
DistArray: from Numpy to
parallel computing, seamlessly

Jonathan Rocher

jrocher@enthought.com

4th Python Symposium, AMS2014 Feb 3rd 2014

2

A few questions

•  How many people are dealing with large amounts of data?
•  How many people like python because it is simple to write?
•  How many people like IPython because it is interactive?
•  How many people already know Numpy?
•  How many people have multiple cores on their machines?

Access to a cluster?
•  How many companies/labs have a cluster that isn’t used a

lot by scientists?

Why should you give up interactive python when you want to
parallelize your programs?

3

What is the DistArray project?

DistArray

MPI

Trilinos

4

•  SBIR funded open source project,
•  developed at Enthought by a team led by Kurt Smith,
•  partnering with Bill Spotz from Sandia‘s (py)Trilinos project,

and Brian Granger from the IPython team,
•  to go seamlessly from a NumPy processing function to a parallel

program on multiple cores/CPUs/nodes in a cluster.
•  Targets users who

•  need more than 1 node but less than 103
•  have a lot of data, maybe already distributed
•  need parallel computation without loosing comfort of Python

•  Warning: still in its infancy!

What is the DistArray project?

5

What is IPython?
•  Interactive console for python interpreter
•  A parallel computing infrastructure

6

What is Numpy?
•  An array based computation package for python, written in C
•  The simplest way to do efficient computations in python. You get numpy

arrays from any file loader like netCDF’s, gridapi, HDF5, ...

>>> from numpy import *

>>> x = linspace(0, 2*pi, 10)

>>> y = sin(x)

>>> y > 0.

>>> z = random.random((100, 100))

>>> filter = array([[0, 0, 1],

 [0, 1, 0],

 [1, 0, 0]])

>>> from scipy.signal import convolve

>>> convolve(z, filter)

7

•  Assumes that you are dealing with so much data that it cannot fit inside
1 machine.

•  Assumes that you already know vector based computations with Numpy.
•  Assumes that you don’t have time to learn C++, MPI, Trilinos, ...
•  Defines a distributed array protocol that parallel libraries can

understand. That protocol is developed with and adopted by Sandia’s
PyTrilinos and PNNL’s GlobalArray projects. More to come...

•  A client node (your laptop?) connects to a local/remote cluster of
engines and dispatches jobs without data transfer: data is created or
loaded on the nodes.

•  Makes embarrassingly parallel problems even more embarrassing and
will supports inter-node MPI communication for the others.

•  Allows fine grained control of distribution mechanism: ‘block’, ‘cyclic’,
‘block-padded’, ‘cyclic-block’, ‘unstructured’, or ‘not distributed’. Each
dimension can be distributed differently.

Numpy + IPython.parallel + MPI

8

Numpy + IPython.parallel + MPI

zMQ

zMQ

zMQ zMQ

MPI

MPI

MPI
MPI

MPI MPI

MPI

Seamlessly distribute a numpy
array to chunked numpy arrays...

9

Numpy + IPython.parallel + MPI

zMQ

zMQ

zMQ zMQ

MPI

MPI

MPI
MPI

MPI MPI

MPI

...or to chunked arrays that
implement the distarray protocol (for
e.g. GA or pyTrilinos).

Distributed array operations

10

At this point, a “distributed toolbox” is available with mathematical operations:
>>> from distarray import dist_numpy

>>> dir(dist_numpy)

['absolute', 'add', 'arccos', 'arccosh', 'arcsin', 'arcsinh',
'arctan', 'arctan2', 'arctanh', 'bitwise_and', 'bitwise_or',
'bitwise_xor', 'conjugate', 'cos', 'cosh', 'divide', 'empty',
'exp', 'expm1', 'floor_divide', 'fmod', 'fromarray',
'fromfunction', 'fromndarray', 'hypot', 'invert',
'left_shift', 'log', 'log10', 'log1p', 'multiply',
'negative', 'ones', 'power', 'reciprocal', 'remainder',
'right_shift', 'rint', 'sign', 'sin', 'sinh', 'sqrt',
'square', 'subtract', 'tan', 'tanh', 'target_to_rank',
'targets', 'true_divide', 'view', 'zeros']

>>> distributed_numpy.ones((300, 10))

<DistArray(shape=(300, 10), targets=[0, 1, 2, 3])>

>>> _.get_localshapes()

[(75, 10), (75, 10), (75, 10), (75, 10)]

11

Monte Carlo estimate for π	

Throw darts in a square: the number of them inside the
circle give you an estimate of π.

import numpy

def estimate_pi(N):
 """ Compute an estimation of pi using the classic Monte Carlo
 method.

 Parameters:

 N : Number of trial for the MonteCarlo
 """
 x = numpy.random.random(N)
 y = numpy.random.random(N)
 inside = numpy.hypot(x, y) <= 1
 num_inside = inside.sum()
 return 4. * num_inside / N

pi = estimate_pi(1e4)

12

Parallel MC estimate for π	

from distarray import dist_numpy

def estimate_pi(N):
 """ Compute an estimation of pi using the classic Monte Carlo
 method. Create the data on each node block-distributed.

 Parameters:

 N : Number of trial for the MonteCarlo
 """
 x = dist_numpy.random.rand(N)
 y = dist_numpy.random.rand(N)
 inside = dist_numpy.hypot(x, y) <= 1.
 num_inside = inside.sum()
 return 4. * n_inside/n

pi = estimate_pi(1e4)

13

Another parallel MC estimate for π	

from distarray.client import Context

from distarray import odin

context = Context()

@odin.local

def pi_montecarlo(n):

 """Get an estimation of pi on each engine."""

 import numpy

 x = numpy.random.rand(n)

 y = numpy.random.rand(n)

 inside = numpy.hypot(x, y)

 return 4*numpy.sum(r <= 1)/float(n)

N_on_each_engine = 1e4/len(context.view)

pi_estimates = pi_montecarlo(N_on_each_engine)

14

Roadmap
Version 0.2 (Apr 2014): Minimum viable product
•  Basic communication, mathematical operations
•  local decorator
•  Export/Import with PyTrilinos

Version 0.3 (Apr 2015): Public release
•  Slicing, broadcasting?, fancy indexing?
•  Distributed IO operations (chunked txt, chunked bin, HDF5)
•  Redistribution
•  Expression analysis for “latency hiding”

Version 1.0:
•  Integrated inside IPython
•  A lot more stuff!

15

More details? Want to help?
•  Want to contribute?
check out distarray’s public repository:
github.com/enthought/distarray

•  Want to leverage this effort for your

implementation of a distributed array?
https://github.com/enthought/distributed-array-protocol

•  Want to partner with us or support the

development toward your needs?
Contact us at info@enthought.com

