
gvar Documentation
Release 4.6.1

G. P. Lepage

February 02, 2014

CONTENTS

1 gvar - Gaussian Random Variables 3
1.1 Introduction . 3
1.2 Creating Gaussian Variables . 3
1.3 Computing Covariance Matrices . 5
1.4 Random Number Generators . 6
1.5 Limitations . 8
1.6 Implementation Notes; Derivatives; Optimizations . 8
1.7 Utilities . 9
1.8 Classes . 15
1.9 Requirements . 20

2 gvar.dataset - Random Data Sets 21
2.1 Introduction . 21
2.2 Functions . 23
2.3 Classes . 25

3 Indices and tables 29

Python Module Index 31

Index 33

i

ii

gvar Documentation, Release 4.6.1

Contents:

CONTENTS 1

gvar Documentation, Release 4.6.1

2 CONTENTS

CHAPTER

ONE

GVAR - GAUSSIAN RANDOM
VARIABLES

1.1 Introduction

This module provides tools for representing and manipulating Gaussian random variables numerically. A Gaussian
variable is a random variable that represents a typical random number drawn from a particular Gaussian (or normal)
probability distribution; more precisely, it represents the entire probability distribution, and not, for example, a partic-
ular random number drawn from that distribution. A given Gaussian variable x is therefore completely characterized
by its mean x.mean and standard deviation x.sdev.

A mathematical function of a Gaussian variable can be defined as the probability distribution of function values
obtained by evaluating the function for random numbers drawn from the original distribution. The distribution of
function values is itself approximately Gaussian provided the standard deviation of the Gaussian variable is sufficiently
small. Thus we can define a function f of a Gaussian variable x to be a Gaussian variable itself, with

f(x).mean = f(x.mean)
f(x).sdev = x.sdev |f’(x.mean)|,

which follows from linearizing the x dependence of f(x) about point x.mean. (This obviously fails at an extremum
of f(x), where f’(x)=0.)

The last formula, together with its multidimensional generalization, leads to a full calculus for Gaussian random
variables that assigns Gaussian-variable values to arbitrary arithmetic expressions and functions involving Gaussian
variables. This calculus is useful for analyzing the propagation of statistical and other random errors (provided the
standard deviations are small enough).

A multidimensional collection x[i] of Gaussian variables is characterized by the means x[i].mean for each vari-
able, together with a covariance matrix cov[i, j]. Diagonal elements of cov specify the standard deviations
of different variables: x[i].sdev = cov[i, i]**0.5. Nonzero off-diagonal elements imply correlations be-
tween different variables:

cov[i, j] = <x[i]*x[j]> - <x[i]> * <x[j]>

where <y> denotes the expectation value or mean for a random variable y.

1.2 Creating Gaussian Variables

An object of type gvar.GVar represents a single Gaussian variable. Such an object can be created for a single
variable, with mean xmean and standard deviation xsdev (both scalars), using:

3

gvar Documentation, Release 4.6.1

x = gvar.gvar(xmean, xsdev).

This function can also be used to convert strings like ’-72.374(22)’ or ’511.2 +- 0.3’ into gvar.GVars:
for example,

>>> import gvar
>>> x = gvar.gvar(3.1415, 0.0002)
>>> print(x)
3.14150(20)
>>> x = gvar.gvar("3.1415(2)")
>>> print(x)
3.14150(20)

Function gvar.asgvar(x) returns x if it is a gvar.GVar; otherwise it returns gvar.gvar(x).

gvar.GVars are far more interesting when used to describe multidimensional distributions, especially if there are
correlations between different variables. Such distributions are represented by collections of gvar.GVars in one
of two standard formats: 1) numpy type arrays of gvar.GVars (any shape); or, more flexibly, 2) Python dictio-
naries whose values are gvar.GVars or arrays of gvar.GVars. Most functions in gvar that handle multiple
gvar.GVars work with either format, and if they return multidimensional results do so in the same format as the
inputs (that is, arrays or dictionaries). Any dictionary is converted internally into a specialized (ordered) dictionary
of type gvar.BufferDict, and dictionary-valued results are also gvar.BufferDicts. gvar.BufferDicts
are also useful for archiving gvar.GVars, since they may be pickled using Python’s picklemodule; gvar.GVars
cannot be pickled otherwise. A pickled gvar.BufferDict preserves any correlations that exist between the dif-
ferent gvar.GVars in it.

To create an array of gvar.GVars with mean values specified by array xmean and covariance matrix xcov, use

x = gvar.gvar(xmean, xcov)

where array x has the same shape as xmean (and xcov.shape = xmean.shape+xmean.shape). Then each
element x[i] of a one-dimensional array, for example, is a gvar.GVar where:

x[i].mean = xmean[i] # mean of x[i]
x[i].val = xmean[i] # same as x[i].mean
x[i].sdev = xcov[i, i]**0.5 # std deviation of x[i]
x[i].var = xcov[i, i] # variance of x[i]

gvar.GVars can be used in arithmetic expressions, just like Python floats. These expressions result in new
gvar.GVars whose means and standard deviations are determined from the original covariance matrix. The arith-
metic expressions can include calls to standard functions including: exp, log, sqrt, sin, cos, tan,
arcsin, arccos, arctan, sinh, cosh, tanh, arcsinh, arccosh, arctanh.

As an example,

>>> x, y = gvar.gvar([0.1, 10.], [[0.015625, 0.], [0., 4.]])
>>> print(’x =’, x, ’ y =’, y)
x = 0.10(13) y = 10.0(2.0)

makes x and y gvar.GVars with standard deviations sigma_x=0.125 and sigma_y=2, and, in this case, no
correlation between x and y (since cov[i, j]=0 when i!=j). If now we set, for example,

>>> f = x + y
>>> print(’f =’, f)
f = 10.1(2.0)

then f is a gvar.GVar with

f.var = df/dx cov[0, 0] df/dx + df/dx cov[0, 1] df/dy + ...
= 2.0039**2

4 Chapter 1. gvar - Gaussian Random Variables

gvar Documentation, Release 4.6.1

where cov is the original covariance matrix used to define x and y (in gvar.gvar). Note that while f and y
separately have 20% uncertainties in this example, the ratio f/y has much smaller errors:

>>> print(f / y)
1.010(13)

This happens, of course, because the errors in f and y are highly correlated (since the error in f comes mostly from
y).

It is sometimes useful to know how much of the uncertainty in some quantity is due to a particular input uncertainty.
Continuing the example above, for example, we might want to know how much of fs standard deviation is due to the
standard deviation of x and how much comes from y. This is easily computed (for the example above):

>>> print(f.partialsdev(x)) # uncertainty in f due to x
0.125
>>> print(f.partialsdev(y)) # uncertainty in f due to y
2.0
>>> print(f.partialsdev(x, y)) # uncertainty in f due to x and y
2.00390244274
>>> print(f.sdev) # should be the same
2.00390244274

gvar.gvar() can also be used to convert strings or tuples stored in arrays or dictionaries into gvar.GVars: for
example,

>>> garray = gvar.gvar([’2(1)’, ’10+-5’, (99, 3), gvar.gvar(0, 2)])
>>> print(garray)
[2.0(1.0) 10.0(5.0) 99.0(3.0) 0.0(2.0)]
>>> gdict = gvar.gvar(dict(a=’2(1)’, b=[’10+-5’, (99, 3), gvar.gvar(0, 2)]))
>>> print(gdict)
{’a’: 2.0(1.0),’b’: array([10.0(5.0), 99.0(3.0), 0.0(2.0)], dtype=object)}

If the covariance matrix in gvar.gvar is diagonal, it can be replaced by an array of standard deviations (square roots
of diagonal entries in cov). The example above, therefore, is equivalent to:

>>> x, y = gvar.gvar([0.1, 10.], [0.125, 2.])
>>> print(’x =’, x, ’ y =’, y)
x = 0.10(13) y = 10.0(2.0)

1.3 Computing Covariance Matrices

The covariance matrix for a set of gvar.GVars, g0 g1 ..., can be computed using

gvar.evalcov([g0, g1...]) -> cov_g

where cov_g[i, j] gives the covariance between gi and gj. Instead of a list or array of gs, one can also give
a dictionary g where g[k] is a gvar.GVar. In this case gvar.evalcov() returns a doubly-indexed dictionary
cov_g[k1][k2] where keys k1, k2 are in g.

Using the example from the previous section, the code

>>> x, y = gvar.gvar([0.1, 10.], [[0.015625, 0.], [0., 4.]])
>>> f = x+y
>>> print(gvar.evalcov([x, y, f]))
[[0.015625 0. 0.015625]
[0. 4. 4.]
[0.015625 4. 4.015625]]

1.3. Computing Covariance Matrices 5

gvar Documentation, Release 4.6.1

confirms that x and y are uncorrelated with each other, but strongly correlated with f. The correlation matrix can be
readily obtained as well:

>>> print(gvar.evalcorr([x, y, f]))
[[1. 0. 0.06237829]
[0. 1. 0.99805258]
[0.06237829 0.99805258 1.]]

