D47calib

Generate, combine, display and apply Δ47 calibrations

This library provides support for:

  • computing Δ47 calibrations by applying OGLS regression to sets of (T, Δ47) observations
  • combining Δ47 datasets to produce a combined calibration
  • various methods useful for creating Δ47 calibration plots
  • Using Δ47 calibrations to convert between T and Δ47, keeping track of covariance between inputs and/or uncertainties/covariance originating from calibration uncertainties. This may be done within Python code or by using a simple command-line interface (e.g., D47calib input.csv > output.csv).

1. Installation

This should do the trick:

pip install D47calib

Alternatively:

  1. download or clone the source from https://github.com/mdaeron/D47calib
  2. chose one of one of the following options:
    • copy/move the /src/D47calib directory to somewhere in your Python path
    • copy/move the /src/D47calib directory to your current working directory
    • copy/move the /src/D47calib directory to any other location (e.g., /foo/bar) and include the following code snippet in your scripts:
import sys
sys.path.append('/foo/bar')

I you don't install from pip, you will probably need to install the requirements listed in pyproject.toml.

2. Calibrations included

D47calib provides the following pre-built calibrations. All code and raw data used to compute these calibrations can be found in the build_calibs directory.

breitenbach_2018:

Cave pearls analyzed by Breitenbach et al. (2018).

Raw data were obtained from the original study’s supplementary information. The original publication processed data according to two sessions, each 4-5 months long, separated by 2 months. After reprocessing the original raw data using D47crunch, visual inspection of the standardization residuals defined revealed the presence of substantial drifts in both sessions. We thus assigned modified session boundaries defining four continuous measurement periods separated by 21 to 52 days, with new session lengths ranging from 24 to 80 days. The original data was not modified in any other way. Formation temperatures are from table 1 of the original study. We assigned arbitrary 95 % uncertainties of ±1 °C, which seem reasonable for cave environments.

peral_2018:

Planktic foraminifera analyzed by Peral et al. (2018), reprocessed by Daëron & Gray (2023).

Peral et al. [2018] reported Δ47 values of foraminifera from core-tops, both planktic and benthic, whose calcification temperature estimates were recently reassessed by Daëron & Gray [2023]. Here we only consider Peral et al.’s planktic data, excluding two benthic samples (cf Daëron & Gray for reasons why we only consider planktic samples for now). In our reprocessing, as in the original study, “samples” are defined by default as a unique combination of core site, species, and size fraction. Δ47 values are then standardized in the usual way, before using D47crunch.combine_samples() to combine all size fractions with the same core and species, except for G. inflata samples (cf Daëron & Gray and accompanying GitHub repository). By properly accounting for analytical error covariance between the Δ47 values to combine, this two-step approach avoids underestimating the final standardization errors. This

jautzy_2020:

Synthetic calcites analyzed by Jautzy et al. (2020).

Jautzy et al. reported data from a continuous period spanning 10 months, and used a moving-window approach to standardize their measurements. We assigned sessions defined, whenever possible, as periods of one or more complete weeks enclosing one of more unknown sample analyses. The resulting Δ47 residuals, on the order of 40 ppm (1SD), do not display evidence of instrumental drift. Formation temperatures are from table S2 of the original study. We assigned arbitrary 95 % uncertainties of ±1 °C, which seem reasonable for laboratory experiments.

anderson_2021_mit:

Various natural and synthetic carbonates analyzed at MIT by Anderson et al. (2021).

Raw IRMS data and temperature constraints were obtained from the original study’s supple- mentary information (tables S01 and S02). When reprocesseded the IRMS data we made no changes to the session defintions, but we excluded sessions 5 and 25 because they did not include any unknown sample analyses.

anderson_2021_lsce:

Slow-growing mammillary calcite from Devils Hole and Laghetto Basso analyzed at LSCE by Anderson et al. (2021).

Raw IRMS data is from the original study’s supplementary information (SI-S02). Temperature contraints are from table 1 in Daëron et al. (2019).

fiebig_2021:

Inorganic calcites analyzed by Fiebig et al. (2021).

Temperature contraints are duplicated from the earlier publications where the corresponding samples were first described [Daëron et al., 2019; Jautzy et al., 2020; Anderson et al., 2021]. Raw IRMS data and were obtained from the original study’s supplementary information, and processed as described by Fiebig et al. [2021], jointly using (a) heated and 25 °C-equilibrated CO2 to constrain the scrambling effect and compositional nonlinearity associated with each session, and (b) ETH-1 and ETH-2 reference materials to anchor unknown samples to the I-CDES scale.

huyghe_2022:

Marine calcitic bivalves analyzed by Huyghe et al. (2022).

Huyghe et al. reported Δ47 values of modern calcitic bivalves collected from localities with good environmental constraints. As was done in the original publication, different bivalve individuals were initially treated as distinct analytical samples. In some sites with strong seasonality, individuals were sub-sampled into winter-calcified a summer-calcified fractions. Δ47 values were then standardized in the usual way, before using D47crunch.combine_samples() method to combine all samples from the same locality. Calcification temperature estimates are from the original study.

devils_laghetto_2023:

Combined data set of slow-growing mammillary calcite from Devils Hole and Laghetto Basso, analyzed both at LSCE by Anderson et al. (2021) and at GU by Fiebig et al. (2021).

OGLS23:

Combined data set including all of the above. For a detailed discussion of goodness-of-fit and regression uncertainties, see Daëron & Vermeesch (2023). Also aliased as ogls_2023 for backward-compatibility.

3. Command-line interface

D47calib also provides a command-line interface (CLI) for converting between Δ47 and temperature values, computing uncertainties for each computed value (and how these uncertainties are correlated with each other) from different sources (from calibration errors alone, from measurement errors alone, and from both). The computed uncertainties are provided as standard errors, correlation matrix and/or covariance matrix. Input and output files may be comma-separated, tab-separated, or printed out as visually aligned data columns.

3.1 Simple examples

Start with the simplest input file possible (here named input.csv):

D47
0.567

Then process it:

D47calib input.csv

This prints out:

  D47      T  T_SE_from_calib  T_correl_from_calib  T_SE_from_input  T_correl_from_input  T_SE_from_both  T_correl_from_both
0.567  34.20             0.38                1.000             0.00                1.000            0.38               1.000
  • T is the temperature corresponding to a D47 value of 0.567 ‰ according to the default calibration (OGLS23).
  • T_SE_from_calib is the standard error on T from the calibration uncertainty
  • T_correl_from_calib is the correlation matrix for the T_SE_from_calib values. Because here there is only one value, this is a 1-by-1 matrix with a single value of one, which is not very exciting.
  • T_SE_from_input is the standard error on T from the measurement uncertainties on D47. Because these are not specified here, T_SE_from_input is equal to zero.
  • T_correl_from_input is, predictably, the correlation matrix for the T_SE_from_input values. Because here there is only one value, this is a 1-by-1 matrix with a single value of one, you know the drill.
  • T_SE_from_both is the standard error on T obtained by combining the two previously considered sources of uncertainties.
  • T_correl_from_both is what you expect it to be if you've been reading so far. Can you guess why it is a 1-by-1 matrix with a single value of one?

3.1.1 Adding D47 measurement uncertainties

This can be done by adding a column to input.csv:

D47,D47_SE
0.567,0.008

Because this is not very human-friendly, we'll replace the comma separators by whitespace. We'll also add a column listing sample names:

Sample   D47    D47_SE
FOO-1  0.567   0.008

Then process it. We're adding an option (-i ' ', or --delimiter-in ' ') specifying that we're no longer using commas but whitespaces as delimiters:

D47calib -i ' ' input.csv

This yields:

Sample   D47  D47_SE      T  T_SE_from_calib  T_correl_from_calib  T_SE_from_input  T_correl_from_input  T_SE_from_both  T_correl_from_both
FOO-1  0.567   0.008  34.20             0.38                1.000             2.91                1.000            2.94               1.000

You can see that T_SE_from_input is now much larger than T_SE_from_calib, and that the combined T_SE_from_both is equal to the quadratic sum of T_SE_from_calib and T_SE_from_input.

3.1.2 Converting more than one measurement

Let's add lines to our input file:

Sample   D47  D47_SE
FOO-1  0.567   0.008
BAR-2  0.575   0.009
BAZ-3  0.582   0.007

Which yields:

Sample   D47  D47_SE      T  T_SE_from_calib  T_correl_from_calib                T_SE_from_input  T_correl_from_input                T_SE_from_both  T_correl_from_both              
FOO-1  0.567   0.008  34.20             0.38                1.000  0.996  0.987             2.91                1.000  0.000  0.000            2.94               1.000  0.015  0.019
BAR-2  0.575   0.009  31.33             0.37                0.996  1.000  0.997             3.18                0.000  1.000  0.000            3.21               0.015  1.000  0.017
BAZ-3  0.582   0.007  28.89             0.36                0.987  0.997  1.000             2.42                0.000  0.000  1.000            2.44               0.019  0.017  1.000

A notable change are the 3-by-3 correlation matrices, which tell us how the T errors or these three measurements covary. T_correl_from_calib shows that the T_SE_from_calib errors are strongly correlated, because the three D47 values are close to each other. T_correl_from_input indicates statistically independent T_SE_from_input errors. This may be true or not, but it is the expected result because our input file does not include any information on how the D47_SE errors may covary (see below how this additional info may be specified). Thus in this case D47calib assumes that the D47 values are statistically independent (gentle reminder: this is often not the case, see below).

Note that because T_SE_from_input errors are much larger than T_SE_from_calib errors, the combined T_SE_from_both errors are only weakly correlated, as seen in T_correl_from_both.

3.1.3 Accounting for correlations in D47 errors

Because Δ47 measurements performed in the same analytical session(s) are not statistically independent, we may add to input.csv a correlation matrix describing how D47_SE errors covary.

One simple way to compute this correlation matrix is to use the save_D47_correl() method from the D47crunch library (PyPI, GitHub, Zenodo) described by Daëron (2021).

Sample   D47  D47_SE   D47_correl
FOO-1  0.567   0.008   1.00  0.25  0.25
BAR-2  0.575   0.009   0.25  1.00  0.25
BAZ-3  0.582   0.007   0.25  0.25  1.00

This yields:

Sample   D47  D47_SE  D47_correl                  T  T_SE_from_calib  T_correl_from_calib                T_SE_from_input  T_correl_from_input                T_SE_from_both  T_correl_from_both              
FOO-1  0.567   0.008        1.00  0.25  0.25  34.20             0.38                1.000  0.996  0.987             2.91                1.000  0.250  0.250            2.94               1.000  0.261  0.264
BAR-2  0.575   0.009        0.25  1.00  0.25  31.33             0.37                0.996  1.000  0.997             3.18                0.250  1.000  0.250            3.21               0.261  1.000  0.263
BAZ-3  0.582   0.007        0.25  0.25  1.00  28.89             0.36                0.987  0.997  1.000             2.42                0.250  0.250  1.000            2.44               0.264  0.263  1.000

What changed ? We now have propagated D47_correl into T_correl_from_input, and this is accounted for in the combined correlation matrix T_correl_from_both. Within the framework of our initial assumptions (multivariate Gaussian errors, first-order linear propagation of uncertainties...), this constitutes the “best” (or rather, the most “information-complete”) description of uncertainties constraining our final T estimates.

With increasing number of measurements, these correlation matrices become quite large, so that it becomes useless to print them out visually. To facilitate using the output of D47calib as an input to another piece of software, one may use the -j or --delimiter-out option to use machine-readable delimiters such as commas or tabs, and the '-o' or --output-file option to save the output as a file instead of printing it out:

D47calib -i ' ' -j ',' -o output.csv input.csv

This will create the following output.csv file:

Sample,D47,D47_SE,D47_correl,,,T,T_SE_from_calib,T_correl_from_calib,,,T_SE_from_input,T_correl_from_input,,,T_SE_from_both,T_correl_from_both,,
FOO-1,0.567,0.008,1.00,0.25,0.25,34.20,0.38,1.000,0.996,0.987,2.91,1.000,0.250,0.250,2.94,1.000,0.261,0.264
BAR-2,0.575,0.009,0.25,1.00,0.25,31.33,0.37,0.996,1.000,0.997,3.18,0.250,1.000,0.250,3.21,0.261,1.000,0.263
BAZ-3,0.582,0.007,0.25,0.25,1.00,28.89,0.36,0.987,0.997,1.000,2.42,0.250,0.250,1.000,2.44,0.264,0.263,1.000

Hint for Mac users: Quick Look (or “spacebar preview”, i.e. what happens when you select a file in the Finder and press the spacebar once) provides you with a nice view of a csv file when you just want to check the results visually, as long as you use a comma delimiter.

3.1.4 Converting from T to D47

Everything described above works in the other direction as well, without changing anything to the command-line instruction:

T   T_SE
0    0.5
10   1.0
20   2.0

Yields:

 T  T_SE     D47  D47_SE_from_calib  D47_correl_from_calib                D47_SE_from_input  D47_correl_from_input                D47_SE_from_both  D47_correl_from_both              
 0   0.5  0.6798             0.0016                  1.000  0.969  0.848             0.0020                  1.000  0.000  0.000            0.0025                 1.000  0.210  0.091
10   1.0  0.6424             0.0013                  0.969  1.000  0.952             0.0035                  0.000  1.000  0.000            0.0038                 0.210  1.000  0.056
20   2.0  0.6090             0.0011                  0.848  0.952  1.000             0.0063                  0.000  0.000  1.000            0.0064                 0.091  0.056  1.000

3.2 Integration with D47crunch

Starting with the following input file rawdata.csv:

UID Sample  Session d45 d46 d47 d48 d49
1   FOO-1   Session_01  -0.848380   2.872996    1.535960    5.431873    4.665655
2   BAZ-3   Session_01  -5.394955   7.938127    1.887702    15.671857   9.739724
3   ETH-3   Session_01  5.726647    11.144602   16.634507   22.275401   28.306614
4   ETH-3   Session_01  5.755765    11.179326   16.689870   22.294132   28.306614
5   ETH-2   Session_01  -5.973121   -5.894178   -12.599303  -12.037594  -18.023381
6   BAR-2   Session_01  -9.941731   10.985508   0.208381    21.832546   10.707292
7   ETH-1   Session_01  6.050787    10.800497   16.232192   21.429453   27.780042
8   ETH-3   Session_01  5.734551    11.043266   16.556578   22.005474   28.306614
9   ETH-2   Session_01  -5.991066   -5.968789   -12.685206  -12.219412  -18.023381
10  ETH-2   Session_01  -5.981599   -6.011356   -12.728742  -12.335559  -18.023381
11  ETH-1   Session_01  6.009875    10.711152   16.087994   21.275325   27.780042
12  ETH-1   Session_01  5.994522    10.810755   16.181039   21.445703   27.780042
13  BAZ-3   Session_02  -5.337619   7.818571    1.818572    15.400966   9.739724
14  ETH-2   Session_02  -5.952660   -5.887239   -12.582248  -12.081588  -18.023381
15  ETH-3   Session_02  5.720443    11.187928   16.689130   22.308575   28.306614
16  ETH-3   Session_02  5.756394    11.109906   16.635806   22.189179   28.306614
17  ETH-1   Session_02  6.019913    10.773652   16.165645   21.309536   27.780042
18  ETH-1   Session_02  5.995178    10.702934   16.073811   21.169324   27.780042
19  FOO-1   Session_02  -0.835316   2.868058    1.539147    5.483628    4.665655
20  ETH-3   Session_02  5.717666    11.175023   16.654427   22.251497   28.306614
21  ETH-2   Session_02  -5.983050   -5.953794   -12.679809  -12.224144  -18.023381
22  ETH-1   Session_02  6.029949    10.682183   16.080186   21.182471   27.780042
23  ETH-2   Session_02  -5.993596   -6.086738   -12.816033  -12.452397  -18.023381
24  BAR-2   Session_02  -9.951732   10.964153   0.171443    21.779172   10.707292

The following script will read thart raw data, fully process it, convert the standardized output to temperatures, and save the final results to a file named output.csv:

D47crunch rawdata.csv
D47calib -o output.csv -j '>' output/D47_correl.csv

With the contents of output.csv being:

Sample     D47  D47_SE  D47_correl                      T  T_SE_from_calib  T_correl_from_calib                 T_SE_from_input  T_correl_from_input                T_SE_from_both  T_correl_from_both              
 BAR-2  0.6777  0.0066      1.0000  0.3586  0.2798   0.51             0.41                1.000  0.731  -0.036             1.68                1.000  0.359  0.280            1.73               1.000  0.373  0.262
 BAZ-3  0.5894  0.0060      0.3586  1.0000  0.2473  26.34             0.35                0.731  1.000   0.654             2.02                0.359  1.000  0.247            2.05               0.373  1.000  0.263
 FOO-1  0.4873  0.0056      0.2798  0.2473  1.0000  68.21             0.69               -0.036  0.654   1.000             2.82                0.280  0.247  1.000            2.90               0.262  0.263  1.000

If a simpler output is required, just add the --ignore-correl or -g option to the second line above, which should yield:

Sample     D47  D47_SE      T  T_SE_from_calib  T_SE_from_input  T_SE_from_both
 BAR-2  0.6777  0.0066   0.51             0.41             1.68            1.73
 BAZ-3  0.5894  0.0060  26.34             0.35             2.02            2.05
 FOO-1  0.4873  0.0056  68.21             0.69             2.82            2.90

3.3 Further customizing the CLI

A complete list of options is provided by D47calib --help.

3.3.1 Using covariance instead of correlation matrix as input

Just provide D47_covar (or T_covar when converting in the other direction) in the input file instead of D47_SE and D47_correl.

3.3.2 Reporting covariance instead of correlation matrices in the output

Use the --return-covar option.

3.3.3 Reporting neither covariances nor correlations in the output

If you don't care about all this covariance nonsense, or just wish for an output that does't hurt your eyes, you can use the --ignore-correl option. Standard errors will still be reported.

3.3.4 Excluding or only including certain lines (samples) from the input

To filter the samples (lines) to process using --exclude-samples and --include-samples, first add a Sample column to the input data, assign a sample name to each line.

Then to exclude some samples, provide the --exclude-samples option with the name of a file where each line is one sample to exclude.

To exclude all samples except those listed in a file, provide the --include-samples option with the name of that file, where each line is one sample to include.

3.3.5 Changing the numerical precision of the output

This is controlled by the following options:

  • --T-precision or -p (default: 2): All T and T_SE_* values
  • --D47-precision or -q (default: 4): All D47 and D47_SE_* values
  • --correl-precision or -r (default: 3): All *_correl_* values
  • --covar-precision or -s (default: 3): All *_covar_* values

3.3.6 Using a different Δ47 calibration

You may use a different calibration than the default OGLS23 using the --calib or -c option. Any predefeined calibration from the D47calib library is a valid option.

You may also specify an arbitrary polynomial function of inverse T, by creating a file (e.g., calib.csv) with the following format:

degree    coef        covar
0       0.1741   2.4395e-05  -0.0262821       5.634934
1      -17.889   -0.0262821    32.17712       -7223.86
2        42614     5.634934    -7223.86    1654633.996

Then using -c calib.csv will use this new calibration.

If you don't know/care about the covariance of the calibration coefficients, just leave out the covar terms:

degree    coef
0       0.1741
1      -17.889
2        42614

In this case, all *_SE_from_calib outputs will be equal to zero, but the *_from_input uncertainties will still be valid (and identical to *_from_both uncertainties, since we are ignoring calibration uncertainties).


