Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

 

# -*- coding: utf-8 -*- 

 

u'''I{Boolean} operations on I{composite} polygons and I{clip}s. 

 

Classes L{BooleanFHP} and L{BooleanGH} are I{composites} and 

provide I{boolean} operations C{intersection}, C{difference}, 

C{reverse-difference}, C{sum} and C{union}. 

 

@note: A I{clip} is defined as a single, usually closed polygon, 

a I{composite} is a collection of one or more I{clip}s. 

 

@see: U{Forster-Hormann-Popa<https://www.ScienceDirect.com/science/ 

article/pii/S259014861930007X>} and U{Greiner-Hormann 

<http://www.Inf.USI.CH/hormann/papers/Greiner.1998.ECO.pdf>}. 

''' 

# make sure int/int division yields float quotient, see .basics 

from __future__ import division as _; del _ # PYCHOK semicolon 

 

from pygeodesy.basics import isodd, isscalar, issubclassof, map2 

from pygeodesy.constants import EPS, EPS2, INT0, MAX, \ 

_0_0, _0_5, _1_0 

from pygeodesy.errors import ClipError, _IsnotError, _TypeError, \ 

_xkwds, _xkwds_get 

from pygeodesy.fmath import fabs, favg, hypot, hypot2 

from pygeodesy.interns import NN, _BANG_, _clip_, _COMMASPACE_, _DOT_, \ 

_e_, _ELLIPSIS_, _few_, _height_, _lat_, \ 

_lon_, _name_, _not_, _scalar_, _SPACE_, \ 

_too_, _X_, _x_, _B_, _d_, _R_ # PYCHOK used! 

from pygeodesy.lazily import _ALL_LAZY, _ALL_DOCS, _ALL_MODS as _MODS 

# from pygeodesy.latlonBase import LatLonBase # from _MODS 

from pygeodesy.named import Fmt, _Named, pairs, unstr 

# from pygeodesy.points import boundsOf # from _MODS 

from pygeodesy.props import Property_RO, property_RO 

# from pygeodesy.streprs import Fmt, pairs, unstr # from .named 

from pygeodesy.units import Height, HeightX 

 

# from math import fabs # from .fmath 

 

__all__ = _ALL_LAZY.booleans 

__version__ = '23.03.14' 

 

_0_EPS = EPS # near-zero, positive 

_EPS_0 = -EPS # near-zero, negative 

_1_EPS = _1_0 + EPS # over-one 

_EPS_1 = _1_0 - EPS # near-one 

_10EPS = EPS * 10 # see ._2Abs 

 

_alpha_ = 'alpha' 

_boolean_ = 'boolean' 

_case_ = 'case' 

_clipid_ = 'clipid' 

_corners_ = 'corners' 

_open_ = 'open' 

_P_ = 'P' 

_Q_ = 'Q' 

 

 

def _Enum(txt, enum): # PYCHOK unused 

return txt # NN(txt, _TILDE_, str(enum)) 

 

 

class _L(object): 

# Intersection labels 

CROSSING = _Enum(_X_, 1) # C++ enum 

CROSSING_D = _Enum(_X_ + _d_, 8) 

CROSSINGs = (CROSSING, CROSSING_D) 

BOUNCING = _Enum(_B_, 2) 

BOUNCING_D = _Enum(_B_ + _d_, 9) 

BOUNCINGs = (BOUNCING, BOUNCING_D) + CROSSINGs 

LEFT_ON = _Enum('Lo', 3) 

ON_ON = _Enum('oo', 5) 

ON_LEFT = _Enum('oL', 6) 

ON_RIGHT = _Enum('oR', 7) 

RIGHT_ON = _Enum('Ro', 4) 

RIGHT_LEFT_ON = (RIGHT_ON, LEFT_ON) 

# Entry/Exit flags 

ENTRY = _Enum(_e_, 1) 

EXIT = _Enum(_x_, 0) 

Toggle = {ENTRY: EXIT, 

EXIT: ENTRY, 

None: None} 

 

_L = _L() # PYCHOK singleton 

 

 

class _RP(object): 

# RelativePosition types 

IS_Pm = _Enum('Pm', 2) # C++ enum 

IS_Pp = _Enum('Pp', 3) 

LEFT = _Enum('L', 0) 

RIGHT = _Enum(_R_, 1) 

 

_RP = _RP() # PYCHOK singleton 

 

_RP2L = {(_RP.LEFT, _RP.RIGHT): _L.CROSSING, 

(_RP.RIGHT, _RP.LEFT): _L.CROSSING, 

(_RP.LEFT, _RP.LEFT): _L.BOUNCING, 

(_RP.RIGHT, _RP.RIGHT): _L.BOUNCING, 

# overlapping cases 

(_RP.RIGHT, _RP.IS_Pp): _L.LEFT_ON, 

(_RP.IS_Pp, _RP.RIGHT): _L.LEFT_ON, 

(_RP.LEFT, _RP.IS_Pp): _L.RIGHT_ON, 

(_RP.IS_Pp, _RP.LEFT): _L.RIGHT_ON, 

(_RP.IS_Pm, _RP.IS_Pp): _L.ON_ON, 

(_RP.IS_Pp, _RP.IS_Pm): _L.ON_ON, 

(_RP.IS_Pm, _RP.RIGHT): _L.ON_LEFT, 

(_RP.RIGHT, _RP.IS_Pm): _L.ON_LEFT, 

(_RP.LEFT, _RP.IS_Pm): _L.ON_RIGHT, 

(_RP.IS_Pm, _RP.LEFT): _L.ON_RIGHT} 

 

 

def _alpha1(alpha): 

# Return C{alpha} in C{[0..1]} range 

if _EPS_0 < alpha < _1_EPS: 

return max(_0_0, min(alpha, _1_0)) 

t = _not_(Fmt.SQUARE(_ELLIPSIS_(0, 1))) 

raise ClipError(_alpha_, alpha, txt=t) 

 

 

def _alpha4(a): 

# Return 4-tuple (alpha, abs(alpha) near 0, 0 < alpha < 1, not 0 < alpha < 1) 

return (a, False, True, False) if _0_EPS < a < _EPS_1 else ( 

(a, False, False, True) if _0_EPS < fabs(a) else 

(a, True, False, False)) 

 

 

def _left_right_bottom_top_eps(p1, p2): 

'''(INTERNAL) Return 2-tuple C{(left, right), (bottom, top)}, oversized. 

''' 

return (_min_max_eps(p1.x, p2.x), 

_min_max_eps(p1.y, p2.y)) 

 

 

def _min_max_eps(*xs): 

'''(INTERNAL) Return 2-tuple C{(min, max)}, oversized. 

''' 

lo, hi = min(xs), max(xs) 

lo *= _1_EPS if lo < 0 else _EPS_1 

hi *= _EPS_1 if hi < 0 else _1_EPS 

return (lo or _EPS_0), (hi or _0_EPS) 

 

 

def _other(this, other): 

'''(INTERNAL) Check for compatible C{type}s. 

''' 

C = this.__class__ 

if isinstance(other, C): 

return other 

raise _IsnotError(C.__name__, other=other) 

 

 

def _outside(x1, x2, lo, hi): 

'''(INTERNAL) Is C{(x1, x2)} outside C{(lo, hi)}? 

''' 

return max(x1, x2) < lo or min(x1, x2) > hi 

 

 

class _LatLonBool(_Named): 

'''(INTERNAL) Base class for L{LatLonFHP} and L{LatLonGH}. 

''' 

_alpha = None # point AND intersection else length 

_checked = False # checked in phase 3 iff intersection 

_clipid = INT0 # (polygonal) clip identifier, number 

_dupof = None # original of a duplicate 

# _e_x_str = NN # shut up PyChecker 

_height = Height(0) # interpolated height, usually meter 

_linked = None # link to neighbor iff intersection 

_next = None # link to the next vertex 

_prev = None # link to the previous vertex 

 

def __init__(self, lat_ll, lon=None, height=0, clipid=0, name=NN): 

'''New C{LatLon[FHP|GH]} from separate C{lat}, C{lon}, C{height} 

and C{clipid} scalars or from a previous C{LatLon[FHP|GH]}, 

a C{Clip[FHP|GH]4Tuple} or some other C{LatLon} instance. 

 

@arg lat_ll: Latitude (C{scalar}) or a lat/longitude 

(C{LatLon[FHP|GH]}, aC{Clip[FHP|GH]4Tuple} 

or some other C{LatLon}). 

