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Abstract

fdtd-z is a high-throughput simulation engine designed to enable photonic workflows
such as device characterization, manual parameter search, and free-form inverse design
— which are typically bottlenecked by the lack of available simulation throughput in
solving Maxwell’s equations in three dimensions. fdtd-z thus aims to provide a photonic
simulation engine that

e features state-of-the-art simulation throughput,
e is easily scalable to hundreds of nodes and beyond,
e is open-source, license-free, and widely accessible.

fdtd-z seeks to accomplish this by providing an efficient mapping of the finite-
difference time-domain (FDTD) algorithm to graphics processing units (GPUs), inte-
grating with highly parallelizable model training frameworks, and being distributed as
open-source software.

At its core, the main innovation that fdtd-z provides is a systolic schedule for com-
puting the FDTD update equations specifically designed to overcome the bandwidth
limitations of the GPU memory hierarchy. In this whitepaper, we briefly motivate why
a systolic scheme is needed, devise a scheme by examining the dependency structure
of the FDTD update, and present the numerical results of our implementation.

1 The limited memory hierarchy of the GPU motivates
a systolic update scheme

In the last decade, the graphics processing unit (GPU) has gone far beyond a computational
engine for visual processing to become the computational tool de rigeur in a variety of fields
including artificial intelligence, distributed blockchain, and scientific computing. In seeking
to do the same for solving Maxwell’s equations in the time domain, we first present an
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ultra-simplified view of a modern (Nvidia) GPU as shown in figure 1, which illustrates its
massively parallel design.

But although the GPU offers significant computational throughput, figure 1 also reveals
the correspondingly limited amount of data throughput offered by its memory hierarchy as
detailed in table 1. The picture is particularly glum when considering the general form of
the finite-difference time-domain (FDTD) update equations, which features a ratio of ~ 1 in
terms of bytes transferred to floating point operations (FLOPS) for the generous case of an
already sophisticated implementation — far more than what any level of the GPU memory
hierarchy can provide apart from register shuffle transfers.

For this reason, we pursue a systolic scheme (figure 2), where only boundary values
are communicated in a hierarchical fashion, in the hope that the decreased bandwidth re-
quirements at lower levels will map more efficiently to the memory hierarchy of the GPU.
Critically, fdtd-z attempts to do this without modifying the underlying update equations
and instead only seeking to find a schedule for the updates which minimizes the number of
data transfers performed.

2 Devising an efficient, systolic schedule for the FDTD
update

The fundamental dependency structure of the FDTD update is most easily visualized for
the case of only one spatial dimension (figure 3). From this simple picture, we can already
see the difficulty in decreasing the amount of data transfers needed per update (figure 4) as
well as the inefficiencies incurred by the natural solution of using halos (figure 5).

In contrast, we suggest three alternatives to halos which avoid redundant loads and
updates:

e span (not pictured): a brute-force strategy which eliminates spatial dependencies by
simply loading all nodes to local memory;,

e skew (figure 6): rotating the computational cell which avoids circular dependencies,

e scan (figures 7 and 8): reusing previously computed values, allowing for a flattened
computational cell.

These three techniques are combined to realize an update schedule for the full three-
dimensional FDTD update that avoids circular dependencies without incurring the overhead
of using halos.

First, the span technique is used along the z-axis. Practically, although this limits the z-
extent of the simulation domain to ~ 100 unit cells, the majority of nanophotonic structures
are of subwavelength dimension in the out-of-plane axis and can fit comfortably within this
constraint. Next, the skew technique is used to eliminate circular dependencies along the
y-axis, resulting in the diamond-shaped computational cell shown in figure 9. Finally, the



scan technique is used along the z-axis (figures 10 and 11) which results in the need to only
load and store values along the leading and trailing edges of the cell.

The consequence of such an update scheme is that inter-diamond communication can
be formalized as reading from and writing to unidirectional buffers (figure 12). As such,
communication only occurs “downwind” — there are no circular dependencies.