   1"""
   2Generate, combine, display and apply Δ47 calibrations
   3
   4This library provides support for:
   5
   6- computing Δ47 calibrations by applying OGLS regression to sets of (T, Δ47) observations
   7- combining Δ47 datasets to produce a combined calibration
   8- various methods useful for creating Δ47 calibration plots
   9- Using Δ47 calibrations to convert between T and Δ47, keeping track of covariance between inputs
  10and/or uncertainties/covariance originating from calibration uncertainties. This may be done within
  11Python code or by using a simple command-line interface (e.g., `D47calib input.csv > output.csv`).
  12
  13.. include:: ../../docpages/install.md
  14.. include:: ../../docpages/calibs.md
  15.. include:: ../../docpages/cli.md
  16
  17* * *
  18"""
  19
  20__author__    = 'Mathieu Daëron'
  21__contact__   = 'daeron@lsce.ipsl.fr'
  22__copyright__ = 'Copyright (c) 2023 Mathieu Daëron'
  23__license__   = 'MIT License - https://opensource.org/licenses/MIT'
  24# __docformat__ = "restructuredtext"
  25__date__      = '2023-09-27'
  26__version__   = '1.3'
  27
  28
  29import typer, sys
  30from typing_extensions import Annotated
  31import ogls as _ogls
  32import numpy as _np
  33from scipy.linalg import block_diag as _block_diag
  34from scipy.interpolate import interp1d as _interp1d
  35from matplotlib import pyplot as _ppl
  36
  37typer.rich_utils.STYLE_HELPTEXT = ''
  38
  39class D47calib(_ogls.InverseTPolynomial):
  40	"""
  41	Δ47 calibration class based on OGLS regression
  42	of Δ47 as a polynomial function of inverse T.
  43	"""
  44
  45	def __init__(self,
  46		samples, T, D47,
  47		sT = None,
  48		sD47 = None,
  49		degrees = [0,2],
  50		xpower = 2,
  51		name = '',
  52		label = '',
  53		description = '',
  54		**kwargs,
  55		):
  56		"""
  57		### Parameters
  58		
  59		+ **samples**: a list of N sample names.
  60		+ **T**: a 1-D array (or array-like) of temperatures values (in degrees C), of size N.
  61		+ **D47**: a 1-D array (or array-like) of Δ47 values (in permil), of size N.
  62		+ **sT**: uncertainties on `T`. If specified as:
  63		  + a scalar: `sT` is treated as the standard error applicable to all `T` values;
  64		  + a 1-D array-like of size N: `sT` is treated as the standard errors of `T`;
  65		  + a 2-D array-like of size (N, N): `sT` is treated as the (co)variance matrix of `T`.
  66		+ **sD47**: uncertainties on `D47`. If specified as:
  67		  + a scalar: `sD47` is treated as the standard error applicable to all `D47` values;
  68		  + a 1-D array-like of size N: `sD47` is treated as the standard errors of `D47`;
  69		  + a 2-D array-like of size (N, N): `sD47` is treated as the (co)variance matrix of `D47`.
  70		+ **degrees**: degrees of the polynomial regression, e.g., `[0, 2]` or `[0, 1, 2, 3, 4]`.
  71		+ **name**: a human-readable, short name assigned to the calibration.
  72		+ **label**: a short description of the calibration, e.g., to be used in legends.
  73		+ **description**: a longer description, including relevant references/DOIs.
  74		This is not necessary when `bfp` and `CM_bfp` are specified at instantiation time.
  75		+ **kwargs**: keyword arguments passed to the underlying `ogls.InverseTPolynomial()` call.
  76		
  77		### Notable attributes
  78
  79		+ **N**:
  80		The total number of observations (samples) in the calibration data.
  81		+ **samples**:
  82		The list sample names.
  83		+ **T**:
  84		1-D `ndarray` of temperatures in degrees C.
  85		+ **D47**:
  86		1-D `ndarray` of Δ47 values in permil.
  87		+ **sT**:
  88		2-D `ndarray` equal to the full (co)variance matrix for `T`.
  89		+ **D47**:
  90		2-D `ndarray` equal to the full (co)variance matrix for `D47`.
  91		+ **xpower**:
  92		By default, all `D47calib` graphical methods plot Δ47 as a function of 1/T<sup>2</sup>.
  93		It is possible to change this behavior to use a different power of 1/T.
  94		This is done by redefining the `xpower` attribute to a different, non-zero `int` value
  95		(e.g. `foo.xpower = 1` to plot as a function of 1/T instead of 1/T<sup>2</sup>).
  96		+ **bfp**:
  97		The best-fit parameters of the regression.
  98		This is a `dict` with keys equal to the polynomial coefficients (see `bff` definition below)
  99		+ **bff()**:
 100		The best-fit polynomial function of inverse T, defined as:
 101		`bff(x) = sum(bfp[f'a{k}'] * x**k for k in degrees)`
 102		Note that `bff` takes `x = 1/(T+273.15)` (instead of `T`) as input.
 103
 104		
 105		### Examples
 106		
 107		A very simple example:
 108		
 109		````py
 110		.. include:: ../../code_examples/D47calib_init/example.py
 111		````
 112		
 113		Should yield:
 114
 115		````
 116		.. include:: ../../code_examples/D47calib_init/output.txt
 117		````
 118		
 119		"""
 120
 121		self.samples = samples[:]
 122		self.name = name
 123		self.label = label
 124		self.description = description
 125		self.D47 = _np.asarray(D47, dtype = 'float')
 126		self.N = self.D47.size
 127
 128		if sD47 is None:
 129			self.sD47 = _np.zeros((self.N, self.N))
 130		else:
 131			self.sD47 = _np.asarray(sD47)
 132			if len(self.sD47.shape) == 1:
 133				self.sD47 = _np.diag(self.sD47**2)
 134			elif len(self.sD47.shape) == 0:
 135				self.sD47 = _np.eye(self.D47.size) * self.sD47**2
 136
 137		_ogls.InverseTPolynomial.__init__(self, T=T, Y=D47, sT=sT, sY=sD47, degrees = degrees, xpower = xpower, **kwargs)
 138		
 139		if self.bfp is None:
 140			self.regress()
 141		
 142		self._bff_deriv = lambda x: _np.array([k * self.bfp[f'a{k}'] * x**(k-1) for k in degrees if k > 0]).sum(axis = 0)
 143		
 144		xi = _np.linspace(0,200**-1,1001)
 145		self._inv_bff = _interp1d(self.bff(xi), xi)
 146
 147		self._D47_from_T = lambda T: self.bff((T+273.15)**-1)
 148		self._T_from_D47 = lambda D47: self._inv_bff(D47)**-1 - 273.15
 149		self._D47_from_T_deriv = lambda T: -(T+273.15)**-2 * self._bff_deriv((T+273.15)**-1)
 150		self._T_from_D47_deriv = lambda D47: self._D47_from_T_deriv(self._T_from_D47(D47))**-1
 151	
 152	def __repr__(self):
 153		return f'<D47calib: {self.name}>'
 154		
 155	def invT_xaxis(self,
 156		xlabel = None,
 157		Ti = [0,20,50,100,250,1000],
 158		):
 159		"""
 160		Create and return an `Axes` object with X values equal to 1/T<sup>2</sup>,
 161		but labeled in degrees Celsius.
 162		
 163		### Parameters
 164		
 165		+ **xlabel**:
 166		Custom label for X axis (`r'$1\,/\,T^2$'` by default)
 167		+ **Ti**:
 168		Specify tick locations for X axis, in degrees C.
 169
 170		### Returns
 171
 172		+ an `matplotlib.axes.Axes` instance
 173
 174		### Examples
 175
 176		````py
 177		.. include:: ../../code_examples/D47calib_invT_xaxis/example_1.py
 178		````
 179		
 180		This should result in something like this:
 181
 182		<img align="center" src="example_invT_xaxis_1.png">
 183
 184		It is also possible to define the X axis using a different power of 1/T
 185		by first redefining the `xpower` attribute:
 186		
 187		````py
 188		.. include:: ../../code_examples/D47calib_invT_xaxis/example_2.py
 189		````
 190		
 191		This should result in something like this:
 192
 193		<img align="center" src="example_invT_xaxis_2.png">
 194		"""
 195		if xlabel is None:
 196			xlabel = f'$1\\,/\\,T^{self.xpower}$' if self.xpower > 1 else '1/T'
 197		_ppl.xlabel(xlabel)
 198		_ppl.xticks([(273.15 + t) ** -self.xpower for t in sorted(Ti)[::-1]])
 199		ax = _ppl.gca()
 200		ax.set_xticklabels([f"${t}\\,$°C" for t in sorted(Ti)[::-1]])
 201		ax.tick_params(which="major")
 202
 203		return ax
 204		
 205
 206	def plot_data(self, label = False, **kwargs):
 207		"""
 208		Plot Δ47 value of each sample as a function of 1/T<sup>2</sup>.
 209		
 210		### Parameters
 211		
 212		+ **label**:
 213		  + If `label` is a string, use this string as `label` for the underlyig
 214		  `matplotlib.pyplot.plot()` call.
 215		  + If `label = True`, use the caller's `label` attribute instead.
 216		  + If `label = False`, no label is specified (default behavior).
 217		+ **kwargs**:
 218		keyword arguments passed to the underlying `matplotlib.pyplot.plot()` call.
 219
 220		### Returns
 221
 222		+ the return value(s) of the underlying `matplotlib.pyplot.plot()` call.
 223
 224		### Example
 225		
 226		````py
 227		from matplotlib import pyplot as ppl
 228		from D47calib import huyghe_2022 as calib
 229
 230		fig = ppl.figure(figsize = (5,3))
 231		ppl.subplots_adjust(bottom = .25, left = .15)
 232		calib.invT_xaxis(Ti = [0,10,25])
 233		calib.plot_data(label = True)
 234		ppl.ylabel('$Δ_{47}$ (‰ I-CDES)')
 235		ppl.legend()
 236		ppl.savefig('example_plot_data.png', dpi = 100)
 237		`````
 238
 239		This should result in something like this:
 240
 241		<img align="center" src="example_plot_data.png">
 242		"""
 243# 		if 'mec' not in kwargs:
 244# 			kwargs['mec'] = self.color
 245		if label is not False:
 246			kwargs['label'] = self.label if label is True else label
 247		return _ogls.InverseTPolynomial.plot_data(self, **kwargs)
 248
 249
 250	def plot_error_bars(self, **kwargs):
 251		"""
 252		Plot Δ47 error bars (±1.96 SE) of each sample as a function of 1/T<sup>2</sup>.
 253		
 254		### Parameters
 255		
 256		+ **kwargs**:
 257		keyword arguments passed to the underlying `matplotlib.pyplot.errrobar()` call.
 258
 259		### Returns
 260
 261		+ the return value(s) of the underlying `matplotlib.pyplot.errorbar()` call.
 262
 263		### Example
 264		
 265		````py
 266		from matplotlib import pyplot as ppl
 267		from D47calib import huyghe_2022 as calib
 268
 269		fig = ppl.figure(figsize = (5,3))
 270		ppl.subplots_adjust(bottom = .25, left = .15)
 271		calib.invT_xaxis(Ti = [0,10,25])
 272		calib.plot_error_bars(alpha = .4)
 273		calib.plot_data(label = True)
 274		ppl.ylabel('$Δ_{47}$ (‰ I-CDES)')
 275		ppl.legend()
 276		ppl.savefig('example_plot_error_bars.png', dpi = 100)
 277		`````
 278
 279		This should result in something like this:
 280
 281		<img align="center" src="example_plot_error_bars.png">
 282		"""
 283# 		if 'ecolor' not in kwargs:
 284# 			kwargs['ecolor'] = self.color
 285		return _ogls.InverseTPolynomial.plot_error_bars(self, **kwargs)
 286
 287
 288	def plot_error_ellipses(self, **kwargs):
 289		"""
 290		Plot Δ47 error ellipses (95 % confidence) of each sample as a function of 1/T<sup>2</sup>.
 291		
 292		### Parameters
 293		
 294		+ **kwargs**:
 295		keyword arguments passed to the underlying `matplotlib.patches.Ellipse()` call.
 296
 297		### Returns
 298
 299		+ the return value(s) of the underlying `matplotlib.patches.Ellipse()` call.
 300
 301		### Example
 302		
 303		````py
 304		from matplotlib import pyplot as ppl
 305		from D47calib import huyghe_2022 as calib
 306
 307		fig = ppl.figure(figsize = (5,3))
 308		ppl.subplots_adjust(bottom = .25, left = .15)
 309		calib.invT_xaxis(Ti = [0,10,25])
 310		calib.plot_error_ellipses(alpha = .4)
 311		calib.plot_data(label = True)
 312		ppl.ylabel('$Δ_{47}$ (‰ I-CDES)')
 313		ppl.legend()
 314		ppl.savefig('example_plot_error_ellipses.png', dpi = 100)
 315		`````
 316
 317		This should result in something like this:
 318
 319		<img align="center" src="example_plot_error_ellipses.png">
 320		"""
 321# 		if 'ec' not in kwargs:
 322# 			kwargs['ec'] = self.color
 323		return _ogls.InverseTPolynomial.plot_error_ellipses(self, **kwargs)
 324
 325
 326	def plot_bff(self, label = False, **kwargs):
 327		"""
 328		Plot best-fit regression of Δ47 as a function of 1/T<sup>2</sup>.
 329		
 330		### Parameters
 331		
 332		+ **label**:
 333		  + If `label` is a string, use this string as `label` for the underlyig
 334		  `matplotlib.pyplot.plot()` call.
 335		  + If `label = True`, use the caller's `label` attribute instead.
 336		  + If `label = False`, no label is specified (default behavior).
 337		+ **kwargs**:
 338		keyword arguments passed to the underlying `matplotlib.pyplot.plot()` call.
 339
 340		### Returns
 341
 342		+ the return value(s) of the underlying `matplotlib.pyplot.plot()` call.
 343
 344		### Example
 345		
 346		````py
 347		from matplotlib import pyplot as ppl
 348		from D47calib import huyghe_2022 as calib
 349
 350		fig = ppl.figure(figsize = (5,3))
 351		ppl.subplots_adjust(bottom = .25, left = .15)
 352		calib.invT_xaxis(Ti = [0,10,25])
 353		calib.plot_bff(label = True, dashes = (8,2,2,2))
 354		calib.plot_data()
 355		ppl.ylabel('$Δ_{47}$ (‰ I-CDES)')
 356		ppl.legend()
 357		ppl.savefig('example_plot_bff.png', dpi = 100)
 358		`````
 359
 360		This should result in something like this:
 361
 362		<img align="center" src="example_plot_bff.png">
 363		"""
 364# 		if 'color' not in kwargs:
 365# 			kwargs['color'] = self.color
 366		if label is not False:
 367			kwargs['label'] = self.label if label is True else label
 368		return _ogls.InverseTPolynomial.plot_bff(self, **kwargs)
 369
 370
 371	def plot_bff_ci(self, **kwargs):
 372		"""
 373		Plot 95 % confidence region for best-fit regression of Δ47 as a function of 1/T<sup>2</sup>.
 374		
 375		### Parameters
 376		
 377		+ **label**:
 378		+ **kwargs**:
 379		keyword arguments passed to the underlying `matplotlib.pyplot.fill_between()` call.
 380
 381		### Returns
 382
 383		+ the return value(s) of the underlying `matplotlib.pyplot.fill_between()` call.
 384
 385		### Example
 386		
 387		````py
 388		from matplotlib import pyplot as ppl
 389		from D47calib import huyghe_2022 as calib
 390
 391		fig = ppl.figure(figsize = (5,3))
 392		ppl.subplots_adjust(bottom = .25, left = .15)
 393		calib.invT_xaxis(Ti = [0,10,25])
 394		calib.plot_bff_ci(alpha = .15)
 395		calib.plot_bff(label = True, dashes = (8,2,2,2))
 396		calib.plot_data()
 397		ppl.ylabel('$Δ_{47}$ (‰ I-CDES)')
 398		ppl.legend()
 399		ppl.savefig('example_plot_bff_ci.png', dpi = 100)
 400		`````
 401
 402		This should result in something like this:
 403
 404		<img align="center" src="example_plot_bff_ci.png">
 405		"""
 406# 		if 'color' not in kwargs:
 407# 			kwargs['color'] = self.color
 408		return _ogls.InverseTPolynomial.plot_bff_ci(self, **kwargs)
 409
 410	def T47(self,
 411		D47 = None,
 412		sD47 = None,
 413		T=None,
 414		sT = None,
 415		error_from = 'both',
 416		return_covar = False,
 417		):
 418		'''
 419		When `D47` is input, computes corresponding T value(s).
 420		`D47` input may be specified as a scalar, or as a 1-D array.
 421		`T` output will then have the same type and size as `D47`.
 422
 423		When `T` is input, computes corresponding Δ47 value(s).
 424		`T` input may be specified as a scalar, or as a 1-D array.
 425		`D47` output will then have the same type and size as `T`.
 426		
 427		Only one of either `D47` or `T` may be specified as input.
 428
 429		**Arguments:**		
 430
 431		* `D47`: Δ47 value(s) to convert into temperature (`float` or 1-D array)
 432		* `sD47`: Δ47 uncertainties, which may be:
 433		  - `None` (default)
 434		  - `float` or `int` (uniform standard error on `D47`)
 435		  - 1-D array (standard errors on `D47`)
 436		  - 2-D array (covariance matrix for `D47`)
 437		* `T`: T value(s) to convert into Δ47 (`float` or 1-D array), in degrees C
 438		* `sT`: T uncertainties, which may be:
 439		  - `None` (default)
 440		  - `float` or `int` (uniform standard error on `T`)
 441		  - 1-D array (standard errors on `T`)
 442		  - 2-D array (variance-covariance matrix for `T`)
 443		* `error_from`: if set to `'both'` (default), returned errors take into account
 444		  input uncertainties (`sT` or `sD47`) as well as calibration uncertainties;
 445		  if set to `'calib'`, only calibration uncertainties are accounted for;
 446		  if set to `'sT'` or `'sD47'`, calibration uncertainties are ignored.
 447		* `return_covar`: (False by default) whether to return the full covariance matrix
 448		  for returned `T` or `D47` values, otherwise return standard errors for the returned
 449		  `T` or `D47` values instead.
 450		  
 451		**Returns (with `D47` input):**
 452		
 453		* `T`: temperature value(s) computed from `D47`
 454		* `sT`: uncertainties on `T` value(s), whether as standard error(s) or covariance matrix
 455
 456		**Returns (with `T` input):**
 457		
 458		* `D47`: Δ47 value(s) computed from `D47`
 459		* `sD47`: uncertainties on `D47` value(s), whether as standard error(s) or covariance matrix
 460
 461		### Example
 462		
 463		````py
 464		import numpy as np
 465		from matplotlib import pyplot as ppl
 466		from D47calib import OGLS23 as calib
 467
 468		X = np.linspace(1473**-2, 270**-2)
 469		D47, sD47 = calib.T47(T = X**-0.5 - 273.15)
 470		
 471		fig = ppl.figure(figsize = (5,3))
 472		ppl.subplots_adjust(bottom = .25, left = .15)
 473		calib.invT_xaxis()
 474		ppl.plot(X, 1000 * sD47, 'r-')
 475		ppl.ylabel('Calibration SE on $Δ_{47}$ values (ppm)')
 476		ppl.savefig('example_SE47.png', dpi = 100)
 477		`````
 478
 479		This should result in something like this:
 480		
 481		<img src="example_SE47.png">
 482		'''
 483
 484		if D47 is None and T is None:
 485			raise ValueError('Either D47 or T must be specified, but both are undefined.')
 486
 487		if D47 is not None and T is not None:
 488			raise ValueError('Either D47 or T must be specified, but not both.')
 489
 490		if T is not None:
 491			
 492			D47 = self._D47_from_T(T)
 493			Np = len(self.degrees)
 494			N = D47.size
 495
 496			### Compute covariance matrix of (*bfp, *T):
 497			CM = _np.zeros((Np+N, Np+N))
 498
 499			if error_from in ['calib', 'both']:
 500				CM[:Np, :Np] = self.bfp_CM[:,:]
 501
 502			if (sT is not None) and error_from in ['sT', 'both']:
 503				_sT = _np.asarray(sT)
 504				if _sT.ndim == 0:
 505					for k in range(N):
 506						CM[Np+k, Np+k] = _sT**2
 507				elif _sT.ndim == 1:
 508					for k in range(N):
 509						CM[Np+k, Np+k] = _sT[k]**2
 510				elif _sT.ndim == 2:
 511					CM[-N:, -N:] = _sT[:,:]
 512
 513			### Compute Jacobian of D47(T) relative to (*bfp, *T):
 514			_T = _np.asarray(T)
 515			if _T.ndim == 0:
 516				_T = _np.expand_dims(_T, 0)
 517			J = _np.zeros((N, Np+N))
 518
 519			if (sT is not None) and error_from in ['sT', 'both']:
 520				for k in range(N):
 521					J[k, Np+k] = self._D47_from_T_deriv(_T[k])
 522
 523			if error_from in ['calib', 'both']:
 524
 525				for k in range(Np):
 526				
 527					p1 = {_: self.bfp[_] for _ in self.bfp}
 528					p1[f'a{self.degrees[k]}'] += 0.001 * self.bfp_CM[k,k]**.5
 529
 530					p2 = {_: self.bfp[_] for _ in self.bfp}
 531					p2[f'a{self.degrees[k]}'] -= 0.001 * self.bfp_CM[k,k]**.5
 532
 533					J[:, k] = (self.model_fun(p1, (_T+273.15)**-1) - self.model_fun(p2, (_T+273.15)**-1)) / (0.002 * self.bfp_CM[k,k]**.5)
 534
 535			### Error propagation:
 536			CM_D47 = J @ CM @ J.T
 537
 538			if return_covar:
 539				return D47, CM_D47
 540			else:
 541				return D47, float(_np.diag(CM_D47)**.5) if D47.ndim == 0 else _np.diag(CM_D47)**.5
 542
 543		if D47 is not None:
 544
 545			T = self._T_from_D47(D47)
 546			Np = len(self.degrees)
 547			N = T.size
 548
 549			### Compute covariance matrix of (*bfp, *T):
 550			CM = _np.zeros((Np+N, Np+N))
 551
 552			if error_from in ['calib', 'both']:
 553				CM[:Np, :Np] = self.bfp_CM[:,:]
 554
 555			if (sD47 is not None) and error_from in ['sD47', 'both']:
 556				_sD47 = _np.asarray(sD47)
 557				if _sD47.ndim == 0:
 558					for k in range(N):
 559						CM[Np+k, Np+k] = _sD47**2
 560				elif _sD47.ndim == 1:
 561					for k in range(N):
 562						CM[Np+k, Np+k] = _sD47[k]**2
 563				elif _sD47.ndim == 2:
 564					CM[-N:, -N:] = _sD47[:,:]
 565
 566			### Compute Jacobian of T(D47) relative to (*bfp, *D47):
 567			_D47 = _np.asarray(D47)
 568			if _D47.ndim == 0:
 569				_D47 = _np.expand_dims(_D47, 0)
 570			J = _np.zeros((N, Np+N))
 571			if (sD47 is not None) and error_from in ['sD47', 'both']:
 572				for k in range(N):
 573					J[k, Np+k] = self._T_from_D47_deriv(_D47[k])
 574			if error_from in ['calib', 'both']:
 575				
 576				xi = _np.linspace(0,200**-1,1001)[1:]
 577				for k in range(Np):
 578				
 579					if self.bfp_CM[k,k]:
 580						_epsilon_ = self.bfp_CM[k,k]**.5
 581					else:
 582						_epsilon_ = 1e-6
 583
 584					p1 = {_: self.bfp[_] for _ in self.bfp}
 585					p1[f'a{self.degrees[k]}'] += 0.001 * _epsilon_
 586					T_from_D47_p1 = _interp1d(self.model_fun(p1, xi), xi**-1 - 273.15)
 587
 588					p2 = {_: self.bfp[_] for _ in self.bfp}
 589					p2[f'a{self.degrees[k]}'] -= 0.001 * _epsilon_
 590					T_from_D47_p2 = _interp1d(self.model_fun(p2, xi), xi**-1 - 273.15)
 591
 592					J[:, k] = (T_from_D47_p1(_D47) - T_from_D47_p2(_D47)) / (0.002 * _epsilon_)
 593
 594			### Error propagation:
 595			CM_T = J @ CM @ J.T
 596			
 597			if return_covar:
 598				return T, CM_T
 599			else:
 600				return T, float(_np.diag(CM_T)**.5) if T.ndim == 0 else _np.diag(CM_T)**.5
 601	
 602
 603	def plot_T47_errors(
 604		self,
 605		calibname = None,
 606		rD47 = 0.010,
 607		Nr = [2,4,8,12,20],
 608		Tmin = 0,
 609		Tmax = 120,
 610		colors = [(1,0,0),(1,.5,0),(.25,.75,0),(0,.5,1),(0.5,0.5,0.5)],
 611		yscale = 'lin',
 612		):
 613		"""
 614		Plot SE of T reconstructed using the calibration as a function of T for various
 615		combinations of analytical precision and number of analytical replicates.
 616
 617		**Arguments**		
 618
 619		+ **calibname**:
 620		Which calibration name to display. By default, use `label` attribute.
 621		+ **rD47**:
 622		Analytical precision of a single analysis.
 623		+ **Nr**:
 624		A list of lines to plot, each corresponding to a given number of replicates.
 625		+ **Tmin**:
 626		Minimum T to plot.
 627		+ **Tmax**:
 628		Maximum T to plot.
 629		+ **colors**:
 630		A list of colors to distinguish the plotted lines.
 631		+ **yscale**:
 632		  + If `'lin'`, the Y axis uses a linear scale.
 633		  + If `'log'`, the Y axis uses a logarithmic scale.
 634		  
 635		**Example**
 636		
 637		````py
 638		from matplotlib import pyplot as ppl
 639		from D47calib import devils_laghetto_2023 as calib
 640
 641		fig = ppl.figure(figsize = (3.5,4))
 642		ppl.subplots_adjust(bottom = .2, left = .15)
 643		calib.plot_T47_errors(
 644			calibname = 'Devils Laghetto calibration',
 645			Nr = [1,2,4,16],
 646			Tmin  =0,
 647			Tmax = 40,
 648			)
 649		ppl.savefig('example_SE_T.png', dpi = 100)
 650		````
 651
 652		This should result in something like this:
 653		
 654		<img src="example_SE_T.png">
 655		"""
 656
 657		if calibname is None:
 658			calibname = self.label
 659
 660		Nr = _np.array(Nr)
 661		if len(colors) < Nr.size:
 662			print('WARNING: Too few colors to plot different numbers of replicates; generating new colors.')
 663			from colorsys import hsv_to_rgb
 664			hsv = [(x*1.0/Nr.size, 1, .9) for x in range(Nr.size)]
 665			colors = [hsv_to_rgb(*x) for x in hsv]
 666
 667		Ti = _np.linspace(Tmin, Tmax)
 668		D47i, _  = self.T47(T = Ti)
 669		_, sT_calib = self.T47(D47 = D47i, error_from = 'calib')
 670
 671		ymax, ymin = 0, 1e6
 672		for N,c in zip(Nr, colors):
 673			_, sT = self.T47(D47 = D47i, sD47 = rD47 / N**.5, error_from = 'sD47')
 674			_ppl.plot(Ti, sT, '-', color = c, label=f'SE for {N} replicate{"s" if N > 1 else ""}')
 675			ymin = min(ymin, min(sT))
 676			ymax = max(ymax, max(sT))
 677		
 678		_ppl.plot(Ti, sT_calib, 'k--', label='SE from calibration')
 679
 680		_ppl.legend(fontsize=9)
 681		_ppl.xlabel("T (°C)")
 682
 683		_ppl.ylabel("Standard error on reconstructed T (°C)")
 684
 685		# yticks([0,.5,1,1.5,2])
 686		_ppl.title(f"{calibname},\nassuming external Δ$_{{47}}$ repeatability of {rD47:.3f} ‰", size = 9)
 687		_ppl.grid( alpha = .25)
 688		if yscale == 'lin':
 689			_ppl.axis([Ti[0], Ti[-1], 0, ymax*1.05])
 690			t1, t2 = self.T.min(), self.T.max()
 691			_ppl.plot([t1, t2], [0, 0], 'k-', alpha = .25, lw = 8, solid_capstyle = 'butt', clip_on = False)
 692			_ppl.text((t1+t2)/2, 0, 'range of observations\n', alpha = .4, size = 7, ha = 'center', va = 'bottom', style = 'italic')
 693			_ppl.axis([None, None, None, _ppl.axis()[-1]*1.25])
 694		elif yscale == 'log':
 695			ymin /= 2
 696			_ppl.axis([Ti[0], Ti[-1], ymin, ymax*1.05])
 697			_ppl.yscale('log')
 698			t1, t2 = self.T.min(), self.T.max()
 699			_ppl.plot([t1, t2], [ymin, ymin], 'k-', alpha = .25, lw = 8, solid_capstyle = 'butt', clip_on = False)
 700			_ppl.text((t1+t2)/2, ymin, 'range of observations\n', alpha = .4, size = 7, ha = 'center', va = 'bottom', style = 'italic')
