PYCHOACOUSTICS MANUAL

Version 0.2

Samuele Carcagno

sam.carcagno@gmail.com

mailto:sam.carcagno@gmail.com

Copyright (©2012-2013 Samuele Carcagno.

Permission is granted to copy, distribute and/or modify this document un-
der the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the li-
cense is included in the section entitled “GNU Free Documentation License”.

Disclaimer: This document comes with NO WARRANTY whatsoever of be-
ing correct in any of its parts. This document is work in progress.

Contents

1 Whatis pychoacoustics? 1
2 Installation 4
2.1 InstallationonLinux 4
2.2 Installationon Windows 5
22.1 Using the binaryinstaller 5
222 Installing fromsource 5
3 Graphical User Interface 7
3.1 Quickstart e 7
32 TheControlWindow 8
3.21 General Widgets (leftpanel) 8
3.2.2 General Widgets (rightpanel) 11
323 ParadigmWidgets, 12
Adaptive Paradigm Widgets 12
Weighted Up/Down Paradigm Widgets 13
Adaptive Interleaved Paradigm Widgets 13
Weighted Up/Down Interleaved Paradigm Widgets . . 15
Constant m-Intervals n-Alternatives Paradigm Widgets 16

Multiple Constants m-Intervals n-Alternatives Paradigm
Widgets 16
Constant 1-Interval 2-Alternatives Paradigm Widgets . 16

Multiple Constants 1-Interval 2-Alternatives Paradigm

Widgets 17
1-Pair Same/Different Paradigm Widgets 17
324 TheMenuBar 17
TheFileMenu. 17
The EditMenu 18
TheToolsMenu 18
TheHelpMenu 18
The “what’s this?” Button.. 18

3.3 ProcessResultsDialog 18

3.4 Edit Preferences Dialog 20
341 General. e 20
342 Sound e 21
343 Notifications e 21
344 EEG. e 23
3.5 EditPhonesDialog 23
3.6 Edit ExperimentersDialog 24
37 TheResponseBox 24
Command Line User Interface 26
Psychophysics 28
5.1 Available Paradigms 28
Adaptive L o 28
Adaptive Interleaved o oL 28
Weighted Up/Down 28
Weighted Up/Down Interleaved 29
Constant m-Intervals n-Alternatives 29
Constant 1-Interval 2-Alternatives 29
Constant 1-Pair Same/Different 29
52 Available Experiments0 .. 29
The pychoacoustics Engine 30
6.1 SoundOutputo ... 30
Sound OutputonLinux 30
Sound Outputon Windows 31
6.2 ParametersFiles 31
6.3 ResultsFiles e 32
Tabular ResultsFiles 33
LogResultsFiles 34
Adaptive and Weighted Up/Down Result Files 35

Adaptive and Weighted Up/Down Interleaved Result
Files 35
6.3.1 Constant m-Intervals n-Alternatives Result Files 35

6.3.2 Multiple Constants m-Intervals n-Alternatives Result
Files e 35
6.3.3 Constant 1-Intervals 2-Alternatives Result Files 35
6.3.4 Multiple Constants 1-Intervals 2-Alternatives Result Files 35
6.3.5 Constant 1-Pair Same/Different Result Files 35
6.4 Block Presentation Position 35

i1

6.5 OSCommands. o v v i v i i i
6.6 PreferencesSettings
6.7 ResponseMode

7 Designing Custom Experiments
The initialize function
The select_default parameters_function
The get_fields_to hide_function
The doTrial function
The Experiment “opts”
71 Simulations o

8 Troubleshooting
The computer crashed in the middle of an experimental
SeSSION

References
A Introduction to Python, Numpy and Scipy

B GNU Free Documentation License

1. APPLICABILITY AND DEFINITIONS
. VERBATIM COPYING i i it
. COPYING IN QUANTITY i i i e
. MODIFICATIONS e e e et
.COMBINING DOCUMENTS oo i e
. COLLECTIONS OF DOCUMENTS
. AGGREGATION WITH INDEPENDENT WORKS
. TRANSLATION e e e e
9. TERMINATION e e e e e
10. FUTURE REVISIONSOF THISLICENSE
ADDENDUM: How to use this License for your documents

O N ON Ul i W IN

1ii

47

48

49

50
50
52
53
53
55
56
56
57
57
57
58

Chapter 1

What is pychoacoustics?

pychoacoustics is a software for programming and running experiments in
auditory psychophysics (psychoacoustics). The software contains a set of
predefined experiments that can be immediately run after installation. Im-
portantly pychoacoustics is designed to be extensible so that users can add
new custom experiments with relative ease. Custom experiments are written
in Python, a programming language renowned for its clarity and ease of use.
The application is divided in two graphical windows a) the “response box”,
shown in Figure 1.1, with which listeners interact during the experiment b)
the control window, shown in Figure 1.2, that contains a series of widgets
(choosers, text field and buttons) that are used by the experimenter to set all
of the relevant experimental parameters, which can also be stored and later
reloaded into the application.

I started writing pychoacoustics for fun and for the sake of learning
around 2008 while doing my PhD with Professor Chris Plack at Lancaster
University. At that time we were using in the lab a MATLAB program called
the “Earlab” written by Professor Plack. pychoacoustics has been greatly
influenced and inspired by the “Earlab”, and it reproposes many of the same
features that the “Earlab” provides. For this reason, as well as for the patience

he had to teach me audio programming I am greatly indebted to Professor
Plack.

Figure 1.1: The Response Box

_(]. = Response Box 2 \&

Running

[| 25%

Figure 1.2: The Control Window

mnm“-m

Chapter 2

Installation

pychoacoustics has been successfully installed and used on Linux and Win-
dows platforms, since it is entirely written in python it should be fully cross-
platform and should work on the Mac as well, but this has never been tested.
pychoacoustics depends on the installation of a handful of other programs:

Python (version 3) http:/ /www.python.org/

pyqt4 http:/ /www.riverbankcomputing.co.uk/software/pyqt/download

numpy http:/ /sourceforge.net/projects/numpy/files/

scipy http:/ /sourceforge.net/projects/scipy/files/

these programs need to be installed manually. Once these programs are in-
stalled you can proceed with the installtion of pychoacoustics.

2.1 Installation on Linux

Binary deb packages for recent debian-based distributions are provided (start-
ing from Wheezy), and can be installed using gdebi which automatically
handles dependencies. For other linux systems, once all of the dependencies
have been installed, pychoacoustics can be installed as a standard python
package using

sudo python3 setup.py install

you can then invoke pychoacoustics from a terminal by typing the com-
mand

pychoacoustics.pyw

http://www.python.org/
http://www.riverbankcomputing.co.uk/software/pyqt/download
http://sourceforge.net/projects/numpy/files/
http://sourceforge.net/projects/scipy/files/

2.2 Installation on Windows

2.21 Using the binary installer

After installing the dependencies (python, pyqt4, numpy, and scipy), simply
double click on the pychoacoustics windows installer to start the installation
procedure. Currently the installer does not provide a launcher. There is,
however, a file called pychoacoustics-qt4.bat inside the source distribution
of pychoacoustics that after some modifications can be used as a launcher.
The content of the file is the following:

C:\Python32\python "C:\Python32\site-packages\pychoacoustics.pyw"
hl %2 %3 %4 W5 h6 KT %8

The first statement C: \Python32\python is the path to the Python executable.
The second statement is the path to the main file of the pychoacoustics app.
You simply need to replace those two statements to reflect the Python instal-
lation on your system.

You can place the .bat launcher wherever you want, for example on your
Desktop folder. Simply double click on it, and pychoacoustics should start.

2.2.2 Installing from source

After installing the dependencies, it is recommended to add the directory
where the Python executable resides to the system PATH. In this way you can
call python from a DOS shell by simply typing its name, rather than typing the
full path to the Python executable.

By default python is installed in C:. The name of the Python directory de-
pends on its version number, for example, if you installed Python version 3.2,
the python directory will be C: \Python32. To add this directory to the system
path go to My Computer and click Properties, then click Advanced System
Settings. In the System Properties window click Environment Variables.
There you will find an entry called Path. Select it and click Edit. Be care-
ful not to remove any of the entries that are already written there because it
could corrupt your system. Simply append the name of the full path of the
folder where python is installed, at the end of the other entries.

To install pychoacoustics from source, unpack the pychoacoustics .zip
file containing the source code. Open a DOS shell and cd to the directory
where you unzipped pychoacoustics. The program can then be installed as a
standard python package using the following command:

python setup.py install

If you have installed the dependencies, you can also use pychoacoustics with-
out installing it. Open a DOS shell, cd to the directory where you unzipped
pychoacoustics and launch it with the following command:

python pychoacoustics.pyw

As mentioned in the previous section, there is also a .bat launcher that can
be used to launch pychoacoustics without needing to open a DOS shell each
time. You can read the previous section for further info.

Chapter 3

Graphical User Interface

The user interface is divided in two windows: the “Control Window” and
the “Response Box”. The “Control Window” is used to set the experimental
parameters, while the “Response Box” is the interface that the listeners use
to give their responses.

3.1 Quickstart

When pychoacoustics is launched, the “Control Window” displays the de-
fault parameters for the “Audiogram” experiment. You can select another
experiment using the “Experiment” drop-down menu, and edit any of the
parameter fields you want to modify. Once you're satisfied with the param-
eters, you can store them by pressing the “Store” button. This stores one
experimental block with the chosen parameters. At this point you can ei-
ther start running the experiment by pressing the “Start” button on the “Re-
sponse Box”, or you can add more experimental blocks by clicking on the
“New Block” button.

