
FAST-PT User Manual

Joseph E. McEwen∗, Xiao Fang†, and Jonathan Blazek‡

Our papers (arXiv:1603.04826, arXiv:1609.05978) describe the FAST-PT algorithm
and implementation. These papers should be cited when using FAST-PT in your research.

1 Version History
• Version 2.1: released August 30, 2017. Updates include:

– Updated for compatibility with NUMPY v1.13, which handles integers raised
to a negative power differently.

– Includes mixed nonlinear alignment model of Blazek et al. 2017 (arXiv:1708.09247).
– More efficient and flexible treatment of “To Do” list on initialization.
– Updated plotting scripts for compatibility with latest MATPLOTLIB versions.

• Version 2.0: released September 20, 2016. Significant reformulation of FAST-PT
structure. Updates include:

– Includes functionality to handle directionally-dependent (“tensor”) kernels.
– Function to calculate redshift space distortions via the method described in

Taruya et al. (arXiv:1006.0699).
– Function to calculate the intrinsic alignments of galaxies.
– Function to calculate the Ostriker-Vishniac effect.
– Function to calculate the kinetic polarization effect.
– Initialization of the FAST-PT now requires the input of a to-do list that spec-

ifies the desired output. See § 3.1 for more details.
– Includes a version of the older (scalar only) code called FASTPT_simple.py.

– Projects that have used the older code should still work when updating to
version 2. If the code is initialized using the old structure, it will default to
FASTPT_simple.py.

∗mcewen.24@osu.edu
†fang.307@osu.edu
‡blazek@berkeley.edu

1

– Tensor quantities require two values for the power-law bias, ν1 and ν2. These
values depend on the convergence criteria for tensor integrals and are computed
internally. For scalar quantities, ν = −2 has been hard-coded. FASTPT_simple.py
allows the user to specify ν when initialized.

• Version 1.2: released May 23, 2016. Includes the following updates:

– Convolutions in NUMPY were replaced with FFT convolutions by SCIPY,
resulting in a significant decrease in execution time.

– A method to extrapolate the input power spectrum to higher and lower k is
implemented. The extrapolation technique is optional and only relevant to
internal calculations in FAST-PT. It is a good method to eliminate spectral
leakage in the Fourier transform. See P_extend below.

– Includes output of nonlinear galaxy biasing contributions.
– A number of example files are now included, demonstrating various use cases of

FAST-PT. These files are easily identified, as they all have example in the file
name.

• Version 1.1: released March 29, 2016. Includes the following updates:

– Compatible with Python 3 as well as Python 2.
– Allows for simultaneous windowing of the power spectrum and zero padding.
– Labeling within the plot example in FASTPT.py correctly indicates that the out-

put is P22(k) + P13(k).
– Error in saving data for the animation routine was corrected.

• Version 1.0: released March 15, 2016.

– Compatible with Python 2 only.
– Does not allow for the simultaneous implementation of power spectrum window-

ing and power spectrum zero-padding.

2 Software Requirements
FAST-PT makes use of numpy and scipy libraries. It is advised that you have newer
versions of numpy and scipy. We have found that older versions of numpy and scipy can
be problematic. To run the scripts that reproduce our plots you will also need a current
version of matplotlib. If you want to save the animation file to an mp4 you will need to
have ffmpeg installed. Our code was originally developed with Python version 2.7.10,
numpy 1.8.2, and scipy 0.15.1. We have also tested our code on Python version 3.5.1.
It is possible that newer versions of Python, numpy, and scipy will have compatibility
issues.

2

2.1 Python 3 issues

We have found a few issues related to Python 3 which have been corrected in version 1.1.

• Python 3 does not allow the mixing of tabs and spaces. The best way we have
found to handle this issue is to look for indentations errors by running python -tt
<filename.py>. This will locate indentation errors and you can then correct. We
have tried to locate all the indentation mixing, but a few may still be left.

• Python has changed the print statements from print "stuff" to print("stuff"). We
have tried to change all the print statement to conform to Python 3 standards. If
any Python 2 print statements have been left, this is an easy fix for the user.

