
Guide & Documentation

M. Robinson

2012-2014

NanoCap provides both libraries and a standalone application for the construction of capped nanotubes
of arbitrarily chirality and fullerenes of any radius. Structures are generated by constructing a
set of optimal dual graph topologies which are subsequently optimised using a carbon interatomic
potential. Combining this approach with a GUI featuring 3D rendering capabilities allows for the
rapid inspection of physically sensible structures which can be used as input for molecular simulation.

The NanoCap source and builds for different platforms can be found at:

http://sourceforge.net/projects/nanocap/

The NanoCap documentation is outlined in the following sections.

1

http://sourceforge.net/projects/nanocap/

Contents

1 Installation 4

1.1 Requirements . 4

1.2 Installing from source . 5

2 Generating a Single Structure 6

2.1 Fullerenes . 6

2.2 Nanotubes . 7

2.2.1 Finite tubes . 7

2.2.2 Periodic tubes . 8

2.3 Capped Nanotubes . 8

3 Generating Multiple Structures 10

3.1 Structure Search . 10

4 Force Fields 11

4.1 Dual Lattice Force Fields . 11

4.2 Carbon Lattice Force Fields . 11

5 Optimisation 13

6 Storing, Loading and Exporting 15

6.1 The Local NanoCap Database . 15

6.2 The Online NanoCap Database . 17

6.3 Exporting . 17

7 Rendering 18

7.1 Schlegel View . 18

8 Scientific Publications 20

9 Code 21

9.1 Non-GUI Class Structure . 21

9.2 GUI Class Structure . 21

10 Examples 23

10.1 Nanotube Construction . 23

10.2 Fullerenes . 23

2

10.2.1 Single Fullerene Construction . 23

10.2.2 Constructing Multiple Fullerenes . 25

10.3 Capped Nanotube Construction . 27

10.3.1 Single Capped Nanotube Construction . 27

10.3.2 Constructing Multiple Capped Nanotubes . 29

10.4 Database Operations . 31

10.4.1 Saving structures to the local database . 31

10.4.2 Loading structures from the local database . 32

10.5 Visualisation . 33

3

1 Installation

There are three approaches to using NanoCap:

1. As a standalone application.

2. From source without rendering/GUI capabilities

3. From source with rendering/GUI capabilities

The installation procedures involved in each of the options above vary with increasing complexity yet
this is balanced with an increase in versatility. For example, NanoCap compiled from source with
with rendering and GUI capabilities can be used in parallelised code to produce and visualise multiple
structures.

1.1 Requirements

1. As a standalone application.

NanoCap is built into a DMG for OSX and a .EXE for Windows. The required libraries listed
below are bundled but not modified in line with the associated licenses.

OSX: NanoCap works straight out of the box simply extract the application from the DMG and
drag it into the Applications folder.

Windows: NanoCap requires the Microsoft Visual C++ 2008 Redistributable Package which
can be obtained from:

http://www.microsoft.com/en-au/download/details.aspx?id=29

2. From source without rendering/GUI capabilities

• NumPy - Version 1.6.2

• Scipy - Version 0.11.0

• sqlite3 Version 2.6.0 (bundled with Python)

• C compiler (e.g. GCC)

• Fortran compiler (e.g. GFortran)

3. From source with rendering/GUI capabilities

• Qt - Version 4.8.5

• PySide - Version 1.1.1 (depends on Qt)

• VTK - Version 5.8 (+ Python Wrappers)

Installation of the dependencies above is platform dependent and there are multiple methods of
achieving the required python working environment. The simplest options are using package man-
agers or binary distributions, i.e:

OSX:

• Homebrew http://brew.sh

• MacPorts http://www.macports.org

• Fink http://www.finkproject.org/

Windows:

4

http://www.microsoft.com/en-au/download/details.aspx?id=29
http://brew.sh
http://www.macports.org
http://www.finkproject.org/

• PythonXY http://code.google.com/p/pythonxy

• Enthought Python http://www.enthought.com/products/epd

Linux:

• apt-get

• YUM (RPM Package Manager)

1.2 Installing from source

After obtaining and installing the previously outlined requirements, a tar ball of NanoCap can be
downloaded from:

http://sourceforge.net/projects/nanocap/files/src/

As an alternative, the latest release can be checked out from the mercurial repository:

bash−3.2$ hg clone http://hg.code.sf.net/p/nanocap/code−0 nanocap−code−0

After download and unpacking (if required), installation proceeds in the typically python fashion:

bash−3.2$ python setup.py install

The installation runs a configure script (generated by autoconf) that detects available C and Fortran
compilers and builds the associated shared libraries. To test for a successful installation, simply
attempt to import NanoCap in a python terminal.

bash−3.2$ python
Python 2.7.3 (default, Jul 19 2012, 13:57:53)
[GCC 4.2.1 Compatible Apple Clang 3.1 (tags/Apple/clang−318.0.61)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import nanocap
>>> print nanocap. version
1.0b9

The successful import and printing of the version number indicates the libraries installed correctly.
To test the installation further try running the example scripts shown in Section 10.

If the GUI and rendering libraries have been successfully installed then NanoCapcan be ran either as
an application or as libraries. To run the GUI enabled NanoCap simply type:

bash−3.2$ nanocap

into the command prompt.

5

http://code.google.com/p/pythonxy
http://www.enthought.com/products/epd
http://sourceforge.net/projects/nanocap/files/src/

2 Generating a Single Structure

There are two methods of generating structures using NanoCap, producing structures individually or
a batch of structures found using a structure search. Creation of a single structure is useful when it
is required quickly and there is little need for the structure to be the lowest in energy.