To save the parameters to a file click on the “Save Prm” button. Parameter
files that have been saved in this way can be later loaded into the program
by using the “Load Prm” button.

To save the results of your experiment to a file, click on the “Save Re-
sults” button. If you have forgotten to specify a results file in this way,
pychoacoustics will save the results in a file called test.txt in the work-
ing directory.

3.2 The Control Window

The control window contains a set of widgets to manage the setup of the
experiments, running the experiments, processing results files and manag-
ing application preferences. Some of the widgets are general, and some of
them are specific either to a given paradigm (e.g. adaptive vs constant stim-
uli paradigm) or to a given experiment.

In the next section the function of these widgets will be explained, starting
with the widgets that are general to all experiments and paradigms.

3.2.1 General Widgets (left panel)

e Listener This is simply a label that you can use to identify the person
who is running the experiment. This label will be written in the header
of the results file.

e Experiment Label. This is a label to identify the experiment you are
running. This label will be written in the header of the results file.

e Session This is a label to identify the experimental session, it can be a
number or a string. This label will be written in the header of the results
file.

e Condition Label This is a label to identify the experimental condition
of the current block of trials. It is optional, but it may be useful when
sorting the experimental results.

¢ End Command Here you can write an operating system command (e.g.
a bash command on Unix systems or a DOS command on Windows
systems) to be performed at the end of the experimental session. This
could be used to run a custom script to analyse the result files, make a
backup of the results files or other purposes. There are some variables
that can be accessed with a special string, such as the name of the results
file. These are listed in Section 6.5 Table 6.1. Please, refer to that section
for further info on how to use them.

o Shuffling Scheme By default when you click the “Shuffle” button, pychoacoustics
randomly shuffles all blocks, here you can specify different shuffling
schemes (e.g. shuffle the first four blocks among themselves and the
last four blocks among themselves). Please refer to Section 6.4 for more
details.

Results File Select a file for saving the results. Selecting an existing file
will never overwrite its content, it will simply append the new results to
its content. If no file is selected, the results will be saved in a file called
test.txt in the current working directory. You can select a file to save
the results even after you have started a block of trials, the results get
written to the file only at the end of the block.

Experimenter Here you can select one of the experimenters listed in the
experimenter database. Please refer to Section 3.6 for further info on the
experimenter database and how it can be used.

Experiment Selects the experiment for the current block.

Paradigm Selects the paradigm (e.g. adaptive, constant, etc...) for the
current block. The list of paradigms available depends on the experi-
ment that is selected.

Phones Choose from one of the phone models stored in the phones
database. Please, refer to Section 3.5 for further info on how to enter
phones and calibration values in the database.

Sample Rate (Hz) Set the sampling rate of the sounds to be played.
Any value can be entered in the text fields. However, you should enter
a value that is supported by your soundcard. A value that is not sup-
ported by your souncard may lead to issues, although it’s more likely
that your soundcard will perform an automatic sample rate conversion.

Bits Set the bit depth that pychoacoustics uses to store sounds to a wav
file or play them. Currently values of 16 and 32 bits are supported. A
value of 32 bits can be used for 24-bit soundcards. Notice that to achieve
24-bit output requires both a 24-bit souncard and a play command that
can output 24-bit sounds. Therefore selecting a value of 32 bits here
does not guarantee 24-bit playback even if you have a 24-bit souncard.
Please, refere to Section 6.1 for further information on this issue.

Repetitions Set the number of times the sequence of blocks stored in
memory should be repeated. If the “Shuftfle Mode” (see below) is set
to “auto”, each time a new repetition starts the block positions will be
shuffled. If the “Shuffle Mode” is set to “Ask”, each time a new rep-
etition starts the user will be asked if s/he wants to shuffle the block
positions. The “Reset” button resets the number of repetitions to zero.

Pre-Trial Silence (ms) Set a silent time interval before the start of each
trial.

Warning Interval Choose whether to present a warning light at the be-
ginning of each trial.

Warning Interval Duration (ms) Sets the duration of the warning in-
terval light. This widget is shown only if the warning interval chooser
is set to “Yes”.

Warning Interval ISI (ms) Sets the duration of the silent interval be-
tween the end of warning interval and the start of the first observation
interval. This widget is shown only if the warning interval chooser is
set to “Yes”.

Pre-Trial Interval Choose whether to present a pre-trial interval. This
widget is shown only for experiments that have a pre-trial interval op-
tion.

Pre-Trial Interval ISI (ms) Sets the duration of the silent interval be-
tween the end of pre-trial interval and the start of the first observation
interval. This widget is shown only if the current experiment has a pre-
trial interval option and the pre-trial interval chooser is set to “Yes”.

Response Light Set the type of response light at the end of each trial.
"Feedback” will flash a green (correct response) or red (incorrect re-
sponse) light. “Neutral” will flash a white light. “"None” will not flash
any light (there will nonetheless be a silent interval equal to the re-
sponse light duration, see below).

Response Light Duration (ms) Set the duration of the response light.

Shuffle Mode If the “Shuffle Mode” is “auto”, the block presentation
positions will be automatically shuffled at the beginning of a series of
blocks. If the “Shuffle Mode” is “Ask”, at the beginning of a series of
blocks the user will be asked if the block presentation positions should
be shuffled or not. If the “Shuffle Mode” is “No”, the block presentation
positions will not be automatically shuffled at the beginning of a series
of blocks. See Section 6.4 for further information on shuffling the block
presentation positions.

Response Mode When “Real Listener” is selected, pychoacoustics waits
for responses from a human listener. When “Automatic” is selected the
program will give responses by itself with a certain percentage correct,
that can be specified in the “Percent Correct (%)” text field. This mode
is mostly useful for debugging purposes, however it can also be used

10

for experiments in which the participants are passively listening to the
stimuli (e.g. some neuroimaging experiments that record cerebral re-
sponses rather than behavioural responses). In “Simulated Listener”
mode pychoacoustics will give responses on the bases of an auditory
model. This model needs to be specified in the experiment file, the
“Simulated Listener” mode provides just a hook to redirect the control
flow to your model. Please, refer to Section for more information.

3.2.2 General Widgets (right panel)

Load Prm Load in memory experimental parameters stored in a .prm
file. See section 6.2 for more info.

Save Prm Save experimental parameters stored in memory in a .prm
file. See section 6.2 for more info.

Delete Delete the current block from the blocks list.

Undo Unsaved Reset the parameters in the current block to the param-
eters that were last saved.

Store Store the parameters changes in memory.

Store 'n” add Store the parameter changes in memory and add a new
parameters block.

Store 'n’ go Store the parameter changes in memory and move to the
next block storage point.

New Block Create a new parameters block (the parameters of the cur-
rent block will be copied in the new one).

Previous Move to the previous block storage point.
Next Move to the next block storage point.
Shuffle Shuffle the block presentation positions.

Reset Reset the block presentation positions and move to the first block
position.

Jump to Block Jump to a given block storage point.

Previous Position Move to the previous block presentation position.

11

Next Position Move to the next block presentation position.

Jump to Position Jump to the given block presentation position.

Shift Blk. Down Shift the current block to a lower storage point.

Shift Blk. Up Shift the current block to a higher storage point.

3.2.3 Paradigm Widgets
Adaptive Paradigm Widgets

e Procedure If “Arithmetic” the quantity defined by the step size will be
added or subtracted to the parameter that is adaptively changing. If
“Geometric” the parameter that is adaptively changing will be multi-
plied or divided by the quantity defined by the step size.

e Initial Track Direction This determines when the first turpoint will be
called. If the initial track direction is “Down” the first turnpoint will
be called the first time the adaptive track turns upward. If the initial
track direction is “Up” the first turnpoint will be called the first time
the adaptive track turns downward.

e Rule Down Set the number of consecutive correct responses needed to
subtract the current step size from the adaptive parameter (for arith-
metic procedures) or divide the adaptive parameter by the current step
size (for geometric procedures).

e Rule Up Set the number of consecutive incorrect responses needed to
add the current step size to the adaptive parameter (for arithmetic pro-
cedures) or multiply the adaptive parameter by the current step size
(for geometric procedures).

e Initial Turnpoints Set the number of initial turnpoints. The initial turn-
points serve to bring quickly the adaptive track towards the listener’s
threshold. These turnpoints are not included in the threshold estimate.

e Total Turnpoints Set the number of total turnpoints. The number of
total turnpoints is equal to the number of initial turnpoints that are not
included in the threshold estimate plus the number of turnpoints that
you want to use for the threshold estimate.

o Step Size 1 Set the step size for the initial turnpoints.

12

e Step Size 2 Set the step size to be used after the number of initial turn-
points has been reached.

Weighted Up/Down Paradigm Widgets

e Procedure If “Arithmetic” the quantity defined by the step size will be
added or subtracted to the parameter that is adaptively changing. If
“Geometric” the parameter that is adaptively changing will be multi-
plied or divided by the quantity defined by the step size.

e Initial Track Direction This determines when the first turpoint will be
called. If the initial track direction is “Down” the first turnpoint will
be called the first time the adaptive track turns upward. If the initial
track direction is “Up” the first turnpoint will be called the first time
the adaptive track turns downward.

e Percent Correct Tracked Set the percentage correct point on the psycho-
metric function to be tracked by the adaptive procedure. The ratio of
the “Up” and “Down” steps is automatically adjusted by the software
to satisfy this criterion.

