

A-Diakoptics suite for OpenDSS

Diakoptics based on actors (A-Diakoptics)
suite for OpenDSS

Davis Montenegro
Roger Dugan

Last update 10-15-2021

Diakoptics based on Actors (A-Diakoptics) combines two computing techniques from different

engineering fields: Diakoptics and the actor model. Diakoptics is a mathematical method for tearing

networks. The actor model is used to coordinate the interaction between sub-circuits.

A-Diakoptics is a technique that seeks to simplify the power flow problem to achieve a faster

solution at each simulation step. Consequently, the total time reduction when performing QSTS will

be evident at each simulation step with A-Diakoptics.

This technique has been implemented in OpenDSS in version 9.4 using a simplification that will be

explained later in this document. The suite integrated in version 9.4 includes automated and manual

circuit tearing among other tools to execute and debug the method step by step. Since the

simplification implemented in OpenDSS is relatively new, we will continue to improve the suite in

time.

The simplified A-Diakoptics solution method
Initially proposed by Gabriel Kron and later used and modified by other authors [1, 2]. Diakoptics is

a technique for tearing large physical circuits into several sub-circuits to reduce the modeling

complexity and accelerate the solution of the power flow problem using a computer network. Each

computer will handle a separate piece of the circuit to find a total solution. Using modern multi-core

computers this technique can be used for accelerating QSTS simulations, in OpenDSS, by using the

actor model as a framework for coordinating the interactions between the distributed pieces

proposed in Diakoptics [3, 4].

A-Diakoptics uses the parallel processing suite inside OpenDSS to allocate and solve the separate

pieces of the interconnected circuit. A-Diakoptics was proposed initially in 2015 [5, 6] and utilizes

the power flow solution method proposed in OpenDSS for the analysis.

The power flow problem in OpenDSS
While the power flow problem is probably the most common problem solved with the program, the

OpenDSS is not best characterized as a power flow program. Its heritage is from general-purpose

power system harmonics analysis tools. Thus, it works differently than most existing power flow

tools. This heritage also gives it some unique and powerful capabilities for modeling complex

electrical circuits. The program was originally designed to perform nearly all aspects of distribution

planning for distributed generation (DG), which includes harmonics analysis. It is relatively easy to

make a harmonics analysis program solve a power flow, while it can be quite difficult to make a

power flow program perform harmonics analysis. To learn more about how the algorithm works for

the power flow problem, see “Putting It All Together” below. [Where is this?]

A-Diakoptics suite for OpenDSS

The OpenDSS program is designed to perform a basic distribution-style power flow in which the bulk

power system is the dominant source of energy. However, it differs from the traditional radial circuit

solvers in that it solves networked (meshed) distribution systems as easily as radial systems. It is

intended to be used for distribution companies that may also have transmission or sub transmission

systems. Therefore, it can also be used to solve small- to medium-sized networks with a

transmission-style power flow.

Nearly all variables in the formulation result in a matrix or an array (vector) to represent a
multiphase system. Many of the variables are complex numbers representing the common phasor
notation used in frequency-domain ac power system analysis.

OpenDSS uses a standard Nodal Admittance formulation that can be found documented in many
basic power system analysis texts. The Arrillaga and Watson textbook is useful for understanding
this because it also develops the admittance models for harmonics analysis similarly to how
OpenDSS is formulated.

A primitive admittance matrix, Yprim, is computed for each circuit element in the model. These small
matrices are used to construct the main system admittance matrix, Ysystem, that knits the circuit
model together. The solution is mainly focused on solving the nonlinear system admittance equation
of the form:

𝐼𝑃𝐶(𝐸) = 𝑌𝑠𝑦𝑠𝑡𝑒𝑚𝐸

where,

𝐼𝑃𝐶(𝐸) = 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠 𝑓𝑟𝑜𝑚 𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (𝑃𝐶)𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

The currents injected into the circuit from the PC elements, IPC(E), are a function of voltage as
indicated and represent the nonlinear portion of the currents from elements such as Load,
Generator, PVsystem, and Storage.