A single structure is constructed via:

File–>New Structure–>Single Structure

which displays the current list of available structures in NanoCap: Adding a structures produces

Figure 1: NanoCap structure list for adding a single structure

a blank template containing no points or atoms. Each of the structures listed above are discussed in
the following sections.

2.1 Fullerenes

The options to define the input parameters for the construction of the fullerene are displayed in the
Calculations–>Input options:

Figure 2: NanoCap input options for a fullerene

Here you can set the options for:

• the number of dual lattice points or carbon atoms

• the seed for the initial random arrangement of dual lattice points

6

• the number of dual lattice points to hold fixed at either the poles or the equator

Upon on clicking Initialise the dual lattice points belonging to the fullerene will be constructed via
the following:

xi =
√

1− z0 cos(t0)
yi =

√
1− z0 sin(t0)

zi = z0

(1)

where z0 and t0 are two random numbers in the range [−1,1] and [0,2π]. To visualise these points
check the options outlined in Section 7. The process of optimisation of these points is described in
Section 5

2.2 Nanotubes

To construct the carbon lattice the user has the option for either a finte-length nanotube or one that
is periodic along the axial direction.

Figure 3: Nanotube construction options

2.2.1 Finite tubes

Finite tubes are constructed as close to a user defined length as possible. This is done by constructing
strips of basis points along the chiral vector (n,m):

Pi = nia1 +mia2

a1 =
√
3ac

2 (
√

3, 1)

a2 =
√
3ac

2 (
√

3,−1)

where ac is the carbon bond length of 1.421 Å. The incremented values (ni,mi) range from (0,0) to
(n,m) and depends on:

ni++ if mi/(2ni +mi) > m/(2n+m)
mi++ if mi/(2ni +mi) ≤ m/(2n+m)

After each new row of points, the origin is translated in the z direction by
√

3ac. The current distance
along the nanotube axis is then compared against the user defined length to determine if another
strip should be added. The user defined length is inputted in the Calculations–>Input options.

At each basis point P at position (px, pz), the positions of the carbon atoms (A and B) and dual
lattice points (D) are given by:

A = (px, pz)

B = (px + ac, pz)

D = (px + 2ac, pz)

7

2.2.2 Periodic tubes

Periodic tubes are constructed using a user defined number of unit cells in the z direction. The
periodic length L of a nanotube of chirality (n,m) with u unit cells is given by:

L = u ∗ |T|
T = t1a1 + t2a2

where the coefficients t1 and t2 have no common divisors except for unity and are given by:

t1 = (2m+ n)/dR

t2 = −(2n+m)/dR

dR = gcd(2n+m, 2m+ n)

During construction the carbon atoms and dual lattice points are constructed as for the finite tubes
with the replacement of the user-defined length with the periodic length. After construction, any
points surpassing the periodic length are removed.

The number of unit cells can also be found in the Calculations–>Input options.

The periodic length can be found in the Information options tab. This will be required by
simulation software if the nanotube is to be used in a periodic simulation.

2.3 Capped Nanotubes

The options to define the input parameters for the construction of the capped nanotube are displayed
in the Calculations–>Input as shown in Fig 4:

Figure 4: NanoCap input options for a capped nanotube

The following input options can be set for the capped nanotube construction.

• the chirality (n,m)

• the length of the nanotube (Å)

8

• the number of cap carbon atoms and dual lattice points (or enabled the estimation based upon
the nanotube density)

• the seed for the initial random cap point placement

• the force cutoff relating to the dual lattice force field (Section 4.1)

9

3 Generating Multiple Structures

3.1 Structure Search

As an alternative to constructing a single structure, NanoCapincludes a tool for finding low energy
structures by performing a structure search. This is useful when finding the lowest energy topology
is important or when an ensemble of structures are required.

The structure search options are accessed through the File–>New Structure–>Structure Search
menu. The structure search window includes a panel of parameters that define the structure type
and search criteria. Here the user can define the required structural properties as well as the force
field and optimiser to use during the search. The search results are dynamically displayed in a table
where the user can browse the details of each structure. During the search the user can view an
individual structure by pressing the view button in the associated row in the table. This will load
the structure into the main NanoCap window. An example of the structure search window during a
search in shown in Fig. 5

Figure 5: NanoCap structure search window during a search

After a structure search, the current set of results can be compared against the local and online
(in future releases) databases. The columns in the structure search table denoted Local and Web
indicate the presence of the structure in the associated databases. If a structure is not found it’s icon
will change (to a + symbol) and it can be immediately added to the corresponding database with a
single click. Results from a typical structure search after checking against the local NanoCap database
are shown in Fig. 6

10

Figure 6: NanoCap structure search window after a search and results have been checked against the
local database

4 Force Fields

NanoCap implements force fields for the optimisation of the both the dual lattices and carbon lattices
of each structure. When a structure is saved information relating to the force field is also stored.
This allows the same topologies to be optimised by various force fields. Outlined in the next sections
are the force fields currently available in NanoCap .