¢ Initial Turnpoints Set the number of initial turnpoints. The initial turn-
points serve to bring quickly the adaptive track towards the listener’s
threshold. These turnpoints are not included in the threshold estimate.

e Total Turnpoints Set the number of total turnpoints. The number of
total turnpoints is equal to the number of initial turnpoints that are not
included in the threshold estimate plus the number of turnpoints that
you want to use for the threshold estimate.

o Step Size 1 Set the “Down” step size for the initial turnpoints. The
“Up” step size is automatically calculated to satisfy the “Percent Cor-
rect Tracked” criterion.

o Step Size 2 Set the “Down” step size to be used after the number of
initial turnpoints has been reached. The “Up” step size is automatically
calculated to satisfy the “Percent Correct Tracked” criterion.

Adaptive Interleaved Paradigm Widgets

e Procedure If “Arithmetic” the quantity defined by the step size will be
added or subtracted to the parameter that is adaptively changing. If

13

“Geometric” the parameter that is adaptively changing will be multi-
plied or divided by the quantity defined by the step size.

No. Tracks Set the number of adaptive tracks.

Max. Consecutive Trials x Track Set the maximum number of consec-
utive trials per track.

Turnpoints to Average Since track selection is pseudo-random, it may
happen that for a track the number of total turnpoints collected is greater
than the number of total turnpoints requested for that track. If “All fi-
nal step size (even)” is selected, the threshold will be estimated using
all the turnpoints collected after the initial turnpoints, unless the num-
ber of these turnpoints is odd, in which case the first of these turnpoints
will be discarded. If “First N final step size” is selected the threshold
will be estimated using only the number of requested turnpoints col-
lected after the initial turnpoints. If “Last N final step size” is selected
the threshold will be estimated using only the last N turnpoints, where
N equals the number of requested turnpoints.

Initial Track X Direction This determines when the first turpoint will
be called for track number X. If the initial track direction is “Down”
the first turnpoint will be called the first time the adaptive track turns
upward. If the initial track direction is “Up” the first turnpoint will be
called the first time the adaptive track turns downward.

Rule Down Track X Set the number of consecutive correct responses
needed to subtract the current step size from the adaptive parameter
(for arithmetic procedures) or divide the adaptive parameter by the cur-
rent step size (for geometric procedures) for track number X.

Rule Up Track X Set the number of consecutive incorrect responses
needed to add the current step size to the adaptive parameter (for arith-
metic procedures) or multiply the adaptive parameter by the current
step size (for geometric procedures) for track number X.

Initial Turnpoints Track X Set the number of initial turnpoints for track
number X. The initial turnpoints serve to bring quickly the adaptive
track towards the listener’s threshold. These turnpoints are not in-
cluded in the threshold estimate.

Total Turnpoints Track X Set the number of total turnpoints for track
number X. The number of total turnpoints is equal to the number of ini-

14

tial turnpoints that are not included in the threshold estimate plus the
number of turnpoints that you want to use for the threshold estimate.

o Step Size 1 Track X Set the step size for the initial turnpoints for track
number X.

o Step Size 2 Track X Set the step size to be used after the number of
initial turnpoints has been reached for track number X.

Weighted Up/Down Interleaved Paradigm Widgets

e Procedure If “Arithmetic” the quantity defined by the step size will be
added or subtracted to the parameter that is adaptively changing. If
“Geometric” the parameter that is adaptively changing will be multi-
plied or divided by the quantity defined by the step size.

e No. Tracks Set the number of adaptive tracks.

e Max. Consecutive Trials x Track Set the maximum number of consec-
utive trials per track.

e Turnpoints to Average Since track selection is pseudo-random, it may
happen that for a track the number of total turnpoints collected is greater
than the number of total turnpoints requested for that track. If “All fi-
nal step size (even)” is selected, the threshold will be estimated using
all the turnpoints collected after the initial turnpoints, unless the num-
ber of these turnpoints is odd, in which case the first of these turnpoints
will be discarded. If “First N final step size” is selected the threshold
will be estimated using only the number of requested turnpoints col-
lected after the initial turnpoints. If “Last N final step size” is selected
the threshold will be estimated using only the last N turnpoints, where
N equals the number of requested turnpoints.

e Initial Track X Direction This determines when the first turpoint will
be called for track number X. If the initial track direction is “Down”
the first turnpoint will be called the first time the adaptive track turns
upward. If the initial track direction is “Up” the first turnpoint will be
called the first time the adaptive track turns downward.

e Percent Correct Tracked Set the percentage correct point on the psy-
chometric function to be tracked by the adaptive procedure for track
number X. The ratio of the “Up” and “Down” steps is automatically
adjusted by the software to satisfy this criterion.

15

e Initial Turnpoints Track X Set the number of initial turnpoints for track
number X. The initial turnpoints serve to bring quickly the adaptive
track towards the listener’s threshold. These turnpoints are not in-
cluded in the threshold estimate.

e Total Turnpoints Track X Set the number of total turnpoints for track
number X. The number of total turnpoints is equal to the number of ini-
tial turnpoints that are not included in the threshold estimate plus the
number of turnpoints that you want to use for the threshold estimate.

e Step Size 1 Track X Set the “Down” step size for the initial turnpoints
for track number X. The “Up” step size is automatically calculated to
satisfy the “Percent Correct Tracked” criterion.

e Step Size 2 Track X Set the “Down” step size to be used after the num-
ber of initial turnpoints has been reached for track number X. The
“Up” step size is automatically calculated to satisfy the “Percent Cor-
rect Tracked” criterion.

Constant m-Intervals n-Alternatives Paradigm Widgets

e No. Trials Set the number of trials to be presented in the current block.

e No. Practice Trials Set the number of practice trials to be presented in
the current block. Practice trials are presented at the beginning of the
block; the responses to these trials are not included in the statistics.

Multiple Constants m-Intervals n-Alternatives Paradigm Widgets

e No. Trials Set the number of trials to be presented in the current block
for each condition.

e No. Practice Trials Set the number of practice trials to be presented in
the current block for each condition. The responses to these trials are
not included in the statistics.

e No. Differences Set the number of conditions to be used in the current
block.

Constant 1-Interval 2-Alternatives Paradigm Widgets

e No. Trials Set the number of trials to be presented in the current block.

16

e No. Practice Trials Set the number of practice trials to be presented in
the current block. Practice trials are presented at the beginning of the
block; the responses to these trials are not included in the statistics.

Multiple Constants 1-Interval 2-Alternatives Paradigm Widgets

e No. Trials Set the number of trials to be presented in the current block
for each condition.

e No. Practice Trials Set the number of practice trials to be presented in
the current block for each condition. The responses to these trials are
not included in the statistics.

e No. Differences Set the number of conditions to be used in the current
block.

1-Pair Same/Different Paradigm Widgets

e No. Trials Set the number of trials to be presented in the current block.

e No. Practice Trials Set the number of practice trials to be presented in
the current block. Practice trials are presented at the beginning of the
block; the responses to these trials are not included in the statistics.

3.2.4 The Menu Bar

A screenshot of the menu bar is shown in Figure 3.1. This bar is located in
the upper left corner of the “Control Window”. Each menu will be described
below.

Figure 3.1: The menu bar.
AN

File Edit Tools Help ?

The File Menu

e Process Results Process block summary results files to obtain session
summary results files. For more info see Section 3.3.

e Process Results Table Process block summary results table files to ob-
tain session summary table results files. For more info see Section 3.3.

17

e Open Results File Open the file where pychoacoustics is currently
saving data with the default text editor.

e Exit. Close pychoacoustics.

The Edit Menu

o Edit Preferences Edit application preferences. See Section 3.4 for fur-
ther info.

e Edit Phones Edit the phones database, and set the calibration levels for
your phones. See Section 3.5 for further info.

e Edit Experimenters Edit the experimenters database. See Section 3.6
for further info.
The Tools Menu

e Swap Blocks Swap the storage position of two parameter blocks.

The Help Menu

e Fortunes Show psychoacoustics fortunes. I'm always collecting new
ones, so if you happen to know any interesting ones, please, e-mail
them to me so that I can add them to the collection.

e About pychoacoustics Show information about the licence, the version
of the software and the version of the libraries it depends on.
The “what’s this?” Button.

If you click on this button, and then click on a widget, you can get some
information about the widget (this is not implemented for all widgets).

3.3 Process Results Dialog

Figure 3.2 show a screenshot of the process results dialog. The dialog is the
same for all procedures, except that for procedures in which d” is computed,
there is an additional checkbox asking whether to apply a correction to hit/-
false alarm rates of zero or one. For information on the format of the result
files, please see Section 6.3.

18

Figure 3.2: The process results dialog. .
) Process Results Adaptive (2 > e (36

Input File(s) Give the filepath of one or more files to be processed. The
“Choose File” button can be used to select the file(s). Multiple filepaths

“

should be separated by a semicolon “;”.
Output File Give the filename of the output file.
For each condition process:

— All Blocks If checked, all blocks in the result file(s) will be pro-
cessd.

— Last X Blocks If checked, only the last X blocks will be processed.
— Blocks in the following range If checked, only blocks in the spec-
ified range will be processed (indexing starts from 1).

d-prime correction If checked, convert hit rates of 0 and 1 to 1/2N and
1 —1/(2N) respectively, where N is the number of trials, to avoid infi-
nite values of d” (see Macmillan & Creelman, 2005, p. 8). This checkbox
is available only for some paradigms.

