only one reference mark in

more detail. The images on the right side illustrate the behavior of an example positioner that

is being referenced. The vertical x-axis represents the travel range of the positioner. The square

brackets indicate mechanical end stops. The dashed line indicates the position of the reference

mark.

In the examples the positioner always starts at position 0 and the physical position is unknown (red

line). Once the reference mark has been found the physical position will become known (green

line). It is assumed that the physical zero position is on the reference mark.

Default Behavior (reference mode 0b00000000)

36MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

By default the positioner will start to move in forward (positive) direction

and look for a reference mark. As soon as the positioner has passed over

the reference mark the internal position will be updated. This is indicated

by the second x-axis having a different scale shift.

The small overshoot represents the reaction time of the positioner stopping.

The amount of the overshoot depends on factors like the velocity with which

the referencing is performed, the mass that is mounted on the positioner

or a possibly configured acceleration control (in which case it takes some time to decelerate the

positioner).

The positioner will turn around and move to the exact location of the reference mark. After this

the referencing is complete.

Inverted Start Direction (reference mode 0b00000001)

Same as the default referencing, with the difference that the positioner will

start to move in backward direction and look for a reference mark.

In this example the positioner will encounter a physical end stop before find-

ing the mark. The positioner will automatically reverse its search direction at

the end stop and continue to look for the reference mark.

Note: If the positioner encounters a second end stop then the reference

algorithm will be aborted. The positioner is stopped and an error event is

generated. Reasons for this situation may be a mechanical or electrical de-

fect (the controller does not register the reference signal for some reason) or the referencemark is

outside the physical range of the positioner (e.g. the positioner has bumped against an obstacle).

Abort On End Stop (reference mode 0b00001000)

t

x

0

As described above, by default the positioner will start to look for a reference

mark in the start direction and reverse the search direction if a physical end

stop is detected.

If the abort on end stop flag is set then the positioner will not reverse the

search direction on detecting a physical end stop. Instead it will stop and

generate an error which means that the referencing is aborted and consid-

ered as failed.

This setting may be useful when it is necessary to forbid the movement of

the positioner in a direction other than the initial search direction.

Continue On Reference Found (reference mode 0b00010000)

37MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Compared to the default referencing behavior this flag causes the positioner

to continue to move in the current search direction after the reference has

been found. The positioner does not stop or even turn around to return to

the exact location of the reference mark. Instead the positioner must be

stopped manually (or it is implicitly stopped by a physical end stop).

This setting may be useful e.g. when referencing several positioners syn-

chronously that are mechanically connected in a parallel kinematic. A setup

like this could cause one positioner to block and therefore fail to reference if another positioner

has stopped because it has already found its reference mark.

Stop On Reference Found (reference mode 0b00100000)

t

x

0

0

x

Compared to the default referencing behavior this flag causes the positioner

to stop moving as soon as the reference has been found. The positioner

does not turn around and return to the exact location of the reference mark.

Instead the positioner simply stops where it is.

This implies that due to the small overshoot described above the positioner

will not come to stop exactly on the reference mark. Since in these examples

the zero position is on the referencemark, the position will not be zero after

the referencing has completed.

2.7.3 Positioners With Multiple Reference Marks

This section describes the behavior while referencing positioners with multiple reference marks

in more detail. The general principle is that the positioner must pass over two adjacent reference

marks. The physical position may then be determined by measuring the distance between these

two marks. This method reduces the distance a positioner has to travel to determine its physical

position compared to single reference marks, especially when operating with positioners with very

long travel ranges.

As in the previous section the images on the right side illustrate the behavior of an example po-

sitioner that is being referenced. The vertical x-axis represents the travel range of the positioner.

The square brackets indicate mechanical end stops. The dashed line indicates the positions of the

reference marks.

In the examples the positioner always starts at position 0 and the physical position is unknown (red

line). Once the reference mark has been found the physical position will become known (green

line). The auto-zero flag is assumed to be set so the position will be set to zero once the physical

position has been determined.

Default Behavior (with auto-zero, reference mode 0b00000100)

38MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

t

x

0

x

0

By default the positioner will start to move in forward (positive) direction

and look for a reference mark. When the positioner has found the first ref-

erence mark it will continue to move in forward direction and look for a

second mark. As soon as the positioner has passed over the second refer-

ence mark the internal position will be updated (in this case set to 0 due to

the auto-zero flag). This is indicated by the second x-axis having a different

scale shift.

As in the previous examples the small overshoot represents the reaction time of the positioner

stopping. The amount of the overshoot depends on factors like the velocity with which the refer-

encing is performed, the mass that is mounted on the positioner or a possibly configured acceler-

ation control (in which case it takes some time to decelerate the positioner).

The positioner will turn around andmove to the exact location of the second referencemark. After

this the referencing is complete.

Inverted Start Direction (with auto-zero, reference mode 0b00000101)

t

x

0

0

x

Same as the default referencing, with the difference that the positioner will

start to move in backward direction and look for two reference marks.

In this example the positioner passes over the first reference mark, but en-

counters a physical end stop before finding the secondmark. The positioner

will automatically reverse its search direction at the end stop and restart

looking for a first reference mark.

As in the previous section please note that if the positioner should encounter

a second end stop then the reference algorithm will be aborted. The posi-

tioner is stopped and an error event is generated. Reasons for this situation may be a mechanical

or electrical defect (the controller does not register the reference signal for some reason) or the

available travel range does not cover two reference marks (e.g. the positioner has bumped against

an obstacle).

Reverse Direction (with auto-zero, reference mode 0b00000110)

t

x

0

x

0

In this mode the positioner will start to move in forward (positive) direction

and look for a reference mark. When the positioner has found the first

reference mark it will reverse the movement direction and look for a second

mark. As soon as the positioner has passed over the second reference mark

the internal position will be updated (in this case set to 0 due to the auto-

zero flag). This is indicated by the second x-axis having a different scale

shift.

As in the previous examples the small overshoot represents the reaction

time of the positioner stopping. The amount of the overshoot depends on factors like the velocity

with which the referencing is performed, the mass that is mounted on the positioner or a possibly

configured acceleration control (in which case it takes some time to decelerate the positioner).

39MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

The positioner will turn around andmove to the exact location of the second referencemark. After

this the referencing is complete.

This mode may further reduce the distance traveled by the positioner to determine its physical

position.

2.7.4 Positioners With Endstop Reference

This section describes the behavior while referencing positioners with an endstop reference type

in more detail. The general principle is to move the positioner towards one end of the travel range

until a mechanical endstop is detected. The sensor signals are then used to align the position to

the reference position with high repeat accuracy.

For these types of positioners the physical measuring scale is defined such that the zero posi-

tion lies near the mechanical end stop that is used for referencing. Note that the scale therefore

depends on the Safe Direction as well as the Logical Scale Inversion setting.

Positioners with an endstop reference type use the additional Safe Direction property to define

the direction of the referencing movement instead of the start direction bit of the Referencing

Options property.

All Referencing Options flags except the auto-zero flag are ignored when referencing towards an

endstop.

NOTICE
Note that the end stop must be calibrated with SA_CTL_Calibrate before it

can be properly used as a reference point.

Default Behavior (with auto-zero, reference mode 0b0000100)

t

x

0

x

0

In this mode the positioner will start moving towards the configured Safe

Direction and look for a mechanical end stop. In this example the Safe Di-

rection is assumed to be set to forward (positive) direction.

Once the positioner has found the mechanical end stop it will move a short

distance away from the end stop to find the exact reference using the posi-

tion that was determined while calibrating the endstop.

As in the previous section the images on the right side illustrate the behavior

of an example positioner that is being referenced. The vertical x-axis repre-

sents the travel range of the positioner. The square brackets indicate mechanical end stops.

In the examples the positioner starts at position 0 and the physical position is unknown (red line).

Once the positioner is referenced the physical position will become known (green line). The auto-

zero flag is assumed to be set so the position will be set to zero once the physical position has

been determined.

40MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.7.5 Shifting the Measuring Scale

The physical measuring scale of a positioner is fix and cannot be changed. However, the MCS2

controller uses a logical measuring scale when calculating positions. The logical measuring scale

may be shifted and/or inverted by the user so that the controller returns a desired position value

at a certain physical position.

The relation between the physical and the logical scale is defined by two parameters. The offset

value (which represents the shift) and the inversion value (which inverts the count direction) of the

logical scale relative to the physical scale. The default value of the offset and the inversion is zero

which makes the physical and the logical scale identical.

There are two methods to modify the offset value:

• Writing the Position property sets the offset implicitly by shifting the logical scale so that the

current position equals the desired value.

• Writing the Logical Scale Offset property sets the offset explicitly and the current position

will have a value that reflects the new scale shift.

The inversion value may be set by writing the Logical Scale Inversion property.

The offset and inversion values are stored in non-volatile memory. Once it is configured you only

need to call the SA_CTL_Reference function to restore your settings on future power-ups.

Note: The behavior of the system when writing the Position property differs slightly depending on

whether the physical position is known or not. When the physical position is unknown then writing

the Position property will not update the scale offset value in the non-volatile memory. Likewise,

writing the Logical Scale Offset property will have no immediate effect on the values read from the

Position property. The following table summarizes the behavior.

Physical position is known Physical position is unknown

Set Position Set Logical Scale Set Position Set Logical Scale

offset value is written

to non-volatile mem-

ory

yes yes no yes

function call has im-

mediate effect on po-

sition values

yes yes yes no

2.8 State Flags

2.8.1 Device State Flags

The device state may be read from the Device State property. The following flags are defined:

41MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Bit C-Definition Mask

0 SA_CTL_DEV_STATE_BIT_HM_PRESENT 0x0001

1 SA_CTL_DEV_STATE_BIT_MOVEMENT_LOCKED 0x0002

8 SA_CTL_DEV_STATE_BIT_INTERNAL_COMM_FAILURE 0x0100

12 SA_CTL_DEV_STATE_BIT_IS_STREAMING 0x1000

HM Present (bit 0)

This flag indicates that a Hand Control Module is attached to the device.

Movement Locked (bit 1)

This flag indicates that the device is locked due to an emergency stop condition. (see section 2.17.2

"Emergency Stop Mode")

Internal Communication Failure (bit 8)

This flag indicates that an internal communication failure has occurred.

Is Streaming (bit 12)

This flag indicates that the device is currently performing a trajectory stream (see section 2.15

"Trajectory Streaming").

2.8.2 Module State Flags

The module state may be read from the Module State property. The following flags are defined:

Bit C-Definition Mask

0 SA_CTL_MOD_STATE_BIT_SM_PRESENT 0x0001

1 SA_CTL_MOD_STATE_BIT_BOOSTER_PRESENT 0x0002

2 SA_CTL_MOD_STATE_BIT_ADJUSTMENT_ACTIVE 0x0004

3 SA_CTL_MOD_STATE_BIT_IOM_PRESENT 0x0008

8 SA_CTL_MOD_STATE_BIT_INTERNAL_COMM_FAILURE 0x0100

12 SA_CTL_MOD_STATE_BIT_HIGH_VOLTAGE_FAILURE 0x1000

13 SA_CTL_MOD_STATE_BIT_HIGH_VOLTAGE_OVERLOAD 0x2000

14 SA_CTL_MOD_STATE_BIT_OVER_TEMPERATURE 0x4000

42MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

SM Present (bit 0)

This flag indicates whether a Sensor Module is currently attached to the Driver Module.

Booster Present (bit 1)

This flag indicates whether the Driver Module is equipped with a booster for high current signal

output.

Adjustment Active (bit 2)

This flag indicates whether the module is performing an adjustment for the SmarAct PicoScale

Laserinterferometer.

I/O Module Present (bit 3)

This flag indicates whether the Driver Module is equipped with an I/O Module.

Internal Communication Failure (bit 8)

This flag indicates that an internal communication error has occurred.

High Voltage Failure (bit 12)

This flag indicates that the module detected a power supply failure.

High Voltage Overload (bit 13)

This flag indicates that the module detected a power supply overload condition.

Over Temperature (bit 14)

This flag indicates that the module detected an over temperature condition.

43MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.8.3 Channel State Flags

The channel state may be read from the Channel State property. The following flags are defined:

Bit C-Definition Mask

0 SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING 0x0001

1 SA_CTL_CH_STATE_BIT_CLOSED_LOOP_ACTIVE 0x0002

2 SA_CTL_CH_STATE_BIT_CALIBRATING 0x0004

3 SA_CTL_CH_STATE_BIT_REFERENCING 0x0008

4 SA_CTL_CH_STATE_BIT_MOVE_DELAYED 0x0010

5 SA_CTL_CH_STATE_BIT_SENSOR_PRESENT 0x0020

6 SA_CTL_CH_STATE_BIT_IS_CALIBRATED 0x0040

7 SA_CTL_CH_STATE_BIT_IS_REFERENCED 0x0080

8 SA_CTL_CH_STATE_BIT_END_STOP_REACHED 0x0100

9 SA_CTL_CH_STATE_BIT_RANGE_LIMIT_REACHED 0x0200

10 SA_CTL_CH_STATE_BIT_FOLLOWING_LIMIT_REACHED 0x0400

11 SA_CTL_CH_STATE_BIT_MOVEMENT_FAILED 0x0800

12 SA_CTL_CH_STATE_BIT_IS_STREAMING 0x1000

14 SA_CTL_CH_STATE_BIT_OVER_TEMPERATURE 0x4000

15 SA_CTL_CH_STATE_BIT_REFERENCE_MARK 0x8000

Actively Moving (bit 0)

The channel is actively moving the positioner (open-loop or closed-loop).

Closed Loop Active (bit 1)

The channel is in closed-loop operation using sensor feedback (moving or holding the position).

Calibrating (bit 2)

The channel is busy performing a calibration sequence.

Referencing (bit 3)

The channel is busy performing a find reference sequence.

44MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Move Delayed (bit 4)

The channel is waiting for the sensor to power-up before executing the movement command. This

flag may be active if the sensor is operated in power save mode.

Sensor Present (bit 5)

A positioner with integrated sensor is attached to the channel. This indicates whether closed-loop

movements may be performed.

Is Calibrated (bit 6)

The channel has valid signal correction calibration data for the configured positioner type. This flag

is cleared when the positioner type is changed. It becomes one after a signal correction calibration

sequence finished successfully.

Is Referenced (bit 7)

The channel "knows" its physical (absolute) position. After a power-up the physical position is

unknown. After the reference mark has been found by calling SA_CTL_Reference the physical

position becomes known.

End Stop Reached (bit 8)

The target position of a closed-loop movement command could not be reached because a me-

chanical end stop was detected. The positioner was stopped. The flag is cleared when a new

movement command respectively stop command is issued.

Range Limit Reached (bit 9)

The positioner left the software configured range limit. The positioner was stopped. The flag is

cleared when a new movement command respectively stop command is issued.

Following Limit Reached (bit 10)

The positioners following error exceeded the configured limit. The flag is cleared when a new

movement command respectively stop command is issued.

Movement Failed (bit 11)

The last movement command failed. The Channel Error property may be read to determine the

reason for the error.

45MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Is Streaming (bit 12)

The channel is currently participating in a trajectory stream. As long as this flag is set the channel

is unavailable for movement or configuration commands.

Over Temperature (bit 14)

The channel detected an over temperature condition.

Reference Mark (bit 15)

This flag reflects the state of the reference mark signal of the sensor.

2.9 Sensor Power Modes

In order for a positioner to track its position, its sensor needs to be supplied with power. How-

ever, since this generates heat (causing drift effects), it might be desirable to disable the sensors

in some situations (especially in temperature critical environments). For this, there are three dif-

ferent modes of operation for the sensor, which may be configured individually for each channel

with the Sensor Power Mode property. The following modes are available:

• Disabled In this mode the power supply of the sensor is turned off. This avoids the gener-

ation of heat by the sensor. Movement commands that require sensor feed back (such as

closed-loop movements, referencing or calibrating) will not be executed. Instead, the gen-

erated SA_CTL_EVENT_MOVEMENT_FINISHED event holds an error code informing about

the sensor state.

Besides avoiding heat generation this mode may also be useful if the light that is emitted

by the sensor interferes with other components of your setup (e.g. detectors inside an SEM

chamber).

• Enabled In this mode the sensor is supplied with power continuously. All movement com-

mands are executed normally.

• PowerSave If set to this mode the power supply of the sensor will be handled by the channel

automatically. If the positioner is idle the sensor will be offline most of the time, avoiding

unnecessary heat generation. A movement command (open-loop or closed-loop) will cause

the channel to activate the sensor before the movement is started. Since it takes a few

milliseconds to power-up the sensor, the movement will be delayed. The Channel State bit

SA_CTL_CH_STATE_BIT_MOVE_DELAYED is set during this time.

Figure 2.5 illustrates the different sensor modes and shows when the sensor is supplied with

power.

In this example the sensor mode is initially set to enabled. The sensor is continuously supplied

with power. At time t1 the sensor mode is switched to power save. In this mode the channel starts

to pulse the power supply of the sensor to keep the heat generation low. At time t2 a movement

command is issued, which requires the sensor to be online in order to keep track of the current

46MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

enabled power save disabled
Sensor
Mode

Sensor
Power
Supply

tt1 t2 t4 t5

on

off

t3

Figure 2.5: Sensor Modes

position. Note that the sensor mode stays unchanged during this time. After the movement has

finished (t3) an additional delay is started. While this delay the sensor stays online. (See the Sensor

Power Save Delay property.) As soon as the delay time has elapsed (t4) the channel will start to

pulse the power supply again. At time t5 the sensor mode is switched to disabled, in which the

power supply is turned off continuously.

NOTICE
The sensor must be in Enabled or PowerSavemode for the sensor-present detec-

tion to be active. Accordingly, the SA_CTL_CH_STATE_BIT_SENSOR_PRESENT

is not updated as long as the sensor is Disabled.

NOTICE
When in PowerSave or Disabled mode the positioner should not be moved by

external means (e.g. by hand)! Since in these modes the power supply of the

sensor is off most of the time or even continuously, the controller is not able to

detect suchmovements. As a consequence the position data will become invalid.

Furthermore, no error can be generated.

2.10 PicoScale Sensor Module

TheMCS2 supports the SmarAct PicoScale laser interferometer as a high precision sensor module.

This section explains the differences when using a PicoScale instead of the MCS2 sensor module.

For a detailed description and setup of the PicoScale refer to the PicoScale User Manual.

For connecting the PicoScale to the MCS2 a special adapter cable (MCS2-A-PS-CABLE-1.5M-1.5M)

is required. The adapter cable connects to the MCS2 and splits the high voltage output to three

connections for positioners and forwards the data connection to the PicoScale.

When the PicoScale is connected to the MCS2, it is reported as a connected sensor module in the

Module State Flags. Since the MCS2 only knows the sensor present flag in the Channel State Flags,

but the PicoScale uses a number of different flags to indicate the system state, these flags are

merged in theMCS2 context. For the sensor present flag to become active the following conditions

must be met:

47MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

• System stable

• Channel enabled

• Channel data valid

• Beam not interrupted

For most of these flags to become active the channel needs to be adjusted. The adjustment can

be performed using the PicoScale GUI or the MCS2 hand control module.

By default the MCS2 will use the PicoScale position data source as input for the control-loop.

Alternatively, the calculation system can be selected as the input using the Sensor Input Select

property. Note that the mapping between PicoScale calculation systems and MCS2 channels is

static. The output of calculation system 0 of the PicoScale is used as input for channel 0 of the

MCS2. Accordingly, calcSys 1 is used for channel 1 and calcSys 2 is used for channel 2.

When using the calculation system as input the conditions for the sensor present flag are as fol-

lows:

• System stable

• Calculation system data not interrupted

2.11 Following Error Detection

The following error detection feature may be used to inform the application if a commanded tra-

jectory cannot be followed by a positioner precisely enough. The following error is, at a given time,

the difference between the target position and the actual position while performing closed-loop

movements. The positioner will always have a non-zero following error. The control-loop is tuned

to reduce this error to its minimum. To enable the detection:

• The Following Error Limit property must be set to a non-zero value.

• The velocity control must be enabled (see Move Velocity).

The limit value is given in pm for linear positioners and in n° for rotary positioners. As soon as

the configured limit is exceeded during a movement a SA_CTL_EVENT_FOLLOWING_ERR_LIMIT

event is generated and the SA_CTL_CH_STATE_BIT_FOLLOWING_LIMIT_REACHED bit of the

Channel State property will be set to one. The flag remains set until a new movement (or a

SA_CTL_Stop) is commanded. Optionally the movement may be stopped automatically if the

limit is exceeded. The SA_CTL_POS_CTRL_OPT_BIT_STOP_ON_FOLLOWING_ERR bit of the Po-

sitioner Control Options property must be set to one to stop the movement. In this case two

events are generated. Firstly, the above mentioned SA_CTL_EVENT_FOLLOWING_ERR_LIMIT,

secondly a SA_CTL_EVENT_MOVEMENT_FINISHED event. The latter will have its parameter set

to SA_CTL_ERROR_FOLLOWING_ERR_LIMIT.

Note that the detection is not active during referencing movements.

48MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.12 Software Range Limit

While linear positioners have a limited physical travel range it might be useful to further limit this

range if the positioner must not be allowed to move beyond a certain point. Rotary positioners

usually have no physical end stops, but e.g. wiring may require to limit the rotation here as well.

For these situations the MCS2 controller offers to limit the travel range of a positioner by software.

By default no range limit is set. To enable the range checks, the Range Limit Max property must

be set to a higher value than the Range Limit Min property. Once the limits are set the positioner

will not move beyond the boundaries of the range limit. This affects all movements except scan

movements. If a movement command is issued that move the positioner beyond the defined

limit then the positioner is stopped. A SA_CTL_EVENT_MOVEMENT_FINISHED event with its pa-

rameter set to SA_CTL_ERROR_RANGE_LIMIT_REACHED is generated and the Channel State bit

SA_CTL_CH_STATE_BIT_RANGE_LIMIT_REACHED will be set to one. The flag remains set until

a new movement (or a SA_CTL_Stop) is commanded. Further movements are only allowed if

they move the positioner in the direction pointing back inside the range limit. This also applies if

the positioner has been moved outside the defined range limit by external means.

Both the minimum and maximum position of the range limit behave similarly to a physical end

stop. For example, the SA_CTL_Reference command will reverse its movement direction while

looking for the referencemark if a range limit boundary is reached. If the referencemark is located

outside the range limit then it will not be found.

Please note the following restrictions:

• The Range Limit Min and Range Limit Max properties are not saved to non-volatile memory

and must be configured in each session.

• The range limits are not checked while performing the SA_CTL_Calibrate function for

the signal correction calibration.

• The range limit has a limited accuracy. The positioner may pass over the boundary by a few

micro meters resp. milli degrees. Therefore, the range should be defined with sufficient

tolerance.

NOTICE
Setting the Position (as well as the Logical Scale Offset and Logical Scale Inver-

sion properties) does not automatically adjust the software range limit accord-

ingly. This means that shifting the measurement scale of the positioner with

these commands will also shift the physical position of the software range limit.

Therefore, care should be taken when working with these commands.

2.13 Stop Broadcasting

This feature can be used to broadcast a stop command to all channels on the MCS2 controller

when a channel

49MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

• detects a mechanical end stop,

• reaches a software range limit (see section 2.12 "Software Range Limit") or

• exceeds a following error limit (see section 2.11 "Following Error Detection").

It is typically useful when multiple channels are moving simultaneously and one of the above

conditions on one channel should cause a halt on all other channels. The channel that caused

the broadcast stop generates a SA_CTL_EVENT_MOVEMENT_FINISHED event with its parameter

holding the reason for the stop. (SA_CTL_ERROR_END_STOP_REACHED,

SA_CTL_ERROR_RANGE_LIMIT_REACHED or SA_CTL_ERROR_FOLLOWING_ERR_LIMIT)

All other (currently moving) channels will be stopped and generate a

SA_CTL_EVENT_MOVEMENT_FINISHED event with its parameter set to

SA_CTL_ERROR_ABORTED.

NOTICE
A channel’s behavior for a broadcast stop is the same as when executing a sin-

gle SA_CTL_Stop command. Thus channels moving with acceleration control

active may not come to halt immediately.

2.13.1 Stop Broadcast Configuration

The Broadcast Stop Options property defines the behavior of the broadcast stop feature. It holds

a bit mask with the following mode bits:

Bit Name Short Description

0 End Stop Reached Broadcast stop command if a mechanical end stop was

detected.

1 Range Limit Reached Broadcast stop command if a range limit was reached.

2 Following Limit Reached* Broadcast stop command if a following error limit was ex-

ceeded.

3 .. 31 Reserved These bits are reserved for future use. Should be set to

zero.

*Note that the SA_CTL_POS_CTRL_OPT_BIT_STOP_ON_FOLLOWING_ERR bit of the Positioner

Control Options property must be set to one to stop the movement and subsequently generate a

broadcast stop on a following error limit.

Example

The example code below configures the device to issue a broadcast stop if channel 0 reaches an

end stop or a Software Range Limit (±2mm).

50MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

SA_CTL_Result_t result;

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_RANGE_LIMIT_MIN, -2e9);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_RANGE_LIMIT_MAX, 2e9);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_BROADCAST_STOP_OPTIONS,

(SA_CTL_STOP_OPT_BIT_END_STOP_REACHED |

SA_CTL_STOP_OPT_BIT_RANGE_LIMIT_REACHED)

);

if (result) { /* handle error, abort */ }

2.14 Command Groups

When issuing movement or configuration commands they usually target a single channel of the

device. However, when trying to move several channels synchronously communication delays

induce a time offset of the resulting movements.

Command groups offer the possibility to define an atomic group of commands that is executed

synchronously. In addition, a command group may not only be triggered via software, but alter-

natively via an external trigger.

To define a command group simply surround the commands that should be grouped with calls to

the SA_CTL_OpenCommandGroup and SA_CTL_CloseCommandGroup functions and pass the

transmit handle received from the SA_CTL_OpenCommandGroup function to all commands to be

grouped.

For example, consider the code sequence below that configures two channels with the closed-loop

absolute move mode and then moves both channels to some target position. (For simplicity the

function return values are not handled in this example.)

SA_CTL_RequestWriteProperty_i32(

dHandle,

0,

SA_CTL_PKEY_MOVE_MODE,

SA_CTL_MOVE_MODE_CL_ABSOLUTE,

&rID0,

0

);

SA_CTL_RequestWriteProperty_i32(

dHandle,

51MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

1,

SA_CTL_PKEY_MOVE_MODE,

SA_CTL_MOVE_MODE_CL_ABSOLUTE,

&rID1,

0

);

SA_CTL_Move(dHandle,0,1000000,0);

SA_CTL_Move(dHandle,1,2000000,0);

SA_CTL_WaitForWrite(dHandle,rID0);

SA_CTL_WaitForWrite(dHandle,rID1);

The next code snippet shows the same example, but the commands are put into a command

group (changes are colored).

SA_CTL_TransmitHandle_t txHandle;

SA_CTL_OpenCommandGroup(dHandle,&txHandle

,SA_CTL_CMD_GROUP_TRIGGER_MODE_DIRECT);

SA_CTL_RequestWriteProperty_i32(

dHandle,

0,

SA_CTL_PKEY_MOVE_MODE,

SA_CTL_MOVE_MODE_CL_ABSOLUTE,

&rID0,

txHandle

);

SA_CTL_RequestWriteProperty_i32(

dHandle,

1,

SA_CTL_PKEY_MOVE_MODE,

SA_CTL_MOVE_MODE_CL_ABSOLUTE,

&rID1,

txHandle

);

SA_CTL_Move(dHandle,0,1000000,txHandle);

SA_CTL_Move(dHandle,1,2000000,txHandle);

SA_CTL_CloseCommandGroup(dHandle,txHandle);

SA_CTL_WaitForWrite(dHandle,rID0);

SA_CTL_WaitForWrite(dHandle,rID1);

As a result the commands are treated as one command and the movements of both channels

start synchronously (in this case as soon as the command group is closed, since the direct trigger

mode is used).

One important thing to notice is that the SA_CTL_WaitForWrite function calls must be issued

after the command group was closed. Otherwise the function calls will block. The same applies to

commands that read properties from the device: put the SA_CTL_RequestReadProperty calls

into the command group, but issue e.g. SA_CTL_ReadProperty_i32 calls after the group close.

Note that synchronous property accesses cannot be put into a command group. Only the following

commandsmay be added to command groups by passing the transmit handle to the function call:

• SA_CTL_RequestReadProperty

52MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

• SA_CTL_RequestWriteProperty_i32

• SA_CTL_RequestWriteProperty_i64

• SA_CTL_RequestWriteProperty_s

• SA_CTL_Calibrate

• SA_CTL_Reference

• SA_CTL_Move

• SA_CTL_Stop

In addition note that not all properties may be added to command groups. If a property is group-

able or not is indicated in the detailed property description (See chapter 4 "Property Reference").

2.14.1 Command Groups vs. Output Buffer

Output buffer (as described in the High-Throughput Asynchronous Access for properties) are quite

similar to command groups. However, there are still some differences which are outlined in the

following.

• TriggeringWhile output buffer are executed as soon as they are flushed, command groups

may alternatively be triggered via an external trigger.

• Size Limit Command groups are somewhat limited in size regarding the number of com-

mands that may be put into them. Output buffer are (theoretically) unlimited in size.

• AtomicityOutput buffer simply try to optimize communication, but still treat the commands

independently from each other. Output buffer are flushed on library level. In contrast, com-

mand groups optimize both communication and synchronized execution. They are flushed

on controller level.

2.15 Trajectory Streaming

Trajectory streaming allows a multi DoF manipulator to follow specific trajectories using the MCS2

controller. All participating positioners aremoved synchronously along the defined trajectory. This

section describes the concepts of trajectory streaming and how an application program must use

the API to perform a trajectory movement.

A trajectory movement requires special (user) software to pre-calculate support points of the tra-

jectory (although the support points might also be calculated "on the fly"). These support points

are then streamed to the controller which takes care of executing a synchronized movement of all

participating channels.

53MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.15.1 General Streaming Concept

A trajectory stream is defined as a sequence of support points (frames). Each frame is a tuple

of target positions for all channels that participate in the trajectory. Each target position in turn

is a tuple of a channel index and a position value. Position values are given as a 64-bit integer

value in little-endian format, representing pico meters for linear positioners and nano degrees

for rotary positioners. All values are given as absolute (not relative) position values. Figure 2.6

shows the general format of a trajectory stream and figure 2.7 shows an example trajectory with

the according binary stream data.

The timing with which the frames are executed is defined by the stream rate that is configurable by

the user. This rate is constant for the duration of the stream.

ix pos

Stream

Frame

frame 0 frame 1 frame n-2 frame n-1

target 0 target 1 target m-2 target m-1

Target

Figure 2.6: Trajectory Stream Format

5 10 15

5

10

15

Ch0
[µm]

Ch1
[µm]

Frame 0

n = 13
m = 2

Frame 12

0080841e00000000000180841e00000000000x0000

Offset Data

00c0c62d00000000000100093d00000000000x0012

00404b4c000000000001808d5b00000000000x0024

00c0cf6a000000000001c0cf6a00000000000x0036

0000127a00000000000140548900000000000x0048

0000127a000000000001c0d8a700000000000x005a

00405489000000000001405dc600000000000x006c

00c0d8a7000000000001c0e1e400000000000x007e

00405d650000000000010024f400000000000x0090

00c0e1e4000000000001c0e1e400000000000x00a2

000024f4000000000001405dc600000000000x00b4

00c0e1e4000000000001c0d8a700000000000x00c6

00405dc600000000000140548900000000000x00d8

Frame 0
Frame 1
Frame 2
Frame 3
Frame 4
Frame 5
Frame 6
Frame 7
Frame 8
Frame 9
Frame 10
Frame 11
Frame 12

Channel
Index

Position

Figure 2.7: Trajectory Stream Example

Streaming Rules

When using trajectory streaming some rules must be heeded that are described in the following:

• Only one trajectory may be performed at a time. Suppose you have six channels available

that are divided into two XYZ manipulators (A and B). Then you could start a trajectory with

manipulator A. During this time it is not allowed to start a stream for manipulator B. If both

manipulators are to be synchronized then the streammust contain all six channels from the

beginning.

54MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

• The first frame of a stream defines which channels participate in the stream. All further

frames must contain the same channels (in the same order). Otherwise a stream error is

generated.

• A trajectory stream must consist of at least two frames (start frame and end frame).

• The movement between the support points is linearly interpolated by the controller (this

is the default setting, see subsection 2.15.3). If a manipulator is supposed to perform an

accelerated movement along the trajectory then the support points must be calculated ac-

cordingly.

• Channels that are not participating in the stream can still be fully controlled, while channels

that are currently streamed may answer with a SA_CTL_ERROR_BUSY_STREAMING error

code (see A.1) when sending certain configuration or movement commands.

• The sensors of all participating positioners must be enabled (in particular, the power save

mode is not allowed, see section 2.9).

Flow Control

When the host transmits stream frames to the controller they are stored in a (FIFO) stream buffer

in the controller. The controller then executes the buffered frames synchronously. While the

frames are executed at a constant rate (the stream rate that the user has configured), the rate

at which the controller receives frames from the host may vary. Typically the rate is considerably

higher or frames arrive in bursts with intermissions (or both), e.g. due to USB / Ethernet latency or

application interruption by the operating system (see figure 2.8).

79% full

StageHost

Stream Data Stream Data

MCS2 Controller

Stream Buffer

Variable
Frame Rate

Constant
Frame Rate

Figure 2.8: Flow Control

The library implements a flow control mechanism to prevent a buffer overflow on the controller:

• If the SA_CTL_StreamFrame function is called faster than the configured stream rate then

the function may block from time to time, therefore implementing the flow control.

• If the SA_CTL_StreamFrame function is called slower than the configured stream rate then

the streaming will eventually fail with a buffer underflow error.

The controller’s stream buffer can hold up to 1024 tuples1 and while it allows a synchronized

and consistent stream, it also induces a delay to the incoming frames. This delay depends on

the controller’s buffer size, the number of channels that participate in the stream as well as the

configured stream rate and can be determined by the following formula:

1A tuple consists of a target position and it’s corresponding channel, see 2.15.1 (General Streaming Concept).

55MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

execution delay [s] =
buffer size

stream rate [Hz] ∗ number of stream channels

E.g. a stream with a frame containing three tuples (position data for three channels) and a config-

ured stream rate of 1000 Hz would induce a constant buffer delay of
1024

1000 Hz ∗ 3
= 0.341 s.

2.15.2 Basic Approach

To execute a trajectory stream the following steps must be performed:

1. Configure the stream rate by writing the Stream Base Rate property (see section 4.9). This

defines the rate (in Hz) with which the frames of the trajectory are executed.

2. Move all positioners that participate in the trajectory to their starting position (first frame

of the stream). Otherwise starting the stream will likely cause unexpected behavior, since

stream frames hold absolute position values and therefore the first frame could cause very

high velocities that cannot be performed mechanically.

3. Open a stream by calling the SA_CTL_OpenStream function. It returns a stream handle that

must be passed to the following function calls to associate them with the opened stream.

4. Supply the stream data by calling the SA_CTL_StreamFrame function once per frame that

should be executed. Note: This function may block if the flow control needs to throttle the

data rate. The function returns as soon as the frame was transmitted to the controller.

5. Close the stream by calling the SA_CTL_CloseStream function. To the controller this

marks the end of the stream. If the stream is not closed properly with this function call

(or aborted by calling SA_CTL_AbortStream) then the controller will generate a buffer un-

derflow error after the last frame has been executed.

NOTICE
Behavioral differences when closing or aborting a stream:

As already described, all incoming frames are stored in an intermediate buffer by

the device (see Flow Control). The basic approach, after having sent all frames

to the device, is to call SA_CTL_CloseStream. This leads to execution of all

pending frames and thus finishing the stream at the given position(s). If a stream

is to be stopped immediately, the SA_CTL_AbortStream function can be used.

This leads to a trajectory stop, while remaining frames already sent to the device

are discarded.