4.1 Dual Lattice Force Fields

Currently, only one force field is implemented to optimise a structure’s dual lattice - labelled: The
Thomson Problem. The total energy of a system of ND dual lattice points is given by the sum of pair
interaction energies:

φ =

ND∑
i=1

ND∑
j=i+1

1

|ri − rj|

where r denotes the position vector of each point. When the dual lattice belongs to a fullerene, the
full system is included in the loop of pair interactions. For a capped nanotube however, there is
restriction to the points included in the force field calculation. A cutoff length is introduced along
the nanotube beyond which points are exclude from the force evaluation. This is required to ensure
a uniform arrangement of points in the capped region and reduce the concentration of points in the
apex of the cap. This cutoff length is automatically determined basen upon the density of points in
the nanotube but can be set manually in the options described in Section 2.3

4.2 Carbon Lattice Force Fields

Currently there are 3 force fields implemented in NanoCap. These are selected in the Calculations–
>Carbon Lattice options as shown in Fig. 7.

Each force field is described below:

11

Figure 7: NanoCap input options for a fullerene

1. Unit Radius Topology

By default, when a carbon lattice is constructed a carbon force field is not used and the structure
is simply a result of the triangulated dual lattice. This generates a topology of unit radius
(cylindrical if a capped nanotube) and as such is labelled the

2. Scaled Topology

The simplest force field that produces a carbon structure of physical dimensions is the scaled
topology force field. This forcefield uses the ideal C-C bond length of 1.421 Å to optimise the
carbon lattice. The fictitious energy is given by the sum of squares deviation from this ideal
bond length. This force field only does return derivatives and as such can only be used with
the MC or SIMPLEX optimisers (see Section 5).

3. EDIP

The most sophistic force field implemented in NanoCap is the Environmental Dependence Inter-
atomic Potential (EDIP). Using EDIP produces the most physically sound structures and its
use is recommended. For a theoretical description of EDIP please refer to the following paper:

Generalizing the environment-dependent interaction potential for carbon

N. A. Marks Phys. Rev. B 63, 035401 2000

url: http://journals.aps.org/prb/abstract/10.1103/PhysRevB.63.035401

12

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.63.035401

5 Optimisation

The underlying design of NanoCap and the generalisation of point sets and forcefields, allows for
a great deal of flexibility in optimisation routines. The same optimisation routine that is used to
minimised the total dual lattice energy can be used to optimise the carbon lattice using a force field
such as EDIP. Currently three methods of minimising the total energy are implemented and can be
selected in either the Calculations–>Dual Lattice or Calculations–>Carbon Lattice options
as shown in Fig. 8

Figure 8: NanoCap Optimisation options are shown for both the dual lattice and carbon lattice option
windows.

These options include the number of minimisation steps and the tolerance used to determine conver-
gence. A brief description of each of the optimisers is given below:

1. L-BFGS

The tastes, most robust optimiser is the Limited-memory Broyden–Fletcher–Goldfarb–Shanno
method (LBFGS). This routine requires forces which are used to iteratively update an estimate
of the Hessian matrix, which in turn is used to define new directions along which to perform line
searches. NanoCap uses the the LBFGS method as implemented in the scipy.optimise libraries
(http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_l_bfgs_
b.html).

A Limited Memory Algorithm for Bound Constrained Optimization R. H. Byrd, P.
Lu and J. Nocedal. (1995), SIAM Journal on Scientific and Statistical Computing, 16, 5, pp.
1190-1208.

L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound
constrained optimization C. Zhu, R. H. Byrd and J. Nocedal. (1997), ACM Transactions
on Mathematical Software, 23, 4, pp. 550 - 560.

L-BFGS-B: Remark on Algorithm 778: L-BFGS-B, FORTRAN routines for large
scale bound constrained optimization J.L. Morales and J. Nocedal. (2011), ACM Trans-
actions on Mathematical Software, 38, 1.

2. SD

The steepest descent (SD) method minimises energy by simply following the direction of force
(or the negative gradient of the potential field). The step size per iteration is determined by the
current magnitude of force. The SD method is useful when visualising the optimisation process.

3. SIMPLEX

The simplex method is an optimisation routine which does not require the calculation of forces.
As such is the only optimiser that works with the Scaled Topology force field. The implemen-
tation in NanoCap again comes from the scipy.optimise libraries which implement algorithms
presented in the following publications:

13

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_l_bfgs_b.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_l_bfgs_b.html

A Simplex Method for Function Minimization Nelder, J.A. and Mead, R. The Computer
Journal, 7, pp. 308-313

Direct Search Methods: Once Scorned, Now Respectable Wright, M.H. Numerical
Analysis 1995, Proceedings of the 1995 Dundee Biennial Conference in Numerical Analysis pp.
191-208

14

6 Storing, Loading and Exporting

Each individual structure loaded or created can be checked against the local and online NanoCap databases.
This is carried out in the Storage window on the main toolbar as shown in Fig. 9.

Figure 9: Checking a structure against the local and online NanoCap databases

6.1 The Local NanoCap Database

One of the main features of NanoCap is the local database of structures which allows the user to
efficiently store previously generated structures. By default the database is stored in the NanoCap user
directory (.nanocap). The database can be accessed in several ways; using the NanoCap GUI, using the
NanoCap scripts or using an external SQLite client. Using the GUI,the Database Viewer window
is located in the View–>Local Database menu.

The database viewer provides an interactive interface to the NanoCap database allowing real time
searching and loading of stored structures (Fig. 10). Additional search parameters can be added by
pressing the Select Properties button which displays all possible database fields. When searching
for a structure, logical expressions can be used for each file. For example, if ‘> 100’ is entered into the
Natoms fields then only structures with more than 100 atoms will be returned. The column labelled
‘>View’ provides buttons to load a structure into the main NanoCap window. The loaded structures
can then be modified, for example re-optimised with a different force field.

