
Welcome to django-request-filters
Installation
Documentation

Settings:
Using Middleware (Use case 1):
Using only Decorator (Use case 2):

Contributing
Issues

Welcome to django-request-filters

django-request-filters is a package developed for django to detect and block the
users those are using VPN, Proxy, TOR or Relay.

This package uses vpnapi.io API to detect the status of the user's IP address.

Installation

Use pip to install from PyPI:

pip install django-request-filters

Documentation

Settings:

1. Visit vpnapi.io and create an account and obtain your API Key.

2. In settings.py add the variable VPNAPI_KEY and set it's value to your API key
obtained in step 1.

VPNAPI_KEY = 'Your vpnapi API key'

3. Add a view that will display to the users when they have blocked (optional setup):
If you want to show your designed page to blocked users, you can follow this

https://vpnapi.io/
https://vpnapi.io/

step.

Define a vew function:

For example we defined a view function in views.py
from django.shortcuts import render
from request_filters.decorators.ip_check import exempt_IPCheckMiddleware

@exempt_IPCheckMiddleware
def blockView(request):
 return render(request, 'block_view.html')

As we must need to display the view function to blocked users, so the
exempt_IPCheckMiddleware must be used in that view function.

Add the path of the view function in settings.py:

IP_BLOCK_VIEW = "app_name.views.blockView"

If you do not defined any view function for blocked users, then by default it
will show a simple HTML page contains a text "We can't allow your request,
because you are using VPN or Proxy or Tor or Relay." with status code 418.

4. Add additional settings in settings.py (optional):

BLOCK_VPN (optional default: True) If set to True all the users want
accessing the site with VPN will be disallowed. If set to False, users can
access the site using VPN.
BLOCK_PROXY (optional default: True) If set to True all the users want
accessing the site with Proxy will be disallowed. If set to False, users can
access the site using Proxy.
BLOCK_TOR (optional default: True) If set to True all the users want
accessing the site with TOR will be disallowed. If set to False, users can
access the site using TOR.
BLOCK_RELAY (optional default: True) If set to True all the users want
accessing the site with Relay will be disallowed. If set to False, users can
access the site using Relay.

Using Middleware (Use case 1):

Use MIDDLEWARE to block the anonymous users (i.e. those are using VPN, Proxy,
TOR or Relay) to access all the view function (i.e. all the requests).

1. Add MIDDLEWARE: In settings.py add
'request_filters.middlewares.ip_check.IPCheckMiddleware' into
MIDDLEWARE.

MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',

 'django.middleware.csrf.CsrfViewMiddleware',
.....................
.....................
'request_filters.middlewares.ip_check.IPCheckMiddleware' # We have added

this new middleware
]

2. Exempt from some view functions Adding the middleware will block the
anonymous users, so that those users can visit any views. If you want to allow
anonymous users to visit only some specific views, you can do that by using the
exempt_IPCheckMiddleware decorator on the view function.

from request_filters.decorators.ip_check import exempt_IPCheckMiddleware

@exempt_IPCheckMiddleware
def home(request):

Here, for the above code sample, all the users (including anonymous users) can
visit the home view.

Using only Decorator (Use case 2):

You can also controll uses' request using decorator and without using Middleware.
There are two decorators available -

exempt_IPCheckMiddleware Import this decorator by - from
request_filters.decorators.ip_check import

exempt_IPCheckMiddleware If you add this decorator in a view function, this
view will accessable for all the users (including anonymous users)

prevent_anonymous_ip Import this decorator by - from
request_filters.decorators. import prevent_anonymous_ip If you add
this decorator to a view function, this view function will not acessable to
anonymous users. This decorator has some optional parameter -

block_vpn (optional default: settings.BLOCK_VPN) If set to True
VPN users can't visit the view function. If set to False, VPN users can visit
the view.
block_proxy (optional default: settings.BLOCK_PROXY) If set to
True Proxy users can't visit the view function. If set to False, Proxy users
can visit the view.
block_tor (optional default: settings.BLOCK_TOR) If set to True
TOR users can't visit the view function. If set to False, TOR users can visit
the view.
block_relay (optional default: settings.BLOCK_RELAY) If set to
True Relay users can't visit the view function. If set to False, Relay users
can visit the view.

Contributing

To contribute to django-request-filters create a fork on GitHub. Clone your fork, make
some changes, and submit a pull request.

Issues

Use the GitHub issue tracker for django-request-filters to submit bugs, issues, and
feature requests.

https://github.com/Samiddha99/django-request-filters
https://github.com/Samiddha99/django-request-filters/issues

	Welcome to django-request-filters
	Installation
	Documentation
	Settings:
	Using Middleware (Use case 1):
	Using only Decorator (Use case 2):

	Contributing
	Issues

