
1

Model Solution: Numerical Algorithms

Table of Contents

Introduction .. 1
A. Non-Linear System ... 1
B. Linear System .. 3

Christopher Sim’s method ... 4

Binder and Pesaran Method .. 4

Anderson-Moore Method .. 4

Jaromír Beneš Method .. 5

C. Judgmental Adjustments.. 6
D. Blanchard-Kahn Condition ... 7
E. Kalman Filter and Smoother .. 8

Standard Filter and Smoother ... 8
Durbin and Koopman Approach .. 9

Non-Diffuse Filter and Smoother.. 10

Multivariate approach ... 10

Univariate approach .. 10

Diffuse Filter and Smoother ... 11

Multivariate approach .. 11

Univariate approach ... 11

F. Initial Conditions .. 12

G. Model Calibration ... 13
E. Parameters Sampling ... 14

References .. 14

Introduction

Macroeconomic models become more and more complex nowadays and, as a rule, are not tractable

analytically. These models, in general, are solved numerically. Below we describe several techniques

that are employed in Python Framework to find numerical solution.

A. Non-Linear System

2

We are solving a system of equations,

𝑓(𝑦) = 0, where (A.1)

𝑓(𝑥𝑡−1, 𝑥𝑡, 𝑥𝑡+1, 𝑒𝑡) = {
𝑔1(𝑥𝑡−1, 𝑥𝑡, 𝐸𝑥𝑡+1, 𝑒1,𝑡)

…
𝑔𝑁(𝑥𝑡−1, 𝑥𝑡, 𝐸𝑥𝑡+1, 𝑒𝑁,𝑡)

 and 𝑦𝑡 = {

𝑥𝑡−1
𝑥𝑡
𝑥𝑡+1

Here 𝐸 is the expectation operator. The boundary conditions are:

𝑥0 = 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠; 𝑥𝑇+1 = 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒𝑠

Equations (A.1) are general equations for variables with a maximum lead and lag of one. If equations

have lead and lags variables more than one, than these equations can be rewritten in the form of (1) by

introducing new variables. For example, if equations have a variable 𝑥𝑡+2, we can introduce a new

variable y, add new equation 𝑦𝑡 = 𝑥𝑡+1 and rewrite original equations in form of (1).

We apply an iterative algorithm and linearize equations (A.1). At iteration k:

𝑓(𝑥𝑡−1
𝑘 , 𝑥𝑡

𝑘 , 𝐸𝑥𝑡+1
𝑘) +

𝜕𝑓𝑘

𝜕𝑥𝑡−1
(𝑥𝑡−1
𝑘+1 − 𝑥𝑡−1

𝑘) +
𝜕𝑓𝑘

𝜕𝑥𝑡
(𝑥𝑡
𝑘+1 − 𝑥𝑡

𝑘) +
𝜕𝑓𝑘

𝜕𝑥𝑡+1
(𝐸𝑥𝑡+1

𝑘+1 − 𝐸𝑥𝑡+1
𝑘) = 0 (A.2)

These equations are linear with respect to next iteration variables, 𝑥𝑡−1
𝑘+1, 𝑥𝑡

𝑘+1, 𝑥𝑡+1
𝑘+1. Equations (A.2)

can be rewritten as,

𝐿𝑡∆𝑥𝑡−1 + 𝐶𝑡∆𝑥𝑡 + 𝐹𝑡𝐸∆𝑥𝑡+1 = −𝑓𝑡 (A.3)

Jacobians 𝐿𝑡, 𝐶𝑡, 𝐹𝑡 can be stacked and equations (A.3) can be represented in a matrix form:

(

𝐼 0 0
𝐿1 𝐶1 𝐹1
0 𝐿2 𝐶2

 0 0 0
0 0 0
𝐹2 0 0

0 0 0
0 0 0
0 0 0

0 0 𝐿3
. . .
0 0 0

 𝐶3 𝐹3 0
. . .
 0 𝐿𝑇−2 𝐶𝑇−2

0 0 0
. . .

𝐹𝑇−2 0 0
0 0 0
0 0 0
0 0 0

0 0 𝐿𝑇−1
0 0 0
0 0 0

𝐶𝑇−1 𝐹𝑇−1 0
𝐿𝑇 𝐶𝑇 𝐹𝑇
0 0 𝐼)

(

∆𝑥0
∆𝑥1
∆𝑥2
∆𝑥3
.

∆𝑥𝑇−2
∆𝑥𝑇−1
∆𝑥𝑇
∆𝑥𝑇+1)

= −

(

0
𝑓1
𝑓2
𝑓3
.

𝑓𝑇−2
𝑓𝑇−1
𝑓𝑇
0)

 (A.4)

The size of the matrix is 𝑁(𝑇 + 2) by 𝑁(𝑇 + 2). Inverting this matrix could be problematic for large

number of equations N or large time horizon T. Please note that this matrix is sparse. We can use

sparse matrices linear algebra scipy package to solve these equations.

Equations (A.4) are solved iteratively until solution converges.

Another approach that can be used is an application of LBJ method. It is briefly described below.

The starting values are, ∆𝑥0 = 0. By substituting this value in (A.3) we get,

https://docs.scipy.org/doc/scipy/reference/sparse.linalg.html
ttp://www.sciencedirect.com/science/article/pii/S0165-1889(98)00013-X

3

 ∆𝑥1 = 𝑀1∆𝑥2 + 𝑑1, where 𝑀1 = −𝐶1
−1𝐹1 and 𝑑1 = −𝐶1

−1𝑓1.