• Division in Python 3 is different than in Python 2.X. To make compatible with
Python 3 we have added the following to the top of the FASTPT.py script (it must be
at the first line of the script).

from __future__ import division

For floor division we use the "//" symbol and "/" for regular division.

We have made all changes so that FAST-PT is both Python 2 and Python 3 compatible.

3 Getting Started with Version 2

3.1 The To Do list

Initializing FAST-PT requires the to_do list as an input. The to_do list contains a list of
keywords that tells FAST-PT which k-grid quantities to initialize. The following keywords
can be used:

• “one_loop_dd” : builds relevant material for one-loop power spectrum,

• “dd_bias” (requires “one_loop_dd” as well) : builds relevant material for galaxy-bias
power spectrum (see §5.2 for details),

• “IA or IA_all” : builds relevant material for full intrinsic alignment model (see §3.3
for details),

• “IA_ta , IA_tt , or IA_mix” : builds relevant material for tidal alignment, tidal torque,
or mixed intrinsic alignment component only,

• “OV”: builds relevant material for Ostriker-Vishniac effect,

• “kPol”: builds relevant material for kinetic polarization of the CMB,

3

• “RSD”: builds relevant material for red-shift space distortions.

• “sig4”: same as one_loop_dd to allow calculation of σ4.

• “all or everything”: builds material for all FAST-PT capabilities.

3.2 Optional initialization arguments

The initialization stage can take in the following optional arguments:

• low_extrap : (integer value) extrapolates the power spectrum down to log10(k) =
low_extrap,

• high_extrap : (integer value) extrapolates the power spectrum up to log10(k) =
high_extrap,

• n_pad : set the number of zeros to pad with,

• verbose: set to true if you want verbose setting (although verbosity is minimal),

• nu : not needed for version 2. But, can still be used when defaulting to FASTPT_simple.py,

• param_mat : not needed for version 2. But, can still be used when defaulting to
FASTPT_simple.py.

3.3 Intrinsic alignments

The nonlinear intrinsic alignment model of Blazek et al. 2017 (arXiv:1708.09247) is imple-
mented in FAST-PT functions. The IA functions and their returned values are:

• IA_ta → {A0|0E , C0|0E , A0E|0E , A0B|0B}

• IA_tt → {AE2|E2, AB2|B2}

• IA_mix → {A0|E2, B0|E2, D0E|E2, D0B|B2}

FAST-PT returns the individual model components as defined in that paper, i.e. in-
cluding the relevant pre-factors from identical diagrams but excluding factors of 2 from
cross-terms (e.g. the 2C1C2 term). The exception is that k → 0 contributions ∝ σ4 are
not subtracted. The sig4 function returns the numerical value required to perform this
subtraction: {

A0E|0E , A0B|0B
}

(k → 0) = 8
15σ

4 , (1){
AE2|E2, AB2|B2

}
(k → 0) = 8

135σ
4 ,{

D0E|E2, D0B|B2
}

(k → 0) = 8
45σ

4 .

4

3.4 Example files

The easiest way to stat using FAST-PT is to see if you can run the files we used to
make the figures in our paper. These files are IA_paper_final.py, OV_paper_final.py,
kPol_paper_final.py, RSDAB_paper_final.py.

3.5 Optional arguments

FAST-PT can be initialized with several optional arguments, such as n_pad, low_extrap,
and high_extrap. These work in exactly the same way as with the older version of FAST-
PT, please see §5.2 for usage details.

