fantastico Documentation
Release 0.3.0-b106

Radu Viorel Cosnita

September 02, 2013

CONTENTS

1 Introduction
1.1~ Why another python framework? o
1.2 Fantastico’s initial ideas e e e e e e e e

2 Getting started

2.1 Installation manual L e e e e e e e e
2.2 Fantastico SEtHINZS v v v v i e
2.3 0 Contribute e e e e e e e e e e e e e e e e e e
24 Developmentmode L e e e e e e e e e e e e e e e

3 Fantastico features

3.1 Exceptions hierarchy L.
3.2 Requestlifecycle e e e e e e e
3.3 ROUNZ NZINE . .« v v v o ot e i e
34 Model View Controller 0 L o e e e e e e e
3.5 SDK . o
3.6 Componentmodel e
3.7 CompOonent reUSAZE . .« « v v v v v e
3.8 Builtincomponents e e e e e e e e e e e e e e

4 How to articles

41 MVCHOWLO . . . o e

4.2 Deploymenthow to L e e e e e e e e

43 StatiC @SSELS . & v v v e

4.4 Creating anew ProjeCt ¢ v v v v v v i i e e e e e e e e e e e e e e e e
5 Changes

6 Build status

7 License

Index

37
37
38
42
43

45

47

49

51

CHAPTER
ONE

INTRODUCTION

1.1 Why another python framework?

The main reason for developing a new framework is simple: I want to use it for teaching purposes. I have seen many
projects which fail either because of poor coding or because they become legacy very fast. I will not get into details
why and what could have been done. It defeats the purpose.

Each piece of code that is being added to fantastico will follow these simple rules:

1. The code is written because is needed and there is no clean way to achieve the requirement with existing fantas-
tico features.

The code is developed using TDD (Test Driven Development).
The code quality is 9+ (reported by pylint).

The code coverage is 90%+ (reported by nose coverage).

A

The code is fully documented and included into documentation.

1.1.1 What do you want to teach who?

I am a big fan of Agile practices and currently I own a domain called scrum-expert.ro. This is meant to become a
collection of hands on resource of how to develop good software with high quality and in a reasonable amount of time.
Resources will cover topics like

1. Incremental development always ready for rollout.
2. TDD (Test Driven Development)

3. XP (eXtreme programming)

4. Scrum

5. Projects setup for Continuous Delivery

and many other topics that are required for delivering high quality software but apparently so many companies are
ignoring nowadays.

1.2 Fantastico’s initial ideas

* Very fast and pluggable routing engine.
* Easily creation of REST apis.

* Easily publishing of content (dynamic content).

fantastico Documentation, Release 0.3.0-b106

* Easily composition of available content.
* Easily deployment on non expensive infrastructures (AWS, RackSpace).
Once the features above are developed there should be extremely easy to create the following sample applications:
1. Blog development
2. Web Forms development.

3. Personal web sites.

2 Chapter 1. Introduction

CHAPTER
TWO

GETTING STARTED

2.1 Installation manual

In this section you can find out how to configure fantastico framework for different purposes.

2.1.1 Developing a new fantastico project

Currently fantastico is in early stages so we did not really use it to create new projects. The desired way we want to
provide this is presented below:
pip-3.2 install fantastico

Done, now you are ready to follow our tutorials about creating new projects.

2.1.2 Contributing to fantastico framework

Fantastico is an open source MIT licensed project to which any contribution is welcomed. If you like this framework
idea and you want to contribute do the following (I assume you are on an ubuntu machine):

=

Create a github account.

Ask for permissions to contribute to this project (send an email to radu.cosnital@gmail.com) - T
Create a folder where you want to hold fantastico framework files. (e.g worspace_fantastico)

cd ~/workspace_fantastico

git clone git@github.com:rcosnita/fantastico

sudo apt-get install python3-setuptools

sh virtual_env/setup_dev_env.sh

cd ~/workspace_fantastico

git clone git@github.com:rcosnita/fantastico fantastico-doc

git checkout gh-pages

S oW H R R R KR R

Now you have a fully functional fantastico workspace. I personally use PyDev and spring toolsuite but you are free to
use whatever editor you want. The only rule we follow is always keep the code stable. To check the stability of your
contribution before commiting the code follow the steps below:

cd ~/workspace_fantastico/fantastico/fantastico

sh run_tests.sh (we expect no failure in here)

sh run_pylint.sh (we expect 9+ rated code otherwise the build will fail).
cd ~/workspace_fantastico/fantastico

export BUILD_NUMBER=I1

./build _docs.sh (this will autogenerate documentation).

Look into ~/workspace_fantastico/fantastico-doc

Here you can see the autogenerated documentation (do not commit this as Jenkins will do this for
Be brave and push your newly awesome contribution.