 701
 702	def export_data(self, csvfile, sep = ',', label = False, T_correl = False, D47_correl = False):
 703		"""
 704		Write calibration data to a csv file.
 705		
 706		### Parameters
 707		
 708		+ **csvfile**:
 709		The filename to write data to.
 710		+ **sep**:
 711		The separator between CSV fields.
 712		+ **label**:
 713		  + If specified as `True`, include a `Dataset` column with the calibration's `label` attribute.
 714		  + If specified as a `str`, include a `Dataset` column with that string.
 715		  + If specified as `False`, do not include a `Dataset` column.
 716		+ **T_correl**:
 717		  + If `True`, include correlations between all `T` values.
 718		+ **D47_correl**:
 719		  + If `True`, include correlations between all `D47` values.
 720		
 721		### Example
 722
 723		````py
 724		D47calib.huyghe_2022.export_data(
 725			csvfile = 'example_export_data.csv',
 726			T_correl = True,
 727			D47_correl = True,
 728			)
 729		````
 730
 731		This should result in something like this ([link](example_export_data.csv)):
 732		
 733		.. include:: ../../docs/example_export_data.md
 734
 735		"""
 736		n = len(str(self.N))
 737
 738		with open(csvfile, 'w') as f:
 739			f.write(sep.join(['ID', 'Sample', 'T', 'SE_T', 'D47', 'SE_D47']))
 740
 741			if label:
 742				f.write(f'{sep}Dataset')
 743
 744			if T_correl:
 745				inv_diag_sT = _np.diag(_np.diag(self.sT)**-.5)
 746				Tcorrel = inv_diag_sT @ self.sT @ inv_diag_sT
 747				f.write(sep.join(['']+[f'Tcorrel_{k+1:0{n}d}' for k in range(self.N)]))
 748
 749			if D47_correl:
 750				inv_diag_sD47 = _np.diag(_np.diag(self.sD47)**-.5)
 751				D47correl = inv_diag_sD47 @ self.sD47 @ inv_diag_sD47
 752				f.write(sep.join(['']+[f'D47correl_{k+1:0{n}d}' for k in range(self.N)]))
 753
 754			for k, (s, T, sT, D47, sD47) in enumerate(zip(
 755				self.samples,
 756				self.T,
 757				_np.diag(self.sT)**.5,
 758				self.D47,
 759				_np.diag(self.sD47)**.5,
 760				)):
 761				f.write('\n' + sep.join([f'{k+1:0{n}d}', s, f'{T:.2f}', f'{sT:.2f}', f'{D47:.4f}', f'{sD47:.4f}']))
 762				if label:
 763					if label is True:
 764						f.write(f'{sep}{self.label}')
 765					else:
 766						f.write(f'{sep}{label}')
 767				if T_correl:
 768					f.write(sep.join(['']+[
 769						f'{Tcorrel[k,_]:.0f}'
 770						if f'{Tcorrel[k,_]:.6f}'[-6:] == '000000'
 771						else f'{Tcorrel[k,_]:.6f}'
 772						for _ in range(self.N)]))
 773				if D47_correl:
 774					f.write(sep.join(['']+[
 775						f'{D47correl[k,_]:.0f}'
 776						if f'{D47correl[k,_]:.6f}'[-6:] == '000000'
 777						else f'{D47correl[k,_]:.6f}'
 778						for _ in range(self.N)]))
 779				
 780
 781	def export(self, name, filename):
 782		"""
 783		Save `D47calib` object as an importable file.
 784		
 785		### Parameters
 786		
 787		+ **name**:
 788		The name of the variable to export.
 789		+ **filename**:
 790		The filename to write to.
 791		
 792		### Example
 793
 794		````py
 795		D47calib.anderson_2021_lsce.export('foo', 'bar.py')
 796		````
 797
 798		This should result in a `bar.py` file with the following contents:
 799		
 800		````py
 801		foo = D47calib(
 802			samples = ['LGB-2', 'DVH-2'],
 803			T = [7.9, 33.7],
 804			D47 = [0.6485720997671647, 0.5695972909966959],
 805			sT = [[0.04000000000000001, 0.0], [0.0, 0.04000000000000001]],
 806			sD47 = [[8.72797097773764e-06, 2.951894073404263e-06], [2.9518940734042614e-06, 7.498611746762038e-06]],
 807			description = 'Devils Hole & Laghetto Basso from Anderson et al. (2021), processed in I-CDES',
 808			label = 'Slow-growing calcites from Anderson et al. (2021)',
 809			color = (0, 0.5, 0),
 810			degrees = [0, 2],
 811			bfp = {'a0': 0.1583220210575451, 'a2': 38724.41371782721},
 812			bfp_CM = [[0.00035908667755871876, -30.707016431538836], [-30.70701643153884, 2668091.396598919]],
 813			chisq = 6.421311854486162e-27,
 814			Nf = 0,
 815			)
 816		````
 817		"""
 818		with open(filename, 'w') as f:
 819			f.write(f'''
 820{name} = D47calib(
 821	samples = {self.samples},
 822	T = {list(self.T)},
 823	D47 = {list(self.D47)},
 824	sT = {[list(l) for l in self.sT]},
 825	sD47 = {[list(l) for l in self.sD47]},
 826	degrees = {self.degrees},
 827	description = {repr(self.description)},
 828	name = {repr(self.name)},
 829	label = {repr(self.label)},
 830	bfp = {self.bfp},
 831	bfp_CM = {[list(l) for l in self.bfp_CM]},
 832	chisq = {self.chisq},
 833	cholesky_residuals = {list(self.cholesky_residuals)},
 834	aic = {self.aic},
 835	bic = {self.bic},
 836	ks_pvalue = {self.ks_pvalue},
 837	)
 838''')
 839
 840def combine_D47calibs(calibs, degrees = [0,2], same_T = []):
 841	'''
 842	Combine data from several `D47calib` instances.
 843	
 844	### Parameters
 845	
 846	+ **calibs**:
 847	A list of `D47calib` instances
 848	+ **degrees**:
 849	The polynomial degrees of the combined regression.
 850	+ **same_T**:
 851	Use this `list` to specify when samples from different calibrations are known/postulated
 852	to have formed at the same temperature (e.g. `DVH-2` and `DHC2-8` from the `fiebig_2021`
 853	and `anderson_2021_lsce` data sets). Each element of `same_T` is a `list` with the names
 854	of two or more samples formed at the same temperature.
 855	
 856	For example, the `OGLS23` calibration is computed with:
 857	
 858	`same_T = [['DVH-2', DHC-2-8'], ['ETH-1-1100-SAM', 'ETH-1-1100']]`
 859
 860	Note that when samples from different calibrations have the same name,
 861	it is not necessary to explicitly list them in `same_T`.
 862	
 863	Also note that the regression will fail if samples listed together in `same_T`
 864	actually have different `T` values specified in the original calibrations.
 865
 866	### Example
 867	
 868	The `devils_laghetto_2023` calibration is computed using the following code:
 869	
 870	````py
 871	K = [fiebig_2021.samples.index(_) for _ in ['LGB-2', 'DVH-2', 'DHC2-8']]
 872
 873	fiebig_temp = D47calib(
 874		samples = [fiebig_2021.samples[_] for _ in K],
 875		T = fiebig_2021.T[K],
 876		D47 = fiebig_2021.D47[K],
 877		sT = fiebig_2021.sT[K,:][:,K],
 878		sD47 = fiebig_2021.sD47[K,:][:,K],
 879		)
 880
 881	devils_laghetto_2023 = combine_D47calibs(
 882		calibs = [
 883			anderson_2021_lsce,
 884			fiebig_temp,
 885			],
 886		degrees = [0,2],
 887		same_T = [
 888			{'DVH-2', 'DHC2-8'},
 889			],
 890		)
 891	````
 892	'''
 893
 894	samples = [s for c in calibs for s in c.samples]
 895	T = [t for c in calibs for t in c.T]
 896	D47 = [x for c in calibs for x in c.D47]
 897	sD47 = _block_diag(*[c.sD47 for c in calibs])
 898	sT = _block_diag(*[c.sT for c in calibs])
 899
 900	for i in range(len(samples)):
 901		for j in range(len(samples)):
 902			if i != j:
 903				if (samples[i] == samples[j] or
 904					any([samples[i] in _ and samples[j] in _ for _ in same_T])):
 905
 906					sT[i,j] = (sT[i,i] * sT[j,j])**.5
 907	
 908	calib = D47calib(
 909		samples = samples,
 910		T = T,
 911		D47 = D47,
 912		sT = sT,
 913		sD47 = sD47,
 914		degrees = degrees,
 915		)
 916
 917	return calib
 918
 919from ._calibs import *
 920
 921def _covar2correl(C):
 922	SE = _np.diag(C)**.5
 923	return SE, _np.diag(SE**-1) @ C @ _np.diag(SE**-1)
 924
 925try:
 926	app = typer.Typer(
 927		add_completion = False,
 928		context_settings={'help_option_names': ['-h', '--help']},
 929		rich_markup_mode = 'rich',
 930		)
 931	
 932	@app.command()
 933	def _cli(
 934		input: Annotated[str, typer.Argument(help = "Specify either the path of an input file or just '-' to read input from stdin")] = '-',
 935		include_samples: Annotated[str, typer.Option('--include-samples', '-u', help = 'Only include samples listed in this file')] = 'all',
 936		exclude_samples: Annotated[str, typer.Option('--exclude-samples', '-x', help = 'Exclude samples listed in this file')] = 'none',
 937		outfile: Annotated[str, typer.Option('--output-file', '-o', help = 'Write output to this file instead of printing to stdout')] = 'none',
 938		calib: Annotated[str, typer.Option('--calib', '-c', help = 'D47 calibration function to use')] = 'OGLS23',
 939		delim_in: Annotated[str, typer.Option('--delimiter-in', '-i', help = "Delimiter used in the input.")] = ',',
 940		delim_out: Annotated[str, typer.Option('--delimiter-out', '-j', help = "Delimiter used in the output. Use '>' or '<' for elastic white space with right- or left-justified cells.")] = "',' when writing to output file, '>' when printing to stdout",
 941		T_precision: Annotated[int, typer.Option('--T-precision', '-p', help = 'Precision for T output')] = 2,
 942		D47_precision: Annotated[int, typer.Option('--D47-precision', '-q', help = 'Precision for D47 output')] = 4,
 943		correl_precision: Annotated[int, typer.Option('--correl-precision', '-r', help = 'Precision for correlation output')] = 3,
 944		covar_precision: Annotated[int, typer.Option('--covar-precision', '-s', help = 'Precision for covariance output')] = 3,
 945		return_covar: Annotated[bool, typer.Option('--return-covar', '-v', help = 'Output covariance matrix instead of correlation matrix')] = False,
 946		ignore_correl: Annotated[bool, typer.Option('--ignore-correl', '-g', help = 'Only consider and report standard errors without correlations')] = False,
 947		):
 948		"""
 949[b]Purpose:[/b]
 950
 951Reads data from an input file, converts between T and D47 values, and print out the results.
 952
 953The input file is a CSV, or any similar file with data sorted into lines and columns. The line separator must be a <newline>. The column separator, noted <sep> hereafter, is "," by default, or may be any other single character such as ";" or <tab>.
 954
 955The first line of the input file must be one of the following:		
 956
 957- [b]Option 1:[/b] T
 958- [b]Option 2:[/b] T<sep>T_SE
 959- [b]Option 3:[/b] T<sep>T_SE<sep>T_correl
 960- [b]Option 4:[/b] T<sep>T_covar
 961- [b]Option 5:[/b] D47
 962- [b]Option 6:[/b] D47<sep>D47_SE
 963- [b]Option 7:[/b] D47<sep>D47_SE<sep>D47_correl
 964- [b]Option 8:[/b] D47<sep>D47_covar
 965
 966The rest of the input must be any number of lines with float values corresponding to the fields in the first line, separated by <sep>.
 967
 968[bold]Example input file:[/bold]
 969
 970[italic]D47     D47_SE  D47_correl[/italic]
 971[italic]0.6324  0.0101  1.00  0.25  0.25[/italic]
 972[italic]0.6281  0.0087  0.25  1.00  0.25[/italic]
 973[italic]0.6385  0.0095  0.25  0.25  1.00[/italic]
 974
 975The corresponding D47 (options 1-4) or T (options 4-8) values are computed, along with standard errors and error correlations from calibration uncertainties.
 976
 977For options 2-4 and 5-8, which specify standard errors or covariances for the input values, the standard errors and error correlations resulting from these input uncertainties are also computed, as well as the combined standard errors accounting for both calibration and input uncertainties.
 978
 979The example above will thus result in an output with the following fields:
 980
 981[italic]- D47[/italic]
 982[italic]- D47_SE[/italic]
 983[italic]- D47_correl[/italic]
 984[italic]- T[/italic]
 985[italic]- T_SE_from_calib[/italic]
 986[italic]- T_correl_from_calib[/italic]
 987[italic]- T_SE_from_input[/italic]
 988[italic]- T_correl_from_input[/italic]
 989[italic]- T_SE_from_both[/italic]
 990[italic]- T_correl_from_both[/italic]
 991
 992Results may also be saved to a file using [bold]--output-file <filename>[/bold] or [bold]-o <filename>[/bold].
 993
 994To filter the samples (lines) to process using [b]--exclude-samples[/b] and [b]--include-samples[/b], first add a [b]Sample[/b] column to the input data, assign a sample name to each line.
 995Then to exclude some samples, provide the [b]--exclude-samples[/b] option with the name of a file where each line is one sample to exclude.
 996To exclude all samples except those listed in a file, provide the [b]--include-samples[/b] option with the name of that file, where each line is one sample to include.
 997"""
 998
 999		### INCOMPATIBILITY BETWEEN --ignore-correl AND --return-covar
1000		if ignore_correl:
1001			return_covar = False
1002
1003		### USE WHITESPACE AS INPUT DELIMITER
1004		if delim_in == ' ':
1005			delim_in = None
1006
1007		### SMART SELECTION OF OUTPUT DELIMITER
1008		if delim_out == "',' when writing to output file, '>' when printing to stdout":
1009			if outfile == 'none':
1010				delim_out = '>'
1011			else:
1012				delim_out = ','
1013
1014		### CALIBRATION
1015		if calib in globals() and type(globals()[calib]) == D47calib:
1016			calib = globals()[calib]
1017		else:
1018			with open(calib) as f:
1019				calibdata = _np.array([[c.strip() for c in l.strip().split(delim_in)] for l in f.readlines()[1:]], dtype = float)
1020				
1021				degrees = [int(d) for d in calibdata[:,0]]
1022				bfp = {f'a{k}': a for k,a in zip(degrees, calibdata[:,1])}
1023				bfp_CM = calibdata[:,2:]
1024				if bfp_CM.shape[0] != bfp_CM.shape[1]:
1025					bfp_CM = _np.zeros((len(degrees), len(degrees)))
1026				calib = D47calib(
1027					samples = [], T = [], sT = [], D47 = [], sD47 = [],
1028					degrees = degrees, bfp = bfp, bfp_CM = bfp_CM,
1029					)
1030		
1031		### READ INPUT STRINGS
1032		if input == '-':
1033			data = [[c.strip() for c in l.strip().split(delim_in)] for l in sys.stdin]
1034		else:
1035			with open(input) as f:
1036				data = [[c.strip() for c in l.strip().split(delim_in)] for l in f.readlines()]
1037
1038		if include_samples == 'all':
1039			samples_to_include = []
1040		else:
1041			with open(include_samples) as f:
1042				samples_to_include = [l.strip() for l in f.readlines()]
1043
1044		if exclude_samples == 'none':
1045			samples_to_exclude = []
1046		else:
1047			with open(exclude_samples) as f:
1048				samples_to_exclude = [l.strip() for l in f.readlines()]
1049		
1050		if len(samples_to_include) > 0 or len(samples_to_exclude) > 0:
1051			try:
1052				k = data[0].index('Sample')
1053			except ValueError:
1054				raise KeyError("When using options --include-samples or --exclude-samples, the input file must have a column labeled 'Sample'.")
1055
1056			if len(samples_to_include) > 0:
1057				data = [data[0]] + [l for l in data[1:] if l[k] in samples_to_include]
1058			data = [data[0]] + [l for l in data[1:] if l[k] not in samples_to_exclude]
1059
1060		### FIND FIRST DATA COLUMN
1061		k = 0
1062		while data[0][k] not in ['T', 'D47']:
1063			k += 1
1064			if k == len(data[0]):
1065				raise KeyError("None of the input column headers are 'T' or 'D47'.")			
1066		data_out = [l[:k] for l in data]
1067		data = [l[k:] for l in data]
1068		
1069		### READ INPUT FIELDS
1070		fields = data[0]
1071		
1072		### CHECK FOR UNSUPPORTED FIELD COMBINATIONS
1073		if fields not in [
1074			['T'],
1075			['T', 'T_SE'],
1076			['T', 'T_covar'],
1077			['T', 'T_SE', 'T_correl'],
1078			['D47'],
1079			['D47', 'D47_SE'],
1080			['D47', 'D47_covar'],
1081			['D47', 'D47_SE', 'D47_correl'],
1082			]:
1083			raise KeyError("There is a problem with the combination of field names provided as input.")
1084		
1085		### BOOK-KEEPING
1086		infield = fields[0]
1087		X_precision = {'T': T_precision, 'D47': D47_precision}[infield]
1088		outfield = {'T': 'D47', 'D47': 'T'}[infield]
1089		Y_precision = {'T': T_precision, 'D47': D47_precision}[outfield]
1090		N = len(data)-1
1091
1092		### READ INPUT DATA, ALSO SAVING ITS ORIGINAL STRINGS
1093		X_str = [l[0] for l in data[1:]]
1094		X = _np.array(X_str, dtype = float)
1095
1096		if len(fields) == 1:
1097			X_SE = X*0
1098			X_correl = _np.eye(N)
1099			X_covar = _np.zeros((N, N))
1100			X_SE_str = [f'{c:.{X_precision}f}' for c in X_SE]
1101			X_correl_str = [[f'{c:.{correl_precision}f}' for c in l] for l in X_correl]
1102			X_covar_str = [[f'{c:.{covar_precision}e}' for c in l] for l in X_covar]
1103		if len(fields) == 2:
1104			if fields[1].endswith('_SE'):
1105				X_SE_str = [l[1] for l in data[1:]]
1106				X_SE = _np.array(X_SE_str, dtype = float)
1107				X_covar = _np.diag(X_SE**2)
1108				X_covar_str = [[f'{c:.{covar_precision}e}' for c in l] for l in X_covar]
1109			elif fields[1].endswith('_covar'):
1110				X_covar_str = [l[1:N+1] for l in data[1:]]
1111				X_covar = _np.array(X_covar_str, dtype = float)
1112				X_SE = _np.diag(X_covar)**.5
1113				X_SE_str = [f'{c:.{X_precision}f}' for c in X_SE]
1114			X_correl = _np.diag(X_SE**-1) @ X_covar @ _np.diag(X_SE**-1)
1115			X_correl_str = [[f'{c:.{correl_precision}f}' for c in l] for l in X_correl]
1116		elif len(fields) == 3:
1117			X_SE_str = [l[1] for l in data[1:]]
1118			X_SE = _np.array(X_SE_str, dtype = float)
1119			X_correl_str = [l[2:N+2] for l in data[1:]]
1120			X_correl = _np.array(X_correl_str, dtype = float)
1121			X_covar = _np.diag(X_SE) @ X_correl @ _np.diag(X_SE)
1122			X_covar_str = [[f'{c:.{covar_precision}e}' for c in l] for l in X_covar]
1123
1124		### COMPUTE OUTPUT VALUES AND COVAR
1125		kwargs = {infield: X, f's{infield}': X_covar}
1126		Y, Y_covar_from_calib = calib.T47(**kwargs, error_from = 'calib', return_covar = True)
1127		Y, Y_covar_from_input = calib.T47(**kwargs, error_from = f's{infield}', return_covar = True)
1128		Y, Y_covar_from_both = calib.T47(**kwargs, error_from = 'both', return_covar = True)
1129
1130		Y_SE_from_calib = _np.diag(Y_covar_from_calib)**.5
1131		Y_SE_from_input = _np.diag(Y_covar_from_input)**.5
1132		Y_SE_from_both = _np.diag(Y_covar_from_both)**.5
1133
1134		if (Y_SE_from_calib**2).min():
1135			Y_correl_from_calib = _np.diag(Y_SE_from_calib**-1) @ Y_covar_from_calib @ _np.diag(Y_SE_from_calib**-1)
1136		else:
1137			Y_correl_from_calib = _np.eye(N)
1138
1139		if (Y_SE_from_input**2).min():
1140			Y_correl_from_input = _np.diag(Y_SE_from_input**-1) @ Y_covar_from_input @ _np.diag(Y_SE_from_input**-1)
1141		else:
1142			Y_correl_from_input = _np.eye(N)
1143
1144		if (Y_SE_from_both**2).min():
1145			Y_correl_from_both = _np.diag(Y_SE_from_both**-1) @ Y_covar_from_both @ _np.diag(Y_SE_from_both**-1)
1146		else:
1147			Y_correl_from_both = _np.eye(N)
1148
1149		### BUILD Y STRINGS
1150		Y_str = [f'{y:.{Y_precision}f}' for y in Y]
1151
1152		Y_SE_from_calib_str = [f'{sy:.{Y_precision}f}' for sy in Y_SE_from_calib]
1153		Y_SE_from_input_str = [f'{sy:.{Y_precision}f}' for sy in Y_SE_from_input]
1154		Y_SE_from_both_str = [f'{sy:.{Y_precision}f}' for sy in Y_SE_from_both]
1155
1156		Y_covar_from_calib_str = [[f'{c:.{covar_precision}e}' for c in l] for l in Y_covar_from_calib]
1157		Y_covar_from_input_str = [[f'{c:.{covar_precision}e}' for c in l] for l in Y_covar_from_input]
1158		Y_covar_from_both_str = [[f'{c:.{covar_precision}e}' for c in l] for l in Y_covar_from_both]
1159
1160		Y_correl_from_calib_str = [[f'{c:.{correl_precision}f}' for c in l] for l in Y_correl_from_calib]
1161		Y_correl_from_input_str = [[f'{c:.{correl_precision}f}' for c in l] for l in Y_correl_from_input]
1162		Y_correl_from_both_str = [[f'{c:.{correl_precision}f}' for c in l] for l in Y_correl_from_both]
1163
1164		### ADD SE COLUMN TO INPUT
1165		if f'{infield}_covar' in fields:
1166			fields.insert(1, f'{infield}_SE')
1167
1168		### ADD X COLUMNS TO OUTPUT DATA
1169		data_out[0] += [infield]
1170		for k in range(N):
1171			data_out[k+1] += [X_str[k]]
1172		for f in fields[1:]:
1173			if f.endswith('_SE'):
1174				data_out[0] += [f]
1175				for k in range(N):
1176					data_out[k+1] += [X_SE_str[k]]
1177			if f.endswith('_covar') or f.endswith('_correl'):
1178				if not ignore_correl:
1179					data_out[0] += [f] + ['' for _ in range(N-1)]
1180					for k in range(N):
1181						data_out[k+1] += (X_covar_str if f.endswith('_covar') else X_correl_str)[k][:]
1182
1183		### ADD Y COLUMNS TO OUTPUT DATA
1184		data_out[0] += [outfield]
1185		for k in range(N):
1186			data_out[k+1] += [Y_str[k]]
1187
1188		data_out[0] += [f'{outfield}_SE_from_calib']
1189		for k in range(N):
1190			data_out[k+1] += [Y_SE_from_calib_str[k]]
1191		if not ignore_correl:
1192			if return_covar:
1193				data_out[0] += [f'{outfield}_covar_from_calib'] + ['' for _ in range(N-1)]
1194				for k in range(N):
1195					data_out[k+1] += Y_covar_from_calib_str[k]
1196			else:
1197				data_out[0] += [f'{outfield}_correl_from_calib'] + ['' for _ in range(N-1)]
1198				for k in range(N):
1199					data_out[k+1] += Y_correl_from_calib_str[k]
1200
1201		data_out[0] += [f'{outfield}_SE_from_input']
1202		for k in range(N):
1203			data_out[k+1] += [Y_SE_from_input_str[k]]
1204		if not ignore_correl:
1205			if return_covar:
1206				data_out[0] += [f'{outfield}_covar_from_input'] + ['' for _ in range(N-1)]
1207				for k in range(N):
1208					data_out[k+1] += Y_covar_from_input_str[k]
1209			else:
1210				data_out[0] += [f'{outfield}_correl_from_input'] + ['' for _ in range(N-1)]
1211				for k in range(N):
1212					data_out[k+1] += Y_correl_from_input_str[k]
1213
1214		data_out[0] += [f'{outfield}_SE_from_both']
1215		for k in range(N):
1216			data_out[k+1] += [Y_SE_from_both_str[k]]
1217		if not ignore_correl:
1218			if return_covar:
1219				data_out[0] += [f'{outfield}_covar_from_both'] + ['' for _ in range(N-1)]
1220				for k in range(N):
1221					data_out[k+1] += Y_covar_from_both_str[k]
1222			else:
1223				data_out[0] += [f'{outfield}_correl_from_both'] + ['' for _ in range(N-1)]
1224				for k in range(N):
1225					data_out[k+1] += Y_correl_from_both_str[k]
1226
1227
1228		### PRINT OUTPUT TO STDOUT OR SAVE IT TO FILE
1229		if delim_out in '<>':
1230			lengths = [max([len(data_out[j][k]) for j in range(len(data_out))]) for k in range(len(data_out[0]))]
1231		
1232			txt = ''
1233			for l in data_out:
1234				for k in range(len(l)):
1235					if k > 0:
1236						txt += '  '
1237					txt += f'{l[k]:{delim_out}{lengths[k]}s}'
1238				txt += '\n'
1239
1240			txt = txt[:-1]
1241
1242		else:
1243			txt = '\n'.join([delim_out.join(l) for l in data_out])
1244
1245		if outfile == 'none':
1246			print(txt)
1247		else:
1248			with open(outfile, 'w') as f:
1249				f.write(txt)
1250		
1251	def __cli():
1252		app()
1253
1254except NameError:
1255	pass
class D47calib(ogls.InverseTPolynomial):
 40class D47calib(_ogls.InverseTPolynomial):
 41	"""
 42	Δ47 calibration class based on OGLS regression
 43	of Δ47 as a polynomial function of inverse T.
 44	"""
 45
 46	def __init__(self,
 47		samples, T, D47,
 48		sT = None,
 49		sD47 = None,
 50		degrees = [0,2],
 51		xpower = 2,
 52		name = '',
 53		label = '',
 54		description = '',
 55		**kwargs,
 56		):
 57		"""
 58		### Parameters
 59		
 60		+ **samples**: a list of N sample names.
 61		+ **T**: a 1-D array (or array-like) of temperatures values (in degrees C), of size N.
 62		+ **D47**: a 1-D array (or array-like) of Δ47 values (in permil), of size N.
 63		+ **sT**: uncertainties on `T`. If specified as:
 64		  + a scalar: `sT` is treated as the standard error applicable to all `T` values;
 65		  + a 1-D array-like of size N: `sT` is treated as the standard errors of `T`;
 66		  + a 2-D array-like of size (N, N): `sT` is treated as the (co)variance matrix of `T`.
 67		+ **sD47**: uncertainties on `D47`. If specified as:
 68		  + a scalar: `sD47` is treated as the standard error applicable to all `D47` values;
 69		  + a 1-D array-like of size N: `sD47` is treated as the standard errors of `D47`;
 70		  + a 2-D array-like of size (N, N): `sD47` is treated as the (co)variance matrix of `D47`.
 71		+ **degrees**: degrees of the polynomial regression, e.g., `[0, 2]` or `[0, 1, 2, 3, 4]`.
 72		+ **name**: a human-readable, short name assigned to the calibration.
 73		+ **label**: a short description of the calibration, e.g., to be used in legends.
 74		+ **description**: a longer description, including relevant references/DOIs.
 75		This is not necessary when `bfp` and `CM_bfp` are specified at instantiation time.
 76		+ **kwargs**: keyword arguments passed to the underlying `ogls.InverseTPolynomial()` call.
 77		
 78		### Notable attributes
 79
 80		+ **N**:
 81		The total number of observations (samples) in the calibration data.
 82		+ **samples**:
 83		The list sample names.
 84		+ **T**:
 85		1-D `ndarray` of temperatures in degrees C.
 86		+ **D47**:
 87		1-D `ndarray` of Δ47 values in permil.
 88		+ **sT**:
 89		2-D `ndarray` equal to the full (co)variance matrix for `T`.
 90		+ **D47**:
 91		2-D `ndarray` equal to the full (co)variance matrix for `D47`.
 92		+ **xpower**:
 93		By default, all `D47calib` graphical methods plot Δ47 as a function of 1/T<sup>2</sup>.
 94		It is possible to change this behavior to use a different power of 1/T.
 95		This is done by redefining the `xpower` attribute to a different, non-zero `int` value
 96		(e.g. `foo.xpower = 1` to plot as a function of 1/T instead of 1/T<sup>2</sup>).
 97		+ **bfp**:
 98		The best-fit parameters of the regression.
 99		This is a `dict` with keys equal to the polynomial coefficients (see `bff` definition below)
100		+ **bff()**:
101		The best-fit polynomial function of inverse T, defined as:
102		`bff(x) = sum(bfp[f'a{k}'] * x**k for k in degrees)`
103		Note that `bff` takes `x = 1/(T+273.15)` (instead of `T`) as input.
104
105		
106		### Examples
107		
108		A very simple example:
109		
110		````py
111		.. include:: ../../code_examples/D47calib_init/example.py
112		````
113		
114		Should yield:
115
116		````
117		.. include:: ../../code_examples/D47calib_init/output.txt
118		````
119		
120		"""
121
122		self.samples = samples[:]
123		self.name = name
124		self.label = label
125		self.description = description
126		self.D47 = _np.asarray(D47, dtype = 'float')
127		self.N = self.D47.size
128
129		if sD47 is None:
130			self.sD47 = _np.zeros((self.N, self.N))
131		else:
132			self.sD47 = _np.asarray(sD47)
133			if len(self.sD47.shape) == 1:
134				self.sD47 = _np.diag(self.sD47**2)
135			elif len(self.sD47.shape) == 0:
136				self.sD47 = _np.eye(self.D47.size) * self.sD47**2
137
138		_ogls.InverseTPolynomial.__init__(self, T=T, Y=D47, sT=sT, sY=sD47, degrees = degrees, xpower = xpower, **kwargs)
139		
140		if self.bfp is None:
141			self.regress()
142		
143		self._bff_deriv = lambda x: _np.array([k * self.bfp[f'a{k}'] * x**(k-1) for k in degrees if k > 0]).sum(axis = 0)
144		
145		xi = _np.linspace(0,200**-1,1001)
146		self._inv_bff = _interp1d(self.bff(xi), xi)
147
148		self._D47_from_T = lambda T: self.bff((T+273.15)**-1)
149		self._T_from_D47 = lambda D47: self._inv_bff(D47)**-1 - 273.15
150		self._D47_from_T_deriv = lambda T: -(T+273.15)**-2 * self._bff_deriv((T+273.15)**-1)
151		self._T_from_D47_deriv = lambda D47: self._D47_from_T_deriv(self._T_from_D47(D47))**-1
152	
153	def __repr__(self):
154		return f'<D47calib: {self.name}>'
155		
156	def invT_xaxis(self,
157		xlabel = None,
158		Ti = [0,20,50,100,250,1000],
159		):
160		"""
161		Create and return an `Axes` object with X values equal to 1/T<sup>2</sup>,
162		but labeled in degrees Celsius.
163		
164		### Parameters
165		
166		+ **xlabel**:
167		Custom label for X axis (`r'$1\,/\,T^2$'` by default)
168		+ **Ti**:
169		Specify tick locations for X axis, in degrees C.
170
171		### Returns
172
173		+ an `matplotlib.axes.Axes` instance
174
175		### Examples
176
177		````py
178		.. include:: ../../code_examples/D47calib_invT_xaxis/example_1.py
179		````
180		
181		This should result in something like this:
182
183		<img align="center" src="example_invT_xaxis_1.png">
184
185		It is also possible to define the X axis using a different power of 1/T
186		by first redefining the `xpower` attribute:
187		
188		````py
189		.. include:: ../../code_examples/D47calib_invT_xaxis/example_2.py
190		````
191		
192		This should result in something like this:
193
194		<img align="center" src="example_invT_xaxis_2.png">
195		"""
196		if xlabel is None:
197			xlabel = f'$1\\,/\\,T^{self.xpower}$' if self.xpower > 1 else '1/T'
198		_ppl.xlabel(xlabel)
199		_ppl.xticks([(273.15 + t) ** -self.xpower for t in sorted(Ti)[::-1]])
200		ax = _ppl.gca()
201		ax.set_xticklabels([f"${t}\\,$°C" for t in sorted(Ti)[::-1]])
202		ax.tick_params(which="major")
203
204		return ax
205		
206
207	def plot_data(self, label = False, **kwargs):
208		"""
209		Plot Δ47 value of each sample as a function of 1/T<sup>2</sup>.
210		
211		### Parameters
212		
213		+ **label**:
214		  + If `label` is a string, use this string as `label` for the underlyig
215		  `matplotlib.pyplot.plot()` call.
216		  + If `label = True`, use the caller's `label` attribute instead.
217		  + If `label = False`, no label is specified (default behavior).
218		+ **kwargs**:
219		keyword arguments passed to the underlying `matplotlib.pyplot.plot()` call.
220
221		### Returns
222
223		+ the return value(s) of the underlying `matplotlib.pyplot.plot()` call.
224
225		### Example
226		
227		````py
228		from matplotlib import pyplot as ppl
229		from D47calib import huyghe_2022 as calib
230
231		fig = ppl.figure(figsize = (5,3))
232		ppl.subplots_adjust(bottom = .25, left = .15)
233		calib.invT_xaxis(Ti = [0,10,25])
234		calib.plot_data(label = True)
235		ppl.ylabel('$Δ_{47}$ (‰ I-CDES)')
236		ppl.legend()
237		ppl.savefig('example_plot_data.png', dpi = 100)
238		`````
239
240		This should result in something like this:
241
242		<img align="center" src="example_plot_data.png">
243		"""
244# 		if 'mec' not in kwargs:
245# 			kwargs['mec'] = self.color
246		if label is not False:
247			kwargs['label'] = self.label if label is True else label
248		return _ogls.InverseTPolynomial.plot_data(self, **kwargs)
249
250
251	def plot_error_bars(self, **kwargs):
252		"""
253		Plot Δ47 error bars (±1.96 SE) of each sample as a function of 1/T<sup>2</sup>.
254		
255		### Parameters
256		
257		+ **kwargs**:
258		keyword arguments passed to the underlying `matplotlib.pyplot.errrobar()` call.
259
260		### Returns
261
262		+ the return value(s) of the underlying `matplotlib.pyplot.errorbar()` call.
263
264		### Example
265		
266		````py
267		from matplotlib import pyplot as ppl
268		from D47calib import huyghe_2022 as calib
269
270		fig = ppl.figure(figsize = (5,3))
271		ppl.subplots_adjust(bottom = .25, left = .15)
272		calib.invT_xaxis(Ti = [0,10,25])
273		calib.plot_error_bars(alpha = .4)
274		calib.plot_data(label = True)
275		ppl.ylabel('$Δ_{47}$ (‰ I-CDES)')
276		ppl.legend()
277		ppl.savefig('example_plot_error_bars.png', dpi = 100)
278		`````
279
280		This should result in something like this:
281
282		<img align="center" src="example_plot_error_bars.png">
283		"""
284# 		if 'ecolor' not in kwargs:
285# 			kwargs['ecolor'] = self.color
286		return _ogls.InverseTPolynomial.plot_error_bars(self, **kwargs)
287
288
289	def plot_error_ellipses(self, **kwargs):
290		"""
291		Plot Δ47 error ellipses (95 % confidence) of each sample as a function of 1/T<sup>2</sup>.
292		
293		### Parameters
294		
295		+ **kwargs**:
296		keyword arguments passed to the underlying `matplotlib.patches.Ellipse()` call.
297
298		### Returns
299
300		+ the return value(s) of the underlying `matplotlib.patches.Ellipse()` call.
301
302		### Example
303		
304		````py
305		from matplotlib import pyplot as ppl
306		from D47calib import huyghe_2022 as calib
307
308		fig = ppl.figure(figsize = (5,3))
309		ppl.subplots_adjust(bottom = .25, left = .15)
310		calib.invT_xaxis(Ti = [0,10,25])
311		calib.plot_error_ellipses(alpha = .4)
312		calib.plot_data(label = True)
313		ppl.ylabel('$Δ_{47}$ (‰ I-CDES)')
314		ppl.legend()
315		ppl.savefig('example_plot_error_ellipses.png', dpi = 100)
316		`````
317
318		This should result in something like this:
319
320		<img align="center" src="example_plot_error_ellipses.png">
321		"""
322# 		if 'ec' not in kwargs:
323# 			kwargs['ec'] = self.color
324		return _ogls.InverseTPolynomial.plot_error_ellipses(self, **kwargs)
325
326
327	def plot_bff(self, label = False, **kwargs):
328		"""
329		Plot best-fit regression of Δ47 as a function of 1/T<sup>2</sup>.
330		
331		### Parameters
332		
333		+ **label**:
334		  + If `label` is a string, use this string as `label` for the underlyig
335		  `matplotlib.pyplot.plot()` call.
336		  + If `label = True`, use the caller's `label` attribute instead.
337		  + If `label = False`, no label is specified (default behavior).
338		+ **kwargs**:
339		keyword arguments passed to the underlying `matplotlib.pyplot.plot()` call.
340
341		### Returns
342
343		+ the return value(s) of the underlying `matplotlib.pyplot.plot()` call.
344
345		### Example
346		
347		````py
348		from matplotlib import pyplot as ppl
349		from D47calib import huyghe_2022 as calib
350
351		fig = ppl.figure(figsize = (5,3))
352		ppl.subplots_adjust(bottom = .25, left = .15)
353		calib.invT_xaxis(Ti = [0,10,25])
354		calib.plot_bff(label = True, dashes = (8,2,2,2))
355		calib.plot_data()
356		ppl.ylabel('$Δ_{47}$ (‰ I-CDES)')
357		ppl.legend()
358		ppl.savefig('example_plot_bff.png', dpi = 100)
359		`````
360
361		This should result in something like this:
362
363		<img align="center" src="example_plot_bff.png">
364		"""
365# 		if 'color' not in kwargs:
366# 			kwargs['color'] = self.color
367		if label is not False:
368			kwargs['label'] = self.label if label is True else label
369		return _ogls.InverseTPolynomial.plot_bff(self, **kwargs)
370
371
372	def plot_bff_ci(self, **kwargs):
373		"""
374		Plot 95 % confidence region for best-fit regression of Δ47 as a function of 1/T<sup>2</sup>.
375		
376		### Parameters
377		
378		+ **label**:
379		+ **kwargs**:
380		keyword arguments passed to the underlying `matplotlib.pyplot.fill_between()` call.
381
382		### Returns
383
384		+ the return value(s) of the underlying `matplotlib.pyplot.fill_between()` call.
385
386		### Example
387		
388		````py
389		from matplotlib import pyplot as ppl
390		from D47calib import huyghe_2022 as calib
391
392		fig = ppl.figure(figsize = (5,3))
393		ppl.subplots_adjust(bottom = .25, left = .15)
394		calib.invT_xaxis(Ti = [0,10,25])
395		calib.plot_bff_ci(alpha = .15)
396		calib.plot_bff(label = True, dashes = (8,2,2,2))
397		calib.plot_data()
398		ppl.ylabel('$Δ_{47}$ (‰ I-CDES)')
399		ppl.legend()
400		ppl.savefig('example_plot_bff_ci.png', dpi = 100)
401		`````
402
403		This should result in something like this:
404
405		<img align="center" src="example_plot_bff_ci.png">
406		"""
407# 		if 'color' not in kwargs:
408# 			kwargs['color'] = self.color
409		return _ogls.InverseTPolynomial.plot_bff_ci(self, **kwargs)
410
411	def T47(self,
412		D47 = None,
413		sD47 = None,
414		T=None,
415		sT = None,
416		error_from = 'both',
417		return_covar = False,
418		):
419		'''
420		When `D47` is input, computes corresponding T value(s).
421		`D47` input may be specified as a scalar, or as a 1-D array.
422		`T` output will then have the same type and size as `D47`.
423
424		When `T` is input, computes corresponding Δ47 value(s).
425		`T` input may be specified as a scalar, or as a 1-D array.
426		`D47` output will then have the same type and size as `T`.
427		
428		Only one of either `D47` or `T` may be specified as input.
429
430		**Arguments:**		
431
432		* `D47`: Δ47 value(s) to convert into temperature (`float` or 1-D array)
433		* `sD47`: Δ47 uncertainties, which may be:
434		  - `None` (default)
435		  - `float` or `int` (uniform standard error on `D47`)
436		  - 1-D array (standard errors on `D47`)
437		  - 2-D array (covariance matrix for `D47`)
438		* `T`: T value(s) to convert into Δ47 (`float` or 1-D array), in degrees C
439		* `sT`: T uncertainties, which may be:
440		  - `None` (default)
441		  - `float` or `int` (uniform standard error on `T`)
442		  - 1-D array (standard errors on `T`)
443		  - 2-D array (variance-covariance matrix for `T`)
444		* `error_from`: if set to `'both'` (default), returned errors take into account
445		  input uncertainties (`sT` or `sD47`) as well as calibration uncertainties;
446		  if set to `'calib'`, only calibration uncertainties are accounted for;
447		  if set to `'sT'` or `'sD47'`, calibration uncertainties are ignored.
448		* `return_covar`: (False by default) whether to return the full covariance matrix
449		  for returned `T` or `D47` values, otherwise return standard errors for the returned
450		  `T` or `D47` values instead.
451		  
452		**Returns (with `D47` input):**
453		
454		* `T`: temperature value(s) computed from `D47`
455		* `sT`: uncertainties on `T` value(s), whether as standard error(s) or covariance matrix
456
457		**Returns (with `T` input):**
458		
459		* `D47`: Δ47 value(s) computed from `D47`
460		* `sD47`: uncertainties on `D47` value(s), whether as standard error(s) or covariance matrix
461
462		### Example
463		
464		````py
465		import numpy as np
466		from matplotlib import pyplot as ppl
467		from D47calib import OGLS23 as calib
468
469		X = np.linspace(1473**-2, 270**-2)
470		D47, sD47 = calib.T47(T = X**-0.5 - 273.15)
471		
472		fig = ppl.figure(figsize = (5,3))
473		ppl.subplots_adjust(bottom = .25, left = .15)
474		calib.invT_xaxis()
475		ppl.plot(X, 1000 * sD47, 'r-')
476		ppl.ylabel('Calibration SE on $Δ_{47}$ values (ppm)')
477		ppl.savefig('example_SE47.png', dpi = 100)
478		`````
479
480		This should result in something like this:
481		
482		<img src="example_SE47.png">
483		'''
484
485		if D47 is None and T is None:
486			raise ValueError('Either D47 or T must be specified, but both are undefined.')
487
488		if D47 is not None and T is not None:
489			raise ValueError('Either D47 or T must be specified, but not both.')
490
491		if T is not None:
492			
493			D47 = self._D47_from_T(T)
494			Np = len(self.degrees)
495			N = D47.size
496
497			### Compute covariance matrix of (*bfp, *T):
498			CM = _np.zeros((Np+N, Np+N))
499
500			if error_from in ['calib', 'both']:
501				CM[:Np, :Np] = self.bfp_CM[:,:]
502
503			if (sT is not None) and error_from in ['sT', 'both']:
504				_sT = _np.asarray(sT)
505				if _sT.ndim == 0:
506					for k in range(N):
507						CM[Np+k, Np+k] = _sT**2
508				elif _sT.ndim == 1:
509					for k in range(N):
510						CM[Np+k, Np+k] = _sT[k]**2
511				elif _sT.ndim == 2:
512					CM[-N:, -N:] = _sT[:,:]
513
514			### Compute Jacobian of D47(T) relative to (*bfp, *T):
515			_T = _np.asarray(T)
516			if _T.ndim == 0:
517				_T = _np.expand_dims(_T, 0)
518			J = _np.zeros((N, Np+N))
519
520			if (sT is not None) and error_from in ['sT', 'both']:
521				for k in range(N):
522					J[k, Np+k] = self._D47_from_T_deriv(_T[k])
523
524			if error_from in ['calib', 'both']:
525
526				for k in range(Np):
527				
528					p1 = {_: self.bfp[_] for _ in self.bfp}
529					p1[f'a{self.degrees[k]}'] += 0.001 * self.bfp_CM[k,k]**.5
530
531					p2 = {_: self.bfp[_] for _ in self.bfp}
532					p2[f'a{self.degrees[k]}'] -= 0.001 * self.bfp_CM[k,k]**.5
533
534					J[:, k] = (self.model_fun(p1, (_T+273.15)**-1) - self.model_fun(p2, (_T+273.15)**-1)) / (0.002 * self.bfp_CM[k,k]**.5)
535
536			### Error propagation:
537			CM_D47 = J @ CM @ J.T
538
539			if return_covar:
540				return D47, CM_D47
541			else:
542				return D47, float(_np.diag(CM_D47)**.5) if D47.ndim == 0 else _np.diag(CM_D47)**.5
543
544		if D47 is not None:
545
546			T = self._T_from_D47(D47)
547			Np = len(self.degrees)
548			N = T.size
549
550			### Compute covariance matrix of (*bfp, *T):
551			CM = _np.zeros((Np+N, Np+N))
552
553			if error_from in ['calib', 'both']:
554				CM[:Np, :Np] = self.bfp_CM[:,:]
555
556			if (sD47 is not None) and error_from in ['sD47', 'both']:
557				_sD47 = _np.asarray(sD47)
558				if _sD47.ndim == 0:
559					for k in range(N):
560						CM[Np+k, Np+k] = _sD47**2
561				elif _sD47.ndim == 1:
562					for k in range(N):
563						CM[Np+k, Np+k] = _sD47[k]**2
564				elif _sD47.ndim == 2:
565					CM[-N:, -N:] = _sD47[:,:]
566
567			### Compute Jacobian of T(D47) relative to (*bfp, *D47):
568			_D47 = _np.asarray(D47)
569			if _D47.ndim == 0:
570				_D47 = _np.expand_dims(_D47, 0)
571			J = _np.zeros((N, Np+N))
572			if (sD47 is not None) and error_from in ['sD47', 'both']:
573				for k in range(N):
574					J[k, Np+k] = self._T_from_D47_deriv(_D47[k])
575			if error_from in ['calib', 'both']:
576				
577				xi = _np.linspace(0,200**-1,1001)[1:]
578				for k in range(Np):
579				
580					if self.bfp_CM[k,k]:
581						_epsilon_ = self.bfp_CM[k,k]**.5
582					else:
583						_epsilon_ = 1e-6
584
585					p1 = {_: self.bfp[_] for _ in self.bfp}
586					p1[f'a{self.degrees[k]}'] += 0.001 * _epsilon_
587					T_from_D47_p1 = _interp1d(self.model_fun(p1, xi), xi**-1 - 273.15)
588
589					p2 = {_: self.bfp[_] for _ in self.bfp}
590					p2[f'a{self.degrees[k]}'] -= 0.001 * _epsilon_
591					T_from_D47_p2 = _interp1d(self.model_fun(p2, xi), xi**-1 - 273.15)
592
593					J[:, k] = (T_from_D47_p1(_D47) - T_from_D47_p2(_D47)) / (0.002 * _epsilon_)
594
595			### Error propagation:
596			CM_T = J @ CM @ J.T
597			
598			if return_covar:
599				return T, CM_T
600			else:
601				return T, float(_np.diag(CM_T)**.5) if T.ndim == 0 else _np.diag(CM_T)**.5
602	
603
604	def plot_T47_errors(
605		self,
606		calibname = None,
607		rD47 = 0.010,
608		Nr = [2,4,8,12,20],
609		Tmin = 0,
610		Tmax = 120,
611		colors = [(1,0,0),(1,.5,0),(.25,.75,0),(0,.5,1),(0.5,0.5,0.5)],
612		yscale = 'lin',
613		):
614		"""
615		Plot SE of T reconstructed using the calibration as a function of T for various
616		combinations of analytical precision and number of analytical replicates.
617
618		**Arguments**		
619
620		+ **calibname**:
621		Which calibration name to display. By default, use `label` attribute.
622		+ **rD47**:
623		Analytical precision of a single analysis.
624		+ **Nr**:
625		A list of lines to plot, each corresponding to a given number of replicates.
626		+ **Tmin**:
627		Minimum T to plot.
628		+ **Tmax**:
629		Maximum T to plot.
630		+ **colors**:
631		A list of colors to distinguish the plotted lines.
632		+ **yscale**:
633		  + If `'lin'`, the Y axis uses a linear scale.
634		  + If `'log'`, the Y axis uses a logarithmic scale.
635		  
636		**Example**
637		
638		````py
639		from matplotlib import pyplot as ppl
640		from D47calib import devils_laghetto_2023 as calib
641
642		fig = ppl.figure(figsize = (3.5,4))
643		ppl.subplots_adjust(bottom = .2, left = .15)
644		calib.plot_T47_errors(
645			calibname = 'Devils Laghetto calibration',
646			Nr = [1,2,4,16],
647			Tmin  =0,
648			Tmax = 40,
649			)
650		ppl.savefig('example_SE_T.png', dpi = 100)
651		````
652
653		This should result in something like this:
654		
655		<img src="example_SE_T.png">
656		"""
657
658		if calibname is None:
659			calibname = self.label
660
661		Nr = _np.array(Nr)
662		if len(colors) < Nr.size:
663			print('WARNING: Too few colors to plot different numbers of replicates; generating new colors.')
664			from colorsys import hsv_to_rgb
665			hsv = [(x*1.0/Nr.size, 1, .9) for x in range(Nr.size)]
666			colors = [hsv_to_rgb(*x) for x in hsv]
667
668		Ti = _np.linspace(Tmin, Tmax)
669		D47i, _  = self.T47(T = Ti)
670		_, sT_calib = self.T47(D47 = D47i, error_from = 'calib')
671
672		ymax, ymin = 0, 1e6
673		for N,c in zip(Nr, colors):
674			_, sT = self.T47(D47 = D47i, sD47 = rD47 / N**.5, error_from = 'sD47')
675			_ppl.plot(Ti, sT, '-', color = c, label=f'SE for {N} replicate{"s" if N > 1 else ""}')
676			ymin = min(ymin, min(sT))
677			ymax = max(ymax, max(sT))
678		
679		_ppl.plot(Ti, sT_calib, 'k--', label='SE from calibration')
680
681		_ppl.legend(fontsize=9)
682		_ppl.xlabel("T (°C)")
683
684		_ppl.ylabel("Standard error on reconstructed T (°C)")
685
686		# yticks([0,.5,1,1.5,2])
687		_ppl.title(f"{calibname},\nassuming external Δ$_{{47}}$ repeatability of {rD47:.3f} ‰", size = 9)
688		_ppl.grid( alpha = .25)
689		if yscale == 'lin':
690			_ppl.axis([Ti[0], Ti[-1], 0, ymax*1.05])
691			t1, t2 = self.T.min(), self.T.max()
692			_ppl.plot([t1, t2], [0, 0], 'k-', alpha = .25, lw = 8, solid_capstyle = 'butt', clip_on = False)
693			_ppl.text((t1+t2)/2, 0, 'range of observations\n', alpha = .4, size = 7, ha = 'center', va = 'bottom', style = 'italic')
694			_ppl.axis([None, None, None, _ppl.axis()[-1]*1.25])
695		elif yscale == 'log':
696			ymin /= 2
697			_ppl.axis([Ti[0], Ti[-1], ymin, ymax*1.05])
698			_ppl.yscale('log')
699			t1, t2 = self.T.min(), self.T.max()
700			_ppl.plot([t1, t2], [ymin, ymin], 'k-', alpha = .25, lw = 8, solid_capstyle = 'butt', clip_on = False)
701			_ppl.text((t1+t2)/2, ymin, 'range of observations\n', alpha = .4, size = 7, ha = 'center', va = 'bottom', style = 'italic')
702
703	def export_data(self, csvfile, sep = ',', label = False, T_correl = False, D47_correl = False):
704		"""
705		Write calibration data to a csv file.
706		
707		### Parameters
708		
709		+ **csvfile**:
710		The filename to write data to.
711		+ **sep**:
712		The separator between CSV fields.
713		+ **label**:
714		  + If specified as `True`, include a `Dataset` column with the calibration's `label` attribute.
715		  + If specified as a `str`, include a `Dataset` column with that string.
716		  + If specified as `False`, do not include a `Dataset` column.
717		+ **T_correl**:
718		  + If `True`, include correlations between all `T` values.
719		+ **D47_correl**:
720		  + If `True`, include correlations between all `D47` values.
721		
722		### Example
723
724		````py
725		D47calib.huyghe_2022.export_data(
726			csvfile = 'example_export_data.csv',
727			T_correl = True,
728			D47_correl = True,
729			)
730		````
731
732		This should result in something like this ([link](example_export_data.csv)):
733		
734		.. include:: ../../docs/example_export_data.md
735
736		"""
737		n = len(str(self.N))
738
739		with open(csvfile, 'w') as f:
740			f.write(sep.join(['ID', 'Sample', 'T', 'SE_T', 'D47', 'SE_D47']))
741
742			if label:
743				f.write(f'{sep}Dataset')
744
745			if T_correl:
746				inv_diag_sT = _np.diag(_np.diag(self.sT)**-.5)
747				Tcorrel = inv_diag_sT @ self.sT @ inv_diag_sT
748				f.write(sep.join(['']+[f'Tcorrel_{k+1:0{n}d}' for k in range(self.N)]))
749
750			if D47_correl:
751				inv_diag_sD47 = _np.diag(_np.diag(self.sD47)**-.5)
752				D47correl = inv_diag_sD47 @ self.sD47 @ inv_diag_sD47
753				f.write(sep.join(['']+[f'D47correl_{k+1:0{n}d}' for k in range(self.N)]))
754
755			for k, (s, T, sT, D47, sD47) in enumerate(zip(
756				self.samples,
757				self.T,
758				_np.diag(self.sT)**.5,
759				self.D47,
760				_np.diag(self.sD47)**.5,
761				)):
762				f.write('\n' + sep.join([f'{k+1:0{n}d}', s, f'{T:.2f}', f'{sT:.2f}', f'{D47:.4f}', f'{sD47:.4f}']))
763				if label:
764					if label is True:
765						f.write(f'{sep}{self.label}')
766					else:
767						f.write(f'{sep}{label}')
768				if T_correl:
769					f.write(sep.join(['']+[
770						f'{Tcorrel[k,_]:.0f}'
771						if f'{Tcorrel[k,_]:.6f}'[-6:] == '000000'
772						else f'{Tcorrel[k,_]:.6f}'
773						for _ in range(self.N)]))
774				if D47_correl:
775					f.write(sep.join(['']+[
776						f'{D47correl[k,_]:.0f}'
777						if f'{D47correl[k,_]:.6f}'[-6:] == '000000'
778						else f'{D47correl[k,_]:.6f}'
779						for _ in range(self.N)]))
780				
781
782	def export(self, name, filename):
783		"""
784		Save `D47calib` object as an importable file.
785		
786		### Parameters
787		
788		+ **name**:
789		The name of the variable to export.
790		+ **filename**:
791		The filename to write to.
792		
793		### Example
794
795		````py
796		D47calib.anderson_2021_lsce.export('foo', 'bar.py')
797		````
798
799		This should result in a `bar.py` file with the following contents:
800		
801		````py
802		foo = D47calib(
803			samples = ['LGB-2', 'DVH-2'],
804			T = [7.9, 33.7],
805			D47 = [0.6485720997671647, 0.5695972909966959],
806			sT = [[0.04000000000000001, 0.0], [0.0, 0.04000000000000001]],
807			sD47 = [[8.72797097773764e-06, 2.951894073404263e-06], [2.9518940734042614e-06, 7.498611746762038e-06]],
808			description = 'Devils Hole & Laghetto Basso from Anderson et al. (2021), processed in I-CDES',
809			label = 'Slow-growing calcites from Anderson et al. (2021)',
810			color = (0, 0.5, 0),
811			degrees = [0, 2],
812			bfp = {'a0': 0.1583220210575451, 'a2': 38724.41371782721},
813			bfp_CM = [[0.00035908667755871876, -30.707016431538836], [-30.70701643153884, 2668091.396598919]],
814			chisq = 6.421311854486162e-27,
815			Nf = 0,
816			)
817		````
818		"""
819		with open(filename, 'w') as f:
820			f.write(f'''
821{name} = D47calib(
822	samples = {self.samples},
823	T = {list(self.T)},
824	D47 = {list(self.D47)},
825	sT = {[list(l) for l in self.sT]},
826	sD47 = {[list(l) for l in self.sD47]},
827	degrees = {self.degrees},
828	description = {repr(self.description)},
829	name = {repr(self.name)},
830	label = {repr(self.label)},
831	bfp = {self.bfp},
832	bfp_CM = {[list(l) for l in self.bfp_CM]},
833	chisq = {self.chisq},
834	cholesky_residuals = {list(self.cholesky_residuals)},
835	aic = {self.aic},
836	bic = {self.bic},
837	ks_pvalue = {self.ks_pvalue},
838	)
839''')