@kwarg lon: Longitude (C{scalar}), iff B{C{lat_ll}} is 

scalar, ignored otherwise. 

@kwarg height: Height (C{scalar}), conventionally C{meter}. 

@kwarg clipid: Clip identifier (C{int}). 

@kwarg name: Optional name (C{str}). 

''' 

if lon is None: 

self.y, self.x = lat_ll.lat, lat_ll.lon 

h = getattr(lat_ll, _height_, height) 

c = getattr(lat_ll, _clipid_, clipid) 

else: 

self.y, self.x = lat_ll, lon 

h, c = height, clipid 

# don't override defaults 

if self._height != h: 

self._height = h 

if self._clipid != c: 

self._clipid = c 

if name: 

self.name = name 

 

def __abs__(self): 

return max(fabs(self.x), fabs(self.y)) 

 

def __eq__(self, other): 

return other is self or bool(_other(self, other) and 

other.x == self.x and 

other.y == self.y) 

 

def __ne__(self, other): # required for Python 2 

return not self.__eq__(other) 

 

def __repr__(self): 

'''String C{repr} of this lat-/longitude. 

''' 

t = _ELLIPSIS_(self._prev, self._next) 

return _SPACE_(self, Fmt.ANGLE(t)) 

 

def __str__(self): 

'''String C{str} of this lat-/longitude. 

''' 

t = (_lat_, self.lat), (_lon_, self.lon) 

if self._height: 

X = _X_ if self.isintersection else NN 

t += (_height_ + X, self._height), 

if self._clipid: 

t += (_clipid_, self._clipid), 

if self._alpha is not None: 

t += (_alpha_, self._alpha), 

# if self._dupof: # recursion risk 

# t += (_dupof_, self._dupof.name), 

t = pairs(t, prec=8, fmt=Fmt.g, ints=True) 

t = Fmt.PAREN(_COMMASPACE_.join(t)) 

if self._linked: 

k = _DOT_ if self._checked else _BANG_ 

t = NN(t, self._e_x_str(k)) # PYCHOK expected 

return NN(self.name, t) 

 

def __sub__(self, other): 

_other(self, other) 

return self.__class__(self.y - other.y, # classof 

self.x - other.x) 

 

def _2A(self, p2, p3): 

# I{Signed} area of a triangle, I{doubled}. 

x, y = self.x, self.y 

return (p2.x - x) * (p3.y - y) - \ 

(p3.x - x) * (p2.y - y) 

 

def _2Abs(self, p2, p3, eps=_10EPS): 

# I{Unsigned} area of a triangle, I{doubled} 

# or 0 if below the given threshold C{eps}. 

a = fabs(self._2A(p2, p3)) 

return 0 if a < eps else a 

 

@property_RO 

def clipid(self): 

'''Get the I{clipid} (C{int} or C{0}). 

''' 

return self._clipid 

 

@property_RO 

def height(self): 

'''Get the I{height} (C{Height} or C{int}). 

''' 

h = self._height 

return HeightX(h) if self.isintersection else ( 

Height(h) if h else h) 

 

@property_RO 

def isintersection(self): 

'''Is this an intersection? 

''' 

return bool(self._linked) 

 

@property_RO 

def ispoint(self): 

'''Is this an original (boolean) point? 

''' 

return self._alpha is None 

 

@property_RO 

def lat(self): 

'''Get the latitude (C{scalar}). 

''' 

return self.y 

 

def _link(self, other): 

# Make this and an other point are neighbors. 

# assert _other(self, other) 

self._linked = other 

other._linked = self 

 

@property_RO 

def lon(self): 

'''Get the longitude (C{scalar}). 

''' 

return self.x 

 

def _toClas(self, Clas, clipid): 

# Return this vertex as a C{Clas} instance 

# (L{Clip[FHP|GH]4Tuple} or L{LatLon[FHP|GH]}). 

return Clas(self.lat, self.lon, self.height, clipid) 

 

 

class LatLonFHP(_LatLonBool): 

'''A point or intersection in a L{BooleanFHP} clip. 

''' 

_en_ex = None 

_label = None 

# _prep2 = None, None # shup up PyChecker 

_2split = None # or C{._Clip} 

_2xing = False 

 

def __init__(self, lat_ll, *lon_h_clipid, **name): 

'''New C{LatLonFHP} from separate C{lat}, C{lon}, C{h}eight 

and C{clipid} scalars, or from a previous L{LatLonFHP}, 

a L{ClipFHP4Tuple} or some other C{LatLon} instance. 

 

@arg lat_ll: Latitude (C{scalar}) or a lat/longitude 

(L{LatLonFHP}, C{LatLon} or L{ClipFHP4Tuple}). 

@arg lon_h_clipid: Longitude (C{scalar}), C{h}eight and 

C{clipid} iff B{C{lat_ll}} is scalar, 

ignored otherwise. 

@kwarg name: Optional name (C{str}). 

''' 

_LatLonBool.__init__(self, lat_ll, *lon_h_clipid, **name) 

 

def __add__(self, other): 

_other(self, other) 

return self.__class__(self.y + other.y, self.x + other.x) 

 

def __mod__(self, other): # cross product 

_other(self, other) 

return self.x * other.y - self.y * other.x 

 

def __mul__(self, other): # dot product 

_other(self, other) 

return self.x * other.x + self.y * other.y 

 

def __rmul__(self, other): # scalar product 

if not isscalar(other): 

raise _IsnotError(_scalar_, other=other) 

return self.__class__(self.y * other, self.x * other) 

 

def _e_x_str(self, t): 

if self._label: 

t = NN(self._label, t) 

if self._en_ex: 

t = NN(t, self._en_ex) 

return t 

 

@property_RO 

def _isduplicate(self): 

# Is this point a I{duplicate} intersection? 

p = self._dupof 

return bool(p and self._linked 

and p is not self 

and p == self 

# and p._alpha in (None, self._alpha) 

and self._alpha in (_0_0, p._alpha)) 

 

# @property_RO 

# def _isduplicated(self): 

# # Return the number of I{duplicates}? 

# d, v = 0, self 

# while v: 

# if v._dupof is self: 

# d += 1 

# v = v._next 

# if v is self: 

# break 

# return d 

 

def _isinside(self, composite, *excluded): 

# Is this point inside a composite, 

# excluding certain C{_Clip}s. 

x, y, i = self.x, self.y, False 

for c in composite._clips: 

if c not in excluded: 

w = 0 

for p1, p2 in c._edges2(): 

# edge [p1,p2] must straddle y 

if (p1.y < y) is not (p2.y < y): 

r = p2.x > x 

s = p2.y > p1.y 

if p1.x < x: 

b = r and (s is (p1._2A(p2, self) > 0)) 

else: 

b = r or (s is (p1._2A(p2, self) > 0)) 

if b: 

w += 1 if s else -1 

if isodd(w): 

i = not i 

return i 

 

def isinside(self, *composites): 

'''Is this point inside I{combined} composites based on C{winding number}? 

 

@arg composites: One or more iterables or composites of clips and points 

(L{ClipFHP4Tuple}, L{ClipGH4Tuple}, L{LatLonFHP}, 

L{LatLonGH}, L{LatLon_} or any other C{LatLon}). 

 

@see: U{Algorithm 6<https://www.ScienceDirect.com/science/article/pii/ 

S0925772101000128>}. 

''' 

self._isinside(_CompositeEdges(self.__class__, composites)) 

 

@property_RO 

def isintersection(self): 

'''Is this an intersection? May be C{ispoint} too! 

''' 

return bool(self._linked) 

 

@property_RO 

def ispoint(self): 

'''Is this an I{original} point? May be C{isintersection} too! 