There are a number of ways this set of nonlinear equations could be solved. The most popular way
in OpenDSS is a simple fixed point method that can be written concisely [7]:

𝐸𝑛+1 = [𝑌𝑠𝑦𝑠𝑡𝑒𝑚]
−1

𝐼𝑃𝐶(𝐸𝑛) 𝑛 = 0,1,2 … 𝑢𝑛𝑡𝑖𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑

From here it can be inferred that every time an expression like the following is found:

𝐸 = [𝑌𝑠𝑦𝑠𝑡𝑒𝑚]
−1

𝐼

there is an OpenDSS solver, called an actor in OpenDSS’ parallel processing suite, and this is the

basis for the A-Diakoptics analysis.

Simplified A-Diakoptics
An initial form of A-Diakoptics was developed in [5, 6]. From there, the general expression for

describing the interactions between the actors (sub-circuits) and the coordinator is as follows:

𝐸𝑇 = 𝑍𝑇𝑇𝐼0(𝑛−1) − 𝑍𝑇𝐶𝑍𝐶𝐶
−1𝑍𝐶𝑇𝐼0(𝑛)

ET is the total solution of the system (the voltages in all the nodes of the system). I0 is the vector

containing the currents injected by the PC elements, and the time instants n and n +1 are discrete

A-Diakoptics suite for OpenDSS

time instants to describe the different times in which the vector of currents is calculated [6]. ZTT is

the trees matrix and contains the admittance matrixes for all the sub-circuits that contained in the

interconnected system after the partitioning. The form of ZTT is as follows:

𝑍𝑇𝑇 = [
[𝑌1]−1 ⋯

⋮ ⋱ ⋮
 ⋯ [𝑌𝑛]−1

] 𝑛 = 0,1,2 … # 𝑜𝑓 𝑠𝑢𝑏 − 𝑐𝑖𝑟𝑐𝑢𝑖𝑡𝑠

The sub-circuits contained in ZTT are not interconnected in any way. The connections are through

external interfaces that define the relationship between them. ZTC, ZCT and ZCC are interfacing

matrixes for interfacing the separate subsystems using a graph defined by the contours matrix (C)

as described in [6, 8]. ZTTI0(n-1) corresponds to the solutions delivered when solving the sub-systems

and ZTCZCC
-1ZCTI0(n) is the interconnection matrix to find the total solution to the power flow problem.

As can be seen at this point, the form of ZTT proposes that multiple OpenDSS solvers can find

independent partial solutions that when complemented with another set of matrixes, can calculate

the voltages across the interconnected power system. However, in this approach the

interconnection matrix is a dense matrix that operates on the injection currents vector provided by

the latest solution of the sub-systems.

Nowadays, sparse matrix solvers are very efficient and to operate with a dense matrix is not

desirable. The aim in this part of the project is to simplify the expression that defines the

interconnection matrix to find a sparse equivalent that can be solved using the KLUSolve module

already employed in OpenDSS.

Assuming that the times in which the sub-systems are solved, and the interconnection matrix is

operated are the same and fit into the same time window (ideally), A-Diakoptics can be

reformulated as:

𝐸𝑇 = 𝑍𝑇𝑇𝐼0(𝑛) − 𝑍𝑇𝐶𝑍𝐶𝐶
−1𝑍𝐶𝑇𝐼0(𝑛) (∗)

Additionally, in OpenDSS the interconnected feeder is solved using:

𝐸𝑇 = [𝑌𝐼𝐼]−1𝐼0

Where YII is the YBus matrix that describes the interconnected feeder. Equating the two previous

equations the expression results in:

[𝑌𝐼𝐼]−1𝐼0(𝑛) = 𝑍𝑇𝑇𝐼0(𝑛) − 𝑍𝑇𝐶𝑍𝐶𝐶
−1𝑍𝐶𝑇𝐼0(𝑛)

This new expression can be taken to the admittance domain since ZTT is built using the YBus matrixes

that describe each one of the sub-systems created after tearing the interconnected feeder [5, 6].

