

Duckietown Engineering
Map conventions for DP6a

This is the set of conventions we use to create and save a map
of Duckietown for localization (DP6a) purposes.

Contents

Contents
Overall information structure
duckietown_tile_map.csv

Example:
duckietown_tag_map.csv

Example:
Generating the Map File

Overall information structure
All the information about a particular Duckietown that is needed for localization is saved in two
separate .csv files:
duckietown_tile_map.csv contains information about the dimensions (in terms of tiles) of
Duckietown; for every tile, it contains the tile’s position, type, and orientation.
duckietown_tag_map.csv contains information about all the april tags (currently only
intersection tags with ID’s 1-124) in Duckietown: (the tag’s position and orientation with respect
to a tile).
Neither of these contain metric information. The idea is that someone building a (physical)
Duckietown can fully describe it using these two files without having to measure anything. The
metric information (which matches the Duckietown convention) is saved in the param file
catkin_ws/src/duckietown/config/baseline/duckietown_description/default.yaml

duckietown_tile_map.csv
● Comma-separated
● 4 columns: [int x, int y, int rotation, string tile_type]
● The first row contains the headers “x, y, tile_type, rotation” (this is for clarity only, the

code skips this line)
● Each subsequent row defines a tile in the map.
● Every map is rectangular (if it isn’t we define empty tiles as needed) with dimensions n

rows by m columns of tiles
● The origin (0, 0) is the bottom left of the map

2

● The point (x, y) is the vertex defined by the boundary between up to 4 tiles and has x
total tiles to its left and y total files under it.

● Each coordinate pair (x, y) describes the tile in the first quadrant wrt (x, y) i.e. above and
to the right. So, for example (0, 0) describes the left-most, bottom tile.

○ x ranges from 0 to m
○ y ranges from 0 to n

● The tile_type column describes what type of tile it is. The possible types are:

‘empty’ ‘straight’ ‘turn’ ‘3way’ ‘4way’

● The rotation column specifies how many degrees the tile is rotated counterclockwise

according to the following convention:
○ For ‘empty’ the rotation is always 0.
○ For ‘straight’ the rotation is 0 if a car can traverse it horizontally or 90 if

vertically
○ For ‘turn’ the rotation is

■ 0 if it is a left turn for a car coming from the left.
■ 90 if it is a left turn for a car coming from the bottom.
■ 180 if it is a left turn for a car coming from the right.
■ 270 if it is a left turn for a car coming from the top.

○ For a ‘3way’ the rotation is 0 if cars can enter from the left, right, and top like an
inverted T.

○ For a ‘4way’ the rotation is always 0
● The 4 possible rotations are 0, 90, 180, and 270

3

Example:
As an example, the following table is the duckietown_tile_map.csv for the Duckietown section
below

x y tile_type rotation

0 0 4way 0

0 1 straight 90

0 2 3way 180

1 0 straight 0

1 1 empty 0

1 2 straight 0

2 0 turn 0

2 1 straight 90

2 2 turn 90

4

duckietown_tag_map.csv
Note: currently the duckietown description code only uses intersection tags (those with
ID’s 1-124) so although other tags such as street names can be seen by the robot, the csv
file should only contain the intersection tags.

● Comma-separated
● 5 columns: [int tag_ID, int x, int y, int position, int rotation]
● The first row contains the headers “ tag_ID, x, y, position, rotation” (this is for clarity only,

the code skips this line)
● Each subsequent row defines one tag
● tag_ID is the unique (within a Duckietown) id number every tag has printed in it.
● The columns x and y define the global position of the tag in Duckietown.

○ The meaning of the pair (x, y) here matches that of (x, y) in
duckietown_tile_map.csv but the maximum value of x and y here is one more
than the maximum value of x and y in duckietown_tile_map.csv to allow for tags
on the last edge to the right and top

■ x ranges from 0 to m+1
■ y ranges from 0 to n+1

○ Note: This is convenient because most tags (all, as of the date of creation of this
document) are placed right on or next to a vertex in the boundary between four
tiles so it is obvious which (x, y) the tag belongs to since the pairs (x, y) describe
vertices.

● Position is an integer that defines where the tag is with respect to the vertex (x, y)
The current duckietown convention is that tag_offset=0.09 and tag_curb=0.035. Refer
to the pictures below. These values are set in:
catkin_ws/src/duckietown/config/baseline/duckietown_description/default.yaml

5

○ The eight possibilities are:

○ This can easily be augmented to more positions if it becomes necessary

● Rotation is an integer that describes which way the tag is facing
○ The four possible values are:

■ 0 if the tag is facing towards the right

6

■ 90 if the tag is facing towards the top

■ 180 if the tag is facing towards the left

■ 270 if the tag is facing towards the bottom

7

Example:
As an example, consider the following picture:

Assume that the vertex we’re seeing is (1, 5), the tag ID of the Stop sign is 100 and the tag ID of
the pedestrian sign is 150. Then these two tags appear in duckietown_tag_map.csv like this:

tag_ID x y position rotation

100 1 5 4 270

150 1 5 0 180

Note that the positions of the tags with respect to the tape in this case is obviously not valid.
They should be outside the lane in an actual Duckietown. Otherwise, accidents will happen and
duckies will get injured.

8

Generating the Map File (on laptop)
After creating the two CSV files described in the previous section, generate a map file with the
following steps:

1. Make sure the values tag_offset and tag_curb in the config file
catkin_ws/src/duckietown/config/baseline/duckietown_description/default.yaml
match the offsets of the tags.
As an example, if the tag positions are placed according to the distances below the
config file will have: tag_offset: 0.125 and tag_curb: 0.035

2. Run the following command:
laptop $ make openhouse-dp6a-generate-map-<map_name>
where <map_name> is a simple name that describes the current duckietown e.g. map226

a. This should prompt you for the paths to the CSV files created and create the map
file in catkin_ws/src/duckietown_description/urdf/<map_name>.urdf.xacro

Note: It is normal to see a “Node has died” message after successful completion of map
generation

3. To verify that the map was generated correctly, run:
laptop $ roslaunch duckietown_description duckietown_description_node.launch
veh:=<some_vehicle> map_name:=<map_name>

a. It should display the correct map in rviz. Verify that all the tiles and tags are in the
right place.

9

Note: The generation step only needs to be done once. The resulting .xacro file can be pushed
and used by duckietown_description to publish all the transforms for all the tiles and tags
described in the .xacro file. It is also used by rviz for the visualization.