''' 

return self._alpha is None 

 

@property_RO 

def _prev_next2(self): 

# Adjust 2-tuple (._prev, ._next) iff a I{duplicate} intersection 

p, n = self._prev, self._next 

if self._isduplicate: 

p = self._dupof 

while p._isduplicate: 

p = p._dupof 

p = p._prev 

while n._isduplicate: 

n = n._next 

return p, n 

 

# def _edge2(self): 

# # Return the start and end point of the 

# # edge containing I{intersection} C{v}. 

# n = p = self 

# while p.isintersection: 

# p = p._prev 

# if p is self: 

# break 

# while n.isintersection: 

# n = n._next 

# if n is self: 

# break 

# # assert p == self or not p._2Abs(self, n) 

# return p, n 

 

def _RPoracle(self, p1, p2, p3): 

# Relative Position oracle 

if p1._linked is self: # or p1._linked2(self): 

T = _RP.IS_Pm 

elif p3._linked is self: # or p3._linked2(self): 

T = _RP.IS_Pp 

elif p1._2A(p2, p3) > 0: # left turn 

T = _RP.LEFT if self._2A(p1, p2) > 0 and \ 

self._2A(p2, p3) > 0 else \ 

_RP.RIGHT # PYCHOK indent 

else: # right turn (or straight) 

T = _RP.RIGHT if self._2A(p1, p2) < 0 and \ 

self._2A(p2, p3) < 0 else \ 

_RP.LEFT # PYCHOK indent 

return T 

 

 

class LatLonGH(_LatLonBool): 

'''A point or intersection in a L{BooleanGH} clip. 

''' 

_entry = None # entry or exit iff intersection 

_extend = False 

 

def __init__(self, lat_ll, *lon_h_clipid, **name): 

'''New C{LatLonGH} from separate C{lat}, C{lon}, C{h}eight 

and C{clipid} scalars, or from a previous L{LatLonGH}, 

a L{ClipGH4Tuple} or some other C{LatLon} instance. 

 

@arg lat_ll: Latitude (C{scalar}) or a lat/longitude 

(L{LatLonGH}, C{LatLon} or L{ClipGH4Tuple}). 

@arg lon_h_clipid: Longitude (C{scalar}), C{h}eight and 

C{clipid} iff B{C{lat_ll}} is scalar, 

ignored otherwise. 

@kwarg name: Optional name (C{str}). 

''' 

_LatLonBool.__init__(self, lat_ll, *lon_h_clipid, **name) 

 

def _check(self): 

# Check-mark this vertex and its link. 

self._checked = True 

b = self._linked 

if b and not b._checked: 

b._checked = True 

 

def _e_x_str(self, t): 

return t if self._entry is None else NN(t, 

(_e_ if self._entry else _x_)) 

 

def _isinside(self, composite, *bottom_top): 

# Is this vertex inside the composite? I{Odd-even rule}. 

 

# The I{odd-even} rule counts the number of edges 

# intersecting a ray emitted East-bound from this 

# point to infinity. When I{odd} this point lies 

# inside, if I{even} outside. 

r, y = False, self.y 

if not (bottom_top and _outside(y, y, *bottom_top)): 

e = self.__class__(MAX, y, clipid=self.clipid) 

_i4 = _EdgeGH(self, e)._intersect4 

for p1, p2, _ in composite._edges3(): 

for _ in _i4(p1, p2, False): 

r = not r 

return r 

 

def isinside(self, *composites): 

'''Is this point inside I{combined} composites based on C{odd-even rule}? 

 

@arg composites: One or more iterables or composites of clips and points 

(L{ClipFHP4Tuple}, L{ClipGH4Tuple}, L{LatLonFHP}, 

L{LatLonGH}, L{LatLon_} or any other C{LatLon}). 

''' 

self._isinside(_CompositeEdges(self.__class__, composites)) 

 

 

class _Clip(_Named): 

'''(INTERNAL) A I{doubly-linked} list representing a I{closed} polygon of 

L{LatLonFHP} or L{LatLonGH} points, duplicates and intersections with 

other C{_Clip}s. 

''' 

_composite = None 

_dups = 0 

_first = None 

_id = 0 

_identical = False 

_noInters = False 

_last = None 

_LL = None 

_len = 0 

_pushback = False 

 

def __init__(self, composite, clipid=0): 

# assert isinstance(composite, _CompositeBase) 

self._composite = composite 

self._id = clipid 

self._LL = composite._LL 

composite._clips = composite._clips + (self,) 

 

def __contains__(self, p): 

# Is C{p} one of this clip's vertices? 

for v in self: 

if v is p: # or ==? 

return True 

return False 

 

def __eq__(self, other): 

# Is this C{_Clip} equivalent to an C{other}, 

# i.e. has the same C{len}, the same points, 

# etc. in the same order, possibly rotated? 

c, f, r = _other(self, other), self._first, len(self) 

if f and r == len(c) and self._bltr4 == c._bltr4: 

for v in c: 

if v == f: 

s, n = f, v 

for _ in range(r): 

s, n = s._next, n._next 

if n != s: 

break # next v 

else: # full rotation 

return True 

return False 

 

def __ge__(self, other): 

return not self.__lt__(other) 

 

def __gt__(self, other): 

# Is this clip I{"greater"} than an C{other}? 

return self._bltr4 > _other(self, other)._bltr4 

 

def __hash__(self): # PYCHOK no over 

return hash(self._bltr4) 

 

def __iter__(self): 

# Yield all points, duplicates and intersections. 

v = f = self._first 

while v: 

yield v 

v = v._next 

if v is f: 

break 

 

def __le__(self, other): 

return not self.__gt__(other) 

 

def __len__(self): 

# Return the number of LatLons. 

return self._len 

 

def __lt__(self, other): 

# Is this clip I{"less"} than an C{other}? 

return self._bltr4 < _other(self, other)._bltr4 

 

def __ne__(self, other): 

return not self.__eq__(other) 

 

_all = __iter__ 

 

@property_RO 

def _all_ON_ON(self): 

# Check whether all verices are ON_ON. 

L_ON_ON = _L.ON_ON 

for v in self: 

if v._label is not L_ON_ON: 

return False 

return True 

 

def _append(self, y_v, *x_h_clipid): 

# Append a point given as C{y}, C{x}, C{h}eight and C{clipid} 

# args or as a C{LatLon[FHP|GH]} or C{Clip[FHP|GH}4Tuple}. 

self._last = v = self._LL(y_v, *x_h_clipid) if x_h_clipid else y_v 

self._len += 1 

# assert v._clipid == self._id 

 

v._next = n = self._first 

if n is None: # set _first 

self._first = p = n = v 

else: # insert before _first 

v._prev = p = n._prev 

p._next = n._prev = v 

return v 

 

# def _appendedup(self, v, clipid=0): 

# # Like C{._append}, but only append C{v} if not a 

# # duplicate of the one previously append[edup]'ed. 

# y, x, p = v.y, v.x, self._last 

# if p is None or y != p.y or x != p.x or clipid != p._clipid: 

# p = self._append(y, x, v.height, clipid) 

# if v._linked: 

# p._linked = True # to force errors 

# return p 

 

@Property_RO 

def _bltr4(self): 

# Get the bounds as 4-tuple C{(bottom, left, top, right)}. 

return map2(float, _MODS.points.boundsOf(self, wrap=False)) 

 

def _closed(self, raiser): # PYCHOK unused 

# End a clip, un-close it and check C{len}. 

p, f = self._last, self._first 

if f and f._prev is p and p == f and \ 

p._next is f and p is not f: 

# un-close the clip 

f._prev = p = p._prev 

p._next = f 

self._len -= 1 

# elif f and raiser: 

# raise self._OpenClipError(p, f) 

if len(self) < 3: 

raise self._Error(_too_(_few_)) 

 

def _dup(self, q): 

# Duplicate a point (or intersection) as intersection. 

v = self._insert(q.x, q.y, q, q._next) 

v._alpha = q._alpha or _0_0 # _0_0 replaces None 

v._dupof = q._dupof or q 

# assert v._prev is q 

# assert q._next is v 

return v 

 

def _edges2(self, raiser=False, **unused): 

# Yield each I{original} edge as a 2-tuple 

# C{(LatLon[FHP|GH], LatLon[FHP|GH])}. 

p1 = p2 = f = self._first 

while p2: 

p2 = p2._next 

if p2.ispoint: 

yield p1, p2 

p1 = p2 

if p2 is f: 

break 

if raiser and p2 is not f: 

raise self._OpenClipError(p2, f) 

 

def _Error(self, txt): # PYCHOK no cover 

# Build a C{ClipError} instance 

kwds = dict(len=len(self), txt=txt) 

if self._dups: 

kwds.update(dups=self._dups) 

cp = self._composite 

if self._id: 

try: 

i = cp._clips.index(self) 

if i != self._id: 

kwds[_clip_] = i 

except ValueError: 

pass 

kwds[_clipid_] = self._id 

return ClipError(cp.name, cp._kind, **kwds) 