It is often convenient to group related gvar.GVars together in a dictionary rather than an array since dictionaries
are far more flexible. gvar.evalcov can be used to evaluate the covariance matrix for a dictionary containing
gvar.GVars and/or arbitrary arrays of gvar.GVars:

>>> d = dict(x=x, y=y, g=[x+y, x-y])
>>> cov = gvar.evalcov(d)
>>> print(cov[’x’, ’x’])
0.015625
>>> print(cov[’x’, ’y’])
0.0
>>> print(cov[’x’, ’g’])
[0.015625 0.015625]

1.4 Random Number Generators

gvar.GVars represent probability distributions. It is possible to use them to generate random numbers from those
distributions. For example, in

>>> z = gvar.gvar(2.0, 0.5)
>>> print(z())
2.29895701465
>>> print(z())
3.00633184275
>>> print(z())
1.92649199321

calls to z() generate random numbers from a Gaussian random number generator with mean z.mean=2.0 and
standard deviation z.sdev=0.5.

To obtain random arrays from an array g of gvar.GVars use giter=gvar.raniter(g) (see
gvar.raniter()) to create a random array generator giter. Each call to next(giter) generates a new
array of random numbers. The random number arrays have the same shape as the array g of gvar.GVars and have
the distribution implied by those random variables (including correlations). For example,

>>> a = gvar.gvar(1.0, 1.0)
>>> da = gvar.gvar(0.0, 0.1)
>>> g = [a, a+da]
>>> giter = gvar.raniter(g)
>>> print(next(giter))
[1.51874589 1.59987422]
>>> print(next(giter))
[-1.39755111 -1.24780937]
>>> print(next(giter))
[0.49840244 0.50643312]

Note how the two random numbers separately vary over the region 1±1 (approximately), but the separation between
the two is rarely more than 0±0.1. This is as expected given the strong correlation between a and a+da.

gvar.raniter(g) also works when g is a dictionary (or gvar.BufferDict) whose entries g[k] are
gvar.GVars or arrays of gvar.GVars. In such cases the iterator returns a dictionary with the same layout:

6 Chapter 1. gvar - Gaussian Random Variables

gvar Documentation, Release 4.6.1

>>> g = dict(a=gvar.gvar(0, 1), b=[gvar.gvar(0, 100), gvar.gvar(10, 1e-3)])
>>> print(g)
{’a’: 0.0(1.0), ’b’: [0(100), 10.0000(10)]}
>>> giter = gvar.raniter(g)
>>> print(next(giter))
{’a’: -0.88986130981173306, ’b’: array([-67.02994213, 9.99973707])}
>>> print(next(giter))
{’a’: 0.21289976681277872, ’b’: array([29.9351328 , 10.00008606])}

One use for such random number generators is dealing with situations where the standard deviations are too large to
justify the linearization assumed in defining functions of Gaussian variables. Consider, for example,

>>> x = gvar.gvar(1., 3.)
>>> print(cos(x))
0.5(2.5)

The standard deviation for cos(x) is obviously wrong since cos(x) can never be larger than one. To obtain the
real mean and standard deviation, we generate a large number of random numbers xi from x, compute cos(xi)
for each, and compute the mean and standard deviation for the resulting distribution (or any other statistical quantity,
particularly if the resulting distribution is not Gaussian):

estimate mean,sdev from 1000 random x’s
>>> ran_x = numpy.array([x() for in range(1000)])
>>> ran_cos = numpy.cos(ran_x)
>>> print(’mean =’, ran_cos.mean(), ’ std dev =’, ran_cos.std())
mean = 0.0350548954142 std dev = 0.718647118869

check by doing more (and different) random numbers
>>> ran_x = numpy.array([x() for in range(100000)])
>>> ran_cos = numpy.cos(ran_x)
>>> print(’mean =’, ran_cos.mean(), ’ std dev =’, ran_cos.std())
mean = 0.00806276057656 std dev = 0.706357174056

This procedure generalizes trivially for multidimensional analyses, using arrays or dictionaries with
gvar.raniter().

Finally note that bootstrap copies of gvar.GVars are easily created. A bootstrap copy of gvar.GVar x ± dx is
another gvar.GVar with the same width but where the mean value is replaced by a random number drawn from the
original distribution. Bootstrap copies of a data set, described by a collection of gvar.GVars, can be used as new
(fake) data sets having the same statistical errors and correlations:

>>> g = gvar.gvar([1.1, 0.8], [[0.01, 0.005], [0.005, 0.01]])
>>> print(g)
[1.10(10) 0.80(10)]
>>> print(gvar.evalcov(g)) # print covariance matrix
[[0.01 0.005]
[0.005 0.01]]

>>> gbs_iter = gvar.bootstrap_iter(g)
>>> gbs = next(gbs_iter) # bootstrap copy of f
>>> print(gbs)
[1.14(10) 0.90(10)] # different means
>>> print(gvar.evalcov(gbs))
[[0.01 0.005] # same covariance matrix
[0.005 0.01]]

Such fake data sets are useful for analyzing non-Gaussian behavior, for example, in nonlinear fits.

1.4. Random Number Generators 7

gvar Documentation, Release 4.6.1

1.5 Limitations

The most fundamental limitation of this module is that the calculus of Gaussian variables that it assumes is only
valid when standard deviations are small (compared to the distances over which the functions of interest change
appreciably). One way of dealing with this limitation is described above in the section on Random Number Generators.

Another potential issue is roundoff error, which can become problematic if there is a wide range of standard deviations
among correlated modes. For example, the following code works as expected:

>>> from gvar import gvar, evalcov
>>> tiny = 1e-4
>>> a = gvar(0., 1.)
>>> da = gvar(tiny, tiny)
>>> a, ada = gvar([a.mean, (a+da).mean], evalcov([a, a+da])) # = a,a+da
>>> print(ada-a) # should be da again
0.00010(10)

Reducing tiny, however, leads to problems:

>>> from gvar import gvar, evalcov
>>> tiny = 1e-8
>>> a = gvar(0., 1.)
>>> da = gvar(tiny, tiny)
>>> a, ada = gvar([a.mean, (a+da).mean], evalcov([a, a+da])) # = a, a+da
>>> print(ada-a) # should be da again
1(0)e-08

Here the call to gvar.evalcov() creates a new covariance matrix for a and ada = a+da, but the matrix does not
have enough numerical precision to encode the size of da‘s variance, which gets set, in effect, to zero. The problem
arises here for values of tiny less than about 2e-8 (with 64-bit floating point numbers — tiny**2 is what appears
in the covariance matrix).

1.6 Implementation Notes; Derivatives; Optimizations

There are two types of gvar.GVar: the underlying independent variables, created with calls to gvar.gvar();
and variables which are obtained from functions of the underlying variables. Each gvar.GVar must keep track
of three pieces of information: 1) its mean value; 2) its derivatives with respect to the underlying variables; and 3)
the covariance matrix for the underlying variables. The derivatives and covariance matrix allow one to compute the
standard deviation of the gvar.GVar as well as correlations between it and any other function of the underlying
variables. A gvar.GVar can be constructed at a very low level by supplying all three pieces of information — for
example,

f = gvar.gvar(fmean, fder, cov)

where fmean is the mean, fder is an array where fder[i] is the derivative of f with respect to the i-th underlying
variable (numbered in the order in which they were created using gvar.gvar()), and cov is the covariance matrix
for the underlying variables (easily obtained from an existing gvar.GVar x using x.cov).

The derivatives stored in a gvar.GVar are sometimes useful. Consider, for example, an array x each of whose
elements was created by a call to gvar.gvar(): x[i] = gvar.gvar(xi_mean,xi_sdev). Then deriva-
tives of a function f(x) with respect to the x[i] can be computed from the gvar.GVar fx = f(x) using
fx.dotder(x[i].der), which equals df(x)/dx[i] at the point x specified by the means of the x[i]s. Note
that this trick only works because the x[i] are among the underlying (original) gvar.GVars (and not combinations
of these).

8 Chapter 1. gvar - Gaussian Random Variables

gvar Documentation, Release 4.6.1

When there are lots of underlying variables, the number of derivatives can become rather large, potentially (though not
necessarily) leading to slower calculations. One way to alleviate this problem, should it arise, is to separate the under-
lying variables into groups that are never mixed in calculations and to use different gvar.gvar()s when generating
the variables in different groups. New versions of gvar.gvar() are obtained using gvar.switch_gvar(): for
example,

import gvar
...
x = gvar.gvar(...)
y = gvar.gvar(...)
z = f(x, y)
... other manipulations involving x and y ...
gvar.switch_gvar()
a = gvar(...)
b = gvar(...)
c = g(a, b)
... other manipulations involving a and b (but not x and y) ...