Repeating these steps, we can find expressions:

𝑀𝑡 = −(𝐶𝑡 + 𝐿𝑡𝑀𝑡−1)
−1𝐹𝑡

 (A.5)

𝑑𝑡 = −(𝐶𝑡 + 𝐿𝑡𝑀𝑡−1)
−1(𝑓𝑡 + 𝐿𝑡𝑑𝑡−1)

After computing these matrices, the solution can be easily obtained by backward substitution:

∆𝑥𝑡 = 𝑀𝑡∆𝑥𝑡+1 + 𝑑𝑡, ∆𝑥𝑇+1 = 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 (A.6)

While the initial conditions are fixed and ∆𝑥0 = 0, the terminal conditions are set to steady state

solution. This requires one to find a steady state solution of system (A.1). A reasonable assumption

would be to assume that the terminal conditions are floating and that the solution does not change in

time for the right boundary, i.e., ∆𝑥𝑇+1 = ∆𝑥𝑇. Then by substituting it in (A.6), we can find formula

for the terminal condition,

∆𝑥𝑇+1 = (𝐼 − 𝑀𝑇)
−1𝑑𝑇 (A.7)

The LBJ algorithm consists of two iterative steps: firstly, compute matrices 𝑀 and vector 𝑑 and

secondly, compute solution 𝑥. These steps are repeated until the numerical solution converges.

Yet another assumption is that the endogenous variables at right boundary have fixed values. Then the

terminal condition at the right boundary is, ∆𝑥𝑇+1 = 0. Below we describe a modified LBJ method.

By substituting this expression in (A.3) results in expression

 ∆𝑥𝑇 = 𝑀𝑇∆𝑥𝑇−1 + 𝑑𝑇, where 𝑀𝑇 = −𝐶𝑇
−1𝐿𝑇 and 𝑑𝑇 = −𝐶𝑇

−1𝑓𝑇 (A.8)

The solution can be easily obtained by forward substitution:

∆𝑥𝑡+1 = 𝑀𝑡+1∆𝑥𝑡 + 𝑑𝑡+1 ; ∆𝑥0 = 0 (A.9)

B. Linear System

Equations (A.1) are linear with respect to endogenous and exogenous variables. These equations can be

rewritten as,

𝐿𝑥𝑡−1 + 𝐶𝑥𝑡 + F𝑥𝑡+1 = −f − 𝜓𝑒𝑡 (B.1)

By stacking endogenous variables 𝑥𝑡, 𝑥𝑡−1 we can rewrite (3) as,

4

𝐴𝑦𝑡+1 = 𝐵𝑦𝑡 + 𝐶 + 𝜓𝑒𝑡 , 𝑦𝑡 = {
𝑥𝑡
𝑥𝑡−1

 (B.2)

𝐴 = (
F 0
0 𝐼

) , 𝐵 = (
−C −L
𝐼 0

) , 𝐶 = (
−f
0
) ,𝛹 = (

−𝜓
0
)

Here A, B, C, 𝜓 are the constant matrices, 𝑦𝑡 are the endogenous variables and 𝑒𝑡 are the shocks.

Christopher Sim’s method

Christopher Sims showed that (B.2) can be translated into a system,

𝑦𝑡+1 = 𝛳1𝑦𝑡 + 𝛳𝐶 + 𝛳0𝑒𝑡 + 𝛳𝑦 ∑ 𝛳𝑓
𝑘𝛳𝑧𝐸(𝑒𝑡+𝑘)

∞
𝑘=1 (B.3)

For un-expected future shocks, the endogenous variable 𝑦𝑡+1is determined only by the current shock:

𝑒𝑡 , and equation (B.3) simplifies:

𝑦𝑡+1 = 𝛳1𝑦𝑡 + 𝛳𝐶 + 𝛳0𝑒𝑡 (B.4)

Contrary, all future anticipated shocks, govern the dynamics of endogenous variables and equation

(B.3) holds.

Binder and Pesaran Method

According to Binder & Pesaran (1997), if the unique and stable solution exists, it is given by:

𝑥𝑡 = B 𝑥𝑡−1 + 𝐻f + ∑ 𝐻𝑖∞
𝑖=0 𝜓 𝐸(𝑒𝑡+𝑖) (B.5)

Where 𝐻 = 𝐶(𝐶 + 𝐹𝐵)−1 and B satisfies a quadratic equation:

F B2 + C B + L = 0 (B.6)

Authors employ iteration technique to solve quadratic equation. In general, this equation can have

many solutions, a unique solution, or no solution at all.

Anderson-Moore Method

Anderson-More algorithm requires no special treatment for models with multiple lags and leads. This

distinguishes AIM method from all others where one should introduce new variables and cast the

model in a form with at most one lead and one lag. For one lead and one lag model equations authors

provide a simplified solution in the form:

𝑥𝑡 − 𝑥0 = B (𝑥𝑡−1 − 𝑥0) + ∑ 𝐹𝑖𝛷∞
𝑖=0 𝜓 𝐸(𝑒𝑡+𝑖) (B.7)

5

Here B is the reduced form coefficients matrix, Φ is the exogenous shock scaling matrix, and F is the

exogenous shock transfer matrix. Anderson claim that AIM procedure exhibits significant

computational performance for large scale models in terms of CPU time.