S H R W HHR R W R

fantastico Documentation, Release 0.3.0-b106

2.2 Fantastico settings

Fantastico is configured using a plain settings file. This file is located in the root of fantastico framework or in the root
folder of your project. Before we dig further into configuration options lets see a very simple settings file:

class BasicSettings (object) :
@property
def installed _middleware (self) :
return ["fantastico.middleware.request_middleware.RequestMiddleware",
"fantastico.middleware.routing _middleware.RoutingMiddleware"]

@property
def supported_languages (self):
return ["en_us"]

The above code sample represent the minimum required configuration for fantastico framework to run. The order in
which middlewares are listed is the order in which they are executed when an http request is made.

2.2.1 Settings API

Below you can find technical information about settings.

class fantastico.settings.BasicSettings
This is the core class that describes all available settings of fantastico framework. For convenience all options
have default values that ensure minimum functionality of the framework. Below you can find an example of
three possible configuration: Dev / Stage / Production.

BasicSettings SettingsFacade
+installed_middleware : M_st P AR o] +get{name : string) : object
+supported_languages : list +get_config() : BasicSettings

A +get_root_folder() : tuple

i De i StageSettings ProdSettings

As you can see, if you want to overwrite basic configuration you simply have to extend the class and set new
values for the attributes you want to overwrite.

database_config
This property holds the configuration of database. It is recommended to have all environment configured
the same. An exception can be done for host but the rest must remain the same. Below you can find an
example of functional configuration:

config = {"drivername": "mysgl+mysglconnector",
"username": "fantastico",
"password": "12345",
"port": 3306,
"host": "localhost",
"database": "fantastico",
"additional_params": {"charset": "utf8"},
"show_sqgl": True}

4 Chapter 2. Getting started

fantastico Documentation, Release 0.3.0-b106

As you can see, in your configuration you can influence many attributes used when configuring the driver
/ database. show_sql key tells orm engine from Fantastico to display all generated queries.

dev_server_host
This property holds development server hostname. By default this is localhost.

dev_server_port
This property holds development server port. By default this is 12000.

installed middleware
Property that holds all installed middlewares.

routes_loaders
This property holds all routes loaders available.

supported_languages
Property that holds all supported languages by this fantastico instance.

templates_config
This property holds configuration of templates rendering engine. For the moment this influence how Jinja2
acts.

2.2.2 Create Dev configuration

Let’s imagine you want to create a custom dev configuration for your project. Below you can find the code for this:

class DevSettings (BasicSettings):

@property
def supported_languages (self):
return ["en_us", "ro_ro"]

The above configuration actually overwrites supported languages. This mean that only en_us is relevant for Dev
environment. You can do the same for Stage, Prod or any other custom configuration.

2.2.3 Using a specifc configuration
class fantastico.settings.SettingsFacade (environ=None)
For using a specific fantastico configuration you need to do two simple steps:

*Set FANTASTICO_ACTIVE_CONFIG environment variable to the fully python qualified class name
you want to use. E.g: fantastico.settings.BasicSettings

*In your code, you can use the following snippet to access a specific setting:

from fantastico.settings import SettingsFacade
print (SettingsFacade () .get ("installed middleware"))

If no active configuration is set in the fantastico.settings.BasicSettings will be used.

get (name)
Method used to retrieve a setting value.

Parameters
* name — Setting name.
* type — string

Returns The setting value.

2.2. Fantastico settings 5

http://jinja.pocoo.org/docs/

fantastico Documentation, Release 0.3.0-b106

Return type object

get_config()
Method used to return the active configuration which is used by this facade.

Return type fantastico.settings.BasicSettings
Returns Active configuration currently used.

get_root_folder ()
Method used to return the root folder of the current fantastico project (detected starting from settings)
profile used.

2.3 Contribute

Fantastico framework is open source so every contribution is welcome. For the moment we are looking for more
developers willing to contribute.

2.3.1 Code contribution

If you want to contribute with code to fantastico framework there are a simple set of rules that you must follow:
* Write unit tests (for the code / feature you are contributing).
» Write integration tests (for the code / feature you are contributing).
* Make sure your code is rated above 9.5 by pylint tool.
* In addition integration tests and unit tests must cover 95% of your code.
In order for each build to remain stable the following hard limits are imposed:
1. Unit tests must cover >= 95% of the code.
2. Integration tests must cover >= 95% of the code.
3. Code must be rated above 9.5 by pylint.
4. Everything must pass.
When you push on master a set of jobs are cascaded executed:
1. Run all unit tests job.
2. Run all integration tests job (only if unit tests succeeds).
3. Generate documentation and publish it (only if integration tests job succeeds).

You can follow the above build process by visiting Jenkins build. Login with your github account and everything
should work smoothly.

In the end do not forget that in Fantastico framework we love to develop against a stable base. We really think code
will have high quality and zero bugs.

Writing unit tests

For better understanding how to write unit tests see the documentation below:

class fantastico.tests.base_case.FantasticoUnitTestsCase (methodName="runTest’)
This is the base class that must be inherited by each unit test written for fantastico.

6 Chapter 2. Getting started

http://jenkins.scrum-expert.ro:8080/job/fantastico-framework/

fantastico Documentation, Release 0.3.0-b106

class SimpleUnitTest (FantasticoUnitTestsCase) :
def init (self):
self._msg = "Hello world"

def test_simple_flow_ok (self):
self.assertEqual ("Hello world", self._msqg)

_get_class_root_folder ()
This methods determines the root folder under which the test is executed.