Here the gvar.gvar() used to create a and b is a different function than the one used to create x and y. A derived
quantity, like c, knows about its derivatives with respect to a and b, and about their covariance matrix; but it carries no
derivative information about x and y. Absent the switch_gvar line, c would have information about its derivatives
with respect to x and y (zero derivative in both cases) and this would make calculations involving c slightly slower
than with the switch_gvar line. Usually the difference is negligible — it used to be more important, in earlier
implementations of gvar.GVar before sparse matrices were introduced to keep track of covariances. Note that the
previous gvar.gvar() can be restored using gvar.restore_gvar().

gvar.GVars are designed to work well with numpy arrays. They can be combined in arithmetic expressions with
arrays of numbers or of gvar.GVars; the results in both cases are arrays of gvar.GVars.

Arithmetic operators + - * / ** == != <> += -= *= /= are all defined. gvar.GVars are not ordered so
> >= < <= are not defined. Two gvar.GVars are equal only if their means and derivatives are equal, and their
covariance matrices the same. A gvar.GVar x is defined to equal a non-gvar.GVar y only if x.mean == y
and x.sdev == 0.

The operators > and < are also defined. These allow gvar.GVars to be ordered, which sometimes simplifies al-
gorithm design. gvar.GVar x is defined to be greater than gvar.GVar y if x.mean > y.mean. Similarly
gvar.GVar x is defined to be greater than a number y if x.mean > y. This definition is inconsistent with the
definitions of == and != in that, for example, not (x>y or x<y) is not equivalent to x==y. Logically x>y for
gvar.GVars should evaluate to a boolean-valued random variable, but such variables are beyond the scope of this
module. The operators > and < are included only because they facilitate algorithmic design. Operators >= and <= are
not defined for gvar.GVars.

1.7 Utilities

The function used to create Gaussian variable objects is:

gvar.gvar(...)
Create one or more new gvar.GVars.

Each of the following creates new gvar.GVars:

gvar.gvar(x, xsdev)
Returns a gvar.GVar with mean x and standard deviation xsdev. Returns an array of gvar.GVars if
x and xsdev are arrays with the same shape; the shape of the result is the same as the shape of x.

gvar.gvar(x, xcov)
Returns an array of gvar.GVars with means given by array x and a covariance matrix given by array

1.7. Utilities 9

gvar Documentation, Release 4.6.1

xcov, where xcov.shape = 2*x.shape. The result has the same shape as x.

gvar.gvar((x, xsdev))
Returns a gvar.GVar with mean x and standard deviation xsdev.

gvar.gvar(xstr)
Returns a gvar.GVar corresponding to string xstr which is either of the form "xmean +- xsdev"
or "x(xerr)" (see GVar.fmt()).

gvar.gvar(xgvar)
Returns gvar.GVar xgvar unchanged.

gvar.gvar(xdict)
Returns a dictionary (BufferDict) b where b[k] = gvar(xdict[k]) for every key in dictionary
xdict. The values in xdict, therefore, can be strings, tuples or gvar.GVars (see above), or arrays of
these.

gvar.gvar(xarray)
Returns an array a having the same shape as xarray where every element a[i...] =
gvar(xarray[i...]). The values in xarray, therefore, can be strings, tuples or gvar.GVars
(see above).

gvar.gvar is actually an object of type gvar.GVarFactory.

Means, standard deviations, variances, formatted strings, covariance matrices and correlation/comparison information
can be extracted from arrays (or dictionaries) of gvar.GVars using:

gvar.mean(g)
Extract means from gvar.GVars in g.

g can be a gvar.GVar, an array of gvar.GVars, or a dictionary containing gvar.GVars or arrays of
gvar.GVars. Result has the same layout as g.

g is returned unchanged if it contains something other than gvar.GVars.

gvar.sdev(g)
Extract standard deviations from gvar.GVars in g.

g can be a gvar.GVar, an array of gvar.GVars, or a dictionary containing gvar.GVars or arrays of
gvar.GVars. Result has the same layout as g.

gvar.var(g)
Extract variances from gvar.GVars in g.

g can be a gvar.GVar, an array of gvar.GVars, or a dictionary containing gvar.GVars or arrays of
gvar.GVars. Result has the same layout as g.

gvar.fmt(g, ndecimal=None, sep=’‘)
Format gvar.GVars in g.

g can be a gvar.GVar, an array of gvar.GVars, or a dictionary containing gvar.GVars or arrays of
gvar.GVars. Each gvar.GVar gi in g is replaced by the string generated by gi.fmt(ndecimal,sep).
Result has same structure as g.

gvar.evalcov(g)
Compute covariance matrix for elements of array/dictionary g.

If g is an array of gvar.GVars, evalcov returns the covariance matrix as an array with shape
g.shape+g.shape. If g is a dictionary whose values are gvar.GVars or arrays of gvar.GVars, the
result is a doubly-indexed dictionary where cov[k1,k2] is the covariance for g[k1] and g[k2].

gvar.evalcorr(g)
Compute correlation matrix for elements of array/dictionary g.

10 Chapter 1. gvar - Gaussian Random Variables

gvar Documentation, Release 4.6.1

If g is an array of gvar.GVars, evalcorr returns the correlation matrix as an array with shape
g.shape+g.shape. If g is a dictionary whose values are gvar.GVars or arrays of gvar.GVars, the
result is a doubly-indexed dictionary where corr[k1,k2] is the correlation for g[k1] and g[k2].

The correlation matrix is related to the covariance matrix by:

corr[i,j] = cov[i,j] / (cov[i,i] * cov[j,j]) ** 0.5

gvar.uncorrelated(g1, g2)
Return True if gvar.GVars in g1 uncorrelated with those in g2.

g1 and g2 can be gvar.GVars, arrays of gvar.GVars, or dictionaries containing gvar.GVars or arrays
of gvar.GVars. Returns True if either of g1 or g2 is None.

gvar.chi2(g1, g2)
Compute chi**2 of g1-g2.

chi**2 is a measure of whether the multi-dimensional Gaussian distributions g1 and g2 (dictionaries or
arrays) agree with each other — that is, do their means agree within errors for corresponding elements. The
probability is high if chi2(g1,g2)/chi2.dof is of order 1 or smaller.

Usually g1 and g2 are dictionaries with the same keys, where g1[k] and g2[k] are gvar.GVars or ar-
rays of gvar.GVars having the same shape. Alternatively g1 and g2 can be gvar.GVars, or arrays of
gvar.GVars having the same shape.

One of g1 or g2 can contain numbers instead of gvar.GVars, in which case chi**2 is a measure of the
likelihood that the numbers came from the distribution specified by the other argument.

One or the other of g1 or g2 can be missing keys, or missing elements from arrays. Only the parts of g1 and
g2 that overlap are used. Also setting g2=None is equivalent to replacing its elements by zeros.

chi**2 is computed from the inverse of the covariance matrix of g1-g2. The matrix inversion can be sensitive
to roundoff errors. In such cases, SVD cuts can be applied by setting parameters svdcut and svdnum. See the
documentation for gvar.SVD for information about these parameters.

The return value is the chi**2. Extra data is stored in chi2 itself:

chi2.dof
Number of degrees of freedom (that is, the number of variables compared).

chi2.Q
The probability that the chi**2 could have been larger, by chance, even if g1 and g2 agree. Values
smaller than 0.1 or so suggest that they do not agree. Also called the p-value.

If argument fmt==True, then a string is returned containing the chi**2 per degree of freedom, the number
of degrees of freedom, and Q.

gvar.fmt_chi2(f)
Return string containing chi**2/dof, dof and Q from f.

Assumes f has attributes chi2, dof and Q.

gvar.GVars contain information about derivatives with respect to the independent gvar.GVars from which they
were constructed. This information can be extracted using:

gvar.deriv(g, x)
Compute first derivatives wrt x of gvar.GVars in g.

g can be a gvar.GVar, an array of gvar.GVars, or a dictionary containing gvar.GVars or arrays of
gvar.GVars. Result has the same layout as g.

x must be an independent gvar.GVar, which is a gvar.GVar created by a call to gvar.gvar() (e.g.,
x = gvar.gvar(xmean, xsdev)) or a function f(x) of such a gvar.GVar. (More precisely, x.der
must have only one nonzero entry.)

1.7. Utilities 11

gvar Documentation, Release 4.6.1

The following function creates an iterator that generates random arrays from the distribution defined by array (or
dictionary) g of gvar.GVars. The random numbers incorporate any correlations implied by the gs.

gvar.raniter(g, n=None, svdcut=None, svdnum=None, rescale=True)
Return iterator for random samples from distribution g

The gaussian variables (gvar.GVar objects) in array (or dictionary) g collectively define a multidimensional
gaussian distribution. The iterator defined by raniter() generates an array (or dictionary) containing random
numbers drawn from that distribution, with correlations intact.