2.15.3 Options

Before calling the SA_CTL_OpenStream function the Stream Options property can be configured

to define the stream’s behavior. This property holds a bit mask which is outlined in the following

table.

56MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Bit Name Short Description

0 Disable Linear Interpolation Disable the linear interpolation between consecutive

stream target positions.

1 .. 31 Reserved These bits are reserved for future use.

Disable Linear Interpolation (streaming options 0x00 or 0x01)

By default, the path between consecutive stream target positions is linearly interpolated. In some

applications this behavior might be unwanted. The interpolation can therefore be disabled using

this option, resulting in a point-to-point movement with the configured stream rate.

2.15.4 Trigger Modes

A trajectory stream may be configured to be triggered (started) by various events. For example,

in some situations it can be useful to synchronize the stream rate of a trajectory with an external

clock. A camera could then take snap shots with a frequency of 10Hz while the stage moves along

a trajectory with a time resolution of 200Hz.

The desired trigger mode is passed to the SA_CTL_OpenStream function. The following trigger

modes are available:

• SA_CTL_STREAM_TRIGGER_MODE_DIRECT (0)

• SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_ONCE (1)

• SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_SYNC (2)

Please note that in order to use the external trigger modes, the Input Trigger must be configured

accordingly. Refer to section 2.17 "Input Trigger" on how to configure the device for triggered

streaming.

Direct Mode

In this mode the stream is started as soon as the stream buffer on the controller contains enough

data or has been closed (at which point a SA_CTL_EVENT_STREAM_READY event is generated).

External Once Mode

In this mode the stream is started by an external trigger that is fed into the device. Once the

stream buffer on the controller contains enough data or has been closed a

SA_CTL_EVENT_STREAM_READY event is generated to indicate that the stream is ready to be

triggered by the external trigger. In this armed state the device waits for the trigger to occur and

then generates a SA_CTL_EVENT_STREAM_TRIGGERED event. Further triggers are ignored in

this mode.

57MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

External Synchronization Mode

This mode is used to synchronize the stream rate with an external clock which may be fed into

the MCS2 controller. When the Stream External Sync Rate property is configured with the external

clock rate then the trajectory stream will be synchronized with the external clock.

t

External Clock

Internal Clock
(not synchronized)

Internal Clock
(synchronized)

3 cycles

10 cycles

9 cycles

Figure 2.9: External synchronization with a 3:1 clock ratio

Figure 2.9 shows an example where the base stream rate is (should be) three times faster than the

external sync rate (e.g. external 100Hz, internal 300Hz). The upper clock trace shows the external

clock which makes 3 cycles within a given time window (Δt). The middle clock trace shows the

internal clock while not being synchronized, being a speck too fast and making 10 cycles within

the same time window. In the lower clock trace the internal clock is synchronized, making 9 clock

cycles within the time window as desired. As a result the synchronization prevents the clocks from

drifting apart.

NOTICE
The external synchronization feature has some restrictions that should be noted:

• In order to use the external synchronization feature the MCS2 controller

must be equipped with an appropriate I/O Module.

• The Stream Base Rate must be a whole-number multiple of the external

clock rate.

• The external clock rate may not be higher than the Stream Base Rate.

2.15.5 Stream Events

A trajectory stream that is started always generates the following events (in the order given):

1. SA_CTL_EVENT_STREAM_READY This event is generated as soon as the internal stream

buffer of the device contains enough frames to start the streamwithout risking an immediate

buffer underflow. The default buffer threshold is 50%. In case the stream is very short this

event is generated as soon as the stream is closed.

2. SA_CTL_EVENT_STREAM_TRIGGERED This event is generated as soon as the device has

started to execute the stream. In case of direct streaming the Stream Ready and the Stream

Triggered events are generated at the same time. In case of externally triggered streaming

the Stream Triggered event is delayed until the external trigger is detected which effectively

starts the stream execution.

58MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

3. SA_CTL_EVENT_STREAM_FINISHED This event is generated when the stream has stopped

executing. The event parameter indicates the result of the streaming. This could be a nor-

mal termination (SA_CTL_ERROR_NONE when executed to the last frame) or an error code

specifying the reason for the abnormal termination.

2.15.6 Maximum Stream Rates

The maximum stable stream rate to be configured depends on the general communication load as

well as the number of involved channels. The more channels are included in the trajectory stream,

the higher the device’s stream load. Table 2.2 shows possible stream rates for different number of

streaming channels.

Channels Stream Rate [Hz] Channels Stream Rate [Hz] Channels Stream Rate [Hz]

1 1000 7 480 13 260

2 1000 8 420 14 240

3 1000 9 370 15 220

4 840 10 340 16 210

5 670 11 300 17 200

6 560 12 280 18 190

Table 2.2: Stream Rate examples

For a more accurate determination of the maximum stream rate for the current setup the Stream

Load Maximum property can be monitored while streaming. The property acts like a peak detec-

tor. The highest load level generated by the currently running stream is stored and may be read

in percent with the Stream Load Maximum property. When starting the stream the load value is

reset to zero.

It is recommended to configure the trajectory stream (e.g. the Stream Base Rate) with some head-

room to the maximum load to guarantee a stable operation. If an overload is detected the trajec-

tory stream aborts with an SA_CTL_ERROR_SYNC_FAILED error.

Note that channels which are not part of the current stream can be fully controlled while a stream

is running. However, doing so always generates some peak load which must be considered. Note

further that streaming to multiple channels with high stream rates may also affect the perfor-

mance for operations concerning other channels.

2.16 Auxiliary Inputs and Outputs

TheMCS2 device offers auxiliary inputs and outputs to interface to external equipment.

59MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

NOTICE
The device must be equipped with an additional I/O module to use auxiliary in-

puts and outputs. The characteristics as well as the number of inputs and out-

puts vary depending on the specific type of I/Omodule. Please refer to the MCS2

User Manual for detailed electrical specifications.

2.16.1 Digital Device Input

Digital device inputs allow to synchronize movements to external events. Synchronizing the tra-

jectory streaming or triggering command groups as well as aborting movements by triggering an

emergency stop is possible. This feature is called "Input Trigger". See section 2.17 "Input Trigger"

for the configuration of the input trigger.

2.16.2 Fast Digital Outputs

Fast digital outputs may be used to trigger external equipment like detectors or cameras depend-

ing on the current position of a positioner. This feature is called "Output Trigger". See section 2.18

"Output Trigger" for the configuration of the output trigger.

2.16.3 General Purpose Digital Inputs/Outputs

General purpose digital inputs and outputs may be used to control lights, relays, dispensers, etc.

or to read the state of safety switches, light barriers, etc.

Digital Inputs

The Aux Digital Input Value property may be used to read the digital inputs of an I/O module. The

first bit (bit 0) of the input value corresponds to the first digital input (GP-DIN-1), the second bit (bit

1) corresponds to the second input (GP-DIN-2) and so on.

It is possible to enable an event notification for the digital inputs to be notified if an input changes.

Thus, continuous polling of the Aux Digital Input Value property can be avoided. To enable the

event set the SA_CTL_IO_MODULE_OPT_BIT_EVENTS_ENABLED bit of the I/O Module Options

property to one. Whenever a change of one or more of the general purpose digital inputs hap-

pens the device generates a SA_CTL_EVENT_DIGITAL_INPUT_CHANGED event with its parame-

ter holding the new state of the inputs. Note that the input state capture frequency for the event

generation is limited to approx. 100Hz. See section 2.4 "Event Notifications" for more information

on receiving events.

Example:

60MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

SA_CTL_Result_t result;

// read the digital inputs

int32_t input;

result = SA_CTL_GetProperty_i32(dHandle,0,

SA_CTL_PKEY_AUX_DIGITAL_INPUT_VALUE, &input

);

if (result == SA_CTL_ERROR_NONE) {

// ‘input‘ holds the value of the digital inputs

}

// enable the digital input changed event

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_IO_MODULE_OPTIONS,

SA_CTL_IO_MODULE_OPT_BIT_EVENTS_ENABLED

);

// -> receive event using the SA_CTL_WaitForEvent() function

Digital Outputs

NOTICE
The digital output driver circuit is disabled by default and must be enabled by

setting the SA_CTL_IO_MODULE_OPT_BIT_DIGITAL_OUTPUT_ENABLED bit

of the I/O Module Options property.

The following properties may be used to modify the digital outputs:

• The Aux Digital Output Value property sets all outputs at once to a defined value.

• The Aux Digital Output Set property sets all specified outputs to one without modifying the

other ones.

• The Aux Digital Output Clear property clears all specified outputs without modifying the

other ones.

The first bit (bit 0) of the output value corresponds to the first digital output (GP-DOUT-1), the sec-

ond bit (bit 1) corresponds to the second output (GP-DOUT-2) and so on. Note that the general

purpose outputs are designed as open-collector outputs. This means that the output logic is in-

verted. Writing a one to an output switches the output transistor on which leads to a low signal

level at the output pin. The following code shows how to modify digital outputs of an I/O module:

SA_CTL_Result_t result;

// set the output driver voltage level to 5V

result = SA_CTL_SetProperty_i32(dHandle,0,

SA_CTL_PKEY_IO_MODULE_VOLTAGE, SA_CTL_IO_MODULE_VOLTAGE_5V

);

if (result) { /* handle error, abort */ }

// enable the digital output driver circuit of the I/O module

result = SA_CTL_SetProperty_i32(dHandle,0,

61MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

SA_CTL_PKEY_IO_MODULE_OPTIONS,

SA_CTL_IO_MODULE_OPT_BIT_DIGITAL_OUTPUTS_ENABLED

);

if (result) { /* handle error, abort */ }

// first set all digital outputs of the I/O module to a specific value

// note: electrical levels are inverted due to the open-collector outputs

// DOUT-4 | DOUT-3 | DOUT-2 | DOUT-1 |

// H(1) | L(0) | H(1) | L(0) |

result = SA_CTL_SetProperty_i32(dHandle,0,

SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_VALUE, 0x00000005

);

if (result) { /* handle error, abort */ }

// next set output 2 (DOUT-2) without modifying the other outputs

// DOUT-4 | DOUT-3 | DOUT-2 | DOUT-1 |

// H(1) | L(0) | L(0) | L(0) |

result = SA_CTL_SetProperty_i32(dHandle,0,

SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_SET, 0x00000002

);

if (result) { /* handle error, abort */ }

// last clear output 1 (DOUT-1) without modifying the other outputs

// DOUT-4 | DOUT-3 | DOUT-2 | DOUT-1 |

// H(1) | L(0) | L(0) | H(1) |

result = SA_CTL_SetProperty_i32(dHandle,0,

SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_CLEAR, 0x00000001

);

2.16.4 Fast Analog Inputs

Fast analog inputs may be used to read analog voltage signals. An application can poll the Aux I/O

Module Input0 / Input1 Value properties and use the data for further processing. The I/O module

has a total number of six analog inputs which are mapped in groups of two to the channels of the

corresponding driver module. The following table shows the combinations of channel index and

property which must be used to read the input values of the six analog inputs:

Analog Input Channel Index Property

AIN-1 0 SA_CTL_PKEY_AUX_IO_MODULE_INPUT0_VALUE

AIN-2 1 SA_CTL_PKEY_AUX_IO_MODULE_INPUT0_VALUE

AIN-3 2 SA_CTL_PKEY_AUX_IO_MODULE_INPUT0_VALUE

AIN-4 0 SA_CTL_PKEY_AUX_IO_MODULE_INPUT1_VALUE

AIN-5 1 SA_CTL_PKEY_AUX_IO_MODULE_INPUT1_VALUE

AIN-6 2 SA_CTL_PKEY_AUX_IO_MODULE_INPUT1_VALUE

The following code shows how to read the first analog input assigned to the second channel (chan-

nel index 1) of a device (AIN-2):

62MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

SA_CTL_Result_t result;

int64_t input;

result = SA_CTL_GetProperty_i64(dHandle,1,

SA_CTL_PKEY_AUX_IO_MODULE_INPUT0_VALUE, &input

);

if (result == SA_CTL_ERROR_NONE) {

// ‘input‘ holds the value of the analog input AIN-2

}

2.16.5 Using Analog Inputs as Control-Loop Feedback

The MCS2 supports to feed external analog signals into the control-loop of a channel. This allows

to implement applications like aligning a sample depending on the light intensity of an external

light detector or force feedback for a gripper, etc. These tasks require a more complex configura-

tion which is described in the following.

Note that the total number of six analog inputs of the I/O module are mapped in groups of two

to the channels of the corresponding driver module. This means that per channel only two of the

analog inputs may be used as control-loop feedback. (See Aux I/O Module Input Index property).

CAUTION
It is the user’s responsibility to guarantee that a valid signal is fed into the input

and that all properties (input ranges, PID parameters, etc.) are configured to rea-

sonable values before enabling the closed-loop operation. Configuring inappro-

priate values may result in unstable or unexpected behavior of the positioners

and potential damage of the stage.

To use an auxiliary input as control-loop feedback the following properties must be configured:

• The actual analog input must be selected with the Aux Input Select and Aux I/O Module

Input Index properties.

• The analog input rangemust be selected with the I/OModule Analog Input Range property.

• The Aux Positioner Type must be set to a custom positioner type slot. This slot must be

configured with a set of PID parameters with the Tuning and Customizing Properties. Note

that not all positioner type properties have a meaning when used as auxiliary positioner

type. The following properties are of interest to configure the PID loop: Positioner P Gain,

Positioner I Gain, Positioner D Gain, Positioner Anti Windup, Positioner PID Shift.

• Depending on the specific application and the type of feedback signal it may be necessary to

disable the endstop detection by setting the Positioner ESDDistance Threshold property to

zero. Whenever the auxiliary input value represents a set-point for the control-loop instead

of a current position of the positioner the endstop detection must be disabled. (E.g. a force

signal in a force-feedback-gripper application defines the set-point and does not follow the

actual position.)

63MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

• Themodifications should be saved to a custom positioner type slot with the Save Positioner

Type property.

• The direction sense of the feedbackmust be defined with theAux Direction Inversion prop-

erty. It must match the direction sense of the control-loop output. Otherwise a runaway

condition may occur when commanding a closed-loop movement.

• The Control Loop Input propertymust be set to SA_CTL_CONTROL_LOOP_INPUT_AUX_IN

to feed the auxiliary input signal into the PID controller.

Using an auxiliary input as control-loop feedback has some special characteristics which need to

be considered:

• The SA_CTL_CH_STATE_BIT_SENSOR_PRESENT flag of the Channel State refers to the

position control-loop input. The auxiliary input signal is always treated as ‘present‘ for the

control-loop.

• The auxiliary input value is reflected in the ‘current position‘ of a channel, even if the rep-

resentation of the input signal has a physical unit different from ‘position‘. Commanding

the channels ‘target position‘ with the SA_CTL_Move function always refers to the absolute

value and range of the input signal.

• The auxiliary input signal is defined as absolute value, thus it is not possible to define a

logical scale offset, e.g. by setting the position with the Position property. Doing so affects

the position calculation of an integrated sensor of a positioner (if there is one). Several

properties give access to the position of an integrated sensor as well as the auxiliary input

values regardless of the actual signal currently used as feedback signal. Refer to figure 2.10

for the different signal paths and properties in this context.

• Two positioner type slots are used to define the tuning parameters of the control-loop:

– The Aux Positioner Type property defines a set of tuning parameters which is used if an

auxiliary input provides the control-loop feedback.

– The Positioner Type property defines the parameters for all other configurations.

The corresponding set of parameters is configured implicitly when changing the control-loop

input. This allows to switch between two operation modes without manually reconfiguring

the control-loop tuning.

The following figure shows the auxiliary input configuration for each channel:

2.16.6 Analog Outputs

Analog outputs generate analog voltage control signals for external amplifiers, dispensers etc.

NOTICE
The analog output driver circuit is in a high-impedance

state by default and must be enabled by setting the

SA_CTL_IO_MODULE_OPT_BIT_ANALOG_OUTPUT_ENABLED bit of the I/O

Module Options property.

64MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

AUX_SENSOR_MODULE_INPUT_INDEX*

AUX_IO_MODULE_INPUT_INDEX*

CONTROL_LOOP_INPUT*

commanded target position
 ("Move")

POSITION_MEAN_SHIFT*

TARGET_POSITION

POSITION

AUX_IO_INPUT0_VALUE

AUX_IO_INPUT1_VALUE

AUX_SM_INPUT0_VALUE

AUX_SM_INPUT1_VALUE

AUX_INPUT_SELECT*

CL_INPUT_SENSOR_VALUE

CL_INPUT_AUX_VALUE

Auxiliary-Property-Category Positioner-Property-Category

AUX_DIRECTION_INVERSION*

* persistent properties are marked with an asterisk, default selectors are printed in bold

Module channel: 0-n

SENSOR_INPUT_SELECT*

int64

int64

int64

int64

int64

int64

int64

int64

Sensor-Module

IO-Module

SMInput0

SMInput1

IOInput1/-2 /-3

IOInput4/-5/-6

Position
Sensor

Aux Inputs

Analog
Inputs

SM

IO

0

1

0

1

POSITION

CALC_SYS

AUX_IN

D/A > AMP

PID

positioner control
parameter

POS
CALC

positioner
1/2/3

SENSOR

Figure 2.10: Auxiliary Input Configuration (per channel)

The Aux Analog Output Value0 / Value1 properties may be used to output an analog voltage on

the I/O module analog outputs (AOUT-1 and AOUT-2).

The following code shows how to set both analog outputs of an I/O module:

SA_CTL_Result_t result;

// set the output value of analog output0 (AOUT-1) to zero

// which corresponds to 0V

result = SA_CTL_SetProperty_i32(dHandle,0,

SA_CTL_PKEY_AUX_ANALOG_OUTPUT_VALUE0, 0

);

if (result) { /* handle error, abort */ }

// set the output value of analog output1 (AOUT-2) to max

// which corresponds to +10V

result = SA_CTL_SetProperty_i32(dHandle,0,

SA_CTL_PKEY_AUX_ANALOG_OUTPUT_VALUE1, 32768

);

if (result) { /* handle error, abort */ }

2.17 Input Trigger

Digital input triggers allow to synchronize the device to external clock signals or events. The input

trigger may be used as an emergency stop input, to synchronize the trajectory streaming or to

trigger command groups (e.g. a group of movement commands).

65MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

NOTICE
In order to use the input trigger the device must be equipped with an additional

I/O module.

The following properties may be used to configure the input trigger:

• The Device Input Trigger Mode property defines how the device reacts to incoming trigger

signals. The available trigger modes are described in more detail in the following sections.

• The Device Input Trigger Condition property defines whether to react to rising or falling

edges.

2.17.1 Disabled Mode

This is the default mode in which all activities on the input line are ignored.

2.17.2 Emergency Stop Mode

The emergency stop input trigger mode allows to use the input trigger to issue an emergency stop.

In terms of the MCS2 an emergency stop stops all active movements. More precisely, the device

will hard-stop all channels and aborts active streams and command groups. Note that channels

moving with acceleration control active will also be stopped immediately. The desired behavior

how to handle the emergency stop situations can further be configured by setting the Emergency

Stop Mode property to one of the following modes:

SA_CTL_EMERGENCY_STOP_MODE_NORMAL This is the default mode. In this mode the config-

ured input trigger condition issues an emergency stop. After such an event the device con-

tinues to behave normally.

SA_CTL_EMERGENCY_STOP_MODE_RESTRICTED In this mode the configured input trigger con-

dition will issue an emergency stop and make the device enter a locked state. In this state

you may communicate with the device normally, but all movement commands will return

an SA_CTL_ERROR_MOVEMENT_LOCKED error. The locked state may be reset by setting the

emergency stop mode to any valid value, thereby unlocking the movement again.

SA_CTL_EMERGENCY_STOP_MODE_AUTO_RELEASE In this mode the configured input trigger

condition will issue an emergency stop and make the device enter a locked state. In this

state you may communicate with the device normally, but all movement commands will

return an SA_CTL_ERROR_MOVEMENT_LOCKED error. This state remains until either the

emergency stop mode is set to any valid value or the input trigger line is released (inverse

edge is detected).

The following code gives an example for the configuration of the input trigger when used as emer-

gency stop. After a successful configuration a falling edge on the input trigger will issue an emer-

gency stop. The following behavior is defined by the configured emergency stopmode (in this case

the device continues normally).

66MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

SA_CTL_Result_t result;

// set input trigger mode to emergency stop

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_DEV_INPUT_TRIG_MODE,

SA_CTL_DEV_INPUT_TRIG_MODE_EMERGENCY_STOP

);

if (result) { /* handle error, abort */ }

// set input trigger condition to falling edge

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_DEV_INPUT_TRIG_CONDITION,

SA_CTL_TRIGGER_CONDITION_FALLING

);

if (result) { /* handle error, abort */ }

// configure emergency stop mode

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_EMERGENCY_STOP_MODE,

SA_CTL_EMERGENCY_STOP_MODE_NORMAL

);

if (result) { /* handle error, abort */ }

2.17.3 Stream Sync Mode

The stream sync input trigger mode allows to use the streaming’s external trigger modes. Call-

ing SA_CTL_OpenStream with either SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_ONCE or

SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_SYNC will start resp. synchronize the stream to

the input trigger. See section 2.15 "Trajectory Streaming" for more information.

The following code gives an example for the configuration of the input trigger when used to start

the stream. After a successful configuration a stream is opened with trigger mode external once

parameter. If the stream is ready (stream ready event received), a rising edge on the input trigger

will start the trajectory’s execution.

SA_CTL_StreamHandle_t sHandle;

SA_CTL_Result_t result;

// set input trigger mode to stream sync

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_DEV_INPUT_TRIG_MODE,

SA_CTL_DEV_INPUT_TRIG_MODE_STREAM

);

if (result) { /* handle error, abort */ }

// set input trigger condition to rising edge

67MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_DEV_INPUT_TRIG_CONDITION,

SA_CTL_TRIGGER_CONDITION_RISING

);

if (result) { /* handle error, abort */ }

// open stream with trigger mode external once

result = SA_CTL_OpenStream(

dHandle,

&sHandle,

SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_ONCE

);

if (result) { /* handle error, abort */ }

// ...

// start streaming frames to the device

// ...

// >> stream ready event <<

// device is now waiting for the external trigger condition to start

// the stream

2.17.4 Command Group Sync Mode

The command group sync input trigger mode allows to use the command groups external trigger

mode. Calling SA_CTL_OpenCommandGroup with the trigger mode

SA_CTL_CMD_GROUP_TRIGGER_MODE_EXTERNAL will then delay the groups execution until the

external input trigger occurs. See section 2.14 "Command Groups" for more information.

The following code gives an example for the configuration of the input trigger when used for

starting command groups. After a successful configuration of the input trigger a command group

is opened with the external trigger mode parameter, filled (e.g. with SA_CTL_Move commands)

and then closed. The groups execution though is delayed until the device detects a rising edge on

the input trigger.

SA_CTL_TransmitHandle_t tHandle;

SA_CTL_Result_t result;

// set input trigger mode to cmd group sync

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_DEV_INPUT_TRIG_MODE,

SA_CTL_DEV_INPUT_TRIG_MODE_CMD_GROUP

);

if (result) { /* handle error, abort */ }

// set input trigger condition to rising edge

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_DEV_INPUT_TRIG_CONDITION,

68MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

SA_CTL_TRIGGER_CONDITION_RISING

);

if (result) { /* handle error, abort */ }

// open command group with trigger mode external

result = SA_CTL_OpenCommandGroup(

dHandle,

&tHandle,

SA_CTL_CMD_GROUP_TRIGGER_MODE_EXTERNAL

);

if (result) { /* handle error, abort */ }

// ...

// fill command group

// ...

// close command group

result = SA_CTL_CloseCommandGroup(dHandle, tHandle);

if (result) { /* handle error, abort */ }

// command group is now waiting for the external trigger condition

2.17.5 Event Trigger Mode

The event input trigger mode allows to get a notification whenever an electrical trigger signal was

detected on the trigger input. This mode is useful to simply inform the software about the occur-

rence of an external trigger signal without any further actions on the controller.

Note that the maximum frequency of the input signal should be limited to 500Hz in this mode.

The following code gives an example for the configuration of the input trigger when used to get

event notifications. After a successful configuration a rising edge on the input trigger will generate

an external input triggered event.

SA_CTL_Result_t result;

// set input trigger mode to event trigger

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_DEV_INPUT_TRIG_MODE,

SA_CTL_DEV_INPUT_TRIG_MODE_EVENT

);

if (result) { /* handle error, abort */ }

// set input trigger condition to rising edge

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_DEV_INPUT_TRIG_CONDITION,

SA_CTL_TRIGGER_CONDITION_RISING

);

if (result) { /* handle error, abort */ }

// wait for events

SA_CTL_Event_t event;

result = SA_CTL_WaitForEvent(dHandle,&event,SA_CTL_INFINITE);

69MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

if (result) { /* handle error, abort */ }

// ...

2.18 Output Trigger

In some applications it is useful to have the controller output a trigger signal each time the position

of a channel has made a certain increment or the target position has been reached. The trigger

signals may then be used by external logic (e.g. to trigger a camera).

NOTICE
In order to use the output trigger signals the device must be equipped with an

additional I/O module. Since each I/O module is connected to a specific driver

module the output trigger signals are assigned to the channels of the corre-

sponding driver module.

The following properties may be used to configure the output trigger:

• The Channel Output Trigger Mode property defines what is output to the corresponding

output pin. The available trigger modes are described in more detail in the following sec-

tions.

• The Channel Output Trigger Polarity property defines the polarity of the output trigger

signal.

• The Channel Output Trigger Pulse Width property specifies the pulse width of a trigger

output pulse.

• The I/O Module Options property bit

SA_CTL_IO_MODULE_OPT_BIT_DIGITAL_OUTPUT_ENABLED must be set to enable the

output driver circuit.

• The I/O Module Voltage selects the output voltage of the pin.

Note that the I/O module settings are global for all output channels of the I/O module. The follow-

ing example code enables the output trigger and configures the output voltage to 5V.

SA_CTL_Result_t result;

// set the output driver voltage level to 5V

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_IO_MODULE_VOLTAGE,

SA_CTL_IO_MODULE_VOLTAGE_5V

);

if (result) { /* handle error, abort */ }

// enable the output driver circuit of the I/O module

70MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_IO_MODULE_OPTIONS,

SA_CTL_IO_MODULE_OPT_BIT_DIGITAL_OUTPUT_ENABLED

);

if (result) { /* handle error, abort */ }

2.18.1 Constant Mode

This is the default mode in which a constant level is output. The level corresponds to the inactive

state of the configured Channel Output Trigger Polarity.

The following example shows how user defined levels can be output in this mode.

SA_CTL_Result_t result;

result = SA_CTL_SetProperty_i32(

dHandle,

2,

SA_CTL_PKEY_CH_OUTPUT_TRIG_POLARITY,

SA_CTL_TRIGGER_POLARITY_ACTIVE_HIGH

);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i32(

dHandle,

2,

SA_CTL_PKEY_CH_OUTPUT_TRIG_MODE,

SA_CTL_CH_OUTPUT_TRIG_MODE_CONSTANT

);

if (result) { /* handle error, abort */ }

// output of channel 2 level is now low

// perform some tasks...

result = SA_CTL_SetProperty_i32(

dHandle,

2,

SA_CTL_PKEY_CH_OUTPUT_TRIG_POLARITY,

SA_CTL_TRIGGER_POLARITY_ACTIVE_LOW

);

if (result) { /* handle error, abort */ }

// output of channel 2 level is now high

2.18.2 Position Compare Mode

The position compare mode allows to generate trigger signals according to the current position of

a positioner. One independent trigger per channel is available.

The Channel Position Compare Limit Min and Channel Position Compare Limit Max properties are

used to define the working range for the trigger generation. This is especially useful to implement

71MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

raster scanning applications where e.g. an X/Y stage moves a sample along a specific trajectory

and a detector must be triggered according to the current position of a sample.

Once a limit was passed by the positioner the direction of the position increment is reverted or

reset to the starting threshold to define the next trigger position. If the Channel Position Com-

pare Direction is set to SA_CTL_EITHER_DIRECTION the increment is reversed to continuously

generate pulses on the way back to the starting position. This is known as ‘snake scanning‘. Other-

wise the increment is reset to the defined start threshold to restart the pulse generation after the

positioner was moved back and reversed its movement direction. This is known as ‘line scanning‘.

Note that the reversal positions of the movement trajectory should be defined with sufficient tol-

erance to reliably pass the limits while moving.

The following code gives an example for the configuration of the output trigger for channel 1.

The movement is commanded with its reversal points defined to 0 and 5mm. After enabling the

trigger the channel will generate a 1µs pulse (0.5 µs high, 0.5 µs low) once the position of channel

1 passed 1mm in forward direction. Furthermore every 100µm consecutive pulses are output

until the max limit of 4.5mm was passed. This is repeated for every movement starting from zero

position.

SA_CTL_Result_t result;

result = SA_CTL_SetProperty_i64(

dHandle, 1,

SA_CTL_PKEY_CH_POS_COMP_START_THRESHOLD, 1e9

);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i64(

dHandle, 1,

SA_CTL_PKEY_CH_POS_COMP_INCREMENT, 100e6

);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i32(

dHandle, 1,

SA_CTL_PKEY_CH_POS_COMP_DIRECTION,

SA_CTL_FORWARD_DIRECTION

);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i64(

dHandle, 1,

SA_CTL_PKEY_CH_POS_COMP_LIMIT_MIN, 500e6

);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i64(

dHandle, 1,

SA_CTL_PKEY_CH_POS_COMP_LIMIT_MAX, 4500e6

);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i32(

dHandle, 1,

SA_CTL_PKEY_CH_OUTPUT_TRIG_POLARITY,

SA_CTL_TRIGGER_POLARITY_ACTIVE_HIGH

72MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i32(

dHandle, 1,

SA_CTL_PKEY_CH_OUTPUT_TRIG_PULSE_WIDTH, 1000

);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i32(

dHandle, 1,

SA_CTL_PKEY_CH_OUTPUT_TRIG_MODE,

SA_CTL_CH_OUTPUT_TRIG_MODE_POSITION_COMPARE

);

if (result) { /* handle error, abort */ }

// start movement between position 0 and 5mm

2.18.3 Target Reached Mode

The target reached mode allows to generate a pulse once a closed-loop movement command

finished and the positioner reached its target position. The pulse is only generated for successfully

finished movement commands.

The following code gives an example for the configuration of the target reached output trigger for

channel 1. After enabling the trigger the output of the channel will generate a pulse of defined

length once the target position of a movement has been reached.

SA_CTL_Result_t result;

result = SA_CTL_SetProperty_i32(

dHandle,

1,

SA_CTL_PKEY_CH_OUTPUT_TRIG_POLARITY,

SA_CTL_TRIGGER_POLARITY_ACTIVE_HIGH

);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i32(

dHandle,

1,

SA_CTL_PKEY_CH_OUTPUT_TRIG_PULSE_WIDTH,

1000

);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i32(

dHandle,

1,

SA_CTL_PKEY_CH_OUTPUT_TRIG_MODE,

SA_CTL_CH_OUTPUT_TRIG_MODE_TARGET_REACHED

);

if (result) { /* handle error, abort */ }

73MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.18.4 Actively Moving Mode

The actively moving mode generates an output level similar to the actively moving Channel State

bit. The output level is in the active state while the positioner is moving and inactive otherwise.

The following example code configures channel 2 to output a high level while the positioner is

moving.

SA_CTL_Result_t result;

result = SA_CTL_SetProperty_i32(

dHandle,

2,

SA_CTL_PKEY_CH_OUTPUT_TRIG_POLARITY,

SA_CTL_TRIGGER_POLARITY_ACTIVE_HIGH

);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i32(

dHandle,

2,

SA_CTL_PKEY_CH_OUTPUT_TRIG_MODE,

SA_CTL_CH_OUTPUT_TRIG_MODE_ACTIVELY_MOVING

);

if (result) { /* handle error, abort */ }

2.19 Feature Permissions

The MCS2 has a feature permission system which allows to activate special features via an soft-

ware activation process without physically returning the controller to SmarAct. New features may

be unlocked by upgrading the controller with an upgrade file. The MCS2 Service Tool is used to

perform this upgrade. Please contact SmarAct for the details on purchasing a feature upgrade.

Currently the following features are available:

• Low Vibration Actuator Mode (Actuator Mode property)

• Advanced Sensor Correction (Signal Correction Options property)

In case that a feature is not activated on a controller, trying to enable it will generate a

SA_CTL_ERROR_PERMISSION_DENIED error.

74MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.1 Function Summary

Table 3.1 – Function Summary

Function Name Short Description Page

SA_CTL_GetFullVersionString Returns the version of the library as a

human readable string.

78

SA_CTL_GetResultInfo Returns a human readable error string

for the given error code.

79

SA_CTL_GetEventInfo Returns a human readable info string

for the given event.

80

SA_CTL_FindDevices Returns a list of locator strings of con-

nected devices.

81

SA_CTL_Open Opens a connection to a device. 83

SA_CTL_Close Closes a connection to a device. 84

SA_CTL_Cancel Unblocks all blocking API calls. 85

SA_CTL_GetProperty_i32 Directly returns the value of a 32 bit in-

teger property.

86

SA_CTL_SetProperty_i32 Directly sets the value of a 32 bit integer

property.

88

SA_CTL_SetPropertyArray_i32 Directly sets the value of a 32 bit integer

array property.

89

SA_CTL_GetProperty_i64 Directly returns the value of a 64 bit in-

teger property.

90

SA_CTL_SetProperty_i64 Directly sets the value of a 64 bit integer

property.

91

SA_CTL_SetPropertyArray_i64 Directly sets the value of a 64 bit integer

array property.

92

SA_CTL_GetProperty_s Directly returns the value of a string

property.

93

SA_CTL_SetProperty_s Directly sets the value of a string prop-

erty.

95

Continued on next page

75MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

Table 3.1 – Continued from previous page

Function Name Short Description Page

SA_CTL_RequestReadProperty Requests the value of a property (non-

blocking).

96

SA_CTL_ReadProperty_i32 Reads the value of a requested 32 bit

integer property.

98

SA_CTL_ReadProperty_i64 Reads the value of a requested 64 bit

integer property.

99

SA_CTL_ReadProperty_s Reads the value of a requested string

property.

100

SA_CTL_RequestWriteProperty_i32 Requests to write the value of a 32 bit

integer property (non-blocking).

102

SA_CTL_RequestWriteProperty_i64 Requests to write the value of a 64 bit

integer property (non-blocking).

104

SA_CTL_RequestWriteProperty_s Requests to write the value of a string

property (non-blocking).

105

SA_CTL_RequestWritePropertyArray_i32 Requests to write the value of a 32 bit

integer array property (non-blocking).

106

SA_CTL_RequestWritePropertyArray_i64 Requests to write the value of a 64 bit

integer array property (non-blocking).

107

SA_CTL_WaitForWrite Waits until a write operation has fin-

ished.

108

SA_CTL_CancelRequest Cancels a non-blocking read or write re-

quest.

109

SA_CTL_CreateOutputBuffer Opens up an output buffer for delayed

transmission of several commands.

110

SA_CTL_FlushOutputBuffer Flushes an output buffer and triggers

the transmission to the device.

111

SA_CTL_CancelOutputBuffer Cancels an output buffer and discards

buffered commands.

112

SA_CTL_OpenCommandGroup Opens up an atomic command group. 113

SA_CTL_CloseCommandGroup Flushes a command group and makes

all commands of the group take effect.

114

SA_CTL_CancelCommandGroup Cancels a command group and discards

buffered commands.

115

SA_CTL_WaitForEvent Listens to events from the device. 116

SA_CTL_Calibrate Performs a calibration. 118

SA_CTL_Reference Performs a finding of a reference mark. 120

Continued on next page

76MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

Table 3.1 – Continued from previous page

Function Name Short Description Page

SA_CTL_Move Performs a movement. 122

SA_CTL_Stop Aborts all ongoing movements. 124

SA_CTL_OpenStream Opens a stream. 125

SA_CTL_StreamFrame Sends a previously assembled frame to

the device.