When finished, open results file If checked, the output file will be
opened in the default text editor when processing has finished.

19

3.4

When finished, open results folder If checked, the folder containing
the output file will be opened when processing has finished.

Run! Click this button to process the result files.

Edit Preferences Dialog

The preferences dialog is divided into several tabs. These are described in
turn below.

3.4.1 General

Language (requires restart) Choose the application language. At the
moment and for the foreseeable future only English is supported.

Country (requires restart) Set the country locale to be used for the ap-
plication. Some things (e.g. the way dates are written in result files
depend on this setting.

Response Box Language (requires restart) Choose the language to be
used for the “Response Box”. This set the language to be used for the
button labels and other GUI elements that the experimental listener is
presented with.

Response Box Country (requires restart) Set the country locale for the
response box.

csv separator Choose the separator field to be used when writing the
csv tabular result files.

Warn if listener name missing If checked, pop up a warning message
if the listener name is missing at the beginning of a session.

Warning if session label missing If checked, pop up a warning mes-
sage if the session label is missing at the beginning of a session.

Process results when finished If checked, process automatically the
block summary file to generate the session summary file at the end of
the experiment.

d-prime correction If checked, when automatically processing result
files, convert hit rates of 0 and 1 to 1/2N and 1 — 1/(2N) respectively,
where N is the number of trials, to avoid infinite values of d” (see Macmil-
lan & Creelman, 2005, p. 8).

20

Max Recursion Depth (requires restart) Set the maximum recursion
depth of the Python interpreter stack. This setting should be changed
only if you intend to run pychoacoustics in automatic or simulated
listener response mode. Beware, setting a max recursion depth value
smaller than the default value may cause pychoacoustics to crash or
not even start. In case pychoacoustics does not start because of this,
delete your preferences settings file to restore the default max recursion
depth value.

3.4.2 Sound

Play Command Set an internal or external command to play sounds.

Device Set the soundcard to be used to play sounds. This chooser is
available only for certain internal play commands (currently alsaaudio
and pyaudio).

Buffer Size (samples) Set the buffer size in number of samples to be
used to output sounds. This chooser is available only for certain inter-
nal play commands (currently alsaaudio and pyaudio).

Default Sampling Rate Set the default sampling rate.
Default Bits Set the default bit depth.
Wav manager (requires restart) Choose the wav manager.

Write wav file Write wav files with the sounds played on each trial in
the current pychoacoustics working directory.

Write sound sequence segment wavs For sound sequences, write a
wav file for each segment of the sequence in the current pychoacoustics
working directory.

Append silence to each sound (ms) Append a silence of the given du-
ration at the end of each sound. This is useful on some versions of the
Windows operating system that may cut the sound buffer before it has
ended resulting in audible clicks.

3.4.3 Notifications

Play End Message If checked, play a wav file at the end of the experi-
ment. This could be short message to let the listeners know they have

21

finished and thank them for their participation in the experiment. One
or more wav files need to be set through the “Choose wav” button for
this work.

Choose wav Choose the wav file to be played as the end message.
Clicking on this button brings up another dialog where you can se-
lect the wav files to be played and their output RMS. Only one of the
wav files listed here and with the “Use” flag set to v/ will be randomly
chosen and played.

blocks before end of experiment Set how many blocks before the end
of the experiment the two actions listed below (send notification e-mail
and execute custom command) should be performed.

Send notification e-mail If checked, send a notification e-mail to the
experimenter to notify her that the experiment is about to finish.

Execute custom command If checked, execute an operating system com-
mand before the end of the experiment. This command could be used
to automatically send an sms for example.

Send data via e-mail At the end of the experiment, send the results file
to the experimenter .

Execute custom command At the end of the experiment, execute an
operating system command.

Outgoing Server (SMTP) Set the name of the SMTP server to be used
by pychoacoustics to send e-mails.

Port Set the port number for the SMTP server.

Security Set the security protocol for network exchanges with the SMTP
server.

Server requires identification Check this if the SMTP server requires
identification.

Username Set the username for the SMTP server.
Password Set the password for the SMTP server.

Send test e-mail Send a test e-mail to check that the server settings are
OK.

22

3.4.4 EEG
e ON Trigger The ON trigger value (decimal).

o OFF Trigger The OFF trigger value (decimal).

e Trigger Duration (ms) The duration of the trigger in milliseconds.

3.5 Edit Phones Dialog

A screenshot of the “Edit Phones” dialog is shown in Figure 3.3. Most of

Figure 3.3: The edit phones dialog.

Q o/ Edit Phones

=

(~
(s
>

Rename Phones Phones ¢ Maxlevel Default TR T

Frequency (Hz) | 1000
Change Max Level 1 |Phones 1 100 v a y (Hz)

Level (dB) &0
Add Phones 2 (Phenes 2 100 =

Duration (ms) | 4980
Remove Phones

Ramps (ms) 10
Sek Default
Ear: Right v

Play

Stop

l ¥ 0K || </ Apply || ®Cancel |

the fields should be pretty much self-explanatory. Using this dialog you can
add headphones/earphones models to the phones database. The phone with
the “Default” flag set to ¥/ will be selected by default when pychoacoustics
is started. In the “Max Level” field you should enter the level in dB SPL
that is output by the phone for a full amplitude sinusoid. This value will be
used by pychoacoustics to output sounds at specific levels in dB SPL. On
the rightmost panel of the dialog you have facilities to play a sinusoid with
a specified level. You can use these facilities to check with a SPL meter (or
a voltmeter depending on how you're doing it) that the actual output level
corresponds to the desired output level. Using these facilities you can also
play a full amplitude sinusoid: you need to set the level of the sinuoid to the
“Max Level” of the phone (whatever it is). Be careful because it can be very
loud!

23

3.6 Edit Experimenters Dialog
A screenshot of the “Edit Experimenters” dialog is shown in Figure 3.4. Most

Figure 3.4: The edit experimenters dialog.

pychoacouskics. pyw

of the fields should be pretty much self-explanatory. Here you can add the
details of the experimenters that work in your lab in the experimenter database.
The main functions of this database at the moment are a) writing the experi-
menter name in the results file; b) using the experimenter e-mail for sending
notifications and/or results files (see Section 3.4.3).

3.7 The Response Box

The “response box” consists of a large button (the “status button”) that is
used to start a block of trials, a feedback light to display trial by trial feed-
back, interval lights to mark observation intervals, and response buttons. The
responses can be given either by means of mouse clicks, or using the numeric
keypad (key “1” for the first button, key “2” for the second button etc...).
Responses given before all observation intervals have been presented are not
accepted.

The status button can be activated by pressing the Ctrl+R shortcut. At
the start of each block the label of the “Status Button” is set to “Start”. Once

24

the listener starts a block of trials the label of the status button changes to
“Running”. When a whole series of blocks is finished the label of the status
button changes to “Finish”. If no blocks are stored in memory the label of the
status button is set to “Wait”.

On the top left corner of the response box there is a semi-hidden menu
signalled by a little hyphen (“-”). If you click on it you have access to two
functions. The “Show /Hide Control Window” function can be used to hide
the control window while the experiment is running. This is useful because
it prevents the listener from accidentally changing your experimental param-
eters or accidentally closing pychoacoustics (the response box itself has no
“close” button, so it is not possible to close that). The “Show /Hide progress
Bar” function can be used to display a progress bar at the bottom of the re-
sponse box. The progress bar estimates what percentage of the experiment
has been completed. This estimate depends on the procedure used (for con-
stant procedures it is based on the number of trials done, while for adaptive
procedures it is based on the number of turnpoints reached) and on the spe-
cific parameters of a given experiment (trial duration, number of trials, or
number or turnpoints, all of which can differ between blocks), so in some
cases the estimate can be off the mark. The “Show /Hide block progress Bar”

can be used to show the position of the current block and the total number of
blocks.

25

Chapter 4

Command Line User Interface

In order to automate certain tasks, or perform some advanced operations,
pychoacoustics can be called from the command line with certain command
line options. The following is the list of possible command line options:

e -h, --help Show help message.

e -f, ——file FILE Load parameters file FILE.

e -r, ——results FILE Save the results to file FILE.

e -1, —-listener LISTENER Set listener label to LISTENER.
e -s, —-session SESSION Set session label to SESSION.

e -k, —-reset Reset block positions.

e —q, —-quit Quit after finished.

e —c, —-conceal Hide Control and Parameters Windows.
e -p, ——progbar Show the progress bar.

e -b, --blockprogbar Show the progress bar.

e -a, --autostart Automatically start the first stored block.

e -x, —-recursion-depth Set the maximum recursion depth (this over-
rides the maximum recursion depth set in the preferences window).

e —g, —-graphicssystem sets the backend to be used for on-screen wid-
gets and QPixmaps. Available options are raster and opengl.

