

Duckietown Engineering
Map conventions for DP6a

This is the set of conventions we use to create and save a map
of Duckietown for localization (DP6a) purposes.

Contents

Contents
Overall information structure
duckietown_tile_map.csv

Example:
duckietown_tag_map.csv

Example:
Generating the Map File

Overall information structure
All the information about a particular Duckietown that is needed for localization is saved in two
separate .csv files:
duckietown_tile_map.csv​​ contains information about the dimensions (in terms of tiles) of
Duckietown; for every tile, it contains the tile’s position, type, and orientation.
duckietown_tag_map.csv​​ contains information about all the april tags (currently only
intersection tags with ID’s 1-124) in Duckietown: (the tag’s position and orientation with respect
to a tile).
Neither of these contain metric information. The idea is that someone building a (physical)
Duckietown can fully describe it using these two files without having to measure anything. The
metric information (which matches the Duckietown convention) is saved in the param file
catkin_ws/src/duckietown/config/baseline/duckietown_description/default.yaml

duckietown_tile_map.csv
● Comma-separated
● 4 columns: [​int​ x, ​int​ y, ​int​ rotation, ​string​ tile_type]
● The first row contains the headers “x, y, tile_type, rotation” (this is for clarity only, the

code skips this line)
● Each subsequent row defines a tile in the map.
● Every map is rectangular (if it isn’t we define empty tiles as needed) with dimensions ​n

rows​​ by ​m columns ​​of tiles
● The ​origin ​​(0, 0) is the bottom left of the map

2

● The point (​x, y​​) is the vertex defined by the boundary between up to 4 tiles and has x
total tiles to its left and y total files under it.

● Each coordinate pair (​x, y​​) describes the tile in the first quadrant wrt (​x, y​​) i.e. above and
to the right. So, for example (0, 0) describes the left-most, bottom tile.

○ x​​ ranges from ​0​​ to ​m
○ y​​ ranges from ​0​​ to ​n

● The ​tile_type​​ column describes what type of tile it is. The possible types are:

‘empty’ ‘straight’ ‘turn’ ‘3way’ ‘4way’

● The ​rotation​​ column specifies how many degrees the tile is rotated ​counterclockwise

according to the following convention:
○ For ‘empty’ the rotation is ​always​​ 0.
○ For ‘straight’ the rotation is 0 if a car can traverse it ​horizontally​​ or 90 if

vertically
○ For ‘turn’ the rotation is

■ 0 if it is a ​left turn​​ for a car coming ​from the left​​.
■ 90 if it is a ​left turn​​ for a car coming ​from the bottom.
■ 180 if it is a ​left turn​​ for a car coming ​from the right.
■ 270 if it is a ​left turn​​ for a car coming ​from the top.

○ For a ‘3way’ the rotation is 0 if cars can enter from the​ left, right​​, and ​top ​​like an
inverted T.

○ For a ‘4way’ the rotation is ​always​​ 0
● The 4 possible rotations are 0, 90, 180, and 270

3

Example:
As an example, the following table is the ​duckietown_tile_map.csv ​​for the Duckietown section
below

x y tile_type rotation

0 0 4way 0

0 1 straight 90

0 2 3way 180

1 0 straight 0

1 1 empty 0

1 2 straight 0

2 0 turn 0

2 1 straight 90

2 2 turn 90

4

duckietown_tag_map.csv
Note: currently the duckietown description code only uses intersection tags (those with
ID’s 1-124) so although other tags such as street names can be seen by the robot, the csv
file should only contain the intersection tags.

● Comma-separated
● 5 columns: [​int​ tag_ID, ​int​ x, ​int​ y, ​int​ position, ​int​ rotation]
● The first row contains the headers “ tag_ID, x, y, position, rotation” (this is for clarity only,

the code skips this line)
● Each subsequent row defines one tag
● tag_ID ​​is the unique (within a Duckietown) id number every tag has printed in it.
● The columns ​x​​ and ​y​​ define the global position of the tag in Duckietown.

○ The meaning of the pair (​x, y​​) here matches that of (​x, y​​) in
duckietown_tile_map.csv but the maximum value of ​x​​ and ​y​​ here is one more
than the maximum value of ​x​​ and ​y​​ in duckietown_tile_map.csv to allow for tags
on the last edge to the right and top

■ x​​ ranges from ​0​​ to ​m+1
■ y​​ ranges from ​0​​ to ​n+1

○ Note: This is convenient because most tags (​all​​, as of the date of creation of this
document) are placed right on or next to a vertex in the boundary between four
tiles so it is obvious which (​x, y​​) the tag belongs to since the pairs (​x, y​​) describe
vertices.

● Position​​ is an integer that defines where the tag is with respect to the vertex (​x, y​​)
The current duckietown convention is that ​tag_offset​​=0.09 and ​tag_curb​​=0.035. Refer
to the pictures below. These values are set in:
catkin_ws/src/duckietown/config/baseline/duckietown_description/default.yaml

5

○ The eight possibilities are:

○ This can easily be augmented to more positions if it becomes necessary

● Rotation​​ is an integer that describes which way the tag is facing
○ The four possible values are:

■ 0 if the tag is facing towards the ​right

6

■ 90 if the tag is facing towards the ​top

■ 180 if the tag is facing towards the ​left

■ 270 if the tag is facing towards the ​bottom

7

Example:
As an example, consider the following picture:

Assume that the vertex we’re seeing is ​(1, 5)​​, the tag ID of the Stop sign is ​100​​ and the tag ID of
the pedestrian sign is ​150​​. Then these two tags appear in duckietown_tag_map.csv like this:

tag_ID x y position rotation

100 1 5 4 270

150 1 5 0 180

Note​​ that the positions of the tags with respect to the tape in this case is obviously ​not valid.
They should be outside the lane in an actual Duckietown. Otherwise, accidents will happen and
duckies will get injured.

8

Generating the Map File (on laptop)
After creating the two CSV files described in the previous section, generate a map file with the
following steps:

1. Make sure the values​ ​tag_offset​​ and ​tag_curb​​ in the config file
catkin_ws/src/duckietown/config/baseline/duckietown_description/default.yaml
match the offsets of the tags.
As an example, if the tag positions are placed according to the distances below the
config file will have:​ ​tag_offset: 0.125​​ and ​tag_curb: 0.035

2. Run the following command:
laptop $​ ​make openhouse-dp6a-generate-map-​<map_name>
where ​<map_name>​ is a simple name that describes the current duckietown e.g. ​map226

a. This should prompt you for the paths to the CSV files created and create the map
file in ​catkin_ws/src/duckietown_description/urdf/​<map_name>​.urdf.xacro

Note: It is normal to see a “Node has died” message after successful completion of map
generation

3. To verify that the map was generated correctly, run:
laptop $​ ​roslaunch duckietown_description duckietown_description_node.launch
veh:=​<some_vehicle>​ map_name:=​<map_name>

a. It should display the correct map in rviz. Verify that all the tiles and tags are in the
right place.

9

Note: ​​The generation step only needs to be done once. The resulting .xacro file can be pushed
and used by duckietown_description to publish all the transforms for all the tiles and tags
described in the .xacro file. It is also used by rviz for the visualization.