127

SA_CTL_CloseStream Closes a stream. 129

SA_CTL_AbortStream Aborts a stream. 131

77MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2 Detailed Function Description

3.2.1 SA_CTL_GetFullVersionString

Interface:

const char* SA_CTL_GetFullVersionString();

Description:

This function returns the version of the library as a null terminated string.

Parameters:

none

Example:

cout << "version is: " << SA_CTL_GetFullVersionString() << endl;

78MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.2 SA_CTL_GetResultInfo

Interface:

const char* SA_CTL_GetResultInfo(

SA_CTL_Result_t result

);

Description:

All functions of the library return a result code that indicates success or failure of execution. This

functionmay be used to translate a result code into a human readable text string, e.g. to be output

on a console or a GUI element.

Parameters:

• result (SA_CTL_Result_t), input: The error code.

Example:

SA_CTL_Result_t result;

SA_CTL_DeviceHandle_t dHandle;

result = SA_CTL_Open(&dHandle, "usb:sn:MCS2-00000001", "");

if (result != SA_CTL_ERROR_NONE) {

cout << "Error occurred: " << SA_CTL_GetResultInfo(result) << endl;

}

79MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.3 SA_CTL_GetEventInfo

Interface:

const char* SA_CTL_GetEventInfo(

const SA_CTL_Event_t *event

);

Description:

On successful return of a call to SA_CTL_WaitForEvent this function may be used to translate

an event into a human readable text string, e.g. to be output on a console or a GUI element.

NOTICE
The string returned by this function resides in thread-local storage and remains

valid only until the next call of this function.

Parameters:

• event (const SA_CTL_Event_t *), input: Pointer to a buffer which holds an event returned

from SA_CTL_WaitForEvent

Example:

SA_CTL_Event_t event;

SA_CTL_Result_t result = SA_CTL_WaitForEvent(

dHandle,

&event,

SA_CTL_INFINITE

);

if (result == SA_CTL_ERROR_NONE) {

cout << "Received Event: " << SA_CTL_GetEventInfo(&event);

cout << endl;

}

See also:

SA_CTL_WaitForEvent

80MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.4 SA_CTL_FindDevices

Interface:

SA_CTL_Result_t SA_CTL_FindDevices(

const char *options,

char *deviceList,

size_t *deviceListLen

);

Description:

This function writes a list of locator strings of devices that are connected to the PC into deviceList.

The function lists devices with a USB or ethernet interface. The options parameter contains a list

of configuration options for the find procedure. The caller must pass a pointer to a char buffer

in deviceList and set deviceListLen to the size of the buffer. On success the function writes a list

of device locators into deviceList and the number of characters written into deviceListLen. If the

supplied buffer is too small to contain the generated list, the buffer will contain no valid content

but deviceListLen contains the required buffer size (in characters).

NOTICE
For devices with ethernet interface the Network Discover Mode must be set to

passive or active mode to enable the find procedure.

Parameters:

• options (const char *), input: Options for the find procedure. Currently unused.

• deviceList (char *), output: Pointer to a buffer which holds the device locators after the func-

tion has returned. The locator strings are separated by a newline character.

• deviceListLen (size_t *), input/output: Specifies the size (in bytes) of outList before the func-

tion call. After the function call it holds the number of characters written to deviceList.

Example:

char buffer[4096];

size_t bufferSize = sizeof(buffer);

SA_CTL_Result_t result = SA_CTL_FindDevices("",buffer,&bufferSize);

if (result == SA_CTL_ERROR_NONE) {

// buffer holds the locator strings, separated by ’\n’

// bufferSize holds the number of characters written to the buffer

}

81MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

See also:

4.2.7 Network Discover Mode

82MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.5 SA_CTL_Open

Interface:

SA_CTL_Result_t SA_CTL_Open(

SA_CTL_DeviceHandle_t *dHandle,

const char *locator,

const char *config

);

Description:

Establishes a connection to a device for communication. Note that the overall device state is not

changed. For example, settings made in previous sessions are preserved. Even ongoing move-

ments are not interrupted by connecting to or disconnecting from the device.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t *), output: Handle to the device. Must be passed to fol-

lowing function calls.

• locator (const char *), input: Specifies the device (see section 2.1.1).

• config (const char *), input: Currently unused.

Example:

SA_CTL_Result_t result;

SA_CTL_DeviceHandle_t dHandle;

result = SA_CTL_Open(&dHandle, "usb:sn:MCS2-00000001", "");

if (result == SA_CTL_ERROR_NONE) {

// success

}

See also:

SA_CTL_Close

83MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.6 SA_CTL_Close

Interface:

SA_CTL_Result_t SA_CTL_Close(

SA_CTL_DeviceHandle_t dHandle

);

Description:

Closes a previously established connection to a device.

It is safe to call this function while other threads are still using the device, e.g., waiting for an event

with SA_CTL_WaitForEvent. All blocking functions will be unblocked and will return with an

SA_CTL_ERROR_CANCELED error.

After calling this function the device handle becomes invalid.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

Example:

SA_CTL_Result_t result;

SA_CTL_DeviceHandle_t dHandle;

result = SA_CTL_Open(&dHandle, "usb:sn:MCS2-00000001", "");

if (result == SA_CTL_ERROR_NONE) {

// success

result = SA_CTL_Close(dHandle);

}

See also:

SA_CTL_Open

84MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.7 SA_CTL_Cancel

Interface:

SA_CTL_Result_t SA_CTL_Cancel(

SA_CTL_DeviceHandle_t dHandle

);

Description:

This function unblocks a waiting SA_CTL_WaitForEvent call. If no thread is currently waiting,

the next call to SA_CTL_WaitForEventwill be canceled. The unblocked function will return with

an SA_CTL_ERROR_CANCELED error.

Calling this function before SA_CTL_Close is not required for proper cleanup.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

See also:

SA_CTL_WaitForEvent, SA_CTL_Close

85MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.8 SA_CTL_GetProperty_i32

Interface:

SA_CTL_Result_t SA_CTL_GetProperty_i32(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

int32_t *value,

size_t *ioArraySize

);

Description:

This function retrieves a 32-bit integer property value (array) from the device. The caller must

supply a pointer to a buffer where the result should be written to as well as a size information

which indicates how many values may be written into the buffer. The function then writes the

resulting value(s) into the buffer and sets the size information to the number of values written.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

• value (int32_t *), output: Pointer to a buffer where the result should be written to.

• ioArraySize (size_t *), input/output: Pointer to a size value that must contain the size of

the value buffer (in number of elements, not number of bytes) when the function is called.

On function return it contains the number of values written to the buffer. A null pointer is

allowed which implicitly indicates an array size of 1.

Example:

// get single value (number of bus modules)

int32_t numModules;

SA_CTL_Result_t result;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_NUMBER_OF_BUS_MODULES, &numModules, 0

);

if (result == SA_CTL_ERROR_NONE) {

// numModules holds the number of modules

}

// get value array

// firmware version properties are arrays of four int32 values

86MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

int32_t fwVersion[4];

size_t ioArraySize = 4;

result = SA_CTL_GetProperty_i32(

dHandle,0,SA_CTL_PKEY_FIRMWARE_VERSION,fwVersion,&ioArraySize

);

if (result == SA_CTL_ERROR_NONE) {

// ioArraySize holds the number of elements

// fwVersion holds the firmware version (rev., update, minor, major)

}

See also:

SA_CTL_SetProperty_i32, SA_CTL_GetProperty_i64,

SA_CTL_GetProperty_s

87MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.9 SA_CTL_SetProperty_i32

Interface:

SA_CTL_Result_t SA_CTL_SetProperty_i32(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

int32_t value

);

Description:

This function writes a 32-bit integer property value to the device.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

• value (int32_t), input: Value that should be written.

Example:

// set move mode

SA_CTL_Result_t result;

result = SA_CTL_SetProperty_i32(

dHandle,0,SA_CTL_PKEY_MOVE_MODE,SA_CTL_MOVE_MODE_STEP

);

if (result == SA_CTL_ERROR_NONE) {

// move mode for channel 0 is set to step mode (open-loop)

}

See also:

SA_CTL_GetProperty_i32, SA_CTL_SetProperty_i64,

SA_CTL_SetProperty_s

88MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.10 SA_CTL_SetPropertyArray_i32

Interface:

SA_CTL_Result_t SA_CTL_SetPropertyArray_i32(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

const int32_t *values

size_t arraySize

);

Description:

This function writes multiple 32-bit integer values to the device and is used for setting array type

properties. The caller must supply a pointer to a buffer containing the values as well as a size

information which indicates how many values reside in the buffer.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

• values (const int32_t *), input: Pointer to a buffer that must contain the values to be written.

• arraySize (size_t), input: Size value that must contain the size of the value buffer (in number

of elements, not number of bytes) when the function is called.

See also:

SA_CTL_GetProperty_i32, SA_CTL_SetPropertyArray_i64

89MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.11 SA_CTL_GetProperty_i64

Interface:

SA_CTL_Result_t SA_CTL_GetProperty_i64(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

int64_t *value,

size_t *ioArraySize

);

Description:

This function retrieves a 64-bit integer property value (array) from the device. The caller must

supply a pointer to a buffer where the result should be written to as well as a size information

which indicates how many values may be written into the buffer. The function then writes the

resulting value(s) into the buffer and sets the size information to the number of values written.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

• value (int64_t *), output: Pointer to a buffer where the result should be written to.

• ioArraySize (size_t *), input/output: Pointer to a size value that must contain the size of

the value buffer (in number of elements, not number of bytes) when the function is called.

On function return it contains the number of values written to the buffer. A null pointer is

allowed which implicitly indicates an array size of 1.

Example:

See example on page 86.

See also:

SA_CTL_SetProperty_i64, SA_CTL_GetProperty_i32,

SA_CTL_GetProperty_s

90MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.12 SA_CTL_SetProperty_i64

Interface:

SA_CTL_Result_t SA_CTL_SetProperty_i64(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

int64_t value

);

Description:

This function writes a 64-bit integer property value to the device.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

• value (int64_t), input: Value that should be written.

Example:

See example on page 88.

See also:

SA_CTL_GetProperty_i64, SA_CTL_SetProperty_i32,

SA_CTL_SetProperty_s

91MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.13 SA_CTL_SetPropertyArray_i64

Interface:

SA_CTL_Result_t SA_CTL_SetPropertyArray_i64(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

const int64_t *values

size_t arraySize

);

Description:

This function writes multiple 64-bit integer values to the device and is used for setting array type

properties. The caller must supply a pointer to a buffer containing the values as well as a size

information which indicates how many values reside in the buffer.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

• values (const int64_t *), input: Pointer to a buffer that must contain the values to be written.

• arraySize (size_t), input: Size value that must contain the size of the value buffer (in number

of elements, not number of bytes) when the function is called.

See also:

SA_CTL_GetProperty_i64, SA_CTL_SetPropertyArray_i32

92MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.14 SA_CTL_GetProperty_s

Interface:

SA_CTL_Result_t SA_CTL_GetProperty_s(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

char *value,

size_t *ioArraySize

);

Description:

This function retrieves a string property value (array) from the device. The caller must supply

a pointer to a buffer where the result should be written to as well as a size information which

indicates how many bytes may be written into the buffer. The function then writes the resulting

string(s) into the buffer and sets the size information to the number of characters written. The

null termination of a string implicitly serves as a separator in case multiple strings are returned.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

• value (char *), output: Pointer to a buffer where the result should be written to.

• ioArraySize (size_t *), input/output: Pointer to a size value that must contain size of the value

buffer (in bytes) when the function is called. On function return it contains the number of

characters written to the buffer.

Example:

char deviceSerial[128];

size_t len = sizeof(deviceSerial);

SA_CTL_Result_t result;

result = SA_CTL_GetProperty_s(

dHandle,0,SA_CTL_PKEY_DEVICE_SERIAL_NUMBER,deviceSerial,&len

);

if (result == SA_CTL_ERROR_NONE) {

// deviceSerial holds the unique serial number of the device

// len holds the length of the string

}

93MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

See also:

SA_CTL_SetProperty_s, SA_CTL_GetProperty_i32,

SA_CTL_GetProperty_i64

94MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.15 SA_CTL_SetProperty_s

Interface:

SA_CTL_Result_t SA_CTL_SetProperty_i32(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

const char *value

);

Description:

This function writes a string property value to the device. Note that the length of strings may never

exceed 63 characters (plus a null terminator).

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

• value (const char *), input: String that should be written.

Example:

SA_CTL_Result_t result;

result = SA_CTL_SetProperty_s(

dHandle,0,SA_CTL_PKEY_DEVICE_NAME,"MyFavoriteController"

);

if (result == SA_CTL_ERROR_NONE) {

// success

}

See also:

SA_CTL_GetProperty_s, SA_CTL_SetProperty_i32,

SA_CTL_SetProperty_i64

95MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.16 SA_CTL_RequestReadProperty

Interface:

SA_CTL_Result_t SA_CTL_RequestReadProperty(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

SA_CTL_RequestID_t *rID,

SA_CTL_TransmitHandle_t tHandle

);

Description:

This function requests to read a property value (array) from the device and can be used for asyn-

chronous (non-blocking) access. The caller must supply a pointer to a buffer where the request ID

should be written to. Received values can be accessed later via the obtained request ID and the

corresponding SA_CTL_ReadProperty_x functions.

The advantage of this method is that the application may request several property values in fast

succession and then perform other tasks before blocking on the reception of the results.

NOTICE
The correct SA_CTL_ReadProperty_x function must be used depending on

the data type of the requested property. Otherwise the read will fail with a

SA_CTL_ERROR_INVALID_DATA_TYPE error.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key of the property that is requested.

• rID (SA_CTL_RequestID_t *), output: Pointer to a request ID.

• tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to

zero.

96MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

Example:

// Note: to keep the example clear, we omit processing the result codes

SA_CTL_Request_t rID[2];

int64_t position;

int32_t state;

// Issue requests for the two properties "position" and "channel state"

SA_CTL_RequestReadProperty(

dHandle, 0, SA_CTL_PKEY_POSITION, &rID[0], 0

);

SA_CTL_RequestReadProperty(

dHandle, 0, SA_CTL_PKEY_CHANNEL_STATE, &rID[1], 0

);

// process other tasks

// ...

// Receive the results

SA_CTL_ReadProperty_i64(dHandle, rID[0], &position, 0);

SA_CTL_ReadProperty_i32(dHandle, rID[1], &state, 0);

See also:

SA_CTL_ReadProperty_i32, SA_CTL_ReadProperty_i64,

SA_CTL_ReadProperty_s

97MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.17 SA_CTL_ReadProperty_i32

Interface:

SA_CTL_Result_t SA_CTL_ReadProperty_i32(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_RequestID_t rID,

int32_t *value,

size_t *ioArraySize

);

Description:

This function reads a 32-bit integer property value (array) that has previously been requested using

SA_CTL_RequestReadProperty.

NOTICE
While the request-function is non-blocking the read functions block until the de-

sired data has arrived.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• rID (SA_CTL_RequestID_t), input: ID of the addressed request.

• value (int32_t *), output: Pointer to a buffer where the result should be written to.

• ioArraySize (size_t *), input/output: Pointer to a size value that must contain the size of

the value buffer (in number of elements, not number of bytes) when the function is called.

On function return it contains the number of values written to the buffer. A null pointer is

allowed which implicitly indicates an array size of 1.

Example:

See example on page 97.

See also:

SA_CTL_RequestReadProperty, SA_CTL_ReadProperty_i64,

SA_CTL_ReadProperty_s

98MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.18 SA_CTL_ReadProperty_i64

Interface:

SA_CTL_Result_t SA_CTL_ReadProperty_i64(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_RequestID_t rID,

int64_t *value,

size_t *ioArraySize

);

Description:

This function reads a 64-bit integer property value (array) that has previously been requested using

SA_CTL_RequestReadProperty.

NOTICE
While the request-function is non-blocking the read functions block until the de-

sired data has arrived.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• rID (SA_CTL_RequestID_t), input: ID of the addressed request.

• value (int64_t *), output: Pointer to a buffer where the result should be written to.

• ioArraySize (size_t *), input/output: Pointer to a size value that must contain the size of

the value buffer (in number of elements, not number of bytes) when the function is called.

On function return it contains the number of values written to the buffer. A null pointer is

allowed which implicitly indicates an array size of 1.

Example:

See example on page 97.

See also:

SA_CTL_RequestReadProperty, SA_CTL_ReadProperty_i32,

SA_CTL_ReadProperty_s

99MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.19 SA_CTL_ReadProperty_s

Interface:

SA_CTL_Result_t SA_CTL_ReadProperty_s(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_RequestID_t rID,

char *value,

size_t *ioStringSize

);

Description:

This function reads a string property value (array) that has previously been requested using

SA_CTL_RequestReadProperty.

NOTICE
While the request-function is non-blocking the read functions block until the de-

sired data has arrived.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• rID (SA_CTL_RequestID_t), input: ID of the addressed request.

• value (char *), output: Pointer to a buffer where the result should be written to.

• ioStringSize (size_t *), input/output: Pointer to a size value that must contain size of the

value buffer (in bytes) when the function is called. On function return it contains the number

of characters written to the buffer.

Example:

// Note: to keep the example simple, we omit processing the result codes

SA_CTL_Request_t rID;

char deviceSerial[128];

size_t len = sizeof(deviceSerial);

// Issue request for the "device serial number" property

SA_CTL_RequestReadProperty(

dHandle, 0, SA_CTL_PKEY_DEVICE_SERIAL_NUMBER, &rID, 0

);

// process other tasks

// ...

100MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

// Receive the result

SA_CTL_ReadProperty_s(dHandle, rID, deviceSerial, &len);

See also:

SA_CTL_RequestReadProperty, SA_CTL_ReadProperty_i32,

SA_CTL_ReadProperty_i64

101MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.20 SA_CTL_RequestWriteProperty_i32

Interface:

SA_CTL_Result_t SA_CTL_RequestWriteProperty_i32(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

int32_t value,

SA_CTL_RequestID_t *rID,

SA_CTL_TransmitHandle_t tHandle

);

Description:

This function writes a 32-bit integer value to the device and can be used for asynchronous (non-

blocking) access. The caller can supply a pointer to a buffer where the request ID should be written

to. The result (whether the write was successful or not) can be accessed later by passing the

obtained request ID to the SA_CTL_WaitForWrite function.

The advantage of this method is that the application may write several property values in fast

succession and then perform other tasks before blocking on the reception of the results.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key of the property that should be accessed.

• value (int32_t), input: Value that should be written.

• rID (SA_CTL_RequestID_t *), output: Pointer to a request ID. Can be null pointer for call-and-

forget mechanism (see section 2.3.4).

• tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to

zero.

Example:

SA_CTL_Result_t result;

SA_CTL_RequestID_t rID;

int8_t channel;

int64_t holdTime = 5000;

// Request to set hold time to 5 seconds

result = SA_CTL_RequestWriteProperty_i32(

dHandle, channel, SA_CTL_PKEY_HOLD_TIME, holdTime, &rID, 0

102MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

);

// process other tasks

// ...

// Wait for the result to arrive

result = SA_CTL_WaitForWrite(dHandle, rID);

See also:

SA_CTL_WaitForWrite, SA_CTL_RequestWriteProperty_i64,

SA_CTL_RequestWriteProperty_s

103MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.21 SA_CTL_RequestWriteProperty_i64

Interface:

SA_CTL_Result_t SA_CTL_RequestWriteProperty_i64(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

int64_t value,

SA_CTL_RequestID_t *rID,

SA_CTL_TransmitHandle_t tHandle

);

Description:

This function writes a 64-bit integer value to the device and can be used for asynchronous (non-

blocking) access. The caller can supply a pointer to a buffer where the request ID should be written

to. The result (whether the write was successful or not) can be accessed later by passing the

obtained request ID to the SA_CTL_WaitForWrite function.

The advantage of this method is that the application may write several property values in fast

succession and then perform other tasks before blocking on the reception of the results.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key of the property that should be accessed.

• value (int64_t), input: Value that should be written.

• rID (SA_CTL_RequestID_t *), output: Pointer to a request ID. Can be null pointer for call-and-

forget mechanism (see section 2.3.4).

• tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to

zero.

Example:

See example on page 102.

See also:

SA_CTL_WaitForWrite, SA_CTL_RequestWriteProperty_i32,

SA_CTL_RequestWriteProperty_s

104MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.22 SA_CTL_RequestWriteProperty_s

Interface:

SA_CTL_Result_t SA_CTL_RequestWriteProperty_s(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

const char *value,

SA_CTL_RequestID_t *rID,

SA_CTL_TransmitHandle_t tHandle

);

Description:

This function writes a string value to the device and can be used for asynchronous (non-blocking)

access. The caller can supply a pointer to a buffer where the request ID should be written to. The

result (whether the write was successful or not) can be accessed later by passing the obtained

request ID to the SA_CTL_WaitForWrite function.

The advantage of this method is that the application may write several property values in fast

succession and then perform other tasks before blocking on the reception of the results.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key of the property that should be accessed.

• value (const char *), input: Value that should be written.

• rID (SA_CTL_RequestID_t *), output: Pointer to a request ID. Can be null pointer for call-and-

forget mechanism (see section 2.3.4).

• tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to

zero.

Example:

See example on page 102.

See also:

SA_CTL_WaitForWrite, SA_CTL_RequestWriteProperty_i32,

SA_CTL_RequestWriteProperty_i64

105MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.23 SA_CTL_RequestWritePropertyArray_i32

Interface:

SA_CTL_Result_t SA_CTL_RequestWritePropertyArray_i32(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

int32_t *values,

size_t arraySize,

SA_CTL_RequestID_t *rID,

SA_CTL_TransmitHandle_t tHandle

);

Description:

This function writes multiple 32-bit integer values to the device and can be used for asynchronous

(non-blocking) access of array type properties. The caller must supply a pointer to a buffer con-

taining the values as well as a size information which indicates how many values reside in the

buffer. Furthermore a pointer to a buffer where the request ID should be written to can be pro-

vided. The result (whether the write was successful or not) can be accessed later by passing the

obtained request ID to the SA_CTL_WaitForWrite function.

The advantage of this method is that the application may write several property values in fast

succession and then perform other tasks before blocking on the reception of the results.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key of the property that should be accessed.

• values (int32_t *), input: Pointer to a buffer that must contain the values to be written.

• arraySize (size_t), input: Size value that must contain the size of the value buffer (in number

of elements, not number of bytes) when the function is called.

• rID (SA_CTL_RequestID_t *), output: Pointer to a request ID. Can be null pointer for call-and-

forget mechanism (see section 2.3.4).

• tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to

zero.

See also:

SA_CTL_WaitForWrite, SA_CTL_RequestWritePropertyArray_i64

106MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.24 SA_CTL_RequestWritePropertyArray_i64

Interface:

SA_CTL_Result_t SA_CTL_RequestWritePropertyArray_i64(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

int64_t *values,

size_t arraySize,

SA_CTL_RequestID_t *rID,

SA_CTL_TransmitHandle_t tHandle

);

Description:

This function writes multiple 64-bit integer values to the device and can be used for asynchronous

(non-blocking) access of array type properties. The caller must supply a pointer to a buffer con-

taining the values as well as a size information which indicates how many values reside in the

buffer. Furthermore a pointer to a buffer where the request ID should be written to can be pro-

vided. The result (whether the write was successful or not) can be accessed later by passing the

obtained request ID to the SA_CTL_WaitForWrite function.

The advantage of this method is that the application may write several property values in fast

succession and then perform other tasks before blocking on the reception of the results.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key of the property that should be accessed.

• values (int64_t *), input: Pointer to a buffer that must contain the values to be written.

• arraySize (size_t), input: Size value that must contain the size of the value buffer (in number

of elements, not number of bytes) when the function is called.

• rID (SA_CTL_RequestID_t *), output: Pointer to a request ID. Can be null pointer for call-and-

forget mechanism (see section 2.3.4).

• tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to

zero.

See also:

SA_CTL_WaitForWrite, SA_CTL_RequestWritePropertyArray_i32

107MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.25 SA_CTL_WaitForWrite

Interface:

SA_CTL_Result_t SA_CTL_WaitForWrite(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_RequestID_t rID

);

Description:

This function returns the result of a property write access that has previously been requested

using the data type specific SA_CTL_RequestWriteProperty_x function.

NOTICE
While the request function is non-blocking the SA_CTL_WaitForWrite func-

tion blocks until the desired result has arrived.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• rID (SA_CTL_RequestID_t), input: ID of the addressed request.

Example:

See example on page 102.

See also:

SA_CTL_RequestWriteProperty_i32, SA_CTL_RequestWriteProperty_i64,

SA_CTL_RequestWriteProperty_s

108MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.26 SA_CTL_CancelRequest

Interface:

SA_CTL_Result_t SA_CTL_CancelRequest(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_RequestID_t rID

);

Description:

This function cancels a non-blocking read or write request.

NOTICE
Without output buffering the request has already been sent. In this case only

the answer/result will be discarded but property writes will still be executed.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• rID (SA_CTL_RequestID_t), input: ID of the addressed request.

Example:

SA_CTL_Result_t result;

SA_CTL_RequestID_t rID;

// Request to set hold time to 5 seconds

result = SA_CTL_RequestWriteProperty_i32(

dHandle, 0, SA_CTL_PKEY_HOLD_TIME, 5000, &rID, 0

);

// process other tasks

// ...

// We are not interested in the result anymore and discard the request

result = SA_CTL_CancelRequest(dHandle, rID);

See also:

SA_CTL_RequestWriteProperty_i32, SA_CTL_RequestWriteProperty_i64,

SA_CTL_RequestWriteProperty_s, SA_CTL_RequestReadProperty

109MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.27 SA_CTL_CreateOutputBuffer

Interface:

SA_CTL_Result_t SA_CTL_CreateOutputBuffer(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_TransmitHandle_t *tHandle

);

Description:

Creates an output buffer for optimizing communication throughput with the device using the

asynchronous command set. After creation the retrieved transmit handle can be used to choose

whether a command is to be buffered or sent directly. A buffered command is not sent to the de-

vice immediately. Instead, the data is held back and stored in the internal buffer. Youmay accumu-

late several commands and then call SA_CTL_FlushOutputBuffer to initiate the transmission

or SA_CTL_CancelOutputBuffer to cancel the output buffer.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• tHandle (SA_CTL_TransmitHandle_t *), output: Pointer to a transmit handle.

Example:

// Note: to keep the example simple, we omit processing the result codes

SA_CTL_TransmitHandle_t tHandle;

SA_CTL_CreateOutputBuffer(dHandle, &tHandle);

SA_CTL_Move(dHandle, 0, 1000000, tHandle);

SA_CTL_Move(dHandle, 1, -1000000, tHandle);

// move commands have not been transmitted yet.

SA_CTL_FlushOutputBuffer(dHandle, tHandle);

// move commands have been transmitted and will be executed.

See also:

SA_CTL_FlushOutputBuffer, SA_CTL_CancelOutputBuffer

110MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.28 SA_CTL_FlushOutputBuffer

Interface:

SA_CTL_Result_t SA_CTL_FlushOutputBuffer(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_TransmitHandle_t tHandle

);

Description:

Initiates the transmission of all commands stored in the output buffer that is associated with the

given transmit handle.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer.

Example:

SA_CTL_Result_t result;

SA_CTL_TransmitHandle_t tHandle;

result = SA_CTL_CreateOutputBuffer(dHandle, &tHandle);

if (result == SA_CTL_ERROR_NONE) {

// tHandle now holds a valid transmit handle

}

// append commands to buffer here

result = SA_CTL_FlushBuffer(dHandle, tHandle);

if (result == SA_CTL_ERROR_NONE) {

// buffer is now flushed and the transmit handle released

}

// process generated answers/events

See also:

SA_CTL_CreateOutputBuffer, SA_CTL_CancelOutputBuffer

111MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.29 SA_CTL_CancelOutputBuffer

Interface:

SA_CTL_Result_t SA_CTL_CancelOutputBuffer(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_TransmitHandle_t tHandle

);

Description:

Discards all buffered commands and releases the associated transmit handle.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer.

Example:

SA_CTL_Result_t result;

SA_CTL_TransmitHandle_t tHandle;

result = SA_CTL_CreateOutputBuffer(dHandle, &tHandle);

if (result == SA_CTL_ERROR_NONE) {

// tHandle now holds a valid transmit handle

}

// append commands to buffer here

result = SA_CTL_CancelBuffer(dHandle, tHandle);

if (result == SA_CTL_ERROR_NONE) {

// all buffered commands are discarded and the transmit handle released

}

See also:

SA_CTL_CreateOutputBuffer, SA_CTL_FlushOutputBuffer

112MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.30 SA_CTL_OpenCommandGroup

Interface:

SA_CTL_Result_t SA_CTL_OpenCommandGroup(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_TransmitHandle_t *tHandle,

uint32_t triggerMode

);

Description:

Opens a command group that can be used to combine multiple asynchronous commands into

an atomic group. A trigger mode can be set to select between different modes to start the

groups execution. After creation the retrieved transmit handle can be used to choose whether

a command is to be grouped or sent directly. You may accumulate several commands and then

call SA_CTL_CloseCommandGroup to activate or SA_CTL_CancelCommandGroup to cancel the

command group.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• tHandle (SA_CTL_TransmitHandle_t *), output: Pointer to a transmit handle.

• triggerMode (uint32_t), input: Desired trigger mode for this command group. Must be either

SA_CTL_CMD_GROUP_TRIGGER_MODE_DIRECT (0) or

SA_CTL_CMD_GROUP_TRIGGER_MODE_EXTERNAL (1).

Example:

SA_CTL_Result_t result;

SA_CTL_TransmitHandle_t tHandle;

result = SA_CTL_OpenCommandGroup(

dHandle,&tHandle,SA_CTL_CMD_GROUP_TRIGGER_MODE_DIRECT

);

if (result == SA_CTL_ERROR_NONE) {

// tHandle now holds a valid transmit handle

}

See also:

SA_CTL_CloseCommandGroup, SA_CTL_CancelCommandGroup

113MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.31 SA_CTL_CloseCommandGroup

Interface:

SA_CTL_Result_t SA_CTL_CloseCommandGroup(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_TransmitHandle_t tHandle

);

Description:

Closes and eventually executes the assembled command group depending on the configured trig-

ger mode.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer.

Example:

SA_CTL_Result_t result;

SA_CTL_TransmitHandle_t tHandle;

result = SA_CTL_OpenCommandGroup(

dHandle,&tHandle,SA_CTL_CMD_GROUP_TRIGGER_MODE_DIRECT

);

if (result == SA_CTL_ERROR_NONE) {

// tHandle now holds a valid transmit handle

}

// append commands to buffer here

result = SA_CTL_CloseCommandGroup(dHandle, tHandle);

if (result == SA_CTL_ERROR_NONE) {

// command group is now activated. since the command group is

// triggered directly, it is executed right away.

}

// process other tasks

// ...

// optional: wait for the SA_CTL_EVENT_CMD_GROUP_TRIGGERED event

// process answers/events to commands

See also:

SA_CTL_OpenCommandGroup, SA_CTL_CancelCommandGroup

114MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.32 SA_CTL_CancelCommandGroup

Interface:

SA_CTL_Result_t SA_CTL_CancelCommandGroup(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_TransmitHandle_t tHandle

);

Description:

Discards all buffered commands and releases the associated transmit handle.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer.

Example:

SA_CTL_Result_t result;

SA_CTL_TransmitHandle_t tHandle;

result = SA_CTL_OpenCommandGroup(

dHandle,&tHandle,SA_CTL_CMD_GROUP_TRIGGER_MODE_DIRECT

);

if (result == SA_CTL_ERROR_NONE) {

// tHandle now holds a valid transmit handle

}

// append commands to buffer here

result = SA_CTL_CancelCommandGroup(dHandle, tHandle);

if (result == SA_CTL_ERROR_NONE) {

// all buffered commands are discarded and the transmit handle released

}

See also:

SA_CTL_OpenCommandGroup, SA_CTL_CloseCommandGroup

115MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.33 SA_CTL_WaitForEvent

Interface:

SA_CTL_Result_t SA_CTL_WaitForEvent(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_Event_t *event,

uint32_t timeout

);

Description:

This function blocks until the device reports an event. Usually this function is used in a separate

thread. The function returns when:

• An event has occurred within the given timeout. In this case the return value of the func-

tion will be SA_CTL_ERROR_NONE and the output parameter event will hold the event that

occurred. See section 2.4 "Event Notifications" for the structure of events.

• No event occurred within the given timeout. In this case the return value of the function will

be SA_CTL_ERROR_TIMEOUT and the event parameter is undefined.

• The call is canceled with a call of SA_CTL_Cancel from another application thread. In this

case the return value of the function will be SA_CTL_ERROR_CANCELED and the event pa-

rameter is undefined. This is typically useful when the application is to be terminated and

the event handling thread must be unblocked for a proper cleanup.

NOTICE
This function cannot be called simultaneously using multiple threads (for the

same device handle). If a second thread tries to call this function, then a

SA_CTL_ERROR_THREAD_LIMIT_REACHED error will be returned.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• event (SA_CTL_Event_t *), output: Event that occurred.

• timeout (uint32_t), input: Maximum time to wait for an event to occur. The timeout is given

in milliseconds. The special value SA_CTL_INFINITE is also valid.

116MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

Example:

// thread 1:

SA_CTL_Event_t event;

SA_CTL_Result_t result;

result = SA_CTL_WaitForEvent(dHandle,&event,SA_CTL_INFINITE);

if (result == SA_CTL_ERROR_CANCELED) {

// SA_CTL_WaitForEvent was canceled before an event occurred

}

// thread 2:

// wake up waiting thread 1

SA_CTL_Result_t result = SA_CTL_Cancel(dHandle);

See also:

SA_CTL_Cancel

117MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.34 SA_CTL_Calibrate

Interface:

SA_CTL_Result_t SA_CTL_Calibrate(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_TransmitHandle_t tHandle

);

Description:

This movement function performs a calibration routine for a channel. Before calling this function

the calibration options should be configured. See section 2.6.1 "Calibrating" for more information.

NOTICE
The function call returns immediately, without waiting for themovement to com-

plete. The calibration may however take a few seconds to complete. Therefore

the SA_CTL_CH_STATE_BIT_CALIBRATING in the Channel State can be mon-

itored to determine the end of the calibration sequence.

CAUTION
As a safety precaution, make sure that the positioner has enough freedom to

move without damaging other equipment.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed channel.

• tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer. If un-

used set to zero.

Example:

SA_CTL_Result_t result;

// Set calibration mode for channel 0 (start direction: forward)

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_CALIBRATION_OPTIONS, 0

);

118MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

if (result == SA_CTL_ERROR_NONE) {

// calibration mode is now set

}

// Start calibration sequence

result = SA_CTL_Calibrate(dHandle, 0, 0);

if (result == SA_CTL_ERROR_NONE) {

// calibration is now started (function call returns immediately)

}

119MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.35 SA_CTL_Reference

Interface:

SA_CTL_Result_t SA_CTL_Reference(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_TransmitHandle_t tHandle

);

Description:

This movement function may be used to move the positioner to a known physical position. Before

calling this function the reference options should be configured. See section 2.6.2 "Referencing"

for more information.

NOTICE
The function call returns immediately, without waiting for themovement to com-

plete. The SA_CTL_CH_STATE_BIT_REFERENCING in the Channel State can

be monitored to determine the end of the referencing sequence. If the com-

mand was successful the SA_CTL_CH_STATE_BIT_IS_REFERENCED in the

Channel State will be set. This bit can also be checked to determine whether

it is necessary to perform the referencing sequence.

CAUTION
As a safety precaution, make sure that the positioner has enough freedom to

move without damaging other equipment.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed channel.

• tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer. If un-

used set to zero.

120MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

Example:

SA_CTL_Result_t result;

// Set find reference mode for channel 0 (default is 0)

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_REFERENCING_OPTIONS, 0

);

if (result == SA_CTL_ERROR_NONE) {

// desired reference mode is now set

}

// Start referencing sequence

result = SA_CTL_Reference(dHandle, 0, 0);

if (result == SA_CTL_ERROR_NONE) {

// referencing sequence has started (function call returns immediately)

}

121MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.36 SA_CTL_Move

Interface:

SA_CTL_Result_t SA_CTL_Move(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

int64_t moveValue,

SA_CTL_TransmitHandle_t tHandle

);

Description:

This function instructs a positioner to move according to the current move configuration. The

move mode as well as corresponding parameters (e.g. Frequency, Velocity, HoldTime, etc.) have to

be configured beforehand using the SA_CTL_SetProperty_x functions. See section 2.6 "Mov-

ing Positioners" for more information.

NOTICE
The function call returns immediately, without waiting for themovement to com-

plete. The Channel State bits SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING

and SA_CTL_CH_STATE_BIT_CLOSED_LOOP_ACTIVE can be monitored to

determine the end of the movement.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed channel.

• moveValue (int64_t), input: Interpretation depends on the configured move mode.

• tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer. If un-

used set to zero.

Example:

// Note: to keep the example simple, we omit processing the result codes

// Set move mode

SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_MOVE_MODE, SA_CTL_MOVE_MODE_CL_RELATIVE

);

// Set move velocity [in pm/s]

SA_CTL_SetProperty_i64(

122MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

dHandle, 0, SA_CTL_PKEY_MOVE_VELOCITY, 500000000

);

// Set move acceleration [in pm/s2],

// a value of 0 disables the acceleration control

SA_CTL_SetProperty_i64(

dHandle, 0, SA_CTL_PKEY_MOVE_ACCELERATION, 0

);

// Start actual movement, moveValue holds relative position (in pm)

SA_CTL_Move(dhandle, 0, 500000000, 0);

123MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.37 SA_CTL_Stop

Interface:

SA_CTL_Result_t SA_CTL_Stop(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_TransmitHandle_t tHandle

);

Description:

This function stops any ongoing movement of a positioner. It also stops the hold position feature

of a closed-loop command.

Note for closed-loop movements with acceleration control enabled: The first stop command sent

while moving triggers the positioner to come to a halt by decelerating to zero. A second stop

command triggers a hard stop (emergency stop).

NOTICE
The function call returns immediately, without waiting for the stop to complete.

The SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING in the Channel State can be

monitored to determine the end of the movement.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed channel.

• tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer. If un-

used set to zero.

Example:

int8_t channel = 0;

SA_CTL_Result_t result;

result = SA_CTL_Stop(dHandle, channel, 0);

if (result == SA_CTL_ERROR_NONE) {

// stop command is now being executed

}

124MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.38 SA_CTL_OpenStream

Interface:

SA_CTL_Result_t SA_CTL_OpenStream(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_StreamHandle_t *sHandle,

uint32_t triggerMode

);

Description:

This function opens a stream to the device. It is used for trajectory streaming (see section 2.15).

The caller must supply a pointer to a buffer where the stream handle should be written to. A

trigger mode can be set to select between different modes to start and synchronize the streaming

process.

NOTICE
The desired stream base rate has to be configured before calling this function.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• sHandle (SA_CTL_StreamHandle_t *), output: Pointer to a stream handle.

• triggerMode (uint32_t), input: Desired trigger mode. May be one of

SA_CTL_STREAM_TRIGGER_MODE_DIRECT (0),

SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_ONCE (1),

SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_SYNC (2).

Example:

SA_CTL_Result_t result;

SA_CTL_StreamHandle_t sHandle;

result = SA_CTL_OpenStream(

dHandle,

&sHandle,

SA_CTL_STREAM_TRIGGER_MODE_DIRECT

);

if (result == SA_CTL_ERROR_NONE) {

// stream is now opened

}

125MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

See also:

SA_CTL_StreamFrame, SA_CTL_CloseStream, SA_CTL_AbortStream

126MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.39 SA_CTL_StreamFrame

Interface:

SA_CTL_Result_t SA_CTL_StreamFrame(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_StreamHandle_t sHandle,

uint8_t *frameData,

uint32_t frameSize

);

Description:

This function supplies the device with stream data by sending one frame per function call. A frame

contains the data for one interpolation point whichmust be assembled by concatenating elements

of the following tuple:

• Channel Index (1 byte): The channel that receives the following position.

• Position (8 byte): A position that belongs to the current interpolation point.

See section 2.15 "Trajectory Streaming" for more information.

NOTICE
This function may block if the flow control needs to throttle the data rate. The

function returns as soon as the frame was transmitted to the controller.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• sHandle (SA_CTL_StreamHandle_t), input: Handle of the addressed stream.

• frameData (uint8_t *), input: Pointer to the frame data buffer.

• frameSize (uint32_t), input: Size of the given frame (in bytes).

Example:

SA_CTL_Result_t result;

// create frame data array for 2 channel/position tuples

uint8_t frameData[2*(1+8)];

// fill frame with data

// ...

// send frame

127MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

result = SA_CTL_StreamFrame(

dHandle, sHandle, frameData, sizeof(frameData)

);

if (result == SA_CTL_ERROR_NONE) {

// frame successfully sent to the device

}

See also:

SA_CTL_OpenStream, SA_CTL_CloseStream, SA_CTL_AbortStream

128MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.40 SA_CTL_CloseStream

Interface:

SA_CTL_Result_t SA_CTL_CloseStream(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_StreamHandle_t sHandle

);

Description:

This function closes a stream. For the device this marks the end of the stream. After having

processed the remaining buffered interpolation points the stream is finished. See section 2.15 for

more information.

NOTICE
If the stream is not closed properly, the device will generate a buffer underflow

error after the last frame has been processed.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• sHandle (SA_CTL_StreamHandle_t), input: Handle of the addressed stream.

Example:

SA_CTL_StreamHandle_t sHandle;

SA_CTL_Result_t result;

result = SA_CTL_OpenStream(

dHandle,

&sHandle,

SA_CTL_STREAM_TRIGGER_MODE_DIRECT

);

if (result != SA_CTL_ERROR_NONE) {

// handle error

}

// stream frames

// ...

result = SA_CTL_CloseStream(dHandle, sHandle);

// remaining interpolation points are now processed

129MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

See also:

SA_CTL_OpenStream, SA_CTL_StreamFrame, SA_CTL_AbortStream

130MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.41 SA_CTL_AbortStream

Interface:

SA_CTL_Result_t SA_CTL_AbortStream(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_StreamHandle_t sHandle

);

Description:

This function aborts a stream. Thus all movements are stopped immediately and remaining

buffered interpolation points are discarded.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• sHandle (SA_CTL_StreamHandle_t), input: Handle of the addressed stream.

Example:

SA_CTL_StreamHandle_t sHandle;

SA_CTL_Result_t result;

result = SA_CTL_OpenStream(

dHandle,

&sHandle,

SA_CTL_STREAM_TRIGGER_MODE_DIRECT

);

if (result != SA_CTL_ERROR_NONE) {

// handle error

}

// stream frames

// ...

result = SA_CTL_AbortStream(dHandle, sHandle);

// stream is aborted immediately

See also:

SA_CTL_OpenStream, SA_CTL_StreamFrame, SA_CTL_CloseStream

131MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.1 Property Summary

Table 4.1 – Property Summary

Property Code Type Idx Access CG1 NV2 Page

Device Properties

Number of Channels 0x020F0017 I32 Dev R - - 137

Number of Bus Modules 0x020F0016 I32 Dev R - - 137

Device State 0x020F000F I32 Dev R - - 138

Device Serial Number 0x020F005E String Dev R - - 139

Device Name 0x020F003D String Dev RW - X 140

Emergency Stop Mode 0x020F0088 I32 Dev RW - - 141

Network Discover Mode 0x020F0159 I32 Dev RW - X 142

Module Properties

Power Supply Enabled 0x02030010 I32 Mod RW X - 143

Module State 0x0203000F I32 Mod R X - 144

Number of Bus Module

Channels

0x02030017 I32 Mod R X - 145

Positioner Properties

Amplifier Enabled 0x0302000D I32 Ch RW X - 145

Positioner Control Options 0x0302005D I32 Ch RW X X 146

Actuator Mode 0x03020019 I32 Ch RW - - 147

Control Loop Input 0x03020018 I32 Ch RW X X 149

Sensor Input Select 0x03020018 I32 Ch RW X X 149

Positioner Type 0x0302003C I32 Ch RW X X 151

Positioner Type Name 0x0302003D String Ch R - - 152

Move Mode 0x03050087 I32 Ch RW X - 152

Channel State 0x0305000F I32 Ch R X - 154

Position 0x0305001D I64 Ch RW X - 155

Continued on next page

132MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Table 4.1 – Continued from previous page

Property Code Type Idx Access CG1 NV2 Page

Target Position 0x0305001E I64 Ch R X - 156

Scan Position 0x0305001F I64 Ch R X - 156

Scan Velocity 0x0305002A I64 Ch RW X - 157

Hold Time 0x03050028 I32 Ch RW X - 158

Move Velocity 0x03050029 I64 Ch RW X - 159

Move Acceleration 0x0305002B I64 Ch RW X - 160

Max Closed Loop Frequency 0x0305002F I32 Ch RW X - 161

Default Max Closed Loop

Frequency

0x03050057 I32 Ch RW X X 162

Step Frequency 0x0305002E I32 Ch RW X - 163

Step Amplitude 0x03050030 I32 Ch RW X - 163

Following Error Limit 0x03050055 I64 Ch RW X X 164

Broadcast Stop Options 0x0305005D I32 Ch RW X - 165

Sensor Power Mode 0x03080019 I32 Ch RW X X 166

Sensor Power Save Delay 0x03080054 I32 Ch RW X X 167

Position Mean Shift 0x03090022 I32 Ch RW X X 168

Safe Direction 0x03090027 I32 Ch RW X X 169

Control Loop Input Sensor

Value

0x0302001D I64 Ch R X - 170

Control Loop Input Aux Value 0x030200B2 I64 Ch R X - 171

Target To Zero Voltage Hold

Threshold

0x030200B9 I32 Ch RW X X 172

Scale Properties

Logical Scale Offset 0x02040024 I64 Ch RW X X 173

Logical Scale Inversion 0x02040025 I32 Ch RW X X 174

Range Limit Min 0x02040020 I64 Ch RW X - 175

Range Limit Max 0x02040021 I64 Ch RW X - 175

Calibration Properties

Calibration Options 0x0306005D I32 Ch RW X - 176

Signal Correction Options 0x0306001C I32 Ch RW X X 177

Referencing Properties

Referencing Options 0x0307005D I32 Ch RW X - 179

Continued on next page

133MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Table 4.1 – Continued from previous page

Property Code Type Idx Access CG1 NV2 Page

Distance To Reference Mark 0x030700A2 I64 Ch R X - 180

Distance Code Inverted 0x0307000E I32 Ch RW X X 180

Positioner Tuning and Customizing Properties

Positioner Movement Type 0x0309003F I32 Ch R(W) X (X) 181

Positioner Is Custom Type 0x03090041 I32 Ch R(W) X (X) 182

Positioner Base Unit 0x03090042 I32 Ch R(W) X (X) 183

Positioner Base Resolution 0x03090043 I32 Ch R(W) X (X) 184

Positioner Sensor Head Type 0x0309008E I32 Ch R(W) X (X) 185

Positioner Reference Type 0x03090048 I32 Ch R(W) X (X) 186

Positioner P Gain 0x0309004B I32 Ch R(W) X (X) 187

Positioner I Gain 0x0309004C I32 Ch R(W) X (X) 188

Positioner D Gain 0x0309004D I32 Ch R(W) X (X) 189

Positioner PID Shift 0x0309004E I32 Ch R(W) X (X) 190

Positioner Anti Windup 0x0309004F I32 Ch R(W) X (X) 191

Positioner ESD Distance

Threshold

0x03090050 I32 Ch R(W) X (X) 192

Positioner ESD Counter

Threshold

0x03090051 I32 Ch R(W) X (X) 193

Positioner Target Reached

Threshold

0x03090052 I32 Ch R(W) X (X) 194

Positioner Target Hold

Threshold

0x03090053 I32 Ch R(W) X (X) 195

Save Positioner Type 0x0309000A I32 Ch W X - 196

Positioner Write Protection 0x0309000D I32 Ch RW X - 196

Streaming Properties

Stream Base Rate 0x040F002C I32 Dev RW - - 197

Stream External Sync Rate 0x040F002D I32 Dev RW - - 198

Stream Options 0x040F005D I32 Dev RW - - 199

Stream Load Maximum 0x040F0301 I32 Dev R - - 200

Diagnostic Properties

Channel Error 0x0502007A I32 Ch R X - 200

Channel Temperature 0x05020034 I32 Ch R X - 201

Bus Module Temperature 0x05030034 I32 Mod R X - 202

Continued on next page

134MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Table 4.1 – Continued from previous page

Property Code Type Idx Access CG1 NV2 Page

Auxiliary Properties

Aux Positioner Type 0x0802003C I32 Ch RW X X 203

Aux Positioner Type Name 0x0802003D String Ch R - - 204

Aux Input Select 0x08020018 I32 Ch RW X X 204

Aux I/O Module Input Index 0x081100AA I32 Ch RW X X 205

Aux Direction Inversion 0x0809000E I32 Ch RW X X 207

Aux I/O Module Input0 / Input1

Value

0x08110000 I64 Ch R X - 208

Aux I/O Module Input0 / Input1

Value

0x08110001 I64 Ch R X - 208

Aux Digital Input Value 0x080300AD I32 Mod R X - 208

Aux Digital Output Value / Set /

Clear

0x080300AE I32 Mod RW X - 209

Aux Digital Output Value / Set /

Clear

0x080300B0 I32 Mod W X - 209

Aux Digital Output Value / Set /

Clear

0x080300B1 I32 Mod W X - 209

Aux Analog Output Value0 /

Value1

0x08030000 I32 Mod RW X - 210

Aux Analog Output Value0 /

Value1

0x08030001 I32 Mod RW X - 210

I/O Module Properties

I/O Module Options 0x0603005D I32 Mod RW X - 211

I/O Module Voltage 0x06030031 I32 Mod RW X - 213

I/O Module Analog Input Range 0x060300A0 I32 Mod RW X X 213

Input Trigger Properties

Device Input Trigger Mode 0x060D0087 I32 Dev RW - - 215

Device Input Trigger Condition 0x060D005A I32 Dev RW - - 216

Output Trigger Properties

Channel Output Trigger Mode 0x060E0087 I32 Ch RW X - 217

Channel Output Trigger Polarity 0x060E005B I32 Ch RW X - 218

Channel Output Trigger Pulse

Width

0x060E005C I32 Ch RW X - 219

Continued on next page

135MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Table 4.1 – Continued from previous page

Property Code Type Idx Access CG1 NV2 Page

Channel Position Compare

Start Threshold

0x060E0058 I64 Ch RW X - 220

Channel Position Compare

Increment

0x060E0059 I64 Ch RW X - 221

Channel Position Compare

Direction

0x060E0026 I32 Ch RW X - 221

Channel Position Compare

Limit Min

0x060E0020 I64 Ch RW X - 222

Channel Position Compare

Limit Max

0x060E0021 I64 Ch RW X - 223

Hand Control Module Properties

Hand Control Module Lock

Options

0x020C0083 I32 Dev RW - - 224

Hand Control Module Default

Lock Options

0x020C0084 I32 Dev RW - X 226

API Properties

Event Notification Options 0xF010005D I32 API RW - - 227

Auto Reconnect 0xF01000A1 I32 API RW - - 228

1Command Group: This column defines if a property may be used in command groups. See section 2.14 "Command

Groups" for more information.
2Non-Volatile: This column defines if a property is stored in non-volatile memory. Non-Volatile properties need not be

configured on every power-up.

136MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.2 Device Properties

4.2.1 Number of Channels

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_NUMBER_OF_CHANNELS 0x020F0017 I32 Dev R -

ASCII Command: [:PROPerty]:DEVice:NOCHannels

Description

This property holds the total number of channels the connected device has. It defines the valid

range for channel index parameters. The channel index is zero based. Therefore, the maximum

index is number of channels - 1.

Note that the number of channels does not represent the number of positioners that are currently

connected to the device.

Example

SA_CTL_Result_t result;

int32_t channels;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_NUMBER_OF_CHANNELS, &channels, 0

);

if (result == SA_CTL_ERROR_NONE) {

// ’channels’ holds the number of available channels of the device

}

See Also

4.2.2 Number of Bus Modules, 4.3.3 Number of Bus Module Channels

4.2.2 Number of Bus Modules

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_NUMBER_OF_BUS_MODULES 0x020F0016 I32 Dev R -

ASCII Command: [:PROPerty]:DEVice:NOBModules

137MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

This property holds the number of modules the connected device has. It defines the valid range

for module index parameters. The module index is zero based. Therefore, the maximum index is

number of modules - 1.

Example

SA_CTL_Result_t result;

int32_t modules;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_NUMBER_OF_BUS_MODULES, &modules

);

if (result == SA_CTL_ERROR_NONE) {

// ’modules’ holds the number of available modules of the device

}

See Also

4.3.3 Number of Bus Module Channels

4.2.3 Device State

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_DEVICE_STATE 0x020F000F I32 Dev R -

ASCII Command: [:PROPerty]:DEVice:STATe

Description

This property holds the device state. The value is a bit field containing independent flags. Their

meanings are described in section 2.8.1 "Device State Flags".

Undefined flags are reserved for future use. Therefore, the user software should not rely on a

static value of undefined flags.

138MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

SA_CTL_Result_t result;

int32_t state;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_DEVICE_STATE, &state

);

if (result == SA_CTL_ERROR_NONE) {

// use bit masking to extract the needed information from the state

if (state & SA_CTL_DEV_STATE_BIT_HM_PRESENT) {

// a hand controller is connected to the device

}

}

See Also

4.3.2 Module State, 4.4.9 Channel State

4.2.4 Device Serial Number

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_DEVICE_SERIAL_NUMBER 0x020F005E String Dev R -

ASCII Command: [:PROPerty]:DEVice:SNUMber

Description

This property may be used to identify a device connected to the PC. Each device has a unique

serial number which makes it possible to distinguish one from another. The device serial number

consists of the global device name (‘MCS2‘) and an individual number.

Example

SA_CTL_Result_t result;

char deviceSn[SA_CTL_STRING_MAX_LENGTH];

size_t ioStrSize = sizeof(deviceSn);

result = SA_CTL_GetProperty_s(

dHandle,0,SA_CTL_PKEY_DEVICE_SERIAL_NUMBER,deviceSn,&ioStrSize

);

if (result == SA_CTL_ERROR_NONE) {

// ’deviceSn’ holds the serial number string, e.g. ’MCS2-00000001’

139MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

}

See Also

4.2.5 Device Name

4.2.5 Device Name

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_DEVICE_NAME 0x020F003D String Dev RW -

ASCII Command: [:PROPerty]:DEVice:NAME

Description

This property may be used to identify a device connected to the PC. In contrast to the device serial

number, the device name is writable by the user. The name is stored to non-volatile memory. By

default, the device name is set to the device serial number string. Note that the device name is not

reset to its default when performing a firmware update.

Example

SA_CTL_Result_t result;

char deviceName[SA_CTL_STRING_MAX_LENGTH];

size_t ioStringSize = sizeof(deviceName);

result = SA_CTL_GetProperty_s(

dHandle,0,SA_CTL_PKEY_DEVICE_NAME,deviceName,&ioStringSize

);

if (result == SA_CTL_ERROR_NONE) {

// ’deviceName’ holds the user defined name of the device

}

See Also

4.2.4 Device Serial Number

140MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.2.6 Emergency Stop Mode

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_EMERGENCY_STOP_MODE 0x020F0088 I32 Dev RW -

ASCII Command: [:PROPerty]:DEVice:ESTop:MODE

Description

This property specifies the emergency stop mode of the device. See section 2.17.2 "Emergency

Stop Mode" for more information.

The default value is SA_CTL_EMERGENCY_STOP_MODE_NORMAL (0).

Valid Range

SA_CTL_EMERGENCY_STOP_MODE_NORMAL (0),

SA_CTL_EMERGENCY_STOP_MODE_RESTRICTED (1),

SA_CTL_EMERGENCY_STOP_MODE_AUTO_RELEASE (2)

Example

// set emergency stop mode to normal mode

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_EMERGENCY_STOP_MODE,

SA_CTL_EMERGENCY_STOP_MODE_NORMAL

);

See Also

4.13.1 Device Input Trigger Mode

141MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.2.7 Network Discover Mode

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_NETWORK_DISCOVER_MODE 0x020F0159 I32 Dev RW -

ASCII Command: [:PROPerty]:DEVice:NETWork:DISCover:MODE

Description

This property specifies the discover mode for devices with ethernet interface. The discover feature

allows to use the SA_CTL_FindDevices function to list devices with ethernet interface without

knowing the actual IP address. The MCS2 devices use broadcast packets to inform about their

presence in the network and for the discovery mechanism. This technique is quite common for

network devices like switches, routers, etc. However, some users might wish to limit the traffic in

a restricted network. Therefore, the behavior of the discovery mechanism is configurable.

The following modes are available:

Mode Name Short Description

0 SA_CTL_NETWORK_DISCOVER_MODE_DISABLED The discover feature is disabled. No

broadcast packets will be generated.

Devices will not be found by the

SA_CTL_FindDevices function.

1 SA_CTL_NETWORK_DISCOVER_MODE_PASSIVE The device will not generate packets

to inform about its presence but still

reacts to direct discover requests.

2 SA_CTL_NETWORK_DISCOVER_MODE_ACTIVE The device informs about its pres-

ence and reacts to all discover re-

quests.

See section 2.1 "Connecting and Disconnecting" for more information.

The default value is SA_CTL_NETWORK_DISCOVER_MODE_ACTIVE (2). This property is stored to

non-volatile memory and need not be configured on every power-up.

Example

// disable the network discover feature

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_NETWORK_DISCOVER_MODE,

SA_CTL_NETWORK_DISCOVER_MODE_DISABLED

142MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

);

See Also

3.2.4 SA_CTL_FindDevices

4.3 Module Properties

4.3.1 Power Supply Enabled

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POWER_SUPPLY_ENABLED 0x02030010 I32 Mod RW X

ASCII Command: [:PROPerty]:MODule#:PSUPply[:ENABled]

Description

This property enables or disables the positioner driver power supply of the module. Of course the

power supply must be enabled to perform positioner movements. Otherwise, if a movement is

commanded, the SA_CTL_EVENT_MOVEMENT_FINISHED event that is generated by the channel

will hold a SA_CTL_ERROR_POWER_SUPPLY_DISABLED error as parameter.

The default value is SA_CTL_ENABLED (0x01).

Valid Range

SA_CTL_DISABLED (0x00), SA_CTL_ENABLED (0x01)

Example

// switch off the driver power supply of the first module

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POWER_SUPPLY_ENABLED, SA_CTL_DISABLED

);

143MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.4.1 Amplifier Enabled

4.3.2 Module State

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_MODULE_STATE 0x0203000F I32 Mod R X

ASCII Command: [:PROPerty]:MODule#:STATe

Description

This property holds the module state. The value is a bit field containing independent flags. Their

meanings are described in section 2.8.2 "Module State Flags".

Undefined flags are reserved for future use. Therefore, the user software should not rely on a

static value of undefined flags.

Example

SA_CTL_Result_t result;

int32_t state;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_MODULE_STATE, &state

);

if (result == SA_CTL_ERROR_NONE) {

// use bit masking to extract the needed information from the state

if (state & SA_CTL_MOD_STATE_BIT_SM_PRESENT) {

// a sensor module is connected to the module

}

}

See Also

4.2.3 Device State, 4.4.9 Channel State

144MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.3.3 Number of Bus Module Channels

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_NUMBER_OF_BUS_MODULE_CHANNELS 0x02030017 I32 Mod R X

ASCII Command: [:PROPerty]:MODule#:NOMChannels

Description

This property holds the number of channels the addressed module has.

Example

SA_CTL_Result_t result;

int32_t modChannels;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_NUMBER_OF_BUS_MODULE_CHANNELS, &modChannels

);

if (result == SA_CTL_ERROR_NONE) {

// ’modChannels’ holds the number of channel of the module 0

}

See Also

4.2.2 Number of BusModules, 4.2.1 Number of Channels

4.4 Positioner Properties

4.4.1 Amplifier Enabled

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_AMPLIFIER_ENABLED 0x0302000D I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:AMPLifier[:ENABled]

145MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

This property enables or disables the positioner driver amplifier of the channel. Of course, the

amplifier must be enabled to perform positioner movements. Otherwise, if a movement is com-

manded, the SA_CTL_EVENT_MOVEMENT_FINISHED event that is generated by the channel will

hold a SA_CTL_ERROR_AMPLIFIER_DISABLED error as parameter.

The default value is SA_CTL_ENABLED (0x01).

Valid Range

SA_CTL_DISABLED (0x00), SA_CTL_ENABLED (0x01)

Example

// switch off the driver power amplifier of the first channel

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_AMPLIFIER_ENABLED, SA_CTL_DISABLED

);

See Also

4.3.1 Power Supply Enabled

4.4.2 Positioner Control Options

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POSITIONER_CONTROL_OPTIONS 0x0302005D I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:PCONtrol:OPTions

146MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

This property defines several positioner control related options. The value is a bit field containing

independent flags. The following flags are available:

Bit C-Definition Code

0 SA_CTL_POS_CTRL_OPT_BIT_ACC_REL_POS_DIS 0x00000001

1 SA_CTL_POS_CTRL_OPT_BIT_NO_SLIP 0x00000002

2 SA_CTL_POS_CTRL_OPT_BIT_NO_SLIP_WHILE_HOLDING 0x00000004

3 SA_CTL_POS_CTRL_OPT_BIT_FORCED_SLIP_DIS 0x00000008

4 SA_CTL_POS_CTRL_OPT_BIT_STOP_ON_FOLLOWING_ERR 0x00000010

5 SA_CTL_POS_CTRL_OPT_BIT_TARGET_TO_ZERO_VOLTAGE 0x00000020

Undefined flags are reserved and should be set to zero. See section 2.6.4 "Closed-Loop Move-

ments" for a more detailed description of the positioner control options flags.

This property is stored to nonvolatile memory and need not be configured on every power-up.

The default value is 0 (all flags cleared).

Example

// enable the "no-slip-while-holding" feature for channel 0

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_POSITIONER_CONTROL_OPTIONS,

SA_CTL_POS_CTRL_OPT_BIT_NO_SLIP_WHILE_HOLDING

);

See Also

4.4.8 MoveMode, 4.4.3 Actuator Mode

4.4.3 Actuator Mode

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_ACTUATOR_MODE 0x03020019 I32 Ch RW -

ASCII Command: [:PROPerty]:CHANnel#:ACTuator:MODE

147MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

This property specifies the type of driving signal generation. See section 2.6.4 "Closed-Loop Move-

ments" for a more detailed description of the actuator modes. It is not allowed to change the

actuator mode during an ongoing movement. In that case a SA_CTL_ERROR_BUSY_MOVING er-

ror is returned.

Note that the low vibrationmode requires the velocity and acceleration control to be active. If the

velocity control is not already enabled (move velocity != 0), the move velocity is set implicitly to a

default velocity of 10× 109. If the acceleration control is not already enabled (move acceleration

!= 0), the move acceleration is set implicitly to a default acceleration of 100× 109.

Note that all referencing movements are performed with the normal mode even if this property is

configured to SA_CTL_ACTUATOR_MODE_LOW_VIBRATION.

The default mode is SA_CTL_ACTUATOR_MODE_NORMAL (0).

Valid Range

SA_CTL_ACTUATOR_MODE_NORMAL (0),

SA_CTL_ACTUATOR_MODE_QUIET (1),

SA_CTL_ACTUATOR_MODE_LOW_VIBRATION (2)

NOTICE
The low vibration actuator mode needs a feature permission to be activated on

the controller. See section 2.19 "Feature Permissions" for more information.

Example

SA_CTL_Result_t result;

int8_t channelIdx = 0;

// configure the ‘quiet‘ actuator mode for channel 0

result = SA_CTL_SetProperty_i32(

dHandle,

channelIdx,

SA_CTL_PKEY_ACTUATOR_MODE,

SA_CTL_ACTUATOR_MODE_QUIET

);

See Also

4.4.15 Move Velocity, 4.4.16 Move Acceleration, 4.4.8 Move Mode, 4.4.2 Positioner Control Options

148MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.4.4 Control Loop Input

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_CONTROL_LOOP_INPUT 0x03020018 I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:CLINput

Description

This property specifies which signal is used as input for the control-loop. For the majority of appli-

cations this property will be set to SA_CTL_CONTROL_LOOP_INPUT_SENSOR, meaning the inte-

grated sensor of the positioner is used as feedback signal for the control-loop.

Nonetheless it is also possible to use external signals. E.g. an analog voltage derived from a force

sensor can be feed into an analog input of the MCS2 I/O module to implement a force feedback

control for a gripper. Set this property to SA_CTL_CONTROL_LOOP_INPUT_AUX_IN to use one

of the auxiliary inputs as control-loop feedback. Please refer to section 2.16.5 "Using Analog Inputs

as Control-Loop Feedback" for more information on the auxiliary configuration.

In some cases it may be useful to prohibit the closed-loop operation of a channel. This can be

achieved by setting this property to SA_CTL_CONTROL_LOOP_INPUT_DISABLED.

A SA_CTL_ERROR_CONTROL_LOOP_INPUT_DISABLED error will be generated when trying to

command a closed-loop movement in this case.

The default input is SA_CTL_CONTROL_LOOP_INPUT_SENSOR (1). This property is stored to non-

volatile memory and need not be configured on every power-up.

Valid Range

SA_CTL_CONTROL_LOOP_INPUT_DISABLED (0),

SA_CTL_CONTROL_LOOP_INPUT_SENSOR (1),

SA_CTL_CONTROL_LOOP_INPUT_AUX_IN (2)

Example

SA_CTL_Result_t result;

int8_t channelIdx = 0;

// configure the sensor as input for the control-loop for channel 0

result = SA_CTL_SetProperty_i32(

dHandle,

channelIdx,

SA_CTL_PKEY_CONTROL_LOOP_INPUT,

SA_CTL_CONTROL_LOOP_INPUT_SENSOR

);

149MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.4.5 Sensor Input Select

4.4.5 Sensor Input Select

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_SENSOR_INPUT_SELECT 0x0302009D I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:CLINput

Description

This property specifies which sensor signal is used for the ‘sensor‘ input of the control-loop input

mux. (See Control Loop Input property.) The property is only relevant if a SmarAct PicoScale laser

interferometer is connected as sensor module. The PicoScale calculation system can perform var-

ious calculations with different values of the device, in particular even from different channels.

The calculation system may then be used to generate a control-loop input signal for the MCS2

channel. Set this property to SA_CTL_SENSOR_INPUT_SELECT_CALC_SYS to configure the cal-

culation system. Please refer to section 2.10 "PicoScale Sensor Module" and figure 2.10 "Auxiliary

Input Configuration (per channel)" for more information.

The default input is SA_CTL_SENSOR_INPUT_SELECT_POSITION (0). This property is stored to

non-volatile memory and need not be configured on every power-up.

Valid Range

SA_CTL_SENSOR_INPUT_SELECT_POSITION (0),

SA_CTL_SENSOR_INPUT_SELECT_CALC_SYS (1)

Example

SA_CTL_Result_t result;

int8_t channelIdx = 0;

// configure the PSC calculation system as input

// for the control-loop for channel 0

result = SA_CTL_SetProperty_i32(

dHandle,

channelIdx,

SA_CTL_PKEY_SENSOR_INPUT_SELECT,

SA_CTL_SENSOR_INPUT_SELECT_CALC_SYS

);

150MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.4.4 Control Loop Input

4.4.6 Positioner Type

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POSITIONER_TYPE 0x0302003C I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:PTYPe[:CODE]

Description

This property is used to tell the channel what type of positioner is connected. The type implic-

itly gives the controller information about how to calculate positions, handle the referencing and

configure the control-loop.

Each channel stores this setting to non-volatile memory. Consequently, there is no need to set

this property on every initialization. If the positioner type of a channel is changed, the positioner

is stopped implicitly. Furthermore the calibration becomes invalid and the physical position be-

comes unknown. (The Channel State bits SA_CTL_CH_STATE_BIT_IS_CALIBRATED and

SA_CTL_CH_STATE_BIT_IS_REFERENCED are reset to zero.)

Note that SA_CTL_Calibratemust be called to ensure proper operation of the positioner if the

positioner type was changed.

See section 2.5 "Positioner Types" for more information on positioner types.

Valid Range

Please refer to the MCS2 Positioner Types document for a list of valid positioner type codes.

Example

// set the positioner type ‘SLxS1SS‘ (type code 300) for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POSITIONER_TYPE, 300

);

151MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.4.7 Positioner Type Name

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POSITIONER_TYPE_NAME 0x0302003D String Ch R -

ASCII Command: [:PROPerty]:CHANnel#:PTYPe:NAME

Description

This property holds a descriptive name of the configured positioner type. The positioner type

name is a null terminated string. Note that the name is read-only.

Example

SA_CTL_Result_t result;

char name[SA_CTL_STRING_MAX_LENGTH];

size_t ioStringSize = sizeof(name);

result = SA_CTL_GetProperty_s(

dHandle, 0, SA_CTL_PKEY_POSITIONER_TYPE_NAME, name, &ioStringSize

);

if (result == SA_CTL_ERROR_NONE) {

// ’name’ holds the name of the configured positioner type

}

See Also

4.4.6 Positioner Type

4.4.8 Move Mode

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_MOVE_MODE 0x03050087 I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:MMODe

152MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

This property specifies which movement mode is used when commanding a positioner movement

using SA_CTL_Move. Depending on the configured move mode the move value parameter of the

SA_CTL_Move function is interpreted differently. See section 2.6.3 "Open-Loop Movements" and

2.6.4 "Closed-Loop Movements" for a description of all related properties for the different move

modes.

The default mode is SA_CTL_MOVE_MODE_CL_ABSOLUTE (0).

Valid Range

SA_CTL_MOVE_MODE_CL_ABSOLUTE (0),

SA_CTL_MOVE_MODE_CL_RELATIVE (1),

SA_CTL_MOVE_MODE_SCAN_ABSOLUTE(2),

SA_CTL_MOVE_MODE_SCAN_RELATIVE(3),

SA_CTL_MOVE_MODE_STEP (4)

Example

SA_CTL_Result_t result;

int8_t channelIdx = 0;

// configure an open-loop step movement with full amplitude at 2kHz

result = SA_CTL_SetProperty_i32(

dHandle,channelIdx, SA_CTL_PKEY_MOVE_MODE, SA_CTL_MOVE_MODE_STEP

);

if (result) {// handle error, abort}

result = SA_CTL_SetProperty_i32(

dHandle,channelIdx, SA_CTL_PKEY_STEP_AMPLITUDE, 65535

);

if (result) {// handle error, abort}

result = SA_CTL_SetProperty_i32(

dHandle,channelIdx, SA_CTL_PKEY_STEP_FREQUENCY, 2000

);

if (result == SA_CTL_ERROR_NONE) {

// perform 100 steps

result = SA_CTL_Move(

dHandle, channelIdx, 100

);

}

153MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.4.9 Channel State

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_CHANNEL_STATE 0x0305000F I32 Ch R X

ASCII Command: [:PROPerty]:CHANnel#:STATe

Description

This property holds the channel state. The value is a bit field containing independent flags. Their

meaning is described in section 2.8.3 "Channel State Flags".

Undefined flags are reserved for future use. Therefore, the user software should not rely on a

static value of undefined flags.