The layout for the result is the same as for g. So an array of the same shape is returned if g is an array. When g
is a dictionary, individual entries g[k] may be gvar.GVars or arrays of gvar.GVars, with arbitrary shapes.

raniter() also works when g is a single gvar.GVar, in which case the resulting iterator returns random
numbers drawn from the distribution specified by g.

Parameters

• g (array or dictionary or BufferDict or GVar) – An array (or dictionary) of objects of type
gvar.GVar; or a gvar.GVar.

• n – Maximum number of random iterations. Setting n=None (the default) implies there is
no maximum number.

• svdcut (None or number) – If positive, replace eigenvalues of the covariance matrix of g
with svdcut*(max eigenvalue); if negative, discards eigenmodes with eigenvalues
smaller than svdcut*(max eigenvalue); ignore if set to None.

• svdnum (None or positive int) – If positive, keep only the modes with the largest svdnum
eigenvalues in the covariance matrix for g; ignore if set to None or negative.

• rescale (bool) – Covariance matrix is rescaled so that diagonal elements equal 1 before
applying svd cuts if rescale=True.

Returns An iterator that returns random arrays or dictionaries with the same shape as g drawn from
the gaussian distribution defined by g.

gvar.bootstrap_iter(g, n=None, svdcut=None, svdnum=None, rescale=True)
Return iterator for bootstrap copies of g.

The gaussian variables (gvar.GVar objects) in array (or dictionary) g collectively define a multidimensional
gaussian distribution. The iterator created by bootstrap_iter() generates an array (or dictionary) of new
gvar.GVars whose covariance matrix is the same as g‘s but whose means are drawn at random from the
original g distribution. This is a bootstrap copy of the original distribution. Each iteration of the iterator has
different means (but the same covariance matrix).

bootstrap_iter() also works when g is a single gvar.GVar, in which case the resulting iterator returns
bootstrap copies of the g.

Parameters

• g (array or dictionary or BufferDict) – An array (or dictionary) of objects of type
gvar.GVar.

• n – Maximum number of random iterations. Setting n=None (the default) implies there is
no maximum number.

• svdcut (None or number) – If positive, replace eigenvalues of the covariance matrix of g
with svdcut*(max eigenvalue); if negative, discards eigenmodes with eigenvalues
smaller than svdcut*(max eigenvalue); ignore if set to None.

• svdnum (None or positive int) – If positive, keep only the modes with the largest svdnum
eigenvalues in the covariance matrix for g; ignore if set to None or negative.

12 Chapter 1. gvar - Gaussian Random Variables

gvar Documentation, Release 4.6.1

• rescale (bool) – Covariance matrix is rescaled so that diagonal elements equal 1 before
applying svd cuts if rescale=True.

Returns An iterator that returns bootstrap copies of g.

gvar.ranseed(a)
Seed random number generators with tuple seed.

Argument seed is a tuple of integers that is used to seed the random number generators used by numpy and
random (and therefore by gvar). Reusing the same seed results in the same set of random numbers.

ranseed generates its own seed when called without an argument or with seed=None. This seed is stored in
ranseed.seed and also returned by the function. The seed can be used to regenerate the same set of random
numbers at a later time.

Parameters seed (tuple or None) – A tuple of integers. Generates a random tuple if None.

Returns The seed.

Two functions that are useful for tabulating results and for analyzing where the errors in a gvar.GVar constructed
from other gvar.GVars come from:

gvar.fmt_errorbudget(outputs, inputs, ndecimal=2, percent=True, colwidth=10)
Tabulate error budget for outputs[ko] due to inputs[ki].

For each output outputs[ko], fmt_errorbudget computes the contributions to outputs[ko]‘s stan-
dard deviation coming from the gvar.GVars collected in inputs[ki]. This is done for each key combi-
nation (ko,ki) and the results are tabulated with columns and rows labeled by ko and ki, respectively. If
a gvar.GVar in inputs[ki] is correlated with other gvar.GVars, the contribution from the others is
included in the ki contribution as well (since contributions from correlated gvar.GVars cannot be resolved).
The table is returned as a string.

Parameters

• outputs – Dictionary of gvar.GVars for which an error budget is computed.

• inputs – Dictionary of: gvar.GVars, arrays/dictionaries of gvar.GVars, or lists of
gvar.GVars and/or arrays/dictionaries of gvar.GVars. fmt_errorbudget tabulates
the parts of the standard deviations of each outputs[ko] due to each inputs[ki].

• ndecimal (int) – Number of decimal places displayed in table.

• percent (boolean) – Tabulate % errors if percent is True; otherwise tabulate the er-
rors themselves.

• colwidth (positive integer) – Width of each column.

Returns A table (str) containing the error budget. Output variables are labeled by the keys in
outputs (columns); sources of uncertainty are labeled by the keys in inputs (rows).

gvar.fmt_values(outputs, ndecimal=None)
Tabulate gvar.GVars in outputs.

Parameters

• outputs – A dictionary of gvar.GVar objects.

• ndecimal (int or None) – Format values v using v.fmt(ndecimal).

Returns A table (str) containing values and standard deviations for variables in outputs, labeled
by the keys in outputs.

The following functions creates new functions that generate gvar.GVars (to replace gvar.gvar()):

1.7. Utilities 13

gvar Documentation, Release 4.6.1

gvar.switch_gvar()
Switch gvar.gvar() to new gvar.GVarFactory.

Returns New gvar.gvar().

gvar.restore_gvar()
Restore previous gvar.gvar().

Returns Previous gvar.gvar().

gvar.gvar_factory(cov=None)
Return new function for creating gvar.GVars (to replace gvar.gvar()).

If cov is specified, it is used as the covariance matrix for new gvar.GVars created by the function returned
by gvar_factory(cov). Otherwise a new covariance matrix is created internally.

gvar.GVars created by different functions cannot be combined in arithmetic expressions (the error message “In-
compatible GVars.” results).

The following function can be used to rebuild collections of gvar.GVars, ignoring all correlations with other vari-
ables. It can also be used to introduce correlations between uncorrelated variables.

gvar.rebuild(g, gvar=gvar, corr=0.0)
Rebuild g stripping correlations with variables not in g.

g is either an array of gvar.GVars or a dictionary containing gvar.GVars and/or arrays of gvar.GVars.
rebuild(g) creates a new collection gvar.GVars with the same layout, means and covariance matrix as
those in g, but discarding all correlations with variables not in g.

If corr is nonzero, rebuild will introduce correlations wherever there aren’t any using

cov[i,j] -> corr * sqrt(cov[i,i]*cov[j,j])

wherever cov[i,j]==0.0 initially. Positive values for corr introduce positive correlations, negative values
anti-correlations.

Parameter gvar specifies a function for creating new gvar.GVars that replaces gvar.gvar() (the default).

Parameters

• g (array or dictionary) – gvar.GVars to be rebuilt.

• gvar (gvar.GVarFactory or None) – Replacement for gvar.gvar() to use in re-
building. Default is gvar.gvar().

• corr (number) – Size of correlations to introduce where none exist initially.

Returns Array or dictionary (gvar.BufferDict) of gvar.GVars (same layout as g) where all corre-
lations with variables other than those in g are erased.

Finally there is a utility function and a class for implementing an svd analysis of a covariance or other symmetric,
positive matrix:

gvar.svd(g, svdcut=None, svdnum=None, compute_delta=False, rescale=True)
Apply svd cuts to collection of gvar.GVars in g.

g is an array of gvar.GVars or a dictionary containing gvar.GVars and/or arrays of gvar.GVars.
svd(g,...) returns a copy of g whose gvar.GVars have been modified so that their covariance matrix
is less singular than for the original g (the gvar.GVar means are unchanged). This is done using an svd al-
gorithm which is controlled by three parameters: svdcut, svdnum and rescale (see gvar.SVD for more
details). svd cuts are not applied when the covariance matrix is diagonal (that is, when there are no correlations
between different elements of g).

The input parameters are :

14 Chapter 1. gvar - Gaussian Random Variables

gvar Documentation, Release 4.6.1

Parameters

• g – An array of gvar.GVars or a dicitionary whose values are gvar.GVars and/or arrays
of gvar.GVars.

• svdcut (None or number (|svdcut|<=1).) – If positive, replace eigenvalues of the
covariance matrix with svdcut*(max eigenvalue); if negative, discard eigenmodes
with eigenvalues smaller than svdcut times the maximum eigenvalue. Default is None.

• svdnum (None or int) – If positive, keep only the modes with the largest svdnum eigen-
values; ignore if set to None. Default is None.

• rescale – Rescale the input matrix to make its diagonal elements equal to 1.0 before applying
svd cuts. (Default is True.)

• compute_inv – Compute representation of inverse of covariance matrix if True; the result
is stored in svd.inv_wgt (see below). Default value is False.

Returns A copy of g with the same means but with a covariance matrix modified by svd cuts.