Δ47 calibration class based on OGLS regression of Δ47 as a polynomial function of inverse T.

D47calib( samples, T, D47, sT=None, sD47=None, degrees=[0, 2], xpower=2, name='', label='', description='', **kwargs)
 46	def __init__(self,
 47		samples, T, D47,
 48		sT = None,
 49		sD47 = None,
 50		degrees = [0,2],
 51		xpower = 2,
 52		name = '',
 53		label = '',
 54		description = '',
 55		**kwargs,
 56		):
 57		"""
 58		### Parameters
 59		
 60		+ **samples**: a list of N sample names.
 61		+ **T**: a 1-D array (or array-like) of temperatures values (in degrees C), of size N.
 62		+ **D47**: a 1-D array (or array-like) of Δ47 values (in permil), of size N.
 63		+ **sT**: uncertainties on `T`. If specified as:
 64		  + a scalar: `sT` is treated as the standard error applicable to all `T` values;
 65		  + a 1-D array-like of size N: `sT` is treated as the standard errors of `T`;
 66		  + a 2-D array-like of size (N, N): `sT` is treated as the (co)variance matrix of `T`.
 67		+ **sD47**: uncertainties on `D47`. If specified as:
 68		  + a scalar: `sD47` is treated as the standard error applicable to all `D47` values;
 69		  + a 1-D array-like of size N: `sD47` is treated as the standard errors of `D47`;
 70		  + a 2-D array-like of size (N, N): `sD47` is treated as the (co)variance matrix of `D47`.
 71		+ **degrees**: degrees of the polynomial regression, e.g., `[0, 2]` or `[0, 1, 2, 3, 4]`.
 72		+ **name**: a human-readable, short name assigned to the calibration.
 73		+ **label**: a short description of the calibration, e.g., to be used in legends.
 74		+ **description**: a longer description, including relevant references/DOIs.
 75		This is not necessary when `bfp` and `CM_bfp` are specified at instantiation time.
 76		+ **kwargs**: keyword arguments passed to the underlying `ogls.InverseTPolynomial()` call.
 77		
 78		### Notable attributes
 79
 80		+ **N**:
 81		The total number of observations (samples) in the calibration data.
 82		+ **samples**:
 83		The list sample names.
 84		+ **T**:
 85		1-D `ndarray` of temperatures in degrees C.
 86		+ **D47**:
 87		1-D `ndarray` of Δ47 values in permil.
 88		+ **sT**:
 89		2-D `ndarray` equal to the full (co)variance matrix for `T`.
 90		+ **D47**:
 91		2-D `ndarray` equal to the full (co)variance matrix for `D47`.
 92		+ **xpower**:
 93		By default, all `D47calib` graphical methods plot Δ47 as a function of 1/T<sup>2</sup>.
 94		It is possible to change this behavior to use a different power of 1/T.
 95		This is done by redefining the `xpower` attribute to a different, non-zero `int` value
 96		(e.g. `foo.xpower = 1` to plot as a function of 1/T instead of 1/T<sup>2</sup>).
 97		+ **bfp**:
 98		The best-fit parameters of the regression.
 99		This is a `dict` with keys equal to the polynomial coefficients (see `bff` definition below)
100		+ **bff()**:
101		The best-fit polynomial function of inverse T, defined as:
102		`bff(x) = sum(bfp[f'a{k}'] * x**k for k in degrees)`
103		Note that `bff` takes `x = 1/(T+273.15)` (instead of `T`) as input.
104
105		
106		### Examples
107		
108		A very simple example:
109		
110		````py
111		.. include:: ../../code_examples/D47calib_init/example.py
112		````
113		
114		Should yield:
115
116		````
117		.. include:: ../../code_examples/D47calib_init/output.txt
118		````
119		
120		"""
121
122		self.samples = samples[:]
123		self.name = name
124		self.label = label
125		self.description = description
126		self.D47 = _np.asarray(D47, dtype = 'float')
127		self.N = self.D47.size
128
129		if sD47 is None:
130			self.sD47 = _np.zeros((self.N, self.N))
131		else:
132			self.sD47 = _np.asarray(sD47)
133			if len(self.sD47.shape) == 1:
134				self.sD47 = _np.diag(self.sD47**2)
135			elif len(self.sD47.shape) == 0:
136				self.sD47 = _np.eye(self.D47.size) * self.sD47**2
137
138		_ogls.InverseTPolynomial.__init__(self, T=T, Y=D47, sT=sT, sY=sD47, degrees = degrees, xpower = xpower, **kwargs)
139		
140		if self.bfp is None:
141			self.regress()
142		
143		self._bff_deriv = lambda x: _np.array([k * self.bfp[f'a{k}'] * x**(k-1) for k in degrees if k > 0]).sum(axis = 0)
144		
145		xi = _np.linspace(0,200**-1,1001)
146		self._inv_bff = _interp1d(self.bff(xi), xi)
147
148		self._D47_from_T = lambda T: self.bff((T+273.15)**-1)
149		self._T_from_D47 = lambda D47: self._inv_bff(D47)**-1 - 273.15
150		self._D47_from_T_deriv = lambda T: -(T+273.15)**-2 * self._bff_deriv((T+273.15)**-1)
151		self._T_from_D47_deriv = lambda D47: self._D47_from_T_deriv(self._T_from_D47(D47))**-1