Example

SA_CTL_Result_t result;

int8_t channelIdx = 0;

int32_t state;

result = SA_CTL_GetProperty_i32(

dHandle, channelIdx, SA_CTL_PKEY_CHANNEL_STATE, &state

);

if (result == SA_CTL_ERROR_NONE) {

// use bit masking to determine the channels movement state

if ((state & (SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING |

SA_CTL_CH_STATE_BIT_CLOSED_LOOP_ACTIVE)) == 0) {

// positioner is stopped

}

}

See Also

4.2.3 Device State, 4.3.2 Module State

154MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.4.10 Position

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POSITION 0x0305001D I64 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:POSition[:CURRent]

Description

This property holds the current position of a positioner. Note that it can only be used for posi-

tioners that have a sensor attached to it. To determine if a sensor is present the Channel State bit

SA_CTL_CH_STATE_BIT_SENSOR_PRESENTmay be polled.

The interpretation of the read position value depends on the configured positioner type. The unit

is pico meter (pm) for linear positioners and nano degree (n°) for rotatory positioners.

Read the Positioner Base Unit property to distinguish between linear and rotatory positioner type.

Valid Range

−100× 1012 . . . 100× 1012 pm or n°.

Example

SA_CTL_Result_t result;

int64_t position;

result = SA_CTL_GetProperty_i64(

dHandle, 0, SA_CTL_PKEY_POSITION, &position

);

if (result == SA_CTL_ERROR_NONE) {

// ‘position‘ holds the current position of channel 0

}

See Also

4.8.3 Positioner Base Unit, 4.8.4 Positioner Base Resolution

155MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.4.11 Target Position

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_TARGET_POSITION 0x0305001E I64 Ch R X

ASCII Command: [:PROPerty]:CHANnel#:POSition:TARGet

Description

This property holds the target position of a positioner.

See Also

4.4.10 Position

4.4.12 Scan Position

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_SCAN_POSITION 0x0305001F I64 Ch R X

ASCII Command: [:PROPerty]:CHANnel#:POSition:SCAN

Description

This property holds the current scan position of a positioner. The scan position represents the

voltage level that is currently applied to the piezo element of a positioner.

This property is mainly of interest when using the SA_CTL_MOVE_MODE_SCAN_ABSOLUTE and

SA_CTL_MOVE_MODE_SCAN_RELATIVEMoveModes, since these modes are used to control the

scan position.

The scan position is given in 16-bit increments from 0 . . . 65 535, where 0 corresponds to 0V and

65535 to 100V.

156MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

SA_CTL_Result_t result;

int64_t position;

result = SA_CTL_GetProperty_i64(

dHandle, 0, SA_CTL_PKEY_SCAN_POSITION, &position

);

if (result == SA_CTL_ERROR_NONE) {

// ‘position‘ holds the current scan position of channel 0

}

See Also

4.4.13 Scan Velocity, 4.4.8 Move Mode

4.4.13 Scan Velocity

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_SCAN_VELOCITY 0x0305002A I64 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:SCAN:VELocity

Description

This property specifies the scan velocity of a positioner. The scan velocity is given in 16-bit in-

crements per second. With a value of 1 a scan over the full range from 0 to 65535 takes 65535

seconds while at maximum velocity the scan is performed in one micro second.

To perform a scan movement via the SA_CTL_Move function, the Move Mode property must be

set to SA_CTL_MOVE_MODE_SCAN_ABSOLUTE or SA_CTL_MOVE_MODE_SCAN_RELATIVE first.

The default value is 65535.

Valid Range

1 . . . 65 535000000

157MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

// set the scan velocity for channel 0

// (full range scan in 1 second)

result = SA_CTL_SetProperty_i64(

dHandle, 0, SA_CTL_PKEY_SCAN_VELOCITY, 65535

);

See Also

4.4.12 Scan Position, 4.4.8 Move Mode

4.4.14 Hold Time

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_HOLD_TIME 0x03050028 I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:HOLDtime

Description

This property specifies how long (in ms) the position is actively held after reaching the target posi-

tion. After the hold time elapsed the channel is stopped.

The Channel State bit SA_CTL_CH_STATE_BIT_CLOSED_LOOP_ACTIVE will be read as one as

long as the the position is actively held.

A value of 0 deactivates this feature, a value of SA_CTL_INFINITE (0xffffffff) sets the chan-

nel to infinite holding. (until manually stopped with SA_CTL_Stop).

Note that the end stop detection is still active in holding state. If a positioner is moved away from

the target position by external forces and the channel is not able to hold the target position for a

longer time an end stop is triggered. A SA_CTL_EVENT_HOLDING_ABORTED event is generated

to notify about this and the channel is stopped.

The default hold time is SA_CTL_INFINITE.

Valid Range

0 . . .0xffffffff

158MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

// set hold time for channel 0 to infinite holding

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_HOLD_TIME, SA_CTL_INFINITE

);

See Also

4.4.8 Move Mode

4.4.15 Move Velocity

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_MOVE_VELOCITY 0x03050029 I64 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:VELocity

Description

This property specifies the velocity of a positioner for closed-loop movement commands. The

value is given in pms−1 for linear positioners and in n° s−1 for rotary positioners. If a velocity > 0 is

configured, all following closed-loop movement commands will be executed with velocity control.

Note that the channel will not drive the positioner with frequencies above the maximum allowed

frequency (see Max Closed Loop Frequency). If the maximum frequency is set too low for a certain

velocity, then the velocity might not be reached or held since the driver will cap at the maximum

driving frequency. In this case increase the maximum frequency.

Note that the move velocity also applies to movements executed during the find reference se-

quence (see SA_CTL_Reference).

The default value is 0, meaning that the velocity control is inactive. In this state the behavior of

closed-loop commands is influenced by the maximum driving frequency (see Max Closed Loop

Frequency).

It is not allowed to enable or disable the velocity control during an ongoing movement. In that case

a SA_CTL_ERROR_BUSY_MOVING error is returned. Anyway,modifying the velocity of an ongoing

movement is possible.

Valid Range

0 . . . 100× 109

159MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

// enable velocity control by configuring 1mm/s for channel 0

result = SA_CTL_SetProperty_i64(

dHandle, 0, SA_CTL_PKEY_MOVE_VELOCITY, 1e9

);

See Also

4.4.16 Move Acceleration, 4.4.8 Move Mode, 4.4.17 Max Closed Loop Frequency

4.4.16 Move Acceleration

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_MOVE_ACCELERATION 0x0305002B I64 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:ACCeleration

Description

This property specifies the acceleration of a positioner for closed-loop movement commands. The

value is given in pms−2 for linear positioner and in n° s−2 for rotary positioners. If an acceleration >

0 is configured, all following closed-loop movement commands will be executed with acceleration

control. The acceleration control requires the velocity control to be enabled (Move Velocity > 0).

Note that the move acceleration also applies to movements executed during the find reference

sequence (see SA_CTL_Reference).

The default value is 0, meaning that the acceleration control is inactive.

It is not allowed to enable or disable the acceleration control during an ongoing movement. In that

case a SA_CTL_ERROR_BUSY_MOVING error is returned. Anyway, modifying the acceleration of

an ongoing movement is possible.

NOTICE
For closed-loop movements with enabled acceleration control a SA_CTL_Stop

command instructs the positioner to come to a halt by decelerating to zero ve-

locity. A second "stop" command triggers a hard stop.

160MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Valid Range

0 . . . 10× 1012

Example

// enable acceleration control by configuring 1mm/s2 for channel 0

result = SA_CTL_SetProperty_i64(

dHandle, 0, SA_CTL_PKEY_MOVE_ACCELERATION, 1e9

);

See Also

4.4.15 Move Velocity, 4.4.8 Move Mode

4.4.17 Max Closed Loop Frequency

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_MAX_CL_FREQUENCY 0x0305002F I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:MCLFrequency[:CURRent]

Description

This property specifies the maximum frequency that the positioner is driven with when issuing

closed-loop movement commands.

The maximum allowed frequency depends on the actual positioner as well as the environment.

(E.g. HV and UHV environment requires lower allowed frequencies.)

This property is not held in non-volatile memory but the default value at device startup is config-

urable (see Default Max Closed Loop Frequency).

Valid Range

50 . . . 20 000Hz

161MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

// set maximum closed-loop frequency to 3kHz for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_MAX_CL_FREQUENCY, 3000

);

See Also

4.4.18 Default Max Closed Loop Frequency

4.4.18 Default Max Closed Loop Frequency

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_DEFAULT_MAX_CL_FREQUENCY 0x03050057 I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:MCLFrequency:DEFault

Description

This property specifies the default value at device startup for themaximum closed-loop frequency.

Valid Range

50 . . . 20 000Hz

Example

// set default maximum closed-loop frequency

// at start up to 6kHz for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_DEFAULT_MAX_CL_FREQUENCY, 6000

);

See Also

4.4.17 Max Closed Loop Frequency

162MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.4.19 Step Frequency

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_STEP_FREQUENCY 0x0305002E I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:STEP:FREQuency

Description

This property specifies the frequency in Hz that open-loop steps are performed with. To perform

open-loop steps by using the SA_CTL_Move function, the Move Mode property must be set to

SA_CTL_MOVE_MODE_STEP first. See section 2.6.3 "Open-Loop Movements" for more informa-

tion.

The default frequency is 1000Hz.

Valid Range

1 . . . 20 000Hz

Example

// set the step frequency to 1kHz for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_STEP_FREQUENCY, 1000

);

See Also

4.4.20 Step Amplitude, 4.4.8 Move Mode

4.4.20 Step Amplitude

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_STEP_AMPLITUDE 0x03050030 I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:STEP:AMPLitude

163MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

This property specifies the amplitude that open-loop steps are performed with. The Move Mode

property must be set to SA_CTL_MOVE_MODE_STEP first, before open-loop steps may be per-

formed with the SA_CTL_Move function. See section 2.6.3 "Open-Loop Movements" for more

information.

Lower amplitude values result in a smaller step width. The step amplitude is a 16bit value from 1

. . . 65 535, where 65535 corresponds to 100V.

The default amplitude is 65535 (100V).

Valid Range

1 . . . 65 535

Example

// set the step amplitude to maximum (100V) for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_STEP_AMPLITUDE, 65535

);

See Also

4.4.19 Step Frequency, 4.4.8 Move Mode

4.4.21 Following Error Limit

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_FOLLOWING_ERROR_LIMIT 0x03050055 I64 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:FELimit

164MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

This property specifies the limit for the following error detection. The value is given in pm for linear

positioners and in n° for rotary positioners. Setting the following error limit to zero disables the

detection. Please refer to section 2.11 "Following Error Detection" for more information.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default value is 0 (disabled).

Valid Range

0 . . . 100× 1012

Example

// set following error limit to 100um for channel 0

result = SA_CTL_SetProperty_i64(

dHandle, 0, SA_CTL_PKEY_FOLLOWING_ERROR_LIMIT, 100000000

);

See Also

4.4.2 Positioner Control Options, 4.4.15 Move Velocity

4.4.22 Broadcast Stop Options

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_BROADCAST_STOP_OPTIONS 0x0305005D I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:BSTop:OPTions

165MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

This property specifies the behavior of a broadcast stop of a channel. It is typically useful when

multiple channels are moving simultaneously and an end stop (or range limit) on one channel

should cause a halt on all other channels. Please refer to section 2.13 "Stop Broadcasting" for

more information.

The value is a bit field containing independent flags with the following meaning:

Bit Name Short Description

0 SA_CTL_STOP_OPT_BIT_END_STOP_REACHED Broadcast stop command if a me-

chanical end stop was detected.

1 SA_CTL_STOP_OPT_BIT_RANGE_LIMIT_REACHED Broadcast stop command if a range

limit was reached.

2 SA_CTL_STOP_OPT_BIT_FOLLOWING_LIMIT_REACHED Broadcast stop command if a follow-

ing error limit was exceeded.

Undefined flags are unused but might get a meaning in future updates. Undefined flags should

be set to zero.

The default value is 0.

Example

// enable stop broadcasting of channel 0 for end stops and range limits

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_BROADCAST_STOP_OPTIONS,

(SA_CTL_STOP_OPT_BIT_END_STOP_REACHED |

SA_CTL_STOP_OPT_BIT_RANGE_LIMIT_REACHED)

);

4.4.23 Sensor Power Mode

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_SENSOR_POWER_MODE 0x03080019 I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:SENSor:PMODe

166MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

This property specifies the sensor powermode. It may be used to activate or deactivate the sensor

that is attached to the positioner. It effectively turns the power supply of the sensor on or off.

Please refer to section 2.9 "Sensor Power Modes" for more information on the sensor power

modes.

This property is stored to non-volatile memory and need not be configured on every power-up.

The following sensor power modes are available:

Mode Name Short Description

0 SA_CTL_SENSOR_MODE_DISABLED The sensor power supply is turned off con-

tinuously.

1 SA_CTL_SENSOR_MODE_ENABLED The sensor is continuously supplied with

power.

2 SA_CTL_SENSOR_MODE_POWER_SAVE The sensor power supply is pulsed to keep

the heat generation low.

Example

// set power save mode for the sensor of channel 0

result = SA_CTL_SetProperty_i32(

dHandle,0,SA_CTL_PKEY_SENSOR_POWER_MODE,SA_CTL_SENSOR_MODE_POWER_SAVE

);

See Also

4.4.24 Sensor Power Save Delay

4.4.24 Sensor Power Save Delay

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_SENSOR_POWER_SAVE_DELAY 0x03080054 I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:SENSor:PSDelay

167MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

This property specifies the time in ms before the channel disables the sensor after a movement

has finished. It has no meaning if the Sensor Power Mode is not configured to power save mode.

In power save mode the sensor is disabled most of the time. Before a movement can be started

it must be enabled by the channel to keep track of the current position. Once the movement has

finished the sensor can be disabled again. The sensor power save delay configures an additional

delay before the sensor power is disabled. If a new movement is started while this delay is run-

ning, the sensor is still enabled and the movement can be started directly. Since it takes a few

milliseconds to enable the sensor, this setting may be used to optimize the timing of a movement

sequence.

Please refer to section 2.9 "Sensor Power Modes" for more information on the sensor power save

mode.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default value is 100ms.

Valid Range

0 . . . 5000

Example

// set power save delay for the sensor of channel 0 to 200 ms

result = SA_CTL_SetProperty_i32(

dHandle,0,SA_CTL_PKEY_SENSOR_POWER_SAVE_DELAY,200

);

See Also

4.4.23 Sensor Power Mode

4.4.25 Position Mean Shift

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POSITION_MEAN_SHIFT 0x03090022 I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:POSition:MSHift

168MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

This property specifies the filter averaging factor for the position mean filter. The averaging factor

must be set as a left-shift value by a power of two. Thus the resulting averaging factor may be

calculated by the formula: factor = 2meanShif t.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default value is 5 (32-fold position averaging).

Valid Range

0 . . . 7

Example

// set position mean filter to 0 (disabled) for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POSITION_MEAN_SHIFT, 0

);

4.4.26 Safe Direction

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_SAFE_DIRECTION 0x03090027 I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:SDIRection

Description

This property specifies the safe direction used for calibration and referencing of positioner types

that are referenced via a mechanical end stop.

Some positioners are not equipped with a physical reference mark. For these positioners a me-

chanical end stop is used as a reference point when calling SA_CTL_Reference. Which end stop

is used is configured by the safe direction as well as the current Logical Scale Inversion. This should

be the direction in which the positioner may safely move without endangering the physical setup

of your manipulator system. Since the end stop must be calibrated before it can be properly used

as a reference point, the direction settings also affect the behavior of SA_CTL_Calibrate. Po-

sitioners that are referenced via an end stop also move to the configured end stop as part of the

calibration routine. This movement will use the configured Move Velocity and Move Acceleration.

169MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Please note that the SA_CTL_Reference and SA_CTL_Calibrate functions will ignore their

configured start directions for positioners that are referenced via a mechanical end stop and will

implicitly use the direction configured by the safe direction and Logical Scale Inversion instead.

Please refer to theMCS2 Positioner Types document for a list of available positioner types and their

reference marks.

Note that when changing the safe direction the positioner must be calibrated again for proper

operation.

This property is stored to non-volatile memory and need not be configured on every power-up.

Valid Range

SA_CTL_FORWARD_DIRECTION (0x00), SA_CTL_BACKWARD_DIRECTION (0x01)

Example

// set safe direction to forward for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_SAFE_DIRECTION, SA_CTL_FORWARD_DIRECTION

);

4.4.27 Control Loop Input Sensor Value

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_CL_INPUT_SENSOR_VALUE 0x0302001D I64 Ch R X

ASCII Command: [:PROPerty]:CHANnel#:CLINput:SENSor[:VALue]

Description

This property always returns the ‘sensor‘ value regardless of the configured control-loop input.

Note that an error is returned if no sensor module or no sensor is present. Please refer to section

2.16.5 "Using Analog Inputs as Control-Loop Feedback" for more information.

Example

SA_CTL_Result_t result;

int64_t val;

result = SA_CTL_GetProperty_i64(

170MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

dHandle, 0, SA_CTL_PKEY_CL_INPUT_SENSOR_VALUE, &val

);

if (result == SA_CTL_ERROR_NONE) {

// ‘val‘ holds the current sensor position of channel 0

}

See Also

4.4.28 Control Loop Input Aux Value

4.4.28 Control Loop Input Aux Value

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_CL_INPUT_AUX_VALUE 0x030200B2 I64 Ch R X

ASCII Command: [:PROPerty]:CHANnel#:CLINput:AUXiliary[:VALue]

Description

This property always returns the ‘auxiliary input‘ value regardless of the configured control-loop

input. Note that an error is returned if no sensor module or no I/O module is available (depending

on the configured Aux Input Select property). Please refer to section 2.16.5 "Using Analog Inputs

as Control-Loop Feedback" for more information on using auxiliary inputs.

Example

SA_CTL_Result_t result;

int64_t val;

result = SA_CTL_GetProperty_i64(

dHandle, 0, SA_CTL_PKEY_CL_INPUT_AUX_VALUE, &val

);

if (result == SA_CTL_ERROR_NONE) {

// ‘val‘ holds the auxiliary input value of channel 0

}

See Also

4.4.27 Control Loop Input Sensor Value

171MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.4.29 Target To Zero Voltage Hold Threshold

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_TARGET_TO_ZERO_VOLTAGE_HOLD_TH 0x030200B9 I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:TTZVoltage:THReshold[:HOLD]

Description

This property specifies the hold threshold in pm or n° for the target-to-zero-voltage feature. The

threshold defines the maximum allowed remaining position error (distance to the target position)

for the sequence to terminate. As a guiding value the threshold should be in the range of about

ten times the target reached threshold of the configured positioner type but could be also much

lower in the particular case. If the threshold is too low the sequence will not terminate.

If a Hold Time is specified the sequence is repeated whenever the difference between current

position and target position exceeds the configured threshold. After the hold time elapsed the

last sequence is still finished and the channel is stopped.

Note that the target-to-zero-voltage feature must be enabled by setting the

SA_CTL_POS_CTRL_OPT_BIT_TARGET_TO_ZERO_VOLTAGE flag of the Positioner Control Op-

tions property. It has no meaning if the target-to-zero-voltage feature is disabled. If this property

is set to 0 the hold threshold value is derived from the Positioner Target Reached Threshold pa-

rameter of the configured positioner type.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default value is 0.

Please refer to section 2.6.4 "Closed-LoopMovements" formore information on the target-to-zero-

voltage feature.

Valid Range

0 . . . 10× 106.

Example

// set the target to zero voltage hold threshold to 25nm for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_TARGET_TO_ZERO_VOLTAGE_HOLD_TH, 25000

);

172MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.4.2 Positioner Control Options

4.5 Scale Properties

4.5.1 Logical Scale Offset

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_LOGICAL_SCALE_OFFSET 0x02040024 I64 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:LSCale:OFFset

Description

This property specifies the logical scale offset. The value is given in pm for linear positioners

and in n° for rotary positioners. It is used to define the relation between the physical and the

logical scale. The logical scale offset can be set directly with this property but is also updated by

setting the Position property. Please refer to section 2.7.5 "Shifting the Measuring Scale" for more

information on defining positions.

This property is stored to non-volatile memory. The default value is 0.

Valid Range

−100× 1012 . . . 100× 1012

Example

// set the scale shift of channel 0 to +1mm relative

// to the physical scale

result = SA_CTL_SetProperty_i64(

dHandle, 0, SA_CTL_PKEY_LOGICAL_SCALE_OFFSET, 1e9

);

See Also

4.5.2 Logical Scale Inversion

173MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.2 Logical Scale Inversion

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_LOGICAL_SCALE_INVERSION 0x02040025 I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:LSCale:INVersion

Description

This property specifies the logical scale inversion. It is used to define the count direction of the

logical scale relative to the physical scale. Note that the scale inversion should be defined before

the absolute position is determined with the SA_CTL_Reference function.

Further note that only the logical scale will be inverted. The Safe Direction setting will not be

changed. Thus Positioners With Endstop Reference will move in the opposite direction when exe-

cuting SA_CTL_Calibrate or SA_CTL_Reference.

Please refer to section 2.7.5 "Shifting the Measuring Scale" for more information on defining posi-

tions.

This property is stored to non-volatile memory. The default value is SA_CTL_NON_INVERTED

(0x00).

Valid Range

SA_CTL_NON_INVERTED (0x00), SA_CTL_INVERTED (0x01)

Example

// enable the scale inversion for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_LOGICAL_SCALE_INVERSION, SA_CTL_INVERTED

);

See Also

4.5.1 Logical Scale Offset

174MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.3 Range Limit Min

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_RANGE_LIMIT_MIN 0x02040020 I64 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:RLIMit:MIN

Description

This property specifies the software range limit minimum position. Note that the Range Limit Max

must be set to a higher value than the Range Limit Min to enable the limit check.

Please refer to section 2.12 "Software Range Limit" for more information on software range limits.

The default value is 0.

Valid Range

−100× 1012 . . . 100× 1012

Example

// set the min range limit to -10mm for channel 0

result = SA_CTL_SetProperty_i64(

dHandle, 0, SA_CTL_PKEY_RANGE_LIMIT_MIN, -10000000000

);

See Also

4.5.4 Range Limit Max

4.5.4 Range Limit Max

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_RANGE_LIMIT_MAX 0x02040021 I64 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:RLIMit:MAX

175MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

This property specifies the software range limit maximum position. Note that the Range Limit Max

must be set to a higher value than the Range Limit Min to enable the limit check.

Please refer to section 2.12 "Software Range Limit" for more information on software range limits.

The default value is 0.

Valid Range

−100× 1012 . . . 100× 1012

Example

// set the max range limit to +10mm for channel 0

result = SA_CTL_SetProperty_i64(

dHandle, 0, SA_CTL_PKEY_RANGE_LIMIT_MAX, 10000000000

);

See Also

4.5.3 Range Limit Min

4.6 Calibration Properties

4.6.1 Calibration Options

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_CALIBRATION_OPTIONS 0x0306005D I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:CALibration:OPTions

176MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

This property specifies the calibration options. It is used to define the behavior of the calibration

routine when calling the SA_CTL_Calibrate function.

The value is a bit field containing independent flags. Please refer to section 2.6.1 "Calibrating" for

more information on the calibration sequence. Undefined flags are reserved for future use. These

flags should be set to zero.

The default value is 0 (all flags cleared).

Example

SA_CTL_Result_t result;

int8_t channelIdx = 1;

// set calibration options of channel 1 (signal correction sequence)

result = SA_CTL_SetProperty_i32(

dHandle, channelIdx, SA_CTL_PKEY_CALIBRATION_OPTIONS, 0

);

if (result == SA_CTL_ERROR_NONE) {

// start signal correction calibration sequence

result = SA_CTL_Calibrate(dHandle, channelIdx, 0);

}

4.6.2 Signal Correction Options

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_SIGNAL_CORRECTION_OPTIONS 0x0306001C I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:SCORrection:OPTions

Description

This property specifies the sensor signal correction options. The value is a bit field containing

independent flags with the following meaning:

177MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Bit Name Short Description

0 Reserved This bit is reserved and always read as one.

1 Dynamic Amplitude Error Correction Enables the dynamic sensor amplitude error

correction.

2 Reserved This bit is reserved and always read as one.

3 Dynamic Phase Error Correction Enables the dynamic sensor phase error cor-

rection.

4 Advanced Sensor Correction Enables the advanced signal correction fea-

ture.

5 .. 31 Reserved These bits are reserved for future use.

This property is stored to non-volatile memory. The default value is 0x0f (15) with means that the

amplitude and phase error corrections are active.

Disabling the Dynamic Amplitude and Phase Error Correction might be useful for some spe-

cial applications to achieve a higher position repeatability with the trade-off off a lower absolute

position accuracy.

The Advanced Sensor Correction allows to compensate periodic sensor errors. The correction

requires an additional calibration routine which must be performed once for every channel. This

routine generates a compensation table for the sensor data which is applied to the position cal-

culation if the SA_CTL_SIGNAL_CORR_OPT_BIT_ASC (bit 4) flag is set to one. See section 2.6.1

"Advanced Sensor Correction Calibration (calibration options 0x04 or 0x05)" for the details on the

calibration routine.

NOTICE
The advanced sensor correction needs a feature permission to be activated on

the controller. See section 2.19 "Feature Permissions" for more information.

Example

// disable the dynamic amplitude and phase error correction for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_SIGNAL_CORRECTION_OPTIONS, 0

);

178MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.7 Referencing Properties

4.7.1 Referencing Options

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_REFERENCING_OPTIONS 0x0307005D I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:REFerencing:OPTions

Description

This property specifies the find reference mode. It is used to define the behavior of the find

reference routine when calling the SA_CTL_Reference function.

Note that the find reference sequence is also influenced by the Move Velocity and Move Accelera-

tion properties (see there).

The value is a bit field containing independent flags. Please refer to section 2.7.1 "Reference

Marks" for more information on the find reference sequence.

Undefined flags are reserved for future use. These flags should be set to zero.

The default mode is 0 (all flags cleared).

Example

SA_CTL_Result_t result;

int8_t channelIdx = 2;

// set find reference mode of channel 2 (start direction: backwards)

result = SA_CTL_SetProperty_i32(

dHandle,

channelIdx,

SA_CTL_PKEY_REFERENCING_OPTIONS,

SA_CTL_REF_OPT_BIT_START_DIR

);

if (result) {// handle error, abort}

// set velocity to 1mm/s

result = SA_CTL_SetProperty_i64(

dHandle,channelIdx,SA_CTL_PKEY_MOVE_VELOCITY,1e9

);

if (result) {// handle error, abort}

// disable acceleration control

result = SA_CTL_SetProperty_i64(

dHandle,channelIdx,SA_CTL_PKEY_MOVE_ACCELERATION,0

);

if (result == SA_CTL_ERROR_NONE) {

179MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

// start searching for the reference with the previously

// set parameters

result = SA_CTL_Reference(dHandle, channelIdx, 0);

}

4.7.2 Distance To Reference Mark

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_DISTANCE_TO_REF_MARK 0x030700A2 I64 Ch R X

ASCII Command: [:PROPerty]:CHANnel#:REFerencing:DTRMark

Description

This property holds the distance between the start of a referencing movement and the reference

mark. Note that the position of the reference mark is not necessarily the position where the po-

sitioner comes to halt. The behavior depends on the Referencing Options. See section 2.6.2 "Ref-

erencing" for more information. The value is updated whenever a referencing sequence finished.

The unit is pico meter (pm) for linear positioners and nano degree (n°) for rotatory positioners.

See Also

4.7.1 Referencing Options

4.7.3 Distance Code Inverted

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_DIST_CODE_INVERTED 0x0307000E I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:REFerencing:DCINverted

180MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

This property is used to correct the absolute position calculation when referencing positioners

with multiple reference marks. In rare cases the reference algorithm may produce faulty results

due to a reference coding mismatch. The correct setting is determined by an automatic calibration

routine, thus it is usually not necessary to manually modify this property.

This property is stored to non-volatile memory and need not be configured on every power-up.

See section 2.6.1 "Calibrating" for more information.

Valid Range

SA_CTL_NON_INVERTED (0x00), SA_CTL_INVERTED (0x01)

4.8 Tuning and Customizing Properties

4.8.1 Positioner Movement Type

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POS_MOVEMENT_TYPE 0x0309003F I32 Ch R(W) X

ASCII Command: [:PROPerty]:CHANnel#:TUNing:MTYPe

Description

This property holds the positioner movement type. It may be used to determine the type of posi-

tioner (linear, rotatory, goniometer or tip-tilt) that is configured for the channel. This property has

informational character only.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Valid Range

SA_CTL_POS_MOVEMENT_TYPE_LINEAR (0),

SA_CTL_POS_MOVEMENT_TYPE_ROTATORY (1),

SA_CTL_POS_MOVEMENT_TYPE_GONIOMETER (2),

SA_CTL_POS_MOVEMENT_TYPE_TIP_TILT (3)

181MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

SA_CTL_Result_t result;

int32_t type;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_MOVEMENT_TYPE, &type

);

if (result == SA_CTL_ERROR_NONE) {

if (type == SA_CTL_POS_MOVEMENT_TYPE_GONIOMETER) {

// goniometer type configured

}

}

See Also

4.8.3 Positioner Base Unit, 4.8.4 Positioner Base Resolution

4.8.2 Positioner Is Custom Type

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POS_IS_CUSTOM_TYPE 0x03090041 I32 Ch R X

ASCII Command: [:PROPerty]:CHANnel#:TUNing:CUSTom

Description

This property may be used to determine if the currently configured positioner type is a custom

type.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Example

SA_CTL_Result_t result;

int32_t custom;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_IS_CUSTOM_TYPE, &custom

182MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

);

if (result == SA_CTL_ERROR_NONE) {

if (custom) // custom positioner type configured

else // predefined positioner type configured

}

See Also

4.4.6 Positioner Type

4.8.3 Positioner Base Unit

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POS_BASE_UNIT 0x03090042 I32 Ch R(W) X

ASCII Command: [:PROPerty]:CHANnel#:TUNing:BASE:UNIT

Description

This property holds the basic unit of the position values a channel uses. (e.g.meter, degree). Note

that this property has informational character only. Setting it to a different value wont influence

the position calculation.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Valid Range

SA_CTL_UNIT_METER (0x00000002), SA_CTL_UNIT_DEGREE (0x00000003)

Example

SA_CTL_Result_t result;

int32_t unit;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_BASE_UNIT, &unit

);

183MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

if (result == SA_CTL_ERROR_NONE) {

if (unit == SA_CTL_UNIT_METER) // linear positioner type configured

else // rotatory/goniometer positioner type configured

}

See Also

4.8.4 Positioner Base Resolution

4.8.4 Positioner Base Resolution

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POS_BASE_RESOLUTION 0x03090043 I32 Ch R(W) X

ASCII Command: [:PROPerty]:CHANnel#:TUNing:BASE:RESolution

Description

This property holds the basic resolution of the position value in powers of 10. It may be used

to programmatically determine the interpretation of the position value of a channel. The reso-

lution depends on the configured positioner type. (see Positioner Type) For example, a channel

configured as linear positioner type has a base unit ofMeter and a base resolution of −12. So a po-

sition value of 100000000 would correspond to 100µm. Note that this property has informational

character only. Setting it to a different value wont influence the position calculation.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Valid Range

−12 . . . 0.

Example

SA_CTL_Result_t result;

int32_t resolution;

result = SA_CTL_GetProperty_i32(

184MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

dHandle, 0, SA_CTL_PKEY_POS_BASE_RESOLUTION, &resolution

);

if (result == SA_CTL_ERROR_NONE) {

// ’resolution’ holds the base resolution of channel 0

}

See Also

4.8.3 Positioner Base Unit

4.8.5 Positioner Sensor Head Type

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POS_HEAD_TYPE 0x0309008E I32 Ch R(W) X

ASCII Command: [:PROPerty]:CHANnel#:TUNing:HTYPe

Description

This property specifies the sensor head type. This property is only relevant if a SmarAct PicoScale

interferometer is used as sensor module. The head type is set to the PicoScale when an adjust-

ment sequence is started with the MCS2 hand control module.

For more information on head types refer to the PicoScale User Manual.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Valid Range

C01, C02, C03, F01

See Also

4.8.17 Positioner Write Protection, 4.8.16 Save Positioner Type

185MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.8.6 Positioner Reference Type

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POS_REF_TYPE 0x03090048 I32 Ch R(W) X

ASCII Command: [:PROPerty]:CHANnel#:TUNing:RTYPe

Description

This property specifies the reference type of the positioner. The reference type is used by the

SA_CTL_Reference function to determine the physical position. See section 2.7.1 "Reference

Marks" for more information.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Valid Range

SA_CTL_REF_TYPE_NONE (0),

SA_CTL_REF_TYPE_END_STOP (1),

SA_CTL_REF_TYPE_SINGLE_CODED (2),

SA_CTL_REF_TYPE_DISTANCE_CODED (3)

Example

SA_CTL_Result_t result;

int32_t type;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_REF_TYPE, &type

);

if (result == SA_CTL_ERROR_NONE) {

if (type == SA_CTL_REF_TYPE_SINGLE_CODED) {

// single coded reference type configured

}

}

See Also

4.8.17 Positioner Write Protection, 4.8.16 Save Positioner Type

186MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.8.7 Positioner P Gain

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POS_P_GAIN 0x0309004B I32 Ch R(W) X

ASCII Command: [:PROPerty]:CHANnel#:TUNing:GAIN:P

Description

This property specifies the proportional gain of the control-loop. Note that the resulting gain is

also influenced by the Positioner PID Shift property.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Valid Range

0 . . . 2× 109.

Example

// set the P gain to 100 for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_P_GAIN, 100

);

See Also

4.8.8 Positioner I Gain, 4.8.9 Positioner D Gain, 4.8.10 Positioner PID Shift

187MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.8.8 Positioner I Gain

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POS_I_GAIN 0x0309004C I32 Ch R(W) X

ASCII Command: [:PROPerty]:CHANnel#:TUNing:GAIN:I

Description

This property specifies the integral gain of the control-loop. The Positioner Anti Windup must be

set to a non-zero value to activate the I gain of the control-loop. Note that the resulting gain is also

influenced by the Positioner PID Shift property.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Valid Range

0 . . . 2× 109.

Example

// set the I gain to 0 for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_I_GAIN, 0

);

See Also

4.8.7 Positioner P Gain, 4.8.9 Positioner D Gain, 4.8.10 Positioner PID Shift, 4.8.11 Positioner Anti

Windup

188MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.8.9 Positioner D Gain

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POS_D_GAIN 0x0309004D I32 Ch R(W) X

ASCII Command: [:PROPerty]:CHANnel#:TUNing:GAIN:D

Description

This property specifies the differential gain of the control-loop. Note that the resulting gain is also

influenced by the Positioner PID Shift property.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Valid Range

0 . . . 2× 109.

Example

// set the D gain to 10 for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_P_GAIN, 10

);

See Also

4.8.7 Positioner P Gain, 4.8.8 Positioner I Gain, 4.8.10 Positioner PID Shift

189MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.8.10 Positioner PID Shift

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POS_PID_SHIFT 0x0309004E I32 Ch R(W) X

ASCII Command: [:PROPerty]:CHANnel#:TUNing:GAIN:SHIFt

Description

This property specifies a shift value for the PID controller output. Since PID parameters are con-

figured as integer values they are right shifted internally to be able to set gains lower than one. It

must be given in powers of 2.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

The default value is 10.

Valid Range

0 . . . 16.

Example

// set the PID shift to 10 (default) for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_PID_SHIFT, 10

);

See Also

4.8.7 Positioner P Gain, 4.8.8 Positioner I Gain, 4.8.9 Positioner D Gain

190MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.8.11 Positioner Anti Windup

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POS_ANTI_WINDUP 0x0309004F I32 Ch R(W) X

ASCII Command: [:PROPerty]:CHANnel#:TUNing:AWINdup

Description

This property specifies the anti windup limit for the integral gain of the control-loop. It has no

meaning if the Positioner I Gain property is set to zero.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

The default value is 0.

Valid Range

0 . . . 2× 109.