Jaromír Beneš Method

This method uses QZ matrix factorization. Vector of endogenous variables 𝑥𝑡 can be partitioned into

predetermined part 𝑥𝑡
𝑃 and non-predetermined part 𝑥𝑡+1

𝑁 :

𝑥𝑡 = {
𝑥𝑡
𝑃

𝑥𝑡+1
𝑁 (B.8)

Then equations (B.1) can be recast in the form of (B.2). Following Klein (1997), the system matrices

A,B are decomposed by applying a Generalized Schur algorithm:

𝐴 = 𝑄𝑇𝑍𝐻

 (B.9)

𝐵 = 𝑄𝑆𝑍𝐻

Here Q and Z are the unitary matrices, 𝑍𝐻 is the conjugate transpose of matrix Z, and T, S are upper

triangular matrices. Following Michal Andrle (2007), when shocks are not anticipated, the system of

equations (B.2) has a solution in the state-space form:

(𝑥𝑡
𝑁

𝛼𝑡
) = (𝑇

𝐹

𝑇𝐴
)𝛼𝑡−1 + (

𝑅𝐹

𝑅𝐴
) 𝑒𝑡 + (

𝐾𝐹

𝐾𝐴
)

(B.10)

𝑥𝑡
𝑃 = U 𝛼𝑡

The transient matrix T, the shock matrix R and the constant vector K are given below:

𝑇𝐹 = 𝑍21

𝑇𝐴 = −𝑇11
−1 𝑆11

𝑅𝐹 = (𝑍21𝐺 + 𝑍22) 𝑅
𝑈

𝑅𝐴 = −𝑇11
−1 [𝜓1 + (𝑆11𝐺 + 𝑆12) 𝑅

𝑈]
𝐺 = −𝑍11

−1 𝑍12

𝑅𝑈 = −𝑆11
−1 𝜓2

𝑈 = 𝑍11 (B.11)

𝐾𝑢 = (𝑇22 + 𝑆22)
−1 𝐶2

𝑋𝑎0 = 𝑇11
−1 (𝑆11𝐺 + 𝑆12)

𝑋𝑎1 = 𝐺 + 𝑇11
−1 𝑇12

 𝐾𝐹 = −(𝑍21𝐺 + 𝑍22) 𝐾𝑢

 𝐾𝐴 = −(𝑋𝑎0 + 𝑋𝑎1)𝐾𝑢 − 𝑇11
−1 𝐶1

Here indices 1 and 2 denote part of matrices T, R and vector K that correspond to predetermined and

non-predetermined transition variables.

https://en.wikipedia.org/wiki/Schur_decomposition

6

When shocks are anticipated, solution (B.10) is augmented with the future shocks:

(𝑥𝑡
𝑁

𝛼𝑡
) = 𝑇 𝛼𝑡−1 + 𝑅 (

𝑒𝑡
𝑒𝑡+1
…
𝑒𝑡+𝑁

) + (𝐾
𝐹

𝐾𝐴
) (B.12)

Here R is matrix of the current and the future shocks:

𝑅 = [
𝑅𝐹 𝑋𝐹𝑅𝑈 𝑋𝐹𝐽 𝑅𝑈

𝑅𝐴 𝑋𝐹𝑅𝑈 𝑋𝐴𝐽 𝑅𝑈

𝑋𝐹𝐽2 𝑅𝑈 … 𝑋𝐹𝐽𝑁−1 𝑅𝑈

𝑋𝐴𝐽2 𝑅𝑈 … 𝑋𝐴𝐽𝑁−1 𝑅𝑈
] (B.13)

The auxiliary vectors and the matrix are shown below:

𝑋𝐹 = 𝑍21𝐺 + 𝑍22

𝑋𝐴 = 𝑋𝑎1 + 𝐽 𝑋𝑎0 (B.14)

𝐽 = −𝑆22
−1 𝑇22

C. Judgmental Adjustments

In many cases user may have her or his view on a path of endogenous variables. Here we briefly

describe the methodology that can be used to forecast variables with both anticipation and without

anticipation.

Suppose that shocks at times 𝑡, 𝑡 + 1, … , 𝑡 + 𝑁 are anticipated. Then, we can write at time 𝑡 + 1:

𝑥𝑡+1 = 𝑇 𝑥𝑡 + 𝐾 + 𝑅0𝑒𝑡 + 𝑅1𝑒𝑡+1 + 𝑅2𝑒𝑡+2 +⋯+ 𝑅𝑁𝑒𝑡+𝑁 (C.1)

At time 𝑡 + 2:

𝑥𝑡+2 = 𝑇 𝑥𝑡+1 + 𝐾 + 𝑅0𝑒𝑡+1 + 𝑅1𝑒𝑡+2 + 𝑅2𝑒𝑡+3 +⋯+ 𝑅𝑁−1𝑒𝑡+𝑁 , (C.2)

Or,

𝑥𝑡+2 = 𝑇 (𝑇 𝑥𝑡 + 𝐾 + 𝑅0𝑒𝑡 + 𝑅1𝑒𝑡+1 + 𝑅2𝑒𝑡+2 +⋯+ 𝑅𝑁𝑒𝑡+𝑁) + 𝐾 + 𝑅0𝑒𝑡+1 + 𝑅1𝑒𝑡+2 +
 𝑅2𝑒𝑡+3 +⋯+ 𝑅𝑁−1𝑒𝑡+𝑁

And,

𝑥𝑡+2 = 𝑇
2𝑥𝑡 + (𝑇 + 𝐼)𝐾 + 𝑇𝑅0𝑒𝑡 + (𝑇𝑅1 + 𝑅0)𝑒𝑡+1 + (𝑇𝑅2 + 𝑅1)𝑒𝑡+2 +⋯+ (𝑇𝑅2 + 𝑅𝑁−1)𝑒𝑡+𝑁

By induction, we can derive that at time 𝑡 + 𝑘 the following equation holds:

𝑥𝑡+𝑘 = 𝑇
𝑘𝑥𝑡 + (𝑇

𝑘−1 + 𝑇𝑘−2 +⋯+ 𝐼)𝐾 + 𝑆0
𝑘𝑒𝑡 + 𝑆1

𝑘𝑒𝑡+1 + 𝑆2
𝑘𝑒𝑡+2 +⋯+ 𝑆𝑁

𝑘𝑒𝑡+𝑁

Or,

7

 𝑥𝑡+𝑘 = 𝑇
𝑘𝑥𝑡 + (𝐼 − 𝑇)