To access the database via Python scripts, the NanoCap libraries can be used. For examples of these
scripts see Section 10.

As the NanoCap database is written using SQLite, a suitable database client can be used to view the
database. An example using the sqlite3 client is shown below:

bash−3.2$ sqlite3 ~/.nanocap/nanocap.db
SQLite version 3.7.13 2012−06−11 02:05:22
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> .headers on;
sqlite> .mode column

15

Figure 10: NanoCap database viewer

sqlite> select id,type,Natoms,energy,ff id from carbon lattices
...> where type="Fullerene" and ff id="EDIP";

id type natoms energy ff id
−−−−−−−−−− −−−−−−−−−− −−−−−−−− −−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−
11 Fullerene 220 −1550.4155355469 EDIP
50 Fullerene 200 −1403.7245939477 EDIP
51 Fullerene 200 −1403.5958295534 EDIP
52 Fullerene 200 −1404.0657391286 EDIP
53 Fullerene 200 −1402.8514086776 EDIP
54 Fullerene 200 −1403.3230258698 EDIP
55 Fullerene 200 −1404.3263445713 EDIP
56 Fullerene 200 −1403.4800906205 EDIP
57 Fullerene 200 −1404.3965982273 EDIP
58 Fullerene 200 −1404.1298467551 EDIP
59 Fullerene 200 −1403.4657122674 EDIP
64 Fullerene 200 −1403.7245939160 EDIP

16

6.2 The Online NanoCap Database

The online NanoCap database is currently under construction.

6.3 Exporting

Each structure in the current structure list can be exported to file. The options for exporting a
structure can be found in the File–>Export Structure menu. The full list of export options are
shown in Fig. 11.

Figure 11: NanoCap export structure options

The export options include the ability to select which lattices are saved and in what file format.
Currently only a simple xyz file format is implemented which contains a minimum amount of data (the
number of points and positions). In addition to the topology of the structure, structural information
can also be saved. This includes energies, dimensions, connectivity (ring statistics) amongst other
things.Using the rendering capabilities of NanoCap, images of the structure can also be automatically
saved. This includes a series of images that capture a full rotation of the structure. These images
can be encoded into a movie to simplify future inspection of the stored structure. Finally, the export
options require a parent directly to save the aforementioned data. Within this directory a new
directory will be created whose name uniquely identifies the current structure.

17

7 Rendering

NanoCap provides a 3D rendering and interaction interface using the VTK libraries and the associated
widgets in Qt. This allows real time inspection of the structures that are being constructed or
previously found structures loaded from the database. Current capabilities include the rendering of
both dual and carbon lattices, the carbon-carbon bonds, the ring network and the dimensions of the
current structure. These options are dynamic, with any changes to the appearance of the current
structure occurring in real time. To force changes to the points, bonds or rings use the options in the
Calculations tab.

An example of the NanoCaprendering options and render window are shown in Fig. 12.

Figure 12: The NanoCap rendering options and the corresponding render window.

7.1 Schlegel View

In addition to the 3D view of the current structure a 2D projection (Schlegel) view can also be
rendered. The two parameters involved in the calculation of this projection are accessed through
Calculations–>Schlegel. The parameter Gamma(γ) determines the magnitude of the projection via:

r′ = (xi, yi)

x′ = x+ γs ·
x

|r′|

y′ = y + γs ·
y

|r′|
The Cutoff value determines the points that are used for the projection. An example projection is
shown in Fig. 13.

18

Figure 13: Schlegel options and render window.

19

8 Scientific Publications

There are two papers associated with the theory and implementation of NanoCap. If NanoCap is used
in your work, please cite the following:

1. Generalized method for constructing the atomic coordinates of nanotube caps

M. Robinson, I. Suarez-Martinez, and N. A. Marks Phys. Rev. B 87, 155430 2013

Abstract:

A practical numerical method for the rapid construction of nanotube caps is proposed. Founded
upon the notion of lattice duality, the algorithm considers the face dual representation of a given
nanotube which is used to solve an energy minimization problem analogous to The Thomson
Problem. Not only does this produce caps for nanotubes of arbitrary chirality, but the caps gen-
erated will be physically sensible and in most cases the lowest energy structure. To demonstrate
the applicability of the technique, caps of the (5,5) and the (10,0) nanotubes are investigated by
means of density-functional tight binding (DFTB). The calculation of cap energies highlights the
ability of the algorithm to produce lowest energy caps. Due to the preferential construction of
spherical caps, the technique is particularly well suited for the construction of capped multiwall
nanotubes (MWNTs). To validate this proposal and the overall robustness of the algorithm, a
MWNT is constructed containing the chiralities (9,2)@(15,6)@(16,16). The algorithm presented
paves the way for future computational investigations into the physics and chemistry of capped
nanotubes.

url: http://journals.aps.org/prb/abstract/10.1103/PhysRevB.87.155430

2. NanoCap: A Framework for Generating Capped Carbon Nanotubes and Fullerenes

M. Robinson and N. A. Marks Com. Phys. Comm 2014

Abstract:

NanoCap provides both libraries and a standalone application for the construction of capped
nanotubes of arbitrarily chirality and fullerenes of any radius. Structures are generated by
constructing a set of optimal dual graph topologies which are subsequently optimised using a
carbon interatomic potential. Combining this approach with a GUI featuring 3D rendering
capabilities allows for the rapid inspection of physically sensible structures which can be used
as input for molecular simulation.

url: *tba*

20

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.87.155430

9 Code

9.1 Non-GUI Class Structure

The basic class structure of the non-GUI elements of NanoCap are is shown in Fig. 14. The class
diagrams are constructed with the help of pyreverse and graphviz.