The new equation is reformulated as:

[𝑌𝐼𝐼]−1𝐼0(𝑛) = [𝑌𝑇𝑇]−1𝐼0(𝑛) − 𝑍𝑇𝐶𝑍𝐶𝐶
−1𝑍𝐶𝑇𝐼0(𝑛)

[𝑌𝐼𝐼]−1 = [𝑌𝑇𝑇]−1 − 𝑍𝑇𝐶𝑍𝐶𝐶
−1𝑍𝐶𝑇

Then the interconnection matrix can be reformulated as:

𝑍𝑇𝐶𝑍𝐶𝐶
−1𝑍𝐶𝑇 = [𝑌𝑋𝑋]−1 = [𝑌𝑇𝑇]−1 − [𝑌𝐼𝐼]−1

A-Diakoptics suite for OpenDSS

This new formulation proposes that the interconnection matrix is equal to an augmented

representation of the link branches between the sub-systems. To support this conclusion take the

simplification proposed by Happ in [8] where:

𝑒𝑐′ = −𝑍𝐶𝑇𝐼0(𝑛)

𝑍𝐶𝑇 = 𝐶𝑇𝑍𝑇𝑇 → 𝑒𝑐′ = −𝐶𝑇𝑍𝑇𝑇𝐼0(𝑛)

This expression is similar to the partial solution formulation of the Diakoptics equation but including

the contours matrix, then if the partial solution is called ET(0) it is possible to say:

𝑒𝑐′ = −𝐶𝑇𝐸𝑇(0)

On the other hand, ZTC, which is the non-conjugate transposed of ZCT, is calculated as follows:

𝑍𝑇𝐶 = 𝑍𝑇𝑇𝐶

Replacing the new equivalences for ZCT and ZTC the equation proposed in (*) is reformulated as

follows:

𝐸𝑇 = 𝑍𝑇𝑇𝐼0(𝑛) + 𝑍𝑇𝑇𝐼𝑐

Or in terms of sparse matrices:

𝐸𝑇 = [𝑌𝑇𝑇]−1𝐼0(𝑛) + [𝑌𝑇𝑇]−1𝐼𝑐 (∗∗)

Where:

𝐼𝑐 = −𝐶𝑍𝐶𝐶
−1𝐶𝑇𝐸𝑇(0)

The new equation described in (2) establishes that the same actor can calculate its partial and

complementary solutions using information calculated using the interconnection matrix ZCC. ZCC is a

small matrix that contains the information about the link branches and the calculation of Ic does not

represent a significant computational burden in medium and large-scale circuits. With this

approach, all the matrix calculations are made using sparse matrix solvers, reducing the

computational burden.

Using the A-Diakoptics suite in OpenDSS
The A-Diakoptics suite is an instruction set for driving simulations using A-Diakoptics in OpenDSS.

This instruction set is available from version 8.5 and later. The instructions are as follows:

Command Description

Set ADiakoptics = XX

Activates/deactivates the A-Diakoptics suite. XX can be False/True o Yes/No. To activate A-
Diakoptics there must be a system loaded into memory in actor 1 (default) and the circuit
needs to be solved once in snapshot mode. When enabled, A-Diakoptics will partition the
system using the number of sub-circuits specified with set num_subcircuits=$$, where $$ is
the number of sub-circuits. Then, the sub-circuits will be compiled and loaded into memory
for the simulation. See “Circuit partitioning” for details on the output. When deactivated (set
ADiakoptics=No), no action is taken, and the crated actors will remain in memory.

Get ADiakoptics Returns Yes/No to indicate if the A-Diakoptics suite is active

Get LinkBranches
After activating A-Diakoptics, the user can use this instruction to get the names of the link
branches used for partitioning the circuit. It is required that the active actor is 1 to obtain the
correct values. The partition is made using MeTIS [9] V4.

A-Diakoptics suite for OpenDSS

Set LinkBranches
Sets the list of link branches to be used for tearing the circuit manually. With this option the
user specifies what are the link branches (Lines only) to be used for tearing the circuit.

set
UseMyLinkBranches

If set True, enables the tearing algorithm for using the link branches proposed by the user
when tearing the circuit. The number of sub-circuits will be determined based on the
number of link branches given.

Export Contours
Exports the contours matrix calculated in compressed coordinated format. A-Diakoptics
needs to be active.

Export ZLL
Exports the Link branches matrix calculated in compressed coordinated. A-Diakoptics needs
to be active. See [5, 10] for details.

Export ZCC
Exports the connections matrix calculated in compressed coordinated. A-Diakoptics needs to
be active. See [5, 10] for details.

Export Y4
Exports the inverse of ZCC (Y4 = ZCC

-1) in compressed coordinated format. A-Diakoptics needs
to be active.

Circuit partitioning
After activating A-Diakoptics OpenDSS will deliver an output describing the result of the

initialization. Consider the following lines of code for enabling A-Diakoptics using 4 sub-circuits (the

circuit has been compiled and solved in snapshot mode previously):

set Num_Subcircuits=4

set ADiakoptics=True

If the partitioning and initialization of the circuit was correct, the output from OpenDSS will be as

shown in Figure 1.