_get_root_folder ()
This method determines the root folder under which core is executed.

check_original_methods (cls_obj)
This method ensures that for a given class only original non decorated methods will be invoked. Extremely
useful when you want to make sure @Controller decorator does not break your tests. It is strongly rec-
ommended to invoke this method on all classes which might contain @Controller decorator. It ease your
when committing on CI environment.

classmethod setup_once ()
This method is overriden in order to correctly mock some dependencies:

efantastico.mvc.controller decorators.Controller

Writing integration tests

For better understanding how to write integration tests see the documentation below:

class fantastico.tests.base_case.FantasticoIntegrationTestCase (methodName="runTest’)
This is the base class that must be inherited by each integration test written for fantastico.

class Simplelntegration (FantasticoIntegrationTestCase):
def init (self):
self.simple_class = {}

def cleanup(self):
self.simple_class = None

def test_simple_ok(self):
def do_stuff (env, env_cls):
self.assertEqual (simple_class[env], env_cls)

self. _run_test_all envs (do_stuff)

If you used this class you don’t have to mind about restoring call methods from each middleware once they are
wrapped by fantastico app. This is a must because otherwise you will crash other tests.

_envs
Private property that holds the environments against which we run the integration tests.

_restore_call methods ()
This method restore original call methods to all affected middlewares.

_run_test_all_envs (callable_obj)
This method is used to execute a callable block of code on all environments. This is extremely useful for

avoid boiler plate code duplication and executing test logic against all environments.

_save_call methods (middlewares)
This method save all call methods for each listed middleware so that later on they can be restored.

2.3. Contribute 7

fantastico Documentation, Release 0.3.0-b106

fantastico_cfg_os_key
This property holds the name of os environment variable used for setting up active fantastico configuration.

class fantastico.server.tests.itest_dev_server.DevServerIntegration (methodName="runlest’)
This class provides the foundation for writing integration tests that do http requests against a fantastico server.

class DummyLoaderIntegration (DevServerIntegration):
def init (self):
self._exception = None

def test_server_runs_ok (self):
def request_logic(server):
request = Request (self._get_server_base_url (server, DummyRoutelLoader.DUMMY_ROUTE))
with self.assertRaises (HTTPError) as cm:
urllib.request.urlopen (request)

self._exception = cm.exception

def assert_logic(server):
self.assertEqual (400, self._exception.code)
self.assertEqual ("Hello world.", self._exception.read() .decode())

self._run_test_all_envs(lambda env, settings_cls: self._run_test_against_dev_server (requ

you can also pass only request logic without assert logic
self._run_ test_all_envs (lambda env, settings_cls: self._run_test_against_dev_server (re

As you can see from above listed code, when you write a new integration test against Fantastico server you only
need to provide the request logic and assert logic functions. Request logic is executed while the server is up and
running. Assert logic is executed after the server has stopped.

_check_server_started (server)
This method holds the sanity checks to ensure a server is started correctly.

_get_server_base_url (server, route)
This method returns the absolute url for a given relative url (route).

_run_test_against_dev_server (request_logic, assert_logic=None)
This method provides a template for writing integration tests that requires a development server being
active. It accepts a request logic (code that actually do the http request) and an assert logic for making sure
code is correct.

2.4 Development mode

Fantastico framework is a web framework designed to be developers friendly. In order to simplify setup sequence,
fantastico provides a standalone WSGI compatible server that can be started from command line. This server is fully
compliant with WSGI standard. Below you can find some easy steps to achieve this:

1. Goto fantastico framework or project location
2. shrun_dev_server.sh
This is it. Now you have a running fantastico server on which you can test your work.

By default, Fantastico dev server starts on port 12000, but you can customize it from
fantastico.settings.BasicSettings.

8 Chapter 2. Getting started

fantastico Documentation, Release 0.3.0-b106

2.4.1 Hot deploy

Currently, this is not implemented, but it is on todo list on short term.

2.4.2 API

For more information about Fantastico development server see the API below.

class fantastico.server.dev_server .DevServer (settings_facade=<class ‘fantas-

tico.settings.SettingsFacade’>)
This class provides a very simple wsgi http server that embeds Fantastico framework into it. As developer you

can use it to simply test your new components.

start (build_server=<function make_server at Ox4ce72f8>, app=<class ‘fantas-

tico.middleware.fantastico_app.FantasticoApp’>)
This method starts a WSGI development server. All attributes like port, hostname and protocol are read

from configuration file.

started
Property used to tell if development server is started or not.

stop ()
This method stops the current running server (if any available).

2.4.3 Database config
Usually you will use Fantastico framework together with a database. When we develop new core features of Fantas-
tico we use a sample database for integration. You can easily use it as well to play around:

1. Goto fantastico framework location

2. export MYSQL_PASSWD=***** (your mysql password)

3. export MYSQL_HOST=<hostname> (your mysql hostname: e.g localhost)

4. sh run_setup_db.sh

run_setup_db.sh create an initial fantastico database and a user called fantastico identified by 12345 password. After
database is successfully created, it scans for all available module_setup.sql files and execute them against newly
created database.