26

e -d, --display This option is only valid for X11 and sets the X display
(default is $DISPLAY).

each command line option has a short (single dash, one letter) and long (dou-
ble dash, one word) form, for example to show the help message, you can use
either of the two following commands:

$ pychoacoustics -h
$ pychoacoustics --help

27

Chapter 5

Psychophysics

5.1 Available Paradigms

Adaptive

This paradigm implements the “up/down” adaptive procedures described
by Levitt (1971). It can be used with n-intervals, n-alternatives forced choice
tasks, in which n — 1 “standard” stimuli and a single “comparison” stimulus
are presented each in a different temporal interval. The order of the temporal
intervals is randomized from trial to trial. The “comparison” stimulus usu-
ally differs from the “standard” stimuli for a single characteristic (e.g. pitch
or loudness), and the listener has to tell in which temporal interval it was
presented. A classical example is the 2-intervals 2-alternatives forced choice
task. Tasks that present a reference stimulus in the first interval, and there-
fore have n intervals and n — 1 alternatives are also supported (see Grimault,
Micheyl, Carlyon, & Collet, 2002, for an example of such tasks).

Adaptive Interleaved

This paradigm implements the interleaved adaptive procedure described by
Jesteadt (1980).

Weighted Up/Down

This paradigm implements the weighted up/down adaptive procedure de-
scribed by Kaernbach (1991).

28

Weighted Up/Down Interleaved

This paradigm combines the interleaved adaptive procedure described by
Jesteadt (1980) with the weighted up/down method described by Kaernbach
(1991).

Constant m-Intervals n-Alternatives

This paradigm implements a constant difference method for forced choice
tasks with m-intervals and n-alternatives. For example, it can be used for
running a 2-intervals, 2-alternatives forced choice frequency-discrimination
task with a constant difference between the stimuli in the standard and com-
parison intervals.

Constant 1-Interval 2-Alternatives

This paradigm implements a constant difference method for tasks with a sin-
gle observation interval and two response alternatives, such as the “Yes/No”
signal detection task.

Constant 1-Pair Same/Different

This paradigm implements a constant difference method for “same/differ-
ent” tasks with a single pair of stimuli to compare.

5.2 Available Experiments

29

Chapter 6

The pychoacoustics Engine

6.1 Sound Output

Sound Output on Linux

On Linux systems pychoacoustics can either output sound (numpy arrays)
directly to the soundcard, or write a wav file for each sound and call an ex-
ternal command to play it. Currently, support for sending sounds directly to
the soundcard is possible only through the alsaaudio python module. This
module is optional, and you need to install it yourself to be able to use it.

Once it is installed, it will be detected automatically and you will be able
to select it as the “Play Command” in the sound preferences dialog. When
you select “alsaaudio” as the play command, if you have multiple sound-
cards, you can select the device to which the sound will be sent. There will be
also an option to set the size of the buffer that alsaaudio uses to play sounds.
If the buffer is not filled completely by a sound (buffer size greater than num-
ber of samples in the sound), it will be zero padded. This may lead to some
latency between the offset of a sound and the onset of the following one. If
you set a value smaller than one the buffer size will be automatically set to
the number of samples in the sound that is being played.

Using an external command to play sounds generally works very well
and is fast on modern hardware. pychoacoustics tries to detect available
play commands on your system each time it starts up. On Linux systems, the
recommended play command is aplay, which is installed by default on most
Linux distributions. aplay supports 24-bit output on 24-bit soundcards with
appropriate Linux drivers. Other possible play commands are play, which
is provided by sox and sndfile-play, which is provided by the libsndfile
tools. You can call another program by choosing “custom” in the “Play Com-
mand” drop-down menu and spelling out the name of the command in the

30

http://pyalsaaudio.sourceforge.net/
http://sox.sourceforge.net/
http://www.mega-nerd.com/libsndfile/

box below.

Sound Output on Windows

Currently, on Windows systems pychoacoustics cannot output sounds di-
rectly to the soundcard. It writes instead a wav file and calls an external
play commands to output the sound. The recommended play command is
winsound. This command supports only 16-bit output.

Other possible play commands are play, which is provided by sox and
sndfile-play, which is provided by the libsndfile tools. These programs
need to be installed by the user. If they are in the system path, pychoacoustics
will detect them automatically. I am not aware of any freely available play
command that can output 24-bit sound in Windows. Portaudio could be
a used, and the Python bindings provided by pyaudio have been recently
ported to Python 3. I have not tried this solution (and don’t have much time
to do it), if you want to try it, you need to be aware that in order to get 24-
bit audio, portaudio should be probably compiled with ASIO support, and
compiling portaudio on Windows with ASIO support is quite a complicated
process. Note that external media players with a graphical user interface (like
foobar2000) may not work well with pychoacoustics.

6.2 Parameters Files

Parameters files are plain text files, that can be modified through pychoacoustics
or through a text editor. They contain a header with information that applies

to all all the experimental blocks stored in a parameters file, and sections
corresponding to the parameters that are specific to each experimental block
store in a parameters file. The header contains the following fields:

e Phones

Shuffle Mode

Sample Rate

Bits

Experiment Label

End Command

31

http://sox.sourceforge.net/
http://www.mega-nerd.com/libsndfile/

You can refer to Section 3.2.1 to know what each of these fields represents.
The sections that contain the parameters for each experimental block are
subdivided into fields that are separated by one or more dots. You should
not change this formatting when modifying parameters files.
A fragment from a parameters file is shown below:

Paradigm: Adaptive
Intervals: 2 :False
Alternatives: 2 :False

each entry here has two or three elements separated by colons. The first
element represents the variable of interest, the second element its value, and
the third element is a logical value that determines whether the inSummary
checkbox will be checked or not (see Section 6.3 for more info on this). You
can have one or more spaces between each element and the colon separator.
Each entry has to be written on a single line.

6.3 Results Files

pychoacoustics outputs several types of results files. If you name your re-
sults file “myres”, the following files will be output:

e myres.txt, “block summary”
e myres_full.txt “full file”
e myres_table.csv “table block summary”
two further files can be derived from these:
e myres_res.txt “session summary”
e myres_table_processed.txt “table session summary”

The “block summary” results file has no special suffix, and contains sum-
maries for each experimental block that was run. The “full” results file has a
“_full” suffix and contains information for each single trial. The “block sum-
mary” results file can be usually processed to obtain a “session summary”
results file with a “_res” suffix, that contains summaries for an entire exper-
imental session. In this file the results are averaged across different blocks
that have exactly the same parameters.

All these files are human and machine-readable, but they are not very
machine-friendly for data analysis. That is, they can require quite a lot of

32

either manual work or programming code to separate the headers and the
labels from the values of interest (e.g., thresholds or d” values) before the data
can be input to a statistical software package. For this reason, pychoacoustics
outputs also a “block summary table” result file with a “_table” suffix that is
written in a tabular format, and contains summaries for each experimental
block that was run. This file can be further processed to obtain a “session
summary table” results file with a “_table_processed” suffix, that contains
summaries for an entire experimental session. In this file the results are av-
eraged across different blocks that have exactly the same parameters stored
in the “_table” file.

In order to obtain the “_res” and “_table_processed” session summary
files you need to use the appropriate functions that can be accessed from
the “File” menu. Alternatively, you can check the “Process results when fin-
ished” checkbox in the “Preferences” window to let pychoacoustics auto-
matically process these files at the end of an experimental session. If pro-
cessing the result files manually, choose “Process Results” from the “File”
menu, to convert a block summary file into a “_res” session summary file.
Choose “Process Results Table” to convert a block summary table file into
a “_table_processed” session summary file. In both cases you will need to
use the appropriate subfunction for the paradigm (e.g., adaptive, constant
l-interval 2-alternatives, etc...) that was used in the experiment. You can
choose to process all blocks present in the file (default action), the last n
blocks (of each condition), or a range of blocks (for each condition). Once
you have selected the file to process and specified the blocks to process you
can click “Run!” to perform the processing.

The tabular results files are comma separated value (csv) text files that
can be opened in a text file editor or a spreadsheet application. The separator
used by default is the semicolon “;”, but another separator can be specified in
the pychoacoustics preferences window. When processing block summary
table files, make sure that the csv separator in the “Process Results Table”
window matches the separator used in the file.

4

Tabular Results Files

The tabular result files contain a number of default columns, that are spe-
cific to the paradigm used in the experiment (e.g., threshold, number of tri-
als etc...). Columns with additional parameters can be stored in these files.
Several text fields and choosers in pychoacoustics have what we will call
inSummary check boxes. Some of these are shown marked by ellipses in Fig-
ure 6.1. In the example shown in Figure 6.1 the frequency, level and ear
parameters will be stored, each in a separate column, in the block summary

33

Figure 6.1: inSummary check boxes.

Frequency (Hz) 1000] . Ear: | Right v |

i -
Level (dB SPL) | 5O Type:! | Sinusoid |

Duration {ms) 180

Ramps (ms) (10

table (“_table”) file, while the parameters corresponding to the unchecked
boxes (duration, ramps and type) will be not. This is useful if you are running
an experiment in which you are systematically varying only a few parame-
ters across different blocks, and want to keep track of only those parameters.
The inSummary check boxes also provide visual landmarks for quickly spot-
ting the widgets with your parameters of interest in pychoacoustics.

Notice that the “Process Results Table” function, as mentioned in the pre-
vious section, will average the results for blocks with the same parameters
stored in the block summary table (“_table”) file. This means that if you are
varying a certain parameter (e.g., level) across blocks, but you don’t check
the corresponding inSummary check box (for each block), the value of the pa-
rameter will not be stored in the block summary table (“_table”) file, and as a
consequence the “Process Results Table” function will not be able to sort the
blocks according to the “level” parameter, and will average the results across
all blocks. Not all is lost, because the “level” parameter will be nonetheless
stored in the “block summary” file, but you will need more work before you
can process your results with a statistical software package.

