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Quantum polyspectra are a completely 
general and uncompromising approach 
to the evaluation of continuous 
quantum measurements including
• Spin noise spectroscopy
• Quantum transport
• Circuit quantum electrodynamics

Three Limiting Cases – One Theory
Spin Noise Measurement [2] Quantum Transport [3] Single Photon Measurement [4]

SME to Analytic Quantum Polyspectra
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The stochastic master 
equation allows for 
the simulation of a 
detector output by 
numerical integration 
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Stochastic 
Master Equation

Any quantum measurement of an 
observable 𝐴 can be simulated with 
the SME [1]
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+ 𝛽*𝒟 𝐴 𝜌 𝑑𝑡 + 𝛽𝒮 𝐴 𝜌 𝑑𝑊

with the measurement strength 𝛽, damping 
terms

𝒟 𝑐 𝜌 = 𝑐𝜌𝑐† − ⁄𝑐†𝑐𝜌 + 𝜌𝑐†𝑐 2 ,

𝒮 𝑐 𝜌 = 𝑐𝜌 + 𝜌𝑐† − Tr 𝑐 + 𝑐† 𝜌 𝜌.

and backaction term

The resulting detector output is

𝑧 𝑡 = 𝛽*Tr 𝜌(𝑡)(𝐴 + 𝐴†)/2 + +
*𝛽Γ(𝑡),

where Γ 𝑡 = 𝑊̇ 𝑡 is white noise.

Outstanding features
The quantum polyspectra approach 
can handle
• Environmental damping
• Measurement backaction (Zeno 

effect) and arbitrary 
measurement strength

• Coherent quantum dynamics
• Stochastic in- and out-tunneling
• Additional detector noise
• Simultaneous measurement of 

non-commuting observables
• Incorporation of temperatures
• Completely automatic analysis of 

arbitrary measurement traces 
• Covers all limiting case of weak 

spin noise measurements, strong 
measurements resulting in 
quantum jumps, and single 
photon sampling
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From Data to Polyspectra
The detector output 𝑧(𝑡) is discretized and divided 
into time frames 𝑧(") of length 𝑁

𝑧,
(-) = 𝑧(𝑗𝑇/𝑁 + 𝑛𝑇),

The 𝑛th-order polyspectra 𝑆$
(") is proportional to 

the 𝑛th-order cumulant 𝐶" of the Fourier 
coefficients 𝑎%

(") of the signal times window 
function

𝑆.
* (𝜔/) ∝ 𝐶* 𝑎/, 𝑎/∗

𝑆.
1 (𝜔/, 𝜔2) ∝ 𝐶1 𝑎/, 𝑎2, 𝑎/32∗

𝑆.
4 (𝜔/, 𝜔2) ∝ 𝐶4 𝑎/, 𝑎/∗ , 𝑎2, 𝑎2∗

For infinitely many frames the cumulants 𝐶" can 
be calculated as

𝐶* 𝑥, 𝑦 = 𝑦𝑥 − 𝑦 𝑥

𝐶1 𝑥, 𝑦, 𝑧 = 𝑧𝑦𝑥 − 𝑦𝑥 𝑧
− 𝑧𝑥 𝑦 − 𝑧𝑦 𝑥 + 2 𝑧 𝑦 𝑥

Since any measurement trace will be finite so-
called cumulant estimator have to be used [6] 

𝑐& 𝑥, 𝑦 =
𝑚

𝑚 − 1 (𝑥𝑦 − 𝑥̅ +𝑦)

𝑐' 𝑥, 𝑦, 𝑧 =
𝑚&

(𝑚 − 1)(𝑚 − 2) (𝑥 − 𝑥̅)(𝑦 − +𝑦)(𝑧 − ̅𝑧)

[4]

Model

𝑧 𝑡 = 𝛽#Tr 𝜌(𝑡)(𝐴 + 𝐴†)/2

𝑑𝜌 = ℒ 𝛽 𝜌 𝑑𝑡 + 𝛽𝒮 𝐴 𝜌 𝑑𝑊

+
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Stochastic 
Master Equation

Quantum polyspectra are directly 
calculated from any detector output 𝑧(𝑡)
including
• Gaussian-dominated noise, photon shot 

noise
• Telegraph noise, quantum jumps
• Stochastic click-events, photomultiplier 

output

Analytic quantum polyspectra follow 
rigorously from the stochastic master 
equation [1]. Automatic fitting of 
analytic to measured spectra yields 
quantities like 
• Tunneling times
• Precession frequencies
• Coupling-tensors

• Electron precesses in a superposition of 
six frequencies (5/2 nucleus in a 
magnetic field)

• Weak measurement: measurement of 
electron orientation dominated by 
Gaussian noise