−1 (𝐼 − 𝑇𝑘)𝐾 + ∑ 𝑆𝑖
𝑘𝑒𝑡+𝑖

𝑁
𝑖=0 (C.3)

Here the aggregated shock matrix 𝑆 is:

𝑆𝑖
𝑘 = {

𝑇 𝑆𝑖
𝑘−1, 𝑖𝑓 𝑘 > 𝑖

𝑇 𝑆𝑖
𝑘−1 + 𝑅𝑖−𝑘, 𝑖𝑓 𝑘 ≤ 𝑖

 and 𝑆𝑖
0 = 𝑅𝑖 (C.4)

One can then solve equations (C.3) for values of the future shocks to match the path of endogenous

variables to the desired level. In other words, the future shocks are “endogenized” and the

corresponding variables are “exogenized”. This numerical procedure can be optimized in terms of

CPU memory and speed.

Suppose that user has a specific view on the path of endogenous variables which is given by, 𝑥̂𝑡+𝑘.

Then, writing equation (C.3) for the deviation of the endogenous variables from this path, one can find

adjustments to the future shocks ∆𝑒𝑡+𝑘:

𝑥𝑡+𝑘 − 𝑥̂𝑡+𝑘 = 𝑆1
𝑘∆𝑒𝑡+1 + 𝑆2

𝑘∆𝑒𝑡+2 +⋯+ 𝑆𝑁
𝑘∆𝑒𝑡+𝑁 (C.5)

By solving equation (C.5), one can find values of the new shock 𝑒̂𝑡+𝑘 = 𝑒𝑡+𝑘 + ∆𝑒𝑡+𝑘 . This shock

brings path of 𝑥𝑡+𝑘 to the desired level of 𝑥̂𝑡+𝑘 .

Equation (C.5) simplifies when there is one un-expected shock at time 𝑡 + 𝑘:

𝑥𝑡+𝑘 − 𝑥̂𝑡+𝑘 = 𝑅0 ∆𝑒𝑡+𝑘 (C.6)

It can be easily solved. The new value of the shock is:

𝑒̂𝑡+𝑘 = 𝑒𝑡+𝑘 + 𝑅0
−1(𝑥𝑡+𝑘 − 𝑥̂𝑡+𝑘) (C.7)

If there are several un-expected shocks, the new shock is computed at the first occurrence of this shock

and the endogenous variables are forecasted onwards, then the shock is computed at the second

occurrence of shock and the forecast is updated. This procedure is successively repeated until all

shocks are accounted.

D. Blanchard-Kahn Condition

Below we formulate condition for an existence of a unique solution of system of equations (A.1). We

linearize these equations around a steady state solution 𝑥́:

𝐴 (
∆𝑥𝑡+1
∆𝑥𝑡

) = 𝐵 (
∆𝑥𝑡
∆𝑥𝑡−1

) (C.1)

In general, matrix A is a singular matrix and may not have its inverse. Because of that we cannot

proceed with finding eigen values of 𝐴−1𝐵.

8

To find eigen values of equation (C.1) we apply QZ decomposition of matrices A, B. The eigen values

can be expressed via diagonal elements of matrices T and S:

𝜆𝑖 = {

𝑆𝑖,𝑖 ∗ 𝑇𝑖,𝑖
−1, 𝑖𝑓𝑇𝑖,𝑖 ≠ 0

+∞, 𝑖𝑓𝑇𝑖,𝑖 = 0, 𝑆𝑖,𝑖 > 0

−∞, 𝑖𝑓𝑇𝑖,𝑖 = 0, 𝑆𝑖,𝑖 < 0

 (C.2)

Eigen values (C.2) could be greater or less than one. Because of that some path of endogenous

variables starting from the steady-state solution may diverge and some may converge. This is a typical

saddle point instability problem. Blanchard and Kahn formulated a condition for existence and

uniqueness of a model solution. It states that solution of equation (A.1) exists and is unique if and only

if the number of eigen values |𝜆𝑖| > 1 is equal to the number of non-predetermined endogenous

variables. In other words, the number of unstable eigen roots should be equal to the number of

forward-looking endogenous variables (variables with leads greater than zero).

E. Kalman Filter and Smoother

Standard Filter and Smoother

Kalman Filter is an algorithm that uses a series of measurements observed over time containing

statistical noise. It produces estimates of unknown variables that are more accurate than the estimates

that are based on a law of motion of these variables alone. It assumes that underlying model is a state-

space model,

𝑥𝑡+1 = 𝐹𝑡+1𝑥𝑡 + 𝐶𝑡+1 + 𝑅𝑡+1𝑤𝑡+1

 (E.1)

𝑧𝑡+1 = 𝐻𝑡+1𝑥𝑡+1 + 𝑣𝑡+1

Here: t is the time index, 𝑥𝑡 are the state variables vector (unobserved values), 𝑧𝑡 are the measurement

variables vector (observed values), 𝐶𝑡 is the vector of constants, 𝑤𝑡 and 𝑣𝑡 are the process and the

measurement noises. The latter are assumed to be drawn from normal distribution:

𝑤𝑡 ~ 𝑁(0, 𝑄𝑡)

 (E.2)

𝑣𝑡~𝑁(0, 𝑅𝑡)

The covariance matrices Q and R are assumed to be diagonal and time independent:

𝑄𝑡 = (
𝜎1
2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑁

2
)

 (E.3)

https://en.wikipedia.org/wiki/Kalman_filter

9

𝑅𝑡 = (
𝜀1
2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜀𝑁

2
)

We introduce variables 𝑥𝑡+1,𝑡 and 𝑃𝑡+1,𝑡 which are a posteriori state estimate of endogenous variables

and of covariance matrix at time 𝑡 + 1 given observations up to and including at time 𝑡 .