4 Getting Started with Version 1 (relevant to FASTPT_simple.py)
Probably the first thing to do is to see if you can run FASTPT_simple.py. The main file
FASTPT_simple.py contains a small script (under the line [if __name__=="__main__":])to
plot the 1-loop correction to the power spectrum. This script should serve as a template.
A typical code snippet would look something like this:

import FASTPT_simple as FASTPT

data=np.loadtxt(’Pk_Planck15.dat’)
declare k and the power spectrum
k=d[:,0]; P=d[:,1]

set the parameters for the power spectrum window and
Fourier coefficient window
P_window=np.array([.2,.2]) ’’’ the windowing for the power spectrum is generally

not needed, but included in this script for instructive purposes’’’
C_window=.65

bias parameter and padding length
nu=-2; n_pad=len(k)

initialize the FASTPT class
fastpt=FASTPT(k,nu,n_pad=n_pad)

get the one-loop power spectrum
P_spt=fastpt.one_loop(P,P_window=P_window,C_window=C_window)
update the power spectrum
P=P+P_spt

The windowing parameter P_window=[0.2,0.2] means that you start tapering the power
spectrum at log kmin + 0.2 and log kmax − 0.2. The window parameters C_window = 0.65

5

means that you begin tapering the Fourier coefficients cm at |m| ≥ 0.65 × N/2 (it will
round to the nearest integer). One should chose windowing parameters wisely. You don’t
want to window away the majority of the function. The figure below illustrates the effect of
applying the window function to the linear power spectrum and using the window function
as a filter applied to the Fourier coefficients. In the left panel, one can see that the edges
of the power spectrum are smoothly tapered to zero. The right panel displays a damping
of the highest frequency Fourier modes.

Figure 1: Smoothed power spectrum and filtered Fourier coefficients. Left panel compares
the linear power spectrum to a windowed power spectrum. Right panel compares unfiltered
Fourier coefficients to those that are filtered.

Zero padding should be ≥ log(2)/∆, where ∆ is the logarithmic k-grid spacing, to
ensure that the k of interest is ≥ 2kmin. The output to fastpt.one_loop is equivalent to
P22(k) + P13(k) (in the above code snippet this is denoted as P_spt).

Note that the input power spectrum (or general function of k) must be sampled evenly.
Uneven sampling due to a finite number of significant digits will appear as numerical
noise since FAST-PT will recast the input function onto a grid with completely even
spacing. For instance, typical Boltzmann codes (e.g. CAMB or CLASS) will output the
power spectrum on a grid with finite precision. For n significant figures, numerical noise
∼ O(10−n) will be present in FAST-PT results. While typically not a concern, this noise
can become apparent when subtracting out dominant asymptotic contributions, such as
the k → 0 limit of some quadratic biasing terms. This noise can be mitigated by using
higher numerical precision in the Boltzmann code or by interpolating the output power
spectrum onto a high-precision grid.

6

5 Files

5.1 FASTPT.py

This file is the central component of FAST-PT. When you initialize FAST-PT the to_do
list is read. When a keyword in the to_do list is recognized, FAST-PT calls external
files to calculate all quantities that depend only on the k-grid. For instance, when the
the to_do list has a the keyword “one_loop_dd” FAST-PT will call the external function
scalar_stuff in the initialize_params.py file, which will in turn calculate all the gamma
function type quantities that only depend on the size of the k-grid. When the to_do list
contains a tensor keyword, for example “RSD”, FAST-PT will call an external file, in this
case RSD.py that builds the table of {J, J1, J2, ν1, ν2, α, β} values needed to produce tensor
quantities. This table is then passed to tensor_stuff in the initialize_params.py, again
calculating all the gamma function quantities that only depend on the k-grid.

The two main routines in the FAST-PT are J_k_scalar and J_k_tensor. J_k_scalar is
the same function J_k outlined in §5.2. J_k_tensor is generalization of J_k_scalar applied
to tensor quantities.

5.2 FASTPT_simple.py

This class takes two required inputs; an array k (the wave vector) and a float ν (the biasing
power), to initialize. An hard coded input is param_mat, which is the set of {α, β, l}, with
a fourth column set to 0 or 1. This last column corresponds to switching routines between
calculating Jαβl(k) and Jαβl,reg(k). The hard coded values for param_mat corresponds to
those for our P22,reg(k) run. The user has the option to input a param_mat array of their
liking. Additional options include n_pad, the number of zeros to pad and an option to turn
on verbose settings.