Parameters

  • samples: a list of N sample names.
  • T: a 1-D array (or array-like) of temperatures values (in degrees C), of size N.
  • D47: a 1-D array (or array-like) of Δ47 values (in permil), of size N.
  • sT: uncertainties on T. If specified as:
    • a scalar: sT is treated as the standard error applicable to all T values;
    • a 1-D array-like of size N: sT is treated as the standard errors of T;
    • a 2-D array-like of size (N, N): sT is treated as the (co)variance matrix of T.
  • sD47: uncertainties on D47. If specified as:
    • a scalar: sD47 is treated as the standard error applicable to all D47 values;
    • a 1-D array-like of size N: sD47 is treated as the standard errors of D47;
    • a 2-D array-like of size (N, N): sD47 is treated as the (co)variance matrix of D47.
  • degrees: degrees of the polynomial regression, e.g., [0, 2] or [0, 1, 2, 3, 4].
  • name: a human-readable, short name assigned to the calibration.
  • label: a short description of the calibration, e.g., to be used in legends.
  • description: a longer description, including relevant references/DOIs. This is not necessary when bfp and CM_bfp are specified at instantiation time.
  • kwargs: keyword arguments passed to the underlying ogls.InverseTPolynomial() call.

Notable attributes

  • N: The total number of observations (samples) in the calibration data.
  • samples: The list sample names.
  • T: 1-D ndarray of temperatures in degrees C.
  • D47: 1-D ndarray of Δ47 values in permil.
  • sT: 2-D ndarray equal to the full (co)variance matrix for T.
  • D47: 2-D ndarray equal to the full (co)variance matrix for D47.
  • xpower: By default, all D47calib graphical methods plot Δ47 as a function of 1/T2. It is possible to change this behavior to use a different power of 1/T. This is done by redefining the xpower attribute to a different, non-zero int value (e.g. foo.xpower = 1 to plot as a function of 1/T instead of 1/T2).
  • bfp: The best-fit parameters of the regression. This is a dict with keys equal to the polynomial coefficients (see bff definition below)
  • bff(): The best-fit polynomial function of inverse T, defined as: bff(x) = sum(bfp[f'a{k}'] * x**k for k in degrees) Note that bff takes x = 1/(T+273.15) (instead of T) as input.

Examples

A very simple example:

from D47calib import D47calib

mycalib = D47calib(
        samples     = ['FOO', 'BAR'],
        T           = [0.   , 25.  ],
        D47         = [0.7  , 0.6  ],
        sT          = 1.,
        sD47        = 0.01,
        )

T, sT = mycalib.T47(D47 = 0.650)

print(f'T = {T:.1f}')
print(f'sT = {sT:.1f}')

Should yield:

T = 11.7
sT = 1.9

def invT_xaxis(self, xlabel=None, Ti=[0, 20, 50, 100, 250, 1000]):
156	def invT_xaxis(self,
157		xlabel = None,
158		Ti = [0,20,50,100,250,1000],
159		):
160		"""
161		Create and return an `Axes` object with X values equal to 1/T<sup>2</sup>,
162		but labeled in degrees Celsius.
163		
164		### Parameters
165		
166		+ **xlabel**:
167		Custom label for X axis (`r'$1\,/\,T^2$'` by default)
168		+ **Ti**:
169		Specify tick locations for X axis, in degrees C.
170
171		### Returns
172
173		+ an `matplotlib.axes.Axes` instance
174
175		### Examples
176
177		````py
178		.. include:: ../../code_examples/D47calib_invT_xaxis/example_1.py
179		````
180		
181		This should result in something like this:
182
183		<img align="center" src="example_invT_xaxis_1.png">
184
185		It is also possible to define the X axis using a different power of 1/T
186		by first redefining the `xpower` attribute:
187		
188		````py
189		.. include:: ../../code_examples/D47calib_invT_xaxis/example_2.py
190		````
191		
192		This should result in something like this:
193
194		<img align="center" src="example_invT_xaxis_2.png">
195		"""
196		if xlabel is None:
197			xlabel = f'$1\\,/\\,T^{self.xpower}$' if self.xpower > 1 else '1/T'
198		_ppl.xlabel(xlabel)
199		_ppl.xticks([(273.15 + t) ** -self.xpower for t in sorted(Ti)[::-1]])
200		ax = _ppl.gca()
201		ax.set_xticklabels([f"${t}\\,$°C" for t in sorted(Ti)[::-1]])
202		ax.tick_params(which="major")
203
204		return ax

Create and return an Axes object with X values equal to 1/T2, but labeled in degrees Celsius.

Parameters

  • xlabel: Custom label for X axis (r'$1\,/\,T^2$' by default)
  • Ti: Specify tick locations for X axis, in degrees C.

Returns

  • an matplotlib.axes.Axes instance

Examples

from matplotlib import pyplot as ppl
from D47calib import OGLS23 as calib

fig = ppl.figure(figsize = (5,3))
ppl.subplots_adjust(bottom = .25, left = .15)
ax = calib.invT_xaxis()
ax.set_xlim((0, 270**-2))
ppl.savefig('example_invT_xaxis_1.png', dpi = 100)

This should result in something like this:

It is also possible to define the X axis using a different power of 1/T by first redefining the xpower attribute:

from matplotlib import pyplot as ppl
from D47calib import OGLS23 as calib

calib.xpower = 4

fig = ppl.figure(figsize = (5,3))
ppl.subplots_adjust(bottom = .25, left = .15)
ax = calib.invT_xaxis(Ti = [1000, 100, 50, 25, 0])
ax.set_xlim((0, 270**-4))
ppl.savefig('example_invT_xaxis_2.png', dpi = 100)

This should result in something like this:

def plot_data(self, label=False, **kwargs):
207	def plot_data(self, label = False, **kwargs):
208		"""
209		Plot Δ47 value of each sample as a function of 1/T<sup>2</sup>.
210		
211		### Parameters
212		
213		+ **label**:
214		  + If `label` is a string, use this string as `label` for the underlyig
215		  `matplotlib.pyplot.plot()` call.
216		  + If `label = True`, use the caller's `label` attribute instead.
217		  + If `label = False`, no label is specified (default behavior).
218		+ **kwargs**:
219		keyword arguments passed to the underlying `matplotlib.pyplot.plot()` call.
220
221		### Returns
222
223		+ the return value(s) of the underlying `matplotlib.pyplot.plot()` call.
224
225		### Example
226		
227		````py
228		from matplotlib import pyplot as ppl
229		from D47calib import huyghe_2022 as calib
230
231		fig = ppl.figure(figsize = (5,3))
232		ppl.subplots_adjust(bottom = .25, left = .15)
233		calib.invT_xaxis(Ti = [0,10,25])
234		calib.plot_data(label = True)
235		ppl.ylabel('$Δ_{47}$ (‰ I-CDES)')
236		ppl.legend()
237		ppl.savefig('example_plot_data.png', dpi = 100)
238		`````
239
240		This should result in something like this:
241
242		<img align="center" src="example_plot_data.png">
243		"""
244# 		if 'mec' not in kwargs:
245# 			kwargs['mec'] = self.color
246		if label is not False:
247			kwargs['label'] = self.label if label is True else label
248		return _ogls.InverseTPolynomial.plot_data(self, **kwargs)

Plot Δ47 value of each sample as a function of 1/T2.