Log Results Files

pychoacoustics automatically saves backup copies of the “block summary”
and “full” files in a backup folder. On Linux systems this folder is located in

“/.local/share/data/pychoacoustics/data_backup
on Windows systems it is located in
C:\\Users\username\.local\share\data\pychoacoustics\data_backup

where username is your account login name. A separate file is saved for each
block of trials that is run. These files are named according to the date and
time at which the blocks were started (the naming follows the YY-MM-DD-
HH-MM-SS scheme). Unlike other results files, that are written only once a

34

block of trials has been completed, these log results files get written as soon
as information is available (e.g., a new line in the “full” results file is written
at the end of each trial).

Adaptive and Weighted Up/Down Result Files
Adaptive and Weighted Up/Down Interleaved Result Files

6.3.1 Constant m-Intervals n-Alternatives Result Files

6.3.2 Multiple Constants m-Intervals n-Alternatives Result
Files

6.3.3 Constant 1-Intervals 2-Alternatives Result Files
6.3.4 Multiple Constants 1-Intervals 2-Alternatives Result Files
6.3.5 Constant 1-Pair Same/Different Result Files

6.4 Block Presentation Position

We will define the serial position at which a block is presented during an
experimental session as its “presentation position”, and the serial position at
which a block is stored in a parameters file as its “storage point”.

Clicking the “Shuffle” button randomises the presentation positions of the
blocks, but leaves the order in which the blocks are stored in a parameters
file untouched. The “Previous” and “Next” buttons, as well as the “Jump
to Block” chooser let you navigate across the blocks storage points, while the
“Previous Position”, and the “Next Position” buttons, as well as the “Jump to
Position” chooser let you navigate across the blocks presentation positions.

The block presentation positions are recorded in the parameters files. This
is useful in case you have to interrupt an experimental session whose block
presentation positions had been randomized, before it is finished, and con-
tinue it at a later date. In this case you can save the parameters file, reload
it next time, and let the listener complete the experimental blocks that s/he
had not run because of the interruption. Notice that each time you load a
parameters file pychoacoustics will automatically move to the first block
presentation position. Therefore, you will have to note down what was the
last block that your listener had run in the interrupted session (or find out
by looking at the results file) and move to the presentation position of the
following block yourself.

35

By default clicking on the “Shuffle” button performs a simple full ran-
domization of the block presentation positions. However, you can specify
more complex shuffling schemes in the “Shuffling Scheme” text field. Let’s
say you want to present two tasks in your experiment, a frequency discrim-
ination and an intensity discrimination task. Each task has four subcondi-
tions, (e.g. four different base frequencies for the frequency discrimination
task and four different base intensities for the intensity discrimination task).
Your parameters file will contain eight blocks in total, blocks one to four are
for the frequency discrimination task and blocks five to eight are for the in-
tensity discrimination task. During the experiment you want your partic-
ipants to run first the four frequency discrimination conditions in random
order, and afterwards the four intensity discrimination conditions in random
order. To achieve this you can enter the following shuffling scheme:

([1’273,4]’ [5,677’8])

basically you specify sequences (which can be nested) with your experimen-
tal blocks, sequences within round parentheses () are not shuffled, while
sequences within square brackets [] are shuffled. Following the previous ex-
ample, if you want to present first the four blocks of one of the tasks (either

frequency or intensity) in random order, and then the four blocks of the other
task in random order, you would specify your shuffling scheme as follows:

(1,2,3,4], [5,6,7,8]]

on the other hand, if you want to present first the four blocks of one of the
tasks (either frequency or intensity) in sequential order and then the four
blocks of the other task in sequential order, you would specify your shuffling
scheme as follows:

[(1,2,3,4), (5,6,7,8)]

you can have any variation you like on the theme, and the lists can be nested
ad libitum, so for example you could have:

[(1,2,03,41), (5,6,7,8)]

this would instruct pychoacoustics to present first either the four frequency
conditions or the four intensity conditions. The first two frequency condi-
tions are presented sequentially, while the last two are shuffled. To save
typing you can give ranges rather than listing all blocks individually. For
example:

([1-4]1, [5-81)

is equivalent to:
([1’2,3,4], [536,7,8])

36

6.5 OS Commands

pychoacoustics can be instructed to run operating system (OS) commands
at the end of an experiment. This may be useful to run custom scripts that
may analyse the result files, backup result files or perform other operations.

In the control window, you can enter commands that you want to be ex-
ecuted at the end of a specific experiment in the "End Command” box. This
command will be saved in the parameters file of the experiment.

In the "Preferences Dialog”, under the “Notifications” tab you can instead
set a command that will be executed at the end of each experiment you run,
or n blocks before the end of each experiment you run. These commands
should be entered in the “Execute custom command” boxes.

The commands that you can execute are OS commands, therefore they
are different on Linux and Windows platforms. On Linux, for example, as-
suming that you store all your experimental results in the directory ” /home-
/foo/exp/”, you could automatically make a backup of these files in the
directory ” /home/foo/backup/exp/” by using the command

rsync -r -t -v --progress -s /home/foo/exp/ /home/foo/backup/exp/

To make things more interesting, you can use some special strings to
pass pychoacoustics internal variables to your commands. For example,
if you want to copy the results file of the current experiment to the directory
”/home/foo/res/”, you can use the command

cp [resFile] /home/foo/backup/exp/

here the special string [resFile] will be converted to the name of the file
where pychoacoustics has saved the data. A full listing of these special
strings is given in Table 6.1.

Table 6.1: Special strings for OS end command.

String Variable

[resDir] Results file directory

[resFile] Block summary results file
[resFileFull] Full results file

[resFileRes] Session summary results file
[resTable] Block summary table results file
[listener] Listener label

[experimenter] Experimenter ID

37

6.6 Preferences Settings

All the settings that can be manipulated in the “Preferences” dialog, as well
as the “Phones” and “Experimenters” dialogs are stored in a file in the user
home directory. On Linux this file is located in:

~/.config/pychoacoustics/preferences.py
On Windows, assuming the root drive is “C” it is located in:
C:\\Users\username\.config/pychoacoustics\preferences.py

where username is your Windows login username. Although I strive to avoid
this, the way in which the preferences settings are stored may change in
newer versions of pychoacoustics. This means that when pychoacoustics is
upgraded to a newer version it may sometimes not start or throw out er-
rors. To address these issues, please, try removing the old preferences file.
Of course this means that you're going to lose all the settings that you had
previously saved. To avoid loosing any precious information, such as the
calibration values of your headphones, write down all important info before
removing the preferences file.

6.7 Response Mode

pychoacoustics was designed to run interactive experiments in which a lis-
tener hears some stimuli and gives a response through a button or key press.
This is the default mode, called “Real Listener” mode. pychoacoustics pro-
vides two additional response modes, “Automatic” and “Simulated Listener”.
These modes can be set through the control window.

In “Automatic” response mode, rather than waiting for the listener to give
a response, pychoacoustics gives itself a response and proceeds to the next
trial. The probability that this automatic response is correct can also be set
through the control window. The “Automatic” response mode has two main
functions. The first is testing and debugging an experiment. Rather than
running the experiment yourself, you can launch pychoacoustics in “Auto-
matic” response mode and check that everything runs smoothly, the program
doesn’t crash, and the result files are saved correctly. The second function of
the automatic response mode is to allow passive presentation of the stim-
uli. Some neuroimaging experiments (e.g. electroencephalographic or func-
tional magnetic resonance recordings) are performed with listeners passively
listening to the stimuli. These experiments usually also require that the pro-
gram presenting the stimuli sends triggers to the recording equipment to flag

38

the start of a trial. Potentially this can also be done in pychoacoustics (and
we’ve done it in our lab for electroencephalographic recordings), but at the
moment this functionality is not implemented in a general way in the pro-
gram.

The “Simulated Listener” mode is simply a hook that allows you to redi-
rect the control flow of the program to some code that simulates a listener
and provides a response. Notice that pychoacoustics does not provide any
simulation code in itself, the simulation code has to be written by you for a
specific experiment. If no simulation code is written in the experiment file,
pychoacoustics will do nothing in simulated listenr mode. Further details
on how to use the “Simulated Listener” mode are provided in Section 7.1.

Both the “Automatic” and the “Simulated Listener” make recursive func-
tion calls. In Python the number of recursive function calls that you can make
is limited. If your experiment passes this limit pychoacoustics will crash.
The limit can be raised, up to a certain extent (which is dependent on your
operating system, see the documentation for the setrecursionlimit function
in the Python sys module) through the “Max Recursion Depth” setting that
you can find in the preferences window, or set through a command line op-
tion when running pychoacoustics from the command line. Notice that the
total number of recursive calls that your program will make to complete an
experiments will be higher than the number of trials in the experiment, so
you should set the “Max Recursion Depth” to a value higher than the num-
ber of trials you're planning to perform (how much higher I don’t know, you
should find out by trial and error, a few hundred points higher is usually suf-
ficient). If you're planning to run a very high number of trials in “Automatic”
or “Simulated Listener” mode, rather than raising the max recursion depth,
it may be better to split the experiment in several parts. You can always write
a script that automatically launches pychoacoustics from the command line
instructing it to load a given parameters file. On UNIX machines you could
write a shell script to do that, but an easier way is perhaphs to use python
itself to write the script. For example, the python script could be:

#! /usr/bin/env python
for i in range(5):
and = “pychoacoustics —file prms.prm —1 L1 —s s1 —q —a \
—recursion—depth 3000”

[here we're telling pychoacoustics to load the parameters file prms. prm, set
the listener identifier to “L1” and the session label to s1. The -q option in-
structs the program to exit at the end of the experiment. This way the recur-
sion depth count is effectively restarted each time pychoacoustics is closed

39

and launched again from the script. When the --recursion-depth option is
passed as a command line argument, as in the example above, it overrides
the max recursion depth value set in the preferences window. If the -a option
is passed, as in the examples above, pychoacoustics will start automatically
at the beginning of each of the five series . This is useful for debugging or
simulations, so that you can start the script and leave the program complete
unattended (you need to make sure that the “Shuffling Mode” is not set to
“Ask” and that you pass listener and session labels if you want the program
to run completely unattended).