Upon initialization FASTP_simple.py will calculate all objects that depend only on the
grid size (i.e. the number of points in the array k). These include all gamma function type
evaluations and associated pre-factors. Putting grid specific calculations at initialization
speeds up the recurring run time by avoiding repeated calculations.

Contained in FASTP_simple.py are the following functions:

• J_k: this is the workhorse function of FAST-PT, it computes Jαβl(k) or Jαβl,reg(k)
(depending on user specifications). The required input is the power spectrum. Op-
tional inputs are the window functions parameters (P_window and C_window) which are
used to window the input power spectrum and/or the Fourier coefficients. J_k uses
the param_mat file and gamma function evaluations that were set up upon initialization
of the FASTPT class;

• P_22: this function adds up each Legendre component from the from J_k to construct
P22,reg(k);

7

• one_loop: this is the function most likely to be used. It requires the input power
spectrum and has optional arguments for windowing parameters. It calls P_22 and
P_13_reg (which is located in the file matter_power_spt.py). The output for one_loop
is P22(k) + P13(k).

• P_bias: this function returns the nonlinear bias contributions to the galaxy power
spectrum (e.g. Baldauf et al. 2012, arXiv:1201.4827). The biasing model is:

δg = b1δ + 1
2b2[δ2(x)− σ2] + 1

2bs[s
2(x)− 〈s2〉] + · · · , (2)

where s2 is the squared magnitude of the tidal field. This model leads to a galaxy
power spectrum of the form:

Pg(k) = b2
1Pδ(k) + b1b2A(k) + 1

4b
2
2B(k) + b1bsC(k) + 1

2b2bsD(k) + 1
4b

2
sE(k) + · · · .

(3)

The function in FASTP_simple.py returns {Plin, A,B,C,D,E, σ
4}, while the full FASTPT.py

returns {P22 +P13, A,B,C,D,E, σ
4, Plin}. The value σ4 =

∫ d3k
(2π)3P

2
lin(k) provides the

k → 0 limit for the quadratic terms:

B(k → 0) = 2σ4, (4)

D(k → 0) = 4
3σ

4,

E(k → 0) = 8
9σ

4.

These contributions can be subtracted by the user and absorbed into an effective
“shot noise” (e.g. McDonald 2006, arXiv:0609413). As discussed above, numerical
noise due to precision in the k-grid can become apparent at low-k after subtracting
these contributions.

5.3 gamma_funcs.py

This module contains three functions that we use for our gamma functions type objects.
They are:

• log_gamma(z)

• g_m_vals(mu,q)

• gamsn(z).

8

5.3.1 log_gamma(z)

This function calculates ln Γ(z) by calling gamma function in scipy and log function in
numpy. This function returns the real part and the imaginary part together.

5.3.2 g_m_vals(mu,q)

This function calculates the gm values in the FAST-PT paper (Eqn.(B.2)).

gm(µ, q) = Γ(α+)
Γ(α−) =

Γ
(
µ+1+q

2

)
Γ
(
µ+1−q

2

) , (5)

where µ+ 1 is real and q has an imaginary part that could be very large in magnitude, e.g.
|=(q)| > 200.

The direct calculation of it works well for small =(q), e.g. |=(q)| ≤ cut = 200, and for
µ+ 1− q 6= 0. These q’s are called q_good in the code.

For µ + 1 − q 6= 0, the gamma function in the denominator blows up, so that gm
approaches zero.