 

def _insert(self, x, y, start, end, *alpha): 

# insertVertex between points C{start} and 

# C{end}, ordered by C{alpha} iff given. 

v = self._LL(y, x, start._height, start._clipid) 

n = start._next 

if alpha: 

v._alpha = alpha = alpha[0] 

v._height = favg(v.height, end.height, f=alpha) 

# assert start is not end 

while n is not end and n._alpha < alpha: 

n = n._next 

v._next = n 

v._prev = p = n._prev 

p._next = n._prev = v 

self._len += 1 

# zap cached C{Property_RO}s 

# _Clip._bltr4._update(self) 

# _Clip._ishole._update(self) 

return v 

 

def _intersection(self, unused, q, *p1_p2_alpha): 

# insert an intersection or make a point both 

if p1_p2_alpha: # intersection on edge 

v = self._insert(q.x, q.y, *p1_p2_alpha) 

else: # intersection at point 

v = q 

# assert not v._linked 

# assert v._alpha is None 

return v 

 

def _intersections(self): 

# Yield all intersections. 

for v in self: 

if v.isintersection: 

yield v 

 

@Property_RO 

def _ishole(self): 

# Is this clip a hole inside its composite? 

v = self._first 

return v._isinside(self._composite, self) if v else False 

 

def _noXings(self, Union): 

# Are all intersections non-CROSSINGs? 

Ls = _L.BOUNCINGs if Union else _L.CROSSINGs 

for v in self._intersections(): 

if v._label in Ls: 

return False 

return True 

 

def _OpenClipError(self, s, e): # PYCHOK no cover 

# Return a C{CloseError} instance 

t = NN(s, _ELLIPSIS_(_COMMASPACE_, e)) 

return self._Error(_SPACE_(_open_, t)) 

 

def _point2(self, insert): 

# getNonIntersectionPoint and -Vertex 

if not (insert and self._noInters): 

for p in self._points(): 

if not p.isintersection: # or p._isduplicated? 

return p, None 

for n in self._intersections(): 

p, _ = n._prev_next2 

k = p._linked 

if k: 

if n._linked not in k._prev_next2: 

# create a pseudo-point 

k = _0_5 * (p + n) 

if insert: 

k = self._insert(k.x, k.y, n._prev, n) 

r = k # to remove later 

else: # no ._prev, ._next 

k._clipid = n._clipid 

r = None 

return k, r 

return None, None 

 

def _points(self): 

# Yield all points I{in original order}. 

for v in self: 

if v.ispoint: 

yield v 

 

def _remove2(self, v): 

# Remove vertex C{v}. 

# assert not v._isduplicated 

if len(self) > 1: 

p = v._prev 

p._next = n = v._next 

n._prev = p 

if self._first is v: 

self._first = n 

if self._last is v: 

self._last = p 

self._len -= 1 

else: 

n = self._last = \ 

p = self._first = None 

self._len = 0 

return p, n 

 

def _Xings(self): 

# Yield all I{un-checked} CROSSING intersections. 

CROSSING = _L.CROSSING 

for v in self._intersections(): 

if v._label is CROSSING and not v._checked: 

yield v 

 

 

class _ClipEdges(_Clip): # PYCHOK no cover 

# Wrapper yielding edges, eliminating 

# null edges and adding closing edge. 

 

def __init__(self, cps, LL): # PYCHOK signature 

self._cps = cps # _CompositeEdges 

self._LL = LL 

 

def _edges2(self, *unused): # PYCHOK signature 

# Yield each edge as a C{LatLon[FHP|GH]} point pair. 

for cp in self._cps: 

self._composite = cp 

p2 = s = None 

for ll in cp: 

p1, p2 = p2, self._LL(ll) 

if s is None: 

s = p1 = p2 

elif p1._clipid != p2._clipid: 

if p1 != s: 

yield p1, s 

s = p1 = p2 

elif p1 != p2: 

yield p1, p2 

self._id = p2._clipid 

if p1 != s: 

yield p1, s 

 

 

class _CompositeBase(_Named): 

'''(INTERNAL) Base class for C{_CompositeFHP} and C{_CompositeGH}. 

''' 

_clips = () # tuple of C{_Clips} 

_eps = EPS # null edges 

_kind = _corners_ 

_LL = _LatLonBool # shut up PyChecker 

_raiser = False 

_xtend = False 

 

def __init__(self, lls, name=NN, kind=NN, eps=EPS): 

# New L{_CompositeFHP} or L{_CompositeGH}. 

n = name or getattr(lls, _name_, NN) 

if n: 

self.name = n 

if kind: 

self._kind = kind 

if self._eps < eps: 

self._eps = eps 

 

c = _Clip(self) 

lp = None 

for ll in lls: 

ll = self._LL(ll) 

if lp is None: 

c._id = ll._clipid # keep clipid 

lp = c._append(ll) 

elif ll._clipid != lp._clipid: # new clip 

c._closed(self.raiser) 

c = _Clip(self, ll._clipid) 

lp = c._append(ll) 

elif abs(ll - lp) > eps: # PYCHOK lp 

lp = c._append(ll) 

else: 

c._dups += 1 

c._closed(self.raiser) 

 

def __contains__(self, v): # PYCHOK no cover 

# Is C{p} one of the clips' points? 

for c in self._clips: 

if v in c: 

return True 

return False 

 

def __eq__(self, other): 

'''Is this C{composite} equivalent to an C{other}, 

i.e. both contain I{equivalent} clips in the 

same or a different order? Clips are considered 

I{equivalent} if they have the same points in 

the same order, possibly rotated. 

''' 

cs = self._clips 

if cs and isinstance(other, _CompositeBase) \ 

and len(other._clips) == len(cs): 

try: 

cs = list(sorted(cs)) 

for c in sorted(other._clips): 

cs.pop(cs.index(c)) 

if not cs: # all clips match 

return True 

except ValueError: # from .index 

pass 

return False 

 

def __iter__(self): 

# Yield all points and intersections. 

for c in self._clips: 

for v in c: 

yield v 

 

def __ne__(self, other): # needed for Python 2 

return not self.__eq__(other) 

 

def __len__(self): 

# Return the total number of latlons. 

return sum(map(len, self._clips)) if self._clips else 0 

 

def __repr__(self): 

'''String C{repr} of this composite. 

''' 

c = len(self._clips) 

c = Fmt.SQUARE(c) if c > 1 else NN 

n = Fmt.SQUARE(len(self)) 

t = Fmt.PAREN(self) 

return NN(self.__class__.__name__, c, n, t) 

 

def __str__(self): 

'''String C{str} of this composite. 

''' 

return _COMMASPACE_.join(map(str, self)) 

 

@property_RO 

def _bottom_top_eps(self): 

# Get the bottom and top C{y} bounds, oversized. 

return _min_max_eps(min(v.y for v in self), 

max(v.y for v in self)) 

 

def _class(self, corners, kwds, **dflts): 

# Return a new instance 

_g = kwds.get 

kwds = dict((n, _g(n, v)) for n, v in dflts.items()) 

return self.__class__(corners or (), **kwds) 

 

@property_RO 

def _clipids(self): # PYCHOK no cover 

for c in self._clips: 

yield c._id 

 

def clipids(self): 

'''Return a tuple with all C{clipid}s, I{ordered}. 

''' 

return tuple(self._clipids) 

 

def _edges3(self, **raiser): 

# Yield each I{original} edge as a 3-tuple 

# C{(LatLon[FHP|GH], LatLon[FHP|GH], _Clip)}. 

for c in self._clips: 

for p1, p2 in c._edges2(**raiser): 

yield p1, p2, c 

 

@property 

def eps(self): 

'''Get the null edges tolerance (C{degrees}, usually). 

''' 

return self._eps 

 

@eps.setter # PYCHOK setter! 

def eps(self, eps): 

'''Set the null edges tolerance (C{degrees}, usually). 