Data from the svd analysis of g‘s covariance matrix is stored in svd itself:

svd.val
Eigenvalues of the covariance matrix after svd cuts (and after rescaling if rescale=True); the eigenval-
ues are ordered, with the smallest first.

svd.vec
Eigenvectors of the covariance matrix after svd cuts (and after rescaling if rescale=True), where
svd.vec[i] is the vector corresponding to svd.val[i].

svd.eigen_range
Ratio of the smallest to largest eigenvalue before svd cuts are applied (but after rescaling if
rescale=True).

svd.D
Diagonal of matrix used to rescale the covariance matrix before applying svd cuts (cuts are applied to
D*cov*D) if rescale=True; svd.D is None if rescale=False.

svd.logdet
Logarithm of the determinant of the covariance matrix after svd cuts are applied.

svd.correction
Vector of the svd corrections to g.flat;

svd.inv_wgt
The sum of the outer product of vectors inv_wgt[i] with themselves equals the inverse of the covari-
ance matrix after svd cuts. Only computed if compute_inv=True. The order of the vectors is reversed
relative to svd.val and svd.vec

1.8 Classes

The fundamental class for representing Gaussian variables is:

class gvar.GVar
The basic attributes are:

mean
Mean value.

sdev
Standard deviation.

1.8. Classes 15

gvar Documentation, Release 4.6.1

var
Variance.

Two methods allow one to isolate the contributions to the variance or standard deviation coming from other
gvar.GVars:

partialvar(*args)
Compute partial variance due to gvar.GVars in args.

This method computes the part of self.var due to the gvar.GVars in args. If args[i] is corre-
lated with other gvar.GVars, the variance coming from these is included in the result as well. (This last
convention is necessary because variances associated with correlated gvar.GVars cannot be disentan-
gled into contributions corresponding to each variable separately.)

Parameters args[i] (gvar.GVar or array/dictionary of gvar.GVars) – Variables contribut-
ing to the partial variance.

Returns Partial variance due to all of args.

partialsdev(*args)
Compute partial standard deviation due to gvar.GVars in args.

This method computes the part of self.sdev due to the gvar.GVars in args. If args[i] is corre-
lated with other gvar.GVars, the standard deviation coming from these is included in the result as well.
(This last convention is necessary because variances associated with correlated gvar.GVars cannot be
disentangled into contributions corresponding to each variable separately.)

Parameters args[i] (gvar.GVar or array/dictionary of gvar.GVars) – Variables contribut-
ing to the partial standard deviation.

Returns Partial standard deviation due to args.

Partial derivatives of the gvar.GVar with respect to the independent gvar.GVars from which it was con-
structed are given by:

deriv(x)
Derivative of self with respest to independent gvar.GVar x.

xmust be an independent gvar.GVar, which is a gvar.GVar created by a call to gvar.gvar() (e.g.,
x = gvar.gvar(xmean, xsdev)) or a function f(x) of such a gvar.GVar. (More precisely,
x.der must have only one nonzero entry.)

All gvar.GVars are constructed from a set of independent gvar.GVars. self.deriv(x) returns
the partial derivative of self with respect to independent gvar.GVar x, holding all of the other inde-
pendent gvar.GVars constant.

Parameters x – The independent gvar.GVar.

Returns The derivative of self with respect to x.

There are two methods for converting self into a string, for printing:

__str__()
Return string representation of self.

The representation is designed to show at least one digit of the mean and two digits of the standard devia-
tion. For cases where mean and standard deviation are not too different in magnitude, the representation is
of the form ’mean(sdev)’. When this is not possible, the string has the form ’mean +- sdev’.

fmt(ndecimal=None, sep=’‘)
Convert to string with format: mean(sdev).

Leading zeros in the standard deviation are omitted: for example, 25.67 +- 0.02 becomes
25.67(2). Parameter ndecimal specifies how many digits follow the decimal point in the mean.

16 Chapter 1. gvar - Gaussian Random Variables

gvar Documentation, Release 4.6.1

Parameter sep is a string that is inserted between the mean and the (sdev). If ndecimal is None
(default), it is set automatically to the larger of int(2-log10(self.sdev)) or 0; this will display
at least two digits of error. Very large or very small numbers are written with exponential notation when
ndecimal is None.

Setting ndecimal < 0 returns mean +- sdev.

Two attributes and a method make reference to the original variables from which self is derived:

cov
Underlying covariance matrix (type gvar.smat) shared by all gvar.GVars.

der
Array of derivatives with respect to underlying (original) gvar.GVars.

dotder(v)
Return the dot product of self.der and v.

The following class is a specialized form of an ordered dictionary for holding gvar.GVars (or other scalars) and
arrays of gvar.GVars (or other scalars) that supports Python pickling:

class gvar.BufferDict
Dictionary whose data is packed into a 1-d buffer (numpy.array).

A gvar.BufferDict object is a dictionary-like object whose values must either be scalars or arrays (like
numpy arrays, with arbitrary shapes). The scalars and arrays are assembled into different parts of a single
one-dimensional buffer. The various scalars and arrays are retrieved using keys, as in a dictionary: e.g.,

>>> a = BufferDict()
>>> a[’scalar’] = 0.0
>>> a[’vector’] = [1.,2.]
>>> a[’tensor’] = [[3.,4.],[5.,6.]]
>>> print(a.flatten()) # print a’s buffer
[0. 1. 2. 3. 4. 5. 6.]
>>> for k in a: # iterate over keys in a
... print(k,a[k])
scalar 0.0
vector [1. 2.]
tensor [[3. 4.]
[5. 6.]]
>>> a[’vector’] = a[’vector’]*10 # change the ’vector’ part of a
>>> print(a.flatten())
[0. 10. 20. 3. 4. 5. 6.]

The first four lines here could have been collapsed to one statement:

a = BufferDict(scalar=0.0,vector=[1.,2.],tensor=[[3.,4.],[5.,6.]])

or

a = BufferDict([(’scalar’,0.0),(’vector’,[1.,2.]),
(’tensor’,[[3.,4.],[5.,6.]])])

where in the second case the order of the keys is preserved in a (that is, BufferDict is an ordered dictionary).

The keys and associated shapes in a gvar.BufferDict can be transferred to a different buffer, creating a
new gvar.BufferDict: e.g., using a from above,

>>> buf = numpy.array([0.,10.,20.,30.,40.,50.,60.])
>>> b = BufferDict(a,buf=buf) # clone a but with new buffer
>>> print(b[’tensor’])
[[30. 40.]

1.8. Classes 17

gvar Documentation, Release 4.6.1

[50. 60.]]
>>> b[’scalar’] += 1
>>> print(buf)
[1. 10. 20. 30. 40. 50. 60.]

Note how b references buf and can modify it. One can also replace the buffer in the original
gvar.BufferDict using, for example, a.buf = buf:

>>> a.buf = buf
>>> print(a[’tensor’])
[[30. 40.]
[50. 60.]]
>>> a[’tensor’] *= 10.
>>> print(buf)
[1. 10. 20. 300. 400. 500. 600.]

a.buf is the numpy array used for a‘s buffer. It can be used to access and change the buffer directly. In
a.buf = buf, the new buffer buf must be a numpy array of the correct shape. The buffer can also be
accessed through iterator a.flat (in analogy with numpy arrays), and through a.flatten() which returns
a copy of the buffer.

A gvar.BufferDict functions like a dictionary except: a) items cannot be deleted once inserted; b) all
values must be either scalars or arrays of scalars, where the scalars can be any noniterable type that works with
numpy arrays; and c) any new value assigned to a key must have the same size and shape as the original value.

Note that gvar.BufferDicts can be pickled and unpickled even when they store gvar.GVars (which
themselves cannot be pickled separately).

The main attributes are:

size
Size of buffer array.

flat
Buffer array iterator.

dtype
Data type of buffer array elements.

buf
The (1d) buffer array. Allows direct access to the buffer: for example, self.buf[i] = new_val sets
the value of the i-th element in the buffer to value new_val. Setting self.buf = nbuf replaces
the old buffer by new buffer nbuf. This only works if nbuf is a one-dimensional numpy array having
the same length as the old buffer, since nbuf itself is used as the new buffer (not a copy).

shape
Always equal to None. This attribute is included since gvar.BufferDicts share several attributes
with numpy arrays to simplify coding that might support either type. Being dictionaries they do not have
shapes in the sense of numpy arrays (hence the shape is None).

The main methods are:

flatten()
Copy of buffer array.

slice(k)
Return slice/index in self.flat corresponding to key k.

isscalar(k)
Return True if self[k] is scalar else False.

18 Chapter 1. gvar - Gaussian Random Variables

gvar Documentation, Release 4.6.1

update(d)
Add contents of dictionary d to self.

static load(fobj, use_json=False)
Load serialized gvar.BufferDict from file object fobj. Uses pickle unless use_json is True,
in which case it uses json (obvioulsy).

static loads(s, use_json=False)
Load serialized gvar.BufferDict from string object s. Uses pickle unless use_json is True,
in which case it uses json (obvioulsy).

dump(fobj, use_json=False)
Serialize gvar.BufferDict in file object fobj.

