

1

Vespa – Simulation
User Manual and Reference

Version 0.9.5

Release date: September 22nd, 2017

Developed by:

Brian J. Soher, Ph.D.
Philip Semanchuk

Duke University Medical Center,
Department of Radiology, Durham, NC

Karl Young, Ph.D.
David Todd, Ph.D.

University of California, San Francisco
Department of Radiology, San Francisco, CA

Developed with support from NIH, grant # EB008387-01A1

2

Table of Contents

Overview of the Vespa Package ... 5

Introduction to Vespa-Simulation .. 6

Using Simulation – A User Manual ... 8

1. Overview – How to launch Vespa-Simulation .. 8

2. The Simulation Main Window .. 10

2.1 Experiment Derivations – Copy to New ..11

2.2 Experiment Derivations – Add/Subtract Tab in New ...11

3. The Experiment Notebook... 13

4. The Experiment Tab .. 13

4.1 Loading an existing Experiment ...14

4.2 Running a new Experiment ..14

4.3 New Experiments with additional user defined parameters16

4.4 Visualizing Experiment Results ..16

5. Management Dialogs .. 20

5.1 Manage Experiments dialog ...20

5.2 Manage Metabolites dialog ..20

5.3 Manage Pulse Sequences dialog ...22

6. Results Output .. 29

6.1 Results output into standard text editor ..29

6.2 Plot results to image file formats ..29

6.3 Plot results to vector graphics formats ...30

Appendix A. Pulse Sequence Design ... 31

A.1 What is under the hood? ... 31

A.1.1 Vespa-Simulation Basic Concepts ..31

A.1.2 Experiments ..31

A.2 First Steps for Creating Your Own Pulse Sequences 33

A.2.1 Overview ...33

A.2.2 How Simulation Runs Your Pulse Sequence (A Brief Review)33

A.2.3 The Interface Between Simulation and Your Pulse Sequences33

A.3 Creating a Pulse Sequence without Extra Parameters 34

A.3.1 How to create a “One-Pulse” pulse sequence ..34

A.3.2 A “One-Pulse” pulse sequence that does NOT use binning code38

A.3.3 The “Ideal-PRESS” pulse sequence – typical use of standard parameters.........40

A.4 Creating a Pulse Sequence with Extra Parameters 41

A.4.1 The “PRESS-CP with Variable R-groups” Pulse Sequence41

3

A.5 Creating a Pulse Sequence with an RF Pulse Waveform 45

A.5.1 A “PRESS” sequence that uses a ‘real’ RF pulse read in from a file...................45

A.5.2 A “PRESS” sequence that uses a ‘real’ RF pulse from Pulse46

Appendix B. Pulse Sequence Diagrams 49

B.1 One-Pulse ... 49

B.1.1 Sequence Diagram ..49

B.1.2 Loop Variable 1,2,3 Descriptions ...49

B.1.3 User Defined Parameters ...49

B.1.4 General Description ...49

B.2 Spin-Echo .. 50

B.2.1 Sequence Diagram ..50

B.2.2 Loop Variable 1,2,3 Descriptions ...50

B.2.3 User Defined Parameters ...50

B.2.4 General Description ...50

B.3 PRESS Ideal ... 51

B.3.1 Sequence Diagram ..51

B.3.2 Loop Variable 1,2,3 Descriptions ...51

B.3.3 User Defined Parameters ...51

B.3.4 General Description ...51

B.4 STEAM Ideal ... 52

B.4.1 Sequence Diagram ..52

B.4.2 Loop Variable 1,2,3 Descriptions ...52

B.4.3 User Defined Parameters ...52

B.4.4 General Description ...52

B.5 JPRESS Ideal ... 53

B.5.1 Sequence Diagram ..53

B.5.2 Loop Variable 1,2,3 Descriptions ...53

B.5.3 User Defined Parameters ...53

B.5.4 General Description ...53

B.6 PRESS with Pulse Pulses ... 54

B.6.1 Sequence Diagram ..54

B.6.2 Loop Variable 1,2,3 Descriptions ...54

B.6.3 User Defined Parameters ...54

B.6.4 General Description ...54

Appendix C. Mixed Metabolite Output ... 56

C.1 General Functionality .. 57

C.2 GAVA Text Format Specific Information ... 59

C.2.1 Using the Dialog..59

C.2.2 Example GAVA Text Output File ...59

4

C.3 LCModel Format Specific Information ... 61

C.3.1 Using the Dialog..61

C.3.2 Example – Creating an LCModel Basis Set (by Hongji Chen)62

C.4 jMRUI Data Text Format Specific Information ... 64

C.4.1 Using the Dialog..64

C.5 MIDAS Generic XML Format Specific Information .. 66

C.5.1 Using the Dialog..66

C.5.2 Example MIDAS Generic XML Output File ..67

C.6 Analysis Prior XML Format Specific Information ... 68

C.6.1 Using the Dialog..68

C.6.2 Example Analysis Prior XML Output File ...69

Appendix D. Object State in Applications 70

D.1 Background and Design Philosophy ... 70

D.2 State Definitions and Usage .. 70

D.2.1 Private and Public ...70

D.2.2 In Use ...71

D.2.3 Frozen ..71

Appendix E. Report on Issue with Binning Heterogeneous Spin-
system Simulations ... 72

E.1 Background – the Problem .. 72

E.2 Resolution ... 73

5

Overview of the Vespa Package

The Vespa package enhances and extends three previously developed magnetic
resonance spectroscopy (MRS) software tools by migrating them into an integrated,
open source, open development platform. Vespa stands for Versatile Simulation, Pulses
and Analysis. The original tools that have been migrated into this package include:

 GAVA/Gamma - software for spectral simulation

 MatPulse – software for RF pulse design

 IDL_Vespa – a package for spectral data processing and analysis

The new Vespa project addresses current software limitations, including: non-standard
data access, closed source multiple language software that complicates algorithm
extension and comparison, lack of integration between programs for sharing prior
information, and incomplete or missing documentation and educational content.

6

Introduction to Vespa-Simulation
Vespa-Simulation is a graphical control and visualization program written in the Python
programming language that provides a user friendly front end to the GAMMA/PyGAMMA NMR
simulation libraries. The Vespa-Simulation interface allows users to:

1) Create and run a simulated Experiment (consisting of one or more spectral simulations)
from lists of metabolites and pulse sequences.

2) Store simulated Experiment results in a database.

3) Display the results in a flexible plotting/graphing tool.

4) Compare side-by-side results from one or more simulated Experiments

5) Output results in text or graphical format

6) Export/Import experiments, metabolites or pulse sequences from other users

7) Design and test their own PyGAMMA pulse sequences for addition to the list of pulse
sequences available for use in Experiments.

What is an Experiment? An ‘Experiment’ consists of one or more spectral Simulations. Each
Experiment uses only one “pulse sequence” but can contain one or more metabolites and one
or more sets of timings for the pulse sequence. Each Simulation contains results for a single
metabolite for one set of sequence timings. Each call to the PyGAMMA library produces results
for a single Simulation. Vespa-Simulation loops through the spectral simulations for all timings
and metabolites to completely fill out the Experiment’s results.

There are a number of predefined pulse sequences in the Vespa-Simulation environment, and
users can also design and test their own Python pulse sequence scripts using the PyGAMMA
library. The database also contains prior information (current literature values) for the NMR
parameters of available compounds (J-coupling and chemical shift values) necessary to run the
simulations. NMR parameters are available in this database for approximately 30 compounds
commonly observed for in vivo 1H MRS.

The following chapters run through the operation of the Vespa-Simulation program both in
general and widget by widget.

In this manual, command line instructions will appear in a fixed-width font on individual lines, for
example:

˜/Vespa-Simulation/ % ls

Specific file and directory names will appear in a fixed-width font within the main text.

References: Examples of spectral simulation for pulse optimization, and spectral fitting:

Young K, Govindaraju V, Soher BJ and Maudsley AA. Automated Spectral Analysis I: Formation of a
Priori Information by Spectral Simulation. Magnetic Resonance in Medicine; 40:812-815 (1998)

Young K, Soher BJ and Maudsley AA. Automated Spectral Analysis II: Application of Wavelet
Shrinkage for Characterization of Non-Parameterized Signals. Magnetic Resonance in Medicine;
40:816-821 (1998)

7

Soher BJ, Young K, Govindaraju V and Maudsley AA. Automated Spectral Analysis III: Application to in
Vivo Proton MR Spectroscopy and Spectroscopic Imaging. Magnetic Resonance in Medicine; 40:822-
831 (1998)

Soher BJ, Vermathen P, Schuff N, Wiedermann D, Meyerhoff DJ, Weiner MW, Maudsley AA. Short TE
in vivo (1)H MR spectroscopic imaging at 1.5 T: acquisition and automated spectral analysis. Magn
Reson Imaging;18(9):1159-65 (2000).

Online Resources:

The Vespa project and each of its applications have Trac Wiki sites with extensive information
about how to use, and develop new functionality for, each application. These can be accessed
through the main portal site at

http://scion.duhs.duke.edu/vespa/

http://scion.duhs.duke.edu/vespa/

8

Using Simulation – A User Manual
This section assumes Vespa-Simulation has been downloaded and installed. See the Vespa
Installation guide on the Vespa main project wiki for details on how to install the software and
package dependencies. http://scion.duhs.duke.edu/vespa.

In the following, screenshots are based on running Simulation on the Windows OS, but aside
from starting the program, the basic commands are the same on all platforms.

1. Overview – How to launch Vespa-Simulation

Double click on the Simulation icon that the installer created on your Desktop.

Shown below is the Vespa-Simulation main window as it appears on first opening. No actual
Experiment windows are open, only the ‘Welcome’ banner is displayed.

Use the Experiment menu to open existing Experiments into tabs, or to create a tab for
designing a ‘new’ spectral simulation Experiment.

http://scion.duhs.duke.edu/vespa

9

Shown below is a screen shot of a Vespa-Simulation session with two Experiment tabs opened
side by side for comparison. The functionality of all tools will be described further in the following
sections.

10

2. The Simulation Main Window

This is a view of the main Vespa-Simulation user interface window. It is the first window that
appears when you run the program. It contains the Experiment Notebook, a menu bar and
status bar. The Experiment Notebook can be populated with one or more Experiment Tabs,
each of which contains input data and results from one Experiment. As described above, an
Experiment is a group of spectral
simulations. Each simulation contains the
result for one metabolite that has been run
through a simulated pulse sequence for a
given set of sequence parameters. Thus,
an Experiment may consist of one
metabolite for multiple sets of pulse
sequence parameters, or multiple
metabolites for one set of pulse sequence
parameters, or multiple metabolites for
multiple collections of pulse sequence
parameters.

The Experiment Notebook is initially
populated with a welcome text window, but
no Experiment results. From the Experiment menu bar you can 1) load a previously run
Experiment from the Simulation database into a tab, or 2) create a new Experiment and set it up
and run it. In either case a tab will appear for each Experiment that is loaded or created. The
Management menu allows users to access pop-up dialogs to create, edit, view, delete and
import/export Experiments, Metabolites and Pulse Sequences from the Simulation database.

The status bar provides information about where the cursor is located within the various plots
and images in the interface throughout the program. It also reports short messages that reflect
current processing while events are running.

On the Menu Bar

Experiment→New Opens a new Experiment Tab in the Experiment Notebook.

Experiment→Open Runs the Experiment Browser dialog, from which you can choose an

Experiment from the database to open.

Experiment→Derivations
→Copy Tab to New This will open a new Experiment Tab and populate it with the same values that

are listed in the current Experiment. No results are copied to the new tab.

→Calculate Add/Sub Tab in New This will open a dialog that allows you to perform an Add/Subtract operation on

one dimension of the currently selected Experiment. Results will be saved into
a new Experiment Tab.

Experiment→Save Saves the Experiment in the current tab to the data base. Note. Experiment

results are not automatically saved to data base after the Run button is hit.

Experiment→Close Closes current Experiment Tab. Will prompt for save if necessary.

Experiment→ Third Party Export Saves the Experiment result(s) to third party file formats that can be used in

other NMR/MRS applications. See Appendix C for more details.

Experiment→Exit Closes current entire application. Will prompt for save if necessary.

Management
→Manage Experiments Launches the Manage Experiments dialog. Allows user to view, clone, delete,

import and export Experiments.

11

Management
→Manage Metabolites Launches the Manage Metabolites dialog. Allows user to create, edit, view,

clone, (de-)activate, delete, import and export Metabolite prior information.

Management
→Manage Pulse Sequences Launches the Manage Pulse Sequences dialog. Allows user to create, edit,

view, clone, delete, import and export Pulse Sequence information.

View→<various> Changes plot options in the Visualize sub-tab of the active Experiment tab,

including: display a zero line, turn x-axis on/off or choose units, changing plot
color, selecting data type or line shape, turning axes on/off for the Integral or
Contour plot windows, and various output options for all plot windows.

Help→User Manual Launches the user manual (from vespa/docs) into a PDF file reader.

Help→Simulation/Vespa Online Help Online wiki for the Simulation application and Vespa project

Help→About Giving credit where credit is due.

2.1 Experiment Derivations – Copy to New

This selection will open a new Experiment Tab and populate it with the same values that are
listed in the current Experiment. No results are copied to the new tab. This is a short cut for
varying simulation parameters to get different results and still being able to compare back to a
previous results set without having to save them both to the data base.

2.2 Experiment Derivations – Add/Subtract Tab in New

This will open a dialog that allows you to perform an Add/Subtract operation on one dimension
of the currently selected Experiment. You’ll note that a lot of the instructions are written on the
dialog widget. Here is the dialog widget you’ll see.

You have to select a dimension that contains the Off and On states. Note that the states should
be in this order in the selected dimension for the Add and Subtract options to work properly.
Only the dimensions that exist in the Experiment are displayed. If the currently selected
Experiment Tab has no loops with dimensions >= 2 then the Add/Sub derivation can not be
performed.

Also on the dialog is a box in which you can type in text that will be appended to the existing
Experiment comment in the new Experiment Tab. Information about the Experiment from which

12

the Add/Sub results were derived is pre-populated in this comment window for your
convenience.

Results from the Add/Subtract operations will be saved into a new Experiment Tab. This tab will
NOT be saved into the database unless you select the Experiment→Save menu item. The
results are saved into the dimension that contained the Off/On states. The Add result is stored
in the loop location that the Off state was in, the Subtract is saved into the On state location.
Note that because this is an Experiment derived from pre-existing results, you are not allowed to
add new metabolites to it in the Simulate sub-tab.

Hitting the OK button causes the Add/Subtract operations to be performed and a new
Experiment Tab to be added to the Notebook.

Hitting the Cancel button exits this function without performing any actions.

13

3. The Experiment Notebook

The Experiment Notebook is an “advanced user interface” widget (AUINotebook). What that
means to you and me is a lot of flexibility: Multiple tabs can be opened up inside the window.
They can be moved around, arranged and “docked” as the user desires by left-click and
dragging the desired tab to a new location inside the notebook boundaries. In this manner, the
tabs can be positioned side-by-side, top-to-bottom or stacked (as show in Sections 1 and 4).
They can also be arranged in any mixture of these positions.

The Experiment Notebook can be populated with one or more Experiment Tabs, each of which
contains the results of one Experiment. Tabs can be closed using the X box on the tab or with a
middle-click on the tab itself. When a Tab is closed, the Experiment is removed from memory,
but can be reloaded from the database at a future time - assuming it was previously saved.

4. The Experiment Tab

An Experiment Tab is a tabbed window
that is added to the Experiment Notebook.
Each tab contains one entire Experiment.
An Experiment Tab can be used to run a
new Experiment and view the results of
that run. It can also be used to load an
existing Experiment from the database to
view results, or to add more metabolites to
the Experiment.