''' 

self._eps = eps 

 

def _10eps(self, **eps): 

# Get eps for _LatLonBool._2Abs 

e = _xkwds_get(eps, eps=self._eps) 

if e != EPS: 

e *= _10EPS / EPS 

else: 

e = _10EPS 

return e 

 

def _intersections(self): 

# Yield all intersections. 

for c in self._clips: 

for v in c._intersections(): 

yield v 

 

def _kwds(self, op, **more): 

# Get the kwds C{dict}. 

kwds = dict(raiser=self.raiser, eps=self.eps, 

name=self.name or op.__name__) 

kwds.update(more) 

return kwds 

 

@property_RO 

def _left_right_eps(self): 

# Get the left and right C{x} bounds, oversized. 

return _min_max_eps(min(v.x for v in self), 

max(v.x for v in self)) 

 

def _points(self): # PYCHOK no cover 

# Yield all I{original} points, 

# some may be intersection too. 

for c in self._clips: 

for v in c._points(): 

yield v 

 

@property 

def raiser(self): 

'''Get the option to throw L{ClipError} exceptions (C{bool}). 

''' 

return self._raiser 

 

@raiser.setter # PYCHOK setter! 

def raiser(self, throw): 

'''Set the option to throw L{ClipError} exceptions (C{bool}). 

''' 

self._raiser = bool(throw) 

 

def _results(self, _presults, Clas, closed=False, inull=False, **eps): 

# Yield the dedup'd results, as L{ClipFHP4Tuple}s 

C = self._LL if Clas is None else Clas 

e = self._10eps(**eps) 

for clipid, ns in enumerate(_presults): 

f = p = v = None 

for n in ns: 

if f is None: 

yield n._toClas(C, clipid) 

f = p = n 

elif v is None: 

v = n # got f, p, v 

elif inull or p._2Abs(v, n, eps=e): 

yield v._toClas(C, clipid) 

p, v = v, n 

else: # null, colinear, ... skipped 

v = n 

if v and (inull or p._2Abs(v, f, eps=e)): 

yield v._toClas(C, clipid) 

p = v 

if f and p != f and closed: # close clip 

yield f._toClas(C, clipid) 

 

def _sum(self, other, op): 

# Combine this and an C{other} composite 

LL = self._LL 

sp = self.copy(name=self.name or op.__name__) 

sp._clips = () # new clips 

for cp in (self, other): 

for c in cp._clips: 

_ap = _Clip(sp, c._id)._append 

for v in c: 

if not v._dupof: 

_ap(LL(v)) 

return sp 

 

def toLatLon(self, LatLon, **LatLon_kwds): 

'''Yield all (non-duplicate) points and intersections 

as an instance of B{C{LatLon}}. 

 

@kwarg LatLon: Class to use (C{LatLon}). 

@kwarg LatLon_kwds: Optional, additional B{C{LatLon}} 

keyword arguments. 

 

@raise TypeError: Invalid B{C{LatLon}}. 

 

@note: For intersections, C{height} is an instance 

of L{HeightX}, otherwise of L{Height}. 

''' 

if not issubclassof(LatLon, _LatLonBool, 

_MODS.latlonBase.LatLonBase): 

raise _TypeError(LatLon=LatLon) 

if LatLon_kwds: 

_kwds = _xkwds 

else: 

def _kwds(unused, **kwds): 

return kwds 

 

for v in self: 

if not v._dupof: 

ll = LatLon(v.lat, v.lon, **_kwds(LatLon_kwds, 

height=v.height)) 

if ll._clipid != v._clipid: 

ll._clipid = v._clipid 

yield ll 

 

def _update_all(self): 

# Zap the I{cached} C{_Clip} properties. 

map(_Clip._bltr4._update, self._clips) 

map(_Clip._ishole._update, self._clips) 

return self 

 

 

class _CompositeEdges(_CompositeBase): # PYCHOK no cover 

# Polygon wrapper yielding clips and edges, 

# eliminating duplicates and closing open clips. 

 

def __init__(self, LL, composites): # PYCHOK signature 

self._cps = composites 

self._LL = LL 

 

@property_RO 

def _clips(self): 

# Use one C{_Clip}. 

return (_ClipEdges(self._cps, self._LL),) 

 

 

class _CompositeFHP(_CompositeBase): 

'''(INTERNAL) A list of C{_Clips} representing a I{composite} 

of L{LatLonFHP} points, duplicates and intersections. 

''' 

_LL = LatLonFHP 

_Union = False 

 

def __init__(self, lls, raiser=False, **name_kind_eps): 

# New L{_CompositeFHP}. 

if raiser: 

self._raiser = True 

_CompositeBase.__init__(self, lls, **name_kind_eps) 

 

def _classify(self): 

# 2) Classify intersection chains. 

L = _L 

for v in self._intersections(): 

n, b = v, v._label 

if b in L.RIGHT_LEFT_ON: # next chain 

while True: 

# n.__dict__.pop('_label') 

n._label = None 

n = n._next 

if n is v or n._label is not L.ON_ON: # n._label and ... 

break 

a = L.LEFT_ON if n._label is L.ON_LEFT else L.RIGHT_ON 

v._label = n._label = L.BOUNCING_D if a is b else L.CROSSING_D 

 

# 3) Copy labels 

for v in self._intersections(): 

v._linked._label = v._label 

 

def _clip(self, corners, Union=False, Clas=None, 

**closed_inull_raiser_eps): 

# Clip this composite with another one, C{corners}, 

# using Foster-Hormann-Popa's algorithm. 

P = self._update_all() 

Q = self._class(corners, closed_inull_raiser_eps, 

eps=P._eps, raiser=False) 

P._reset(Union, name=_P_) 

Q._reset(Union, name=_Q_) 

 

bt = Q._bottom_top_eps 

lr = Q._left_right_eps 

# compute and insert intersections 

for p1, p2, Pc in P._edges3(**closed_inull_raiser_eps): 

if not (_outside(p1.x, p2.x, *lr) or 

_outside(p1.y, p2.y, *bt)): 

e = _EdgeFHP(p1, p2) 

if e._dp2 > EPS2: # non-null edge 

for q1, q2, Qc in Q._edges3(**closed_inull_raiser_eps): 

for T, p, q in e._intersect3(q1, q2): 

p = Pc._intersection(T, *p) 

q = Qc._intersection(T, *q) 

# assert not p._linked 

# assert not q._linked 

p._link(q) 

 

# label and classify intersections 

P._labelize() 

P._classify() 

 

# check for special cases 

P._special_cases(Q) 

Q._special_cases(P) 

# handle identicals 

P._special_identicals(Q) 

 

# set Entry/Exit flags 

P._set_entry_exits(Q) 

Q._set_entry_exits(P) 

 

# handle splits and crossings 

P._splits_xings(Q) 

 

# yield the results 

return P._results(P._presults(Q), Clas, **closed_inull_raiser_eps) 

 

@property_RO 

def _identicals(self): 

# Yield all clips marked C{._identical}. 

for c in self._clips: 

if c._identical: 

yield c 

 

def _labelize(self): 

# 1) Intersections classification 

for p in self._intersections(): 

q = p._linked 

# determine local configuration at this intersection 

# and positions of Q- and Q+ relative to (P-, I, P+) 

p1, p3 = p._prev_next2 

q1, q3 = q._prev_next2 

t = (q1._RPoracle(p1, p, p3), 

q3._RPoracle(p1, p, p3)) 

# check intersecting and overlapping cases 

p._label = _RP2L.get(t, None) 

 

def _presults(self, other): 

# Yield the result clips, each as 

# a generator of L{_LatLonFHP}s 

for cp in (self, other): 

for c in cp._clips: 

if c._pushback: 

yield c._all() 

for c in self._clips: 

for X in c._Xings(): 

yield self._resultX(X) 

 

def _reset(self, Union=False, **unused): 

if Union: 

self._Union = True 

 

def _resultX(self, X): 

# Yield the result from an unchecked CROSSING. 

L, U, v = _L, self._Union, X 

while v: 

v._checked = True 

r = v # in P or Q 

s = L.Toggle[v._en_ex] 

e = (s is L.EXIT) ^ U 

while True: 

v = v._next if e else v._prev 

yield v 

v._checked = True 

if v._en_ex is s or v is X: 

break 

if v is r: # full circle 

raise ClipError(full_circle=v, clipid=v._clipid) 

if v is not X: 

v = v._linked 

if v is X: 

break 

 

def _set_entry_exits(self, other): # MCCABE 14 

# 4) Set entry/exit flags 

L, U = _L, self._Union 

for c in self._clips: 

n, k = c._point2(True) 

if n: 

f = n 

s = L.EXIT if n._isinside(other) else L.ENTRY 

t = L.EXIT # first_chain_vertex = True 

while True: 

if n.isintersection: 

b = n._label 

if b is L.CROSSING: 

n._en_ex = s 

s = L.Toggle[s] 

elif b is L.BOUNCING and ((s is L.EXIT) ^ U): 

n._2split = c # see ._splits_xings 

elif b is L.CROSSING_D: 

n._en_ex = s 

if (s is t) ^ U: 

n._label = L.CROSSING 

t = L.Toggle[t] 

if t is L.EXIT: 

s = L.Toggle[s] 

elif b is L.BOUNCING_D: 

n._en_ex = s 

if (s is t) ^ U: 

n._2xing = c # see ._splits_xings 

s = L.Toggle[s] 

t = L.Toggle[t] 

n = n._next # _, n = n._prev_next2 

if n is f: 

break # PYCHOK attr? 