2.4. Development mode 9

fantastico Documentation, Release 0.3.0-b106

10 Chapter 2. Getting started

CHAPTER
THREE

FANTASTICO FEATURES

3.1 Exceptions hierarchy

class fantastico.exceptions.FantasticoError

[FantasticoE rror]

FantasticoControllerinvalidE rror

FantasticoSettingNotF oundError

FantasticoNoRequestError

FantasticoNotSupportedError

FantasticoHttpVerbNotSupported

FantasticoDbEnEtRyNotFoundError

FantasticoError is the base of all exceptions raised within fantastico framework. It describe common attributes
that each concrete fantastico exception must provide. By default all fantastico exceptions inherit FantasticoError
exception. We do this because each raised unhandled FantasticoError is map to a specific exception response.
This strategy guarantees that at no moment errors will cause fantastico framework wsgi container to crash.

class fantastico.exceptions.FantasticoControllerInvalidError
This exception is raised whenever a method is decorated with fantastico.mvc.controller_decorators.Controlle
and the number of arguments is not correct. Usually developer forgot to add request as argument to the con-
troller.

class fantastico.exceptions.FantasticoClassNotFoundError
This exception is raised whenever code tries to dynamically import and instantiate a class which can not be
resolved.

class fantastico.exceptions.FantasticoNotSupportedError
This exception is raised whenever code tries to do an operation that is not supported.

class fantastico.exceptions.FantasticoSettingNotFoundError
This exception is raised whenever code tries to obtain a setting that is not available in the current fantastico
configuration.

11

fantastico Documentation, Release 0.3.0-b106

class fantastico.exceptions.FantasticoDuplicateRouteError
This exception is usually raised by routing engine when it detects duplicate routes.

class fantastico.exceptions.FantasticoNoRoutesError
This exception is usually raised by routing engine when no loaders are configured or no routes are registered.

class fantastico.exceptions.FantasticoRouteNotFoundError
This exception is usually raised by routing engine when a requested url is not registered.

class fantastico.exceptions.FantasticoNoRequestError
This exception is usually raised when some components try to use fantastico.request from WSGI environ before
fantastico.middleware.request_middleware.RequestMiddleware was executed.

class fantastico.exceptions.FantasticoContentTypeError
This exception is usually thrown when a mismatch between request accept and response content type. In Fan-
tastico we think it’s mandatory to fulfill requests correctly and to take in consideration sent headers.

class fantastico.exceptions.FantasticoHttpVerbNotSupported (http_verb)
This exception is usually thrown when a route is accessed with an http verb which does not support.

http_verb
This property returns the http verb that caused the problems.

class fantastico.exceptions.FantasticoTemplateNotFoundError
This exception is usually thrown when a controller tries to load a template which it does not found.

class fantastico.exceptions.FantasticoIncompatibleClassError
This exception is usually thrown when we want to decorate / inject / mixin a class into another class that does
not support it. For instance, we want to build a fantastico.mvc.model_ facade.ModelFacade with
a class that does not extend BASEMODEL.

class fantastico.exceptions.FantasticoDbError
This exception is usually thrown when a database exception occurs. For one good example where this is used
see fantastico.mvc.model_facade.ModelFacade.

class fantastico.exceptions.FantasticoDbNotFoundError
This exception is usually thrown when an entity does not exist but we try to update it. For one good example
where this is used see fantastico.mvc.model facade.ModelFacade.

class fantastico.exceptions.FantasticoInsufficientArgumentsError
This exception is usually thrown when a component extension received wrong number of arguments. See
fantastico.rendering.component.Component.

class fantastico.exceptions.FantasticoUrlInvokerError
This exception is usually thrown when an internal url invoker fails. For instance, if a component reusage
rendering fails then this exception is raised.

3.2 Request lifecycle

In this document you can find how a request is processed by fantastico framework. By default WSGI applications use
a dictionary that contains various useful keys:

e HTTP Headers
e HTTP Cookies
» Helper keys (e.g file wrapper).

In fantastico we want to hide the complexity of this dictionary and allow developers to use some standardized objects.
Fantastico framework follows a Request / Response paradigm. This mean that for every single http request only

12 Chapter 3. Fantastico features

fantastico Documentation, Release 0.3.0-b106

one single http response will be generated. Below, you can find a simple example of how requests are processed by
fantastico framework:

HTTP 1.1 WSGI Server Fantastico Request Fantastico Routing Engine
Request

|
1: Send HTTP 1.1 compatible request L}

‘ 1.1: Generate environ dictionary _ _
1.1.1: Enrich enviren with request and response concrete wrappers
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

In order to not reinvent the wheels fantastico relies on WebOb python framework in order to correctly generate request
and response objects. For more information read WebOB Doc.