Another consequence of adopting a diamond-shaped computational cell to a rectilinear
simulation domain is pictured in figure 13, which also illustrates the natural solution of
breaking up the simulation domain into communication buffers, wrap-around scanning with
an increment along the y-axis, and a temporal skew of the simulation domain along the x-y
direction. Because the scanning and buffers both wrap around the z- and y-boundaries of
the simulation domain the entire domain may now be repeatedly updated in a truly systolic
manner (figure 14) in that the computational cells never need to have their contents reset or
reloaded.

This update scheme is not only systolic but is also hierarchical, because any diamond cell
can itself be repeatedly decomposed into smaller diamonds interconnected with analogous
communication buffers (figure 15), allowing for a one-to-one mapping of the FDTD update
algorithm to the hierarchical-systolic commucation strategy proposed in figure 2.

3 Preliminary numerical results for a practical FDTD
code implementing the systolic scheme

We implement the hierarchical-systolic scheme outlined here in a practical FDTD code which
features the following design choices:

o Limited z-extent of simulation domain. As previously described, dependencies along
the z-axis are dealt with using the span technique. In our implementation, this limits
the extent to ~ 100 unit cells along the z-axis.

e Perfectly-matched layers (PML) along z-axis only. As a direct result of spanning the
z-axis, PML layers, which require a more complex update equation as well as extra
auxiliary fields, are only implemented along z.

e Adiabatic absorption profiles allowed in the x-y plane. Instead of PML layers, aborption
profiles which do not vary in z, are used.

e Source profile in the x-y plane. Only a source consisting of in-phase and quadrature
components for a single z-y plane is considered for the purposes of numerical results.

The basic arithmetic and data requirements on a per-thread level for this implementa-
tion (table 2) would have us expect to still be bandwidth-limited by a factor of ~ 2.5, which
is what we find when executed on a Nvidia Quadro RTX4000 GPU which is theoretically
capable of 14.2 TFLOPS of 16-bit floating-point performance. A computate-limited imple-
mentation would then achieve a performance of ~ 0.21 TCUPS (68 floating-point operations

3



per cell update); in practice, we achieve a real-world performance of ~ 0.05 TCUPS which
is a signal that the code should still be able to be optimized further. Such optimization can
probably be most easily realized by using the latest Nvidia GPUs (i.e. H100) and leveraging
the newly-introduced features in CUDA 12.

Lastly, we note that in order to simplify our analysis, we have neglected to include the
overheads associated with the temporal skew of the simulation domain, the extra cells needed
for the PML and absorber boundary conditions, as well as other smaller factors which also
vary based on the details of the simulation setup (number of timesteps, size of simulation
domain, PML thickness, ...).

4 Conclusion

A high-throughput, open-source, and scalable photonic simulation engine has immense po-
tential to extend, and even transform, the realm of what is possible to achieve with nanopho-
tonic devices today. To this end, we have presented the design and preliminary numerical
results for fdtd-z, a mapping of the FDTD update algorithm to the massively parallel archi-
tecture of the GPU in the form of a systolic update scheme.

This work has been supported by the ARPA-E DIFFERENTIATE program.
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Figure 1: Drastically simplified model of a GPU. Modern GPUs have tens of TFLOPS
(10'? floating-point operations) of processing power distributed across 10,000s of parallel
execution units, or threads. While each thread can perform ~ 10° floating-point operations
per second, all input and output values are required to reside in a register bank consisting of
only ~ 1 KB of storage. Although a hierarchy of data channels of varying bandwidths, sizes,
and accessibility, as outlined in this figure and detailed in table 1, exists to transfer data to
and from registers, efficiently utilizing this memory hierarchy for a computationally-sparse
operation such as the FDTD update algorithm (which naively requires at least 1 byte of
data transfer per floating-point operation) remains non-trivial.