Uses pickle unless use_json is True, in which case it uses json (obviously). json does not
handle non-string valued keys very well. This attempts a workaround, but it will only work in simpler
cases. Serialization only works when pickle (or json) knows how to serialize the data type stored in
the gvar.BufferDict‘s buffer (or for gvar.GVars).

dumps(use_json=False)
Serialize gvar.BufferDict into string.

Uses pickle unless use_json is True, in which case it uses json (obviously). json does not
handle non-string valued keys very well. This attempts a workaround, but it will only work in simpler
cases (e.g., integers, tuples of integers, etc.). Serialization only works when pickle (or json) knows
how to serialize the data type stored in the gvar.BufferDict‘s buffer (or for gvar.GVars).

SVD analysis is handled by the following class:

class gvar.SVD(mat, svdcut=None, svdnum=None, compute_delta=False, rescale=False)
SVD decomposition of a pos. sym. matrix.

SVD is a function-class that computes the eigenvalues and eigenvectors of a positive symmetric matrix mat.
Eigenvalues that are small (or negative, because of roundoff) can be eliminated or modified using svd cuts.
Typical usage is:

>>> mat = [[1.,.25],[.25,2.]]
>>> s = SVD(mat)
>>> print(s.val) # eigenvalues
[0.94098301 2.05901699]
>>> print(s.vec[0]) # 1st eigenvector (for s.val[0])
[0.97324899 -0.22975292]
>>> print(s.vec[1]) # 2nd eigenvector (for s.val[1])
[0.22975292 0.97324899]

>>> s = SVD(mat,svdcut=0.6) # force s.val[i]>=s.val[-1]*0.6
>>> print(s.val)
[1.2354102 2.05901699]
>>> print(s.vec[0]) # eigenvector unchanged
[0.97324899 -0.22975292]

>>> s = SVD(mat)
>>> w = s.decomp(-1) # decomposition of inverse of mat
>>> invmat = sum(numpy.outer(wj,wj) for wj in w)
>>> print(numpy.dot(mat,invmat)) # should be unit matrix
[[1.00000000e+00 2.77555756e-17]
[1.66533454e-16 1.00000000e+00]]

Input parameters are:

Parameters

1.8. Classes 19

gvar Documentation, Release 4.6.1

• mat (2-d sequence (numpy.array or list or ...)) – Positive, symmetric matrix.

• svdcut (None or number (|svdcut|<=1).) – If positive, replace eigenvalues of mat
with svdcut*(max eigenvalue); if negative, discard eigenmodes with eigenvalues
smaller than svdcut times the maximum eigenvalue.

• svdnum (None or int) – If positive, keep only the modes with the largest svdnum eigen-
values; ignore if set to None.

• compute_delta (boolean) – Compute delta (see below) if True; set delta=None oth-
erwise.

• rescale – Rescale the input matrix to make its diagonal elements equal to 1.0 before diago-
nalizing.

The results are accessed using:

val
An ordered array containing the eigenvalues or mat. Note that val[i]<=val[i+1].

vec
Eigenvectors vec[i] corresponding to the eigenvalues val[i].

D
The diagonal matrix used to precondition the input matrix if rescale==True. The matrix diagonalized
is D M D where M is the input matrix. D is stored as a one-dimensional vector of diagonal elements. D is
None if rescale==False.

nmod
The first nmod eigenvalues in self.val were modified by the SVD cut (equals 0 unless svdcut > 0).

kappa
Ratio of the smallest to the largest eigenvector in the unconditioned matrix (after rescaling if
rescale=True)

delta
A vector of gvars whose means are zero and whose covariance matrix is what was added to mat to
condition its eigenvalues. Is None if svdcut<0 or compute_delta==False.

decomp(n)
Vector decomposition of input matrix raised to power n.

Computes vectors w[i] such that

mat**n = sum_i numpy.outer(w[i],w[i])

where mat is the original input matrix to svd. This decomposition cannot be computed if the input matrix
was rescaled (rescale=True) except for n=1 and n=-1.

Parameters n (number) – Power of input matrix.

Returns Array w of vectors.

1.9 Requirements

gvar makes heavy use of numpy for array manipulations. It also uses the numpy code for implementing elementary
functions (e.g., sin, exp ...) in terms of member functions.

20 Chapter 1. gvar - Gaussian Random Variables

CHAPTER

TWO

GVAR.DATASET - RANDOM DATA SETS

2.1 Introduction

gvar.dataset contains a several tools for collecting and analyzing random samples from arbitrary distributions.
The random samples are represented by lists of numbers or arrays, where each number/array is a new sample from the
underlying distribution. For example, six samples from a one-dimensional gaussian distribution, 1±1, might look like

>>> random_numbers = [1.739, 2.682, 2.493, -0.460, 0.603, 0.800]

while six samples from a two-dimensional distribution, [1±1, 2±1], might be

>>> random_arrays = [[0.494, 2.734], [0.172, 1.400], [1.571, 1.304],
... [1.532, 1.510], [0.669, 0.873], [1.242, 2.188]]

Samples from more complicated multidimensional distributions are represented by dictionaries whose values are lists
of numbers or arrays: for example,

>>> random_dict = dict(n=random_numbers, a=random_arrays)

where list elements random_dict[’n’][i] and random_dict[’a’][i] are part of the same multidimen-
sional sample for every i — that is, the lists for different keys in the dictionary are synchronized one with the other.

With large samples, we typically want to estimate the mean value of the underlying distribution. This is done using
gvar.dataset.avg_data(): for example,

>>> print(avg_data(random_numbers))
1.31(45)

indicates that 1.31(45) is our best guess, based only upon the samples in random_numbers, for the mean of the
distribution from which those samples were drawn. Similarly

>>> print(avg_data(random_arrays))
[0.95(22) 1.67(25)]

indicates that the means for the two-dimensional distribution behind random_arrays are [0.95(22),
1.67(25)]. avg_data() can also be applied to a dictionary whose values are lists of numbers/arrays: for exam-
ple,

>>> print(avg_data(random_dict))
{’a’: array([0.95(22), 1.67(25)], dtype=object),’n’: 1.31(45)}

Class gvar.dataset.Dataset can be used to assemble dictionaries containing random samples. For example,
imagine that the random samples above were originally written into a file, as they were generated:

21

gvar Documentation, Release 4.6.1

file: datafile
n 1.739
a [0.494, 2.734]
n 2.682
a [0.172, 1.400]
n 2.493
a [1.571, 1.304]
n -0.460
a [1.532, 1.510]
n 0.603
a [0.669, 0.873]
n 0.800
a [1.242, 2.188]

Here each line is a different random sample, either from the one-dimensional distribution (labeled n) or from the two-
dimensional distribution (labeled a). Assuming the file is called datafile, this data can be read into a dictionary,
essentially identical to the data dictionary above, using:

>>> data = Dataset("datafile")
>>> print(data[’a’])
[array([0.494, 2.734]), array([0.172, 1.400]), array([1.571, 1.304]) ...]
>>> print(avg_data(data[’n’]))
1.31(45)

The brackets and commas can be omitted in the input file for one-dimensional arrays: for example, datafile (above)
could equivalently be written

file: datafile
n 1.739
a 0.494 2.734
n 2.682
a 0.172 1.400
...

Other data formats may also be easy to use. For example, a data file written using yaml would look like

file: datafile

n: 1.739
a: [0.494, 2.734]

n: 2.682
a: [0.172, 1.400]
.
.
.

and could be read into a gvar.dataset.Dataset using:

import yaml

data = Dataset()
with open("datafile", "r") as dfile:

for d in yaml.load_all(dfile.read()): # iterate over yaml records
data.append(d) # d is a dictionary

Finally note that data can be binned, into bins of size binsize, using gvar.dataset.bin_data(). For ex-
ample, gvar.dataset.bin_data(data, binsize=3) replaces every three samples in data by the average
of those samples. This creates a dataset that is 1/3 the size of the original but has the same mean. Binning is use-

22 Chapter 2. gvar.dataset - Random Data Sets

gvar Documentation, Release 4.6.1

ful for making large datasets more manageable, and also for removing sample-to-sample correlations. Over-binning,
however, erases statistical information.

Class gvar.dataset.Dataset can also be used to build a dataset sample by sample in code: for example,

>>> a = Dataset()
>>> a.append(n=1.739, a=[0.494, 2.734])
>>> a.append(n=2.682, a=[0.172, 1.400])
...

creates the same dataset as above.