if k: 

c._remove2(k) 

 

def _special_cases(self, other): 

# 3.5) Check special cases 

U = self._Union 

for c in self._clips: 

if c._noXings(U): 

c._noInters = True 

if c._all_ON_ON: 

c._identical = True 

else: 

p, _ = c._point2(False) 

if p and (p._isinside(other) ^ U): 

c._pushback = True 

 

def _special_identicals(self, other): 

# 3.5) Handle identicals 

cds = dict((c._id, c) for c in other._identicals) 

if cds: 

for c in self._identicals: 

for v in c._intersections(): 

d = cds.get(v._linked._clipid, None) 

if d and d._ishole is c._ishole: 

c._pushback = True 

break # next clip 

 

@property_RO 

def _2splits(self): 

# Yield all intersections marked C{._2split} 

for p in self._intersections(): 

if p._2split: 

# assert isinstance(p._2split, _Clip) 

yield p 

 

def _splits_xings(self, other): # MCCABE 15 

# 5) Handle split pairs and 6) crossing candidates 

 

def _2A_dup2(p, P): 

p1, p2 = p._prev_next2 

a2 = p1._2A(p, p2) 

Pc = p._2split 

# assert Pc in P._clips 

return a2, Pc._dup(p) 

 

def _links2(ps, qs): # PYCHOK P unused? 

# Yield each link as a 2-tuple(p, q) 

id_qs = set(map(id, qs)) 

if id_qs: 

for p in ps: 

q = p._linked 

if id(q) in id_qs: 

yield p, q 

 

L = _L 

E = L.ENTRY if self._Union else L.EXIT 

X = L.Toggle[E] 

for p, q in _links2(self._2splits, other._2splits): 

ap, pp = _2A_dup2(p, self) 

aq, qq = _2A_dup2(q, other) 

if (ap * aq) > 0: 

# overwrites p-q link 

p._link(qq) 

q._link(pp) 

else: 

pp._link(qq) 

p._en_ex = q._en_ex = E 

pp._en_ex = qq._en_ex = X 

p._label = pp._label = \ 

q._label = qq._label = L.CROSSING 

 

for p, q in _links2(self._2xings, other._2xings): 

p._label = q._label = L.CROSSING 

 

@property_RO 

def _2xings(self): 

# Yield all intersections marked C{._2xing} 

for p in self._intersections(): 

if p._2xing: 

yield p 

 

 

class _CompositeGH(_CompositeBase): 

'''(INTERNAL) A list of C{_Clips} representing a I{composite} 

of L{LatLonGH} points, duplicates and intersections. 

''' 

_LL = LatLonGH 

_xtend = False 

 

def __init__(self, lls, raiser=False, xtend=False, **name_kind_eps): 

# New L{_CompositeGH}. 

if xtend: 

self._xtend = True 

elif raiser: 

self._raiser = True 

_CompositeBase.__init__(self, lls, **name_kind_eps) 

 

def _clip(self, corners, s_entry, c_entry, Clas=None, 

**closed_inull_raiser_xtend_eps): 

# Clip this polygon with another one, C{corners}. 

 

# Core of Greiner/Hormann's algorithm, enhanced U{Correia's 

# <https://GitHub.com/helderco/univ-polyclip>} implementation*** 

# and extended to optionally handle so-called "degenerate cases" 

S = self._update_all() 

C = self._class(corners, closed_inull_raiser_xtend_eps, 

raiser=False, xtend=False) 

bt = C._bottom_top_eps 

lr = C._left_right_eps 

# 1. find intersections 

for s1, s2, Sc in S._edges3(**closed_inull_raiser_xtend_eps): 

if not (_outside(s1.x, s2.x, *lr) or 

_outside(s1.y, s2.y, *bt)): 

e = _EdgeGH(s1, s2, **closed_inull_raiser_xtend_eps) 

if e._hypot2 > EPS2: # non-null edge 

for c1, c2, Cc in C._edges3(**closed_inull_raiser_xtend_eps): 

for x, y, sa, ca in e._intersect4(c1, c2): 

s = Sc._insert(x, y, s1, s2, sa) 

c = Cc._insert(x, y, c1, c2, ca) 

s._link(c) 

 

# 2. identify entry/exit intersections 

if S._first: 

s_entry ^= S._first._isinside(C, *bt) 

for v in S._intersections(): 

v._entry = s_entry = not s_entry 

 

if C._first: 

c_entry ^= C._first._isinside(S) 

for v in C._intersections(): 

v._entry = c_entry = not c_entry 

 

# 3. yield the result(s) 

return S._results(S._presults(), Clas, **closed_inull_raiser_xtend_eps) 

 

@property_RO 

def _first(self): 

# Get the very first vertex 

for v in self: 

return v 

return None 

 

def _kwds(self, op, **more): 

# Get the kwds C{dict}. 

return _CompositeBase._kwds(self, op, xtend=self.xtend, **more) 

 

def _presults(self): 

# Yield the unchecked intersection(s). 

for c in self._clips: 

for v in c._intersections(): 

if not v._checked: 

yield self._resultU(v) 

 

def _resultU(self, v): 

# Yield the result from an un-checked intersection. 

while v and not v._checked: 

v._check() 

yield v 

r = v 

e = v._entry 

while True: 

v = v._next if e else v._prev 

yield v 

if v._linked: 

break 

if v is r: 

raise ClipError(full_circle=v, clipid=v._clipid) 

v = v._linked # switch 

 

@property 

def xtend(self): 

'''Get the attempt to handle I{degenerate cases} (C{bool}). 

''' 

return self._xtend 

 

@xtend.setter # PYCHOK setter! 

def xtend(self, xtend): 

'''Set the attempt to handle I{degenerate cases} (C{bool}). 

''' 

self._xtend = bool(xtend) 

 

 

class _EdgeFHP(object): 

# An edge between two L{LatLonFHP} points. 

 

X_INTERSECT = _Enum('Xi', 1) # C++ enum 

X_OVERLAP = _Enum('Xo', 5) 

P_INTERSECT = _Enum('Pi', 3) 

P_OVERLAP = _Enum('Po', 7) 

Ps = (P_INTERSECT, P_OVERLAP, X_OVERLAP) 

Q_INTERSECT = _Enum('Qi', 2) 

Q_OVERLAP = _Enum('Qo', 6) 

Qs = (Q_INTERSECT, Q_OVERLAP, X_OVERLAP) 

V_INTERSECT = _Enum('Vi', 4) 

V_OVERLAP = _Enum('Vo', 8) 

Vs = (V_INTERSECT, V_OVERLAP) 

 

def __init__(self, p1, p2, **unused): 

# New edge between points C{p1} and C{p2}, each a L{LatLonFHP}. 

self._p1_p2 = p1, p2 

self._dp = dp = p2 - p1 

self._dp2 = dp * dp # dot product, hypot2 

 

self._lr, \ 

self._bt = _left_right_bottom_top_eps(p1, p2) 

 

def _intersect3(self, q1, q2): 

# Return intersection Type or C{None} 

if not (_outside(q1.x, q2.x, *self._lr) or 

_outside(q1.y, q2.y, *self._bt)): 

T, E = None, _EdgeFHP # self.__class__ 

dq = q2 - q1 

dq2 = dq * dq # dot product, hypot2 

if dq2 > EPS2: # like ._clip 

p1, p2 = self._p1_p2 

ap1 = p1._2A(q1, q2) 

ap2_1 = p2._2A(q1, q2) - ap1 

if fabs(ap2_1) > _0_EPS: # non-parallel edges 

aq1 = q1._2A(p1, p2) 

aq2_1 = q2._2A(p1, p2) - aq1 

if fabs(aq2_1) > _0_EPS: 