Parameters

  • label:
    • If label is a string, use this string as label for the underlyig matplotlib.pyplot.plot() call.
    • If label = True, use the caller's label attribute instead.
    • If label = False, no label is specified (default behavior).
  • kwargs: keyword arguments passed to the underlying matplotlib.pyplot.plot() call.

Returns

  • the return value(s) of the underlying matplotlib.pyplot.plot() call.

Example

from matplotlib import pyplot as ppl
from D47calib import huyghe_2022 as calib

fig = ppl.figure(figsize = (5,3))
ppl.subplots_adjust(bottom = .25, left = .15)
calib.invT_xaxis(Ti = [0,10,25])
calib.plot_data(label = True)
ppl.ylabel('$Δ_{47}$ (‰ I-CDES)')
ppl.legend()
ppl.savefig('example_plot_data.png', dpi = 100)

This should result in something like this:

def plot_error_bars(self, **kwargs):
251	def plot_error_bars(self, **kwargs):
252		"""
253		Plot Δ47 error bars (±1.96 SE) of each sample as a function of 1/T<sup>2</sup>.
254		
255		### Parameters
256		
257		+ **kwargs**:
258		keyword arguments passed to the underlying `matplotlib.pyplot.errrobar()` call.
259
260		### Returns
261
262		+ the return value(s) of the underlying `matplotlib.pyplot.errorbar()` call.
263
264		### Example
265		
266		````py
267		from matplotlib import pyplot as ppl
268		from D47calib import huyghe_2022 as calib
269
270		fig = ppl.figure(figsize = (5,3))
271		ppl.subplots_adjust(bottom = .25, left = .15)
272		calib.invT_xaxis(Ti = [0,10,25])
273		calib.plot_error_bars(alpha = .4)
274		calib.plot_data(label = True)
275		ppl.ylabel('$Δ_{47}$ (‰ I-CDES)')
276		ppl.legend()
277		ppl.savefig('example_plot_error_bars.png', dpi = 100)
278		`````
279
280		This should result in something like this:
281
282		<img align="center" src="example_plot_error_bars.png">
283		"""
284# 		if 'ecolor' not in kwargs:
285# 			kwargs['ecolor'] = self.color
286		return _ogls.InverseTPolynomial.plot_error_bars(self, **kwargs)

Plot Δ47 error bars (±1.96 SE) of each sample as a function of 1/T2.

Parameters

  • kwargs: keyword arguments passed to the underlying matplotlib.pyplot.errrobar() call.

Returns

  • the return value(s) of the underlying matplotlib.pyplot.errorbar() call.

Example

from matplotlib import pyplot as ppl
from D47calib import huyghe_2022 as calib

fig = ppl.figure(figsize = (5,3))
ppl.subplots_adjust(bottom = .25, left = .15)
calib.invT_xaxis(Ti = [0,10,25])
calib.plot_error_bars(alpha = .4)
calib.plot_data(label = True)
ppl.ylabel('$Δ_{47}$ (‰ I-CDES)')
ppl.legend()
ppl.savefig('example_plot_error_bars.png', dpi = 100)

This should result in something like this:

def plot_error_ellipses(self, **kwargs):
289	def plot_error_ellipses(self, **kwargs):
290		"""
291		Plot Δ47 error ellipses (95 % confidence) of each sample as a function of 1/T<sup>2</sup>.
292		
293		### Parameters
294		
295		+ **kwargs**:
296		keyword arguments passed to the underlying `matplotlib.patches.Ellipse()` call.
297
298		### Returns
299
300		+ the return value(s) of the underlying `matplotlib.patches.Ellipse()` call.
301
302		### Example
303		
304		````py
305		from matplotlib import pyplot as ppl
306		from D47calib import huyghe_2022 as calib
307
308		fig = ppl.figure(figsize = (5,3))
309		ppl.subplots_adjust(bottom = .25, left = .15)
310		calib.invT_xaxis(Ti = [0,10,25])
311		calib.plot_error_ellipses(alpha = .4)
312		calib.plot_data(label = True)
313		ppl.ylabel('$Δ_{47}$ (‰ I-CDES)')
314		ppl.legend()
315		ppl.savefig('example_plot_error_ellipses.png', dpi = 100)
316		`````
317
318		This should result in something like this:
319
320		<img align="center" src="example_plot_error_ellipses.png">
321		"""
322# 		if 'ec' not in kwargs:
323# 			kwargs['ec'] = self.color
324		return _ogls.InverseTPolynomial.plot_error_ellipses(self, **kwargs)

Plot Δ47 error ellipses (95 % confidence) of each sample as a function of 1/T2.

Parameters

  • kwargs: keyword arguments passed to the underlying matplotlib.patches.Ellipse() call.

Returns

  • the return value(s) of the underlying matplotlib.patches.Ellipse() call.

Example

from matplotlib import pyplot as ppl
from D47calib import huyghe_2022 as calib

fig = ppl.figure(figsize = (5,3))
ppl.subplots_adjust(bottom = .25, left = .15)
calib.invT_xaxis(Ti = [0,10,25])
calib.plot_error_ellipses(alpha = .4)
calib.plot_data(label = True)
ppl.ylabel('$Δ_{47}$ (‰ I-CDES)')
ppl.legend()
ppl.savefig('example_plot_error_ellipses.png', dpi = 100)

This should result in something like this:

def plot_bff(self, label=False, **kwargs):
327	def plot_bff(self, label = False, **kwargs):
328		"""
329		Plot best-fit regression of Δ47 as a function of 1/T<sup>2</sup>.
330		
331		### Parameters
332		
333		+ **label**:
334		  + If `label` is a string, use this string as `label` for the underlyig
335		  `matplotlib.pyplot.plot()` call.
336		  + If `label = True`, use the caller's `label` attribute instead.
337		  + If `label = False`, no label is specified (default behavior).
338		+ **kwargs**:
339		keyword arguments passed to the underlying `matplotlib.pyplot.plot()` call.
340
341		### Returns
342
343		+ the return value(s) of the underlying `matplotlib.pyplot.plot()` call.
344
345		### Example
346		
347		````py
348		from matplotlib import pyplot as ppl
349		from D47calib import huyghe_2022 as calib
350
351		fig = ppl.figure(figsize = (5,3))
352		ppl.subplots_adjust(bottom = .25, left = .15)
353		calib.invT_xaxis(Ti = [0,10,25])
354		calib.plot_bff(label = True, dashes = (8,2,2,2))
355		calib.plot_data()
356		ppl.ylabel('$Δ_{47}$ (‰ I-CDES)')
357		ppl.legend()
358		ppl.savefig('example_plot_bff.png', dpi = 100)
359		`````
360
361		This should result in something like this:
362
363		<img align="center" src="example_plot_bff.png">
364		"""
365# 		if 'color' not in kwargs:
366# 			kwargs['color'] = self.color
367		if label is not False:
368			kwargs['label'] = self.label if label is True else label
369		return _ogls.InverseTPolynomial.plot_bff(self, **kwargs)

Plot best-fit regression of Δ47 as a function of 1/T2.

Parameters

  • label:
    • If label is a string, use this string as label for the underlyig matplotlib.pyplot.plot() call.
    • If label = True, use the caller's label attribute instead.
    • If label = False, no label is specified (default behavior).
  • kwargs: keyword arguments passed to the underlying matplotlib.pyplot.plot() call.

Returns

  • the return value(s) of the underlying matplotlib.pyplot.plot() call.

Example

from matplotlib import pyplot as ppl
from D47calib import huyghe_2022 as calib

fig = ppl.figure(figsize = (5,3))
ppl.subplots_adjust(bottom = .25, left = .15)
calib.invT_xaxis(Ti = [0,10,25])
calib.plot_bff(label = True, dashes = (8,2,2,2))
calib.plot_data()
ppl.ylabel('$Δ_{47}$ (‰ I-CDES)')
ppl.legend()
ppl.savefig('example_plot_bff.png', dpi = 100)

This should result in something like this:

def plot_bff_ci(self, **kwargs):
372	def plot_bff_ci(self, **kwargs):
373		"""
374		Plot 95 % confidence region for best-fit regression of Δ47 as a function of 1/T<sup>2</sup>.
375		
376		### Parameters
377		
378		+ **label**:
379		+ **kwargs**:
380		keyword arguments passed to the underlying `matplotlib.pyplot.fill_between()` call.
381
382		### Returns
383
384		+ the return value(s) of the underlying `matplotlib.pyplot.fill_between()` call.
385
386		### Example
387		
388		````py
389		from matplotlib import pyplot as ppl
390		from D47calib import huyghe_2022 as calib
391
392		fig = ppl.figure(figsize = (5,3))
393		ppl.subplots_adjust(bottom = .25, left = .15)
394		calib.invT_xaxis(Ti = [0,10,25])
395		calib.plot_bff_ci(alpha = .15)
396		calib.plot_bff(label = True, dashes = (8,2,2,2))
397		calib.plot_data()
398		ppl.ylabel('$Δ_{47}$ (‰ I-CDES)')
399		ppl.legend()
400		ppl.savefig('example_plot_bff_ci.png', dpi = 100)
401		`````
402
403		This should result in something like this:
404
405		<img align="center" src="example_plot_bff_ci.png">
406		"""
407# 		if 'color' not in kwargs:
408# 			kwargs['color'] = self.color
409		return _ogls.InverseTPolynomial.plot_bff_ci(self, **kwargs)

Plot 95 % confidence region for best-fit regression of Δ47 as a function of 1/T2.

Parameters

  • label:
  • kwargs: keyword arguments passed to the underlying matplotlib.pyplot.fill_between() call.

Returns

  • the return value(s) of the underlying matplotlib.pyplot.fill_between() call.

Example

from matplotlib import pyplot as ppl
from D47calib import huyghe_2022 as calib

fig = ppl.figure(figsize = (5,3))
ppl.subplots_adjust(bottom = .25, left = .15)
calib.invT_xaxis(Ti = [0,10,25])
calib.plot_bff_ci(alpha = .15)
calib.plot_bff(label = True, dashes = (8,2,2,2))
calib.plot_data()
ppl.ylabel('$Δ_{47}$ (‰ I-CDES)')
ppl.legend()
ppl.savefig('example_plot_bff_ci.png', dpi = 100)

This should result in something like this:

def T47( self, D47=None, sD47=None, T=None, sT=None, error_from='both', return_covar=False):
411	def T47(self,
412		D47 = None,
413		sD47 = None,
414		T=None,
415		sT = None,
416		error_from = 'both',
417		return_covar = False,
418		):
419		'''
420		When `D47` is input, computes corresponding T value(s).
421		`D47` input may be specified as a scalar, or as a 1-D array.
422		`T` output will then have the same type and size as `D47`.
423
424		When `T` is input, computes corresponding Δ47 value(s).
425		`T` input may be specified as a scalar, or as a 1-D array.
426		`D47` output will then have the same type and size as `T`.
427		
428		Only one of either `D47` or `T` may be specified as input.
429
430		**Arguments:**		
431
432		* `D47`: Δ47 value(s) to convert into temperature (`float` or 1-D array)
433		* `sD47`: Δ47 uncertainties, which may be:
434		  - `None` (default)
435		  - `float` or `int` (uniform standard error on `D47`)
436		  - 1-D array (standard errors on `D47`)
437		  - 2-D array (covariance matrix for `D47`)
438		* `T`: T value(s) to convert into Δ47 (`float` or 1-D array), in degrees C
439		* `sT`: T uncertainties, which may be:
440		  - `None` (default)
441		  - `float` or `int` (uniform standard error on `T`)
442		  - 1-D array (standard errors on `T`)
443		  - 2-D array (variance-covariance matrix for `T`)
444		* `error_from`: if set to `'both'` (default), returned errors take into account
445		  input uncertainties (`sT` or `sD47`) as well as calibration uncertainties;
446		  if set to `'calib'`, only calibration uncertainties are accounted for;
447		  if set to `'sT'` or `'sD47'`, calibration uncertainties are ignored.
448		* `return_covar`: (False by default) whether to return the full covariance matrix
449		  for returned `T` or `D47` values, otherwise return standard errors for the returned
450		  `T` or `D47` values instead.
451		  
452		**Returns (with `D47` input):**
453		
454		* `T`: temperature value(s) computed from `D47`
455		* `sT`: uncertainties on `T` value(s), whether as standard error(s) or covariance matrix
456
457		**Returns (with `T` input):**
458		
459		* `D47`: Δ47 value(s) computed from `D47`
460		* `sD47`: uncertainties on `D47` value(s), whether as standard error(s) or covariance matrix
461
462		### Example
463		
464		````py
465		import numpy as np
466		from matplotlib import pyplot as ppl
467		from D47calib import OGLS23 as calib
468
469		X = np.linspace(1473**-2, 270**-2)
470		D47, sD47 = calib.T47(T = X**-0.5 - 273.15)
471		
472		fig = ppl.figure(figsize = (5,3))
473		ppl.subplots_adjust(bottom = .25, left = .15)
474		calib.invT_xaxis()
475		ppl.plot(X, 1000 * sD47, 'r-')
476		ppl.ylabel('Calibration SE on $Δ_{47}$ values (ppm)')
477		ppl.savefig('example_SE47.png', dpi = 100)
478		`````
479
480		This should result in something like this:
481		
482		<img src="example_SE47.png">
483		'''
484
485		if D47 is None and T is None:
486			raise ValueError('Either D47 or T must be specified, but both are undefined.')
487
488		if D47 is not None and T is not None:
489			raise ValueError('Either D47 or T must be specified, but not both.')
490
491		if T is not None:
492			
493			D47 = self._D47_from_T(T)
494			Np = len(self.degrees)
495			N = D47.size
496
497			### Compute covariance matrix of (*bfp, *T):
498			CM = _np.zeros((Np+N, Np+N))
499
500			if error_from in ['calib', 'both']:
501				CM[:Np, :Np] = self.bfp_CM[:,:]
502
503			if (sT is not None) and error_from in ['sT', 'both']:
504				_sT = _np.asarray(sT)
505				if _sT.ndim == 0:
506					for k in range(N):
507						CM[Np+k, Np+k] = _sT**2
508				elif _sT.ndim == 1:
509					for k in range(N):
510						CM[Np+k, Np+k] = _sT[k]**2
511				elif _sT.ndim == 2:
512					CM[-N:, -N:] = _sT[:,:]
513
514			### Compute Jacobian of D47(T) relative to (*bfp, *T):
515			_T = _np.asarray(T)
516			if _T.ndim == 0:
517				_T = _np.expand_dims(_T, 0)
518			J = _np.zeros((N, Np+N))
519
520			if (sT is not None) and error_from in ['sT', 'both']:
521				for k in range(N):
522					J[k, Np+k] = self._D47_from_T_deriv(_T[k])
523
524			if error_from in ['calib', 'both']:
525
526				for k in range(Np):
527				
528					p1 = {_: self.bfp[_] for _ in self.bfp}
529					p1[f'a{self.degrees[k]}'] += 0.001 * self.bfp_CM[k,k]**.5
530
531					p2 = {_: self.bfp[_] for _ in self.bfp}
532					p2[f'a{self.degrees[k]}'] -= 0.001 * self.bfp_CM[k,k]**.5
533
534					J[:, k] = (self.model_fun(p1, (_T+273.15)**-1) - self.model_fun(p2, (_T+273.15)**-1)) / (0.002 * self.bfp_CM[k,k]**.5)
535
536			### Error propagation:
537			CM_D47 = J @ CM @ J.T
538
539			if return_covar:
540				return D47, CM_D47
541			else:
542				return D47, float(_np.diag(CM_D47)**.5) if D47.ndim == 0 else _np.diag(CM_D47)**.5
543
544		if D47 is not None:
545
546			T = self._T_from_D47(D47)
547			Np = len(self.degrees)
548			N = T.size
549
550			### Compute covariance matrix of (*bfp, *T):
551			CM = _np.zeros((Np+N, Np+N))
552
553			if error_from in ['calib', 'both']:
554				CM[:Np, :Np] = self.bfp_CM[:,:]
555
556			if (sD47 is not None) and error_from in ['sD47', 'both']:
557				_sD47 = _np.asarray(sD47)
558				if _sD47.ndim == 0:
559					for k in range(N):
560						CM[Np+k, Np+k] = _sD47**2
561				elif _sD47.ndim == 1:
562					for k in range(N):
563						CM[Np+k, Np+k] = _sD47[k]**2
564				elif _sD47.ndim == 2:
565					CM[-N:, -N:] = _sD47[:,:]
566
567			### Compute Jacobian of T(D47) relative to (*bfp, *D47):
568			_D47 = _np.asarray(D47)
569			if _D47.ndim == 0:
570				_D47 = _np.expand_dims(_D47, 0)
571			J = _np.zeros((N, Np+N))
572			if (sD47 is not None) and error_from in ['sD47', 'both']:
573				for k in range(N):
574					J[k, Np+k] = self._T_from_D47_deriv(_D47[k])
575			if error_from in ['calib', 'both']:
576				
577				xi = _np.linspace(0,200**-1,1001)[1:]
578				for k in range(Np):
579				
580					if self.bfp_CM[k,k]:
581						_epsilon_ = self.bfp_CM[k,k]**.5
582					else:
583						_epsilon_ = 1e-6
584
585					p1 = {_: self.bfp[_] for _ in self.bfp}
586					p1[f'a{self.degrees[k]}'] += 0.001 * _epsilon_
587					T_from_D47_p1 = _interp1d(self.model_fun(p1, xi), xi**-1 - 273.15)
588
589					p2 = {_: self.bfp[_] for _ in self.bfp}
590					p2[f'a{self.degrees[k]}'] -= 0.001 * _epsilon_
591					T_from_D47_p2 = _interp1d(self.model_fun(p2, xi), xi**-1 - 273.15)
592
593					J[:, k] = (T_from_D47_p1(_D47) - T_from_D47_p2(_D47)) / (0.002 * _epsilon_)
594
595			### Error propagation:
596			CM_T = J @ CM @ J.T
597			
598			if return_covar:
599				return T, CM_T
600			else:
601				return T, float(_np.diag(CM_T)**.5) if T.ndim == 0 else _np.diag(CM_T)**.5

When D47 is input, computes corresponding T value(s). D47 input may be specified as a scalar, or as a 1-D array. T output will then have the same type and size as D47.

When T is input, computes corresponding Δ47 value(s). T input may be specified as a scalar, or as a 1-D array. D47 output will then have the same type and size as T.

Only one of either D47 or T may be specified as input.