Kalman filter is a two-step algorithm. In the prediction step, the state variables and posterior error

covariance matrix P are estimated based on information available at the previous time,

𝑥𝑡+1,𝑡 = 𝐹𝑡+1𝑥𝑡,𝑡 + 𝐶𝑡+1 (E.4)

𝑃𝑡+1,𝑡 = 𝐹𝑡+1,𝑡𝑃𝑡,𝑡𝐹𝑡+1,𝑡
𝑇 + 𝑅𝑡+1𝑄𝑡+1𝑅𝑡+1

𝑇

In the update step, the state variables are corrected based on measurements,

𝑥𝑡+1,𝑡+1 = 𝑥𝑡+1,𝑡 + 𝐾𝑡+1(𝑧𝑡+1 − 𝐻𝑡+1𝑥𝑡+1,𝑡)

𝑆𝑡+1 = 𝐻𝑡+1𝑃𝑡+1,𝑡𝐻𝑡+1
𝑇 + 𝑅𝑡+1 (E.5)

𝐾𝑡+1 = 𝑃𝑡+1,𝑡𝐻𝑡+1
𝑇 𝑆𝑡+1

−1

𝑃𝑡+1,𝑡+1 = (𝐼 − 𝐾𝑡+1𝐻𝑡+1)𝑃𝑡+1,𝑡

Here 𝐾𝑡+1 is the Kalman gain matrix, and 𝑆𝑡+1is the pre-fit residual covariance matrix. The prediction

(E.4) and correction (E.5) steps are repeated to get the filtered unobservable variables for the entire

time domain.

Kalman filter allows to compute filtered variables based on measurements available up to current time

t. By using Kalman filter recursively one can compute filtered variables up to final time T. These

filtered variables can be additionally rectified based on the whole set of measurements up to time T.

These filtered variables are updated by applying Rauch-Tung-Striebel Smoother in a backward pass:

𝐿𝑡 = 𝑃𝑡,𝑡𝐹𝑡
𝑇𝑃𝑡+1,𝑡

−1

𝑥𝑡,𝑇 = 𝑥𝑡,𝑡 + 𝐿𝑡(𝑥𝑡+1,𝑇 − 𝑥𝑡+1,𝑡)

𝑃𝑡,𝑇 = 𝑃𝑡,𝑡 + 𝐿𝑡(𝑃𝑡+1,𝑇 − 𝑃𝑡+1,𝑡)𝐿𝑡
𝑇

 (E.6)

Durbin and Koopman Approach

Durbin and Koopman proposed a multivariate and univariate approach to state filtering and smoothing.

Below we briefly describe this method. According to this approach, the state equation is that shock is

assumed to happen at the previous time step.

𝑥𝑡+1 = 𝐹𝑡𝑥𝑡 + 𝐶𝑡 + 𝑅𝑡𝑤𝑡 (E.7)

𝑧𝑡 = 𝐻𝑡𝑥𝑡 + 𝑣𝑡

https://en.wikipedia.org/wiki/A_posteriori
https://en.wikipedia.org/wiki/Kalman_filter
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=2ahUKEwimjMq9-c_fAhVDu1kKHXiMB3wQFjACegQICRAC&url=http%3A%2F%2Fautomation.berkeley.edu%2Fresources%2FKalmanSmoothing.ppt&usg=AOvVaw2PruM9UAsDb3jvLBTZOcgo

10

Non-Diffuse Filter and Smoother

Multivariate approach

The Kalman filter recursions for non-diffuse state multivariate filtering are:

𝑥𝑡+1, = 𝐹𝑡𝑥𝑡 + 𝐶𝑡 + 𝐾𝑡𝜀𝑡

𝑃𝑡+1 = 𝐹𝑡𝑃𝑡𝐿𝑡
𝑇 + 𝑅𝑡𝑄𝑡𝑅𝑡

𝑇

𝐾𝑡 = 𝐹𝑡𝑃𝑡𝐻𝑡
𝑇𝑆𝑡

−1 (E.8)

𝜀𝑡 = 𝑧𝑡 − 𝐻𝑡𝑥𝑡
𝐿𝑡 = 𝐹𝑡 − 𝐾𝑡𝐻𝑡
𝑆𝑡 = 𝐻𝑡𝑃𝑡𝐻𝑡

𝑇 + 𝑅𝑡𝑄𝑡𝑅𝑡
𝑇

And the Kalman smoother recursions are:

𝑟𝑡−1 = 𝐻𝑡
𝑇𝑆𝑡

−1𝜀𝑡 + 𝐿𝑡
𝑇𝑟𝑡 (E.9)

𝑥̃𝑡 = 𝑥̂𝑡 + 𝑃𝑡𝑟𝑡−1

These recursions are applied backward for 𝑡 = 𝑁,𝑁 − 1,… ,1 with 𝑟𝑁 = 0.