# compute and classify alpha and beta 

a, a_0, a_0_1, _ = _alpha4(-ap1 / ap2_1) 

b, b_0, b_0_1, _ = _alpha4(-aq1 / aq2_1) 

# distinguish intersection types 

T = E.X_INTERSECT if a_0_1 and b_0_1 else ( 

E.P_INTERSECT if a_0_1 and b_0 else ( 

E.Q_INTERSECT if a_0 and b_0_1 else ( 

E.V_INTERSECT if a_0 and b_0 else None))) 

 

elif fabs(ap1) < _0_EPS: # parallel or colinear edges 

dp = self._dp 

d1 = q1 - p1 

# compute and classify alpha and beta 

a, a_0, a_0_1, _a_0_1 = _alpha4((d1 * dp) / self._dp2) 

b, b_0, b_0_1, _b_0_1 = _alpha4((d1 * dq) / (-dq2)) 

# distinguish overlap type 

T = E.X_OVERLAP if a_0_1 and b_0_1 else ( 

E.P_OVERLAP if a_0_1 and _b_0_1 else ( 

E.Q_OVERLAP if _a_0_1 and b_0_1 else ( 

E.V_OVERLAP if a_0 and b_0 else None))) 

 

if T: 

if T is E.X_INTERSECT: 

v = p1 + a * self._dp 

yield T, (v, p1, p2, a), (v, q1, q2, b) 

elif T in E.Vs: 

yield T, (p1,), (q1,) 

else: 

if T in E.Qs: 

yield T, (p1,), (p1, q1, q2, b) 

if T in E.Ps: 

yield T, (q1, p1, p2, a), (q1,) 

 

 

class _EdgeGH(object): 

# An edge between two L{LatLonGH} points. 

 

_raiser = False 

_xtend = False 

 

def __init__(self, s1, s2, raiser=False, xtend=False, **unused): 

# New edge between points C{s1} and C{s2}, each a L{LatLonGH}. 

self._s1, self._s2 = s1, s2 

self._x_sx_y_sy = (s1.x, s2.x - s1.x, 

s1.y, s2.y - s1.y) 

self._lr, \ 

self._bt = _left_right_bottom_top_eps(s1, s2) 

 

if xtend: 

self._xtend = True 

elif raiser: 

self._raiser = True 

 

def __str__(self): 

return 'edge(%s, %s)' % (self._s1, self._s2) 

 

def _alpha2(self, x, y, dx, dy): 

# Return C{(alpha)}, see .points.nearestOn5 

a = (y * dy + x * dx) / self._hypot2 

d = (y * dx - x * dy) / self._hypot0 

return a, fabs(d) 

 

def _error(self, n, c1, c2): 

t = _SPACE_(self._intersect4.__name__, _EdgeGH(c1, c2)) 

raise ClipError(_case_, n, txt=t) 

 

@Property_RO 

def _hypot0(self): 

_, sx, _, sy = self._x_sx_y_sy 

return hypot(sx, sy) * _0_EPS 

 

@Property_RO 

def _hypot2(self): 

_, sx, _, sy = self._x_sx_y_sy 

return hypot2(sx, sy) 

 

def _intersect4(self, c1, c2, parallel=True): # MCCABE 14 

# Yield the intersections of this and another edge. 

 

# @return: None, 1 or 2 intersections, each a 4-Tuple 

# (x, y, s_alpha, c_alpha) with intersection 

# x, y and both alphas. 

 

# @raise ClipError: Intersection unhandled. 

 

# @see: U{Intersection point of two line segments 

# <http://PaulBourke.net/geometry/pointlineplane/>}. 

c1_x, c1_y = c1.x, c1.y 

if not (_outside(c1_x, c2.x, *self._lr) or 

_outside(c1_y, c2.y, *self._bt)): 

x, sx, \ 

y, sy = self._x_sx_y_sy 

 

cx = c2.x - c1_x 

cy = c2.y - c1_y 

d = cy * sx - cx * sy 

 

if fabs(d) > _0_EPS: # non-parallel edges 

dx = x - c1_x 

dy = y - c1_y 

ca = (sx * dy - sy * dx) / d 

if _0_EPS < ca < _EPS_1 or (self._xtend and 

_EPS_0 < ca < _1_EPS): 

sa = (cx * dy - cy * dx) / d 

if _0_EPS < sa < _EPS_1 or (self._xtend and 

_EPS_0 < sa < _1_EPS): 

yield (x + sa * sx), (y + sa * sy), sa, ca 

 

# unhandled, "degenerate" cases 1, 2 or 3 

elif self._raiser and not (sa < _EPS_0 or sa > _1_EPS): 

self._error(1, c1, c2) # intersection at s1 or s2 

 

elif self._raiser and not (ca < _EPS_0 or ca > _1_EPS): 

# intersection at c1 or c2 or at c1 or c2 and s1 or s2 

sa = (cx * dy - cy * dx) / d 

e = 2 if sa < _EPS_0 or sa > _1_EPS else 3 

self._error(e, c1, c2) 

 

elif parallel and (sx or sy) and (cx or cy): # PYCHOK no cover 

# non-null, parallel or colinear edges 

sa1, d1 = self._alpha2(c1_x - x, c1_y - y, sx, sy) 

sa2, d2 = self._alpha2(c2.x - x, c2.y - y, sx, sy) 

if max(d1, d2) < _0_EPS: 

if self._xtend and not _outside(sa1, sa2, _EPS_0, _1_EPS): 

if sa1 > sa2: # anti-parallel 

sa1, sa2 = sa2, sa1 

ca1, ca2 = _1_0, _0_0 

else: # parallel 

ca1, ca2 = _0_0, _1_0 

ca = fabs((sx / cx) if cx else (sy / cy)) 

# = hypot(sx, sy) / hypot(cx, cy) 

if sa1 < 0: # s1 is between c1 and c2 

ca *= ca1 + sa1 

yield x, y, ca1, _alpha1(ca) 

else: # c1 is between s1 and s2 

yield (x + sa1 * sx), (y + sa1 * sy), sa1, ca1 

if sa2 > 1: # s2 is between c1 and c2 

ca *= sa2 - _1_0 

yield (x + sx), (y + sy), ca2, _alpha1(ca2 - ca) 

else: # c2 is between s1 and s2 

yield (x + sa2 * sx), (y + sa2 * sy), sa2, ca2 

elif self._raiser and not _outside(sa1, sa2, _0_0, _1_EPS): 

self._error(4, c1, c2) 

 

# def _intersect4(self, c1, c2, **unused): 

# # Intersect this and another edge. 

# 

# # @return: 4-Tuple (x, y, s_alpha, c_alpha) with the 

# # intersection point x, y and both alphas. 

# 

# # @raise ClipError: Intersection unhandled. 

# 

# # @see: U{Intersection point of two line segments 

# # <http://PaulBourke.net/geometry/pointlineplane/>}. 

# 

# if not (_outside(c1.x, c2.x, *self._lr) or 

# _outside(c1.y, c2.y, *self._bt)): 

# x, sx, \ 

# y, sy = self._x_sx_y_sy 

# 

# cx = c2.x - c1.x 

# cy = c2.y - c1.y 

# d = cy * sx - cx * sy 

# 

# if fabs(d) > _0_EPS: # non-parallel edges 

# dx = x - c1.x 

# dy = y - c1.y 

# sa = (cx * dy - cy * dx) / d 

# ca = (sx * dy - sy * dx) / d 

# if _0_EPS < ca < _EPS_1: 

# if _0_EPS < sa < _EPS_1: 

# yield (x + sa * sx), (y + sa * sy), sa, ca 

# 

# # unhandled, "degenerate" cases 1, 2 or 3 

# elif self.raiser and not (sa < _EPS_0 or sa > _1_EPS): 

# self._error(1, c1, c2) # insection at s1 or s2 

# 

# elif self.raiser and not (ca < _EPS_0 or ca > _1_EPS): 

# # intersection at c1 or c2 or at c1 or c2 and s1 or s2 

# self._error(2 if sa < _EPS_0 or sa > _1_EPS else 3, c1, c2) 

# 

# elif self.raiser and (sx or sy) and (cx or cy): 

# # null, parallel or colinear edges 

# h = hypot(sx, sy) * _0_EPS 

# if min(_perpendicular(c1.x - x, c1.y - y, sx, sy), 

# _perpendicular(c2.x - x, c2.y - y, sx, sy)) < h: 

# self._error(4, c1, c2) # colinear, overlapping 

 

 

class _BooleanBase(object): 

# Shared C{Boolean[FHP|GH]} methods. 

 

def __add__(self, other): 

'''Sum: C{this + other} clips. 