• Goal: understanding precession 
dynamics

• The six frequencies can be seen in 𝑆(")
• 𝑆($) shows correlations between 

frequencies 
• Neighboring frequencies are positively 

correlated

• Monitoring the charge state of a 
quantum dot

• Strong measurement: quantum state 
undergoes telegraph like switching 
(quantum jumps)

• Goal: determining the tunnelling rates 
𝛾%& and 𝛾'()

• The 𝑆(") is not sufficient to determine 
the tunnelling rates

• The 𝑆(") and  𝑆(*) contain enough 
information to determine the tunnelling 
rates

• Random-time sampling of a system
• Ultra-weak measurement: photon 

interacts with a quantum system for a 
short period

• Goal: reconstruction of the precession 
dynamics

• All higher-order correlations are visible 

Moments of the 
Detector Output

𝑀* 𝑧 𝑡+ , 𝑧 𝑡* = 𝑧 𝑡+ 𝑧(𝑡*)

= 𝛽4 +
567. 9!

Tr 𝒜𝒢 𝑡* − 𝑡+ 𝒜𝜌:

𝑀1 𝑧 𝑡+ , 𝑧 𝑡* , 𝑧 𝑡1 = 𝑧 𝑡+ 𝑧 𝑡* 𝑧(𝑡1)

= 𝛽; +
567. 9!

Tr 𝒜𝒢 𝑡1 − 𝑡* 𝒜𝒢 𝑡* − 𝑡+ 𝒜𝜌:

Fourth order expressions can be found 
in [2].

With the definition of
• the system propagator 𝒢 = 𝑒ℒ9Θ(𝑡)
• the measurement superoperator 
𝒜(𝑥) = (𝐴𝑥 + 𝑥𝐴†)/2

• and the steady state 𝜌:.

Cumulants

𝐶* 𝑧 𝑡+ , 𝑧 𝑡*

= 𝛽4 +
567. 9!

Tr 𝒜′𝒢′ 𝑡* − 𝑡+ 𝒜′𝜌:

𝐶1 𝑧 𝑡+ , 𝑧 𝑡* , 𝑧(𝑡1)

= 𝛽;+Tr 𝒜′𝒢′ 𝑡1 − 𝑡* 𝒜′𝒢′ 𝑡* − 𝑡+ 𝒜′𝜌:

Fourth order expressions can be found 
in [2].

𝑝𝑟𝑚. 𝑡!

Polyspectra are defined via the cumulant of 
𝑧 𝜔 (see box right). Compact expression can 
be found by rewriting
• 𝒢@ 𝜏 = 𝒢 𝜏 − 𝒢 ∞ Θ(𝜏)
• 𝒜@ 𝑥 = 𝒜 𝑥 − Tr 𝒜𝜌: 𝑥

Evaluation of Quantum Measurements
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Analytic Quantum Polyspectra

Power Spectrum Bispectrum Trispectrum

𝑆(#) 𝑆(%) 𝑆(&)

[3]

The usual 
powerspectrum 
𝑆 & 𝜔 is given by the 
expectation value 
𝑎'𝑎'∗ and thus by the 

average intensity of 
𝑧(𝑡) at frequency 𝜔. 

Shows contributions if 
two frequencies are 
phase correlated with 
the sum of the 
frequencies and is 
sensitive to time-
inversion (while 𝑆 & is 
not) 

The two dimensional 
cut of the trispectrum 
(shown here) can be 
interpreted as a 
frequency-dependent 
intensity-intensity 
correlation.

+

–

Measured Quantum Polyspectra
𝑆(&) ∝ 𝑎'𝑎'∗

+ …
𝑆(+) ∝ 𝑎'!𝑎'"𝑎'!,'"

∗

+	…
𝑆(-) ∝ 𝑎'!𝑎'!

∗ 𝑎'"𝑎'"
∗

+	…

[3]

+

–

Quantum Polyspectra

A general definition of Polyspectra was 
given by Brillinger [7]

𝐶- 𝑧 𝜔+ , … , 𝑧 𝜔-
= 2𝜋𝛿 𝜔+ +⋯+𝜔- 𝑆.

- (𝜔+, … , 𝜔-A+)

Expressions for the quantum 
polyspectra can, therefore, be found by 
Fourier transforming of the cumulant 
expressions [4]

𝑆.
* 𝜔 = 𝛽4(

)
Tr 𝒜@𝒢@ 𝜔 𝒜@𝜌: +
Tr 𝒜@𝒢@ −𝜔 𝒜@𝜌: + ⁄𝛽* 4

𝑆1 𝜔+, 𝜔*, 𝜔1 = −𝜔+ −𝜔*
= 𝛽;+Tr 𝒜′𝒢′ 𝜔1 𝒜′𝒢′ 𝜔1 +𝜔* 𝒜′𝜌:
𝑝𝑟𝑚. 𝜔" , 𝜔#, 𝜔$
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Uncompromising and Universal Evaluation of Quantum Measurements