Univariate approach

When measurements are precise and measurements errors are zeros, the matrix 𝑆𝑡 could become

singular and its inverse can not be found. Durbin and Koopman proposed a univariate approach to state

variables filtering. When the covariance matrices of the measurements errors and state variables errors

are diagonal, the filtering equations for each of the components of filtered endogenous variable

𝑥𝑡 = [𝑥𝑡,1 ; 𝑥𝑡,2 ; … ; 𝑥𝑡,𝑛] become:

𝑥𝑡,𝑖+1 = 𝑥𝑡,𝑖 +𝑀𝑡,𝑖𝑆𝑡,𝑖
−1𝜀𝑡,𝑖

𝑃𝑡,𝑖+1 = 𝑃𝑡,𝑖 - 𝑀𝑡,𝑖𝑆𝑡,𝑖
−1𝑀𝑡,𝑖

𝑇

𝑀𝑡,𝑖 = 𝑃𝑡,𝑖𝐻𝑡,𝑖
𝑇 (E.10)

𝜀𝑡,𝑖 = 𝑧𝑡,𝑖 − 𝐻𝑡,𝑖𝑥𝑡,𝑖

𝑆𝑡,𝑖 = 𝐻𝑡,𝑖𝑃𝑡,𝑖𝐻𝑡,𝑖
𝑇 + 𝑅𝑡,𝑖𝑄𝑡,𝑖𝑅𝑡,𝑖

𝑇

The transition from time 𝑡 to time 𝑡 + 1 is achieved by relations

𝑥𝑡+1,1 = 𝐹𝑡𝑥𝑡,𝑛 + 𝐶𝑡

𝑃𝑡+1,1 = 𝐻𝑡𝑃𝑡,𝑛𝐻𝑡
𝑇 + 𝑅𝑡𝑄𝑡𝑅𝑡

𝑇

In case 𝑆𝑡,𝑖 = 0, we have:

𝑥𝑡,𝑖+1 = 𝑥𝑡,𝑖
𝑃𝑡,𝑖+1 = 𝑃𝑡,𝑖

11

The univariate smoother recursion is like the multivariate one:

𝑟𝑡,𝑖−1 = 𝐻𝑡,𝑖
𝑇 𝑆𝑡,𝑖

−1𝜀𝑡,𝑖 + 𝐿𝑡,𝑖
𝑇 𝑟𝑡,𝑖 (E.9)

𝑟𝑡−1,𝑛 = 𝐹𝑡−1
𝑇 𝑟𝑡,1

𝑥̃𝑡 = 𝑥̂𝑡 + 𝑃𝑡𝑟𝑡−1

Diffuse Filter and Smoother

Kalman filter and smoother require one to set initial condition for a posterior estimate of endogenous

variable and its covariance matrix. Durbin and Koopman proposed an elegant way to treat these

conditions when one does not have a full information and hence assumes that that initial covariance is

infinite. The authors proposed a diffuse filtering and smoothing algorithm for state variables.

Multivariate approach

The mean square error covariance matrix is decomposed into a finite 𝑃∗,𝑡 an infinite 𝑃∞,𝑡 parts:

𝑃𝑡 = 𝑃∗,𝑡 + 𝑘𝑃∞,𝑡 . Authors derive asymptotic equations to the first order of 𝑘−1 when 𝑘 → ∞.

𝑥𝑡+1 = 𝐹𝑡𝑥𝑡 + 𝐶𝑡 + 𝐾∗,𝑡𝜀𝑡

𝑃∞,𝑡+1 = 𝐹𝑡𝑃∞,𝑡 𝐹𝑡
𝑇

𝑃∗,𝑡+1 = 𝐹𝑡𝑃∗,𝑡𝐿𝑡
𝑇 + 𝑅𝑡𝑄𝑡𝑅𝑡

𝑇

𝐾∗,𝑡 = 𝐹𝑡𝑃𝑡𝐻𝑡
𝑇𝑆∗,𝑡

−1 (E.10)

𝜀𝑡 = 𝑧𝑡 − 𝐻𝑡𝑥𝑡
𝐿∗,𝑡 = 𝐹𝑡 − 𝐾∗,𝑡𝐻𝑡

𝑆𝑡 = 𝐻𝑡𝑃∗,𝑡𝐻𝑡
𝑇 + 𝑅𝑡𝑄𝑡𝑅𝑡

𝑇

These equations are applied for the first 𝑑 periods until the infinite part of covariance matrix 𝑃∞

becomes zero, i.e., 𝑃∞,𝑑 = 0. Thereafter the non-diffusive state filtering algorithm (E.8) is used. State

smoothing backward recursions start at the last period 𝑁. Regular algorithm (E.9) is applied until

period 𝑑, and then it is followed by a diffuse state smoothing one:

𝑥̃𝑡 = 𝑥̂𝑡 + 𝑃∗,𝑡 𝑟𝑡−1
(0)
+ 𝑃∞,𝑡 𝑟𝑡−1

(1)

𝑟𝑡−1
(0)
 = 𝐿∞

𝑇 𝑟𝑡
(0)

 (E.11)

𝑟𝑡−1
(1)
 = 𝐻𝑡

𝑇(𝑆∞,𝑡
−1 𝜀𝑡 − 𝐾∗,𝑡

𝑇 𝑟𝑡
(0)
) + 𝐿∞,𝑡

𝑇 𝑟𝑡
(1)

with initialization 𝑟𝑑
(0)
 = 𝑟𝑑 and 𝑟𝑑

(1)
 = 0

Univariate approach

The diffuse state filtering recursions are:

12

𝑥𝑡,𝑖+1 = 𝑥𝑡,𝑖 + 𝐾∞,𝑡,𝑖𝑆∞,𝑡,𝑖
−1 𝜀𝑡,𝑖

𝑃∗,𝑡,𝑖+1 = 𝑃∗,𝑡,𝑖 + 𝐾∞,𝑡,𝑖𝐾∞,𝑡,𝑖
𝑇 𝑆∗,𝑡,𝑖𝑆∞,𝑡,𝑖

−2 − (𝐾∗,𝑡,𝑖𝐾∞,𝑡,𝑖
𝑇 + 𝐾∞,𝑡,𝑖𝐾∗,𝑡,𝑖

𝑇) 𝑆∞,𝑡,𝑖
−1 (E.12)