3.2.1 Request middleware
To have very good control of how WSGI environ is wrapped into WebOb request object a middleware component is
configured. This is the first middleware that is executed for every single http request.

class fantastico.middleware.request_middleware.RequestMiddleware (app)
This class provides the middleware responsible for converting wsgi environ dictionary into a request. The result
is saved into current WSGI environ under key fantastico.request. In addition each new request receives an
identifier. If subsequent requests are triggered from that request then they will also receive the same request id.

3.2.2 Request context
In comparison with WebOb Fantastico provides a nice improvement. For facilitating easy development of code, each
fantastico request has a special attribute called context. Below you can find the attributes of a request context object:
* settings facade (Fantastico settings)
* session (not yet supported)
* language The current preferred by user. This is determined based on user lang header.
* user (not yet supported)

class fantastico.middleware.request_context .RequestContext (settings, language)
This class holds various attributes useful giving a context to an http request. Among other things we need to be
able to access current language, current session and possible current user profile.

language
Property that holds the current language that must be used during this request.

3.2. Request lifecycle 13

http://docs.webob.org/en/latest/reference.html

fantastico Documentation, Release 0.3.0-b106

settings
Property that holds the current settings facade used for accessing fantastico configuration.

wsgi_app
Property that holds the WSGI application instance under which the request is handled.

3.2.3 Obtain request language

class fantastico.locale.language.Language (code)
Class used to define how does language object looks like. There are various use cases for using language but the
simplest one is in request context object:

language = request.context.language
if language.code = "en_us":
print ("English (US) language").
else:
raise Exception ("Language is not supported." % language.code)
code
Property that holds the language code. This is readonly because once instantiated we mustn’t be able to
change it.

3.2.4 Obtain settings using request
It is recommended to use request.context object to obtain fantastico settings. This hides the complexity of choosing
the right configuration and accessing attributes from it.

installed_middleware = request.context.settings.get ("installed middleware")
print (installed_middleware)

For more information about how to configure Fantastico please read Funtastico settings.

3.2.5 Redirect using request

In Fantastico is fairly simply to redirect client to a given location.

class fantastico.routing_engine.custom_responses.RedirectResponse (destination,

query_params=None)
This class encapsulates the logic for programatically redirecting client from a fantastico controller.

@Controller (url="/redirect/example")
def redirect_to_google(self, request):
return request.redirect ("http://www.google.ro/")

There are some special cases when you would like to pass some query parameters to redirect destination. This
is also easily achievable in Fantastico:

@Controller (url="/redirect/example")
def redirect_to_google(self, request):
return request.redirect ("http://www.google.ro/search",
query_params=[("g", "hello world")])

The above example will redirect client browser to http://www.google.ro/search?q=hello world

14 Chapter 3. Fantastico features

http://www.google.ro/search?q=helloworld

fantastico Documentation, Release 0.3.0-b106

3.3 Routing engine

Router
+get_loadersi) : list=IRouteLoader=
+handle_routeiurl : string, environ : WSGIEnviran)
+register_routes() : dict

=<=|nterface==
IRoutelLoader

+load_routesi) : dict

N

ControllerRoutelLoader DummyRoutelLoader

Fantastico routing engine is design by having extensibility in mind. Below you can find the list of concerns for routing
engine:

1. Support multiple sources for routes.
2. Load all available routes.
3. Select the controller that can handle the request route (if any available).

class fantastico.routing_engine.router.Router (settings_facade=<class ‘fantas-

tico.settings.SettingsFacade’>)
This class is used for registering all available routes by using all registered loaders.

get_loaders ()
Method used to retrieve all available loaders. If loaders are not currently instantiated they are by these
method. This method also supports multi threaded workers mode of wsgi with really small memory foot-
print. It uses an internal lock so that it makes sure available loaders are instantiated only once per wsgi
worker.

handle_ route (url, environ)
Method used to identify the given url method handler. It enrich the environ dictionary with a new entry
that holds a controller instance and a function to be executed from that controller.

register_routes ()
Method used to register all routes from all loaders. If the loaders are not yet initialized this method will

3.3. Routing engine 15

fantastico Documentation, Release 0.3.0-b106

first load all available loaders and then it will register all available routes. Also, this method initialize
available routes only once when it is first invoked.

3.3.1 Routes loaders
Fantastico routing engine is designed so that routes can be loaded from multiple sources (database, disk locations, and
others). This give huge extensibility so that developers can use Fantastico in various scenarios:

* Create a CMS that allows people to create new pages (mapping between page url / controller) is hold in database.
Just by adding a simple loader in which the business logic is encapsulated allows routing engine extension.

* Create a blog that loads articles from disk.

I am sure you can find other use cases in which you benefit from this extension point.

3.3.2 How to write a new route loader

Before digging in further details see the RouteLoader class documentation below:

class fantastico.routing_engine.routing_loaders.RouteLoader (settings_facade)
This class provides the contract that must be provided by each concrete implementation. Each route loader is
responsible for implementing its own business logic for loading routes.

class DummyRouteLoader (Routeloader) :
def _ _init__ (self, settings_facade):
self_settings_facade = settings_facade

def load_routes(self):

return {"/index.html": {"method": "fantastico.plugins.static_assets.StaticAssetsControll
"http_verbs": ["GET"]},
"/images/image.png": {"method": "fantastico.plugins.static_assets.StaticAssetsCc
"http_verbs": ["GET"]}

load_routes ()
This method must be overriden by each concrete implementation so that all loaded routes can be handled
by fantastico routing engine middleware.