Arguments:

  • D47: Δ47 value(s) to convert into temperature (float or 1-D array)
  • sD47: Δ47 uncertainties, which may be:
    • None (default)
    • float or int (uniform standard error on D47)
    • 1-D array (standard errors on D47)
    • 2-D array (covariance matrix for D47)
  • T: T value(s) to convert into Δ47 (float or 1-D array), in degrees C
  • sT: T uncertainties, which may be:
    • None (default)
    • float or int (uniform standard error on T)
    • 1-D array (standard errors on T)
    • 2-D array (variance-covariance matrix for T)
  • error_from: if set to 'both' (default), returned errors take into account input uncertainties (sT or sD47) as well as calibration uncertainties; if set to 'calib', only calibration uncertainties are accounted for; if set to 'sT' or 'sD47', calibration uncertainties are ignored.
  • return_covar: (False by default) whether to return the full covariance matrix for returned T or D47 values, otherwise return standard errors for the returned T or D47 values instead.

Returns (with D47 input):

  • T: temperature value(s) computed from D47
  • sT: uncertainties on T value(s), whether as standard error(s) or covariance matrix

Returns (with T input):

  • D47: Δ47 value(s) computed from D47
  • sD47: uncertainties on D47 value(s), whether as standard error(s) or covariance matrix

Example

import numpy as np
from matplotlib import pyplot as ppl
from D47calib import OGLS23 as calib

X = np.linspace(1473**-2, 270**-2)
D47, sD47 = calib.T47(T = X**-0.5 - 273.15)

fig = ppl.figure(figsize = (5,3))
ppl.subplots_adjust(bottom = .25, left = .15)
calib.invT_xaxis()
ppl.plot(X, 1000 * sD47, 'r-')
ppl.ylabel('Calibration SE on $Δ_{47}$ values (ppm)')
ppl.savefig('example_SE47.png', dpi = 100)

This should result in something like this:

def plot_T47_errors( self, calibname=None, rD47=0.01, Nr=[2, 4, 8, 12, 20], Tmin=0, Tmax=120, colors=[(1, 0, 0), (1, 0.5, 0), (0.25, 0.75, 0), (0, 0.5, 1), (0.5, 0.5, 0.5)], yscale='lin'):
604	def plot_T47_errors(
605		self,
606		calibname = None,
607		rD47 = 0.010,
608		Nr = [2,4,8,12,20],
609		Tmin = 0,
610		Tmax = 120,
611		colors = [(1,0,0),(1,.5,0),(.25,.75,0),(0,.5,1),(0.5,0.5,0.5)],
612		yscale = 'lin',
613		):
614		"""
615		Plot SE of T reconstructed using the calibration as a function of T for various
616		combinations of analytical precision and number of analytical replicates.
617
618		**Arguments**		
619
620		+ **calibname**:
621		Which calibration name to display. By default, use `label` attribute.
622		+ **rD47**:
623		Analytical precision of a single analysis.
624		+ **Nr**:
625		A list of lines to plot, each corresponding to a given number of replicates.
626		+ **Tmin**:
627		Minimum T to plot.
628		+ **Tmax**:
629		Maximum T to plot.
630		+ **colors**:
631		A list of colors to distinguish the plotted lines.
632		+ **yscale**:
633		  + If `'lin'`, the Y axis uses a linear scale.
634		  + If `'log'`, the Y axis uses a logarithmic scale.
635		  
636		**Example**
637		
638		````py
639		from matplotlib import pyplot as ppl
640		from D47calib import devils_laghetto_2023 as calib
641
642		fig = ppl.figure(figsize = (3.5,4))
643		ppl.subplots_adjust(bottom = .2, left = .15)
644		calib.plot_T47_errors(
645			calibname = 'Devils Laghetto calibration',
646			Nr = [1,2,4,16],
647			Tmin  =0,
648			Tmax = 40,
649			)
650		ppl.savefig('example_SE_T.png', dpi = 100)
651		````
652
653		This should result in something like this:
654		
655		<img src="example_SE_T.png">
656		"""
657
658		if calibname is None:
659			calibname = self.label
660
661		Nr = _np.array(Nr)
662		if len(colors) < Nr.size:
663			print('WARNING: Too few colors to plot different numbers of replicates; generating new colors.')
664			from colorsys import hsv_to_rgb
665			hsv = [(x*1.0/Nr.size, 1, .9) for x in range(Nr.size)]
666			colors = [hsv_to_rgb(*x) for x in hsv]
667
668		Ti = _np.linspace(Tmin, Tmax)
669		D47i, _  = self.T47(T = Ti)
670		_, sT_calib = self.T47(D47 = D47i, error_from = 'calib')
671
672		ymax, ymin = 0, 1e6
673		for N,c in zip(Nr, colors):
674			_, sT = self.T47(D47 = D47i, sD47 = rD47 / N**.5, error_from = 'sD47')
675			_ppl.plot(Ti, sT, '-', color = c, label=f'SE for {N} replicate{"s" if N > 1 else ""}')
676			ymin = min(ymin, min(sT))
677			ymax = max(ymax, max(sT))
678		
679		_ppl.plot(Ti, sT_calib, 'k--', label='SE from calibration')
680
681		_ppl.legend(fontsize=9)
682		_ppl.xlabel("T (°C)")
683
684		_ppl.ylabel("Standard error on reconstructed T (°C)")
685
686		# yticks([0,.5,1,1.5,2])
687		_ppl.title(f"{calibname},\nassuming external Δ$_{{47}}$ repeatability of {rD47:.3f} ‰", size = 9)
688		_ppl.grid( alpha = .25)
689		if yscale == 'lin':
690			_ppl.axis([Ti[0], Ti[-1], 0, ymax*1.05])
691			t1, t2 = self.T.min(), self.T.max()
692			_ppl.plot([t1, t2], [0, 0], 'k-', alpha = .25, lw = 8, solid_capstyle = 'butt', clip_on = False)
693			_ppl.text((t1+t2)/2, 0, 'range of observations\n', alpha = .4, size = 7, ha = 'center', va = 'bottom', style = 'italic')
694			_ppl.axis([None, None, None, _ppl.axis()[-1]*1.25])
695		elif yscale == 'log':
696			ymin /= 2
697			_ppl.axis([Ti[0], Ti[-1], ymin, ymax*1.05])
698			_ppl.yscale('log')
699			t1, t2 = self.T.min(), self.T.max()
700			_ppl.plot([t1, t2], [ymin, ymin], 'k-', alpha = .25, lw = 8, solid_capstyle = 'butt', clip_on = False)
701			_ppl.text((t1+t2)/2, ymin, 'range of observations\n', alpha = .4, size = 7, ha = 'center', va = 'bottom', style = 'italic')

Plot SE of T reconstructed using the calibration as a function of T for various combinations of analytical precision and number of analytical replicates.

Arguments

  • calibname: Which calibration name to display. By default, use label attribute.
  • rD47: Analytical precision of a single analysis.
  • Nr: A list of lines to plot, each corresponding to a given number of replicates.
  • Tmin: Minimum T to plot.
  • Tmax: Maximum T to plot.
  • colors: A list of colors to distinguish the plotted lines.
  • yscale:
    • If 'lin', the Y axis uses a linear scale.
    • If 'log', the Y axis uses a logarithmic scale.

Example

from matplotlib import pyplot as ppl
from D47calib import devils_laghetto_2023 as calib

fig = ppl.figure(figsize = (3.5,4))
ppl.subplots_adjust(bottom = .2, left = .15)
calib.plot_T47_errors(
        calibname = 'Devils Laghetto calibration',
        Nr = [1,2,4,16],
        Tmin  =0,
        Tmax = 40,
        )
ppl.savefig('example_SE_T.png', dpi = 100)

This should result in something like this:

def export_data( self, csvfile, sep=',', label=False, T_correl=False, D47_correl=False):
703	def export_data(self, csvfile, sep = ',', label = False, T_correl = False, D47_correl = False):
704		"""
705		Write calibration data to a csv file.
706		
707		### Parameters
708		
709		+ **csvfile**:
710		The filename to write data to.
711		+ **sep**:
712		The separator between CSV fields.
713		+ **label**:
714		  + If specified as `True`, include a `Dataset` column with the calibration's `label` attribute.
715		  + If specified as a `str`, include a `Dataset` column with that string.
716		  + If specified as `False`, do not include a `Dataset` column.
717		+ **T_correl**:
718		  + If `True`, include correlations between all `T` values.
719		+ **D47_correl**:
720		  + If `True`, include correlations between all `D47` values.
721		
722		### Example
723
724		````py
725		D47calib.huyghe_2022.export_data(
726			csvfile = 'example_export_data.csv',
727			T_correl = True,
728			D47_correl = True,
729			)
730		````
731
732		This should result in something like this ([link](example_export_data.csv)):
733		
734		.. include:: ../../docs/example_export_data.md
735
736		"""
737		n = len(str(self.N))
738
739		with open(csvfile, 'w') as f:
740			f.write(sep.join(['ID', 'Sample', 'T', 'SE_T', 'D47', 'SE_D47']))
741
742			if label:
743				f.write(f'{sep}Dataset')
744
745			if T_correl:
746				inv_diag_sT = _np.diag(_np.diag(self.sT)**-.5)
747				Tcorrel = inv_diag_sT @ self.sT @ inv_diag_sT
748				f.write(sep.join(['']+[f'Tcorrel_{k+1:0{n}d}' for k in range(self.N)]))
749
750			if D47_correl:
751				inv_diag_sD47 = _np.diag(_np.diag(self.sD47)**-.5)
752				D47correl = inv_diag_sD47 @ self.sD47 @ inv_diag_sD47
753				f.write(sep.join(['']+[f'D47correl_{k+1:0{n}d}' for k in range(self.N)]))
754
755			for k, (s, T, sT, D47, sD47) in enumerate(zip(
756				self.samples,
757				self.T,
758				_np.diag(self.sT)**.5,
759				self.D47,
760				_np.diag(self.sD47)**.5,
761				)):
762				f.write('\n' + sep.join([f'{k+1:0{n}d}', s, f'{T:.2f}', f'{sT:.2f}', f'{D47:.4f}', f'{sD47:.4f}']))
763				if label:
764					if label is True:
765						f.write(f'{sep}{self.label}')
766					else:
767						f.write(f'{sep}{label}')
768				if T_correl:
769					f.write(sep.join(['']+[
770						f'{Tcorrel[k,_]:.0f}'
771						if f'{Tcorrel[k,_]:.6f}'[-6:] == '000000'
772						else f'{Tcorrel[k,_]:.6f}'
773						for _ in range(self.N)]))
774				if D47_correl:
775					f.write(sep.join(['']+[
776						f'{D47correl[k,_]:.0f}'
777						if f'{D47correl[k,_]:.6f}'[-6:] == '000000'
778						else f'{D47correl[k,_]:.6f}'
779						for _ in range(self.N)]))

Write calibration data to a csv file.

Parameters

  • csvfile: The filename to write data to.
  • sep: The separator between CSV fields.
  • label:
    • If specified as True, include a Dataset column with the calibration's label attribute.
    • If specified as a str, include a Dataset column with that string.
    • If specified as False, do not include a Dataset column.
  • T_correl:
    • If True, include correlations between all T values.
  • D47_correl:
    • If True, include correlations between all D47 values.

Example

D47calib.huyghe_2022.export_data(
        csvfile = 'example_export_data.csv',
        T_correl = True,
        D47_correl = True,
        )

This should result in something like this (link):

ID Sample T SE_T D47 SE_D47 D47correl_1 D47correl_2 D47correl_3 D47correl_4 D47correl_5 D47correl_6 D47correl_7
1 Ad -1.80 0.50 0.6893 0.0060 1 0.048049 0.028770 0.544016 0.093188 0.020880 0.471516
2 BDV-S 18.70 0.75 0.6121 0.0049 0.048049 1 0.650474 0.053281 0.011132 0.002494 0.050651
3 BDV-W 11.01 1.00 0.6349 0.0052 0.028770 0.650474 1 0.031903 0.006666 0.001494 0.030328
4 PY 13.44 0.06 0.6397 0.0049 0.544016 0.053281 0.031903 1 0.104392 0.023391 0.513257
5 TES-S 22.50 2.10 0.5972 0.0053 0.093188 0.011132 0.006666 0.104392 1 0.275629 0.100150
6 TES-W 12.23 1.00 0.6329 0.0102 0.020880 0.002494 0.001494 0.023391 0.275629 1 0.022440
7 TW 26.80 0.85 0.6001 0.0048 0.471516 0.050651 0.030328 0.513257 0.100150 0.022440 1
def export(self, name, filename):
782	def export(self, name, filename):
783		"""
784		Save `D47calib` object as an importable file.
785		
786		### Parameters
787		
788		+ **name**:
789		The name of the variable to export.
790		+ **filename**:
791		The filename to write to.
792		
793		### Example
794
795		````py
796		D47calib.anderson_2021_lsce.export('foo', 'bar.py')
797		````
798
799		This should result in a `bar.py` file with the following contents:
800		
801		````py
802		foo = D47calib(
803			samples = ['LGB-2', 'DVH-2'],
804			T = [7.9, 33.7],
805			D47 = [0.6485720997671647, 0.5695972909966959],
806			sT = [[0.04000000000000001, 0.0], [0.0, 0.04000000000000001]],
807			sD47 = [[8.72797097773764e-06, 2.951894073404263e-06], [2.9518940734042614e-06, 7.498611746762038e-06]],
808			description = 'Devils Hole & Laghetto Basso from Anderson et al. (2021), processed in I-CDES',
809			label = 'Slow-growing calcites from Anderson et al. (2021)',
810			color = (0, 0.5, 0),
811			degrees = [0, 2],
812			bfp = {'a0': 0.1583220210575451, 'a2': 38724.41371782721},
813			bfp_CM = [[0.00035908667755871876, -30.707016431538836], [-30.70701643153884, 2668091.396598919]],
814			chisq = 6.421311854486162e-27,
815			Nf = 0,
816			)
817		````
818		"""
819		with open(filename, 'w') as f:
820			f.write(f'''
821{name} = D47calib(
822	samples = {self.samples},
823	T = {list(self.T)},
824	D47 = {list(self.D47)},
825	sT = {[list(l) for l in self.sT]},
826	sD47 = {[list(l) for l in self.sD47]},
827	degrees = {self.degrees},
828	description = {repr(self.description)},
829	name = {repr(self.name)},
830	label = {repr(self.label)},
831	bfp = {self.bfp},
832	bfp_CM = {[list(l) for l in self.bfp_CM]},
833	chisq = {self.chisq},
834	cholesky_residuals = {list(self.cholesky_residuals)},
835	aic = {self.aic},
836	bic = {self.bic},
837	ks_pvalue = {self.ks_pvalue},
838	)
839''')

Save D47calib object as an importable file.

Parameters

  • name: The name of the variable to export.
  • filename: The filename to write to.

Example

D47calib.anderson_2021_lsce.export('foo', 'bar.py')

This should result in a bar.py file with the following contents:

foo = D47calib(
        samples = ['LGB-2', 'DVH-2'],
        T = [7.9, 33.7],
        D47 = [0.6485720997671647, 0.5695972909966959],
        sT = [[0.04000000000000001, 0.0], [0.0, 0.04000000000000001]],
        sD47 = [[8.72797097773764e-06, 2.951894073404263e-06], [2.9518940734042614e-06, 7.498611746762038e-06]],
        description = 'Devils Hole & Laghetto Basso from Anderson et al. (2021), processed in I-CDES',
        label = 'Slow-growing calcites from Anderson et al. (2021)',
        color = (0, 0.5, 0),
        degrees = [0, 2],
        bfp = {'a0': 0.1583220210575451, 'a2': 38724.41371782721},
        bfp_CM = [[0.00035908667755871876, -30.707016431538836], [-30.70701643153884, 2668091.396598919]],
        chisq = 6.421311854486162e-27,
        Nf = 0,
        )
def combine_D47calibs(calibs, degrees=[0, 2], same_T=[]):
841def combine_D47calibs(calibs, degrees = [0,2], same_T = []):
842	'''
843	Combine data from several `D47calib` instances.
844	
845	### Parameters
846	
847	+ **calibs**:
848	A list of `D47calib` instances
849	+ **degrees**:
850	The polynomial degrees of the combined regression.
851	+ **same_T**:
852	Use this `list` to specify when samples from different calibrations are known/postulated
853	to have formed at the same temperature (e.g. `DVH-2` and `DHC2-8` from the `fiebig_2021`
854	and `anderson_2021_lsce` data sets). Each element of `same_T` is a `list` with the names
855	of two or more samples formed at the same temperature.
856	
857	For example, the `OGLS23` calibration is computed with:
858	
859	`same_T = [['DVH-2', DHC-2-8'], ['ETH-1-1100-SAM', 'ETH-1-1100']]`
860
861	Note that when samples from different calibrations have the same name,
862	it is not necessary to explicitly list them in `same_T`.
863	
864	Also note that the regression will fail if samples listed together in `same_T`
865	actually have different `T` values specified in the original calibrations.
866
867	### Example
868	
869	The `devils_laghetto_2023` calibration is computed using the following code:
870	
871	````py
872	K = [fiebig_2021.samples.index(_) for _ in ['LGB-2', 'DVH-2', 'DHC2-8']]
873
874	fiebig_temp = D47calib(
875		samples = [fiebig_2021.samples[_] for _ in K],
876		T = fiebig_2021.T[K],
877		D47 = fiebig_2021.D47[K],
878		sT = fiebig_2021.sT[K,:][:,K],
879		sD47 = fiebig_2021.sD47[K,:][:,K],
880		)
881
882	devils_laghetto_2023 = combine_D47calibs(
883		calibs = [
884			anderson_2021_lsce,
885			fiebig_temp,
886			],
887		degrees = [0,2],
888		same_T = [
889			{'DVH-2', 'DHC2-8'},
890			],
891		)
892	````
893	'''
894
895	samples = [s for c in calibs for s in c.samples]
896	T = [t for c in calibs for t in c.T]
897	D47 = [x for c in calibs for x in c.D47]
898	sD47 = _block_diag(*[c.sD47 for c in calibs])
899	sT = _block_diag(*[c.sT for c in calibs])
900
901	for i in range(len(samples)):
902		for j in range(len(samples)):
903			if i != j:
904				if (samples[i] == samples[j] or
905					any([samples[i] in _ and samples[j] in _ for _ in same_T])):
906
907					sT[i,j] = (sT[i,i] * sT[j,j])**.5
908	
909	calib = D47calib(
910		samples = samples,
911		T = T,
912		D47 = D47,
913		sT = sT,
914		sD47 = sD47,
915		degrees = degrees,
916		)
917
918	return calib

Combine data from several D47calib instances.

Parameters

  • calibs: A list of D47calib instances
  • degrees: The polynomial degrees of the combined regression.
  • same_T: Use this list to specify when samples from different calibrations are known/postulated to have formed at the same temperature (e.g. DVH-2 and DHC2-8 from the fiebig_2021 and anderson_2021_lsce data sets). Each element of same_T is a list with the names of two or more samples formed at the same temperature.

For example, the OGLS23 calibration is computed with:

same_T = [['DVH-2', DHC-2-8'], ['ETH-1-1100-SAM', 'ETH-1-1100']]

Note that when samples from different calibrations have the same name, it is not necessary to explicitly list them in same_T.

Also note that the regression will fail if samples listed together in same_T actually have different T values specified in the original calibrations.

Example

The devils_laghetto_2023 calibration is computed using the following code:

K = [fiebig_2021.samples.index(_) for _ in ['LGB-2', 'DVH-2', 'DHC2-8']]

fiebig_temp = D47calib(
        samples = [fiebig_2021.samples[_] for _ in K],
        T = fiebig_2021.T[K],
        D47 = fiebig_2021.D47[K],
        sT = fiebig_2021.sT[K,:][:,K],
        sD47 = fiebig_2021.sD47[K,:][:,K],
        )

devils_laghetto_2023 = combine_D47calibs(
        calibs = [
                anderson_2021_lsce,
                fiebig_temp,
                ],
        degrees = [0,2],
        same_T = [
                {'DVH-2', 'DHC2-8'},
                ],
        )