Figure 14: Class diagram of the non GUI classes in NanoCap.

9.2 GUI Class Structure

The main GUI elements are shown in the class diagram in Fig. 15.

21

Figure 15: Class diagram of the GUI classes in NanoCap.

22

10 Examples

The following section lists example scripts that utilise the NanoCap libraries.

These examples can be found in the example scripts directory of the NanoCap source.

10.1 Nanotube Construction

nanocap_nanotube.py an example script to construct an uncapped nanotube. The code is shown
below.

’’’
−=−=−=−=−=−=−=−=−=−=−=−=−=NanoCap=−=−=−=−=−=−=−=−=−=−=−=−=−=−=−
Copyright Marc Robinson 2014
−=−

A script to construct an uncapped
nanotube.

Input:
n,m = Chirality (n,m)
l = length
u = number of unit cells
p = periodic

Output:
xyz file containing carbon
lattice

if periodic , length is ignored and
unit cells is used
−=−
’’’
from nanocap.structures import nanotube
from nanocap.core import output

n=6
m=4
l=5.0
u=1
p=True

my nanotube = nanotube.Nanotube()
my nanotube.construct(n,m,length=l,

units=u,periodic=p)

output.write xyz("nanotube carbon lattice",
my nanotube.carbon lattice)

10.2 Fullerenes

10.2.1 Single Fullerene Construction

nanocap_single_fullerene.py is an example script to construct and save a fullerene. The code is
shown below.

23

’’’
−=−=−=−=−=−=−=−=−=−=−=−=−=NanoCap=−=−=−=−=−=−=−=−=−=−=−=−=−=−=−
Copyright Marc Robinson 2014
−=−

A script to construct a fullerene

Input:
N carbon = Number of carbon atoms
dual lattice force field = force field

for dual lattice
carbon force field = force field

for carbon lattice
dual lattice mintol= energy tolerance for

dual lattice optimisation
dual lattice minsteps= steps for dual lattice

optimisation
carbon lattice mintol=as above for carbon lattice
carbon lattice minsteps=as above for carbon lattice
optimiser=optimsation algorithm
seed = seed for initial cap generation

Output:
xyz files containing dual lattice
and carbon lattice

−=−
’’’

import sys,os,random,numpy
from nanocap.core.minimisation import DualLatticeMinimiser , \

CarbonLatticeMinimiser
from nanocap.structures.fullerene import Fullerene
from nanocap.core.output import write xyz

N carbon = 200

dual force field = "Thomson"
carbon force field = "EDIP"
dual lattice mintol=1e−10
dual lattice minsteps=100
carbon lattice mintol=1e−10
carbon lattice minsteps=100
optimiser="LBFGS"
seed = 12345

my fullerene = Fullerene()
my fullerene.construct dual lattice(N carbon=N carbon ,seed=seed)
my fullerene.set fix pole(False)
my fullerene.set nfixed to equator(0)

Dminimiser = DualLatticeMinimiser(FFID=dual force field ,
structure = my fullerene)

Dminimiser.minimise(my fullerene.dual lattice ,
min type=optimiser ,
ftol=dual lattice mintol ,
min steps=dual lattice minsteps)

24

outfilename = "C{} dual lattice.xyz".format(N carbon)
write xyz(outfilename ,my fullerene.dual lattice)

my fullerene.construct carbon lattice()

Cminimiser = CarbonLatticeMinimiser(FFID=carbon force field ,
structure = my fullerene)

Cminimiser.minimise scale(my fullerene.carbon lattice)
Cminimiser.minimise(my fullerene.carbon lattice ,

min type=optimiser ,
ftol=carbon lattice mintol ,
min steps=carbon lattice minsteps)

outfilename = "C{} carbon atoms.xyz".format(N carbon)
write xyz(outfilename ,my fullerene.carbon lattice)
outfilename = "C{} carbon atoms constrained.xyz".format(N carbon)
write xyz(outfilename ,my fullerene.carbon lattice ,constrained=True)

10.2.2 Constructing Multiple Fullerenes

nanocap_bulk_fullerenes.py is an example script to perform a structure search to construct and
save multiple fullerenes. The code is shown below.

’’’
−=−=−=−=−=−=−=−=−=−=−=−=−=NanoCap=−=−=−=−=−=−=−=−=−=−=−=−=−=−=−
Copyright Marc Robinson 2014
−=−

A script to construct a series of
fullerenes

Input:
N carbon = number of carbon atoms

in the fullerene
dual lattice force field = force field

for dual lattice
carbon force field = force field

for carbon lattice
dual lattice mintol= energy tolerance for

dual lattice optimisation
dual lattice minsteps= steps for dual lattice

optimisation
carbon lattice mintol=as above for carbon lattice
carbon lattice minsteps=as above for carbon lattice
optimiser=optimsation algorithm
seed = seed for initial cap generation
N nanotubes = required number of structures
N max structures = maximum number of possible

structures to search through
basin climb = True/False − climb out of

minima
calc rings = True/False − calculate rings for

each structure

Output:

25

−A structure log in myStructures.out

−xyz files containing the carbon lattices

−=−
’’’

import sys,os,random,numpy
from nanocap.core.minimisation import DualLatticeMinimiser , \