As you can, each concrete route loader receives in the constructor settings facade that can be used to access fantastico
settings. In the code example above, DummyRouteL.oader maps a list of urls to a controller method that can be used
to render it. Keep in mind that a route loader is a stateless component and it can’t in anyway determine the wsgi
environment in which it is used. In addition this design decision also make sure clear separation of concerned is
followed.

Once your RouteLoader implementation is ready you must register it into settings profile. The safest bet is to add it
into BaseSettings provider. For more information read Fantastico settings.

3.3.3 Configuring available loaders

You can find all available loaders for the framework configured in your settings profile. You can find below a sample
configuration of available loaders:

class CustomSettings (BasicSettings):

@property
def routes_loaders(self):
return ["fantastico.routing_engine.custom_loader.CustomLoader"]

16 Chapter 3. Fantastico features

fantastico Documentation, Release 0.3.0-b106

The above configuration tells Fantastico routing engine that only CustomLoader is a source of routes. If you want to
learn more about multiple configurations please read Fantastico settings.

3.3.4 DummyRouteLoader

class fantastico.routing_engine.dummy_routeloader.DummyRouteLoader (settings_facade)
This class represents an example of how to write a route loader. DummyRouteLoader is available in all
configurations and it provides a single route to the routing engine: /dummy/route/loader/test. Integration tests
rely on this loader to be configured in each available profile.

display_ test (request)
This method handles /dummy/route/loader/test route. It is expected to receive a response with status
code 400. We do this for being able to test rendering and also avoid false positive security scans messages.

3.3.5 Routing middleware
Fantastico routing engine is designed as a standalone component. In order to be able to integrate it into Fantastico
request lifecycle (:doc:/features/request_response.) we need an adapter component.

class fantastico.middleware.routing_middleware.RoutingMiddleware (app,
router_cls=<class
‘fantas-

tico.routing_engine.router.Router’>)
Class used to integrate routing engine fantastico component into request / response lifecycle. This middleware

is responsible for:

l.instantiating the router component and make it available to other components / middlewares through WSGI
environment.

2.register all configured fantastico loaders (fantastico.routing_engine.router.Router.get_loaders()).
3.register all available routes (fantastico.routing_engine.router.Router.register_routes()).
4 handle route requests (fantastico.routing_engine.router.Router.handle_route ()).

It is important to understand that routing middleware assume a WebOb request available into WSGI environ.
Otherwise, fantastico.exceptions.FantasticoNoRequestError will be thrown. You can read
more about request middleware at Request lifecycle.

3.4 Model View Controller

Fantastico framework provides quite a powerful model - view - controller implementation. Here you can find details
about design decisions and how to benefit from it.

3.4.1 Classic approach

Usually when you want to work with models as understood by MVC pattern you have in many cases boiler plate code:
1. Write your model class (or entity)
2. Write a repository that provides various methods for this model class.
3. Write a facade that works with the repository.

4. Write a web service / page that relies on the facade.

3.4. Model View Controller 17

fantastico Documentation, Release 0.3.0-b106

5. Write one or multiple views.

As this is usually a good in theory, in practice you will see that many methods from facade are converting a data

transfer object to an entity and pass it down to repository.

3.4.2 Fantastico approach

Fantastico framework provides an alternative to this classic approach (you can still work in the old way if you really
really want).

class fantastico.mvc.controller decorators.Controller (url, method="GET’, mod-

els=None, **kwargs)
This class provides a decorator for magically registering methods as route handlers. This is an extremely impor-

tant piece of Fantastico framework because it simplifies the way you as developer can define mapping between
a method that must be executed when an http request to an url is made:

@ControllerProvider ()
class BlogsController (BaseController):
@Controller (url="/blogs/", method="GET",
models={"Blog": "fantastico.plugins.blog.models.blog.Blog"])
def list_blogs(self, request):
Blog = request.models.Blog

blogs = Blog.get_records_paged(start_record=0, end_record=5,
sort_expr=[ModelSort (Blog.model_cls.create_date, ModelSort.ASC,
ModelSort (Blog.model_cls.title, ModelSort.DESC)],
filter_expr=ModelFilterAnd (
ModelFilter (Blog.model_cls.id, 1, ModelFilter.GT)
ModelFilter (Blog.model_cls.id, 5, ModelFilter.LT)

return Response (blogs)

The above code assume the following:
1.As developer you created a model called blog (this is already mapped to some sort of storage).

2.Fantastico framework generate the facade automatically (and you never have to know anything about
underlining repository).

3.Fantastico framework takes care of data conversion.
4.As developer you create the method that knows how to handle /blog/ url.
5.Write your view.