Each Experiment Tab has two sub-tabs
called Visualize and Simulate. The
Simulate tab is where a new experiment is
set up and run. It is also where the
parameters and settings for an existing
Experiment can be reviewed when the
Experiment is reloaded. The Visualize tab
is where the results of an Experiment can
be visualized as 1D plots, stack plots,
peak integral maps and/or contour maps.

When a new Experiment is set up, there are no results to be displayed so the program defaults
to the Simulate tab for New Experiments. When an existing Experiment is loaded, it typically
contains results from simulations that have been run, so the program defaults to the Visualize
tab.

A New Experiment is typically created, set up and run. Results from running an Experiment are
only saved to the database when specifically requested by the user. The Visualize tab is
updated to display results after each time the Run button is pushed on the Simulate tab (i.e.
after each run). Experiments can be run multiple times, until it has been saved to the database.
At that point it is considered ‘frozen’ and it can only be “run again” to add additional metabolites.
The same parameters will be used for additional “add metabolite” runs.

The View menu on the main menu bar can be used to modify the display of the plots in the
Visualize tab. The resulting modifications only affect the settings in the currently activated
Experiment Tab. The following lists the functions on the View menu item:

14

On the Menu Bar

View (this menu affects the plots in the currently active Experiment tab)

→Show ZeroLine toggle zero line off/on in 1D and stack display

→Xaxis →Show white lines on black background or reversed

→Xaxis→PPM/Hz x-axis value in PPM or Hz

→Data Type select Real, Imaginary, or Magnitude spectral data to display

→Lineshape select Gaussian or Lorentzian lineshapes for the basis functions plotted

→Integral Plot→Show Axis toggles integral plot on/off

→Integral Plot→Show X-axis toggles x axis on/off

→Integral Plot→Show Y-axis toggles y axis on/off

→Contour Plot→Show toggles contour plot on/off

→Contour Plot→Show Axes toggles x/y axes on/off

→Output→1D/Stackplot writes the plot, currently in the 1D or StackPlot canvas, to file as either PNG,

SVG, EPS or PDF format

→Output→Integral Plot writes the plot, currently in the Integral plot canvas, to file as either PNG, SVG,

EPS or PDF format

→Output→Contour Plot writes the plot, currently in the Contour plot canvas, to file as either PNG, SVG,

EPS or PDF format

→Output→Text Results opens the operating systems standard text editor and inserts a textual

rendering of the Experimental parameters and results. Typically, this is a
summary of the general descriptive information, the specific pulse sequence
and metabolite parameters included and a listing of all metabolite lines for
every loop instance in the Experiment.

4.1 Loading an existing Experiment

The Experiment Browser dialog is launched from Experiment→Open menu which is shown
below. A list of Experiment names is shown on the left. When an Experiment listed in the
browser is clicked on once, its comment and metabolites are displayed on the right.
Experiments can be sorted by the isotopes contained within the simulated metabolites. They
can also be sorted by field strength (given in MHz).

When the Open button is clicked (or an
Experiment’s name is double-clicked on), the
program loads the information for that
Experiment from the database into an
Experiment object in memory. This object then
creates a set of basis functions for all
metabolites for use in the Visualization tab
plots. N.B. In the case of a large Experiment,
this may take a significant amount of time to
calculate, but is indicated on the lower left of
the status bar while calculating.

4.2 Running a new Experiment

As noted previously, an ‘Experiment’ object consists of one or more spectral Simulation objects.
Each Experiment object uses only one “pulse sequence” but can contain one or more
metabolites and one or more sets of timings for the pulse sequence. Each Simulation object
contains results for a single metabolite for one set of sequence timings. Each call to the

15

PyGAMMA library produces results for a single Simulation object. Vespa-Simulation loops
through spectral simulations for all timings and metabolites to completely fill an Experiment
object.

When a user selects the Experiment→New menu option, a new Experiment Tab is created in
the Experiment Notebook and the default view is for the Simulate sub-tab. This panel enables
the user to select, define and run a new Experiment from the list of defined pulse sequences
provided with the Simulation program. Additional pulse sequences can be created by the user
and accessed using the methods covered in the next section.

A list of available pulse sequences is kept in the Vespa-Simulation database and can be
selected from the Pulse Sequence: Name dropdown menu. The Simulation widget will
reconfigure itself based on the parameters needed to run that sequence. Users must fill in the
Name, Investigator, Main Field, Peak Search Ranges, Blend Tolerances and all loop Start
Value, Step Count and Step Size fields. At least one metabolite must be selected and moved
into the In Experiment list. Some default values are already included.

Simulation provides the user with four loop variables for use in their pulses sequences. This is
covered in detail in Appendix A, however, in brief: The first loop is the list of selected
metabolites. The remaining three loops are defined as evenly spaced floating point number
series.

Each series is defined by a starting value, a number of steps and a step size. So for these
values, start = 10.2, steps = 4, size = 2.0, that dimension would contain the following values
[10.2, 12.2, 14.2, 16.2]. These values are passed directly to the user’s PyGAMMA code and
can be used in any fashion. One might use these values directly as sequence timing values
where they represent [ms] timings between RF pulses. Another use might be as an integer
series (e.g. [1,2,3,4,5,6]) indexing a series of RF pulses stored in a file. This way an Experiment
could “loop” through the effects of different RF pulses in an experiment. Either way, the user can
set up three of these loops in the Loops 1, 2 and 3 section of the Simulation sub-tab. Shown in
the figure is an example of a new Experiment tab configured for a PRESS simulation.

Note: Metabolite Peak Normalization and Blending

16

The transition tables calculated by the GAMMA density matrix simulations frequently contain a
large number of transitions caused by degenerate splittings and other processes. At the
conclusion of each simulation run a routine is called to extract lines from the transition table.
These lines are then normalized using a closed form calculation based on the number of spins.
To reduce the number of lines required for display, multiple lines are blended by binning them
together based on their PPM locations and phases. The following parameters are used to
customize these procedures:

Peak Search Range – Low/High (PPM): the range in PPM that is searched for lines from the
metabolite simulation.

Peak Blending Tolerance (PPM and Degrees): the width of the bins (+/- in PPM and +/- in
PhaseDegrees) that are used to blend the lines in the simulation. Lines that are included in the
same bin are summed using complex addition based on Amplitude and Phase.

4.3 New Experiments with additional user defined parameters

A full explanation of how to
create additional pulse
sequences, with any additional
parameters that may be
required, is given in Appendix
A. The Vespa-Simulation
Manage Pulse Sequences
dialog provides an interface for
a user to define the additional
parameters needed for a given
pulse sequence. These are
then saved to the Vespa-
Simulation database.

This section describes the
interface used to run an
Experiment using a pulse
sequence with additional
parameters.

When a sequence with
additional parameters is selected from the Pulse Sequences drop-list, the Simulate tab will be
modified to display input fields where the user can set the values for these additional
parameters. These additional parameters are displayed in a list below the loop fields. Each line
contains only one parameter description and a field to set a value. When appropriate, a default
value is provided. Note: Data types are limited to String, Long or Float data types for data entry.
The user is restricted to entering this type of data in any given field.

4.4 Visualizing Experiment Results

Experiments displayed in the Visualize widget can be considered to contain 2, 3, 4 or 5
dimensions that correspond to the Spectral dimension, the number of metabolites in the
experiment, and the number of steps in Loops 1, 2 and 3 respectively. Pulse sequences such as
One-Pulse or Spin-Echo only allow 0 or 1 Loop dimensions and are thus the types of available
display are appropriately restricted. However, other pulse sequences can typically use most of

17

the plot modes. The three plot modes for displaying results, 1D/StackPlot, Integral Plot and
Contour Plot, are shown below:

The 1D/StackPlot window is always open and centered in the screen. The Integral Plot and
the Contour Plot can be toggled on/off using the check box next to their names (though their
windows remain ‘open’ whether they are being plotted or not). Both the Integral and Contour
plot windows can be undocked, repositioned and re-docked using the “grab bars” on the left
hand side of each window.

Under the 1D/StackPlot window, a 1D spectrum for one or more metabolites or a 2D spectral
stack plot along any two Loop dimensions for a single metabolite can be selected. If more than
one metabolite is selected for a stack plot, only the first metabolite in the list is displayed.

The mouse can be use to set the X-axis and Cursor values in the 1D plots. The left mouse
button sets the X-axis Min/Max PPM values. Click and hold the left mouse button in the window
and a vertical cursor will appear. Drag the mouse either left or right and a second vertical cursor
will appear. PPM value changes will be reflected in the Plot Control widget. Release the mouse
and the plot will be redisplayed for the Min/Max PPM axis values. This Zoom Span will display
its range in a pale yellow that disappears when the left mouse is released.

In a similar fashion, two vertical cursors can be set inside the plot window. Click and drag then
release to set the two cursors anywhere in the window. This Cursor Span will display as a light
gray span. Click in place with the right mouse button and the Cursor span will be turned off.

The cursor values are used to determine the “area under the peak” values that are plotted in the
Integral and Contour windows. Changes to the cursor settings, either by mouse or in the

18

respective widgets, will be updated in the Integral and Contour plots (described below) after
these values are changed by the user.

Click and release the left mouse button in place and the plot will zoom out to its max setting.
Click and release the right mouse button in place and the cursor span will be turned off.

An Integral plot can be created from a 2D Spectral stack plot experiment for a single
metabolite. Metabolite areas are measured between the Left and Right Cursor settings in each
spectrum and for the real, imaginary or magnitude data shown. The plot will show the integral
along the Stack Plot axis displayed in the 1D/StackPlot Once the Integral plot is displayed,
changes to the Left and Right Cursor values or to the Loop index widgets are reflected in the
plot.

The Contour plot works best for Experiments that contain at least two Loop dimensions, but will
create a “pseudo-2D” contour plot from an Experiment with only one Loop dimension by
repeating the first dimension. Contours are integrated over all steps in the two loop dimensions
selected in the Contour Dimensions drop-box, for the Left and Right Cursor settings shown
in the Plot control widget and for the real, imaginary or magnitude data shown. Plotted contours
change as the cursor settings change, but are only refreshed when the right mouse button is
released.

On the Visualize Widget

Display Mode (drop-list) Selects 1D, or Stack Plots along index 1, 2 or 3 to be displayed in the 1D

window.

X Axis Max/Min (click fields) Controls the PPM limits of the spectrum displayed in the 1D and 2D plots.

Alternatively, the left mouse button can be used interactively in the 1D Display window to
set these axes. Click on the left mouse button and drag to set the min/max settings using
an interactive ‘rubber-band’ display method. X-axis cursors are displayed in gray/red.

Cursor Max/Min (click fields) Controls the PPM limits of the cursors displayed in the 1D and Stack Plots.

These also act as the PPM integral regions calculated in the Integral and Contour plots.
The cursors are displayed in purple and may not be displayed on the screen if set to
values outside the X Axis min/max values. Alternatively, the right mouse button can be
used in an interactive ‘rubber-band’ display method in the 1D Display window to set these
axes. Click on the left mouse button and drag to set the left/right values. Cursors are
displayed in gray/yellow.

Index 1, 2, 3 (click fields) These fields allow the user to step thru the Loop1, Loop2 and Loop3

dimensions for the various plot modes. As each Index widget is incremented, the
sequence timing’s actual value is shown in the adjoining field. If a given Experiment did
not use a Loop dimension, that index is not displayed (e.g. you will often not see Index 3).

Metabolites to Plot (list) A list of metabolites in the experiment that can be included in the display.

Sum Plots Sums all metabolite plots selected (highlighted) in the list. For 1D display, this sums

different metabolite spectra together. For Stack Plots the different sequence timings for
one metabolite are summed.

Integral Plot - Show (check) Toggles Integral Plot display.

Contour Plot - Show (check) Toggles Contour Plot display.

Grayscale (check) Toggles whether a grayscale image overlay is applied as a background to the

contour plot.

Levels (click field) Select the number of levels to display in the Contour Plot. Note that setting too

many levels may limit the ability of level values from being displayed.

Contour Dimensions (drop-list) Selects index pairs among index 1, 2 and 3 for display in plot.

Line Width (click field) Set the full-width half-max linewidth in Hz of the peaks displayed in the plots.

Sweep Width (click field) Set the sweep width in Hz used to reconstruct the spectra.

19

Points The number of spectral points used to reconstruct the spectra.

ASCII Display Displays the current Experiment results in text form. The information at the top is a

summary of the Experiment parameters, which is followed by a line by line report of
metabolite results. Each line is tab-delineated and shows a: Metabolite Name, Loop1,
Loop2 Index, Loop3 Index, Group Number Index, Line Number Index, Frequency(PPM),
Amplitude, and Phase(deg) for each line extracted from the transition table for a given
simulation.

20

5. Management Dialogs

The Management dialogs allows the user to Create, Delete, Edit, Import, Export or View
Metabolites, Experiments and Pulse Sequences. These dialogs therefore allow the user to
manage the data in the Simulation database, and to add new metabolite and pulse sequence
information that can be used as prior information for simulation and processing. It also provides
the means for users to share information between themselves via XML files created using the
Import/Export functions.

5.1 Manage Experiments dialog

Access this dialog by clicking on the Management→Manage Experiments menu item. The
dialog opens and blocks other activity until it is closed. An example of this dialog is shown in the
figure. Experiment names are listed in the
window on the right. This list may be
sorted by isotope or main B0 field strength
from the drop-list widgets above the list.
Users may View, Delete, Import or Export
Experiments. These functions are
summarized below.

View: Creates a brief textual description
of the Experiment that is displayed in a
native text editor for the platform being
used. Use View→Output→Text Results
menu item on the main menu bar with the
Experiment loaded into a tab in the
Notebook for a more detailed textual
description of the Experiment and it’s
results.

Delete: Removes the Experiment from the database.

Import: Allows the user to select an XML file that contains an Experiment. If the UUID in the file
is unique, it is added to the Simulation database.

Export: The user selects an Experiment from the list. The program asks if both parameters and
results should be included in the export, or just parameters. A second dialog allows the user to
browse for the output filename, select if output should be compressed and allows an additional
export comment to be typed in. Note that the action of exporting an Experiment (or other
objects) caused it to be marked as “frozen” in the database. This means that no changes can be
made. This is for the sake of consistency as results are shared. However, a frozen Experiment
can still be deleted from the database if needed. This file can be imported into another Vespa-
Simulation installation using the Import function. If additional changes are desired a new
Experiment, using the same Pulse Sequence object, can be created and edited.

5.2 Manage Metabolites dialog

Access this dialog by clicking on the Management→Manage Metabolites menu item. Actions
that can be taken on the Metabolite dialog include, New, Edit, View, Clone, (De)activate, Delete,
Import and Export. An example of the Manage Metabolites window is shown below. The
"Public" column indicates if a metabolite has ever been exported (or imported from someone
else). If the public flag is set then it can not be edited. The "Use Count" column indicates how

21

many local Experiments use this metabolite. While in use by any Experiments, the metabolite
can not be deleted.

New: A dialog will pop up that gives the user a blank metabolite form to fill out. Select the
number of spins in the metabolite and the form will enable the appropriate chemical shift and j-
coupling fields. Edit the fields appropriately and hit ACCEPT or Cancel. See the sample in the
figure below.

Edit: The highlighted metabolite is opened in a metabolite form. Only the metabolite Name, and
Comment are editable. The name is editable because Experiments save Metabolite references
by UUID which are not editable. Use the "Clone" option to create a copy of a Metabolite that is
fully editable.

View: Similar to Edit but no fields are editable.