Figure 1. Circuit partitioning successful

As can be seen in Figure 1, the summary window will display all the steps carried out to initialize A-

Diakoptics including the partitioning statistics (see partitioning statistics). At this point the system is

ready to solve in A-Diakoptics mode. The following considerations need to be taken:

1. All monitors or energy meters can be created in actor 1. Actor 1 is the simulation
coordinator, and it hosts Y4 and the vectors for calculating Ic. Actor 1 also hosts the
admittance matrix of the interconnected circuit.

A-Diakoptics suite for OpenDSS

2. Actor 1 is the simulation coordinator; the others are slaves of the coordinator.
3. The number of actors depends on the number of sub circuits configured by the user. If the

number of sub-circuits set by the user overpasses the number of CPUs – 2 in the local PC,
the Initialization algorithm will force the number of sub-circuits to the number of CPUs – 2.

4. The CPUs are assigned automatically. If the user wants a better performance (e.g., 1
thread per Core) it is necessary to do the redistribution manually.

5. The algorithm is available for all the OpenDSS compilations: EXE, COM, and DLL. It is fully
operational for all QSTS and direct solution modes.

Error messages
The A-Diakoptics initialization is a complex process and has multiple moving pieces that may cause

an error in the initialization, making the initialization unsuccessful and aborting A-Diakoptics.

Sometimes when creating the sub-circuits, one or more circuits cannot be solved, either because

the circuit is invalid, or something is missing. In this case the message at the summary window in

OpenDSS is as follows:

A-Diakoptics initialization summary:

- Creating Sub-Circuits...

 6 Sub-Circuits Created

- Indexing link branches...Done

- Setting up the Actors...Error

One or more sub-systems cannot be compiled

One or more errors found

In this case the A-Diakoptics initialization failed and as a result, A-Diakoptics was not enabled.

OpenDSS uses MeTIS for the circuit partitioning. Sometimes MeTIS suggests a PD element different

from a Line as a link branch, which is an error. In that case the output at the summary window will

be:

A-Diakoptics initialization summary:

- Creating Sub-Circuits...

 6 Sub-Circuits Created

- Indexing link branches...Done

- Setting up the Actors...Done

- Building Contours...Error

One or more link branches are not lines

One or more errors found

Again, the A-Diakoptics initialization failed and A-Diakoptics was not enabled. In this case the best

solution is to propose a different number of sub-circuits until a valid partitioning is achieved. The

partitioning can be validated using the partitioning statistics information.

Partitioning statistics
After a successful circuit partitioning OpenDSS will calculate some statistics to help the user to

understand and estimate what to expect from the circuit tearing. There are 3 indicators delivered

by OpenDSS called the circuit reduction, the maximum imbalance and the average imbalance.

The circuit reduction is the relationship between the number of nodes in the interconnected circuit

and the largest sub-circuit created after partitioning the circuit. The circuit reduction is calculated

as follows:

A-Diakoptics suite for OpenDSS

𝐶𝑖𝑟𝑐𝑢𝑖𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (%) = (1 −
max(𝑎𝑐𝑡𝑜𝑟𝑚. 𝑁𝑢𝑚𝑁𝑜𝑑𝑒𝑠|𝑚=2

𝑁)

𝑇𝑜𝑡𝑎𝑙_𝑁𝑢𝑚𝑁𝑜𝑑𝑒𝑠
) 100 𝑁 = # 𝑠𝑢𝑏 − 𝑐𝑖𝑟𝑐𝑢𝑖𝑡𝑠

It is the largest sub-circuit that will take longer to solve (normally), determining the total time

required for solving a simulation step.

The maximum imbalance and the average imbalance are 2 metrics oriented to illustrate the level of

balance between sub-circuits. The maximum imbalance is calculated considering the relationship

between the sizes of all the sub-circuits and the largest sub-circuit after the partitioning.