2.2 Functions

The functions defined in the module are:

gvar.dataset.avg_data(data, median=False, spread=False, bstrap=False)
Average random data to estimate mean.

data is a list of random numbers or random arrays, or a dictionary of lists of random numbers/arrays: for
example,

>>> random_numbers = [1.60, 0.99, 1.28, 1.30, 0.54, 2.15]
>>> random_arrays = [[12.2,121.3],[13.4,149.2],[11.7,135.3],
... [7.2,64.6],[15.2,69.0],[8.3,108.3]]
>>> random_dict = dict(n=random_numbers,a=random_arrays)

where in each case there are six random numbers/arrays. avg_data estimates the means of the distributions
from which the random numbers/arrays are drawn, together with the uncertainties in those estimates. The results
are returned as a gvar.GVar or an array of gvar.GVars, or a dictionary of gvar.GVars and/or arrays of
gvar.GVars:

>>> print(avg_data(random_numbers))
1.31(20)
>>> print(avg_data(random_arrays))
[11.3(1.1) 108(13)]
>>> print(avg_data(random_dict))
{’a’: array([11.3(1.1), 108(13)], dtype=object),’n’: 1.31(20)}

The arrays in random_arrays are one dimensional; in general, they can have any shape.

avg_data(data) also estimates any correlations between different quantities in data. When data is a
dictionary, it does this by assuming that the lists of random numbers/arrays for the different data[k]s are
synchronized, with the first element in one list corresponding to the first elements in all other lists, and so on. If
some lists are shorter than others, the longer lists are truncated to the same length as the shortest list (discarding
data samples).

There are four optional arguments. If argument spread=True each standard deviation in the results refers to
the spread in the data, not the uncertainty in the estimate of the mean. The former is sqrt(N) larger where N
is the number of random numbers (or arrays) being averaged:

>>> print(avg_data(random_numbers,spread=True))
1.31(50)
>>> print(avg_data(random_numbers))
1.31(20)
>>> print((0.50 / 0.20) ** 2) # should be (about) 6
6.25

2.2. Functions 23

gvar Documentation, Release 4.6.1

This is useful, for example, when averaging bootstrap data. The default value is spread=False.

The second option is triggered by setting median=True. This replaces the means in the results by medians,
while the standard deviations are approximated by the half-width of the interval, centered around the median,
that contains 68% of the data. These estimates are more robust than the mean and standard deviation when
averaging over small amounts of data; in particular, they are unaffected by extreme outliers in the data. The
default is median=False.

The third option is triggered by setting bstrap=True. This is shorthand for setting median=True and
spread=True, and overrides any explicit setting for these keyword arguments. This is the typical choice for
analyzing bootstrap data — hence its name. The default value is bstrap=False.

The final option is to omit the error estimates on the averages, which is triggered by setting noerror=True.
Just the mean values are returned. The default value is noerror=False.

gvar.dataset.autocorr(data, ncorr=None)
Compute autocorrelation in random data.

data is a list of random numbers or random arrays, or a dictionary of lists of random numbers/arrays.

When data is a list of random numbers, autocorr(data) returns an array where autocorr(data)[i]
is the correlation between elements in data that are separated by distance i in the list: for example,

>>> print(autocorr([2,-2,2,-2,2,-2]))
[1. -1. 1. -1. 1. -1.]

shows perfect correlation between elements separated by an even interval in the list, and perfect anticorrelation
between elements by an odd interval.

autocorr(data) returns a list of arrays of autocorrelation coefficients when data is a list of random arrays.
Again autocorr(data)[i] gives the autocorrelations for data elements separated by distance i in the list.
Similarly autocorr(data) returns a dictionary when data is a dictionary.

autocorr(data) uses FFTs to compute the autocorrelations; the cost of computing the autocorrelations
should grow roughly linearly with the number of random samples in data (up to logarithms).

gvar.dataset.bin_data(data, binsize=2)
Bin random data.

data is a list of random numbers or random arrays, or a dictionary of lists of random numbers/arrays.
bin_data(data,binsize) replaces consecutive groups of binsize numbers/arrays by the average of
those numbers/arrays. The result is new data list (or dictionary) with 1/binsize times as much random data:
for example,

>>> print(bin_data([1,2,3,4,5,6,7],binsize=2))
[1.5, 3.5, 5.5]
>>> print(bin_data(dict(s=[1,2,3,4,5],v=[[1,2],[3,4],[5,6],[7,8]]),binsize=2))
{’s’: [1.5, 3.5], ’v’: [array([2., 3.]), array([6., 7.])]}

Data is dropped at the end if there is insufficient data to from complete bins. Binning is used to make calcula-
tions faster and to reduce measurement-to-measurement correlations, if they exist. Over-binning erases useful
information.

gvar.dataset.bootstrap_iter(data, n=None)
Create iterator that returns bootstrap copies of data.

data is a list of random numbers or random arrays, or a dictionary of lists of random numbers/arrays.
bootstrap_iter(data,n) is an iterator that returns n bootstrap copies of data. The random num-
bers/arrays in a bootstrap copy are drawn at random (with repetition allowed) from among the samples in data:
for example,

24 Chapter 2. gvar.dataset - Random Data Sets

gvar Documentation, Release 4.6.1

>>> data = [1.1, 2.3, 0.5, 1.9]
>>> data_iter = bootstrap_iter(data)
>>> print(next(data_iter))
[1.1 1.1 0.5 1.9]
>>> print(next(data_iter))
[0.5 2.3 1.9 0.5]

>>> data = dict(a=[1,2,3,4],b=[1,2,3,4])
>>> data_iter = bootstrap_iter(data)
>>> print(next(data_iter))
{’a’: array([3, 3, 1, 2]), ’b’: array([3, 3, 1, 2])}
>>> print(next(data_iter))
{’a’: array([1, 3, 3, 2]), ’b’: array([1, 3, 3, 2])}

>>> data = [[1,2],[3,4],[5,6],[7,8]]
>>> data_iter = bootstrap_iter(data)
>>> print(next(data_iter))
[[7. 8.]
[1. 2.]
[1. 2.]
[7. 8.]]

>>> print(next(data_iter))
[[3. 4.]
[7. 8.]
[3. 4.]
[1. 2.]]

The distribution of bootstrap copies is an approximation to the distribution from which data was drawn. Con-
sequently means, variances and correlations for bootstrap copies should be similar to those in data. Analyzing
variations from bootstrap copy to copy is often useful when dealing with non-gaussian behavior or complicated
correlations between different quantities.

Parameter n specifies the maximum number of copies; there is no maximum if n is None.

2.3 Classes

gvar.dataset.Dataset is used to assemble random samples from multidimensional distributions:

class gvar.dataset.Dataset
Dictionary for collecting random data.

This dictionary class simplifies the collection of random data. The random data are stored in a dictionary, with
each piece of random data being a number or an array of numbers. For example, consider a situation where there
are four random values for a scalar s and four random values for vector v. These can be collected as follows:

>>> data = Dataset()
>>> data.append(s=1.1,v=[12.2,20.6])
>>> data.append(s=0.8,v=[14.1,19.2])
>>> data.append(s=0.95,v=[10.3,19.7])
>>> data.append(s=0.91,v=[8.2,21.0])
>>> print(data[’s’]) # 4 random values of s
[1.1, 0.8, 0.95, 0.91]
>>> print(data[’v’]) # 4 random vector-values of v
[array([12.2, 20.6]), array([14.1, 19.2]), array([10.3, 19.7]), array([8.2, 21.])]

The argument to data.append() could be a dictionary: for example, dd =
dict(s=1.1,v=[12.2,20.6]); data.append(dd) is equivalent to the first append statement

2.3. Classes 25

gvar Documentation, Release 4.6.1

above. This is useful, for example, if the data comes from a function (that returns a dictionary).

One can also append data key-by-key: for example, data.append(’s’,1.1);
data.append(’v’,[12.2,20.6]) is equivalent to the first append in the exam-
ple above. One could also achieve this with, for example, data[’s’].append(1.1);
data[’v’].append([12.2,20.6]), since each dictionary value is a list, but gvar.Dataset‘s
append checks for consistency between the new data and data already collected and so is preferable.

Use extend in place of append to add data in batches: for example,

>>> data = Dataset()
>>> data.extend(s=[1.1,0.8],v=[[12.2,20.6],[14.1,19.2]])
>>> data.extend(s=[0.95,0.91],v=[[10.3,19.7],[8.2,21.0]])
>>> print(data[’s’]) # 4 random values of s
[1.1, 0.8, 0.95, 0.91]

gives the same dataset as the first example above.