22

Clone: Select a metabolite in the list, hit clone and a copy of that metabolite is made that is
now fully editable. The new metabolite has the name of the original metabolite followed by the
date and the word "_clone".

Delete: Only metabolites that have not been used by an experiment may be deleted. This is
because to reconstruct any given Experiment, that object must refer to the original list of
metabolites used to create it. The "Use Count" column indicates if a metabolite is in use by an
Experiment. If not in use by an Experiment, the highlighted metabolite in the list can be deleted
from the database.

(De-)activate : When a metabolite is no longer being used, it can be set to a "deactivated" state
where it no longer shows up in the Experiment Tab - Simulate metabolite list for use in new
Experiments. This state is indicated in the Metabolite dialog by the word "(not active)" appended
to the metabolite name in the list.

Import: Allows the user to select an XML file that contains a Metabolite. If the UUID in the file is
unique, it is added to the Simulation database.

Export: The user selects a Metabolite from the list. A second dialog allows the user to browse
for the output filename, select if the output should be compressed and allows an additional
export comment to be typed in. Note that the action of exporting an object causes it to be
marked as “frozen” in the database. This means that no further changes can be made. This is
for the sake of consistency when results are shared. However, a frozen Metabolite can still be
deleted from the database if needed. The exported file can be imported into another Vespa-
Simulation installation using the Import function.

Note. An interesting case for which one might want to create a new metabolite would be if one
discovered during for example a long TE experiment that literature values for a particular
metabolite were not adequately precise in terms of modeling the result of the experiment. One
could obtain improved values via some combination of experimental and optimization methods,
then clone the existing metabolite and enter the improved values. These improved values could
later be submitted to the public VeSPA database, perhaps after publication of the results.

5.3 Manage Pulse Sequences dialog

Access this dialog by clicking on the Management→Manage Pulse Sequences menu item.
Actions that can be taken on the Pulse Sequences dialog include, New, Edit, View, Clone,
Delete, Import and Export. An example of the window used to display and edit pulse sequence
information is shown. The New,
Edit, View, Import and Export
buttons all launch secondary
dialogs as part of their
functionality. Clone and Delete
only affect the list in the main
pulse sequence management
dialog.

The "Public" column indicates if a
sequence has ever been exported
(or imported from someone else).
Pulse Sequences with the Public
column marked ‘x’ can not be
edited except in the Name and
Comment fields. The "Use Count"
column indicates how many local

23

Experiments use this sequence. While in use by any Experiments, the sequence can not be
deleted.

View: Select a sequence from the main list. If more than one is selected the first on in the list is
viewed. This button pops up a secondary dialog with three tabs that contain the sequence
creation information, widget descriptors and pulse sequence and binning code. These tabs are
not editable. See figure below for example of View.

Clone: This option allows a user to make a copy of an existing pulse sequence. This is most
useful when an existing sequence is “public” or otherwise not editable because it is referenced
by an existing Experiment. Select a sequence in the list, hit clone and a copy of that sequence
is made that is now fully editable. The new sequence has the name of the original sequence
followed by the date and the word "_clone".

Delete: Only sequences that are not referenced by an experiment may be deleted. To
reconstruct any given Experiment, that object must refer to the original sequence used to create
it. The "Use Count" column indicates if a sequence is in use by an Experiment. If not in use by
an Experiment, the highlighted sequence(s) in the list can be deleted from the database.

Import: Pops up a secondary dialog that allows the user to select an XML file that contains one
or more Vespa Simulation pulse sequences. Any pulse sequences in the file are added to the
database, provided that they aren't in the database already. Pulse sequences with UUIDs that
match those already in the database are simply ignored. Please be sure to import/export pulse
sequences with the “Manage Pulse Sequence” utility to ensure proper operation.

Export: Select a Pulse Sequence from the list. A second dialog pops up that allows the user to
browse for the output filename, select if output should be compressed and allows an additional
export comment to be typed in. Note that the action of exporting an object causes it to be
marked as “frozen” in the database and “public” in the pulse sequence management dialog. This
means that it can not be changed. This is for the sake of consistency as results are shared.
However, a frozen pulse sequence can still be deleted from the database if needed. This file
can be imported into another Vespa-Simulation installation using the Import function. Please be
sure to import/export pulse sequences with the “Manage Pulse Sequence” utility to ensure
proper operation.

24

New: A “Pulse Sequence Editor” dialog pops up that allows the user to design and test a pulse
sequence using PyGAMMA code. The user must provide general descriptive information about
the sequence. They must describe how to lay out the pulse sequence in the Experiment tab
Simulate sub-tab, both for the standard loop variables as well as any user-defined parameters.
The user must also provide PyGAMMA code (i.e. a Python script that uses calls to the
PyGAMMA library) for the main pulse sequence. Default code for binning results is provided.
You can keep this code, alter it, replace it or delete it entirely. (See Appendix A for details.).

The New Pulse Sequence Editor widget is shown below. Please note that there are 2 main
windows: 1) the Design/Test notebook (left) and 2) the Code/Display notebook (right). To
create a pulse sequence, fill in the “Design” tab, the Sequence Code tab and Binning Code tab.
At this point, if you have filled them in correctly, you have created a pulse sequence and if
desired, could quit the dialog. Alternatively, you can hit the Update Testing Control button and
proceed to test and modify your pulse sequence as desired.

The “Test” tab and “Visualize” tab allow you to test your pulse sequence before running it in an
Experiment. Effectively, it allows you to run a mini-Experiment where only one metabolite and
one value, for any loops you defined, are allowed. More information on these is provided below.

When you hit the OK button (lower right), the pulse sequence is saved to the database, the New
Pulse Sequence dialog goes away, and you should see your new sequence listed in the main
Manage Pulse Sequence dialog list. If you do not wish to save your pulse sequence, hit Cancel.

Design Tab – Data input fields

Name: This is how the pulse-sequence is displayed in the dropdown list in the Experiment
tab Simulate sub-tab .

Creator: The name of the person creating the pulse sequence

25

Loop Labels: When the pulse sequence is called, it can make use of up to three looping
variables to create a variety of conditions for investigating metabolite behavior. In the
Loop1, Loop2 and Loop3 rows the user gives information that allows Simulation to parse
these loop variables. The Label field is a string used in creating the Experiment tab -
Simulate sub-tab that describe these loops. An example would be “TE [ms]” for a spin echo
experiment. N.B. If you indicate that a user should provide a timing in [ms], don’t forget to
divide by 1000 in your program to get a timing value in [sec] that PyGAMMA requires. The
examples demonstrate how to define and use these parameters in PyGAMMA code.

Your Static Parameter Definitions: Each pulse sequence GUI has a section where users
can set values for additional static parameters that are passed into the simulation. The GUI
for these parameters needs to be described in the Pulse Sequence Editor so that the main
program can display them properly. By hitting the Add button, a row of widgets will appear
that contain three fields used to describe the GUI for one static parameter: A data type
(selected from a drop-list), a "Name" string, and a "Default Value" string. The Name string
will be used by the Experiment Tab Simulate sub-tab as a label to describe this field
when the pulse sequence is selected for an Experiment. The data type shows up as a label
in the far right hand side as a reminder. The default value is inserted as the initial value that
is displayed in that field. The Remove Selected button can be used to remove unwanted
static parameters while designing a pulse sequence. Select the check box on the left side of
each row of parameters you want to remove, and then hit the Remove Selected button.

Note: By selecting a data type for a user-specified parameter in the drop down menu, the
user will be reminded to enter a variable of that type, but the actual field value will be passed
as a string that must be appropriately converted before being used in PyGAMMA simulation
code. Please select your default types and values accordingly.

Your RF Pulses Definitions: Each pulse sequence GUI has a section where users can set
up “real” RF pulse waveforms that are passed into the simulation. Pulses are browsed for
from the Vespa Pulse database using the Add button. The pulse must already exist in the
Vespa Pulse database for it to be added to a Simulation Pulse Sequence definition. The
Remove Selected button can be used to remove unwanted RF pulses while designing a
pulse sequence. Select the check box on the left side of each pulse you want to remove,
and then hit the Remove Selected button.

Note: Immediately upon browsing for an RF pulse and hitting OK, the sequence designer
dialog will take a “snapshot” of the selected pulse as it exists in the database at that
moment. If you are editing a Pulse PulseDesign to create the pulse to be used in Simulation,
you should hit Save before adding it to the Simulation pulse sequence. Also, when it is
added, this will freeze that version of the Pulse PulseDesign. If you go to save that
PulseDesign again, you will be prompted to save that version under a new name to preserve
the original waveform for use in Simulation. If you remove a pulse from a Simulation (and it’s
not being used anywhere else in Vespa), then the Pulse PulseDesign will be unfrozen, and
able to be edited and saved again.

Note2: The RF pulses included using this mechanism are static, in that they cannot be
altered at pulse sequence run time. There is no GUI element to represent these pulses in
the main program. The RF pulses selected in the designer are always and only the ones
available for use within your PyGAMMA code. That said, a user could designate a for-loop
or static variable that could be used to select one or more pulses from the static RF pulse list
if this flexibility was needed. However, at this time Simulation does not provide the
functionality to select Pulse waveforms from the Simulate tab at Experiment run time.

26

As described in more detail Appendix A, the values of user-specified parameters and pulses
are passed to each Simulation that is run as part of an Experiment. The results of setting up
your pulse sequence loops and additional parameters can be viewed in the “Test” tab. The
examples demonstrate how to define and use these parameters in PyGAMMA code.

Comments: A field where you can enter a lot of text to remind yourself why you make this
pulse sequence when you check back on it 3 months from now. This is also a good place to
put information for users on how to use this sequence.

Sequence Code Notebook Tab

Note: This tab can be moved and positioned in a variety of ways. Left click and drag the tab
of the pane that you want to re-locate to the position that you want it.

The Sequence Code tab is a text window in which PyGamma code can be pasted and/or
edited. See Appendix A for details of how Simulation interacts with your PyGAMMA code.
There's an example in the figure below.

Binning Code Tab

Note: This tab can be moved and positioned in a variety of ways. Left click and drag the tab
of the pane that you want to re-locate to the position that you want it.

This is a text window (like the Sequence Code tab) in which PyGamma code can be pasted
and/or edited. Simulation adds default binning code when the New Pulse Sequence dialog
opens, but you can edit or delete it as you like. Again, details are in Appendix A.

Test Tab

When the user clicks on the Test tab, the settings in the Design tab are validated, and if
passed, then the Test tab widgets are updated to reflect the pulse sequence design. If there
are any missing fields or other errors in the Design tab, the user is prompted to fix these
prior to switching to the Test tab.

Note: A similar validation takes place when the user hits the OK button. Only a validated
pulse sequence can be saved into the database. However, the validation only checks to
see if all necessary data is available in a reasonable format, NOT if it is functional
PyGAMMA code.

An example is shown below of how settings in the Design tab are represented on the Test
tab. Note that the test values for each loop have been entered and that the default value for
the “my string” user parameter has been altered as well.

27

Loop Values: These loops were defined in the Design tab. Any loops without a label are not
included in the pulse sequence. The user must fill in a value for use in the test run for each
loop.

User Static Parameters: User parameters were defined in the Design tab. They are initially
populated with their default values, but may be altered for the test run as necessary.

Experiment Parameters: When the Run Test button is hit, a mini-Experiment will be run to
test the user’s pulse sequence. In order to properly run and display results the experiment
needs values for Main Field [MHz], the isotope, one metabolite to be run (select from the list
as sorted by isotope), and the binning parameters for Peak Search Range and Blend
Tolerance (see Appendix A for more information on the standard blending algorithm)

28

Results Plot Options: These values only affect how the metabolite result is plotted to the
Display Canvas tab in the notebook. Spectral Points are the number of points in the
metabolite FID, Sweep Width defines the FID dwell time, Line Width [Hz] defines the
broadening applied to the FID. Checking the Gaussian box applies a Gaussian lineshape,
when it is not checked a Lorentzian lineshape is applied. Checking Magnitude plots
magnitude data on the canvas, otherwise real data is plotted. Checking x,y Values will show
in the lower left corner of the plot the x and y axis values of the location of the mouse as it
moves across the canvas.

Text Results Button: Creates a text representation of the metabolite test results and
displays them in a native text editor on your computer

Plot→PNG Button: Creates a PNG format image of the plot display and shows it in a native
image viewer on your computer.

Run Test Button: Runs a test Experiment on the pulse sequence. The Start and End times
should be reported in the Console window. Any additional exceptions that are raised should
be reported between these messages.

Console: The place where text messages about each Test Run are printed.

Visualize Notebook Tab

Note: This tab can be moved and positioned in a variety of ways. Left click and drag the tab
of the pane that you want to re-locate to the position that you want it.

The test metabolite results are reconstituted as a frequency domain spectrum as described
in the Results Plot Options and plotted to this display tab. The Left mouse button can be
used to draw a zoom box in both x and y directions. Multiple zooms can be performed. Left
clicking once in place will zoom you all the way out to the maximum x-axis extent and fit the
y-axis to approximately the min/max data range. Clicking and dragging on the Right mouse
will draw a Span Cursor, two vertical cursors on the screen, filled in with light gray. These
will stay in place between test runs as you vary loop and parameter values. Right clicking in
place will turn off the Span Zoom region.

Edit: The first highlighted sequence is opened in a form similar to the New Sequence dialog.
Note: Only the metabolite Name, and Comment are editable if the pulse sequence is “public” or
referred to by one or more Experiments. The name is editable because Experiments save Pulse
Sequence references by UUID which are not editable. Use the "Clone" option to create a copy
of a Pulse Sequence that is editable.

If the sequence is editable, the existing values of the pulse sequence object are populated into
the Design and Test tabs on startup. The name of the pulse sequence from the main dialog is
shown in the dialog title. The pulse sequence setting can be edited and tested just like a New
pulse sequence would be. Hitting OK saves any changes into the database. Cancel quits the
dialog without saving changes.

29

6. Results Output

6.1 Results output into standard text editor

The Vespa-Simulation View menu lists commands that only apply to the active Experiment Tab.
Select the View→Output→Text Results option and a tab-delineated text description of the
Experiment is created and loaded into the local computer’s standard text editor. On Windows,
this is typically Notepad. From here the user can save it wherever they please. N.B. This
command can also be launched from the Experiment TabVisualize sub-tab using the ASCII
Results button.

The first section of the text file describes the settings of the Experiment. Metabolite simulations
are saved as a collection of lines with amplitude, PPM and phase that can be used to recreate a
time domain spectrum. Each line contains: metabolite name, loop1_value, loop2_value,
loop3_value, line_number, PPM, area and phase (deg). The index_loop variables may be set to
other than 0 if the Experiment contains multiple steps in pulse sequence timings. E.g. an
Experiment could run NAA, Cr and Cho for 10 TE values, with TE1 being held fixed and TE2
having 10 values. In the output file, loop1_index would be fixed and loop2_index would
increment 10 times. The metabolite name(s) would repeat 10 times as well, as loop2_value is
incremented. In this way, a 2D Experiment is flattened into a 1D output file.