Below you can find the design for MVC provided by Fantastico framework:

18

Chapter 3. Fantastico features

fantastico Documentation, Release 0.3.0-b106

I BaseController
I] [+load_template(tpl_name : string, model - dict) : Template
+get_component_folder() : string

<<uses>

I
I

I

I

I

I

I

I

i

WUses base models implementations It depends on session being opened
I

i

I

i

I

I

N
|
|

.
[BlogModel | ModelFacade<T> <<use>>

+get_records_paged|(start_record : int, end_record : int, filter_expr : list<Mode|FilterAbstract=, sort_expr : list<ModelSort=] : list<T= | Uses blog models
-+find_by_pk(pk_tuple : dict) : T |- - facade ___ [+list_blogs{req : Request) : Response

+create(model - T)
+delete(model : T)

+update(mode! : T)

+delete_by_pk(pk_tuple : tuple) : int

+new_model(args : list, kwargs : dict) : T

+count_re —expr list<M) - int

7

BlogsController

<<us

v
v

ModelFilterAbstract
[+build(query : SqlAlchemyQuery) : SqlAlchemyQuery
[+get_expression() : SqlAlchemyExpression

V
'
'
'
'
'
'
Builds 2 soncrete model facade
'
'
'
'
h

[Mo]

ModelSort

Mode Filter ModelFilterCompound

[ModelFilterAnd | [ModelFilterOr |

fn_handler
This property retrieves the method which is executed by this controller.

classmethod get_registered_ routes ()
This class methods retrieve all registered routes through Controller decorator.

method
This property retrieves the method(s) for which this controller can be invoked. Most of the time only one
value is retrieved.

models
This property retrieves all the models required by this controller in order to work correctly.

url
This property retrieves the url used when registering this controller.

If you want to find more details and use cases for controller read Controller section.

3.4.3 Model

A model is a very simple object that inherits fantastico.mvc.models.BaseModel.

In order for models to work correctly and to be injected correctly into controller you must make sure you have a valid
database configuration in your settings file. By default, fantastico.settings.BasicSettings provides a
usable database configuration.

fantastico.settings.BasicSettings

@property

def database_config(self):

return {"drivername": "mysqgl+mysgldb",

"username": "fantastico",
"password": "12345",
"host": "localhost",
"port": 3306,
"database": "fantastico",
"show_sqgl": True}

3.4. Model View Controller 19

fantastico Documentation, Release 0.3.0-b106

By default, each time a new build is generated for fantastico each environment is validated to ensure connectivity to
configured database works.

There are multiple ways in how a model is used but the easiest way is to use an autogenerated model facade:

class fantastico.mvc.model facade.ModelFacade (model_cls, session)
This class provides a generic model facade factory. In order to work Fantastico base model it is recommended
to use autogenerated facade objects. A facade object is binded to a given model and given database session.

count_records (filter_expr=None)
This method is used for counting the number of records from underlining facade. In addition it applies the

filter expressions specified (if any).
records = facade.count_records (
filter_expr=ModelFilterAnd (

ModelFilter (Blog.id, 1, ModelFilter.GT),
ModelFilter (Blog.id, 5, ModelFilter.LT)))

Parameters filter_expr (list) — Alistof fantastico.mvc.models.model_filter.ModelFilterAbstra
which are applied in order.

Raises fantastico.exceptions.FantasticoDbError This exception is raised whenever an excep-
tion occurs in retrieving desired dataset. The underlining session used is automatically roll-
backed in order to guarantee data integrity.

create (model)
This method add the given model in the database.

class PersonModel (BASEMODEL) :
__tablename__ = "persons"

id = Column ("id", Integer, autoincrement=True, primary_key=True)
first_name = Column ("first_name", String(50))
last_name = Column ("last_name", String(50))

def _ init_ (self, first_name, last_name):
self.first_name = first_name
self.last_name = last_name

facade = ModelFacade (PersonModel, fantastico.mvc.SESSION)

model = facade.new_model ("John", last_name="Doe™)
facade.create (model)

Returns The newly generated primary key or the specified primary key (it might be a scalar
value or a tuple).

Raises fantastico.exceptions.FantasticoDbError Raised when an unhandled exception occurs.
By default, session is rollback automatically so that other consumers can still work as ex-
pected.

delete (model)
This method deletes a given model from database. Below you can find a simple example of how to use

this:

class PersonModel (BASEMODEL) :
__tablename__ = "persons"

id = Column ("id", Integer, autoincrement=True, primary_key=True)

20 Chapter 3. Fantastico features

fantastico Documentation, Release 0.3.0-b106

first_name = Column ("first_name", String(50))
last_name = Column ("last_name", String(50))

def _ init_ (self, first_name, last_name):
self.first_name = first_name
self.last_name = last_name

facade = ModelFacade (PersonModel, fantastico.mvc.SESSION)
model = facade.find_by_pk ({PersonModel.id: 1})
facade.delete (model)

Raises fantastico.exceptions.FantasticoDbError Raised when an unhandled exception occurs.
By default, session is rollback automatically so that other consumers can still work as ex-
pected.

find_by_pk (pk_values)
This method returns the entity which matches the given primary key values.