Example

// set the anti windup to default for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_ANTI_WINDUP, 0

);

See Also

4.8.7 Positioner P Gain, 4.8.8 Positioner I Gain, 4.8.9 Positioner D Gain, 4.8.10 Positioner PID Shift

191MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.8.12 Positioner ESD Distance Threshold

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POS_ESD_DIST_TH 0x03090050 I32 Ch R(W) X

ASCII Command: [:PROPerty]:CHANnel#:TUNing:ESDetection:DISTance

Description

This property specifies the end stop detection distance threshold in pm or n°. This property in

conjunction with the Positioner ESD Counter Threshold configure the end stop detection respon-

sible to detect a physical end stop as well as a mechanical blockage of a positioner for closed-loop

movements. An end stop condition leads to a stop of the channel.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Generally, there is no need to modify the end stop detection configuration. The configured Posi-

tioner Type defines appropriate values for all kinds of SmarAct positioners. Nonetheless it may

be necessary to disable the end stop detection in some special cases. E.g. if an auxiliary input

is used as feedback for the control-loop and the actual input value represents a set-point for the

control-loop instead of a current position of the positioner.

The default value depends on the configured positioner type. The special value 0 disables the end

stop detection.

CAUTION
Configuring inappropriate values or disabling the end stop detection prevents

the channel from stopping the positioner in case of a mechanical blockage. The

end stop detection configuration properties must be used with caution!

Valid Range

0 . . . 1× 109.

192MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

// set the end stop detection distance threshold to 1000000 for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_ESD_DIST_TH, 1000000

);

See Also

4.8.13 Positioner ESD Counter Threshold

4.8.13 Positioner ESD Counter Threshold

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POS_ESD_COUNTER_TH 0x03090051 I32 Ch R(W) X

ASCII Command: [:PROPerty]:CHANnel#:TUNing:ESDetection:COUNter

Description

This property specifies the end stop detection counter threshold.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Valid Range

1 . . . 4× 109.

Example

// set the end stop detection counter value to 100000 for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_ESD_COUNTER_TH, 100000

);

193MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.8.12 Positioner ESD Distance Threshold

4.8.14 Positioner Target Reached Threshold

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POS_TARGET_REACHED_TH 0x03090052 I32 Ch R(W) X

ASCII Command: [:PROPerty]:CHANnel#:TUNing:THReshold:TREached

Description

This property specifies the target reached threshold in pm or n°. A closed-loop movement is

considered to be finished once the target position ± the target reached threshold is reached.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

Valid Range

0 . . . 1× 106.

Example

// set the target reached threshold to 5nm for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_TARGET_REACHED_TH, 5000

);

See Also

4.8.15 Positioner Target Hold Threshold

194MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.8.15 Positioner Target Hold Threshold

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POS_TARGET_HOLD_TH 0x03090053 I32 Ch R(W) X

ASCII Command: [:PROPerty]:CHANnel#:TUNing:THReshold:THOLd

Description

This property specifies the target hold threshold in pm or n°. The hold threshold defines a dead

zone around the control-loop input signal where the output does not change. This parameter

is typically used in a system where the resolution of the sensor is significantly lower then the

resolution of the actor. The dead zone then prevents oscillation or "hunting" of the control-loop.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.5.1 "Custom Positioner Types" for more information.

The default value is 0.

Valid Range

0 . . . 1× 106.

Example

// set the target hold threshold to 100nm for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_TARGET_HOLD_TH, 100000

);

See Also

4.8.14 Positioner Target Reached Threshold

195MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.8.16 Save Positioner Type

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POS_SAVE 0x0309000A I32 Ch W X

ASCII Command: [:PROPerty]:CHANnel#:TUNing:SAVE

Description

This property is used to save a modified positioner type to a custom slot of a channel. Currently

four custom slots per channel are available. Saving the positioner type makes the parameters

persistent and implicit sets the Positioner Type to the given custom type.

Valid Range

SA_CTL_POSITIONER_TYPE_CUSTOM0 (250), SA_CTL_POSITIONER_TYPE_CUSTOM1 (251),

SA_CTL_POSITIONER_TYPE_CUSTOM2 (252), SA_CTL_POSITIONER_TYPE_CUSTOM3 (253)

Example

// save a modified positioner type of channel 0 to custom slot 1

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_SAVE, SA_CTL_POSITIONER_TYPE_CUSTOM0

);

See Also

4.8.17 Positioner Write Protection

4.8.17 Positioner Write Protection

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_POS_WRITE_PROTECTION 0x0309000D I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:TUNing:WPRotection

196MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

This property is used to unlock the write access to the tuning parameters. A special key must be

written to this property to unlock the write access to the tuning properties. Write any other value

to this property to enable the protection again. Otherwise the write protection remains unlocked

for the channel until the device is restarted. The write protection key is:

SA_CTL_POS_WRITE_PROTECTION_KEY (0x534D4152)

Example

// disable tuning parameter write protection of channel 0

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_POS_WRITE_PROTECTION,

SA_CTL_POS_WRITE_PROTECTION_KEY

);

// set tuning parameters like P gain, etc.

See Also

4.8.16 Save Positioner Type

4.9 Streaming Properties

4.9.1 Stream Base Rate

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_STREAM_BASE_RATE 0x040F002C I32 Dev RW -

ASCII Command: [:PROPerty]:DEVice:STReaming:BASerate

Description

This property specifies the stream base rate in Hz for the trajectory streaming. Please refer to

section 2.15 "Trajectory Streaming" for more information.

The default stream base rate is 1000Hz.

197MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Valid Range

10 . . . 1000Hz

Example

// set the stream rate to 1 kHz

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_STREAM_BASE_RATE, 1000

);

See Also

4.9.2 Stream External Sync Rate, 4.13.1 Device Input Trigger Mode

4.9.2 Stream External Sync Rate

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_STREAM_EXT_SYNC_RATE 0x040F002D I32 Dev RW -

ASCII Command: [:PROPerty]:DEVice:STReaming:SYNCrate

Description

This property specifies the external stream synchronization rate in Hz for the trajectory streaming.

It may be used to synchronize the internal position streaming clock to an external clock signal.

Note that the configured Stream Base Rate must be a whole-number multiple of the external sync

rate.

The default value is 1.

Valid Range

1 . . . 1000Hz

NOTICE
In order to use the external stream synchronization the devicemust be equipped

with an trigger input connector.

198MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

// configure external stream synchronization rate to 100Hz

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_STREAM_EXT_SYNC_RATE, 100

);

See Also

4.9.1 Stream Base Rate, 4.13.1 Device Input Trigger Mode

4.9.3 Stream Options

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_STREAM_OPTIONS 0x040F005D I32 Dev RW -

ASCII Command: [:PROPerty]:DEVice:STReaming:OPTions

Description

This property specifies the stream’s options. It is used to define the behavior of the stream before

calling the SA_CTL_OpenStream function.

The value is a bit field containing independent flags. Please refer to the subsection 2.15.3 "Op-

tions" for more information. Undefined flags are unused but might get a meaning in future up-

dates. Undefined flags should be set to zero. The default value is 0 (all flags cleared).

Example

// disable the target position interpolation for the trajectory streaming

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_STREAM_OPTIONS,

SA_CTL_STREAM_OPT_BIT_INTERPOLATION_DIS

);

199MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.9.1 Stream Base Rate

4.9.4 Stream Load Maximum

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_STREAM_LOAD_MAX 0x040F0301 I32 Dev R -

ASCII Command: N/A

Description

This property reports themaximum load generated by the current stream in percent. The property

acts like a peak detector. The highest load level generated by the currently running stream is

stored. When starting the stream the load value is reset to zero. Please refer to section 2.15

"Trajectory Streaming" for more information.

Valid Range

0 . . . 100%

Example

SA_CTL_Result_t result;

int32_t maximumLoad;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_STREAM_LOAD_MAX, &maximumLoad

);

4.10 Diagnostic Properties

4.10.1 Channel Error

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_CHANNEL_ERROR 0x0502007A I32 Ch R X

200MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

ASCII Command: [:PROPerty]:CHANnel#:ERRor

Description

This property holds the last error of a channel. Generally, event notifications are used to inform

about channel errors. (See section 2.6.7 "Movement Feedback" for more information.) However,

if event notifications are not used in an application the Channel State bit

SA_CTL_CH_STATE_BIT_MOVEMENT_FAILED can be monitored to detect channel errors. This

property may be read then to determine the reason of the error.

Note that the channel error is reset to SA_CTL_ERROR_NONE after reading this property.

Example

SA_CTL_Result_t result;

int32_t chError;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_CHANNEL_ERROR, &chError

);

if (result == SA_CTL_ERROR_NONE) {

// ’chError’ holds the last error code of channel 0

}

See Also

4.4.9 Channel State

4.10.2 Channel Temperature

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_CHANNEL_TEMPERATURE 0x05020034 I32 Ch R X

ASCII Command: [:PROPerty]:CHANnel#:TEMPerature

Description

This property holds the amplifier temperature in ◦C. The temperature is measured near the chan-

nels driver amplifier.

201MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

SA_CTL_Result_t result;

int32_t chTemp;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_CHANNEL_TEMPERATURE, &chTemp

);

if (result == SA_CTL_ERROR_NONE) {

// ’chTemp’ holds the temperature of the amplifier of channel 0

}

See Also

4.10.3 Bus Module Temperature

4.10.3 Bus Module Temperature

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_BUS_MODULE_TEMPERATURE 0x05030034 I32 Mod R X

ASCII Command: [:PROPerty]:MODule#:TEMPerature

Description

This property holds the temperature of a bus module in ◦C.

Example

SA_CTL_Result_t result;

int32_t modTemp;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_BUS_MODULE_TEMPERATURE, &modTemp

);

if (result == SA_CTL_ERROR_NONE) {

// ’modTemp’ holds the temperature of the driver module 0

}

202MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.10.2 Channel Temperature

4.11 Auxiliary Properties

4.11.1 Aux Positioner Type

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_AUX_POSITIONER_TYPE 0x0802003C I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:AUXiliary:PTYPe

Description

This property is used to tell the channel which set of control-loop parameters (PID gains, etc.) is

used when an auxiliary input is configured as input for the control-loop. More precisely, if the

Control Loop Input property is set to SA_CTL_CONTROL_LOOP_INPUT_AUX_IN the auxiliary po-

sitioner type parameters are implicitly configured, otherwise the regular positioner type param-

eters are used. This way it is possible to switch between two control modes without manually

changing all individual parameters. Typically a custom positioner type slot will be used here to

define the necessary parameters.

Please refer to section 2.16.5 "Using Analog Inputs as Control-Loop Feedback" for more informa-

tion on using auxiliary inputs.

This property is stored to non-volatile memory and need not be configured on every power-up.

Valid Range

SA_CTL_POSITIONER_TYPE_CUSTOM0 (250),

SA_CTL_POSITIONER_TYPE_CUSTOM1 (251),

SA_CTL_POSITIONER_TYPE_CUSTOM2 (252),

SA_CTL_POSITIONER_TYPE_CUSTOM3 (253)

Example

// select the ‘CUSTOM0‘ positioner type (type code 250) for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_AUX_POSITIONER_TYPE, 250

);

203MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.4.6 Positioner Type

4.11.2 Aux Positioner Type Name

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_AUX_POSITIONER_TYPE_NAME 0x0802003D String Ch R -

ASCII Command: [:PROPerty]:CHANnel#:AUXiliary:PTName

Description

This property holds a descriptive name of the configured auxiliary positioner type. The positioner

type name is a null terminated string. Note that the name is read-only.

Example

SA_CTL_Result_t result;

char name[SA_CTL_STRING_MAX_LENGTH];

size_t ioStringSize = sizeof(name);

result = SA_CTL_GetProperty_s(

dHandle, 0, SA_CTL_PKEY_AUX_POSITIONER_TYPE_NAME, name, &ioStringSize

);

if (result == SA_CTL_ERROR_NONE) {

// ’name’ holds the name of the configured auxiliary positioner type

}

See Also

4.11.1 Aux Positioner Type, 4.4.6 Positioner Type

4.11.3 Aux Input Select

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_AUX_INPUT_SELECT 0x08020018 I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:AUXiliary:ISELect

204MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

This property selects the auxiliary input component. Note that the Aux I/O Module Input Index

property must be configured too to select a specific analog input.

Note that the additional sensormodule inputs are not available on all sensormodule types. Please

refer to section 2.16 "Auxiliary Inputs and Outputs" for more information on using auxiliary inputs.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default value is SA_CTL_AUX_INPUT_SELECT_IO_MODULE (0).

Valid Range

SA_CTL_AUX_INPUT_SELECT_IO_MODULE (0),

SA_CTL_AUX_INPUT_SELECT_SENSOR_MODULE (1)

Example

// set the auxiliary input selection to ‘I/O module‘ for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_AUX_INPUT_SELECT,

SA_CTL_AUX_INPUT_SELECT_IO_MODULE

);

See Also

4.11.4 Aux I/O Module Input Index, 4.11.5 Aux Direction Inversion, 4.4.28 Control Loop Input Aux

Value, 4.4.4 Control Loop Input

4.11.4 Aux I/O Module Input Index

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_AUX_IO_MODULE_INPUT_INDEX 0x081100AA I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:AUXiliary:IOModule:INPut:INDex

205MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

This property specifies which input of an analog I/O module is used as input for the auxiliary

control-loop input.

The I/O module has a total number of six analog inputs which are mapped in groups of two to the

channels of the corresponding driver module. The input index refers to the analog inputs assigned

to a specific channel as follows:

Input Index Channel Index Analog Input

0 0 (3) (6) AIN-1

0 1 (4) (7) AIN-2

0 2 (5) (8) AIN-3

1 0 (3) (6) AIN-4

1 1 (4) (7) AIN-5

1 2 (5) (8) AIN-6

Note that input indexes refer to a module (start with zero for each module) while the channel

indexes refer to the entire device. Channel indexes in brackets refer to a second respectively third

module of the device.

Please refer to section 2.16 "Auxiliary Inputs and Outputs" for more information on using auxiliary

inputs. See the MCS2 User Manual for the pin assignment of the I/O module connector.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default input index is 0.

Valid Range

0 . . . 1

Example

// set the auxiliary I/O module input index to 0 for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_AUX_IO_MODULE_INPUT_INDEX, 0

);

See Also

4.11.3 Aux Input Select, 4.11.5 Aux Direction Inversion, 4.11.6 Aux I/OModule Input0 / Input1 Value

206MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.11.5 Aux Direction Inversion

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_AUX_DIRECTION_INVERSION 0x0809000E I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:AUXiliary:DINVersion

Description

This property specifies the feedback direction sense for the control-loop in case an auxiliary input

is used as input for the control-loop. The direction sense of the feedback must match the direction

sense of the control-loop output. Otherwise a runaway condition may occur when commanding a

closed-loop movement. The end stop detection (if not disabled) will typically abort the movement

in that case. While the direction sense is determined automatically by the calibration routine when

using the position as feedback signal, this setting must be defined manually using this property

when using an auxiliary input. This property has no meaning if the Control Loop Input is not

configured to auxiliary input.

Please refer to section 2.16.5 "Using Analog Inputs as Control-Loop Feedback" for more informa-

tion on using auxiliary inputs.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default is SA_CTL_NON_INVERTED (0x00).

Valid Range

SA_CTL_NON_INVERTED (0x00), SA_CTL_INVERTED (0x01)

Example

// set the auxiliary direction inversion to ‘inverted‘ for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_AUX_DIRECTION_INVERSION, SA_CTL_INVERTED

);

See Also

4.11.3 Aux Input Select, 4.11.6 Aux I/O Module Input0 / Input1 Value, 4.4.4 Control Loop Input

207MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.11.6 Aux I/O Module Input0 / Input1 Value

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_AUX_IO_MODULE_INPUT0_VALUE 0x08110000 I64 Ch R X

SA_CTL_PKEY_AUX_IO_MODULE_INPUT1_VALUE 0x08110001 I64 Ch R X

ASCII Command: [:PROPerty]:CHANnel#:AUXiliary:IOModule:INPut:VALue#

Description

These properties hold the input values of the analog inputs of an analog I/O module. Note that an

error is returned if no I/O module is available.

Note further that the interpretation of the value depends on the configured I/O Module Analog

Input Range of the I/O module. Please refer to section 2.16 "Auxiliary Inputs and Outputs" for

more information on using auxiliary inputs.

Example

SA_CTL_Result_t result;

int64_t inputVal;

result = SA_CTL_GetProperty_i64(

dHandle, 0, SA_CTL_PKEY_AUX_IO_MODULE_INPUT0_VALUE, &inputVal

);

if (result == SA_CTL_ERROR_NONE) {

// ‘inputVal‘ holds the current input value of the first

// I/O module input of channel 0

}

See Also

4.11.3 Aux Input Select, 4.4.28 Control Loop Input Aux Value, 4.4.27 Control Loop Input Sensor

Value, 4.11.6 Aux I/O Module Input0 / Input1 Value, 4.4.4 Control Loop Input

4.11.7 Aux Digital Input Value

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_AUX_DIGITAL_INPUT_VALUE 0x080300AD I32 Mod R X

208MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

ASCII Command: [:PROPerty]:MODule#:AUXiliary:DINPut[:VALue]

Description

This property holds a bit mask that represents the input levels of the general purpose digital inputs

of an I/O module.

Please refer to section 2.16 "Auxiliary Inputs and Outputs" for more information.

Example

SA_CTL_Result_t result;

// read the digital inputs

int32_t input;

result = SA_CTL_GetProperty_i32(dHandle,0,

SA_CTL_PKEY_AUX_DIGITAL_INPUT_VALUE, &input

);

if (result == SA_CTL_ERROR_NONE) {

// ‘input‘ holds the value of the digital inputs

}

See Also

4.11.8 Aux Digital Output Value / Set / Clear

4.11.8 Aux Digital Output Value / Set / Clear

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_VALUE 0x080300AE I32 Mod RW X

SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_SET 0x080300B0 I32 Mod W X

SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_CLEAR 0x080300B1 I32 Mod W X

ASCII Command: [:PROPerty]:MODule#:AUXiliary:DOUTput[:VALue]

ASCII Command: [:PROPerty]:MODule#:AUXiliary:DOUTput:SET

ASCII Command: [:PROPerty]:MODule#:AUXiliary:DOUTput:CLEar

209MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

These properties hold bit masks that may be used to modify the general purpose digital outputs

of an I/O module. Note that the digital output driver circuit is disabled by default and must be

enabled by setting the SA_CTL_IO_MODULE_OPT_BIT_DIGITAL_OUTPUT_ENABLED bit of the

I/O Module Options property.

Please refer to section 2.16 "Auxiliary Inputs and Outputs" for more information.

Example

SA_CTL_Result_t result;

// set all digital output of the I/O module to a specific value

// DOUT-4 | DOUT-3 | DOUT-2 | DOUT-1 |

// L(0) | H(1) | L(0) | H(1) |

result = SA_CTL_SetProperty_i32(dHandle,0,

SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_VALUE, 0x00000005

);

See Also

4.11.7 Aux Digital Input Value, 4.12.1 I/O Module Options

4.11.9 Aux Analog Output Value0 / Value1

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_AUX_ANALOG_OUTPUT_VALUE0 0x08030000 I32 Mod RW X

SA_CTL_PKEY_AUX_ANALOG_OUTPUT_VALUE1 0x08030001 I32 Mod RW X

ASCII Command: [:PROPerty]:MODule#:AUXiliary:AOUTput:VALue#

Description

These properties specify the output values of the analog outputs of an I/O module. Note that the

analog output driver circuit is in a high-impedance state by default andmust be enabled by setting

the SA_CTL_IO_MODULE_OPT_BIT_ANALOG_OUTPUT_ENABLED bit of the I/O Module Options

property.

The output values are given as signed 16-bit values from −32768 to 32767, where −32768 corre-

sponds to −10V and 32767 to 10V output voltage.

The default value is 0 which corresponds to an output voltage of 0 V.

210MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Valid Range

−32768 . . . 32 767

Example

SA_CTL_Result_t result;

// set the output value of analog output0 (AOUT-1) to zero

// which corresponds to 0V

result = SA_CTL_SetProperty_i32(dHandle,0,

SA_CTL_PKEY_AUX_ANALOG_OUTPUT_VALUE0, 0

);

See Also

4.11.6 Aux I/O Module Input0 / Input1 Value, 4.12.1 I/O Module Options

4.12 I/O Module Properties

4.12.1 I/O Module Options

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_IO_MODULE_OPTIONS 0x0603005D I32 Mod RW X

ASCII Command: [:PROPerty]:MODule#:IOModule:OPTions

Description

This property specifies the I/O module options. The value is a bit field containing independent

flags with the following meaning:

211MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Bit Name Short Desrciption

0 SA_CTL_IO_MODULE_OPT_BIT_DIGITAL_OUTPUT_ENABLED Enables or disables the

digital output driver cir-

cuit on the I/O module.

1 SA_CTL_IO_MODULE_OPT_BIT_EVENTS_ENABLED Enables or disables the

event notification for the

digital inputs of an I/O

module.

2 SA_CTL_IO_MODULE_OPT_BIT_ANALOG_OUTPUT_ENABLED Enables or disables the

analog output driver cir-

cuit on the I/O module.

3 .. 31 Reserved These bits are reserved

for future use.

All options are disabled by default, which means that all digital and analog outputs are in a high-

impedance state and the digital input events are disabled.

NOTICE
Note that the events enabled bit refers to the general purpose digital inputs of the

I/O module and not to the digital device trigger input. See section 2.17 "Input

Trigger" for the event notification configuration of the device input trigger.

Note that the I/O Module Voltage property should be set first to define the voltage level of the

digital outputs.

Example

// enable the digital and analog output driver circuit of the I/O module

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_IO_MODULE_OPTIONS,

(SA_CTL_IO_MODULE_OPT_BIT_DIGITAL_OUTPUT_ENABLED |

SA_CTL_IO_MODULE_OPT_BIT_ANALOG_OUTPUT_ENABLED)

);

See Also

4.12.2 I/O Module Voltage

212MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.12.2 I/O Module Voltage

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_IO_MODULE_VOLTAGE 0x06030031 I32 Mod RW X

ASCII Command: [:PROPerty]:MODule#:IOModule:VOLTage

Description

This property specifies the I/O module output voltage for the digital outputs. The output voltage

should be set before enabling the outputs of the I/Omodule. Note that the voltage setting is global

for all digital output channels of the I/O module.

The default value is SA_CTL_IO_MODULE_VOLTAGE_3V3 (0).

Valid Range

SA_CTL_IO_MODULE_VOLTAGE_3V3 (0),

SA_CTL_IO_MODULE_VOLTAGE_5V (1)

Example

// set the output driver voltage level to 5V

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_IO_MODULE_VOLTAGE,

SA_CTL_IO_MODULE_VOLTAGE_5V

);

See Also

4.12.1 I/O Module Options

4.12.3 I/O Module Analog Input Range

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_IO_MODULE_ANALOG_INPUT_RANGE 0x060300A0 I32 Mod RW X

ASCII Command: [:PROPerty]:MODule#:IOModule:AINPut:RANGe

213MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

This property specifies the I/O module analog input range. This setting configures the analog gain

settings of the ADCs of the I/O module. The inputs allow bipolar as well as unipolar operation. To

achieve the best performance of the ADC it is recommended to always use the lowest full range

setting that fits the desired analog input range.

Note that the range setting does not influence the digital representation of the input value. The

signed value of 217 corresponds to a bipolar full range input of 10.24V. This means that e.g. an

analog voltage of 2.56V always returns a digital value of 32767 regardless of the actual range

setting. The advantage of this representation is that e.g. configured PID gains or threshold limits

must not be adjusted after changing the input range while the best matching analog gain is used

for the analog to digital conversion. The following table summarizes the digital representations of

the analog input voltage and their maximum values for the different gain settings:

Analog Voltage Bipol. ±10V Bipol. ±5V Bipol. ±2.5V Unipol. 10V Unipol. 5V

+10.24V 131071 65535 32767 131071 65535

+5.12V 65535 65535 32767 65535 65535

+2.56V 32767 32767 32767 32767 32767

0V 0 0 0 0 0

-2.56V -32768 -32768 -32768 0 0

-5.12V -65536 -65536 -32768 0 0

-10.24V -131072 -65536 -32768 0 0

Note that the input range setting is global for all analog inputs of the I/O module.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default value is SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_BI_10V (0).

Valid Range

SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_BI_10V (0),

SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_BI_5V (1),

SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_BI_2_5V (2),

SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_UNI_10V (3),

SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_UNI_5V (4)

Example

// set the analog input range to +/-5V

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_IO_MODULE_ANALOG_INPUT_RANGE,

SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_BI_5V

);

214MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.12.1 I/O Module Options, 4.11.6 Aux I/O Module Input0 / Input1 Value

4.13 Input Trigger Properties

4.13.1 Device Input Trigger Mode

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_DEV_INPUT_TRIG_MODE 0x060D0087 I32 Dev RW -

ASCII Command: [:PROPerty]:DEVice:TRIGger:INPut:MODE

Description

This property specifies the input trigger mode of the device. The input trigger may be used to

synchronize the device to external events. If no I/O module is available this property returns a

SA_CTL_ERROR_NO_IOM_PRESENT error. Please refer to section 2.17 "Input Trigger" for more

information.

The default value is SA_CTL_DEV_INPUT_TRIG_MODE_DISABLED (0).

Valid Range

SA_CTL_DEV_INPUT_TRIG_MODE_DISABLED (0),

SA_CTL_DEV_INPUT_TRIG_MODE_EMERGENCY_STOP (1),

SA_CTL_DEV_INPUT_TRIG_MODE_STREAM (2),

SA_CTL_DEV_INPUT_TRIG_MODE_CMD_GROUP (3)

SA_CTL_DEV_INPUT_TRIG_MODE_EVENT (4)

Example

// set input trigger mode to external stream sync

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_DEV_INPUT_TRIG_MODE,

SA_CTL_DEV_INPUT_TRIG_MODE_STREAM

);

215MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.13.2 Device Input Trigger Condition, 4.9.1 Stream Base Rate, 4.9.2 Stream External Sync Rate

4.13.2 Device Input Trigger Condition

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_DEV_INPUT_TRIG_CONDITION 0x060D005A I32 Dev RW -

ASCII Command: [:PROPerty]:DEVice:TRIGger:INPut:CONDition

Description

This property defines the active edge for the input trigger signal.

The default value is SA_CTL_TRIGGER_CONDITION_RISING (0).

Valid Range

SA_CTL_TRIGGER_CONDITION_RISING (0), SA_CTL_TRIGGER_CONDITION_FALLING (1)

Example

// set input trigger condition to "rising"

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_DEV_INPUT_TRIG_CONDITION,

SA_CTL_TRIGGER_CONDITION_RISING

);

See Also

4.13.1 Device Input Trigger Mode, 4.9.1 Stream Base Rate, 4.9.2 Stream External Sync Rate

216MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.14 Output Trigger Properties

4.14.1 Channel Output Trigger Mode

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_CH_OUTPUT_TRIG_MODE 0x060E0087 I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:TRIGger:OUTPut:MODE

Description

This property specifies the output trigger mode of a channel. Note that further configuration of

the output trigger should be done before it is enabled. If no I/O module is available this property

returns a SA_CTL_ERROR_NO_IOM_PRESENT error.

Note for the position compare mode: if the Channel Position Compare Limit Max is set to a lower

value than the Channel Position Compare Limit Min then this misconfiguration is indicated by a

returned SA_CTL_ERROR_INVALID_CONFIGURATION error.

Please refer to section 2.18 "Output Trigger" for more information.

The default value is SA_CTL_CH_OUTPUT_TRIG_MODE_CONSTANT (0).

Valid Range

SA_CTL_CH_OUTPUT_TRIG_MODE_CONSTANT (0),

SA_CTL_CH_OUTPUT_TRIG_MODE_POSITION_COMPARE (1),

SA_CTL_CH_OUTPUT_TRIG_MODE_TARGET_REACHED (2),

SA_CTL_CH_OUTPUT_TRIG_MODE_ACTIVELY_MOVING (3)

Example

// set output trigger mode for channel 1

result = SA_CTL_SetProperty_i32(

dHandle,

1,

SA_CTL_PKEY_CH_OUTPUT_TRIG_MODE,

SA_CTL_CH_OUTPUT_TRIG_MODE_POSITION_COMPARE

);

217MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.14.4 Channel Position Compare Start Threshold, 4.14.5 Channel Position Compare Increment,

4.14.6 Channel Position Compare Direction, 4.14.2 Channel Output Trigger Polarity, 4.14.3 Channel

Output Trigger Pulse Width

4.14.2 Channel Output Trigger Polarity

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_CH_OUTPUT_TRIG_POLARITY 0x060E005B I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:TRIGger:OUTPut:POLarity

Description

This property defines the polarity of the output trigger signal. If set to active high then the idle level

is low and a high pulse is generated when the trigger occurs. If set to active low then the idle level

is high and a low pulse is generated when the trigger occurs.

The default polarity is SA_CTL_TRIGGER_POLARITY_ACTIVE_HIGH (1).

Valid Range

SA_CTL_TRIGGER_POLARITY_ACTIVE_LOW (0),

SA_CTL_TRIGGER_POLARITY_ACTIVE_HIGH (1)

Example

// set output trigger polarity for channel 1 to ‘active high‘

result = SA_CTL_SetProperty_i32(

dHandle,

1,

SA_CTL_PKEY_CH_OUTPUT_TRIG_POLARITY,

SA_CTL_TRIGGER_POLARITY_ACTIVE_HIGH

);

See Also

4.14.1 Channel Output Trigger Mode, 4.14.4 Channel Position Compare Start Threshold, 4.14.5

Channel Position Compare Increment, 4.14.6 Channel Position Compare Direction, 4.14.3 Channel

Output Trigger Pulse Width

218MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.14.3 Channel Output Trigger Pulse Width

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_CH_OUTPUT_TRIG_PULSE_WIDTH 0x060E005C I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:TRIGger:OUTPut:PWIDth

Description

This property specifies the pulse width of the trigger output pulse in ns.

Note that the configured pulse width includes the duration of the pulse as well as the duration of

the pause. E.g. when setting the Channel Output Trigger Pulse Width to 1000ns pulses with 500ns

high level and 500ns low level will be generated.

The default pulse width is 1000ns.

Valid Range

100ns . . . 4× 109 ns

Example

// set output trigger pulse width for channel 1 to 1us

result = SA_CTL_SetProperty_i32(

dHandle, 1, SA_CTL_PKEY_CH_OUTPUT_TRIG_PULSE_WIDTH, 1000

);

See Also

4.14.1 Channel Output Trigger Mode, 4.14.4 Channel Position Compare Start Threshold, 4.14.5

Channel Position Compare Increment, 4.14.6 Channel Position Compare Direction, 4.14.2 Channel

Output Trigger Polarity

219MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.14.4 Channel Position Compare Start Threshold

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_CH_POS_COMP_START_THRESHOLD 0x060E0058 I64 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:TRIGger:PCOMpare:THReshold[:STARt]

Description

This property defines the start threshold value in pm or n° for the position compare output trigger.

As soon as the position passes this threshold in the configured direction (see Channel Position

Compare Direction) an output pulse is generated. Additionally the threshold is incremented by

the value of the Channel Position Compare Increment to define the next trigger threshold. Please

refer to section 2.18 "Output Trigger" for more information.

The default value is 1× 109.

Valid Range

−100× 1012 . . . 100× 1012 pm or n°.

Example

// set output trigger start threshold for channel 1 to 1mm

result = SA_CTL_SetProperty_i64(

dHandle, 1, SA_CTL_PKEY_CH_POS_COMP_START_THRESHOLD, 1e9

);

See Also

4.14.1 Channel Output TriggerMode, 4.14.5 Channel Position Compare Increment, 4.14.6 Channel

Position Compare Direction, 4.14.2 Channel Output Trigger Polarity, 4.14.3 Channel Output Trigger

Pulse Width

220MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.14.5 Channel Position Compare Increment

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_CH_POS_COMP_INCREMENT 0x060E0059 I64 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:TRIGger:PCOMpare:INCRement

Description

This property defines the position compare output trigger increment in pm or n°. Please refer to

section 2.18 "Output Trigger" for more information.

The default value is 1× 109.

Valid Range

1 . . . 1× 1012 pm or n°.

Example

// set position compare increment for channel 1 to 100um

result = SA_CTL_SetProperty_i64(

dHandle, 1, SA_CTL_PKEY_CH_POS_COMP_INCREMENT, 100e6

);

See Also

4.14.1 Channel Output Trigger Mode, 4.14.4 Channel Position Compare Start Threshold, 4.14.6

Channel Position Compare Direction, 4.14.2 Channel Output Trigger Polarity, 4.14.3 Channel Out-

put Trigger Pulse Width

4.14.6 Channel Position Compare Direction

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_CH_POS_COMP_DIRECTION 0x060E0026 I32 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:TRIGger:PCOMpare:DIRection

221MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

This property defines how the position value and the configured trigger threshold are compared

against each other.

The following trigger conditions are available:

Condition Name Short Description

0x00 SA_CTL_FORWARD_DIRECTION The trigger pulse is output when the position

value passes the threshold from below.

0x01 SA_CTL_BACKWARD_DIRECTION The trigger pulse is output when the position

value passes the threshold from above.

0x02 SA_CTL_EITHER_DIRECTION The trigger pulse is output when the posi-

tion value passes the threshold from below or

above.

Please refer to section 2.18 "Output Trigger" for more information.

The default direction is SA_CTL_FORWARD_DIRECTION (0x00).

Example

// set output trigger condition for channel 1 to forward

result = SA_CTL_SetProperty_i32(

dHandle,

1,

SA_CTL_PKEY_CH_POS_COMP_DIRECTION,

SA_CTL_FORWARD_DIRECTION

);

See Also

4.14.1 Channel Output Trigger Mode, 4.14.4 Channel Position Compare Start Threshold, 4.14.5

Channel Position Compare Increment, 4.14.2 Channel Output Trigger Polarity, 4.14.3 Channel Out-

put Trigger Pulse Width 4.14.7 Channel Position Compare Limit Min, 4.14.8 Channel Position Com-

pare Limit Max

4.14.7 Channel Position Compare Limit Min

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_CH_POS_COMP_LIMIT_MIN 0x060E0020 I64 Ch RW X

222MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

ASCII Command: [:PROPerty]:CHANnel#:TRIGger:PCOMpare:LMIN

Description

This property defines the lower limit for the position compare output trigger in pm or n°. The limits

act as an additional gate for the generation of output pulses. Output pulses are only generated

when the current position lies between the configured minimum and maximum limits. Note that

the maximum limit must be configured to a higher value than the minimum limit for the limit

checks to be active. If both limits are set to the same value the checks are disabled and output

pulses are generated according to the configured start threshold, increment and direction. Please

refer to section 2.18 "Output Trigger" for more information.

The default value is 0.

Valid Range

−100× 1012 . . . 100× 1012 pm or n°.

Example

// set position compare lower limit for channel 1 to 1mm

result = SA_CTL_SetProperty_i64(

dHandle, 1, SA_CTL_PKEY_CH_POS_COMP_LIMIT_MIN, 1e9

);

See Also

4.14.1 Channel Output Trigger Mode, 4.14.4 Channel Position Compare Start Threshold, 4.14.5

Channel Position Compare Increment, 4.14.6 Channel Position Compare Direction, 4.14.2 Chan-

nel Output Trigger Polarity, 4.14.3 Channel Output Trigger Pulse Width, 4.14.8 Channel Position

Compare Limit Max

4.14.8 Channel Position Compare Limit Max

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_CH_POS_COMP_LIMIT_MAX 0x060E0021 I64 Ch RW X

ASCII Command: [:PROPerty]:CHANnel#:TRIGger:PCOMpare:LMAX

223MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

This property defines the upper limit for the position compare output trigger in pm or n°. The

limits act as an additional gate for the generation of output pulses. Output pulses are only gener-

ated when the current position lies between the configured minimum and maximum limits. Note

that the maximum limit must be configured to a higher value than the minimum limit for the limit

checks to be active. If both limits are set to the same value the checks are disabled and output

pulses are generated according to the configured start threshold, increment and direction. Please

refer to section 2.18 "Output Trigger" for more information.