--- Experiment 9a146ac7-c47d-4ae2-b7b2-961e942d7d18 ---

Name: Example OnePulse Data

Public: True

Created: 2010-03-24T16:20:18

Comment (abbr.): Simulation for baseline GAVA database

PI: bsoher

Parameters:

b0: 64.000000

Peak Search PPM low/high: 0.000000 / 10.000000

Blend tol. PPM/phase: 0.001500 / 50.000000

Pulse seq.: bf0b302c-ce1f-46c9-b852-0e7c6b77f95c (One-Pulse)

3 Metabolites: aspartate, choline-truncated, creatine

1 Simulations: (not shown)

Simulation Results

aspartate 0.0 0.0 0.0 0 2.3706 0.03836 0.0

aspartate 0.0 0.0 0.0 1 2.49372 0.02196 0.0

aspartate 0.0 0.0 0.0 2 2.64232 0.409 0.0

aspartate 0.0 0.0 0.0 3 2.70787 0.42219 0.0

aspartate 0.0 0.0 0.0 4 2.76544 0.52731 0.0

aspartate 0.0 0.0 0.0 5 2.78347 0.5175 0.0

aspartate 0.0 0.0 0.0 6 2.97959 0.04772 0.0

aspartate 0.0 0.0 0.0 7 3.05519 0.01597 0.0

aspartate 0.0 0.0 0.0 8 3.58274 0.00563 0.0

aspartate 0.0 0.0 0.0 9 3.79689 0.29328 0.0

aspartate 0.0 0.0 0.0 10 3.87249 0.25374 0.0

aspartate 0.0 0.0 0.0 11 3.92001 0.23456 0.0

aspartate 0.0 0.0 0.0 12 3.99561 0.21054 0.0

aspartate 0.0 0.0 0.0 13 4.20976 0.00225 0.0

choline-truncated 0.0 0.0 0.0 0 3.185 3.0 0.0

creatine 0.0 0.0 0.0 0 3.027 3.0 0.0

creatine 0.0 0.0 0.0 1 3.913 2.0 0.0

creatine 0.0 0.0 0.0 2 6.649 1.0 0.0

6.2 Plot results to image file formats

Results in the 1D/StackPlot, Integral Plot and Contour Plot windows can all be saved to file in
PNG (portable network graphic), PDF (portable document file) or EPS (encapsulated postscript)
formats to save the results as an image. The Vespa-Simulation View menu lists commands that

30

only apply to the active Experiment Tab. Select the View→Output→ option and further select
either the 1D/StackPlot, IntegralPlot or ContourPlot menu item. Finally, select either Plot to
PNG, Plot to PDF or Plot to EPS item. The user will be prompted to pick an output filename to
which will be appended the appropriate suffix.

6.3 Plot results to vector graphics formats

Results in the 1D/StackPlot, Integral Plot and Contour Plot windows can all be saved to file in
SVG (scalable vector graphics) or EPS (encapsulated postscript) formats to save the results as
a vector graphics file that can be decomposed into various parts. This is particularly desirable
when creating graphics in PowerPoint or other drawing programs. At the time of writing this,
only the EPS files were readable into PowerPoint.

The Vespa-Simulation View menu lists commands that only apply to the active Experiment Tab.
Select the View→Output→ option and further select either the 1D/StackPlot, IntegralPlot or
ContourPlot menu item. Finally, select either Plot to SVG, or Plot to EPS item. The user will
be prompted to pick an output filename to which will be appended the appropriate suffix.

31

Appendix A. Pulse Sequence Design

A.1 What is under the hood?

A.1.1 Vespa-Simulation Basic Concepts

This is a combination of logical concepts and constraints that determine how Simulation works.
These rules are enforced through the application and, to some extent, the database.

The main objects in the system are experiments, simulations, spectra, pulse sequences and
metabolites. Experiments are the primary objects; everything else is secondary. Here's how
they're related --

 Each experiment has zero to many simulations. Simulations are the whole point of an
experiment, and there's not much to an experiment besides the metatdata that defines
the simulations. Since entering the experiment metadata is pretty trivial, we don't let
users save experiments that define zero simulations. Experiments with zero simulations
can exist, but only in memory. They are never saved to the database or an export file.

 Each experiment makes use of and refers to exactly one pulse sequence, but the
experiment may define one or more timing sets for the pulse sequence.

 Each simulation creates one spectrum.

 Each spectrum has zero or more lines. Zero is an unusual case, but possible.

 Each spectral line has one PPM, area and phase value in it.

We expect users to share data via Simulation's export and import functions. For this reason,
several of Simulation's objects (experiments, pulse sequences and metabolites)
have universally unique ids (UUIDs) rather than just ordinary integer ids.

A.1.2 Experiments

Experiments are the main focus of the Simulation application. An Experiment's raison d'etre is to
run a set of simulations. This set of simulations is the experiment's results space.

Currently, that space is defined by one to four nested loops. The first loop covers the list of
metabolites the user has involved in the experiment. The other one, two or three loops are user-
defined lists of numbers.

The figure below is a visual representation of a 3D results space (one set of metabolites and
two lists of user-defined numbers). For clarity we do not show the 4th dimension (a.k.a. the last
user defined loop) as stacks of cubes are hard to visualize.

http://en.wikipedia.org/wiki/Uuid

32

Simulations themselves know nothing about one another and are agnostic to the order in which
they're run. The existing Vespa-Simulation code is geared towards generating a regular results
space that we iterate over in a very straightforward order. (More complex result spaces and
iteration orders could be created provided you can dream up a GUI that allows users to describe
that results space.)

A few other “rules” of note:

 Once an experiment has been saved, the following attributes become read-only: pulse
sequence, investigator, user parameters, b0, isotope, peak_search_ppm_low,
peak_search_ppm_high, blend_tolerance_ppm, blend_tolerance_phase.

 One can associate additional metabolites with an experiment, but once it is associated
and the experiment is saved, the metabolite remains with the experiment forever. In
other words, a metabolite can't be removed from a saved experiment.

 An experiment's b0 value is always stored in megahertz.

The take-home lesson from this section is that the Vespa-Simulation application provides 4
dynamic (looping) variables and 12 standard static variables to each spectral simulation that is
run. In the example below, we will specify what these are and how they can typically be used. In

33

the second example below, we will discuss how user defined static variables (ie. they do not
change as the loop variables are incremented) can also be passed into spectral simulations.

A.2 First Steps for Creating Your Own Pulse Sequences

A.2.1 Overview

This section contains a lot of information about how the PyGAMMA pulse sequences that you
design in the Pulse Sequence Designer dialog work within the Vespa-Simulation application.
There is a lot of information here, but the thing to keep in mind is that there are 5 very well
documented examples following this section. Please take the time to read the “rules of the road”
here. It should keep you from any rookie mistakes like not using the right name for the function
that your PyGAMMA code goes inside. And then dig into some “learn by doing” afterwards.

The interface between Simulation and pulse sequence code changed in version 0.1.2 of Vespa.
The new interface is not compatible with the old one. Pulse sequence code in prior versions
won't run under the new interface without some changes.

We're written a practical guide to upgrading to 0.1.2. This document explains the details behind
the change, such as --

• How Simulation Runs a Pulse Sequence

• Why We Changed the Interface

• What the New Interface Looks Like

A.2.2 How Simulation Runs Your Pulse Sequence (A Brief Review)

Each pulse sequence consists of two pieces of code -- the sequence code and the binning
code. The sequence code is generally where we put PyGAMMA code that describes the
simulation and generates the results. The binning code can subsequently be used to simplify
these results (e.g. the combination of degenerate lines - hence, the name 'binning'). The binning
step is optional.

A.2.3 The Interface Between Simulation and Your Pulse Sequences

Simulation imports your code as modules. Importing a module should be familiar to anyone who
has used Python, and that's how Simulation uses your pulse sequence code. The sequence
and binning code segments you provide are saved to temp files and then Simulation imports
those files as two individual modules: one module for the sequence code and another module
for the binning code.

This means that your sequence code is in its own namespace and your binning code is in its
own separate namespace. It's as if they were in modules
named my_sequence_code.py and my_binning_code.py.

Simulation calls the run() function in your code. Calling a function in an imported module should
also be familiar to anyone who has used Python. In this case, you provide a function
called run() in both your sequence and binning code. Those functions each accept a single
parameter as described below.

Simulation passes a class instance to your code instead of a dictionary. Simulation passes an
instance of a class that describes the simulation with a well-defined set of attributes.

http://scion.duhs.duke.edu/vespa/project/wiki/UpgradingTo_0_1_2
http://scion.duhs.duke.edu/vespa/project/wiki/PulseSequenceInterfaceChange#HowSimulationRunsaPulseSequence
http://scion.duhs.duke.edu/vespa/project/wiki/PulseSequenceInterfaceChange#WhyWeChangedtheInterface
http://scion.duhs.duke.edu/vespa/project/wiki/PulseSequenceInterfaceChange#WhattheNewInterfaceLooksLike

34

The class contains attributes like field, peak_search_ppm_low, dims, etc. It also contains an
attribute called spin_system that returns a spin system for the current simulation.

For a full list of the class attributes, examine the class definition (in
vespa/simulation/src/simulation_description.py) or see section A.3.1 below.

The same object is passed to both the sequence and binning code, so it's easy to "pass" a
variable created in the sequence code to the binning code. Just assign it to an attribute on the
object. For instance, to make the transition table matrix available to the binning code, add this to
your sequence code:

sim_desc.mx = PyGAMMA.TTable1D(ACQ.table(sigma0))

This demonstrates a larger point: once the simulation description object is passed to your code,
Simulation doesn't use it. Your code is free to manipulate it as you see fit. Not only can you add
attributes and methods, you can delete and overwrite them too.

Simulation passes 8 bit strings. All strings passed to your code in the simulation description are
UTF-8 encoded 8 bit strings. If you don't know what this means, you can probably just ignore it.
Specifically, it means that the strings are safe for PyGAMMA. (see
http://scion.duhs.duke.edu/vespa/gamma/wiki/PyGammaAndPythonStrings)

Your code returns results via a return statement. Your code (sequence or binning, as explained
below) should return a 3-tuple of lists (or other iterables) of floats that represent the ppm, area,
and phase values. The phrase "...(or other iterables)..." means that the elements of the 3-tuple
can be lists, tuples, PyGAMMA.DoubleVector objects, numpy arrays, etc. They don't even have
to be of the same type. For instance, this is a valid set of results:

return ([0, 0, 0], numpy.zeros(3), PyGAMMA.DoubleVector(3))

The tuple elements must be the same length. If they're not, Simulation discards your results and
raises a ValueError.

You can return results from the sequence or binning code. Since not everyone will want to run a
binning step, we've made it easy to skip. If your sequence code returns a 3-tuple of results as
described above, Simulation won't call your binning code. If your sequence code
returns None(or doesn't have a return statement at all), then Simulation will call your binning
code which must return the 3-tuple of results.

Results must contain only Python float, int or long objects. The type of every element in the
ppm, area and phase lists must be float,int or long. One can't return, for example, Python
complex numbers, PyGAMMA complex numbers, or ctypes.c_float objects.

If this rule is violated, Simulation discards your results and raises a ValueError.

A.3 Creating a Pulse Sequence without Extra Parameters

A.3.1 How to create a “One-Pulse” pulse sequence

An important thing to remember in pulse sequence design is that regardless of how many
looping variables are defined, each spectral simulation (calculation) receives a standard set of
pulse sequence parameters as described below.

To achieve this, an object called “sim_desc” (the simulation description) is created to store
these common (and any other) parameters. A new sim_desc object is created for each
Simulation within an Experiment object (ie. You can not use this object to “pass messages”
between simulations). Each sim_desc object is sent to a function that executes the PyGAMMA

http://scion.duhs.duke.edu/vespa/project/browser/trunk/simulation/src/simulation_description.py
http://scion.duhs.duke.edu/vespa/gamma/intertrac/wiki%3APyGammaAndPythonStrings
http://scion.duhs.duke.edu/vespa/gamma/wiki/PyGammaAndPythonStrings

35

spectral simulation that it describes. On completion of each simulation, your code returns lists of
results (area, ppm, and phase values). Simulation adds start/finish time stamps and stores the
results in the database.

The 15 standard parameters and one user defined parameter are stored as attributes of the
sim_desc object, and are:

‘vespa_version’ – (string) version number of the Vespa-Simulation program in string format

‘field’ – (float) main B0 field strength in MHz

‘observe_isotope – (string) the nuclei used to sort/select the metabolites of interest in the
Experiment, and thus assumed to be the one used to observe results. Can be used to keep your
code nuclei agnostic

‘peak_search_ppm_low’ – (float) lower end of range in ppm to be searched in binning code
(see below)

‘peak_search_ppm_high’ – (float) upper end of range in ppm to be searched in binning code
(see below)

‘blend_tolerance_ppm’ – (float) width of bins in ppm into which similar lines can be combined
(see below)

‘blend_tolerance_phase’ – (float) width of bins in phase (specified in degrees) into which
similar lines can be combined (see below)

‘dims – (list) this list contains the values of the 4 loops as set for this particular simulation.
Specifically, dims[0] is a string containing the metabolite name, dims[1] dims[2] and dims[3]
contain the float values of the three counting loops.

‘met_iso – (list) string value for the isotope of each spin in the current metabolite

‘met_cs – (list) float ppm value for chemical shift of each spin in the current metabolite

‘met_js – (list) float ppm value for J-couplings of each spin pair in the current metabolite

‘nspins – (int) number of spins in the metabolite (for convenience)

‘user_static_parameters’ – (list) static parameters defined by the user in the GUI that are
stored in this list as strings in the order that they are presented in the GUI (see below). Note: In
this One-Pulse experiment there are no user defined parameters so the list would be empty.

‘pulses’ – (list) contains zero or more MinimalistPulse objects. These objects pass the minimum
amount of data needed to use the results from a Pulse PulseDesign as a ‘real’ pulse in a
PyGAMMA simulation. A MinimalistPulse contains a string ‘name’ attribute, a float ‘dwell_time’
attribute and a ‘waveform’ attribute that is a list of complex floats in microTesla. The minimalist
pulse objects are in the same order as they were listed in the Pulse Sequence Designer dialog.

The formal definition of the MinimalistPulse class is in vespa/public/minimalist_pulse.py which
you can view online here:

http://scion.duhs.duke.edu/vespa/project/browser/trunk/public/minimalist_pulse.py

‘spin_system’ – (object) Via the attribute "spin_system", the sim_desc object provides a
PyGamma spin_system object constructed from the field, isotopes, chemical shifts and j-
coupling values. This is only for your convenience and you're welcome to use the original values
any way you please.

http://scion.duhs.duke.edu/vespa/project/browser/trunk/public/minimalist_pulse.py

36

The One-Pulse Example

Here is the PyGAMMA code that is in the sequence_code string for the One-Pulse sequence:

import pygamma as pg

def run(sim_desc):

 #---

 # Example PyGAMMA pulse sequence for use in Vespa-Simulation

 #

 # A timing diagram for this pulse sequence can be found in the

 # Appendix of the Simulation User Manual.

 #---

 spin_system = sim_desc.spin_system

 # the isotope string used to sort/select the metabolites of

 # interest is passed in the sim_desc object so the user can tailor

 # other object within their code to be nuclei specific, such as

 # the observe operator or pulses

 obs_iso = sim_desc.observe_isotope

 # set up steady state and observation variables

 H = pg.Hcs(spin_system) + pg.HJ(spin_system)

 D = pg.Fm(spin_system, obs_iso)

 ac = pg.acquire1D(pg.gen_op(D), H, 0.000001)

 ACQ = ac

 # excite and acquire the data

 sigma = pg.sigma_eq(spin_system)

 sigma0 = pg.Iypuls(spin_system, sigma, obs_iso, 90.0)

 # instantiate and save transition table of simulation results

 # note. this step copies the TTable1D result from the ACQ into

 # a TTable1D object in the sim_desc object. Thus, when

 # we return from this function and the ACQ variable gets

 # garbage collected, our copy of the results in not affected

 sim_desc.mx = pg.TTable1D(ACQ.table(sigma0))

The first thing to note is that other than the “spin_system” attribute, this pulse sequence does
not make use of any of the parameters in the sim_desc object. There are no loops in this
simulation and no user-defined static parameters. (For examples of how to use these variables
see the following examples).