Data channel ~— GB/s/thread Size Accessibility Overhead

Register (shuffle) 1.00 up to 32 KB 32 threads none
Shared memory 0.25 50-200 KB 256 threads small

L2 cache 0.10 1-100 MB all threads large
Global memory 0.025 10-100 GB all threads large

Table 1: Simplified view of GPU data hierarchy. Register memory is directly acces-
sible and physically adjacent to the individual compute cores of a GPU. While the register
data channels are designed to match the throughput of the compute cores, it is also possible
to perform register-to-register shuffle operations within groups of 32 threads (a thread warp).
Thread warps are inherently synchronized and shuffle operations carry no synchronization
overhead. Shared memory is physically located at the streaming multiprocessor (SM) level
and is accessible to all threads within a thread block (8 warps, or 256 threads, assuming 1
KB of register storage per thread on a CUDA-capable GPU). Shared memory transfers are
slower than register shuffles and incur a small synchronization overhead within the thread
block (between thread warps). The L2 cache is a single pool of on-chip storage which is
accessible by any thread. Use of the cache is generally not explicitly programmable and
often carries with it a large overhead associated with synchronizing all of the threads on
the GPU. Global memory is the primary memory resource, in that it is the only one which
persists across GPU kernel execution. It resides off-chip, features the smallest bandwidth
channel, and is often the primary bottleneck in kernel execution.
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Figure 2: Systolic use of the GPU memory hierarchy. The bandwidth limitations of
the GPU require that an efficient mapping of the FDTD update algorithm to not only be able
to perform multiple updates for each field value loaded, but that the ratio of updates-per-load
be increasing as one moves down the memory hierarchy. One way this can be accomplished
is with a systolic scheme where each level of the memory hierarchy is responsible only for
communication across a corresponding thread boundary. This works because the lower levels
of the memory hierarchy, which feature smaller bandwidths and larger overheads, are now
only responsible for communication across coarser thread boundaries and thus experience a
larger number of updates per load at their level, as desired. fdtd-z features a systolic scheme
which uses 1) warp-shuffle operations to implement data transfers along the z-axis of the
simulation domain, 2) shared memory access to allow for lateral communication across warp
boundaries within the same thread block, 3) L2 memory to transfer data across thread block
boundaries, and 4) global memory access only for loading and storing field values at the
leading and trailing edges, respectively, of the entire thread grid. A critical feature of the
systolic scheme used by fdtd-z is that all communication (except for shuffle operations along
the vertical axis) is one-directional, which, among other advantages, allows for the large
synchronization overhead associated with transferring data across L2 and global memory to
be partially hidden with a buffering scheme.



arithmetic register shared L2  global

FDTD update 960 128 - -
field buffer — — 240 120 24
material buffer - - 120 30 6
absorption profile - 96 - - 4
source profile 64 128 - - 4
PML update 64 256 — — —
total 1088 608 360 150 38

operations  bytes  bytes bytes bytes

Table 2: Average per-step arithmetic operations and data transfers per thread
in the implemented systolic scheme. When compared to table 1, the bandwidth re-
quirements for fdtd-z roughly match the capabilities of the GPU. In this simple analysis,
arithmetic operations are counted in terms of fused multiply-add (FMA) instructions, where
each FMA instruction is counted as 2 floating-point operations, even when either the mul-
tiply or addition is not needed. Each thread updates 16 cells per-step (2 layers of 8 cells
each), where each of the 6 components per cell requires 10 floating-point operations, for a
total of 960 operations. The basic FDTD update also requires register shuffle transfers to
communicate values between threads along the z-axis. The data transfers needed for the
field and material buffers are computed for the case of the Nvidia Quadro RTX4000 GPU
which allows for a 6 X 6 (u X v) array of diamonds in the hierarchical-systolic scheme, each
consisting of a 2 x 4 array of per-thread diamonds. In addition to the unidirectional buffers
needed to communicate field and material values, absorption and source profiles which only
vary in the z-y plane are also needed. Lastly, register shuffles are also needed to commu-
nicate the auxiliary values between cells found within the perfectly-matched layer (PML)
boundary conditions, and are used for the absorption and source values as well.



Figure 3: Dependency structure for a single Yee cell in the 1D FDTD algorithm.
Updating the Yee cell in the dotted square requires 4 field values (two E-field and two H-field
values) and corresponds to a CUPL (cell-updates-per-load) of 0.25.



