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Summary7

servir-aces Agricultural Classification and Estimation Service (ACES) is a Python package for8

generating training data using highly parallelized apache-beam and Google Earth Engine (GEE)9

(Gorelick et al., 2017) workflows as well as for training various Machine Learning (ML) and10

Deep Learning (DL) models for Remote Sensing Applications (Mayer et al., 2023), (Bhandari11

& Mayer, 2024).12

Statement of Need13

Despite robust platforms, specialized technical knowledge is required to setup and run various14

ML/DL models, leading many practitioners, scientists, and domain experts to find it difficult to15

implement them. The servir-aces Python package is created to fill this gap. servir-aces16

siginicantly lowers the barrier for users to export training data and both train and run DL17

models using cloud-based technology with their GEE workflows. Several examples are provided18

via a runnable notebook to make it easier for scientists utilize this emerging field of DL.19

With petabytes of data available via GEE, and integration of the TensorFlow (TF) platfrom,20

models trained in TF can be easily loaded into GEE. This package provides functionalities for21

1) data processing; 2) data loading from GEE; 3) feature extraction, 4) model training, and 5)22

model inference. The combination of TF and GEE has enabled several large scale ML and DL23

Remote Sensing applications. Some of them include Wetland Area Mapping (Bakkestuen et24

al., 2023), Crop Type Mapping (Poortinga et al., 2021), Surface Water Mapping (Mayer et25

al., 2021), and Urban Mapping (Parekh et al., 2021). However, these applications tend to26

be developed ad-hoc without using a common library and require a very specialized domain27

as well as technical knowledge. In addition, several unified libraries like torchgeo (Stewart et28

al., 2022) and rastervision exists but those are mostly targeted for pytorch user community.29

Some efforts for GEE & TensorFlow users stemmed out of geemap (Wu, 2020) but that is30

mostly for tree based approaches like Random Forest, while geospatial-ml has not seen much31

development since its inception. Thus there is a need for a unified libraries to train deep32

learning models within the GEE & TensorFlow user community. The servir-aces is a first33

step for that. Although this was originally deeloped for agricultural related applications, the34

library has matured enough to work for any kind of image segmentation tasks.35

servir-aces Audience36

servir-aces is intended for development practitioner, researchers, and students who would37

like to utilize various freely available Earth Observation (EO) data using cloud-based GEE and38

TF ecosystem to perform large scale ML/DL related Remote Sensing applications.39
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We also provide several notebook examples to showcase the usage of the servir-aces. Here40

we show how servir-aces can be used for crop-mapping related application. Ideally, the same41

process can be repeated for any kind of the image segmentation task.42

servir-aces Functionality43

The major high-level functionality of the servir-aces packages are: - Data loading and processing44

from GEE. - Generation of training data for various ML and DL models. - Training and evaluation45

of ML/DL Models. - Inferences of the trained ML/DL models. - Support for remote sensing46

feature extraction. - Integration with Apache Beam for data processing and parallelization.47

The key functionality of servir-aces is organized into several modules:48

• data_processor: this module provides functionality for data input/output and prepro-49

cessing for the image segmentation project.50

• model_builder: this module provides functionality for creating and compiling various51

Neural Network Models, including DNN, CNN, U-Net.52

• model_trainer: this module provides functionality for training, buidling, compiling, and53

running specified deep learning models.54

• metrics: this module provides a host of statstical metrics, standard within the field, for55

evaluating model performance and provide utility functions for plotting and visualizing56

model metrics during training.57

• ee_utils: this module for providing utility functions to handle GEE API information and58

authentication requests.59

• remote_sensing: this module provides various static methods to compute Remote Sensing60

indices for analysis.61
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