𝑀𝑎𝑥 𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 (%) = (1 − 𝑚𝑎𝑥 (
𝑎𝑐𝑡𝑜𝑟𝑚. 𝑁𝑢𝑚𝑁𝑜𝑑𝑒𝑠

𝐿𝑎𝑟𝑔𝑒𝑠𝑡. 𝑁𝑢𝑚𝑁𝑜𝑑𝑒𝑠
|

𝑚=2

𝑁

)) 100 𝑁 = # 𝑠𝑢𝑏 − 𝑐𝑖𝑟𝑐𝑢𝑖𝑡𝑠

The average imbalance is the average of the all the imbalances considering the largest sub-circuit as

reference.

𝑎𝑣𝑔 𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 (%) = 𝑚𝑒𝑎𝑛 ([1 −
𝑎𝑐𝑡𝑜𝑟𝑚. 𝑁𝑢𝑚𝑁𝑜𝑑𝑒𝑠

𝐿𝑎𝑟𝑔𝑒𝑠𝑡. 𝑁𝑢𝑚𝑁𝑜𝑑𝑒𝑠
|]

𝑚=2

𝑁

) 100 𝑁 = # 𝑠𝑢𝑏 − 𝑐𝑖𝑟𝑐𝑢𝑖𝑡𝑠

The aim with these metrics is to keep them as low as possible after partitioning the circuit. Ideally,

the average and maximum imbalances should be 0. However, that may happen only in very special

situations. If the maximum imbalance is lower than 50 % it means that the tearing is acceptable. For

example, consider the following statistics after tearing the circuit using 4 sub-circuits:

Circuit reduction (%): 68.52

Max imbalance (%): 42.33

Average imbalance (%): 20.52

These statistics reflect that the circuit had a reduction greater than the 50% and the maximum
imbalance is not perfect but is below 50%. In another scenario using only 2 sub-circuits, the output
is as follows:

Circuit reduction (%): 46.34

Max imbalance (%): 13.64

Average imbalance (%): 6.818

The imbalance ratio is much better than when using 4 sub-circuits, however, the reduction ratio is
lower. Finally, consider a partitioning using 5 sub-circuits in the same system, the output is as
follows:

Circuit reduction (%): 60.95

Max imbalance (%): 94.04

Average imbalance (%): 48.67

In this case, the circuit reduction is not higher than using 4 sub-circuits and the maximum and
average imbalances growth significantly, indicating that the circuit partitioning is not better using
more partitions.

Actors’ distribution in memory
The new implementation of A-Diakoptics considers several implementations, these can be

reviewed in Table 1.

A-Diakoptics suite for OpenDSS

Table 1

Optimization name Description

Initialization

The circuit tearing process and the calculation of C and ZCC

matrices is performed with a single command. The link

branches can be calculated automatically using the MeTIS

implementation within OpenDSS or manually. The

initialization process is performed only once when the user

enables the A-Diakoptics mode in OpenDSS. The user can

specify the number of sub-circuits to be created and get

information on the link branches name and matrices around

the initialization for debugging. The initialization can only be

commanded from actor 1 and only 1 actor must exist in the

OpenDSS environment.

Coordination

The solution in A-Diakoptics mode is commanded and

coordinate by actor 1, who contains the image of the

interconnected model mimicking the total solution. Actor 1

will send messages to other actors, wait for commands

completion, and setup the memory space for the other actors

to find their solutions. Actor 1 is also responsible for

performing operations over ZCC, which happen in the middle

of the solution process.

Distributed solver

Distributed solvers start from actor 2 to the number of sub-

circuits defined by the user. Actor 1 is occupied with the

solution coordinator. The solution of the distributed solver

points to the voltage solution vector (ET) in actor 1 starting at

the index specified in the initialization. The index for each

actor is assigned at the initialization and requires that the

actor’s node distribution matches with the zone assigned in

actor 1. This coordination is done during the initialization.

Control actions

The control actions are performed at the distributed solvers.

Changes in the Y Bus are applied locally and not transported

into actor 1.

Meter sampling

Actor 1 samples monitors across the model since the total

solution will remain in its memory space after a solution is

found.

Math operations

Unnecessary mathematical or linear algebra operations are

replaced with simpler equivalents based on additions to

reduce the computational overhead.

Convergence criteria

The convergence is evaluated at the coordinator, who will

decide considering the flags triggered by the distributed

solvers if the max. solution or control iterations has been

reached.

The transport of data between memory is simplified by pointing the distributed solvers to

actor’s 1 memory. While the injected current vectors for each solver is kept locally, the

output of the solution algorithm (voltage) is read/write in the part of the solution of actor 1

matching the nodes of each subnetwork.