In this example the first line of code (ignoring comments) defines the Hamiltonian, in this case
consisting simply of chemical shift and J coupling terms. The second through fourth lines define
the detection and acquisition operators. Note that the observation nuclei is specified dynamically

using the string passed in within the sim_desc.observe_isotope attribute. The fifth line

defines an equilibrium density matrix. The sixth line applies an ideal 90 degree pulse to the
density matrix and returns the resulting density matrix. The final line applies the acquisition
operator to the final density matrix and returns a transition table. For more details on PyGAMMA
and GAMMA objects consult the PyGAMMA documentation.

37

Note. The final line of code demonstrates the one “output” code requirement if the user plans on
using the standard ‘binning_code’ provided by Simulation as the default. In that case, the user
must create and fill a transition table attribute called “mx” in the sim_desc object.

Note. In the final line, we have to explicitly create a new TTable1D object and copy the
simulation results from the TTable1D in the ACQ variable. This is done by default if the
TTable1D to be copied is passed into the initialization of the object. We copy this information
because otherwise we would only have a reference to the ACQ object’s results. When we return
from the function, the ACQ object is ‘garbage collected’ and then our reference is broken.

Here is the PyGAMMA code that is the default binning_code string which is automatically
inserted into the Binning Code tab for each new pulse sequence definition, and subsequently is
used in the One-Pulse sequence:

import pygamma

import numpy as np

def run(sim_desc):

 area = pygamma.DoubleVector(0)

 ppm = pygamma.DoubleVector(0)

 phase = pygamma.DoubleVector(0)

 field = sim_desc.field

 nspins = sim_desc.nspins

 tolppm = sim_desc.blend_tolerance_ppm

 tolpha = sim_desc.blend_tolerance_phase

 ppmlow = sim_desc.peak_search_ppm_low

 ppmhi = sim_desc.peak_search_ppm_high

 specfreq = field

 numberspins = nspins

 freqtol = tolppm

 phasetol = tolpha

 lowppm = ppmlow

 highppm = ppmhi

 freqs = []

 freqout = []

 ampout = []

 phaseout = []

 bincount = 0

 foundone = 0

 PI = 3.14159265358979323846

 RAD2DEG = 180.0/PI

 mx_index = sim_desc.mx.Sort(0,-1,0)

 nlines = sim_desc.mx.size()

 for ii in range(nlines):

 freqs.append(-1 * sim_desc.mx.Fr(mx_index[ii])/(2.0*PI*specfreq))

 normal = 2.0**(numberspins-1)

 normal = normal / 2.0

 for i in range(nlines):

 freq = freqs[i]

 if (freq > lowppm) and (freq < highppm):

 val = sim_desc.mx.I(mx_index[i])

 valr = val.real()

 vali = val.imag()

38

 amptemp = np.sqrt(valr**2 + vali**2) / normal

 phasetemp = -RAD2DEG * np.angle(valr+vali*1j)

 if bincount == 0:

 freqout.append(freq)

 ampout.append(amptemp)

 phaseout.append(phasetemp)

 bincount += 1

 else:

 for k in range(bincount):

 if (freq >= freqout[k]-freqtol) and (freq <= freqout[k]+freqtol):

 if (phasetemp >= phaseout[k]-phasetol) and

 (phasetemp <= phaseout[k]+phasetol):

 ampsum = ampout[k]+amptemp

 freqout[k] = (ampout[k]*freqout[k] + amptemp*freq)/ampsum

 phaseout[k] = (ampout[k]*phaseout[k] + amptemp*phasetemp)/ampsum

 ampout[k] += amptemp;

 foundone = 1;

 if foundone == 0:

 freqout.append(freq)

 ampout.append(amptemp)

 phaseout.append(phasetemp)

 bincount += 1

 foundone = 0

 ppm.resize(bincount)

 area.resize(bincount)

 phase.resize(bincount)

 for i in range(bincount):

 ppm[i] = freqout[i]

 area[i] = ampout[i]

 phase[i] = -1.0*phaseout[i]

 return (ppm, area, phase)

This code expects that an attribute named “mx” that is a PyGAMMA transition table, already
exists in the sim_desc object. All the lines in the transition table, mx, are extracted, sorted and
combined using a bootstrap method to create a group of bins containing lines within ± freqtol
Hertz and ± phasetol Degrees in common bins The results are three equal length lists called
area, ppm and phase that are subsequently returned from the execution of the binning function
to the main Simulation application for storage in the database.

If the user wants to write their own ‘binning’ code then they must follow these requirements. If
the user is careful about what is provided/executed in the ‘sequence_code’ and subsequently
used in the ‘binning_code’, there may be no need for the “mx” variable. But, your code must
always return the three equal length lists representing ppm, area and phase.

A.3.2 A “One-Pulse” pulse sequence that does NOT use binning code

Here is the PyGAMMA code that is in the sequence_code string for the One-Pulse No Binning
sequence

import math

import pygamma as pg

def run(sim_desc):

 #--

 # This is an example PyGAMMA pulse sequence for use in Vespa-Simulation.

39

 # It demonstrates how results can be returned directly by the sequence

 # code as opposed to being returned by the binning code. When the

 # sequence code returns results, the binning code is never invoked.

 #

 # A timing diagram for this pulse sequence can be found in the Appendix

 # of the Simulation User Manual.

 #--

 spin_system = sim_desc.spin_system

 # the isotope string used to sort/select the metabolites of

 # interest is passed in the sim_desc object so the user can tailor

 # other object within their code to be nuclei specific, such as

 # the observe operator or pulses

 obs_iso = sim_desc.observe_isotope

 # set up steady state and observation variables

 H = pg.Hcs(spin_system) + pg.HJ(spin_system)

 D = pg.Fm(spin_system, obs_iso)

 ac = pg.acquire1D(pg.gen_op(D), H, 0.000001)

 ACQ = ac

 # excite and acquire the data

 sigma = pg.sigma_eq(spin_system)

 sigma0 = pg.Iypuls(spin_system, sigma, obs_iso, 90.0)

 # instantiate transition table of simulation results

 mx = pg.TTable1D(ACQ.table(sigma0))

 # Calculate results

 mx_indices = mx.Sort(0, -1, 0)

 normal = 0.5 * 2**(sim_desc.nspins - 1)

 ppms = []

 areas = []

 phases = []

 for index in mx_indices:

 # ctmp is a complex number

 ctmp = mx.I(index)

 ppms.append(-mx.Fr(index) / (2.0 * math.pi * sim_desc.field))

 areas.append(math.hypot(ctmp.Rec(), ctmp.Imc()) / normal)

 if ctmp.Imc() or ctmp.Rec():

 phase = (-180.0 / math.pi) * math.atan2(ctmp.Imc(), ctmp.Rec())

 else:

 phase = 0

 phases.append(phase)

 phases = [(phase * -1.0) for phase in phases]

 return (ppms, ares, phases)

40

Note that the lines in yellow further process the original One-Pulse sequence in order to extract
the transition lines from the PyGAMMA simulation and then process them so that they are
appropriately passed back to the Simulation program. Note also that some of this code is
PyGAMMA (mx.Sort, etc.), some is straight Python (math.pi, math.atan2, etc.).

The final line of code creates a tuple with three iterable objects (lists in this case, but it could
also be tuples or other iterable objects) that contain the ppm values, areas and phase values for
all lines. These lists MUST have the same length. These are the results values that are saved to
the database.

The fact that your sequence code returns something other than None tells Simulation not to call
the binning code.

A.3.3 The “Ideal-PRESS” pulse sequence – typical use of standard parameters

Here is the PyGAMMA code that is in the sequence_code string for the PRESS_Ideal
sequence:

import pygamma as pg

def run(sim_desc):

 #--

 # This is an example PyGAMMA pulse sequence

 # for use in Vespa-Simulation

 #

 # A timing diagram for this pulse sequence can be

 # found in the Appendix of the Simulation User Manual.

 #--

 spin_system = sim_desc.spin_system

 # the isotope string used to sort/select the metabolites of

 # interest is passed in the sim_desc object so the user can tailor

 # other object within their code to be nuclei specific, such as

 # the observe operator or pulses

 obs_iso = sim_desc.observe_isotope

 # extract the dynamically changing variable

 # from loop 1 and 2 for 'te1' and 'te2', divide

 # by 1000.0 because the GUI states that values

 # are entered in [ms], but PyGAMMA wants [sec]

 te1 = sim_desc.dims[1] / 1000.0

 te2 = sim_desc.dims[2] / 1000.0

 # set up steady state and observation variables

 H = pg.Hcs(spin_system) + pg.HJ(spin_system)

 D = pg.Fm(spin_system, obs_iso)

 ac = pg.acquire1D(pg.gen_op(D), H, 0.000001)

 ACQ = ac

 sigma0 = pg.sigma_eq(spin_system)

 # excite, propagate, refocus and acquire the data

 sigma1 = pg.Iypuls(spin_system, sigma0, obs_iso, 90.0)

 Udelay = pg.prop(H, te1*0.5)

41

 sigma0 = pg.evolve(sigma1, Udelay)

 sigma1 = pg.Iypuls(spin_system, sigma0, obs_iso, 180.0)

 Udelay = pg.prop(H, (te1+te2)*0.5)

 sigma0 = pg.evolve(sigma1, Udelay)

 sigma1 = pg.Iypuls(spin_system, sigma0, obs_iso, 180.0)

 Udelay = pg.prop(H, te2*0.5)

 sigma0 = pg.evolve(sigma1, Udelay)

 # instantiate and save transition table of simulation results

 # note. this step copies the TTable1D result from the ACQ into

 # a TTable1D object in the sim_desc object. Thus, when

 # we return from this function and the ACQ variable gets

 # garbage collected, our copy of the results in not affected

 sim_desc.mx = pg.TTable1D(ACQ.table(sigma0))

The first thing to note is that this pulse sequence utilizes the “spin_system” variable and also the

sim_desc object for the Loop1 and Loop2 values in the “te1 = sim_desc.dims[1]” and

“te2 = sim_desc.dims[2]” lines. There are no user-defined static parameters. Similarly

to the example above a transition table attribute called “mx” is set up in the last line of code.

(Not shown) The default binning_code string is used to return the values from the transition
table to the main Simulation program.

A.4 Creating a Pulse Sequence with Extra Parameters

A.4.1 The “PRESS-CP with Variable R-groups” Pulse Sequence

Here is the PyGAMMA code that is in the sequence_code string for the PRESS-CP with
Variable R-groups” sequence:

import pygamma as pg

def run(sim_desc):

 spin_system = sim_desc.spin_system

 # the isotope string used to sort/select the metabolites of

 # interest is passed in the sim_desc object so the user can tailor

 # other object within their code to be nuclei specific, such as

 # the observe operator or pulses

 obs_iso = sim_desc.observe_isotope

 # extract the dynamically changing variable from loops 1, 2 and 3, divide

 # 'te1' and 'te2' by 1000.0 because the GUI states that values are entered

 # in [ms], but PyGAMMA wants [sec]

 te1 = sim_desc.dims[1] / 1000.0

 te2 = sim_desc.dims[2] / 1000.0

 rgroups = int(sim_desc.dims[3])

 # extract user static parameter values from the control dictionary. They

 # are inserted into a list in the order that they are shown in the GUI.

 pulse_type = int(sim_desc.user_static_parameters[0])

 ang90 = float(sim_desc.user_static_parameters[1])

 pd90 = float(sim_desc.user_static_parameters[2])

 tauR = float(sim_desc.user_static_parameters[3])

 pd180 = pd90 * 2.0

 ang180 = ang90 * 2.0

42

 offhz = 0.0

 # set up steady state and observation variables

 H = pg.Hcs(spin_system) + pg.HJ(spin_system)

 D = pg.Fm(spin_system, obs_iso)

 ac = pg.acquire1D(pg.gen_op(D), H, 0.000001)

 ACQ = ac

 # apply excitation pulse and propagate to first 180 pulse

 sigma0 = pg.sigma_eq(spin_system)

 sigma1 = pg.Iypuls(spin_system, sigma0, obs_iso, 90.0)

 Udelay = pg.prop(H, te1*0.5)

 sigma0 = pg.evolve(sigma1, Udelay)

 # apply first 180 pulse and propagate to CP train start

 sigma1 = pg.Iypuls(spin_system, sigma0, obs_iso, 180.0)

 Udelay = pg.prop(H, te1*0.5)

 sigma0 = pg.evolve(sigma1, Udelay)

 sigma1 = sigma0

 # apply the Carr-Purcell refocussing pulse train

 if pulse_type == 0:

 # using Ideal 180 pulses

 for k in range(rgroups):

 Udelay = pg.prop(H, tauR/2.0)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = pg.Iypuls(spin_system,sigma0,180)

 Udelay = pg.prop(H, tauR/2.0)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = sigma0

 else:

 for k in range(rgroups):

 # using 90-180-90 square 'Sandwich' pulses with MLEV16 phase

 # cycling

 if (k % 4) == 0:

 Udelay = pg.prop(H, tauR/2.0)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, ang90)

 sigma0 = pg.Sypuls(spin_system, sigma1, H, obs_iso, offhz, pd180, ang180)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, ang90)

 Udelay = pg.prop(H, tauR)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, ang90)

 sigma0 = pg.Sypuls(spin_system, sigma1, H, obs_iso, offhz, pd180, ang180)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, ang90)

 Udelay = pg.prop(H, tauR)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, -ang90)

 sigma0 = pg.Sypuls(spin_system, sigma1, H, obs_iso, offhz, pd180, -ang180)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, -ang90)

 Udelay = pg.prop(H, tauR)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, -ang90)

 sigma0 = pg.Sypuls(spin_system, sigma1, H, obs_iso, offhz, pd180, -ang180)

43

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, -ang90)

 Udelay = pg.prop(H, tauR/2.0)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = sigma0

 if (k % 4) == 1:

 Udelay = pg.prop(H, tauR/2.0)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, -ang90)

 sigma0 = pg.Sypuls(spin_system, sigma1, H, obs_iso, offhz, pd180, -ang180)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, -ang90)

 Udelay = pg.prop(H, tauR)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, ang90)

 sigma0 = pg.Sypuls(spin_system, sigma1, H, obs_iso, offhz, pd180, ang180)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, ang90)

 Udelay = pg.prop(H, tauR)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, ang90)

 sigma0 = pg.Sypuls(spin_system, sigma1, H, obs_iso, offhz, pd180, ang180)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, ang90)

 Udelay = pg.prop(H, tauR)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, -ang90)

 sigma0 = pg.Sypuls(spin_system, sigma1, H, obs_iso, offhz, pd180, -ang180)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, -ang90)

 Udelay = pg.prop(H, tauR/2.0)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = sigma0

 if (k % 4) == 2:

 Udelay = pg.prop(H, tauR/2.0)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, -ang90)

 sigma0 = pg.Sypuls(spin_system, sigma1, H, obs_iso, offhz, pd180, -ang180)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, -ang90)

 Udelay = pg.prop(H, tauR)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, -ang90)

 sigma0 = pg.Sypuls(spin_system, sigma1, H, obs_iso, offhz, pd180, -ang180)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, -ang90)

 Udelay = pg.prop(H, tauR)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, ang90)

 sigma0 = pg.Sypuls(spin_system, sigma1, H, obs_iso, offhz, pd180, ang180)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, ang90)

 Udelay = pg.prop(H, tauR)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, ang90)

 sigma0 = pg.Sypuls(spin_system, sigma1, H, obs_iso, offhz, pd180, ang180)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, ang90)

44

 Udelay = pg.prop(H, tauR/2.0)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = sigma0

 if (k % 4) == 3:

 Udelay = pg.prop(H, tauR/2.0)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, ang90)

 sigma0 = pg.Sypuls(spin_system, sigma1, H, obs_iso, offhz, pd180, ang180)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, ang90)

 Udelay = pg.prop(H, tauR)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, -ang90)

 sigma0 = pg.Sypuls(spin_system, sigma1, H, obs_iso, offhz, pd180, -ang180)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, -ang90)

 Udelay = pg.prop(H, tauR)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, -ang90)

 sigma0 = pg.Sypuls(spin_system, sigma1, H, obs_iso, offhz, pd180, -ang180)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, -ang90)

 Udelay = pg.prop(H, tauR)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, ang90)

 sigma0 = pg.Sypuls(spin_system, sigma1, H, obs_iso, offhz, pd180, ang180)

 sigma1 = pg.Sxpuls(spin_system, sigma0, H, obs_iso, offhz, pd90, ang90)

 Udelay = pg.prop(H, tauR/2.0)

 sigma0 = pg.evolve(sigma1,Udelay)

 sigma1 = sigma0

 # propagate to second 180 pulse

 Udelay = pg.prop(H, te2*0.5)

 sigma0 = pg.evolve(sigma1, Udelay)

 # apply second 180 pulse and propagate to data acquisition

 sigma1 = pg.Iypuls(spin_system, sigma0, obs_iso, 180.0)

 Udelay = pg.prop(H, te2*0.5)

 sigma0 = pg.evolve(sigma1, Udelay)

 # instantiate and save the transition table of simulation results

 # note. this step copies the TTable1D result from the ACQ into

 # a TTable1D object in the sim_desc object. Thus, when

 # we return from this function and the ACQ variable gets

 # garbage collected, our copy of the results in not affected

 sim_desc.mx = pg.TTable1D(ACQ.table(sigma0))

The pulse sequence makes use of the “spin_system” attribute. The first seven lines of code
(ignoring comments) are good examples of how to access the sim_desc object attributes for all
three loop parameters and some user-defined static parameters. Note that the object attribute
name for user-defined parameters is ‘user_static_parameters’ and that they are ordered into a
list in the order they are arranged in the GUI. Thus, the alpha/2 pulse duration is set by the line:

‘pd90 = float(sim_desc.user_static_parameters[2])’
since this variable was the third one listed in the GUI. Similarly to the examples above a
transition table variable called “mx” is set up in the last line of code.

45

Also of note in this example is the fact that typical Python control structures can be used in
these sequence_code strings, for loops, if statements, etc. However, extreme care should be
taken to have consistent spacing and (lack of) tabs in the code that is pasted into the new pulse
sequence dialog tab.

A.5 Creating a Pulse Sequence with an RF Pulse Waveform

A.5.1 A “PRESS” sequence that uses a ‘real’ RF pulse read in from a file

A typical application might be to use one or more user defined pulses in a pulse sequence.
Though various ways of accessing pulses in the VeSPA database for use in pulse sequences is
described elsewhere a simple method that PyGAMMA provides is to read the complex values
for a given pulse from file. The following code, closely resembling the above PRESS sequence
code but using real pulses for the 180 pulses, illustrates how to accomplish this. In particular a
user_static_parameter is used to specify the name and path of the file containing the pulse
values. Note. That while this example is still valid, we strongly recommend that users include RF
waveforms into their sequences using the Pulse application and Simulation-Pulse Sequence
Designer mechanism. This provides significantly more provenance about the creation and
content of any included waveforms. See section A.5.2 for an example.

import pygamma as pg

def run(sim_desc):

 #--

 # This is an example PyGAMMA pulse sequence

 # for use in Vespa-Simulation

 #

 # A timing diagram for this pulse sequence can be

 # found in the Appendix of the Simulation User Manual.

 #--

 spin_system = sim_desc.spin_system

 # the isotope string used to sort/select the metabolites of

 # interest is passed in the sim_desc object so the user can tailor

 # other object within their code to be nuclei specific, such as

 # the observe operator or pulses

 obs_iso = sim_desc.observe_isotope

 # extract the dynamically changing variable

 # from loop 1 and 2 for 'te1' and 'te2', divide

 # by 1000.0 because the GUI states that values

 # are entered in [ms], but PyGAMMA wants [sec]

 #
 # evolution after 90 before first 180 in msec and

 # divide by 1000 so PyGAMMA TE is in msec

 te1 = float(sim_desc.dims[1]) /1000.0

 te2 = float(sim_desc.dims[2]) /1000.0

 # extract user static parameter values from the control dictionary. They

 # are inserted into a list in the order that they are shown in the GUI.

 pulsestep = float(sim_desc.user_static_parameters[0])

 pulse180file = str(sim_desc.user_static_parameters[1])

 # set up a container and read pulse values into it. You could also

46

 # read a file using Python code and subsequently inset values into

 # the PyGAMMA row_vector container. Then create a “time axis” array

 # with a time value for each point in the pulse vector

 pulse = pg.row_vector.read_pulse(pulse180file,

 pg.row_vector.ASCII_MT_DEG)

 ptime = pg.row_vector(pulse.size())

 total = pulse.size() * pulsestep

 for j in range(pulse.size()):

 ptime.put(pg.complex(pulsestep, 0), j)

 # create the pulse waveform and composite pulse objects from the

 # file and pulse sequence information

 pwf = pg.PulWaveform(pulse, ptime, "TestPulse")

 pulc = pg.PulComposite(pwf, spin_system, obs_iso)

 # note that below we have to now account for the time of

 # the pulse in our propagation intervals in order to have

 # our TE calculate correctly.

 H = pg.Hcs(spin_system) + pg.HJ(spin_system)

 D = pg.Fm(spin_system)

 Udelay1 = pg.prop(H, 0.5*(te1-total))

 Udelay2 = pg.prop(H, 0.5*(te1-total + te2-total))

 Udelay3 = pg.prop(H, 0.5*(te2–total))

 ac = pg.acquire1D(pg.gen_op(D), H, 0.001)

 ACQ = ac

 sigma0 = pg.sigma_eq(sys)

 sigma1 = pg.Iypuls(sys, sigma0, 90.0)

 sigma0 = pg.evolve(sigma1, Udelay1)

 Ureal180 = pulc.GetUsum(-1)

 sigma1 = Ureal180.evolve(sigma0)

 sigma0 = pg.evolve(sigma1, Udelay2)

 sigma1 = Ureal180.evolve(sigma0)

 sigma0 = pg.evolve(sigma1, Udelay3)

 # instantiate and save the transition table of simulation results

 # note. this step copies the TTable1D result from the ACQ into

 # a TTable1D object in the sim_desc object. Thus, when

 # we return from this function and the ACQ variable gets

 # garbage collected, our copy of the results in not affected

 sim_desc.mx = pg.TTable1D(ACQ.table(sigma0))

A.5.2 A “PRESS” sequence that uses a ‘real’ RF pulse from Pulse

As of Vespa release 0.3.0, users can include a list of Pulse waveforms to be sent to each
simulation. These pulses are selected during the design of the pulse sequences (see section
5.3) and remain fixed throughout the entire Experiment calculation. The following code, closely
resembling the above PRESS sequence code but using real pulses for the 180 pulses, which
are sent into the simulation as part of the sim_desc parameter:

import pygamma as pg

import numpy as np

import math

47

def run(sim_desc):

 #--

 # This is an example PyGAMMA pulse sequence

 # for use in Vespa-Simulation

 #

 # A timing diagram for this pulse sequence can be

 # found in the Appendix of the Simulation User Manual.

 #--

 spin_system = sim_desc.spin_system

 # extract the dynamically changing variable

 # from loop 1 and 2 for 'te1' and 'te2', divide

 # by 1000.0 because the GUI states that values

 # are entered in [ms], but PyGAMMA wants [sec]

 #

 # evolution after 90 before first 180 in msec and

 # divide by 1000 so PyGAMMA TE is in msec

 te1 = float(sim_desc.dims[1])/1000.0

 te2 = float(sim_desc.dims[2])/1000.0

 # extract static RF pulses from the control dictionary. They are

 # inserted into a list in the order that they are shown in GUI.

 # The pulse name, dwell_time and waveform are all part of each

 # MinimalPulse object in the list. Dwell_time is in micro-seconds,

 # so it needs to be converted to sec. Waveforms are the complex

 # time array that would be played out on MR scanner. These values

 # are complex numbers in mT, so taking the magnitude/phase of

 # each waveform, we can convert these values into the Hz and phase

 # in degrees that a PulWaveform in PyGAMMA requires.

 pulsestep = float(sim_desc.pulses[0].dwell_time) * 1e-6

 waveform = sim_desc.pulses[0].waveform

 waveform = np.array(waveform)

 # PulWaveform expects Hz amplitude and angle in degrees, while

 # Simulation gives us mT amplitude and angle in radians.

 # We need to use the appropriate gyromagnetic ratio to do the

 # conversion. This depends on our observe_isotope, since the pulse

 # is not isotope specific, but the spins we expect it to affect,

 # is.

 # (e.g. we use 42576.0 for 1H to covert mT and RAD2DEG for phase)

 obs_iso = sim_desc.observe_isotope

 if obs_iso == '1H':

 gyratio = 42576.0

 elif obs_iso == '13C':

 gyratio = 67262.0

 elif obs_iso == '19F':

 gyratio = 251662.0

 elif obs_iso == '23Na':

 gyratio = 70761.0

 elif obs_iso == '31P':

 gyratio = 108291.0

 ampl_arr = np.abs(waveform) * gyratio

 phas_arr = np.angle(waveform) * 180.0 / math.pi

48

 # set up a container and read pulse values into it. You could also

 # read a file using Python code and subsequently inset values into

 # the PyGAMMA row_vector container. Then create a time axis array

 # with a time value for each point in the pulse vector

 pulse = pg.row_vector(len(waveform))

 ptime = pg.row_vector(len(waveform))

 for j,val in enumerate(zip(ampl_arr,phas_arr)):

 pulse.put(pg.complex(val[0],val[1]), j)

 ptime.put(pg.complex(pulsestep,0), j)

 total = pulse.size() * pulsestep

 # create the pulse waveform and composite pulse objects from the

 # file and pulse sequence information

 pwf = pg.PulWaveform(pulse, ptime, "adiabatic180")

 pulc = pg.PulComposite(pwf, spin_system, obs_iso)

 # note that below we have to now account for the time of

 # the pulse in our propagation intervals in order to have

 # our TE calculate correctly.

 H = pg.Hcs(spin_system) + pg.HJ(spin_system)

 D = pg.Fm(spin_system, obs_iso)

 Udelay1 = pg.prop(H, 0.5*(te1-total))

 Udelay2 = pg.prop(H, 0.5*(te1-total + te2-total))

 Udelay3 = pg.prop(H, 0.5*(te2-total))

 ac = pg.acquire1D(pg.gen_op(D), H, 0.001)

 ACQ = ac

 sigma0 = pg.sigma_eq(spin_system)

 sigma1 = pg.Iypuls(spin_system, sigma0, 90.0)

 sigma0 = pg.evolve(sigma1, Udelay1)

 Ureal180 = pulc.GetUsum(-1)

 sigma1 = Ureal180.evolve(sigma0)

 sigma0 = pg.evolve(sigma1, Udelay2)

 sigma1 = Ureal180.evolve(sigma0)

 sigma0 = pg.evolve(sigma1, Udelay3)

 # instantiate and save the transition table of simulation results

 # note. this step copies the TTable1D result from the ACQ into

 # a TTable1D object in the sim_desc object. Thus, when

 # we return from this function and the ACQ variable gets

 # garbage collected, our copy of the results in not affected

 sim_desc.mx = pg.TTable1D(ACQ.table(sigma0))

49

Appendix B. Pulse Sequence Diagrams

This section provides some basic information about the standard simulated pulse sequences
that are provided as part of the Vespa distribution. The full PyGAMMA code for each pulse
sequence can be accessed through the Pulse Sequence Management Dialog widget using the
View or Edit functions.

B.1 One-Pulse

B.1.1 Sequence Diagram

B.1.2 Loop Variable 1,2,3 Descriptions

Loop1 – not used

Loop2 – not used

Loop3 – not used

B.1.3 User Defined Parameters

Static Parameters

None

Static Pulses from Pulse Database

None

B.1.4 General Description

This is a simulation of a pulse and observe, or one-pulse, pulse sequence. The typical 90y degree hard
pulse is modeled by an ideal GAMMA pulse. Despite the slight spacing in the sequence diagram, there is
no evolution period after the excitation pulse prior to transition table acquisition.

50

B.2 Spin-Echo

B.2.1 Sequence Diagram

B.2.2 Loop Variable 1,2,3 Descriptions

Loop1 – Describes the number of TE values to loop over in [ms].

Loop2 – not used

Loop3 – not used

B.2.3 User Defined Parameters

Static Parameters

None

Static Pulses from Pulse Database

None

B.2.4 General Description

This is a simulation of a spin-echo sequence using ideal GAMMA pulses for the 90y and 180y localization
pulses.

51

B.3 PRESS Ideal

B.3.1 Sequence Diagram

B.3.2 Loop Variable 1,2,3 Descriptions

Loop1 – Describes the number of TE1 values to loop over in [ms].

Loop2 – Describes the number of TE2 values to loop over in [ms].

Loop3 – not used

Notes – Pulse sequence TE = TE1+TE2.

B.3.3 User Defined Parameters

Static Parameters

None

Static Pulses from Pulse Database

None

B.3.4 General Description

This is a simulation of a Point Resolved Spectroscopy (PRESS). The typical 90-180-180 localization
pulses of the PRESS sequence are modeled by ideal GAMMA pulses. The TE1 period is controlled by
the settings of loop variable 1, the TE2 period is controlled by the settings of loop variable 2; thus either a
symmetric or asymmetric PRESS experiment can be simulated.

52

B.4 STEAM Ideal

B.4.1 Sequence Diagram

B.4.2 Loop Variable 1,2,3 Descriptions

Loop1 – Describes the number of TE values to loop over in [ms].

Loop2 – Describes the number of TM values to loop over in [ms].

Loop3 – not used

B.4.3 User Defined Parameters

Static Parameters

None

Static Pulses from Pulse Database

None

B.4.4 General Description

This is a simulation of a STimulated Excitation Acquisition Mode (STEAM) pulse sequence. The typical
90-90-90 pulses of the STEAM sequence are modeled by ideal GAMMA pulses. The total TE period is
controlled by the settings of loop variable 1, the TM (mixing time) period is controlled by the settings of
loop variable 2.

53

B.5 JPRESS Ideal

B.5.1 Sequence Diagram

B.5.2 Loop Variable 1,2,3 Descriptions

Loop1 – Describes the number of TE1 values to loop over in [ms].

Loop2 – not used

Loop3 – not used

B.5.3 User Defined Parameters

Static Parameters

None

Static Pulses from Pulse Database

None

B.5.4 General Description

This is a simulation of a J-PRESS pulse sequence. The typical 90-180-90-180 pulses of the JPRESS
sequence are modeled by ideal GAMMA pulses. The total TE period is controlled by the settings of loop
variable 1.

54

B.6 PRESS with Pulse Pulses

B.6.1 Sequence Diagram

B.6.2 Loop Variable 1,2,3 Descriptions

Loop1 – Describes the number of TE1 values to loop over in [ms].

Loop2 – Describes the number of TE2 values to loop over in [ms].

Loop3 – not used

Notes – Pulse sequence TE = TE1+TE2.