40

Chapter 7

Designing Custom Experiments

In order to add a new experiment to pychoacoustics, create a directory in
your home folder called pychoacoustics_experiments, inside this folder cre-
ate a subfolder called custom_experiments. Each experiment is written in a
single file contained in this folder. Let’s imagine we want to create an ex-
periment for a simple frequency discrimination task. We create a file named
freq.py in the custom_experiments folder. In addition to the experiment
file we need an additional file that lists all the experiments contained in the
custom_experiments directory. This file must be named __init__.py, and in
our case it will have the following content:

_-call__ = [7freq”]

here the variable __all__ is simply a python list with the name of the
experiment files. So, if one day we decide to write a new experiment on, let’s
say, level discrimination, in a file called lev.py we would simply add it to
the listin __init__.py:

_-all__ = ["freq”,
f/le\'//]

For people familiar with packaging Python modules it should be clear by
now that the custom experiments folder is basically a Python package con-
taining various modules (the experiment files). If at some point we want to
remove an experiment from pychoacoustics, for example because it contains
a bug that does not allow the program to start, we can simply remove it from
the listin __init__.py

Let’s go back to the freq.py file. Here we need to define four functions.
For our example the names of these functions would be:

41

initialize_freq ()
select_default_parameters_freq ()
get_fields_to_hide_freq ()
doTrial_freq ()

basically the function names consist of a fixed prefix, followed by the name
of the experiment file. So in the case of the level experiment example written
in the file lev.py, our four functions would be called:

initialize_lev ()
select_default_parameters_lev ()
get_fields_to_hide_lev ()
doTrial_lev ()

N

we’ll look at each function in details shortly. Briefly, the initialize_ func-

tion is used to set some general parameters and options for our experiment;

the select_default_parameters_ function lists all the widgets (text fields

and choosers) of our experiment and their default values; the get _field_to_hide_
function is used to dinamically hide or show certain widgets depending on

the status of other widgets; finally, the doTrial_ function contains the code

that generates the sounds and plays them during the experiment.

The initialize_ function

The initialize_ function of our frequency discrimination experiment looks
like this:

def initialize_freq (prm):

exp-name = "“Frequency Discrimination Demo”

prm[”experimentsChoices”]. append (exp_name)

prm[exp_name] = {}

prm[exp_name]["paradigmChoices”] = [”Adaptive”,
"Weighted Up/Down”,
“Constant m-Intervals n—

Alternatives”]

prm[exp_name][“opts”] = [“hasISIBox”, ”"hasAlternativesChooser”,
"hasFeedback”, ”"hasIntervalLights”]

prm[exp_name][“execString”] = "freq”
return prm

42

When the function is called, it is passed a dictionary containing various pa-
rameters through the “prm” argument. The function receives this dictionary
of parameters and adds or modifies some of them. In the first line we give a
label to the experiment, this can be anything we want, except the label of an
experiment already existing. The second line adds this experiment label to
the list of “experimentsChoices”. The third line creates a new sub-dictionary
that has as a key the experiment label. Next we list the paradims that our
experiment supports by creating a “paradigmChoices” key and giving the
names of the supported paradigms as a list. These paradims listed here must
be within the set of paradims supported by pychoacoustics (see Section 5.1
for a description of the paradigms currently supported). In the next line we
set an “opts” key containing a list of options. The full list of options that
can be set here is described in details in Section 7. In brief, for our exper-
iment we want to have a widget to set the ISI between presentation inter-
vals (hasISIBox), a widget to choose the number of response alternatives
(hasAlternativesChooser), a widget to set the feedback on or off for a given
block of trials (hasFeedback), and finally we want lights to mark the observa-
tion intervals (hasIntervalLights). The penultimate line of the initialize_
function sets the “execString” of our experiment. This must be the name of
our experiment file, so in our case “freq”.

The select_default parameters_function

The select_default_parameters_ function is the function in which you de-
fine all the widgets (text fields and choosers) needed for your experiment.
For our frequency discrimination experiment, the first lines look as follow:

def select_default_parameters_freq(parent, paradigm, par):

field = []

fieldLabel =
chooser = []
chooserLabel = []
chooserOptions =

[]

[]

the function accepts three arguments, “parent” is simply a reference to the
pychoacoustics application. “paradigm” is the paradigm with which the
function has been called, while “par” is a variable that can hold some spe-
cial values for initializing the function. The use of the “par” argument is
discussed in Section ??.

From line three to line seven, we create a series of empty lists. The field
and fieldLabel lists will hold the default values of our text field widgets,

43

and their labels, respectively. The chooser and chooserLabel lists will like-
wise hold the default values of our chooser widgets, and their labels, while
the chooserOptions list will hold the possible values that our choosers can
take. Lines 8 to 29 show how we populate these lists for our frequency dis-

crimination experiment:

fieldLabel .append (”Frequency (Hz)”)
field .append (1000)

fieldLabel .append(”Starting Difference (%)”)
field .append (20)

fieldLabel .append(”Level (dB SPL)”)
field .append (50)

fieldLabel .append (”Duration (ms)”)
field .append (180)

fieldLabel .append (”Ramps (ms)”)
field .append(10)

chooserOptions.append (["Right”,
"Left”,
"Both”])

chooserLabel .append(”Ear:”)

chooser.append (”Right”)

The last lines of our select_default_parameters_ function are used to set

some additional parameters and look as follows:

pm = {}
if paradigm == None:

prm|[‘paradigm '] = “Adaptive”
else:

prm['paradigm '] = paradigm
prm|[‘adType’] = “Geometric”
prm[' field '] = field
prm|['fieldLabel’] = fieldLabel
prm['chooser’] = chooser

7

prm[‘chooserLabel’] = chooserLabel
prm|[‘chooserOptions’] = chooserOptions
prm[‘nintervals’] = 2

prm['nAlternatives '] = 2

return prm

44

on line 29 we create a dictionary to hold the parameters. Lines 30-33 are
used to set a default paradigm for our experiment if None has been passed to
our function. ’adType gives sets the default type of the adaptive procedure,
this could be either Geometric, or Arithmetic. From line 25 to line 39 we
insert in the dictionary the field, fieldLabel, chooser, chooserLabel and
chooserOptions lists that we have previously creaetd and populated. Finally
in the last two lines we give the default number of response intervals and
response alternatives.

The get_fields_to_hide_ function

The purpose of the get_fields_to_hide_ function is to dinamically show or
hide certain widgets depending on the status of other widgets. This function
must be defined, but is not essential to a pychoacoustics experiment, so if
you want to read all the essential information first, you can simply write the
following:

def get_fields_to_hide_freq(parent):
pass

and move on to read about the next function, otherwise, read on.

writing an experimentFor example, if you want to set up a frequency dis-
crimination experiment in which the frequency of the standard stimulus may
be either fixed, or change from trial to trial,
The doTrial._ function
The Experiment “opts”

e hasISIBox

hasAlternativesChooser

hasFeedback

hasIntervallLights

hasPreTriallnterval

45

Using par

7.1 Simulations

pychoacoustics is not designed to run simulations in itself, however it pro-
vides a hook to redirect the control flow to an auditory model that you need
to specify yourself in the experiment file.

You can retrieve the current response mode from the experiment file with:

parent.prm[“allBlocks "]["responseMode "]

so, in the experiment file, after the creation of the stimuli for the trial you can
redirect the control flow of the program depending on the response mode:

1| if parent.prm[allBlocks][‘responseMode’] != ”Simulated Listener”:

2 #we are not in simulation mode, play the stimuli for the
listener

3 parent.playSoundSequence (sndSeq, ISIs)

4| if parent.prm[“allBlocks][‘responseMode’] == ”Simulated Listener”:

5 #we are in simulation mode

6 #pass the stimuli to an auditory model and decision device

7 #—

8 #Here you specify your model, pychoacoustics doesn’t do it for
you!

9 # at the end your simulated listener arrives to a response that
is

10 # either correct or incorrect

11 #—

12 parent.prm[“trialRunning "] = False

13 #this is needed for technical reasons (if the ’trialRunning’

14 #flag were set to 'True’ pychoacoustics would not process

15 #the response.

16 #

17 #let’s suppose that at the end of the simulation you store the

18 #response in a variable called ’‘resp’, that can take as values

19 #either the string “Correct’ or the string ’Incorrect’.