A-Diakoptics suite for OpenDSS

For example, consider a circuit model with 14 nodes that is torn into 2 sub-circuits. Actor 1

will contain the model representing the 14-node system, which has a vector for representing

the injected currents and another one for the voltages at each node, which also represents

the solution. Both vectors have 14 elements.

Assume that the sub-circuits have 7 nodes each, in that case, actor 2 containing the first

subnetwork will read/write the solution for its zone from the voltage vector in actor 1

starting at position 1 to 7. Actor 3 containing the second subnetwork will then read/write

the solution for its zone from the voltage vector in actor 1 starting at position 8 to 14. This

concept is illustrated in Error! Reference source not found..

Avoiding complicated math when possible is crucial for reducing computational overhead

in simulation time. Even when the math suggests steps including linear algebra, these can

be simplified by giving them the correct physical interpretation within the computer

algorithm. For example, the expression:

𝐼𝑐 = −𝐶𝑍𝐶𝐶
−1𝐶𝑇𝐸𝑇(0)

Suggests that the partial voltages found in a previous step (ET(0)) need to be multiplied by

the vector C before operating with the inverse of ZCC, which has been calculated at the

initialization. ZCC
-1 is expected to be a small matrix, then, CTET(0) is a linear algebra

operation intended to reduce the partial voltage vector into the number of ZCC. However,

the physical meaning of this reduction is the voltage difference at the terminal of the link

branches, used to calculate the current injections representing the interactions between sub-

circuits in the context of the interconnected system as depicted in Figure 2Error!

Reference source not found..

In this case, it is faster to extract the voltages at the nodes of interest and perform a simple

subtraction for building the result CTET(0) than operating 2 vectors. Similar implementations

are made when coding the new algorithm in OpenDSS to reduce the implicit overhead

when working in parallel.

The read/write operations from the distributed solvers (actors 2 and 3) into the solution

space of actor 1 are done using pointers, removing the need for transporting data from

actors > 2 into actor 1 through iterative routines.

The present state for controller implementation in OpenDSS needs to be considered in

future projects when using A-Diakoptics. Controllers that produce changes in the local Y

Bus matrix of the distributed solvers introduce an error that can be significant. One option

is to rethink those controllers using current injection equivalents, or, to optimize the

calculation of the interconnection matrix ZCC to recalculate it every time a control action

requires it.

Monitors and meters also need extra work when monitoring DER such as ES and PV, since

their control actions and state variable change in the context of the distributed solvers, but it

is actor 1 (coordinator) the one that sample meters. This can be easily solved by adding an

index to the actor containing the element of interest to the meters in actor 1, a change that

can be implemented in future releases.

A-Diakoptics suite for OpenDSS

Figure 2. Distributed solvers pointing to actor 1 solution space

Test circuits for A-Diakoptics
In version 9.4, OpenDSS includes 6 test cases publicly available on the internet for

illustrating the features of the A-Diakoptics implemented in this project. The test cases

proposed are:

IEEE 13 bus test case, used for learning more about A-Diakoptics and for debugging,

available at:

https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Version8/Distrib/Examples/AD

iakoptics/IEEE_13_Bus/.

IEEE 123 bus test case, used for learning more about A-Diakoptics and for understanding

its behavior when using Y Bus modifying and current based controllers, available at:

https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Version8/Distrib/Examples/AD

iakoptics/IEEE_123_Bus-G/.

EPRI Circuit 5, for testing simulation performance, available at:

https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Version8/Distrib/Examples/AD

iakoptics/EPRI_Ckt5-G/.

EPRI Circuit 7, for testing simulation performance, available at:

https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Version8/Distrib/Examples/AD

iakoptics/EPRI_Ckt7-G/

EPRI Circuit 24, for testing simulation performance, available at:
https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Version8/Distrib/Examples/AD

iakoptics/ckt24/

https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Version8/Distrib/Examples/ADiakoptics/IEEE_13_Bus/
https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Version8/Distrib/Examples/ADiakoptics/IEEE_13_Bus/
https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Version8/Distrib/Examples/ADiakoptics/IEEE_123_Bus-G/
https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Version8/Distrib/Examples/ADiakoptics/IEEE_123_Bus-G/
https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Version8/Distrib/Examples/ADiakoptics/EPRI_Ckt5-G/
https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Version8/Distrib/Examples/ADiakoptics/EPRI_Ckt5-G/
https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Version8/Distrib/Examples/ADiakoptics/EPRI_Ckt7-G/
https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Version8/Distrib/Examples/ADiakoptics/EPRI_Ckt7-G/
https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Version8/Distrib/Examples/ADiakoptics/ckt24/
https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Version8/Distrib/Examples/ADiakoptics/ckt24/

