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A few questions 

•  How many people are dealing with large amounts of data? 
•  How many people like python because it is simple to write? 
•  How many people like IPython because it is interactive? 
•  How many people already know Numpy? 
•  How many people have multiple cores on their machines? 

Access to a cluster?  
•  How many companies/labs have a cluster that isn’t used a 

lot by scientists? 

Why should you give up interactive python when you want to 
parallelize your programs? 
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What is the DistArray project? 

DistArray 

MPI 

Trilinos 
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•  SBIR funded open source project, 
•  developed at Enthought by a team led by Kurt Smith, 
•  partnering with Bill Spotz from Sandia‘s (py)Trilinos project, 

and Brian Granger from the IPython team, 
•  to go seamlessly from a NumPy processing function to a parallel 

program on multiple cores/CPUs/nodes in a cluster.  
•  Targets users who  

•  need more than 1 node but less than 103 
•  have a lot of data, maybe already distributed 
•  need parallel computation without loosing comfort of Python 

•  Warning: still in its infancy!  

What is the DistArray project? 
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What is IPython? 
•  Interactive console for python interpreter 
•  A parallel computing infrastructure 
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What is Numpy? 
•  An array based computation package for python, written in C 
•  The simplest way to do efficient computations in python. You get numpy 

arrays from any file loader like netCDF’s, gridapi, HDF5, ... 
 
>>> from numpy import * 

>>> x = linspace(0, 2*pi, 10) 

>>> y = sin(x) 

>>> y > 0. 

>>> z = random.random((100, 100)) 

>>> filter = array([[0, 0, 1], 

                    [0, 1, 0],  

                    [1, 0, 0]]) 

>>> from scipy.signal import convolve 

>>> convolve(z, filter) 
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•  Assumes that you are dealing with so much data that it cannot fit inside 
1 machine. 

•  Assumes that you already know vector based computations with Numpy. 
•  Assumes that you don’t have time to learn C++, MPI, Trilinos, ... 
•  Defines a distributed array protocol that parallel libraries can 

understand. That protocol is developed with and adopted by Sandia’s 
PyTrilinos and PNNL’s GlobalArray projects. More to come... 

•  A client node (your laptop?) connects to a local/remote cluster of 
engines and dispatches jobs without data transfer: data is created or 
loaded on the nodes. 

•  Makes embarrassingly parallel problems even more embarrassing and 
will supports inter-node MPI communication for the others. 

•  Allows fine grained control of distribution mechanism: ‘block’, ‘cyclic’, 
‘block-padded’, ‘cyclic-block’, ‘unstructured’, or ‘not distributed’. Each 
dimension can be distributed differently. 

Numpy + IPython.parallel + MPI 
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Numpy + IPython.parallel + MPI 

zMQ 

zMQ 

zMQ zMQ 

MPI 

MPI 

MPI 
MPI 

MPI MPI 

MPI 

Seamlessly distribute a numpy 
array to chunked numpy arrays... 
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Numpy + IPython.parallel + MPI 

zMQ 

zMQ 

zMQ zMQ 

MPI 

MPI 

MPI 
MPI 

MPI MPI 

MPI 

...or to chunked arrays that 
implement the distarray protocol (for 
e.g. GA or pyTrilinos). 



Distributed array operations 
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At this point, a “distributed toolbox” is available with mathematical operations: 
>>> from distarray import dist_numpy 

>>> dir(dist_numpy) 

['absolute', 'add', 'arccos', 'arccosh', 'arcsin', 'arcsinh', 
'arctan', 'arctan2', 'arctanh', 'bitwise_and', 'bitwise_or', 
'bitwise_xor', 'conjugate', 'cos', 'cosh', 'divide', 'empty', 
'exp', 'expm1', 'floor_divide', 'fmod', 'fromarray', 
'fromfunction', 'fromndarray', 'hypot', 'invert', 
'left_shift', 'log', 'log10', 'log1p', 'multiply', 
'negative', 'ones', 'power', 'reciprocal', 'remainder', 
'right_shift', 'rint', 'sign', 'sin', 'sinh', 'sqrt', 
'square', 'subtract', 'tan', 'tanh', 'target_to_rank', 
'targets', 'true_divide', 'view', 'zeros'] 

>>> distributed_numpy.ones((300, 10)) 

<DistArray(shape=(300, 10), targets=[0, 1, 2, 3])> 

>>> _.get_localshapes() 

[(75, 10), (75, 10), (75, 10), (75, 10)] 
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Monte Carlo estimate for π	


Throw darts in a square: the number of them inside the  
circle give you an estimate of π. 
 
import numpy 
 
def estimate_pi(N): 
    """ Compute an estimation of pi using the classic Monte Carlo      
    method. 
 
    Parameters: 
    ----------- 
    N : Number of trial for the MonteCarlo     
    """ 
    x = numpy.random.random(N) 
    y = numpy.random.random(N) 
    inside = numpy.hypot(x, y) <= 1 
    num_inside = inside.sum() 
    return 4. * num_inside / N 
 
pi = estimate_pi(1e4) 
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Parallel MC estimate for π	



from distarray import dist_numpy 
 
def estimate_pi(N): 
    """ Compute an estimation of pi using the classic Monte Carlo      
    method. Create the data on each node block-distributed. 
 
    Parameters: 
    ----------- 
    N : Number of trial for the MonteCarlo     
    """ 
    x = dist_numpy.random.rand(N)     
    y = dist_numpy.random.rand(N)     
    inside = dist_numpy.hypot(x, y) <= 1. 
    num_inside = inside.sum()  
    return 4. * n_inside/n 
 
pi = estimate_pi(1e4) 
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Another parallel MC estimate for π	


from distarray.client import Context 

from distarray import odin 

context = Context() 

 

@odin.local 

def pi_montecarlo(n): 

    """Get an estimation of pi on each engine.""" 

    import numpy 

    x = numpy.random.rand(n) 

    y = numpy.random.rand(n) 

    inside = numpy.hypot(x, y) 

    return 4*numpy.sum(r <= 1)/float(n) 

 

N_on_each_engine = 1e4/len(context.view) 

pi_estimates = pi_montecarlo(N_on_each_engine) 



14 

Roadmap 
Version 0.2 (Apr 2014): Minimum viable product  
•  Basic communication, mathematical operations 
•  local decorator 
•  Export/Import with PyTrilinos 

Version 0.3 (Apr 2015): Public release 
•  Slicing, broadcasting?, fancy indexing? 
•  Distributed IO operations (chunked txt, chunked bin, HDF5) 
•  Redistribution 
•  Expression analysis for “latency hiding” 

Version 1.0: 
•  Integrated inside IPython 
•  A lot more stuff! 
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More details? Want to help? 
•  Want to contribute?  
check out distarray’s public repository: 
github.com/enthought/distarray 
 
•  Want to leverage this effort for your 

implementation of a distributed array? 
https://github.com/enthought/distributed-array-protocol 
 
•  Want to partner with us or support the 

development toward your needs?  
Contact us at info@enthought.com 