The default value is 0.

Valid Range

−100× 1012 . . . 100× 1012 pm or n°.

Example

// set position compare upper limit for channel 1 to 2mm

result = SA_CTL_SetProperty_i64(

dHandle, 1, SA_CTL_PKEY_CH_POS_COMP_LIMIT_MAX, 2e9

);

See Also

4.14.1 Channel Output Trigger Mode, 4.14.4 Channel Position Compare Start Threshold, 4.14.5

Channel Position Compare Increment, 4.14.6 Channel Position Compare Direction, 4.14.2 Chan-

nel Output Trigger Polarity, 4.14.3 Channel Output Trigger Pulse Width, 4.14.7 Channel Position

Compare Limit Min

4.15 Hand Control Module Properties

4.15.1 Hand Control Module Lock Options

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_HM_LOCK_OPTIONS 0x020C0083 I32 Dev RW -

ASCII Command: [:PROPerty]:DEVice:HMODule:LOPTions[:CURRent]

224MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Description

This property defines the different possible lock states of an attached hand control module. The

value is a bit field containing independent flags with the following meaning:

Table 4.2 – Hand Control Module Lock Options Bits

Bit Name Short Description

0 SA_CTL_HM1_LOCK_OPT_BIT_GLOBAL Fully disables control over the hand

controller.

1 SA_CTL_HM1_LOCK_OPT_BIT_CONTROL Disables the control inputs (Encoder,

Joystick, etc.).

4 SA_CTL_HM1_LOCK_OPT_BIT_CHANNEL_MENU Hides the Channel Settingsmenu.

5 SA_CTL_HM1_LOCK_OPT_BIT_GROUP_MENU Hides the Group Settingsmenu.

6 SA_CTL_HM1_LOCK_OPT_BIT_SETTINGS_MENU Hides the General Settingsmenu.

7 SA_CTL_HM1_LOCK_OPT_BIT_LOAD_CFG_MENU Hides the Load Config menu.

8 SA_CTL_HM1_LOCK_OPT_BIT_SAVE_CFG_MENU Hides the Save Config menu.

9 SA_CTL_HM1_LOCK_OPT_BIT_CTRL_MODE_PARAM_MENU Hides the generic control mode pa-

rameter menu.

12 SA_CTL_HM1_LOCK_OPT_BIT_CHANNEL_NAME Hides the Set Channel Name menu

entry.

13 SA_CTL_HM1_LOCK_OPT_BIT_POS_TYPE Hides the Positioner Typemenu entry.

14 SA_CTL_HM1_LOCK_OPT_BIT_SAFE_DIR Hides the Safe Directionmenu entry.

15 SA_CTL_HM1_LOCK_OPT_BIT_CALIBRATE Hides the Sensor Calibrationmenu.

16 SA_CTL_HM1_LOCK_OPT_BIT_REFERENCE Hides the Find Referencemenu entry.

17 SA_CTL_HM1_LOCK_OPT_BIT_SET_POSITION Hides the Set Zero Position menu en-

try.

18 SA_CTL_HM1_LOCK_OPT_BIT_MAX_CLF Hides the Max Closed-Loop Frequency

menu entry.

19 SA_CTL_HM1_LOCK_OPT_BIT_POWER_MODE Hides the Sensor Power Mode menu

entry.

20 SA_CTL_HM1_LOCK_OPT_BIT_ACTUATOR_MODE Hides the Actuator Modemenu entry.

Note that this property is volatile. In order to alter the lock bits across sessions use the Hand

Control Module Default Lock Options property instead.

225MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

// disable control inputs for the hand control module

result = SA_CTL_SetProperty_i32(

dHandle,0,SA_CTL_PKEY_HM_LOCK_OPTIONS,SA_CTL_HM1_LOCK_OPT_BIT_CONTROL

);

See Also

4.15.2 Hand Control Module Default Lock Options

4.15.2 Hand Control Module Default Lock Options

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_HM_DEFAULT_LOCK_OPTIONS 0x020C0084 I32 Dev RW -

ASCII Command: [:PROPerty]:DEVice:HMODule:LOPTions:DEFault

Description

This property specifies the default lock state of the hand control module at startup. It is the non-

volatile version of the Hand Control Module Lock Options property. See table 4.2 for a description

of the bit field.

Example

// hide channel and group menu by default

int32_t defaultLockState = (SA_CTL_HM1_LOCK_OPT_BIT_CHANNEL_MENU |

SA_CTL_HM1_LOCK_OPT_BIT_GROUP_MENU);

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_HM_DEFAULT_LOCK_OPTIONS, defaultLockState

);

See Also

4.15.1 Hand Control Module Lock Options

226MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.16 API Properties

4.16.1 Event Notification Options

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_EVENT_NOTIFICATION_OPTIONS 0xF010005D I32 API RW -

ASCII Command: N/A

Description

This property may be used to configure the event notifications of the API.

The value is a bit field containing independent flags. Undefined flags are reserved for future use.

These flags should be set to zero. The default value is 0 (all API events disabled).

NOTICE
Although this property is a setting of the API, an active connection to a device is

still required. The setting applies to every individual device connection indepen-

dently. Closing the connection to a device resets the setting to its default.

Table 4.3 – Event Notification Option Bits

Bit Name Short Description

0 SA_CTL_EVT_OPT_BIT_REQUEST_READY_ENABLED Enable generation of request ready

events.

Please refer to section 2.3.5 "Request Ready Notification" for more information on the request

ready notifications.

Changing this property affects only new requests sent out after changing this property, not re-

quests that were sent out before but have not received an answer yet.

Example

// enable the request ready events of the API

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_EVENT_NOTIFICATION_OPTIONS,

SA_CTL_EVT_OPT_BIT_REQUEST_READY_ENABLED

);

227MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

2.4 Event Notifications, 2.3.5 Request Ready Notification, 5.2.20 Request Ready Event

4.16.2 Auto Reconnect

Definition

C-Definition Code Type Idx Access CG1

SA_CTL_PKEY_AUTO_RECONNECT 0xF01000A1 I32 API RW -

ASCII Command: N/A

Description

This property configures the automatic reconnect feature of the API. In the default configuration

the reconnect feature is disabled. When enabled the API detects lost connections and tries to

reconnect to the device. Note that during the reconnect all device requests functions block until

the reconnect is finished.

NOTICE
Although this property is a setting of the API, an active connection to a device is

still required. The setting applies to every individual device connection indepen-

dently. Closing the connection to a device resets the setting to its default.

Valid Range

SA_CTL_ENABLED (0x01), SA_CTL_DISABLED (0x00)

Example

// enable automatic reconnect

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_AUTO_RECONNECT, SA_CTL_ENABLED);

228MCS2 Programmer’s Guide

5 EVENT REFERENCE

5.1 Event Summary

An event always carries a 32-bit parameter. The meaning of this parameter depends on the event.

The last column in the following table indicates the usage of the parameter.

Table 5.1 – Event Summary

Event Code Index Parameter Page

None 0x0000 N/A N/A 231

Movement Finished 0x0001 Ch Result Code 231

Sensor State Changed 0x0002 Ch New State 232

Reference Found 0x0003 Ch N/A 232

Following Error Limit 0x0004 Ch N/A 233

Holding Aborted 0x0005 Ch Result Code 231

Sensor Module State Changed 0x4000 Mod New State 233

Over Temperature 0x4001 Mod Temperature 233

High Voltage Overload 0x4002 Mod N/A 234

Adjustment Finished 0x4010 Mod Result Code 234

Adjustment State Changed 0x4011 Mod New State 235

Adjustment Update 0x4012 Mod Result Code 235

Stream Finished 0x8000 Dev Stream Handle, Index,

Result Code

235

Stream Ready 0x8001 Dev Stream Handle 236

Stream Triggered 0x8002 Dev Stream Handle 236

Command Group Triggered 0x8010 Dev Transmit Handle, Res. Code 237

Hand Control Module State Changed 0x8020 Dev New State 237

Emergency Stop Triggered 0x8030 Dev N/A 238

External Input Triggered 0x8040 Dev Input Index 238

Request Ready 0xf000 Any Request ID, Request Type,

Data Type, Array Size,

Property Key

238

Continued on next page

229MCS2 Programmer’s Guide

5 EVENT REFERENCE

Table 5.1 – Continued from previous page

Event Code Index Parameter Page

Connection Lost 0xf001 N/A N/A 239

230MCS2 Programmer’s Guide

5 EVENT REFERENCE

5.2 Detailed Event Description

5.2.1 None

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_NONE 0x0000 N/A N/A

Description:

This event type is a place holder indicating that no event occurred. The index and parameter fields

are undefined.

5.2.2 Movement Finished

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_MOVEMENT_FINISHED 0x0001 Ch Result Code

Description:

This event is generated when a channel has finished a movement command (either successful or

unsuccessful). See also section 2.6.7 "Movement Feedback".

Parameter:

The event parameter holds the result code. If the movement command finished successfully then

the result is SA_CTL_ERROR_NONE. Otherwise the result code indicates what caused the failure.

See table A.1 for a list of result codes.

5.2.3 Holding Aborted

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_HOLDING_ABORTED 0x0005 Ch Result Code

231MCS2 Programmer’s Guide

5 EVENT REFERENCE

Description:

This event is generated when a channel detects an endstop (or a configured following error limit

is exceeded) while in holding state.

Parameter:

The event parameter holds the result code: SA_CTL_ERROR_END_STOP_REACHED in case the

holding was aborted due to an endstop or SA_CTL_ERROR_FOLLOWING_ERR_LIMIT in case the

holding was aborted due to exceeding a following error limit.

5.2.4 Sensor State Changed

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_SENSOR_STATE_CHANGED 0x0002 Ch New State

Description:

A sensor was attached to or detached from a sensor module.

Parameter:

The parameter value will be one of:

SA_CTL_EVENT_PARAM_ATTACHED (0x00000001),

SA_CTL_EVENT_PARAM_DETACHED (0x00000000)

5.2.5 Reference Found

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_REFERENCE_FOUND 0x0003 Ch N/A

Description:

This event is generated during a reference movement. It is generated at the moment the physical

position has been determined. Depending on the configuration of the referencing the movement

might be continued and stopped at a later time. See section 2.6.2 "Referencing" for more infor-

mation.

232MCS2 Programmer’s Guide

5 EVENT REFERENCE

5.2.6 Following Error Limit

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_FOLLOWING_ERR_LIMIT 0x0004 Ch N/A

Description:

This event is generated if the configured following error limit is exceeded during a closed-loop

movement. See section 2.11 "Following Error Detection" for more information.

5.2.7 Sensor Module State Changed

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_SM_STATE_CHANGED 0x4000 Mod New State

Description:

A sensor module was attached to or detached from a driver module.

Parameter:

The parameter value will be one of:

SA_CTL_EVENT_PARAM_ATTACHED (0x00000001),

SA_CTL_EVENT_PARAM_DETACHED (0x00000000)

5.2.8 Over Temperature

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_OVER_TEMPERATURE 0x4001 Mod Temperature

233MCS2 Programmer’s Guide

5 EVENT REFERENCE

Description:

The module detected an over-temperature condition of a driver amplifier. Note that the amplifier

circuit is automatically disabled at the occurrence of an over-temperature condition. The device

must be cooled down before being able to continue to use the device. The Module State property

(SA_CTL_MOD_STATE_BIT_OVER_TEMPERATURE) may be polled to know when the over tem-

perature condition has passed by.

Parameter:

The parameter holds the measured temperature in ◦C.

5.2.9 High Voltage Overload

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_HIGH_VOLTAGE_OVERLOAD 0x4002 Mod N/A

Description:

The module detected an overload condition of the high voltage power supply.

5.2.10 Adjustment Finished

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_ADJUSTMENT_FINISHED 0x4010 Mod Result Code

Description:

This event is generated when a module adjustment process has finished (either successful or un-

successful).

Parameter:

The event parameter holds the result code. If the adjustment finished successfully then the result

is SA_CTL_ERROR_NONE. Otherwise the result code indicates what caused the failure. See table

A.1 for a list of result codes.

234MCS2 Programmer’s Guide

5 EVENT REFERENCE

5.2.11 Adjustment State Changed

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_ADJUSTMENT_STATE_CHANGED 0x4011 Mod New State

Description:

This event is generated when a module adjustment state changes.

Parameter:

The event parameter holds the new state of the adjustment process.

5.2.12 Adjustment Update

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_ADJUSTMENT_UPDATE 0x4012 Mod Result Code

Description:

This event is generated when a module adjustment update occurs.

Parameter:

The event parameter holds the result code. If the adjustment update finished successfully then

the result is SA_CTL_ERROR_NONE. Otherwise the result code indicates what caused the failure.

See table A.1 for a list of result codes.

5.2.13 Stream Finished

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_STREAM_FINISHED 0x8000 Dev Handle Index Result Code

235MCS2 Programmer’s Guide

5 EVENT REFERENCE

Description:

This event indicates that a trajectory stream has come to an end. See section 2.15 "Trajectory

Streaming" for more information.

Parameter:

The parameter holds information to further specify the event.

• Stream Handle The corresponding stream handle.

• Index The device/channel index that caused the given result code.

• Result Code The result of the trajectory streaming. If it finished successfully then the result

is SA_CTL_ERROR_NONE. Otherwise the result code indicates what caused the failure. See

table A.1 for a list of result codes.

5.2.14 Stream Ready

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_STREAM_READY 0x8001 Dev Handle Reserved

Description:

This event indicates that the internal trajectory stream buffer contains enough data to start the

stream. In case of direct streaming the stream will start automatically. Otherwise the device is

ready to receive a start trigger for the stream. See section 2.15 "Trajectory Streaming" for more

information.

Parameter:

The parameter holds the corresponding stream handle.

5.2.15 Stream Triggered

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_STREAM_TRIGGERED 0x8002 Dev Handle Reserved

236MCS2 Programmer’s Guide

5 EVENT REFERENCE

Description:

This event indicates that the controller has started to execute the trajectory stream. See section

2.15 "Trajectory Streaming" for more information.

Parameter:

The parameter holds the corresponding stream handle.

5.2.16 Command Group Triggered

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_CMD_GROUP_TRIGGERED 0x8010 Dev Handle Reserved Result Code

Description:

This event notifies that a command group has been executed (either directly or via a configured

external trigger). See section 2.14 "Command Groups" for more information.

Parameter:

The parameter holds the corresponding transmit handle and result code.

5.2.17 Hand Control Module State Changed

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_SM_STATE_CHANGED 0x4000 Dev New State

Description:

A hand control module was attached to or detached from the device.

Parameter:

The parameter value will be one of:

SA_CTL_EVENT_PARAM_ATTACHED (0x00000001),

SA_CTL_EVENT_PARAM_DETACHED (0x00000000)

237MCS2 Programmer’s Guide

5 EVENT REFERENCE

5.2.18 Emergency Stop Triggered

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_EMERGENCY_STOP_TRIGGERED 0x8030 Dev N/A

Description:

This event notifies that an emergency stop condition has been detected. See section 2.17.2 "Emer-

gency Stop Mode" for more information.

5.2.19 External Input Triggered

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_EXT_INPUT_TRIGGERED 0x8040 Dev Input Index

Description:

This event notifies that an falling or rising edge was detected on the external trigger input. See

section 2.17.5 "Event Trigger Mode" for more information.

Parameter:

The parameter holds the index of the input trigger (currently always 0).

5.2.20 Request Ready

Definition

C Definition Code Index 63-32

SA_CTL_EVENT_REQUEST_READY 0xf000 Any Property Key

31-24 23-16 15-8 7-0

Size Data Type Rq. Type Rq. ID

238MCS2 Programmer’s Guide

5 EVENT REFERENCE

Description:

The request ready event is generated by the API when the result of an asynchronous request

is received. The event is also generated in case of a request timeout or any other error. After

the event has been received the result of the asynchronous operation can be retrieved using the

SA_CTL_ReadProperty_x, SA_CTL_WaitForWrite functions. By waiting for this event, it is

guaranteed that these functions won’t block and return a result immediately. This event is not

generated if the retrieve function for this request has already been called.

This event needs to be enabled using the Event Notification Options property.

Parameter:

The parameters store information needed to retrieve the result of the asynchronous request. The

index parameter is same index as passed to the request function. Depending on the property key

this is either a device, module or channel index.

• Rq. ID The request ID is identical to the one returned by the asynchronous request function

and can be used to associate this event with open requests.

• Rq. Type The request type allows to differentiate between read and write requests. Possible

values are SA_CTL_EVENT_REQ_READY_TYPE_READ (0x00) or

SA_CTL_EVENT_REQ_READY_TYPE_WRITE (0x01)

• Data Type Indicates the type of the requested property. This information is needed to

call the correct SA_CTL_ReadProperty_x function. If the property read failed, the data

type is unknown and has a value of SA_CTL_DTYPE_NONE (0xff). In this case any of the

SA_CTL_ReadProperty_x functions can be used to retrieve the error code.

• Size The array size stores the size of the received value. For integer properties this is the

number of elements and for string properties the number of characters. Note that for strings

the required buffer size is one byte larger because of the null terminator. This field is only

set for successful property read requests.

• Property Key Key of the requested property.

Parameters can be extracted using the following macros:

SA_CTL_EVENT_REQ_READY_ID(),

SA_CTL_EVENT_REQ_READY_TYPE(),

SA_CTL_EVENT_REQ_READY_DATA_TYPE(),

SA_CTL_EVENT_REQ_READY_ARRAY_SIZE(),

SA_CTL_EVENT_REQ_READY_PROPERTY_KEY()

5.2.21 Connection Lost

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_CONNECTION_LOST 0xf001 N/A N/A

239MCS2 Programmer’s Guide

5 EVENT REFERENCE

Description:

The connection to the device has been lost. All functions requiring communication with the de-

vice will fail with SA_CTL_ERROR_COMMUNICATION_FAILED. After receiving this event the device

should be closed using SA_CTL_Close.

240MCS2 Programmer’s Guide

6 ASCII INTERFACE

As an alternative to control the MCS2 using the SmarActCTL library, the device also supports con-

trol using an ASCII protocol. To simplify the entry and overall operation this protocol is (with some

exceptions) strongly orientated towards the well established SCPI 1 standard.

NOTICE
The ASCII Interface is only available for devices with an ethernet port. For general

information on how to configure the ethernet interface please refer to the MCS2

User Manual document.

6.1 Connection Setup

A connection to the device can be established via raw TCP/IP or by using a telnet client. The settings

needed to access the ASCII Interface include:

• the current IP address (default is 192.168.1.200).

• the fixed port number 55551.

One way to connect and communicate with the device through the ASCII Interface is by using a

telnet client. In the following steps we will use the multipurpose client PuTTY2 to read the serial

number of an attached MCS2 controller.

1. Download and start PuTTY (www.putty.org)

2. In the tree view to the left select the session category

3. Select telnet as connection type (see figure 6.1a)

4. Fill in the device’s IP address and the correct port (55551)

5. Name and save the session options (optional)

6. A click on open will start the session (see figure 6.1b)

7. You are now ready to communicate with the device

(e.g. to query the serial number).

1Standard Commands for Programmable Instruments (www.ivifoundation.org/scpi)
2Open source SSH and telnet client PuTTY (www.putty.org)

241MCS2 Programmer’s Guide

www.putty.org
www.ivifoundation.org/scpi
www.putty.org

6 ASCII INTERFACE

(a) PuTTY Configuration Window

(b) PuTTY Terminal Window

Figure 6.1: Communicating with the MCS2 using PuTTY

6.1.1 Note On Message Termination

When communicating with the device via raw TCP/IP make sure to use the correct message ter-

mination for commands sent to and answers received from the device. The message termination

characters used by the MCS2 are <CR><LF> (carriage return + line feed).

6.2 SCPI Basics

Initially developed due to the need of a common interface language between computers and in-

struments, SCPI is nowadays a well established open standard to communicate with all kinds of

devices. Due to it’s easy to learn and mostly self-explanatory ASCII syntax it is usable with any

computer language or application environment.

The following sections will give an overview on how to get started using SCPI with the MCS2. More

information on the SCPI specification can be found on the IVI Foundation websites 3.

6.2.1 SCPI Conformance Information

Although being strongly orientated towards the SCPI standard (especially concerning the com-

mand syntax rules) we do not claim to be fully conform. Due to its rich set of functions and

flexibility, the MCS2 does not fit in a predefined instrument class, but uses the well defined SCPI

syntax and communication mechanisms for a convenient operation experience.

3www.ivifoundation.org/specifications/

242MCS2 Programmer’s Guide

www.ivifoundation.org/specifications/

6 ASCII INTERFACE

6.2.2 Command Structure

SCPI differentiates between common and instrument commands. Common commands always

start with an asterisk (*) and only consist of one keyword.

Common Command *IDN?

The behavior of these commands is mostly predefined by the standard and incorporates some

general mechanisms like issuing a reset or reading global status bytes. Section 6.6.1 holds a table

describing the common commands supported by the MCS2.

To access all the different properties and functions the MCS2 provides, instrument commands

are used. These commands are device-dependent and follow a hierarchical tree system approach.

Associated properties are therefore grouped into different subsystems (branches) creating a com-

mand tree like the one below.

[:PROPerty] // "root"

:DEVice // "branch"

:SNUMber // "leaf"

:STATe // "leaf"

:CHANnel# // "branch"

:VELocity // "leaf"

As an example we now want to read the device’s serial number. The assembling of a command

always starts at the root of the tree. To obtain the value of a particular leaf the full path to it

must be specified. This is achieved by traversing the command tree from root (:PROPerty) to

leaf (:SNUMber) and concatenate the different keywords on the way from left to right. As result

we get the full command string:

Instrument Command :PROPerty:DEVice:SNUMber?

Each command has both a long and a short form. Only the exact long or the exact short form

will be accepted with lower- and uppercase letters being ignored (case-insensitive).

The following commands would all be accepted by the MCS2.

Long Form (mixed case) :PROPerty:DEVice:SNUMber?

Long Form (all lower-case) :property:device:snumber?

Short Form (all upper-case) :PROP:DEV:SNUM?

Short Form (all lower-case) :prop:dev:snum?

...

NOTICE
To keep track of long and short command forms, all of the following examples

will use upper case letters for short commands and lower case letters for the

remaining part of the corresponding long form.

A setup containing an MCS2 normally holds a variable number of channels and/or modules. To

address a particular module or channel, the corresponding index has to be added when as-

sembling the command. In general, if a command tree keyword contains a hash symbol (#) , that

243MCS2 Programmer’s Guide

6 ASCII INTERFACE

symbol must be replaced by the desired module or channel index. Thus a :CHANnel# keyword

becomes :CHANnel2 when addressing the channel with index 2.

Many commands take an additional command parameter (e.g. to set a channel’s velocity). Com-

mand and parameter must be separated by at least one space character. Command parameters

can be of type numeric (int32/64) or type string and must be given according to the base unit (e.g.

pm or n°).

The following command needs the channel’s move velocity as a parameter given in pm
s .

Set velocity for channel 0 to 1mms :PROPerty:CHANnel0:VELocity 1000000000

For properties that are (also) readable, the query form of a command is generated by appending

a question mark (?) to the command. However, not all commands have a query form, and some

commands exist only in query form, see subsection 6.2.4 (Queries).

Query velocity for Channel 0 :PROPerty:CHANnel0:VELocity?

Response (in pm
s) 1000000000

6.2.3 Traversing the Command Tree

As stated in the previous section 6.2.2 (Command Structure) commands are created by concate-

nating keywords along the command tree. This section is intended to explain some more rules

and possibilities on how to create proper commands.

• When assembling commands, colons (:) are used to separate the different keywords.

• Square brackets ([]) enclose a keyword that is optional (default) and may be omitted. Thus

a command tree, starting with the root [:PROPerty] may lead to the following commands:

– :PROPerty:DEVice:SNUMber?

– :DEVice:SNUMber?

• Multiple commands may be sent in one message to the device (compound command).

The first command must always be referenced to the root node (e.g. :CHANnel0). Subsequent

commands however, are referenced to the same tree level as the previous command in amessage.

These commands have to be separated by a semicolon (;) to the previous command.

Set channel 0 move mode :CHANnel0:MMODe 1

Set channel 0 velocity :CHANnel0:VELocity 10000

Set channel 0 acceleration :CHANnel0:ACCeleration 0

Set all in one message :CHANnel0:MMODe 1;VELocity 10000;ACCeleration 0

Set channel 0 positioner type :CHANnel0:PTYPe 300

Note that sending a compound command message to the device may complicate error handling

if one of the containing commands fails. It is therefore recommended to send each command as

a single message to ensure a deterministic and stable program sequence.

244MCS2 Programmer’s Guide

6 ASCII INTERFACE

6.2.4 Queries

To read the value of a specific device, module or channel property a query command has to be

sent to the MCS2. Queries are generated by traversing the command tree and appending the final

command with a question mark (?). When the device receives a valid query form of a command, a

response is generated containing the current setting or value associated with the property.

Further note that

• query responses do not include the command header but only the requested value.

• for numeric properties, the result is returned as an int32/64 type (see Property Summary).

• for string properties, the result is returned as string.

• responses to compound query messages are separated by a semicolon (;).
Single query :CHANnel0:PTYPe?

Response 300

Single query :CHANnel0:MMODe?

Response 2

Compound Query :CHANnel0:PTYPe?;MMODe?

Response 300; 2

To check whether a property is readable, writable or both, see section 6.6.3 (Property Command

Tree).

6.3 Basic Programming Examples

This section shows a few examples how communication with the device might look using the short

command forms and omitting the optional (default) :PROPerty command tree keyword. For

more info on long and short command forms, see 6.2.2 (Command Structure). Note that com-

mands are only executed after the device receives the <NL> character, see 6.1.1 (Note OnMessage

Termination).

6.3.1 Get Property

// get number of bus modules from device

>> :DEV:NOMO?

// response

<< 1

245MCS2 Programmer’s Guide

6 ASCII INTERFACE

6.3.2 Set Property

// set move mode to open-loop step mode (4) for channel 0

>> :CHAN0:MMOD 4

6.3.3 Calibrate

// set calibration mode for channel 0 (start direction: forward)

>> :CHAN0:CAL:OPT 0

// start calibration sequence

>> :CAL0

6.3.4 Reference

// set find reference mode for channel 0 (default is 0)

>> :CHAN0:REF:OPT 0

// start referencing sequence

>> :REF0

6.3.5 Move

// set move mode to closed-loop relative (1) for channel 0

>> :CHAN0:MMOD 1

// set move velocity [in pm/s]

>> :CHAN0:VEL 500000000

// disable acceleration control

>> :CHAN0:ACC 0

// start actual movement, value is interpreted as

// relative position (in pm)

>> :MOVE0 500000000

6.3.6 Stop

// send stop command to channel 0

>> :STOP0

246MCS2 Programmer’s Guide

6 ASCII INTERFACE

6.3.7 Movement State

// get current state for channel 0

>> :CHAN0:STAT?

// response holds the state bitmask as int32 value

<< 37

// decoding the value leads us to the following active state bits

// - channel 0 is actively moving (bit 0 is set)

// - channel 0 is calibrating (bit 2 is set)

// - channel 0 has a sensor present (bit 5 is set)

6.3.8 Error Handling

To access information on errors due to either incorrect assembling of command messages or

general handling with the device, the ASCII Interface holds a user accessible error queue.

This queue is implemented as FIFO4 and can be accessed by the :SYSTem:ERRor subsystem.

Errors that occur during run-time can therefore be detected by executing the following queries.

:SYSTem:ERRor:COUNt? Returns the number of errors the queue contains

:SYSTem:ERRor[:NEXT]? Returns the NEXT error and removes it from the queue

(will return 0, "No Error" if empty)

Error codes returned are divided in

• a No Error Code which is equal to zero.

• SCPI error codes which are less than zero, see 6.4.

• and SmarActControl error codes which are greater than zero, see A.1.

A program sequence with error checking might look like the following:

// try to get current state for channel 0

>> :CHAN0:STAT?!

// due to an invalid character in this command (!), there is no response

// by checking the error count

>> :SYST:ERR:COUN?

// we see that there is one error inside the error queue

<< 1

// to get more information we retrieve this error

>> :SYST:ERR:NEXT?

// and get the following response

<< -101,"Invalid character"

4First error In will be the First error Out

247MCS2 Programmer’s Guide

6 ASCII INTERFACE

NOTICE
Note that when working with the error queue, it might already hold errors gener-

ated by previous commands. An incorrect command can even result in multiple

errors being added to the queue. It is therefore good practice to query all possi-

ble errors before sending the next command.

248MCS2 Programmer’s Guide

6 ASCII INTERFACE

6.4 Using Command Groups

Command groups offer the possibility to define an atomic group of commands that is executed

synchronously. In addition, a command group may not only be triggered via software, but alter-

natively via an external trigger. For more general information on Command Groups please refer

to section 2.14.

This section describes how to take advantage of Command Groups when using the ASCII interface.

6.4.1 Command Set

The following commands and queries are used to control a Command Group.

:CGRoup:OPEN <triggerMode> Opens a Command Group using the given trigger mode.

:CGRoup:CLOSe Closes a previously opened Command Group.

:CGRoup:ABORt Aborts a previously opened Command Group.

:CGRoup:FINished? Indicates whether the Command Group is finished.

:CGRoup:VALues? Requests the values that were queried inside a Command Group.

Note that, when using the ASCII interface, the number of concurrently active Command Groups is

limited to one. Figure 6.2 show the general process for either writing or readingmultiple properties

using a Command Group.

Open Command Group

with desired Trigger Mode

>> :CGR:OPEN <trigger mode>

Append Commands

>> :CHAN0:MMOD 1

>> :MOVE0 1000000

>> :CHAN1:MMOD 1

>> :MOVE1 2000000

Close Command Group

>> :CGR:CLOS

Wait For Finished Flag

>> :CGR:FIN?

<< 1

Query Value(s)

>> :CGR:VAL?

<< 1000000; 2000000

Done

Append Queries

>> :CHAN0:POS?

>> :CHAN1:POS?

Close Command Group

>> :CGR:CLOS

Wait For Finished Flag

>> :CGR:FIN?

<< 1

Figure 6.2: Command Group procedure(s)

249MCS2 Programmer’s Guide

6 ASCII INTERFACE

The CGR:OPEN command is used to activate a Command Group using the given trigger mode.

All of the following commands and queries will be appended to this Command Group. Note that

properties missing the Groupable flag will lead to an error when put into a Command Group. Send-

ing the CGR:CLOS command either starts the Command Group’s execution immediately (trigger

mode direct) or defers the execution until an external event occurs (trigger mode external).

The CGR:FIN query is used to check if execution of all grouped commands has been started or if

the requested values are available.

For finished Command Groups that contained at least one query, the CGR:VAL query is used to

read the resulting values from the device.

6.4.2 Examples

This section contains some examples to further demonstrate the different use cases of Command

Groups.

Synchronized movement using direct trigger

The following sequence uses a Command Group to synchronize the Closed-Loop movement of

two channels. By using the Direct Trigger mode, the commands execution starts right after closing

the Command Group.

// open command group in direct trigger mode (0)

// (every following command is not executed but put into the group)

>> :CGR:OPEN 0

// set move modes of channel 0 and 1 to closed-loop relative (1)

>> :CHAN0:MMOD 1

>> :CHAN1:MMOD 1

// move channel 0 to +1mm

>> :MOVE0 1000000000

// move channel 1 to +0.5mm

>> :MOVE1 500000000

// close command group

// (execution of grouped commands starts now)

>> :CGR:CLOS

// the command group’s finished value signalizes

// that the command group has been processed

>> :CGR:FIN?

<< 1

Synchronized position query using direct trigger

The following sequence uses a Command Group to synchronize the position sampling of two chan-

nels. By using the Direct Trigger mode, the queries’ execution starts right after closing the Com-

mand Group.

250MCS2 Programmer’s Guide

6 ASCII INTERFACE

// open command group in direct trigger mode (0)

// (every following query is not executed but put into the group)

>> :CGR:OPEN 0

// query positions of channel 0 and 1

>> :CHAN0:POS?

>> :CHAN1:POS?

// close command group

// (execution of grouped commands starts now)

>> :CGR:CLOS

// the command group’s finished value signalizes

// that the command group has been processed

>> :CGR:FIN?

<< 1

// we can now query the resulting value(s)

>> :CGR:VAL?

<< 1000000000; 500000000

Synchronized movement using external trigger

The following sequence uses a Command Group to synchronize the Closed-Loop movement of

two channels. By using the External Trigger mode, the commands execution is deferred until the

external event occurs. Note that the Input Trigger has to be configured accordingly in advance.

See section 2.17 for more information.

// open command group in external trigger mode (1)

// (every following command is not executed but put into the group)

>> :CGR:OPEN 1

// set move modes of channel 0 and 1 to closed-loop relative (1)

>> :CHAN0:MMOD 1

>> :CHAN1:MMOD 1

// move channel 0 to +1mm

>> :MOVE0 1000000000

// move channel 1 to +0.5mm

>> :MOVE1 500000000

// close command group

// (execution of grouped commands is deferred)

>> :CGR:CLOS

// the command group’s finished value signalizes

// that the command group has NOT been processed yet

>> :CGR:FIN?

<< 0

// ...

// process some other commands/queries

// ...

-> external event occurs

// the command group’s finished value signalizes

// that the command group has now been processed

>> :CGR:FIN?

<< 1

251MCS2 Programmer’s Guide

6 ASCII INTERFACE

6.5 Streaming Trajectories

Trajectory streaming allows a multi DoF manipulator to follow specific trajectories using the MCS2

controller. All participating positioners are moved synchronously along the defined trajectory. For

more general information on Streaming please refer to 2.15.

This section describes how to take advantage of Trajectory Streaming when using the ASCII inter-

face.

6.5.1 Command Set

The following commands and queries are used to control a trajectory stream.

:STReam:OPEN <triggerMode> Opens a stream using the given trigger mode.

:STReam:BFREe? Returns the number of free buffer slots.

:STReam:FRAMe <frameData> Transmits the desired frame.

:STReam:CLOSe Closes a running stream.

:STReam:ABORt Aborts a running stream.

Before starting a stream make sure to configure the properties below as desired:

Stream Base Rate Configures the stream base rate in Hz, see 197.

Stream Sync Rate Configures the external synchronization rate in Hz, see 198.

Stream Options Configures the stream behavior, see 199.

NOTICE
When using the ASCII interface, the maximum reachable streaming frequency is

reduced, depending on the number of involved channels and the programming

sequence.

To prevent buffer under-/overruns, make sure to always supply enough stream

frames according to the remaining free buffer slots.

252MCS2 Programmer’s Guide

6 ASCII INTERFACE

Figure 6.3 shows the general procedure for a complete streaming sequence.

Open Stream

with desired Trigger Mode

>> :STR:OPEN <triggerMode>

Check the number of free

bu�er slots

>> :STR:BFRE?

<< "number of free slots"

Send frames to device

>> :STR:FRAM <frame 0>

>> :STR:FRAM <frame 1>

>> :STR:FRAM <frame 2>

>> ...

Done

Close Stream

>> :STR:CLOS

All frames

transferred?

Yes

No

Figure 6.3: Streaming sequence

The STR:OPEN command is used to open a stream using the given trigger mode.

By reading the number of available buffer slots using the STR:BFRE query, the number of frames

that can currently be transferred to the device can be calculated. The number of free buffer slots

is given in positions, thus a stream containing two channels would take up two buffer slots. Using

the STR:FRAM command, the device is now provided with the desired positions for each chan-

nel. A frame is assembled using a channel index following the corresponding absolute position,

separated by comma. This mechanism is used until all frames have been sent to the device.

The STR:CLOS command is used to close the stream.

6.5.2 Example

The following example configures and sends a stream to the device containing positions for chan-

nel 0 and 1.

// configure the streaming base rate to 100Hz

>> :DEV:STR:BAS 100

// configure the streaming options to default (0)

>> :DEV:STR:OPT 0

253MCS2 Programmer’s Guide

6 ASCII INTERFACE

// open stream in direct trigger mode (0)

>> :STR:OPEN 0

// check the current buffer level

>> :STR:BFRE?