A-Diakoptics suite for OpenDSS

Transmission and distribution case (combining IEEE 30 bus and EPRI circuit 5), for testing

simulation performance based on simulation complexity simplification, available at:
https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Version8/Distrib/Examples/AD

iakoptics/TnDSystem/.

These test systems include the commands and instructions to evaluate the performance of

A-Diakoptics. The user can modify the cases at will to fulfill his simulation needs. Also,

result tables and statistics are provided within the test cases. The details on the findings and

experiments conducted with these test systems are presented in [11].

Testing model (SQA)
For running the test model follow these steps:

1. Open the application by double clicking on the executable OpenDSS.exe.

2. Once the application is running, open the demo model located at …EPRI_Ckt5-

G\master.dss within the executable’s folder.

Figure 3. Opening the test model

3. Once the script is open, select the content of the script by using the key combination

Ctrl+A.

https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Version8/Distrib/Examples/ADiakoptics/TnDSystem/
https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Version8/Distrib/Examples/ADiakoptics/TnDSystem/

A-Diakoptics suite for OpenDSS

Figure 4. Selecting the content of the script.

4. Right click on the highlighted text and select “Do selected” from the pop-up menu.

Figure 5. Executing the test code.

After the test code is executed, OpenDSS will open a text file containing the results of the yearly

simulation.

A-Diakoptics suite for OpenDSS

Figure 6. Output of the testing procedure.

References
[1] G. Kron, "Detailed Example of Interconnecting Piece-Wise Solutions," Journal of the Franklin

Institute, vol. 1, p. 26, 1955.
[2] G. Kron, Diakoptics: the piecewise solution of large-scale systems: Macdonald, 1963.
[3] C. Hewitt, "Actor Model of Computation: Scalable Robust Information Systems," in Inconsistency

Robustness 2011, Stanford University, 2012, p. 32.
[4] C. Hewitt, E. Meijer, and C. Szyperski. (2012, 05-15). The Actor Model (everything you wanted to

know, but were afraid to ask). Available:
http://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-
Model-everything-you-wanted-to-know-but-were-afraid-to-ask

[5] D. Montenegro, G. A. Ramos, and S. Bacha, "Multilevel A-Diakoptics for the Dynamic Power-
Flow Simulation of Hybrid Power Distribution Systems," IEEE Transactions on Industrial
Informatics, vol. 12, pp. 267-276, 2016.

[6] D. Montenegro, G. A. Ramos, and S. Bacha, "A-Diakoptics for the Multicore Sequential-Time
Simulation of Microgrids Within Large Distribution Systems," IEEE Transactions on Smart Grid,
vol. 8, pp. 1211-1219, 2017.

[7] R. Dugan. (2016, OpenDSS Circuit Solution Technique. 1. Available:
https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Version7/Doc/OpenDSS%20Solu
tion%20Technique.docx

[8] H. H. Happ, Piecewise Methods and Applications to Power Systems: Wiley, 1980.
[9] H. Meyerhenke, P. Sanders, and C. Schulz, "Parallel Graph Partitioning for Complex Networks,"

in 2015 IEEE International Parallel and Distributed Processing Symposium, 2015, pp. 1055-1064.
[10] H. H. Happ, "Z Diakoptics - Torn Subdivisions Radially Attached," IEEE Transactions on Power

Apparatus and Systems, vol. PAS-86, pp. 751-769, 1967.
[11] Advancing spatial parallel processing for QSTS: Improving the A-Diakoptics suite in OpenDSS.

EPRI, Palo Alto, CA: 2021. 3002021419.

	The simplified A-Diakoptics solution method
	The power flow problem in OpenDSS
	Simplified A-Diakoptics

	Using the A-Diakoptics suite in OpenDSS
	Circuit partitioning
	Error messages
	Partitioning statistics
	Actors’ distribution in memory
	Test circuits for A-Diakoptics
	Testing model (SQA)

	References