CarbonLatticeMinimiser
from nanocap.core.minimasearch import MinimaSearch
from nanocap.structures.fullerene import Fullerene
from nanocap.core.output import write points

N carbon = 200
dual lattice minimiser = "Thomson"
carbon lattice minimiser = "EDIP"
seed = 12345

N fullerenes = 5
N max structures = 20
basin climb = True
calc rings = True

dual lattice minimiser = "Thomson"
carbon lattice minimiser = "EDIP"
dual lattice mintol=1e−10
dual lattice minsteps=100
carbon lattice mintol=1e−10
carbon lattice minsteps=100
optimiser="LBFGS"
seed = 12345

my fullerene = Fullerene()
my fullerene.construct dual lattice(N carbon=N carbon ,seed=seed)
my fullerene.construct carbon lattice()
my fullerene.set fix pole(False)
my fullerene.set nfixed to equator(0)

Dminimiser = DualLatticeMinimiser(FFID=dual lattice minimiser ,
structure = my fullerene ,
min type= "LBFGS",
ftol = 1e−10,
min steps = 10)

Cminimiser = CarbonLatticeMinimiser(FFID=carbon lattice minimiser ,
structure = my fullerene ,
min type= "LBFGS",
ftol = 1e−10,
min steps = 10)

Searcher = MinimaSearch(Dminimiser ,
carbon lattice minimiser= Cminimiser ,
basin climb=basin climb ,
calc rings=calc rings)

Searcher.start search(my fullerene.dual lattice ,
N fullerenes ,

26

N max structures)

Searcher.continue search(my fullerene.dual lattice ,
N fullerenes ,
N max structures)

Searcher.structure log.write log(os.getcwd(),"myStructures.out")

for i,structure in enumerate(Searcher.structure log.structures):
outfilename = "C{} carbon atoms {}"
outfilename = outfilename.format(structure.carbon lattice.npoints,i)
write points(outfilename ,

structure.carbon lattice ,
"xyz")

10.3 Capped Nanotube Construction

10.3.1 Single Capped Nanotube Construction

nanocap_single_capped_nanotube.py is an example script to construct and save a capped nan-
otube. The code is shown below.

’’’
−=−=−=−=−=−=−=−=−=−=−=−=−=NanoCap=−=−=−=−=−=−=−=−=−=−=−=−=−=−=−
Copyright Marc Robinson 2014
−=−

A script to construct a capped
nanotube.

Input:
n,m = Chirality (n,m)
l = length
cap estimate = estimate cap from

tube density
dual lattice force field = force field

for dual lattice
carbon force field = force field

for carbon lattice
dual lattice mintol= energy tolerance for

dual lattice optimisation
dual lattice minsteps= steps for dual lattice

optimisation
carbon lattice mintol=as above for carbon lattice
carbon lattice minsteps=as above for carbon lattice
optimiser=optimsation algorithm
seed = seed for initial cap generation

Output:
xyz files containing dual lattice
and carbon lattice

−=−
’’’
import sys,os,random,numpy
from nanocap.core import minimisation

27

from nanocap.structures import cappednanotube
from nanocap.core import output

n,m = 7,3
l = 10.0
cap estimate = True

dual force field = "Thomson"
carbon force field = "EDIP"
dual lattice mintol=1e−10
dual lattice minsteps=100
carbon lattice mintol=1e−10
carbon lattice minsteps=100
optimiser="LBFGS"
seed = 12345

my nanotube = cappednanotube.CappedNanotube()

my nanotube.setup nanotube(n,m,l=l)

if(cap estimate):
NCapDual = my nanotube.get cap dual lattice estimate(n,m)

my nanotube.construct dual lattice(N cap dual=NCapDual,seed=seed)

my nanotube.set Z cutoff(N cap dual=NCapDual)

cap = my nanotube.cap
outfilename = "n {} m {} l {} cap {} dual lattice init"
outfilename = outfilename.format(n,m,l,cap.dual lattice.npoints)
output.write xyz(outfilename ,my nanotube.dual lattice)

Dminimiser = minimisation.DualLatticeMinimiser(FFID=dual force field ,
structure = my nanotube)

Dminimiser.minimise(my nanotube.dual lattice ,
min type=optimiser ,
ftol=dual lattice mintol ,
min steps=dual lattice minsteps)

my nanotube.update caps()
outfilename = "n {} m {} l {} cap {} dual lattice"
outfilename = outfilename.format(n,m,l,cap.dual lattice.npoints)
output.write xyz(outfilename ,my nanotube.dual lattice)

my nanotube.construct carbon lattice()

Cminimiser = minimisation.CarbonLatticeMinimiser(FFID=carbon force field ,
structure = my nanotube)

Cminimiser.minimise scale(my nanotube.carbon lattice)
Cminimiser.minimise(my nanotube.carbon lattice ,

min type=optimiser ,
ftol=carbon lattice mintol ,
min steps=carbon lattice minsteps)

outfilename = "n {} m {} l {} cap {} carbon atoms"
outfilename = outfilename.format(n,m,l,cap.dual lattice.npoints)

28

output.write xyz(outfilename ,my nanotube.carbon lattice)
outfilename = "n {} m {} l {} cap {} carbon atoms constrained"
outfilename = outfilename.format(n,m,l,cap.dual lattice.npoints)
output.write xyz(outfilename ,my nanotube.carbon lattice ,constrained=True)

10.3.2 Constructing Multiple Capped Nanotubes

nanocap_bulk_capped_nanotubes.py is an example script to perform a structure search to construct
and save multiple capped nanotube. The code is shown below.