B.6.3 User Defined Parameters

Static Parameters

None

Static Pulses from Pulse Database

1. Adiabatic 180 for Simulation real pulse test

B.6.4 General Description

This is a simulation of a Point Resolved Spectroscopy (PRESS). The typical 90-180-180 localization
pulses of the PRESS sequence are modeled by ideal GAMMA pulses and real RF waveforms using
GAMMA PulWaveform and PulComposite objects. The 90 excite pulse is ideal, the subsequent 180
refocus pulses are the same “real” pulse waveforms. Note that in this PRESS sequence, the TE1 and
TE2 periods must be long enough to contain the duration of the “real” pulse waveforms or the periods
between the pulses could result in negative timings.

The TE1 period is controlled by the settings of loop variable 1, the TE2 period is controlled by the settings
of loop variable 2; thus either a symmetric or asymmetric PRESS experiment can be simulated.

55

There are important changes in this version of Simulation and the example code provided. The sim_desc
object passed into the sequence code contains two new attributes, one called 'observe_isotope' and the
other called 'pulses'.

The 'observe_isotope' is a string indicating the nuclei used to populate the metabolite list widget. For
example, if the user selected '1H' metabolites, then the string '1H' is passed into the sequence code. This
value can be used to tailor the other PyGAMMA objects in the code to the metabolites of interest. For
example, the observation operator "D" in line 78 of this code can be set to whatever nuclei we want
because it uses the sim_desc.observe_isotope value to set itself up.

The "pulses" attribute is a list of "real" RF pulses that were copied from Pulse projects in the Vespa
database. Each item in the list is an instance of the MinimalistPulse class. That class contains attributes:

‘name’ the pulse name (just for your information),

‘dwell_time’ the dwell time as a single float in microseconds (all waveforms are assumed to have
evenly spaced time axis points)

‘waveform’ the waveform as a list of complex floats in micro-Tesla.

As shown in the sequence code, this waveform can be converted for the field strength and gyromagnetic
ratio required and turned into a PyGAMMA PulWaveform and from there inserted into a PulComposite
that can be used in the pulse sequence.

The formal definition of the MinimalistPulse class is in vespa/public/minimalist_pulse.py which you can
view online here:

http://scion.duhs.duke.edu/vespa/project/browser/trunk/public/minimalist_pulse.py

http://scion.duhs.duke.edu/vespa/project/browser/trunk/public/minimalist_pulse.py

56

Appendix C. Mixed Metabolite Output

This section describes the implementation and usage of the Mixed Metabolite Output dialog.
This dialog is used to convert Simulation results into various third party readable file formats. At
the moment, there are five supported formats:

1) The GAVA format, so-called because it was part of the original GAVA program. It is used
extensively in the SITools/FITT program as metabolite prior information files.

2) LCModel RAW import file format.

3) jMRUI Data Text file format.

4) MIDAS Generic XML format

5) Vespa-Analysis Prior format

The same dialog is used to output all formats; an example is shown below:

Please note the following requirements to access this widget:

• You must have loaded at least one Experiment.

• The active Experiment tab (if more than one Experiment is loaded) is the one for which the
third party files will be output.

57

• If the output format requires that only one set of metabolite results is output (e.g. LCModel
and jMRUI) then the loop indices currently selected in the Visualize tab are used.

• The Experiment→ThirdPartyExport… menu on the main application launches the dialog.

C.1 General Functionality

The Mixed Metabolite Output dialog acts on the Experiment that is active when the dialog is
launched. The GUI reformats itself depending on the Format pull down list. GAVA format saves
all Experiment results (i.e. every simulation for each set of loop values). LCModel, jMRUI,
MIDAS and Analysis Prior formats save all metabolites for only one set of loop values from the
selected Experiment. The indices selected in the active Experiment in the Visualize tab when
the dialog is launched are the ones used. This is indicated in the “Output Loop Values”
comment at the top of the dialog.

The Output Location into which results are saved can be selected using the Browse… button.
This selection is used slightly differently in each format. The differences will be discussed
specifically for each format in the sections below. A comment can be added in the dialog that is
included in all text output. The dialog defaults to listing all metabolites in the Experiment, but
these can be removed or put back in with the Add Metabolite and Remove Selected buttons.
The Add Metabolite Mixture …button will pop up another small dialog in which you can design
a “mixture” of two or more metabolite results with different scaling factors. This will be described
in detail later. The Cancel button quits the dialog without performing any output. The OK button
outputs the described collection of metabolite results and mixtures to the indicated format and
Output Location.

For all formats, the dialog creates a header comment block that is prepended to all text files
being output. This header describes the Experiment and results/mixtures being output, and lists
the modifying parameters for metabolites and formulae for any mixtures.

The Metabolite and Mixed Metabolite Output List is a dynamic list that changes length as
entries are added or deleted. Each row in this list is a result that will be saved upon output. The
widgets in each row affect the way the results are output as defined below:

• Checkbox – is used to select rows to delete from the output list, but otherwise does not
affect whether a given metabolite/mixture is output or not. All rows present when you hit OK
are used to create the output.

• Metabolite List – drop list, is used to select which metabolite to output. The other widget
settings in this row modify the results for the selected metabolite/mixture. It is possible to
have two or more of the same metabolite selected for output. The only requirement is that
they have unique strings in the Unique Abbreviation field.

• Unique Abbreviation – text field, a unique string used to identify this output row. In
LCModel and jMRUI Data Text, this is the metabolite output filename. In GAVA Text, this is
the first column metabolite name string.

• Scale – floatspin field, should contain a float value and should be positive. The area values
for all lines in an Experiment Simulation result are multiplied by this scale value before being
output.

• Shift – floatspin field, should contain a floating point PPM value and can be positive or
negative. This shift value is added to all ppm values for all lines in an Experiment Simulation
result before being output.

58

• Range Start and Range End – floatspin fields, should contain floating point ppm values.
These values default to the min/max ppm values displayed for the active Experiment. They
can be set narrower to filter the results that are output. Only the Experiment Simulation lines
that lie between the start and end ppm range will be included in the output files. Each row
can have a different range. Again, all these settings are saved in the header comment block
on output.

Add Metabolite Mixture … Button

This button allows users to add a “mixture” result to the Output list. Each mixture can consist of
two or more metabolites, each with a different mixture scaling factor (as opposed to the Scale
field on the main dialog). The Mixed Metabolite Designer widget is shown below. The user has
to specify a Unique Name string that is different from all other strings in the Abbreviation
column in the main dialog. The user can click on the Add Metabolite and Remove Selected
(with a check box selected) buttons to change the number of metabolites in the mix. The drop
list widget in each row of the dynamic list is used to select a metabolite from existing metabolite
results. A mixture can contain metabolites that are not being saved in the main dialog.

For example, as shown below, an Experiment might have GABA and lactate in its results list
drop down widget. But the user could remove both GABA and lactate from the list in the main
widget, and create a mixture called “gaba+lac” with a 1:5 ratio. This would show up in the main
dialog as shown in the second figure below. Note. A more realistic mixture might be to mix NAA
to NAAG in a 1:0.05 mixture.

Mixture Creation Caveats:

The Metabolite drop list is populated only with the concatenation of all full metabolite names (in
this case “gaba+lactate”) as a reminder of what the mixture contains. When metabolite names
get long, sometimes these can not be fully seen in this widget. Widening the dialog can make
these more visible.

The scales set in the mixture design dialog and main mixed output dialog are cumulative. E.g. if
you create a mixture of NAA+NAAG at 1:0.05 in the designer, and then set the Scale value in
the main dialog to 3.0, then the actual multiplier for NAA line areas will be 3.0 and NAAG line
areas will be 0.15.

59

C.2 GAVA Text Format Specific Information

The first figure in this section shows the Mixed Metabolite Output dialog configured for the
GAVA Text format output. The main difference in this configuration is that there are no Format
Specific Parameters in the middle the dialog (as for LCModel and jMRUI). Otherwise, the top
and bottom widgets perform similarly to the general descriptions in section C.1.

C.2.1 Using the Dialog

Since GAVA Text format is a simple “flattened” text output of the Experiment results, there is no
user-set header data that is required to be filled into widgets. The results are output into a
single file. The Output Location can be set using the Browse… button. The user is prompted
to select a directory and a filename. As stated in the section at the top, results for selected
metabolites in for all loop values in the currently selected tab will be saved.

C.2.2 Example GAVA Text Output File

Following in the steps of the example shown above with two metabolites and one mixture, here
is a short example of the data output to the simulation_mixed_output.txt file

;Vespa-Simulation Mixed Metabolite Output
;
;Output Path/Filename = C:\bsoher\temp\simulation_mixed_output.txt
;Output Loop Values = All loops will be saved for this format
;Output Comment
;---
;
;
;Experiment Information

60

;---
;--- Experiment 91291fb0-95d0-4e62-b95e-028d96d5e853 ---
;Name: Example SpinEcho multi-TE
;Public: True
;Created: 2010-10-11T11:22:17
;Comment (abbr.): example of a spin-echo experiment at 3T
;PI: bjs
;b0: 128.000000
;Peak Search PPM low/high: 0.000000 / 10.000000
;Blend tol. PPM/phase: 0.001500 / 50.000000
;Pulse seq.: 2e9c8f33-06d4-4934-ae2b-199b605fe98a (Spin-Echo)
;0 User static parameters:
;7 Metabolites: choline-truncated, creatine, gaba, glutamate, lactate, myo-inositol, n-acetylaspartate
;98 Simulations: (not shown)
;
;Metabolite Formatting Information
;---
;Name=choline-truncated Abbr=choline-truncated Scale=1.0 Shift=0.0 PPM Start=-3.10487060547 PPM End=12.5125
;Name=creatine Abbr=creatine Scale=1.0 Shift=0.0 PPM Start=-3.10487060547 PPM End=12.5125
;Name=gaba+lactate Abbr=gaba+lac Scale=1.0 Shift=0.0 PPM Start=-3.10487060547 PPM End=12.5125
; Mixture of [metab*scale] = gaba*1.0 + lactate*5.0
;
;Simulation Spectral Results
;---
choline-truncated 10.0 0.0 0.0 0 3.185 3.0 -9.93923337957e-16
creatine 10.0 0.0 0.0 0 3.027 3.0 -7.95138670366e-16
creatine 10.0 0.0 0.0 1 3.913 2.0 -4.96961668979e-17
creatine 10.0 0.0 0.0 2 6.649 1.0 9.93923337957e-17
gaba+lac 10.0 0.0 0.0 0 1.64314237348 6.82464923377e-05 46.1587697321
gaba+lac 10.0 0.0 0.0 1 1.76022959161 0.0599190291344 47.6446766073

…

In the GAVA Text format, lines starting with a semicolon are ignored as comments. Thus the
prepended header comment block starts all lines with “;”. The actual data starts on the final 6
lines shown, with a tab-delineated layout. Each row of data in the file contains the name of the
metabolite, the loop1 value, the loop2 value, the loop3 value, the transition table line number for
the metabolite, the ppm value, area value and phase value for each spectral line in the
metabolite Simulation result. For choline and creatine, these are only 1 and 3 lines respectively.
But, for other multiplet resonance metabolite results, such as the gaba+lac mixture, this can run
to 10s to 100s of lines of data. And if the Experiment had more that one loop in it, the first set of
results is written out for all metabolites, then the next loop value for all metabolites, and so on.
In the example above with two metabolites and one mixture output for a spin-echo pulse
sequence Experiment with 10 TE settings, there were 2838 lines of results in the final file.

61

C.3 LCModel Format Specific Information

The following figure shows the Mixed Metabolite Output dialog configured for LCModel format
output. The main difference in this configuration is the Format Specific Parameters panel half
way down the dialog. Otherwise, the top and bottom widgets perform similarly to the general
descriptions above.

C.3.1 Using the Dialog

LCModel results are saved in a format compatible for import into the LCModel software
package. This format creates a single text file for each metabolite that contains a comment
section followed by a LCModel specific header section, which is followed by a textual
representation of a complex array containing a FID of the metabolite of interest created for
specific sweep width, points and lineshape parameters.

The Output Location can be set using the Browse… button. The user is prompted to select a
directory. LCModel RAW files are output to the directory selected. The Output Location is set to
show that directory plus a filename (e.g. C:\data\temp\lcmodel_output_summary.txt). After the
LCModel RAW files are created, a final text file called ‘lcmodel _output_summary.txt’ is created
in the directory that lists the details about what data was exported from Vespa-Simulation, the
details about how any mixtures were created, and any other parameters used to modify the
simulation results.

62

The Header Parameter section is used to control LCModel specific header parameters that the
program uses on import. These parameters are: FMTDAT, TRAMP and VOLUME fields. For
more information on these settings, see the LCModel user manual. The FID Creation section
contains parameters that are used to create the FID representation of the metabolite result.
These include Sweep Width in Hz, number of Data Points, the Apodize value in Hz and the
Lineshape type (either Gaussian or Lorentzian).

A reference line singlet at 0.0 PPM can be added to the spectrum, as required by LCModel for
import, by checking the box.

Upon hitting the OK button the dialog will create individual output files for each metabolite.
These files are names according to the Abbreviation field in each row in the dynamic list (e.g.
<abbreviation>.RAW). The files are saved in the same directory chosen by the user at the top of
the dialog. A copy of the Mixed Metabolite Output header comment block is stored in the
filename specified at the top of the dialog. A separate copy of the header comment is saved in
each RAW file prior to the LCModel specific header parameters.

C.3.2 Example – Creating an LCModel Basis Set (by Hongji Chen)

Open the Vespa-Simulation program and, if an Experiment is not already loaded, load an
Experiment. Click on the Experiment tab that you want to output. Select the loop values in the
Visualize Tab for the specific metabolite results that you want to output. Select
Simulation→ThirdPartyExport menu item.

The Mixed Metabolite Output widget pops up. Make sure that the Format widget is set to
LCmodel. Select a directory and output filename for files. Add a comment if you want. Change
the DataPoints value to 2048 and make sure the Add Singlet at 0 ppm is selected.
Add/Remove the metabolites or mixes you want to output and click OK. Your results are written
to the designated folder.

There are two sets of files in the folder - One is the data in frequency domain (with ‘_freq’) and
the other one in time domain. To make basis sets by LCModel, only the time domain files are
needed.

How to make basis set by LCModel is described in section 8.6 in the following manual.

http://s-provencher.com/pub/LCModel/manual/manual.pdf

The only thing you need to do is to create your own ‘makebasis.in’. An example is listed below.
All the control parameters in this example are specified in the LCModel manual. The one critical
pitfall: the first column of each line is always ignored; so each line must start with one space.

 $seqpar

 seq='PRESS'

 echot=40.

 fwhmba=.013

 $end

 $nmall

 hzpppm=123.25

 deltat=.0005

 nunfil=2048

 filbas='/na/homes/username/.lcmodel/test_gava/output/test_gava.basis'

 filps='/na/homes/username/.lcmodel/test_gava/output/basis.ps'

 autosc=.false.

 autoph=.false.

 consistent_scaling=.false.

 idbasi='test basis set (gava)'

http://s-provencher.com/pub/LCModel/manual/manual.pdf

63

 $end

 $nmeach

 filraw='/na/homes/username/.lcmodel/test_gava/raw/naa.RAW'

 metabo='NAA'

 degzer=0.

 degppm=0.

 conc=1.

 ppmapp=0.2, -.2

 ppmpk=0.

 ppmoff=-1.2, -1.4

 fwhmsm=0.015

 $end

 $nmeach

 filraw='/na/homes/username/.lcmodel/test_gava/raw/cr.RAW'

 metabo='Cr'

 degzer=0.

 degppm=0.

 conc=1.

 ppmapp=0.2, -.2

 ppmpk=0.

 ppmoff=-1.2, -1.4

 fwhmsm=0.015

 $end

 $nmeach

 ...