20 #You can then proceed to let pychoacoustics process the response

21 #

22 if resp == "Correct’:

23 parent.sortResponse(parent. correctButton)

24 elif resp == ’'Incorrect’:

2 #list all the possible ’incorrect’ buttons

2 inc_buttons = numpy. delete (numpy. arange (

27 self .prm['nAlternatives "])+1,

28 self.correctButton —1))

29 #choose one of the incorrect buttons

46

parent.sortResponse (random. choice (inc_buttons))

47

Chapter 8

Troubleshooting

The computer crashed in the middle of an experimental session

pychoacoustics saves the results at the end of each block, therefore only the
results from the last uncompleted block will be lost, the results of completed
blocks will not be lost. If you have an experiment with many different blocks
presented in random order it may be difficult to see which blocks the lis-
tener had already completed and set pychoacoustics to run only the blocks
that were not run. To address this issue pychoacoustics keeps a copy of the
parameters, including the block presentation order after shuffling, in a file
called .tmp_prm.prm (this is a hidden file on Linux systems). Therefore, af-
ter the crash you can simply load this parameters file and move to the block
position that the listener was running when the computer crashed to resume
the experiment.

A second function of the .tmp_prm.prm file is to keep a copy of parame-
ters that were stored in memory, but not saved to a file. If your computer
crashed while you were setting up a parameters for an experiment that were
not yet saved (or were only partially saved) to a file, you can retrieve them
after the crash by loading the . tmp_prm.prm file. One important thing to keep
in mind is that the . tmp_prm. prm will be overwritten as soon as new parame-
ters are stored in memory by a pychoacoustics instance opened in the same
directory. Therefore it is advisable to make a copy of the .tmp_prm.prm file
renaming it to avoid accidentally loosing its contents after the crash.

48

References

Grimault, N., Micheyl, C., Carlyon, R. P, & Collet, L. (2002). Evidence
for two pitch encoding mechanisms using a selective auditory training
paradigm. Percept. Psychophys., 64(2), 189-197.

Jesteadt, W. (1980). An adaptive procedure for subjective judgments. Percept
Psychophys, 28(1), 85-88.

Kaernbach, C. (1991). Simple adaptive testing with the weighted up-down
method. Percept Psychophys, 49(3), 227-229.

Levitt, H. (1971). Transformed up-down methods in psychoacoustics. J.
Acoust. Soc. Am., 49(2), 467-477 .

Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: A user’s guide
(2dn ed.). Mahwah, NJ: Lawrence Erlbaum Associates.

49

Appendix A

Introduction to Python, Numpy
and Scipy

50

Appendix B

GNU Free Documentation License

Version 1.2, November 2002
Copyright (©2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other func-
tional and useful document “free” in the sense of freedom: to assure every-
one the effective freedom to copy and redistribute it, with or without mod-
ifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work,
while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for
any textual work, regardless of subject matter or whether it is published as
a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

51

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide, royalty-
free license, unlimited in duration, to use that work under the conditions
stated herein. The “"Document”, below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as “you”. You ac-
cept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A "Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall sub-
ject. (Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a mat-
ter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License. If a section does not fit the
above definition of Secondary then it is not allowed to be designated as In-
variant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The "Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the Doc-
ument is released under this License. A Front-Cover Text may be at most 5
words, and a Back-Cover Text may be at most 25 words.

A "Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general pub-
lic, that is suitable for revising the document straightforwardly with generic
text editors or (for images composed of pixels) generic paint programs or
(for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transpar-
ent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount of
text. A copy that is not "Transparent” is called “Opaque”.

52

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transpar-
ent image formats include PNG, XCF and JPG. Opaque formats include pro-
prietary formats that can be read and edited only by proprietary word pro-
cessors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The "Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License re-
quires to appear in the title page. For works in formats which do not have
any title page as such, “Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the
text.

A section ”Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section
name mentioned below, such as “Acknowledgements”, “Dedications”, “En-
dorsements”, or “History”.) To “"Preserve the Title” of such a section when
you modify the Document means that it remains a section “Entitled XYZ”
according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as re-
gards disclaiming warranties: any other implication that these Warranty Dis-
claimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright no-
tices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever
to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

53

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you must enclose the copies in
covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts
on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies.
The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the ti-
tle of the Document and satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document number-
ing more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the
latter option, you must take reasonably prudent steps, when you begin dis-
tribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents
or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release the Mod-
ified Version under precisely this License, with the Modified Version filling
the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must
do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should,

54

if there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

. List on the Title Page, as authors, one or more persons or entities re-
sponsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release you
from this requirement.

. State on the Title page the name of the publisher of the Modified Ver-
sion, as the publisher.

. Preserve all the copyright notices of the Document.

. Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of
this License, in the form shown in the Addendum below.

. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

. Include an unaltered copy of this License.

. Preserve the section Entitled “History”, Preserve its Title, and add to
it an item stating at least the title, year, new authors, and publisher of
the Modified Version as given on the Title Page. If there is no section
Entitled “"History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous
sentence.

. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the "History” section. You may omit a network
location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to
gives permission.

55

K. For any section Entitled ”Acknowledgements” or “Dedications”, Pre-
serve the Title of the section, and preserve in the section all the sub-
stance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their
text and in their titles. Section numbers or the equivalent are not con-
sidered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections
as invariant. To do this, add their titles to the list of Invariant Sections in
the Modified Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—for
example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by)
any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity
you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS

56

You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified ver-
sions, provided that you include in the combination all of the Invariant Sec-
tions of all of the original documents, unmodified, and list them all as In-
variant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and mul-
tiple identical Invariant Sections may be replaced with a single copy. If there
are multiple Invariant Sections with the same name but different contents,
make the title of each such section unique by adding at the end of it, in paren-
theses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled "History”;
likewise combine any sections Entitled ”Acknowledgements”, and any sec-
tions Entitled “Dedications”. You must delete all sections Entitled “Endorse-
ments”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this License
into the extracted document, and follow this License in all other respects
regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distri-
bution medium, is called an "aggregate” if the copyright resulting from the
compilation is not used to limit the legal rights of the compilation’s users be-
yond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

57

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing Invari-
ant Sections with translations requires special permission from their copy-
right holders, but you may include translations of some or all Invariant Sec-
tions in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original
version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, “Dedica-
tions”, or “History”, the requirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to copy,
modify, sublicense or distribute the Document is void, and will automati-
cally terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See http:/ /www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License ”or

58

any later version” applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that
has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose
any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright ©YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later ver-
sion published by the Free Software Foundation; with no Invari-
ant Sections, no Front-Cover Texts, and no Back-Cover Texts. A
copy of the license is included in the section entitled "GNU Free
Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with... Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts be-
ing LIST.

If you have Invariant Sections without Cover Texts, or some other combi-
nation of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use in
free software.

59

	1 What is pychoacoustics?
	2 Installation
	2.1 Installation on Linux
	2.2 Installation on Windows
	2.2.1 Using the binary installer
	2.2.2 Installing from source

	3 Graphical User Interface
	3.1 Quickstart
	3.2 The Control Window
	3.2.1 General Widgets (left panel)
	3.2.2 General Widgets (right panel)
	3.2.3 Paradigm Widgets
	Adaptive Paradigm Widgets
	Weighted Up/Down Paradigm Widgets
	Adaptive Interleaved Paradigm Widgets
	Weighted Up/Down Interleaved Paradigm Widgets
	Constant m-Intervals n-Alternatives Paradigm Widgets
	Multiple Constants m-Intervals n-Alternatives Paradigm Widgets
	Constant 1-Interval 2-Alternatives Paradigm Widgets
	Multiple Constants 1-Interval 2-Alternatives Paradigm Widgets
	1-Pair Same/Different Paradigm Widgets

	3.2.4 The Menu Bar
	The File Menu
	The Edit Menu
	The Tools Menu
	The Help Menu
	The ``what's this?'' Button.

	3.3 Process Results Dialog
	3.4 Edit Preferences Dialog
	3.4.1 General
	3.4.2 Sound
	3.4.3 Notifications
	3.4.4 EEG

	3.5 Edit Phones Dialog
	3.6 Edit Experimenters Dialog
	3.7 The Response Box

	4 Command Line User Interface
	5 Psychophysics
	5.1 Available Paradigms
	Adaptive
	Adaptive Interleaved
	Weighted Up/Down
	Weighted Up/Down Interleaved
	Constant m-Intervals n-Alternatives
	Constant 1-Interval 2-Alternatives
	Constant 1-Pair Same/Different

	5.2 Available Experiments

	6 The pychoacoustics Engine
	6.1 Sound Output
	Sound Output on Linux
	Sound Output on Windows

	6.2 Parameters Files
	6.3 Results Files
	Tabular Results Files
	Log Results Files
	Adaptive and Weighted Up/Down Result Files
	Adaptive and Weighted Up/Down Interleaved Result Files

	6.3.1 Constant m-Intervals n-Alternatives Result Files
	6.3.2 Multiple Constants m-Intervals n-Alternatives Result Files
	6.3.3 Constant 1-Intervals 2-Alternatives Result Files
	6.3.4 Multiple Constants 1-Intervals 2-Alternatives Result Files
	6.3.5 Constant 1-Pair Same/Different Result Files

	6.4 Block Presentation Position
	6.5 OS Commands
	6.6 Preferences Settings
	6.7 Response Mode

	7 Designing Custom Experiments
	The initialize_ function
	The select_default_parameters_ function
	The get_fields_to_hide_ function
	The doTrial_ function
	The Experiment ``opts''

	7.1 Simulations

	8 Troubleshooting
	The computer crashed in the middle of an experimental session

	References
	A Introduction to Python, Numpy and Scipy
	B GNU Free Documentation License
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	ADDENDUM: How to use this License for your documents