’’’
−=−=−=−=−=−=−=−=−=−=−=−=−=NanoCap=−=−=−=−=−=−=−=−=−=−=−=−=−=−=−
Copyright Marc Robinson 2014
−=−

A script to construct a series of capped
nanotubes of the same chirality

Input:
n,m = Chirality (n,m)
l = length
cap estimate = estimate cap from

tube density
dual lattice force field = force field

for dual lattice
carbon force field = force field

for carbon lattice
dual lattice mintol= energy tolerance for

dual lattice optimisation
dual lattice minsteps= steps for dual lattice

optimisation
carbon lattice mintol=as above for carbon lattice
carbon lattice minsteps=as above for carbon lattice
optimiser=optimsation algorithm
seed = seed for initial cap generation
N nanotubes = required number of structures
N max structures = maximum number of possible

structures to search through
basin climb = True/False − climb out of

minima
calc rings = True/False − calculate rings for

each structure

Output:
−A structure log in myStructures.out

−xyz files containing the carbon lattices

−=−
’’’

import sys,os,random,numpy
from nanocap.core.minimisation import DualLatticeMinimiser , \

CarbonLatticeMinimiser
from nanocap.core.minimasearch import MinimaSearch
from nanocap.structures.cappednanotube import CappedNanotube
from nanocap.core.output import write points

29

n,m = 10,10
l = 20.0
cap estimate = True

N nanotubes = 5
N max structures = 20
basin climb = True
calc rings = True

dual lattice minimiser = "Thomson"
carbon lattice minimiser = "EDIP"
dual lattice mintol=1e−10
dual lattice minsteps=100
carbon lattice mintol=1e−10
carbon lattice minsteps=100
optimiser="LBFGS"
seed = 12345

my nanotube = CappedNanotube()
my nanotube.setup nanotube(n,m,l=l)

if(cap estimate):
N cap dual = my nanotube.get cap dual lattice estimate(n,m)

my nanotube.construct dual lattice(N cap dual=N cap dual ,seed=seed)
my nanotube.set Z cutoff(N cap dual=N cap dual)

Dminimiser = DualLatticeMinimiser(FFID=dual lattice minimiser ,
structure = my nanotube ,
min type= optimiser ,
ftol = dual lattice mintol ,
min steps = dual lattice minsteps)

Cminimiser = CarbonLatticeMinimiser(FFID=carbon lattice minimiser ,
structure = my nanotube ,
min type= optimiser ,
ftol = carbon lattice mintol ,
min steps = carbon lattice minsteps)

Searcher = MinimaSearch(Dminimiser ,
carbon lattice minimiser= Cminimiser ,
basin climb=basin climb ,
calc rings=calc rings)

Searcher.start search(my nanotube.dual lattice ,
N nanotubes ,
N max structures)

Searcher.structure log.write log(os.getcwd(),"myStructures.out")

for i,structure in enumerate(Searcher.structure log.structures):
carbon lattice = structure.carbon lattice
filename = "C{} carbon atoms {}".format(carbon lattice.npoints,i)
write points(filename,carbon lattice ,format="xyz")

30

10.4 Database Operations

As NanoCap uses an sqlite database, the database can be browsed from the command line:

10.4.1 Saving structures to the local database

nanocap_add_structure_to_db.py is an example script to save a fullerene structure to disk. The
code is shown below.

’’’
−=−=−=−=−=−=−=−=−=−=−=−=−=NanoCap=−=−=−=−=−=−=−=−=−=−=−=−=−=−=−
Copyright Marc Robinson 2014
−=−

A script to construct and add a fullerene to the local database

Input:
N carbon = Number of carbon atoms
dual lattice force field = force field

for dual lattice
carbon force field = force field

for carbon lattice
dual lattice mintol= energy tolerance for

dual lattice optimisation
dual lattice minsteps= steps for dual lattice

optimisation
carbon lattice mintol=as above for carbon lattice
carbon lattice minsteps=as above for carbon lattice
optimiser=optimsation algorithm
seed = seed for initial cap generation

Output:
structure is added to local database

−=−
’’’

import sys,os,random,numpy
from nanocap.core.minimisation import DualLatticeMinimiser , \

CarbonLatticeMinimiser
from nanocap.structures.fullerene import Fullerene
from nanocap.db.database import Database
from nanocap.core.output import write xyz

N carbon = 200

dual force field = "Thomson"
carbon force field = "EDIP"
dual lattice mintol=1e−10
dual lattice minsteps=100
carbon lattice mintol=1e−10
carbon lattice minsteps=100
optimiser="LBFGS"
seed = 12345

my fullerene = Fullerene()
my fullerene.construct dual lattice(N carbon=N carbon ,seed=seed)

31

my fullerene.set fix pole(False)
my fullerene.set nfixed to equator(0)

Dminimiser = DualLatticeMinimiser(FFID=dual force field ,
structure = my fullerene)

Dminimiser.minimise(my fullerene.dual lattice ,
min type=optimiser ,
ftol=dual lattice mintol ,
min steps=dual lattice minsteps)

outfilename = "C{} dual lattice.xyz".format(N carbon)
write xyz(outfilename ,my fullerene.dual lattice)

my fullerene.construct carbon lattice()

Cminimiser = CarbonLatticeMinimiser(FFID=carbon force field ,
structure = my fullerene)

Cminimiser.minimise scale(my fullerene.carbon lattice)
Cminimiser.minimise(my fullerene.carbon lattice ,

min type=optimiser ,
ftol=carbon lattice mintol ,
min steps=carbon lattice minsteps)

my db = Database()
my db.init()
my db.add structure(my fullerene ,

add dual lattice=True,
add carbon lattice=True)

10.4.2 Loading structures from the local database

nanocap_load_from_db.py is an example script to load a set of fullerene dual lattices and save to
disk. The code is shown below.