''' 

return self._sum(_other(self, other), self.__add__) # PYCHOK OK 

 

def __and__(self, other): 

'''Intersection: C{this & other}. 

''' 

return self._boolean(other, False, False, self.__and__) # PYCHOK OK 

 

def __iadd__(self, other): 

'''In-place sum: C{this += other} clips. 

''' 

return self._inplace(self.__add__(other)) 

 

def __iand__(self, other): 

'''In-place intersection: C{this &= other}. 

''' 

return self._inplace(self.__and__(other)) 

 

def __ior__(self, other): 

'''In-place union: C{this |= other}. 

''' 

return self._inplace(self.__or__(other)) 

 

def __or__(self, other): 

'''Union: C{this | other}. 

''' 

return self._boolean(other, True, True, self.__or__) # PYCHOK OK 

 

def __radd__(self, other): 

'''Reverse sum: C{other + this} clips. 

''' 

return _other(self, other)._sum(self, self.__radd__) 

 

def __rand__(self, other): 

'''Reverse intersection: C{other & this} 

''' 

return _other(self, other).__and__(self) 

 

def __ror__(self, other): 

'''Reverse union: C{other | this} 

''' 

return _other(self, other).__or__(self) 

 

def _boolean4(self, other, op): 

# Set up a new C{Boolean[FHP|GH]}. 

C = self.__class__ 

kwds = C._kwds(self, op) 

a = C(self, **kwds) 

b = _other(self, other) 

return a, b, C, kwds 

 

def _inplace(self, r): 

# Replace this with a L{Boolean*} result. 

self._clips, r._clips = r._clips, None 

# if self._raiser != r._raiser: 

# self._raiser = r._raiser 

# if self._xtend != r._xtend: 

# self._xtend = r._xtend 

# if self._eps != r._eps: 

# self._eps = r._eps 

return self 

 

 

class BooleanFHP(_CompositeFHP, _BooleanBase): 

'''I{Composite} polygon class providing I{boolean} operations 

between two I{composite} polygons using the U{Forster-Hormann-Popa 

<https://www.ScienceDirect.com/science/article/pii/S259014861930007X>}'s 

C++ implementation, transcoded to pure Python. 

 

The supported operations between (composite) polygon A and B are: 

 

- C = A & B or A &= B, intersection of A and B 

 

- C = A + B or A += B, sum of the A and B clips 

 

- C = A | B or A |= B, union of A and B 

 

- A == B, equivalence, A and B clips match 

 

@see: Function L{clipFHP4} and class L{BooleanGH}. 

''' 

_kind = _boolean_ 

 

def __init__(self, lls, raiser=False, eps=EPS, name=NN): 

'''New L{BooleanFHP} operand for I{boolean} operation. 

 

@arg lls: The polygon points and clips (iterable of L{LatLonFHP}s, 

L{ClipFHP4Tuple}s or other C{LatLon}s). 

@kwarg raiser: If C{True}, throw L{ClipError} exceptions (C{bool}). 

@kwarg esp: Tolerance for eliminating null edges (C{degrees}, same 

units as the B{C{lls}} coordinates). 

@kwarg name: Optional name (C{str}). 

''' 

_CompositeFHP.__init__(self, lls, raiser=raiser, 

eps=eps, name=name) 

 

def __isub__(self, other): 

'''In-place difference: C{this -= other}, N/A. 

''' 

raise self._ErrorOp(self.__isub__, other) 

 

def __rsub__(self, other): 

''' Reverse difference: C{other - this}, N/A. 

''' 

raise self._ErrorOp(self.__rsub__, other) 

 

def __sub__(self, other): 

'''Difference: C{this - other}, N/A. 

''' 

raise self._ErrorOp(self.__sub__, other) 

 

def _boolean(self, other, Union, unused, op): 

# One C{BooleanFHP} operation. 

p, q, C, kwds = self._boolean4(other, op) 

r = p._clip(q, Union=Union, **kwds) 

return C(r, **kwds) 

 

def _ErrorOp(self, op, other): 

n = _DOT_(self.named2, op.__name__) 

return NotImplementedError(unstr(n, other)) 

 

 

class BooleanGH(_CompositeGH, _BooleanBase): 

'''I{Composite} polygon class providing I{boolean} operations 

between two I{composite} polygons using the U{Greiner-Hormann 

<http://www.Inf.USI.CH/hormann/papers/Greiner.1998.ECO.pdf>} 

algorithm, U{Correia<https://GitHub.com/helderco/univ-polyclip>}'s 

implementation, modified and extended. 

 

The supported operations between (composite) polygon A and B are: 

 

- C = A - B or A -= B, difference A less B 

 

- C = B - A or B -= A, difference B less B 

 

- C = A & B or A &= B, intersection of A and B 

 

- C = A + B or A += B, sum of the A and B clips 

 

- C = A | B or A |= B, union of A and B 

 

- A == B, equivalence, A and B clips match 

 

@note: To handle I{degenerate cases} like C{point-edge} and 

C{point-point} intersections, use class L{BooleanFHP}. 

 

@see: Function L{clipGH4} and class L{BooleanFHP}. 

''' 

_kind = _boolean_ 

 

def __init__(self, lls, raiser=True, xtend=False, eps=EPS, name=NN): 

'''New L{BooleanFHP} operand for I{boolean} operation. 

 

@arg lls: The polygon points and clips (iterable of L{LatLonGH}s, 

L{ClipGH4Tuple}s or other C{LatLon}s). 

@kwarg raiser: If C{True}, throw L{ClipError} exceptions (C{bool}). 

@kwarg xtend: If C{True}, extend edges of I{degenerate cases}, an 

attempt to handle the latter (C{bool}). 

@kwarg esp: Tolerance for eliminating null edges (C{degrees}, same 

units as the B{C{lls}} coordinates). 

@kwarg name: Optional name (C{str}). 

''' 

_CompositeGH.__init__(self, lls, raiser=raiser, xtend=xtend, 

eps=eps, name=name) 

 

def _boolean(self, other, s_entry, c_entry, op): 

# One C{BooleanGH} operation. 

s, c, C, kwds = self._boolean4(other, op) 

r = s._clip(c, s_entry, c_entry, **kwds) 

return C(r, **kwds) 

 

def __isub__(self, other): 

'''In-place difference: C{this -= other}. 

''' 

return self._inplace(self.__sub__(other)) 

 

def __rsub__(self, other): 

''' Reverse difference: C{other - this} 

''' 

return _other(self, other).__sub__(self) 

 

def __sub__(self, other): 

'''Difference: C{this - other}. 

''' 

return self._boolean(other, True, False, self.__sub__) 

 

 

__all__ += _ALL_DOCS(_BooleanBase, _Clip, 

_CompositeBase, _CompositeFHP, _CompositeGH, 

_LatLonBool) 

 

# **) MIT License 

# 

# Copyright (C) 2018-2023 -- mrJean1 at Gmail -- All Rights Reserved. 

# 

# Permission is hereby granted, free of charge, to any person obtaining a 

# copy of this software and associated documentation files (the "Software"), 

# to deal in the Software without restriction, including without limitation 

# the rights to use, copy, modify, merge, publish, distribute, sublicense, 

# and/or sell copies of the Software, and to permit persons to whom the 

# Software is furnished to do so, subject to the following conditions: 

# 

# The above copyright notice and this permission notice shall be included 

# in all copies or substantial portions of the Software. 

# 

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 

# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 

# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 

# OTHER DEALINGS IN THE SOFTWARE. 

 

# ***) GNU GPL 3 

# 

# Copyright (C) 2011-2012 Helder Correia <Helder.MC@Gmail.com> 

# 

# This program is free software: you can redistribute it and/or 

# modify it under the terms of the GNU General Public License as 

# published by the Free Software Foundation, either version 3 of 

# the License, or any later version. 

# 

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

# GNU General Public License for more details. 

# 

# You should have received a copy of the GNU General Public License 

# along with this program. If not, see <http://www.GNU.org/licenses/>. 

# 

# You should have received the README file along with this program. 

# If not, see <https://GitHub.com/helderco/univ-polyclip>.