𝑃∞,𝑡,𝑖+1 = 𝑃∞,𝑡,𝑖 − 𝐾∞,𝑡,𝑖𝐾∞,𝑡,𝑖
𝑇 𝑆∞,𝑡,𝑖

−1

In the case where 𝑆∞,𝑡,𝑖 = 0, the usual filtering equations apply,

𝑥𝑡,𝑖+1 = 𝑥𝑡,𝑖 + 𝐾∗,𝑡,𝑖𝑆∗,𝑡,𝑖
−1 𝜀𝑡,𝑖

𝑃∗,𝑡,𝑖+1 = 𝑃∗,𝑡,𝑖 + 𝐾∗,𝑡,𝑖𝐾∗,𝑡,𝑖
𝑇 𝑆∗,𝑡,𝑖

−1 (E.13)
𝑃∞,𝑡,𝑖+1 = 𝑃∞,𝑡,𝑖

The transition from time 𝑡 to time 𝑡 + 1 is achieved by,

𝑥𝑡+1,1 = 𝐹𝑡𝑥𝑡,𝑛 + 𝐶𝑡

𝑃∗,𝑡+1,1 = 𝐹𝑡 𝑃∗,𝑡,𝑛 𝐹𝑡
𝑇 + 𝑅𝑡𝑄𝑡𝑅𝑡

𝑇 (E.14)
𝑃∞,𝑡+1,1 = 𝐹𝑡 𝑃∞,𝑡,𝑛 𝐹𝑡

𝑇

The diffuse smoothing backward recursions start at period 𝑑,

𝑥̃𝑡 = 𝑥̂𝑡 + 𝑃∗,𝑡 𝑟𝑡−1
(0)
+ 𝑃∞,𝑡 𝑟𝑡−1

(1)

𝑟𝑡,𝑖−1
(0)

 = 𝐿∞
𝑇 𝑟𝑡,𝑖

(0)
 (E.15)

𝑟𝑡,𝑖−1
(1)

 = 𝐻𝑡,𝑖
𝑇 𝑆∞,𝑡

−1 𝜀𝑡 + 𝐿∗,𝑡,𝑖
𝑇 𝑟𝑡,𝑖

(0)
+ 𝐿∞,𝑡,𝑖

𝑇 𝑟𝑡,𝑖
(1)

𝐿∞,𝑡,𝑖 = 𝐼 − 𝐾∞,𝑡,𝑖𝐻𝑡,𝑖𝑆∞,𝑡,𝑖
−1

𝐿∗,𝑡,𝑖 = (𝐾∞,𝑡,𝑖𝑆∗,𝑡,𝑖𝑆∞,𝑡,𝑖
−1 − 𝐾∗,𝑡,𝑖) 𝐻𝑡,𝑖 𝑆∞,𝑡,𝑖

−1

with initialization 𝑟𝑑,𝑛
(0)
 = 𝑟𝑑 and 𝑟𝑑,𝑛

(1)
 = 0

F. Initial Conditions

Kalman filter requires initial conditions for a posterior estimate of state variables and error variances.

There are several options to set these conditions. For example, one can take historical data to set these

initial values,

𝑥̃0 = 𝑥0 (F.1)

𝑃̃0 = 𝑃0

Another option would be to use asymptotic values that can be derived from state-space model

equations. The state variables (E.1) can be decomposed into stable and unstable parts. The stable states

correspond to the absolute values of eigen values of transition matrix 𝐹𝑡 less than one, and the unstable

states – to greater than one. One can assume that initial condition for the estimate of unstable states are

zeros, while for the stable states are defined by asymptotic conditions,

13

𝑥̃0,𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 = 0 (F.2)

𝑥̃0,𝑠𝑡𝑎𝑏𝑙𝑒 = (𝐼 − 𝐹∞)
−1 𝐶𝑠𝑡𝑎𝑏𝑙𝑒

Similarly, we can write equations for an estimate of error covariance matrices:

𝑃∞,0 = 0

𝑃∗,0 = 𝐹∞ 𝑃∗,0 𝐹∞
𝑇 +𝑅∞𝑄∞𝑅∞

𝑇 (F.3)

The latter equation is a discrete Lyapunov type equation. It can be rewritten in the form,

(𝐼𝑛2 − 𝐹∞⊗𝐹∞) 𝑣𝑒𝑐(𝑃∗,0) = 𝑣𝑒𝑐(𝑅∞𝑄∞𝑅∞
𝑇) (F.4)

Here ⊗ is the Kronecker product operator, and 𝑣𝑒𝑐 is the vector operator. The latter

stacks columns of a matrix on top of each other. Equation (F.4) has a solution of the form,

 𝑣𝑒𝑐(𝑃∗,0) = (𝐼𝑛2 − 𝐹∞⊗𝐹∞)
−1 𝑣𝑒𝑐(𝑅∞𝑄∞𝑅∞

𝑇) (F.5)

G. Model Calibration

It is a common practice to assume that probability of model fit can de decomposed into prior

probability of model parameters 𝜓1(𝑝) and conditional probability of series 𝑥𝑡 given observations 𝑦𝑡
and parameters 𝑝, 𝜓2(𝑥𝑡| 𝑥𝑡−1,𝑥𝑡−2, … , 𝑥0, 𝑝). The latter is assumed to be a Markov process, i.e.,

𝜓2 = 𝜓2(𝑥𝑡| 𝑥𝑡−1,, 𝑝). A reasonable assumption is that these probabilities are independent, so that log

of a product of probabilities is additive:

𝑙𝑜𝑔(𝜓) = 𝑙𝑜𝑔(𝜓1) + 𝑙𝑜𝑔(𝜓2) (G.1)

Here 𝜓 is the probability of model fit to the data. The probability 𝜓1is a prior probability and depend

on user assumptions about its distribution. For example, user may assume that the prior probability has

Normal , Lognormal, Beta, Gamma, Inverse Gamma, Student t, Weibull, Wishart, etc., density

functions.