Figure 4: Naive dependency structure of a 2 x 2 block of Yee cells. A 2 x 2 block of
Yee cells is dependent on 8 field values. Such a scheme corresponds to an improved memory-
efficiency of 0.5 CUPL when compared with the baseline of figure 3. Generally, a M x N
block has a CUPL of %, or N/4 for the case where M = N. In practice, the 4N loads
(when M = N) will need to be stored in a finite amount of scratchpad memory, S = 4N,
where S is the number of field values which can be stored in scratchpad memory. Under this
constraint, the resulting storage-limited performance is S/16 CUPL. Unfortunately, a naive
tiling of the simulation domain in such blocks is not possible because of circular dependencies
between adjacent blocks. This occurs at the left and right block boundaries which not only

contain incoming dependencies but also feature outgoing dependencies (dashed arrows).
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Figure 5: Dependency structure of a 2 x 2 block with halo. A 2 x 2 block updated
exclusively from the field values of previous timesteps requires a total of 6 Yee cells (dashed
boxes) to be loaded. The haloing strategy incurs the penalty of duplicated loads and compu-
tation in the overlapping regions of adjacent tiles in exchange for avoiding the problematic
circular dependencies encountered in figure 4. In general, updating a N x N block with halos
requires 6N — 1 field values to be loaded, resulting in a performance of ~ N/6 CUPL. In
practice, the size of the block is capped by the fact that required number of loads must fit in
scratchpad memory (S = 6/N — 1) which results in a storage-limited performance of ~ S/36
CUPL.
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Figure 6: Dependency structure of a “diamond” block. A diamond-shapred block
containing N? field values requires 2N + 1 loads and exhibits ~ N/4 CUPL (1 cell update
is equivalent to 2 field value updates). The storage-limited performance of ~ S/8 CUPL is
not only superior to that of the halo strategy in figure 5, but even to the case where circular
dependencies exist, as in figure 4. This presents a 45-degree rotation, or skewing, of the
computational cell as an enticing alternative to the halo technique, avoiding circular depen-
dencies without the need for redundant loads or computation. Intuitively, the advantages of
skewing can be thought of as simply arising from a natural alignment of the computational
cell with the underlying dependency structure of the finite-difference grid, which exhibits a
diamond-like pattern.
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Figure 7: Dependendency structure of a diamond block scanned along z-t. In
addition to halo and skew techniques, a scanning technique can also be used to increase
performance by not only flattening the computational cell along one dimension and allowing
it to expand along the others, but also by reusing previously computed nodes to eliminate
the number of loads needed for the current iteration. Here, we show that the scanning
technique applied to the diamond block from figure 6 results in the ultimate updates-per-load
performance of needing only a single load for a theoretically unlimited number of updates.
Practically, of course, the number of updates will be limited by the size of the scratchpad,
giving a storage-limited performance of S/2 CUPL.