 $end

When your own ‘makebasis.in’ is ready, you run MakeBasis with a command like

$HOME/.lcmodel/bin/makebasis < makebasis.in

The basis set generated will be saved in the ‘filbas’ folder specified in the ‘makebasis.in’ file.

64

C.4 jMRUI Data Text Format Specific Information

The following figure shows the Mixed Metabolite Output dialog configured for jMRU Data Text
format output. The main differences in this configuration are the Format Specific Parameters
panel half way down the dialog. Otherwise, the top and bottom widgets perform similarly to the
general descriptions in section C.1.

C.4.1 Using the Dialog

jMRUI results are saved in a text format compatible for import into the jMRUI software package.
This format creates a single text file for each metabolite that contains a jMRUI specific header
section followed by a textual representation of a complex array containing a FID of the
metabolite of interest created for specific sweep width, points and lineshape parameters.

The Output Location can be set using the Browse… button. The user is prompted to select a
directory. jMRUI Data Text files are output to the directory selected. The Output Location is set
to show that directory plus a filename (e.g. C:\data\temp\jmrui-text_output_summary.txt). After
the jMRUI Data Text files are created, a final text file called ‘jmrui-text_output_summary.txt’ is
created in the directory that lists the details about what data was exported from Vespa-

65

Simulation, the details about how any mixtures were created, and any other parameters used to
modify the simulation results.

There are a number of text parameters that are set in each file to describe the data. These
values are extracted automatically from the Experiment data or from the FID Creation section
values in the Mixed Metabolite Output dialog. For more information on jMRUI settings, see the
jMRUI user manual. The FID Creation section contains parameters that are used to create the
FID representation of the metabolite result. These include Sweep Width in Hz, number of Data
Points, the Apodize value in Hz and the Lineshape type (either Gaussian or Lorentzian).

Upon hitting the OK button the dialog will create individual output files for each metabolite.
These files are names according to the Abbreviation field in each row in the dynamic list (e.g.
<abbreviation>.RAW). The files are saved in the same directory chosen by the user at the top of
the dialog. A copy of the Mixed Metabolite Output header comment block is stored in the
filename specified at the top of the dialog.

66

C.5 MIDAS Generic XML Format Specific Information

The following figure shows the Mixed Metabolite Output dialog configured MIDAS Generic XML
format output. The main difference in this configuration is that there are no Format Specific
Parameters in the middle the dialog (as for LCModel and jMRUI). Otherwise, the top and bottom
widgets perform similarly to the general descriptions in section C.1.

C.5.1 Using the Dialog

MIDAS Generic XML format is a simple “flattened” text output of the Experiment results using a
variant on an XML format that is specific to the MIDAS program. There is no user-set header
data that is required to be filled into widgets. Results are output into a single file. The Output
Location can be set using the Browse… button. The user is prompted to select a directory and
a filename. As stated in the section at the top, results for selected metabolites in a single set of
loop values in the currently selected tab will be saved.

This XML file contains two nodes,

1) VESPA_SIMULATION_MIDAS_EXPORT - has the description of how the metabolites and
metabolite mixtures were organized for output from the Experiment.

2) FITT_Generic_XML - contains the Experiment results in a line-by-line output style.

In both nodes, there are multiple "comment" or "param" tags, respectively, which contain "name"
and "value" attributes in which data is stored. There is no data stored in the actual tag, just
attributes. This type of file is typically read into the MIDAS program to provide prior metabolite
information for the FITT2 application.

Experiment data is stored in the FITT_Generic_XML node. Metabolite data starts in the
<param> tag with “name” attribute equal to “fitt_PriorLine00001”. Each <param> tag of data in

67

the file contains a “value” attribute that contains the name of the metabolite, the loop1 value, the
loop2 value, the loop3 value, the transition table line number for the metabolite, the ppm value,
area value and phase value for each spectral line in the metabolite Simulation result. These are
all stored in one text string separated by “++” symbols. For choline and creatine, these are only
1 and 3 lines respectively. But, for other multiplet resonance metabolite results, such as the
gaba+lac mixture, this can run to 10s to 100s of lines of data.

C.5.2 Example MIDAS Generic XML Output File

Following in the steps of previous examples (with two metabolites and one mixture), here is a
short example of the data output to the midas_output.xml file

<FITT_Generic_XML Creation_date="2011-03-08" Creation_time="11:55:32">
 <VESPA_SIMULATION_MIDAS_EXPORT>
 <comment line="line0000" value="Vespa-Simulation Mixed Metabolite Output" />
 <comment line="line0001" value="" />
 <comment line="line0002" value="Output Path/Filename = C:\bsoher\code\repository_svn\vespa\simulation\midas_output.xml" />
 <comment line="line0003" value="Output Loop Values = All loops will be saved for this format" />
 <comment line="line0004" value="Output Comment" />
 <comment line="line0005" value="---" />
 <comment line="line0006" value="" />
 <comment line="line0007" value="" />
 <comment line="line0008" value="Experiment Information" />
 <comment line="line0009" value="---" />
 <comment line="line0010" value="--- Experiment 92adae26-137e-48ce-8c35-02905bb5cfd5 ---" />
 <comment line="line0011" value="Name: Example PRESS_Ideal multi-TE" />
 <comment line="line0012" value="Public: True" />
 <comment line="line0013" value="Created: 2011-01-24T11:01:16" />
 <comment line="line0014" value="Comment (abbr.): Example of a PRESS experiment at 3T usin" />
 <comment line="line0015" value="PI: bjs" />
 <comment line="line0016" value="b0: 128.000000" />
 <comment line="line0017" value="Peak Search PPM low/high: 0.000000 / 10.000000" />
 <comment line="line0018" value="Blend tol. PPM/phase: 0.001500 / 50.000000" />
 <comment line="line0019" value="Pulse seq.: 0b3db82e-d04b-4719-b8f9-95f1153f0d50 (PRESS Ideal)" />
 <comment line="line0020" value="0 User static parameters: " />
 <comment line="line0021" value="7 Metabolites: choline,creatine,gaba,glutamate,lactate,myo-inositol,n-acetylaspartate" />
 <comment line="line0022" value="98 Simulations: (not shown)" />
 <comment line="line0023" value="" />
 <comment line="line0024" value="Metabolite Formatting Information" />
 <comment line="line0025" value="---" />
 <comment line="line0026" value="Name=choline Abbr=choline Scale=1.0 Shift=0.0 PPM Start=-3.10487 PPM End=12.5125" />
 <comment line="line0027" value="Name=creatine Abbr=creatine Scale=1.0 Shift=0.0 PPM Start=-3.10487060547 PPM End=12.5125" />
 <comment line="line0028" value="Name=gaba+lactate Abbr=gaba+lac Scale=1.0 Shift=0.0 PPM Start=-3.10487 PPM End=12.5125" />
 <comment line="line0029" value=" Mixture of [metab*scale] = gaba*1.0 + lactate*1.0" />
 </VESPA_SIMULATION_MIDAS_EXPORT>
 <PRIOR_METABOLITE_INFORMATION>
 <param name="fitt_PriorLine00001" value="choline-truncated++10.0++30.0++0.0++0++3.185++3.0++3.2680199352e-13" />
 <param name="fitt_PriorLine00002" value="creatine++10.0++30.0++0.0++0++3.027++3.0++2.85844069302e-13" />
 <param name="fitt_PriorLine00003" value="creatine++10.0++30.0++0.0++1++3.913++2.0++1.90976157368e-13" />
 <param name="fitt_PriorLine00004" value="creatine++10.0++30.0++0.0++2++6.649++1.0++4.77915613015e-13" />
 <param name="fitt_PriorLine00005" value="gaba+lac++10.0++30.0++0.0++0++1.30216386911++6.56750777889e-05++-138.531997369" />
 <param name="fitt_PriorLine00006" value="gaba+lac++10.0++30.0++0.0++1++1.39807431416++8.34965132792e-05++94.719201079" />
 ...
 ...
 <param name="fitt_PriorLine00182" value="gaba+lac++10.0++30.0++0.0++177++4.17942135846++0.117527687393++-149.811478877" />
 </PRIOR_METABOLITE_INFORMATION>
</FITT_Generic_XML>

68

C.6 Analysis Prior XML Format Specific Information

The following figure shows the Mixed Metabolite Output dialog configured for Analysis Prior
XML format output. This format allows users to output to a file the information from an
Experiment that could be used in the Analysis application to create a set of bases functions to
model real MRS data. This information can also be accessed using direct query of the Vespa
database from the Analysis application GUI, however, we also include it here for convenience.

The main difference in this configuration is that there are no Format Specific Parameters in the
middle the dialog (as for LCModel and jMRUI). Otherwise, the top and bottom widgets perform
similarly to the general descriptions in section C.1.

C.6.1 Using the Dialog

Analysis Prior XML format is a simple “flattened” text output of the Experiment results using the
XML format with nodes specific to the Vespa-Analysis program. There is no user-set header
data that is required to be filled into widgets. Results are output into a single file. The Output
Location can be set using the Browse… button. The user is prompted to select a directory and
a filename. As stated in the section at the top, results for selected metabolites in a single set of
loop values in the currently selected tab will be saved.

This XML file contains layout and organization typical to other “export” options in the Vespa
package, because it uses common coding and naming conventions. There is a comment node
at the top that contains information about the Experiment used to generate this file. Following
that, there are “metabolite” nodes that list each resonance line for the result being reported for a
given metabolite.

69

C.6.2 Example Analysis Prior XML Output File

Due to length, this is not shown.

70

Appendix D. Object State in Applications

This section describes important concepts in Vespa that have significant practical issues in how
you make use of all the applications in the package. We have defined a number of terms that
describe certain conditions of the prior information and results that are stored within the Vespa
database. These terms include: ‘private’, ‘public’, ‘in use’ and ‘frozen’. Our definition of these
terms, and their practical implementation within Vespa applications, go a long way towards
providing accurate workflow provenance of how experiments or pulse projects were created.
They also help to keep users from deleting or changing important information. This section will
help you understand what these terms mean and how to use them effectively within Vespa.

D.1 Background and Design Philosophy

Our overall goal when designing Vespa has been to try to help you organize your data and
workflow. Each application has a number of modules that can be combined in different ways as
part of your investigations. For example, in Simulation an experiment contains one pulse
sequence and one or more metabolites. There are a variety of pulse sequences and metabolites
and these can be combined in many ways to create experiments. The design philosophy behind
Vespa has been to enable great flexibility in each application while still providing a complete
description of how each usage ended up with the results it did. This historical record your
actions is called the ‘provenance’.

In the database, each pulse sequence, metabolite and pulse project is stored just once, but may
be referred to by many other objects. For instance, the three sample experiments installed with
Vespa Simulation all refer to the metabolite creatine. A change to the definition of creatine
would be a change in all of the experiments that refer to it. This would damage the provenance
that Vespa wants to protect.

D.2 State Definitions and Usage

To avoid damaging provenance Vespa classifies items into states called ‘private’, ‘public’, ‘in
use’ and ‘frozen’. These states determine which database items can be changed/deleted and
which cannot. There are also very simple steps for creating editable copies of uneditable items.
Definitions and advice for each state is given below.

D.2.1 Private and Public

Objects Affected: experiments, metabolites, pulse sequences, pulse projects

All of these objects start life private. That means they're only in your database; no one else has
seen them.

Once exported, objects become public. That means that their definition has been shared with
the world. Public objects are frozen (see below). Furthermore, the objects to which they refer
(directly and indirectly) also become public (and frozen). For instance, if an experiment refers to
a pulse sequence that refers to a pulse project, all three of those objects become public when
the experiment is exported.

Once a private object has become public, it can never become private again. Cloning, however,
will create a new, private object with exactly the same properties (but a different UUID).

71

D.2.2 In Use

Objects Affected: metabolites, pulse sequences, pulse projects

When you select a metabolite or pulse sequence for use in an experiment, that experiment
refers to the object for as long as the experiment exists in your database. Metabolites and pulse
sequences that are referred to by an experiment are in use by that experiment.

Objects that are in use may not be deleted and are frozen (see below).

There's no limit to the number of references an object may have.

Once all of the experiments referring to an object are deleted, the object is no longer in use.

D.2.3 Frozen

Objects Affected: experiments, metabolites, pulse sequences, pulse projects

Frozen objects are mostly un-editable -- only the name and comments can be changed. Objects
are frozen for one of two reasons.

In use objects (metabolites, pulse sequences and pulse projects) are frozen because they're
referred to by an experiment, and changing the underlying objects that the experiment uses
would corrupt the experiment.

Public objects are frozen because once you've shared an object with others (or you've imported
an object that they've shared with you), you need to be able to trust that you're talking about
exactly the same object.

Here's a table summarizing when an object is frozen.

Private? In Use? Frozen?

Yes No No

Yes Yes Yes

No (public) No Yes

No (public) Yes Yes

Note that no objects can refer to experiments, so experiments can never be 'in use'.

Note that frozen only refers to whether or not the fundamental attributes of the object can be
edited. It doesn't affect whether or not it can be deleted.

72

Appendix E. Report on Issue with Binning
Heterogeneous Spin-system Simulations

As of April 2015, we moved the default binning code into Python rather than using the GAMMA
TTable1D::calc_spectra() method. The new Python code replicates the functionality of the
GAMMA call, but has a new scheme for scaling the transition table lines to account now for both
homonuclear AND heteronuclear resonances within the spin_system being simulated.

E.1 Background – the Problem

A big thanks to Dr. Roland Kreis for reporting this issue. He showed that in a very simple
experiment (One-Pulse) that if a tri-methyl metabolite (such as phosphorylethanolamine, that
has a 14N spin in its spin_system definition) with a non-spin ½ isotope attached is simulated,
then the multiplet structure has an incorrect vertical scale. The ratio between the lines in the
resonance pattern are correct, but the overall vertical scale was too large.

This issue only occurs if the non-1H spin was also not spin ½ like 1H is. So, for example,
metabolites with 1H and 31P spins within their spin_system (like GPC-gp) had correct
normalization because 31P is also spin ½.

An example of this issue is shown in the figure below. We have simulated a One-Pulse
experiment for two imaginary metabolites CH-CH2-14N and CH-CH2-31P. One has spin ½ 31P
attached and the other has spin 1 14N. In the plot below, you can see that the spectral pattern is
the same except for a scaling difference.

73

The text output for the two metabolites is shown before and demonstrate the differences in the
spectral line areas. The next from the last column is the Area value for each spectral line. The
values should be the same, but the CH-CH3-N14_1.0 metabolite areas are 1.5x larger.

E.2 Resolution

The temporary workaround we recommended was for users to remove the non-1H spin and re-
run the sim.

Subsequently, we dug into the code and found that the issue was happening in the scaling
being performed in the binning code after the simulation is finished but before the results were
being stored in the Vespa database. Our previous binning code was a call made to a GAMMA
routine called TTable1D::calc_spectra(). This method included a step for scaling due to
homonuclear spins equal to normal = 0.5 * pow(2.0,(ns-1)) where ns = number of spins. This
still works fine for metabolites in simulations that only have 1H spins or if the non-1H spins are
all spin ½.

After a great deal of digging, we developed a new normalization calculation, but this is only
based on empirical evidence, not on physical principles. This factor is now based on the
quantum spin number for each spin and the ratio between these spin numbers and the observe
isotope.

We have replaced the binning code in the example pulse sequence for you to examine and use
as a template for new simulations. At this time we have NOT changed any code in the GAMMA
library. See Appendix A for the default Python binning code.

This code change will not affect existing simulations in your database, but you may want to go
back and check to see if any of the metabolites you simulated contained isotopes that are not
spin ½.