Assuming normal pdf, 𝜓1 has the form:

𝑙𝑜𝑔(𝜓1) =
1

√2𝜋
 ∑

1

𝜎𝑖

𝑛
𝑖=1 (𝑝𝑖 − 𝑝̅𝑖)

2 (G.2)

Here 𝑝̅𝑖 is the mean of parameter, and 𝜎𝑖 is it standard deviation.

Following Bayesian interpretation of Kalman filter, the distribution of probability 𝜓2

can be written as,

𝑙𝑜𝑔(𝜓2) = −
𝑁𝑦 log (2𝜋)

2
 −

1

2
 ∑ log (det(𝑆𝑡))
𝑇
𝑡=1 −

1

2
 ∑ ∑ (𝑥𝑡,𝑖 − 𝑦𝑡,𝑖)

2𝑛
𝑖

𝑇
𝑡=1 (G.3)

https://en.wikipedia.org/wiki/Lyapunov_equation

14

Here 𝑁𝑦 is the dimension of measurement vector 𝑦.

Calibration of model parameters consists in searching for parameters 𝑝 that maximize likelihood 𝜓

given equations (G.1) and (G.2)

𝑚𝑎𝑥(𝜓(𝑝|𝑝̅, 𝜎, 𝑦𝑡, 𝑦𝑡−1, , , 𝑦1)) (G.4)

E. Parameters Sampling

We apply a Markov chain Monte Carlo (MCMC) algorithm to create random samples of model

parameters. These random draws of parameters are characterized by a probability density function that

tends to the distribution (G.1) as the number of draws increases. There are multiple algorithms such as

acceptance-rejection Metropolis-Hastings method which draws continuous random variable given its

probability density function, Gibs sampling which requires all the condition distributions of (G.1) to be

sampled, Hamilton Monte Carlo method which applies Hamilton dynamics, and many more.

These algorithms require a lot of steps to converge for skewed probability distributions. For example. a

model could be highly sensitive to changes in one parameter and not sensitive to changes in another

parameter. The framework uses algorithm of Jonathan Goodman and Jonathan Weare (2010). This

algorithm falls under umbrella of MCMC algorithm. It is affine invariant ensemble sampler algorithm

which works well for skewed distributions.

References

Anderson-Moore Algorithm, https://www.federalreserve.gov/econres/ama-index.htm

Durbin J., Koopman S.J. (2002). “A Simple and Efficient Simulation Smoother for State Space

Time Series Analysis.” Biometrika, 89(3), 603–615. doi:10.1093/biomet/89.3.603.

Durbin J., Koopman S.J. (2012). Time Series Analysis by State Space Methods. 2nd edition.

Oxford University Press, New York.

S.J. Koopman and J. Durbin (1998). “Fast Filtering and Smoothing for Multivariate State Space

Models.” Journal of Time Series Analysis, Vol. 21, No. 3.

S.J. Koopman and J. Durbin (1999). “Filtering and Smoothing of State Vector for Diffuse State-Space

Models.” Journal of Time Series Analysis, Vol. 24, No. 1.

Michal Andrle (2007). "Linear Approximation to Policy Function in IRIS Toolbox".

https://michalandrle.weebly.com/uploads/1/3/9/2/13921270/michal_iris_solve.pdf.

https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
https://www.federalreserve.gov/econres/ama-index.htm
https://michalandrle.weebly.com/uploads/1/3/9/2/13921270/michal_iris_solve.pdf

15

Christopher Sims (1996). "Solving Rational Expectations Models." Seminar Paper,

http://sims.princeton.edu/yftp/gensys/LINRE3A.pdf

Klein P. (1997): “Using the Generalized Schur Form to Solve a System of Linear

Expectational Difference Equations,” discussion paper, IIES, Stockholm University,

klein@iies.su.se.

Michael Binder and M. Hashem Pesaran. (1997). “Multivariate rational expectations models.

Characterization of the Nature of the Solutions and Their Fully Recursive Computation.”

https://www.jstor.org/stable/pdf/3532897.pdf?refreqid=excelsior%3A5e82c86594ec2406dc1607c3c337

e0

Sebastien Villemot (2011). “Solving Rational Expectations Models at First Order: What Dynare Does.”

https://www.dynare.org/wp-repo/dynarewp002.pdf

Jonathan Goodman and Jonathan Weare (2010), "Ensemble Samplers with Affine Invariance".

https://projecteuclid.org/download/pdf_1/euclid.camcos/1513731992

“Kalman Filter”, https://en.wikipedia.org/wiki/Kalman_filter

“Lyapunov Equation”, https://en.wikipedia.org/wiki/Lyapunov_equation

“Schur decomposition”, https://en.wikipedia.org/wiki/Schur_decomposition

“Markov chain Monte Carlo”, https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo

“Metropolis–Hastings algorithm”,

https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm

“Gibbs sampling”, https://en.wikipedia.org/wiki/Gibbs_sampling

“Hamilton Monte Carlo”, https://en.wikipedia.org/wiki/Hamiltonian_Monte_Carlo

http://sims.princeton.edu/yftp/gensys/LINRE3A.pdf
https://www.jstor.org/stable/pdf/3532897.pdf?refreqid=excelsior%3A5e82c86594ec2406dc1607c3c337e0
https://www.jstor.org/stable/pdf/3532897.pdf?refreqid=excelsior%3A5e82c86594ec2406dc1607c3c337e0
https://www.dynare.org/wp-repo/dynarewp002.pdf
https://projecteuclid.org/download/pdf_1/euclid.camcos/1513731992
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Lyapunov_equation
https://en.wikipedia.org/wiki/Schur_decomposition
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm
https://en.wikipedia.org/wiki/Gibbs_sampling
https://en.wikipedia.org/wiki/Hamiltonian_Monte_Carlo