<< 1024

// We have 1024 position buffer slots available.

// (This effectively results in 1024/numberOfChannels=512 frame slots)

// Now we transmit our frames containing positions for channel 0 and 1.

>> STR:FRAM 0,1000000,1,100000

>> STR:FRAM 0,2000000,1,150000

>> STR:FRAM 0,3000000,1,200000

>> ...

// Streaming starts as soon as enough data has been received by the

// device. Repeat this process until all desired frames have been

// sent to the device.

// If all frames have been transferred, close the stream.

>> :STR:CLOS

// The remaining frames are processed until the stream is completed.

6.6 Command Summary

Section 6.6.1 contains an overview of the supported set of SCPI common commands and their

behavior in context of the MCS2. The following tables in section 6.2 and 6.3 show the command

hierarchy as well as the necessary information to assemble all instrument commands available

through the ASCII Interface.

6.6.1 Common Commands

In general, the ASCII Interface supports all mandatory common commands required by the SCPI

standard. Nevertheless most of them are not needed for controlling the device. Table 6.1 shows

an overview of the implemented common commands and their utilization.

Table 6.1 – Common Commands

Mnemonic Name Description

*CLS Clear Status Command This command clears all status data

structures.

*ESE Standard Event Status Enable Command This command has no effect.

*ESE? Standard Event Status Enable Query This command has no effect.

*ESR Standard Event Status Register Query This command has no effect.

*IDN? Identification Query This command returns information

about the device such as

manufacturer and serial number.

Continued on next page

254MCS2 Programmer’s Guide

6 ASCII INTERFACE

Table 6.1 – Continued from previous page

Mnemonic Name Description

*OPC Operation Complete Command This command has no effect.

*OPC? Operation Complete Query This command has no effect (will

always return 1).

*RST Reset Command Resets the device (reconnect

necessary!).

*SRE Service Request Enable Command This command has no effect.

*SRE? Service Request Enable Query This command has no effect.

*STB? Read Status Byte Query Returns the status byte.

*TST? Self-Test Query This command has no effect (will

always return 0).

*WAI Wait-to-Continue Command This command has no effect.

6.6.2 Movement Commands

Table 6.2 shows the commands that generate or stop movement. For detailed information on a

movement command please follow the corresponding page to the Function Reference chapter.

Table 6.2 –Movement Summary

SCPI Command Tree Type Idx Access Page

:MOVE# I64 Ch W 122

:STOP# - Ch W 124

:CALibrate# - Ch W 118

:REFerence# - Ch W 120

6.6.3 Property Command Tree

Table 6.3 shows the command hierarchy to access all the properties available for a proper device

configuration. For detailed information on a property please follow the corresponding page to the

Property Reference chapter.

Table 6.3 – Property Summary

SCPI Command Tree Type Idx Access Property Page

[:PROPerty]

:DEVice

:NOCHannels I32 Dev R Number of Channels 137

Continued on next page

255MCS2 Programmer’s Guide

6 ASCII INTERFACE

Table 6.3 – Continued from previous page

SCPI Command Tree Type Idx Access Property Page

:NOBModules I32 Dev R Number of Bus Modules 137

:STATe I32 Dev R Device State 138

:SNUMber String Dev R Device Serial Number 139

:NAME String Dev R Device Name 140

:ESTop

:MODE I32 Dev RW Emergency Stop Mode 141

:NETWork

:DISCover

:MODE I32 Dev RW Network Discover Mode 142

:STReaming

:BASerate I32 Dev RW Stream Base Rate 197

:SYNCrate I32 Dev RW Stream External Sync Rate 198

:OPTions I32 Dev RW Stream Options 199

:HMODule

:LOPTions

[:CURRent] I32 Dev RW Hand Control Module Lock Options 224

:DEFault I32 Dev RW Hand Control Module Default Lock Options 226

:TRIGger

:INPut

:MODE I32 Dev RW Device Input Trigger Mode 215

:CONDition I32 Dev RW Device Input Trigger Condition 216

:MODule#

:PSUPply

[:ENABled] I32 Mod RW Power Supply Enabled 143

:STATe I32 Mod R Module State 144

:NOMChannels I32 Mod R Number of Bus Module Channels 145

:TEMPerature I32 Mod R Bus Module Temperature 202

:IOModule

:OPTions I32 Mod RW I/O Module Options 211

:VOLTage I32 Mod RW I/O Module Voltage 213

:AINPut

:RANGe I32 Mod RW I/O Module Analog Input Range 213

:AUXiliary

Continued on next page

256MCS2 Programmer’s Guide

6 ASCII INTERFACE

Table 6.3 – Continued from previous page

SCPI Command Tree Type Idx Access Property Page

:DINPut

[:VALue] I32 Mod R Aux Digital Input Value 208

:DOUTput

[:VALue] I32 Mod RW Aux Digital Output Value / Set / Clear 209

:SET I32 Mod RW Aux Digital Output Value / Set / Clear 209

:CLEar I32 Mod RW Aux Digital Output Value / Set / Clear 209

:AOUTput

[:VALue]# I32 Mod RW Aux Analog Output Value0 / Value1 210

:CHANnel#

:AMPLifier

[:ENABled] I32 Ch RW Amplifier Enabled 145

:PCONtrol

:OPTions I32 Ch RW Positioner Control Options 146

:ACTuator

:MODE I32 Ch RW Actuator Mode 147

:CLINput

[:SELect] I32 Ch RW Control Loop Input 149

:SENSor

:SELect I32 Ch RW Sensor Input Select 150

[:VALue] I64 Ch R Control Loop Input Sensor Value 170

:AUXiliary

[:VALue] I64 Ch R Control Loop Input Aux Value 171

:PTYPe

[:CODE] I32 Ch RW Positioner Type 151

:NAME String Ch R Positioner Type Name 152

:MMODe I32 Ch RW Move Mode 152

:STATe I32 Ch R Channel State 154

:POSition

[:CURRent] I64 Ch RW Position 155

:TARGet I64 Ch R Target Position 156

:SCAN I64 Ch R Scan Position 156

:MSHift I32 Ch RW Position Mean Shift 168

:SCAN

Continued on next page

257MCS2 Programmer’s Guide

6 ASCII INTERFACE

Table 6.3 – Continued from previous page

SCPI Command Tree Type Idx Access Property Page

:VELocity I64 Ch RW Scan Velocity 157

:HOLDtime I32 Ch RW Hold Time 158

:VELocity I64 Ch RW Move Velocity 159

:ACCeleration I64 Ch RW Move Acceleration 160

:MCLFrequency

[:CURRent] I32 Ch RW Max Closed Loop Frequency 161

:DEFault I32 Ch RW Default Max Closed Loop Frequency 162

:STEP

:FREQuency I32 Ch RW Step Frequency 163

:AMPLitude I32 Ch RW Step Amplitude 163

:FELimit I64 Ch RW Following Error Limit 164

:BSTop

:OPtions I32 Ch RW Broadcast Stop Options 165

:SENSor

:PMODe I32 Ch RW Sensor Power Mode 166

:PSDelay I32 Ch RW Sensor Power Save Delay 167

:SDIRection I32 Ch RW Safe Direction 169

:LSCale

:OFFset I64 Ch RW Logical Scale Offset 173

:INVersion I32 Ch RW Logical Scale Inversion 174

:RLIMit

:MIN I64 Ch RW Range Limit Min 175

:MAX I64 Ch RW Range Limit Max 175

:CALibration

:OPTions I32 Ch RW Calibration Options 176

:SCORrection

:OPTions I32 Ch RW Signal Correction Options 177

:REFerencing

:OPTions I32 Ch RW Referencing Options 179

:DTRMark I32 Ch RW Distance To Reference Mark 180

:DCINverted I32 Ch RW Distance Code Inverted 180

:ERRor I32 Ch R Channel Error 200

Continued on next page

258MCS2 Programmer’s Guide

6 ASCII INTERFACE

Table 6.3 – Continued from previous page

SCPI Command Tree Type Idx Access Property Page

:TEMPerature I32 Ch R Channel Temperature 201

:TTZVoltage

:THReshold I32 Ch RW Target To Zero Voltage Hold Threshold 172

:AUXiliary

:PTYPe I32 Ch RW Aux Positioner Type 203

:PTName String Ch R Aux Positioner Type Name 204

:ISELect I32 Ch RW Aux Input Select 204

:IOModule

:INPut

:INDex I32 Ch RW Aux I/O Module Input Index 205

[:VALue]# I32 Ch R Aux I/O Module Input0 / Input1 Value 208

:DINVersion I32 Ch RW Aux Direction Inversion 207

:TRIGger

:OUTPut

:MODE I32 Ch RW Channel Output Trigger Mode 217

:POLarity I32 Ch RW Channel Output Trigger Polarity 218

:PWidth I32 Ch RW Channel Output Trigger Pulse Width 219

:PCOMpare

:THReshold

[:STARt] I32 Ch RW Channel Position Compare Start Threshold 220

:INCRement I32 Ch RW Channel Position Compare Increment 221

:DIRection I32 Ch RW Channel Position Compare Direction 221

:LMIN I64 Ch RW Channel Position Compare Limit Min 222

:LMAX I64 Ch RW Channel Position Compare Limit Max 223

:TUNing

:MTYPe I32 Ch R(W) Positioner Movement Type 181

:CUSTom I32 Ch R(W) Positioner Is Custom Type 182

:BASE

:UNIT I32 Ch R(W) Positioner Base Unit 183

:RESolution I32 Ch R(W) Positioner Base Resolution 184

:HTYPe I32 Ch R(W) Positioner Sensor Head Type 185

:RTYPe I32 Ch R(W) Positioner Reference Type 186

Continued on next page

259MCS2 Programmer’s Guide

6 ASCII INTERFACE

Table 6.3 – Continued from previous page

SCPI Command Tree Type Idx Access Property Page

:GAIN

:P I32 Ch R(W) Positioner P Gain 187

:I I32 Ch R(W) Positioner I Gain 188

:D I32 Ch R(W) Positioner D Gain 189

:SHIFt I32 Ch R(W) Positioner PID Shift 190

:AWINdup I32 Ch R(W) Positioner Anti Windup 191

:SAVE I32 Ch W Save Positioner Type 196

:WPRotection I32 Ch RW Positioner Write Protection 196

:ESDetection

:DISTance I32 Ch R(W) Positioner ESD Distance Threshold 192

:COUNter I32 Ch R(W) Positioner ESD Counter Threshold 193

:THReshold

:TREached I32 Ch R(W) Positioner Target Reached Threshold 194

:THOLd I32 Ch R(W) Positioner Target Hold Threshold 195

6.7 SCPI Error Codes

Table 6.4 – SCPI Error Codes

Code Definition / Description

0 SCPI_ERROR_NO_ERROR

No error occurred. Corresponds to an acknowledge.

-101 SCPI_ERROR_INVALID_CHARACTER

The command message contained an invalid character.

-103 SCPI_ERROR_INVALID_SEPARATOR

The command message contained an invalid separator.

-104 SCPI_ERROR_DATA_TYPE_ERROR

The command message contained an illegal data type.

-108 SCPI_ERROR_PARAMETER_NOT_ALLOWED

The command message contained illegal parameter.

-109 SCPI_ERROR_MISSING_PARAMETER

The command message is missing a parameter.

-113 SCPI_ERROR_UNDEFINED_HEADER

The command message does not exist for this device.

Continued on next page

260MCS2 Programmer’s Guide

6 ASCII INTERFACE

Table 6.4 – Continued from previous page

Code Definition / Description

-151 SCPI_ERROR_INVALID_STRING_DATA

The given string data is invalid.

-350 SCPI_ERROR_QUEUE_OVERFLOW

An internal error queue overflow occurred.

-363 SCPI_ERROR_INPUT_BUFFER_OVERRUN

An input buffer overrun occurred.

261MCS2 Programmer’s Guide

A CODE DEFINITION REFERENCE

A.1 Error Codes

Table A.1 – Error Codes

Code C-Definition / Description

0x0000 SA_CTL_ERROR_NONE

No error occurred. Corresponds to an acknowledge.

0x0001 SA_CTL_ERROR_UNKNOWN_COMMAND

An unknown command opcode was received and the packet was dropped.

0x0002 SA_CTL_ERROR_INVALID_PACKET_SIZE

Indicates that the size field of a packet does not match the packet structure.

0x0004 SA_CTL_ERROR_TIMEOUT

A timeout occurred while receiving a complete packet.

0x0005 SA_CTL_ERROR_INVALID_PROTOCOL

A packet was received that does not comply to a supported protocol.

0x000c SA_CTL_ERROR_BUFFER_UNDERFLOW

The targeted buffer is empty.

0x000d SA_CTL_ERROR_BUFFER_OVERFLOW

The targeted buffer is filled and has no more space for further data.

0x000e SA_CTL_ERROR_INVALID_FRAME_SIZE

The frame size of the packet is invalid.

0x0010 SA_CTL_ERROR_INVALID_PACKET

A packet with an inconsistent structure was received.

0x0012 SA_CTL_ERROR_INVALID_KEY

The given property key could not be resolved.

0x0013 SA_CTL_ERROR_INVALID_PARAMETER

The passed parameter is not in the valid range.

0x0016 SA_CTL_ERROR_INVALID_DATA_TYPE

Indicates that the data type of a parameter is invalid.

0x0017 SA_CTL_ERROR_INVALID_DATA

The command could not be processed due to invalid data. (E.g. a calibration routine

finished but could not generate valid data.)

Continued on next page

262MCS2 Programmer’s Guide

A CODE DEFINITION REFERENCE

Table A.1 – Continued from previous page

Code C-Definition / Description

0x0018 SA_CTL_ERROR_HANDLE_LIMIT_REACHED

The command could not be processed because all available handles are currently in

use.

0x0019 SA_CTL_ERROR_ABORTED

The command has been aborted.

0x0020 SA_CTL_ERROR_INVALID_DEVICE_INDEX

An invalid device index has been passed.

0x0021 SA_CTL_ERROR_INVALID_MODULE_INDEX

An invalid module index has been passed.

0x0022 SA_CTL_ERROR_INVALID_CHANNEL_INDEX

An invalid channel index has been passed.

0x0023 SA_CTL_ERROR_PERMISSION_DENIED

The request cannot be processed due to an access violation.

0x0024 SA_CTL_ERROR_COMMAND_NOT_GROUPABLE

The given command cannot be part of a command group.

0x0025 SA_CTL_ERROR_MOVEMENT_LOCKED

The given command cannot be processed due to movements being locked.

0x0026 SA_CTL_ERROR_SYNC_FAILED

A synchronization requirement could not be met. (E.g. the trajectory streaming was

aborted due to a stream overload.)

0x0027 SA_CTL_ERROR_INVALID_ARRAY_SIZE

The number of array elements is invalid for a given write array property command.

0x0028 SA_CTL_ERROR_OVERRANGE

An over-range condition occurred.

0x0029 SA_CTL_ERROR_INVALID_CONFIGURATION

The operation could not be started due to an invalid configuration of the component.

(E.g. some other properties are not configured properly for the configured operation

mode.)

0x0100 SA_CTL_ERROR_NO_HM_PRESENT

The command could not be processed because no Hand-Control-Module is present.

0x0101 SA_CTL_ERROR_NO_IOM_PRESENT

The command could not be processed because no I/O-Module is present.

0x0102 SA_CTL_ERROR_NO_SM_PRESENT

The command could not be processed because no Sensor-Module is present.

0x0103 SA_CTL_ERROR_NO_SENSOR_PRESENT

The command could not be processed because no sensor is present.

0x0104 SA_CTL_ERROR_SENSOR_DISABLED

The command could not be processed because the sensor is disabled.

Continued on next page

263MCS2 Programmer’s Guide

A CODE DEFINITION REFERENCE

Table A.1 – Continued from previous page

Code C-Definition / Description

0x0105 SA_CTL_ERROR_POWER_SUPPLY_DISABLED

The command could not be processed because the power supply is disabled.

0x0106 SA_CTL_ERROR_AMPLIFIER_DISABLED

The command could not be processed because the amplifier is disabled.

0x0107 SA_CTL_ERROR_INVALID_SENSOR_MODE

The command could not be processed with the current sensor mode setting. (E.g.

the power save mode is not allowed while trajectory streaming.)

0x0108 SA_CTL_ERROR_INVALID_ACTUATOR_MODE

The command could not be processed with the current actuator mode setting.

0x0109 SA_CTL_ERROR_INVALID_INPUT_TRIG_MODE

The command could not be processed with the current input trigger mode setting.

0x010a SA_CTL_ERROR_INVALID_CONTROL_OPTIONS

The command could not be processed with the current control options setting.

0x010b SA_CTL_ERROR_INVALID_REFERENCE_TYPE

The command could not be processed with the current reference type of the posi-

tioner.

0x010c SA_CTL_ERROR_INVALID_ADJUSTMENT_STATE

The command could not be processed with the current adjustment state.

0x010e SA_CTL_ERROR_NO_FULL_ACCESS

The command could not be processed because the MCS2 has not full access connec-

tion to a connected Picoscale sensor.

0x010f SA_CTL_ERROR_ADJUSTMENT_FAILED

An adjustment sequence failed.

0x0110 SA_CTL_ERROR_MOVEMENT_OVERRIDDEN

A software commands a movement which is then interrupted by the Hand Control

Module before it finished or vice versa.

0x0111 SA_CTL_ERROR_NOT_CALIBRATED

The command could not be processed because the channel is not calibrated.

0x0112 SA_CTL_ERROR_NOT_REFERENCED

The command could not be processed because the channel is not referenced.

0x0113 SA_CTL_ERROR_NOT_ADJUSTED

The command could not be processed because the channel is not adjusted.

0x0114 SA_CTL_ERROR_SENSOR_TYPE_NOT_SUPPORTED

The command could not be processed because the sensor type of the configured

positioner is not supported from the hardware (e.g. from the sensor module).

0x0115 SA_CTL_ERROR_CONTROL_LOOP_INPUT_DISABLED

The command could not be processed because the control-loop input is disabled.

(See Control Loop Input property.)

Continued on next page

264MCS2 Programmer’s Guide

A CODE DEFINITION REFERENCE

Table A.1 – Continued from previous page

Code C-Definition / Description

0x0116 SA_CTL_ERROR_INVALID_CONTROL_LOOP_INPUT

The command could not be processed because the control-loop input is invalid for

the command. (E.g. the calibration and referencing movements cannot be started

when the control-loop input is configured to ‘aux in‘.)

0x0117 SA_CTL_ERROR_UNEXPECTED_SENSOR_DATA

The calibration routine could not be processed due to unexpected data from the

position sensor.

0x0150 SA_CTL_ERROR_BUSY_MOVING

The command could not be processed because the channel is currently busy per-

forming a movement command. (E.g. disabling the velocity control while moving is

not permitted.)

0x0151 SA_CTL_ERROR_BUSY_CALIBRATING

The command could not be processed because the channel is currently busy per-

forming a calibration sequence.

0x0152 SA_CTL_ERROR_BUSY_REFERENCING

The command could not be processed because the channel is currently busy per-

forming a referencing sequence.

0x0153 SA_CTL_ERROR_BUSY_ADJUSTING

The command could not be processed because the channel is currently busy per-

forming an adjustment sequence.

0x0200 SA_CTL_ERROR_END_STOP_REACHED

An endstop was detected.

0x0201 SA_CTL_ERROR_FOLLOWING_ERR_LIMIT

The following error exceeded the configured limit.

0x0202 SA_CTL_ERROR_RANGE_LIMIT_REACHED

A configured position limit was hit.

0x0300 SA_CTL_ERROR_INVALID_STREAM_HANDLE

The given stream handle is invalid.

0x0301 SA_CTL_ERROR_INVALID_STREAM_CONFIGURATION

The configured streaming parameters are not supported by all modules.

0x0302 SA_CTL_ERROR_INSUFFICIENT_FRAMES

This error is generated if the trajectory streaming was started without providing the

minimum amount of frames.

(A trajectory stream must consist of at least two frames.)

0x0303 SA_CTL_ERROR_BUSY_STREAMING

The command could not be processed because the channel is currently participating

in a trajectory stream.

0x0400 SA_CTL_ERROR_HM_INVALID_SLOT_INDEX

An invalid slot index has been passed to the hand control module.

Continued on next page

265MCS2 Programmer’s Guide

A CODE DEFINITION REFERENCE

Table A.1 – Continued from previous page

Code C-Definition / Description

0x0401 SA_CTL_ERROR_HM_INVALID_CHANNEL_INDEX

An invalid channel index has been passed to the hand control module.

0x0402 SA_CTL_ERROR_HM_INVALID_GROUP_INDEX

An invalid group index has been passed to the hand control module.

0x0403 SA_CTL_ERROR_HM_INVALID_CH_GRP_INDEX

An invalid channel group index has been passed to the hand control module.

0x0500 SA_CTL_ERROR_INTERNAL_COMMUNICATION

An internal communication error occurred.

0x7ffd SA_CTL_ERROR_FEATURE_NOT_SUPPORTED

Indicates that a requested feature is not available on the connected device.

0x7ffe SA_CTL_ERROR_FEATURE_NOT_IMPLEMENTED

Indicates that a feature is not yet implemented. The device may have to be update

to a newer version.

0xf000 SA_CTL_ERROR_DEVICE_LIMIT_REACHED

The maximum number of devices has been opened.

0xf001 SA_CTL_ERROR_INVALID_LOCATOR

An invalid locator string has been passed.

0xf002 SA_CTL_ERROR_INITIALIZATION_FAILED

Initialization of the desired device failed.

0xf003 SA_CTL_ERROR_NOT_INITIALIZED

The device has not been initialized yet.

0xf004 SA_CTL_ERROR_COMMUNICATION_FAILED

Communication with the device failed.

0xf006 SA_CTL_ERROR_INVALID_QUERYBUFFER_SIZE

The provided array size does not meet the required size.

0xf007 SA_CTL_ERROR_INVALID_DEVICE_HANDLE

An invalid device handle has been passed.

0xf008 SA_CTL_ERROR_INVALID_TRANSMIT_HANDLE

An invalid transmit handle has been passed.

0xf00f SA_CTL_ERROR_UNEXPECTED_PACKET_RECEIVED

An unexpected packet has been received.

0xf010 SA_CTL_ERROR_CANCELED

The function call has been canceled.

0xf013 SA_CTL_ERROR_DRIVER_FAILED

The device could not be found due to a driver failure.

0xf016 SA_CTL_ERROR_BUFFER_LIMIT_REACHED

The limit of available buffers has been reached.

Continued on next page

266MCS2 Programmer’s Guide

A CODE DEFINITION REFERENCE

Table A.1 – Continued from previous page

Code C-Definition / Description

0xf017 SA_CTL_ERROR_INVALID_PROTOCOL_VERSION

A protocol version mismatch has been detected.

0xf018 SA_CTL_ERROR_DEVICE_RESET_FAILED

The device software reset failed.

0xf019 SA_CTL_ERROR_BUFFER_EMPTY

Action is not allowed with empty buffers (e.g. empty command group buffer).

0xf01a SA_CTL_ERROR_DEVICE_NOT_FOUND

The device specified in the locator could not be found.

0xf01b SA_CTL_ERROR_THREAD_LIMIT_REACHED

The maximum number of simultaneous calls for this function was reached.

267MCS2 Programmer’s Guide

Sales partner / Contacts

Headquarters

SmarAct GmbH

Schuette-Lanz-Strasse 9

26135 Oldenburg

Germany

T: +49 441 – 800 87 90

Email: info-de@smaract.com

www.smaract.com

France

SmarAct GmbH

Schuette-Lanz-Strasse 9

26135 Oldenburg

Germany

T: +49 441 – 80 08 79 956

Email: info-fr@smaract.com

www.smaract.com

Israel

Trico Israel Ltd.

P.O.Box 6172

46150 Herzeliya

Israel

T: +972 9 – 950 60 74

Email: info-il@smaract.com

www.trico.co.il

Japan

Physix Technology Inc.

Ichikawa-Business-Plaza

4-2-5Minami-yawata,

Ichikawa-shi

272-0023 Chiba

Japan

T/F: +81 47 – 370 86 00

Email: info-jp@smaract.com

www.physix-tech.com

South Korea

SEUM Tronics

801, 1, Gasan digital 1-ro

Geumcheon-gu

Seoul, 08594,

Korea

T: +82 2 868 – 10 02

Email: info-kr@smaract.com

www.seumtronics.com

USA

SmarAct Inc.

2140 Shattuck Ave. Suite 1103

Berkeley, CA 94704

United States of America

T: +1 415 – 766 9006

Email: info-us@smaract.com

www.smaract.com

268MCS2 Programmer’s Guide

	1 Introduction
	1.1 Terminologies

	2 General Concepts
	2.1 Connecting and Disconnecting
	2.1.1 Locators for Device Identification
	2.1.2 Finding Devices
	2.1.3 Network Interface Configuration

	2.2 Properties
	2.3 Accessing Properties
	2.3.1 Synchronous Access
	2.3.2 Asynchronous Access
	2.3.3 High-Throughput Asynchronous Access
	2.3.4 Call-and-Forget Mechanism
	2.3.5 Request Ready Notification

	2.4 Event Notifications
	2.5 Positioner Types
	2.5.1 Custom Positioner Types

	2.6 Moving Positioners
	2.6.1 Calibrating
	2.6.2 Referencing
	2.6.3 Open-Loop Movements
	2.6.4 Closed-Loop Movements
	2.6.5 Stopping Movements
	2.6.6 Overwriting Movement Commands
	2.6.7 Movement Feedback

	2.7 Defining Positions
	2.7.1 Reference Marks
	2.7.2 Positioners With Single Reference Marks
	2.7.3 Positioners With Multiple Reference Marks
	2.7.4 Positioners With Endstop Reference
	2.7.5 Shifting the Measuring Scale

	2.8 State Flags
	2.8.1 Device State Flags
	2.8.2 Module State Flags
	2.8.3 Channel State Flags

	2.9 Sensor Power Modes
	2.10 PicoScale Sensor Module
	2.11 Following Error Detection
	2.12 Software Range Limit
	2.13 Stop Broadcasting
	2.13.1 Stop Broadcast Configuration

	2.14 Command Groups
	2.14.1 Command Groups vs. Output Buffer

	2.15 Trajectory Streaming
	2.15.1 General Streaming Concept
	2.15.2 Basic Approach
	2.15.3 Options
	2.15.4 Trigger Modes
	2.15.5 Stream Events
	2.15.6 Maximum Stream Rates

	2.16 Auxiliary Inputs and Outputs
	2.16.1 Digital Device Input
	2.16.2 Fast Digital Outputs
	2.16.3 General Purpose Digital Inputs/Outputs
	2.16.4 Fast Analog Inputs
	2.16.5 Using Analog Inputs as Control-Loop Feedback
	2.16.6 Analog Outputs

	2.17 Input Trigger
	2.17.1 Disabled Mode
	2.17.2 Emergency Stop Mode
	2.17.3 Stream Sync Mode
	2.17.4 Command Group Sync Mode
	2.17.5 Event Trigger Mode

	2.18 Output Trigger
	2.18.1 Constant Mode
	2.18.2 Position Compare Mode
	2.18.3 Target Reached Mode
	2.18.4 Actively Moving Mode

	2.19 Feature Permissions

	3 Function Reference
	3.1 Function Summary
	3.2 Detailed Function Description
	3.2.1 SA_CTL_GetFullVersionString
	3.2.2 SA_CTL_GetResultInfo
	3.2.3 SA_CTL_GetEventInfo
	3.2.4 SA_CTL_FindDevices
	3.2.5 SA_CTL_Open
	3.2.6 SA_CTL_Close
	3.2.7 SA_CTL_Cancel
	3.2.8 SA_CTL_GetProperty_i32
	3.2.9 SA_CTL_SetProperty_i32
	3.2.10 SA_CTL_SetPropertyArray_i32
	3.2.11 SA_CTL_GetProperty_i64
	3.2.12 SA_CTL_SetProperty_i64
	3.2.13 SA_CTL_SetPropertyArray_i64
	3.2.14 SA_CTL_GetProperty_s
	3.2.15 SA_CTL_SetProperty_s
	3.2.16 SA_CTL_RequestReadProperty
	3.2.17 SA_CTL_ReadProperty_i32
	3.2.18 SA_CTL_ReadProperty_i64
	3.2.19 SA_CTL_ReadProperty_s
	3.2.20 SA_CTL_RequestWriteProperty_i32
	3.2.21 SA_CTL_RequestWriteProperty_i64
	3.2.22 SA_CTL_RequestWriteProperty_s
	3.2.23 SA_CTL_RequestWritePropertyArray_i32
	3.2.24 SA_CTL_RequestWritePropertyArray_i64
	3.2.25 SA_CTL_WaitForWrite
	3.2.26 SA_CTL_CancelRequest
	3.2.27 SA_CTL_CreateOutputBuffer
	3.2.28 SA_CTL_FlushOutputBuffer
	3.2.29 SA_CTL_CancelOutputBuffer
	3.2.30 SA_CTL_OpenCommandGroup
	3.2.31 SA_CTL_CloseCommandGroup
	3.2.32 SA_CTL_CancelCommandGroup
	3.2.33 SA_CTL_WaitForEvent
	3.2.34 SA_CTL_Calibrate
	3.2.35 SA_CTL_Reference
	3.2.36 SA_CTL_Move
	3.2.37 SA_CTL_Stop
	3.2.38 SA_CTL_OpenStream
	3.2.39 SA_CTL_StreamFrame
	3.2.40 SA_CTL_CloseStream
	3.2.41 SA_CTL_AbortStream

	4 Property Reference
	4.1 Property Summary
	4.2 Device Properties
	4.2.1 Number of Channels
	4.2.2 Number of Bus Modules
	4.2.3 Device State
	4.2.4 Device Serial Number
	4.2.5 Device Name
	4.2.6 Emergency Stop Mode
	4.2.7 Network Discover Mode

	4.3 Module Properties
	4.3.1 Power Supply Enabled
	4.3.2 Module State
	4.3.3 Number of Bus Module Channels

	4.4 Positioner Properties
	4.4.1 Amplifier Enabled
	4.4.2 Positioner Control Options
	4.4.3 Actuator Mode
	4.4.4 Control Loop Input
	4.4.5 Sensor Input Select
	4.4.6 Positioner Type
	4.4.7 Positioner Type Name
	4.4.8 Move Mode
	4.4.9 Channel State
	4.4.10 Position
	4.4.11 Target Position
	4.4.12 Scan Position
	4.4.13 Scan Velocity
	4.4.14 Hold Time
	4.4.15 Move Velocity
	4.4.16 Move Acceleration
	4.4.17 Max Closed Loop Frequency
	4.4.18 Default Max Closed Loop Frequency
	4.4.19 Step Frequency
	4.4.20 Step Amplitude
	4.4.21 Following Error Limit
	4.4.22 Broadcast Stop Options
	4.4.23 Sensor Power Mode
	4.4.24 Sensor Power Save Delay
	4.4.25 Position Mean Shift
	4.4.26 Safe Direction
	4.4.27 Control Loop Input Sensor Value
	4.4.28 Control Loop Input Aux Value
	4.4.29 Target To Zero Voltage Hold Threshold

	4.5 Scale Properties
	4.5.1 Logical Scale Offset
	4.5.2 Logical Scale Inversion
	4.5.3 Range Limit Min
	4.5.4 Range Limit Max

	4.6 Calibration Properties
	4.6.1 Calibration Options
	4.6.2 Signal Correction Options

	4.7 Referencing Properties
	4.7.1 Referencing Options
	4.7.2 Distance To Reference Mark
	4.7.3 Distance Code Inverted

	4.8 Tuning and Customizing Properties
	4.8.1 Positioner Movement Type
	4.8.2 Positioner Is Custom Type
	4.8.3 Positioner Base Unit
	4.8.4 Positioner Base Resolution
	4.8.5 Positioner Sensor Head Type
	4.8.6 Positioner Reference Type
	4.8.7 Positioner P Gain
	4.8.8 Positioner I Gain
	4.8.9 Positioner D Gain
	4.8.10 Positioner PID Shift
	4.8.11 Positioner Anti Windup
	4.8.12 Positioner ESD Distance Threshold
	4.8.13 Positioner ESD Counter Threshold
	4.8.14 Positioner Target Reached Threshold
	4.8.15 Positioner Target Hold Threshold
	4.8.16 Save Positioner Type
	4.8.17 Positioner Write Protection

	4.9 Streaming Properties
	4.9.1 Stream Base Rate
	4.9.2 Stream External Sync Rate
	4.9.3 Stream Options
	4.9.4 Stream Load Maximum

	4.10 Diagnostic Properties
	4.10.1 Channel Error
	4.10.2 Channel Temperature
	4.10.3 Bus Module Temperature

	4.11 Auxiliary Properties
	4.11.1 Aux Positioner Type
	4.11.2 Aux Positioner Type Name
	4.11.3 Aux Input Select
	4.11.4 Aux I/O Module Input Index
	4.11.5 Aux Direction Inversion
	4.11.6 Aux I/O Module Input0 / Input1 Value
	4.11.7 Aux Digital Input Value
	4.11.8 Aux Digital Output Value / Set / Clear
	4.11.9 Aux Analog Output Value0 / Value1

	4.12 I/O Module Properties
	4.12.1 I/O Module Options
	4.12.2 I/O Module Voltage
	4.12.3 I/O Module Analog Input Range

	4.13 Input Trigger Properties
	4.13.1 Device Input Trigger Mode
	4.13.2 Device Input Trigger Condition

	4.14 Output Trigger Properties
	4.14.1 Channel Output Trigger Mode
	4.14.2 Channel Output Trigger Polarity
	4.14.3 Channel Output Trigger Pulse Width
	4.14.4 Channel Position Compare Start Threshold
	4.14.5 Channel Position Compare Increment
	4.14.6 Channel Position Compare Direction
	4.14.7 Channel Position Compare Limit Min
	4.14.8 Channel Position Compare Limit Max

	4.15 Hand Control Module Properties
	4.15.1 Hand Control Module Lock Options
	4.15.2 Hand Control Module Default Lock Options

	4.16 API Properties
	4.16.1 Event Notification Options
	4.16.2 Auto Reconnect

	5 Event Reference
	5.1 Event Summary
	5.2 Detailed Event Description
	5.2.1 None
	5.2.2 Movement Finished
	5.2.3 Holding Aborted
	5.2.4 Sensor State Changed
	5.2.5 Reference Found
	5.2.6 Following Error Limit
	5.2.7 Sensor Module State Changed
	5.2.8 Over Temperature
	5.2.9 High Voltage Overload
	5.2.10 Adjustment Finished
	5.2.11 Adjustment State Changed
	5.2.12 Adjustment Update
	5.2.13 Stream Finished
	5.2.14 Stream Ready
	5.2.15 Stream Triggered
	5.2.16 Command Group Triggered
	5.2.17 Hand Control Module State Changed
	5.2.18 Emergency Stop Triggered
	5.2.19 External Input Triggered
	5.2.20 Request Ready
	5.2.21 Connection Lost

	6 ASCII Interface
	6.1 Connection Setup
	6.1.1 Note On Message Termination

	6.2 SCPI Basics
	6.2.1 SCPI Conformance Information
	6.2.2 Command Structure
	6.2.3 Traversing the Command Tree
	6.2.4 Queries

	6.3 Basic Programming Examples
	6.3.1 Get Property
	6.3.2 Set Property
	6.3.3 Calibrate
	6.3.4 Reference
	6.3.5 Move
	6.3.6 Stop
	6.3.7 Movement State
	6.3.8 Error Handling

	6.4 Using Command Groups
	6.4.1 Command Set
	6.4.2 Examples

	6.5 Streaming Trajectories
	6.5.1 Command Set
	6.5.2 Example

	6.6 Command Summary
	6.6.1 Common Commands
	6.6.2 Movement Commands
	6.6.3 Property Command Tree

	6.7 SCPI Error Codes

	A Code Definition Reference
	A.1 Error Codes