’’’
−=−=−=−=−=−=−=−=−=−=−=−=−=NanoCap=−=−=−=−=−=−=−=−=−=−=−=−=−=−=−
Created: May 23, 2014
Copyright Marc Robinson 2014
−=−

Example script showing how to load from a database.
Simple example showing how to load fullerene dual lattice

Input:
type − the type of structure to return the dual

for = "Fullerene","Capped Nanotube","Nanotube"

Output:
folders for each structure containing xyz files and
info files.

−=−
’’’
import sys,os

32

sys.path.append(os.path.abspath(os.path.dirname(file)+"/../"))
from nanocap.db.database import Database
from nanocap.core.output import write xyz

type = "Fullerene"

my db = Database()
my db.init()

#let’s query for all fullerene dual lattices

tables = ["dual lattices"]
selects = ["id",]
checks = { "dual lattices" : [’type’,] }
data = {"dual lattices" : {"type" : type}}

sql,data = my db.construct query(data,tables,selects,checks)
results = my db.query(sql,data)
#out now contains dual lattice IDs of fullerenes
print results

for result in results:
id = result[0]
structure = my db.construct structure(id)
Nd = structure.dual lattice.npoints
folder = "Fullerene dual lattice id {} N {}".format(id,Nd)
structure.export(folder=".",

save info=True,
save image=False,
save video=False,
save carbon lattice=False,
save con carbon lattice=False,
info file=’structure info.txt’,
save dual lattice=True,
formats=[’xyz’,])

10.5 Visualisation

For any of the example scripts shown previously, the generated structures can be rendered in real
time allowing for 3D visualisation and manipulation. This is simply achieved by the command:

structure.render()

For example the script nanocap_fullerene_visualise.py is minor modification of nanocap_single_fullerene.py
which displays the generated fullerene. This example is shown below:

’’’
−=−=−=−=−=−=−=−=−=−=−=−=−=NanoCap=−=−=−=−=−=−=−=−=−=−=−=−=−=−=−
Copyright Marc Robinson 2014
−=−

A script to construct a fullerene and visualise

Input:
N carbon = Number of carbon atoms
dual lattice force field = force field

for dual lattice

33

carbon force field = force field
for carbon lattice

dual lattice mintol= energy tolerance for
dual lattice optimisation

dual lattice minsteps= steps for dual lattice
optimisation

carbon lattice mintol=as above for carbon lattice
carbon lattice minsteps=as above for carbon lattice
optimiser=optimsation algorithm
seed = seed for initial cap generation

Output:
structure is renderer real time in popup window
enabling 3D interaction

−=−
’’’

import sys,os,random,numpy
from nanocap.core.minimisation import DualLatticeMinimiser , \

CarbonLatticeMinimiser
from nanocap.structures.fullerene import Fullerene
from nanocap.core.output import write xyz

N carbon = 200

dual force field = "Thomson"
carbon force field = "EDIP"
dual lattice mintol=1e−10
dual lattice minsteps=100
carbon lattice mintol=1e−10
carbon lattice minsteps=100
optimiser="LBFGS"
seed = 12345

my fullerene = Fullerene()
my fullerene.construct dual lattice(N carbon=N carbon ,seed=seed)
my fullerene.set fix pole(False)
my fullerene.set nfixed to equator(0)

Dminimiser = DualLatticeMinimiser(FFID=dual force field ,
structure = my fullerene)

Dminimiser.minimise(my fullerene.dual lattice ,
min type=optimiser ,
ftol=dual lattice mintol ,
min steps=dual lattice minsteps)

my fullerene.construct carbon lattice()

Cminimiser = CarbonLatticeMinimiser(FFID=carbon force field ,
structure = my fullerene)

Cminimiser.minimise scale(my fullerene.carbon lattice)
Cminimiser.minimise(my fullerene.carbon lattice ,

min type=optimiser ,
ftol=carbon lattice mintol ,
min steps=carbon lattice minsteps)

34

my fullerene.render()

35

	Installation
	Requirements
	Installing from source

	Generating a Single Structure
	Fullerenes
	Nanotubes
	Finite tubes
	Periodic tubes

	Capped Nanotubes

	Generating Multiple Structures
	Structure Search

	Force Fields
	Dual Lattice Force Fields
	Carbon Lattice Force Fields

	Optimisation
	Storing, Loading and Exporting
	The Local NanoCap Database
	The Online NanoCap Database
	Exporting

	Rendering
	Schlegel View

	Scientific Publications
	Code
	Non-GUI Class Structure
	GUI Class Structure

	Examples
	Nanotube Construction
	Fullerenes
	Single Fullerene Construction
	Constructing Multiple Fullerenes

	Capped Nanotube Construction
	Single Capped Nanotube Construction
	Constructing Multiple Capped Nanotubes

	Database Operations
	Saving structures to the local database
	Loading structures from the local database

	Visualisation