13



Figure 8: Dependency structure of a 1 x N block scanned along x-t. Scan technique
applied to a simplified computational cell consisting of a linear array of Yee cells. Although
the computational cell is flattened along the ¢ dimension, scanning still occurs along the x-t
diagonal which serves to avoid circular dependencies and the need for a halo. Compared to
figure 7, performance decreases to S/4 CUPL because two loads are now needed to update
the computational cell; however, the fact that all E- and H-field nodes are located at the
same time step greatly simplifies the practical implementation of this scheme, especially
when working with the full three-dimensional update. For this reason, the implementation
of fdtd-z likewise uses a computational cell that is flattened along ¢, and that is scanned
along the z-t diagonal.
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Figure 9: Diamond computational cell used along z-y plane. For the full three-
dimensional problem scan, skew, and span techniques are used for the x-, y-, and z-axes
respectively. This allows for the z-axis to be “flattened”, and for the computational cell
to have a diamond-like representation in the z-y plane. Critically, such a computational
cell completely tiles the simulation domain while avoiding any circular dependencies. We
specifically picture a computational cell of size N = 4 here, where N corresponds to the
number of Yee cells along the main diagonals of the diamond. In general, a diamond of size
N allows for N?/2 cell updates and requires ~ 6N loads which results in a scratchpad-limited
performance of ~ 1/S/72 CUPL, comparing favorably against an unskewed scheme using a
square cell of side-length N and scanning along the z-y-t diagonal which requires ~ 12N loads
to update N? cells resulting in only ~ 1/S/144 CUPL. In this figure, empty circles represent
H-fields, filled gray circles represent E-fields, and gray circles with a dark outline are points
where H- and FE-fields are colocated. Corresponding subscripts denote the components of
the respective fields. The H- and E-field nodes which are included in the computational cell
are those contained in the darker and lighter dashed diamond respectively. For reference,
the Yee cell considered to be located at (z,y) = (0,0) is identified with a dotted square.
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Figure 10: Detail of the H-layer updates, loads, and writes for the diamond cell.
The dashed diamond identifies the 3N?/2 H-field nodes to update for a diamond of size
N = 4. We show the 3N — 1 E-field nodes which need to be loaded within the gray dashed
line at the leading edge of the diamond, while the other dependent E-field nodes (which
are already included in the accompanying F-field diamond) are shown as well. Lastly, the
3N — 2 H-field nodes which need to be written out to memory are denoted within dotted
lines at the trailing edge of the diamond. The reference Yee cell at (0,0) is pictured as a
black dotted square.
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Figure 11: Detail of the F-layer updates, loads, and writes for the diamond cell.
Similar to figure 10, the 3N?/2 E-field nodes to update, 3N + 2 H-field nodes to load, and
3N — 1 E-field nodes to write out are denoted within black dashed, gray dashed, and dotted
lines respectively. The reference Yee cell at (0,0) is once again denoted with a black dotted
square.
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Figure 12: wu- and v-buffers used to communicate between diamonds. As the
diamond computational cell is scanned in the +x direction, the “downwind” transfer of
values occurs by means of buffers which are orthogonal to either the u- or v- axes, defined
in (z,y) coordinates as u = (1,1) and v = (1, —1). Together, both u- and v-buffers contain
all the dependent nodes needed to update the downwind computational cell. Here, the
buffers for H-field nodes are denoted with black dashed lines while the E-field buffers are
denoted with gray dashed lines. The corresponding computational cells for E- and H-fields
are denoted corrrespondingly as well. Lastly, note that the v-buffer is selected to hold the
H,, H,, and E, nodes at the center of the diamond.
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Figure 13: Systolic decomposition of the simulation domain. The decomposition of
the simulation domain into computational cells, u-buffers, and v-buffers is shown. The black
arrow shows the traversal of diamond computational cell along the x-axis with wrap-around
at which point the y-position increases by a half-diamond width. In so doing, the entire
simulation is traversed repeatedly (wrap-around boundaries are also used in the y-direction)
and in a self-consistent manner, in that u- and v-buffers of matching time step with the
diamond are always present at the leading edge of the computational cell, and buffers of the
previous time step are emitted at the trailing edges of the diamond. Achieving this in a
causal manner, requires that the simulation domain be skewed along the v = (1, 1) direction
as can be seen in the upper-right portion of the domain, where the numbers within the gray
buffers denote the time step relative to the computational cell.
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Figure 14: Cell-centric view of the systolic update. The systolic decomposition
from figure 13 produces a computational cell where input nodes flow first from the input
u-buffer at the top-right, traverse the cell and exit via the v-buffer, return (upon hitting the
x-boundary and wrapping around the domain) via the input v-buffer at the lower-right, and
exit via the output u-buffer at the bottom-left. Such a view is labeled as “cell-centric” in that
the details of scanning across the simulation domain can now be abstracted away, in favor of
a model where field values incrementally enter and exit the computational cell. The arrows in
the figure show a conceptual representation of how field values enter the computational cell
(represented as a diamond) via the u- or v-leading edge, are updated as the cell is scanned
forward, and then exit via the u- or v-trailing edge.
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Figure 15: Hierarchical composibility of the systolic computational cell. Illus-
trates how the systolic cell is composable in a hierarchical way (smaller diamonds can be
combined into larger ones, etc...) where systolic cells at each level communicate via u- and
v-buffers. Such a design is a fitting match for the systolic design in figure 2 because increas-
ingly higher-levels of the cell hierarchy require fewer values to be transferred per iteration,
matching the lower-bandwidth bandwidth levels of the memory hierarchy. Additionally, the
unidirectional, downwind nature of the cell-to-cell dependency structure, which is the result
of scanning in the z-direction, allows for variable-sized inter-cell buffers which can offset
the large synchronization overheads inherent in communicating values via the L2 cache and
global memory.
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