A Dataset can also be created from a file where every line is a new random sample. The data in the first
example above could have been stored in a file with the following content:

file: datafile
s 1.1
v [12.2,20.6]
s 0.8
v [14.1,19.2]
s 0.95
v [10.3,19.7]
s 0.91
v [8.2,21.0]

Lines that begin with # are ignored. Assuming the file is called datafile, we create a dataset identical to that
above using the code:

>>> data = Dataset(’datafile’)
>>> print(data[’s’])
[1.1, 0.8, 0.95, 0.91]

Data can be binned while reading it in, which might be useful if there the data set is huge. To bin the data
contained in file datafile in bins of binsize 2 we use:

>>> data = Dataset(’datafile’,binsize=2)
>>> print(data[’s’])
[0.95, 0.93]

Finally the keys read from a data file are restricted to those listed in keyword keys and those that are matched
(or partially matched) by regular expression grep if one or the other of these is specified: for example,

>>> data = Dataset(’datafile’)
>>> print([k for k in a])
[’s’, ’v’]
>>> data = Dataset(’datafile’,keys=[’v’])
>>> print([k for k in a])
[’v’]
>>> data = Dataset(’datafile’,grep=’[^v]’)
>>> print([k for k in a])
[’s’]
>>> data = Dataset(’datafile’,keys=[’v’],grep=’[^v]’)
>>> print([k for k in a])
[]

26 Chapter 2. gvar.dataset - Random Data Sets

gvar Documentation, Release 4.6.1

The main attributes and methods are:

samplesize
Smallest number of samples for any key.

append(*args, **kargs)
Append data to dataset.

There are three equivalent ways of adding data to a dataset data: for example, each of

data.append(n=1.739,a=[0.494,2.734]) # method 1

data.append(n,1.739) # method 2
data.append(a,[0.494,2.734])

dd = dict(n=1.739,a=[0.494,2.734]) # method 3
data.append(dd)

adds one new random number (or array) to data[’n’] (or data[’a’]).

extend(*args, **kargs)
Add batched data to dataset.

There are three equivalent ways of adding batched data, containing multiple samples for each quantity, to
a dataset data: for example, each of

data.extend(n=[1.739,2.682],
a=[[0.494,2.734],[0.172, 1.400]]) # method 1

data.extend(n,[1.739,2.682]) # method 2
data.extend(a,[[0.494,2.734],[0.172, 1.400]])

dd = dict(n=[1.739,2.682],
a=[[0.494,2.734],[0.172, 1.400]]) # method 3

data.extend(dd)

adds two new random numbers (or arrays) to data[’n’] (or data[’a’]).

This method can be used to merge two datasets, whether or not they share keys: for example,

data = Dataset("file1")
data_extra = Dataset("file2")
data.extend(data_extra) # data now contains all of data_extra

grep(rexp)
Create new dataset containing items whose keys match rexp.

Returns a new gvar.dataset.Dataset‘ containing only the items self[k] whose keys k match
regular expression rexp (a string) according to Python module re:

>>> a = Dataset()
>>> a.append(xx=1.,xy=[10.,100.])
>>> a.append(xx=2.,xy=[20.,200.])
>>> print(a.grep(’y’))
{’yy’: [array([10., 100.]), array([20., 200.])]}
>>> print(a.grep(’x’))
{’xx’: [1.0, 2.0], ’xy’: [array([10., 100.]), array([20., 200.])]}
>>> print(a.grep(’x|y’))
{’xx’: [1.0, 2.0], ’xy’: [array([10., 100.]), array([20., 200.])]}
>>> print a.grep(’[^y][^x]’)
{’xy’: [array([10., 100.]), array([20., 200.])]}

2.3. Classes 27

gvar Documentation, Release 4.6.1

Items are retained even if rexp matches only part of the item’s key.

slice(sl)
Create new dataset with self[k] -> self[k][sl].

Parameter sl is a slice object that is applied to every item in the dataset to produce a new
gvar.Dataset. Setting sl = slice(0,None,2), for example, discards every other sample for
each quantity in the dataset. Setting sl = slice(100,None) discards the first 100 samples for each
quantity.

arrayzip(template)
Merge lists of random data according to template.

template is an array of keys in the dataset, where the shapes of self[k] are the same for all keys k
in template. self.arrayzip(template) merges the lists of random numbers/arrays associated
with these keys to create a new list of (merged) random arrays whose layout is specified by template:
for example,

>>> d = Dataset()
>>> d.append(a=1,b=10)
>>> d.append(a=2,b=20)
>>> d.append(a=3,b=30)
>>> print(d) # three random samples each for a and b
{’a’: [1.0, 2.0, 3.0], ’b’: [10.0, 20.0, 30.0]}
>>> # merge into list of 2-vectors:
>>> print(d.arrayzip([’a’,’b’]))
[[1. 10.]
[2. 20.]
[3. 30.]]

>>> # merge into list of (symmetric) 2x2 matrices:
>>> print(d.arrayzip([[’b’,’a’],[’a’,’b’]]))
[[[10. 1.]

[1. 10.]]

[[20. 2.]
[2. 20.]]

[[30. 3.]
[3. 30.]]]

The number of samples in each merged result is the same as the number samples for each key (here 3).
The keys used in this example represent scalar quantities; in general, they could be either scalars or arrays
(of any shape, so long as all have the same shape).

trim()
Create new dataset where all entries have same sample size.

toarray()
Copy self but with self[k] as numpy arrays.

28 Chapter 2. gvar.dataset - Random Data Sets

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

29

gvar Documentation, Release 4.6.1

30 Chapter 3. Indices and tables

PYTHON MODULE INDEX

g
gvar, 3
gvar.dataset, 21

31

gvar Documentation, Release 4.6.1

32 Python Module Index

INDEX

Symbols
__str__() (gvar.GVar method), 16

A
append() (gvar.dataset.Dataset method), 27
arrayzip() (gvar.dataset.Dataset method), 28
autocorr() (in module gvar.dataset), 24
avg_data() (in module gvar.dataset), 23

B
bin_data() (in module gvar.dataset), 24
bootstrap_iter() (in module gvar), 12
bootstrap_iter() (in module gvar.dataset), 24
buf (gvar.BufferDict attribute), 18
BufferDict (class in gvar), 17

C
chi2() (in module gvar), 11
correction (gvar.svd attribute), 15
cov (gvar.GVar attribute), 17

D
D (gvar.SVD attribute), 20
D (gvar.svd attribute), 15
Dataset (class in gvar.dataset), 25
decomp() (gvar.SVD method), 20
delta (gvar.SVD attribute), 20
der (gvar.GVar attribute), 17
deriv() (gvar.GVar method), 16
deriv() (in module gvar), 11
dof (gvar.chi2 attribute), 11
dotder() (gvar.GVar method), 17
dtype (gvar.BufferDict attribute), 18
dump() (gvar.BufferDict method), 19
dumps() (gvar.BufferDict method), 19

E
eigen_range (gvar.svd attribute), 15
evalcorr() (in module gvar), 10
evalcov() (in module gvar), 10
extend() (gvar.dataset.Dataset method), 27

F
flat (gvar.BufferDict attribute), 18
flatten() (gvar.BufferDict method), 18
fmt() (gvar.GVar method), 16
fmt() (in module gvar), 10
fmt_chi2() (in module gvar), 11
fmt_errorbudget() (in module gvar), 13
fmt_values() (in module gvar), 13

G
grep() (gvar.dataset.Dataset method), 27
GVar (class in gvar), 15
gvar (module), 3
gvar() (in module gvar), 9, 10
gvar.dataset (module), 21
gvar_factory() (in module gvar), 14

I
inv_wgt (gvar.svd attribute), 15
isscalar() (gvar.BufferDict method), 18

K
kappa (gvar.SVD attribute), 20

L
load() (gvar.BufferDict static method), 19
loads() (gvar.BufferDict static method), 19
logdet (gvar.svd attribute), 15

M
mean (gvar.GVar attribute), 15
mean() (in module gvar), 10

N
nmod (gvar.SVD attribute), 20

P
partialsdev() (gvar.GVar method), 16
partialvar() (gvar.GVar method), 16

33

gvar Documentation, Release 4.6.1

Q
Q (gvar.chi2 attribute), 11

R
raniter() (in module gvar), 12
ranseed() (in module gvar), 13
rebuild() (in module gvar), 14
restore_gvar() (in module gvar), 14

S
samplesize (gvar.dataset.Dataset attribute), 27
sdev (gvar.GVar attribute), 15
sdev() (in module gvar), 10
shape (gvar.BufferDict attribute), 18
size (gvar.BufferDict attribute), 18
slice() (gvar.BufferDict method), 18
slice() (gvar.dataset.Dataset method), 28
SVD (class in gvar), 19
svd() (in module gvar), 14
switch_gvar() (in module gvar), 13

T
toarray() (gvar.dataset.Dataset method), 28
trim() (gvar.dataset.Dataset method), 28

U
uncorrelated() (in module gvar), 11
update() (gvar.BufferDict method), 18

V
val (gvar.SVD attribute), 20
val (gvar.svd attribute), 15
var (gvar.GVar attribute), 15
var() (in module gvar), 10
vec (gvar.SVD attribute), 20
vec (gvar.svd attribute), 15

34 Index

	gvar - Gaussian Random Variables
	Introduction
	Creating Gaussian Variables
	Computing Covariance Matrices
	Random Number Generators
	Limitations
	Implementation Notes; Derivatives; Optimizations
	Utilities
	Classes
	Requirements

	gvar.dataset - Random Data Sets
	Introduction
	Functions
	Classes

	Indices and tables
	Python Module Index
	Index