For large |=q|, the gamma function from scipy does not work well. We therefore derive an
asymptotic formula for gm at =q > cut. We choose cut = 200 in our code. The asymptotic
formula derived from the Stirling formula (Eqn. B.5 in the FAST-PT paper) is given by:

ln gm(µ, q) = ln(Γ(α+))− ln(Γ(α−))

' (α+ − 0.5) ln(α+)− (α− − 0.5) ln(α−)− q + 1
12

(1
α+
− 1
α−

)
+ 1

360

(
1
α3
−
− 1
α3

+

)
(6)

5.3.3 gamsn(z)

This function calculates Γ(z) sin
(
π
2 z
)
using formula

Γ(z) sin
(
π

2 z
)

=
√
π

2 2z
Γ
(

1
2 + z

2

)
Γ
(
1− z

2
) =

√
π

2 2zgm(0.5, z − 0.5) . (7)

5.4 fastpt_extr.py

This module contains a set of "extra" routines that are used within FAST-PT. These
include our window functions for power spectrum and Fourier coefficients. The routines
to pad the power spectrum with zeros (to the left or right of the array). The routine to
calculate the neff = d lnP

d ln k .

9

5.5 matter_power_spt.py

This file contains three functions. Two of them, are left overs form a previous version of
the code and are now implemented within the FASTPT.py class (P_22_reg and one_loop).
The function P_13_reg calculates the P13,reg(k) by convolution as shown in the paper. It
takes two inputs, k and the power spectrum P . Usually the input power spectrum is the
inverse Fourier transform of cm (this is procedure hard coded in the one_loop functions).

5.6 J_k.py

This is an older version of the code. It is now fully contained in the class FASTPT.py, but
could be used on its own if desired.

5.7 RG_RK4.py

This function calculates the renormalization group results by integrating Eq. 3.1 in the
paper using a 4th order Runge-Kutta integrator. The inputs to this routine are the output
file name, the vector k, the power spectrum P , the integration step size ∆λ, the maximum
Λ to integrate to, the number of zeros to pad with, the parameters for the power spectrum
window, and the parameter for the Fourier coefficient window. This integration routine is
not well suited for kmax > 1. The output file saved is an array with the following structure



0, the wave vector k
0, the one-loop power spectrum, i.e. Plin + P22 + P13
0, the linear power spectrum

λ(i = 1), power spectrum at first lambda step
...,

...
λ(i = N), power spectrum at last lambda step


. (8)

5.8 RG_STS.py

This function calculates the renormalization group results by integrating Eq. 3.1 in the
paper using a super time step method (see the appendix to the paper). The inputs are the
same as RG_RK4.py. The parameters for super time stepping are µ = 0.1, ∆λCFL = 0.001
and the number of stages is set to 10. These can all be changed by the user and are found
at the begging of RG_STS.py, right before the function RG_STS. This integration routine is
well suited for kmax > 1. The output is in the same format as RG_RK4.py.

5.9 RG_RK_filt.py

This function calculates the renormalization group results by integrating Eq. 3.1 in the
paper using a 4th order Runge-Kutta integrator with a digital filter applied to each stage.

10

This is an old routine. It was a method developed to maintain stability. It is still useful
and can be used for kmax > 1, particularly for sparsely sampled power spectra. The
inputs to this routine are the output file name, the vector k, the power spectrum P , the
integration step size ∆λ, the maximum λ to integrate to, the number of zeros to pad
with, the parameters for the power spectrum window, and the parameter for the Fourier
coefficient window. The output is in the same format as RG_RK4.py.

5.10 P_extend.py

This module performs extrapolation of the input power spectrum. It is and is implemented
in the initialization of the FASTPT object with the optional command low_extrap = A and
high_extrap = B, where A and B are the minimum and maximum log10(k) extrapolation
values. The extrapolation is done by assuming that P ∼ kneff , where neff is derived at the
end points of the input power spectrum.

5.11 xxx_example.ini

These are ini files that our RG integrators use.

5.12 xxx_example.py

Various example files to show different use cases for FAST-PT.

5.13 RG_ani.py

Use the file RG_ani.py to makes animations of the RG output. If you have an output with
a lot of frames, you should downsample in RG_ani.py, or else it will take a long time to
run. The inputs data files are the same as the output for RG_RK4.py. When you save the
animation file, the save_name should have .mp4 or other appropriate extension. To save
the animation as .mp4 file you will need to have ffmpeg installed. If you just want to
view, make sure to comment out the ani.save.

11