class PersonModel (BASEMODEL) :
__tablename___ = "persons"

id = Column("id", Integer, autoincrement=True, primary_key=True)
first_name = Column ("first_name", String(50))
last_name = Column ("last_name", String(50))

def _ init_ (self, first_name, last_name):
self.first_name = first_name
self.last_name = last_name

facade = ModelFacade (PersonModel, fantastico.mvc.SESSION)
model = facade.find_by_pk ({PersonModel.id: 1})

get_records_paged (start_record, end_record, filter_expr=None, sort_expr=None)
This method retrieves all records matching the given filters sorted by the given expression.

records = facade.get_records_paged(start_record=0, end_record=5,
sort_expr=[ModelSort (Blog.create_date, ModelSort.ASC,
ModelSort (Blog.title, ModelSort.DESC)],
filter_expr=ModelFilterAnd (
ModelFilter (Blog.id, 1, ModelFilter.GT),
ModelFilter (Blog.id, 5, ModelFilter.LT))))

Parameters
* start_record (int) — A zero indexed integer that specifies the first record number.

* end_record (inf) — A zero indexed integer that specifies the last record number.

filter_expr (list)— Alistof fantastico.mvc.models.model_filter.ModelFilterAbstract
which are applied in order.

* sort_expr (list) — Alistof fantastico.mvc.models.model_sort.ModelSort
which are applied in order.

Returns A list of matching records strongly converted to underlining model.

Raises fantastico.exceptions.FantasticoDbError This exception is raised whenever an excep-
tion occurs in retrieving desired dataset. The underlining session used is automatically roll-
backed in order to guarantee data integrity.

3.4. Model View Controller 21

fantastico Documentation, Release 0.3.0-b106

model_cls
This property holds the model based on which this facade is built.

new_model (*args, **kwargs)
This method is used to obtain an instance of the underlining model. Below you can find a very simple

example:

class PersonModel (BASEMODEL) :
__tablename__ = "persons"

id = Column ("id", Integer, autoincrement=True, primary_key=True)

first_name = Column ("first_name", String(50))
last_name = Column ("last_name", String(50))

def _ init_ (self, first_name, last_name):
self.first_name = first_name
self.last_name = last_name

facade = ModelFacade (PersonModel, fantastico.mvc.SESSION)

model = facade.new_model ("John", last_name="Doe™)

Parameters
* args (list) — A list of positional arguments we want to pass to underlining model construc-
tor.
» kwargs (dict) — A dictionary containing named parameters we want to pass to underlining
model constructor.

Returns A BASEMODEL instance if everything is ok.

update (model)
This method updates an existing model from the database based on primary key.

class PersonModel (BASEMODEL) :
__tablename___ = "persons”

primary_key=True)

first_name = Column ("first_name", String(50))
last_name = Column ("last_name", String(50))

id = Column ("id", Integer, autoincrement=True,

def _ init_ (self, first_name, last_name):
self.first_name = first_name
self.last_name = last_name

facade = ModelFacade (PersonModel, fantastico.mvc.SESSION)

model = facade.new_model ("John", last_name="Doe')

model.id = 5
facade.update (model)

Raises

* fantastico.exceptions.FantasticoDbNotFoundError — Raised when the given model
does not exist in database. By default, session is rollback automatically so that other

consumers can still work as expected.

22 Chapter 3. Fantastico features

fantastico Documentation, Release 0.3.0-b106

» fantastico.exceptions.FantasticoDbError — Raised when an unhandled exception oc-
curs. By default, session is rollback automatically so that other consumers can still work
as expected.

If you are using the Fantastico MVC support you don’t need to manually create a model facade instance because
fantastico.mvc.controller_ decorators.Controller injects defined models automatically.

3.4.4 View

A view can be a simple html plain file or html + jinja2 enriched support. You can read more about Jinja2 here.
Usually, if you need some logical block statements in your view (if, for, ...) it is easier to use jinja 2 template engine.
The good news is that you can easily embed jinja 2 markup in your views and it will be rendered automatically.

3.4.5 Controller

A controller is the brain; it actually combines a model execute some business logic and pass data to the desired view
that needs to be rendered. In some cases you don’t really need view in order to provide the logic you want:

e A REST Web service.
¢ A RSS feed provider.
¢ A file download service

Though writing REST services does not require a view, you can load external text templates that might be useful for
assembling the response:

* An invoice generator service
* An xml file that must be filled with product data
* A vCard. export service.

If you want to read a small tutorial and to start coding very fast on Fantastico MVC read MVC How to. Controller API
is documented fantastico.mvc.controller decorator.Controller.

class fantastico.mvc.controller_registrator.ControllerRouteLoader (settings_facade=<class

‘fantas-
tico.settings.SettingsFacade’>,
scanned_folder=None,
ig-
nore_prefix=None)

This class provides a route loader that is capable of scanning the disk and registering only the routes that contain

a controller decorator in them. This happens when Fantastico servers starts. In standard configuration it ignores

tests subfolder as well as test_* / itest_* modules.

load_routes ()
This method is used for loading all routes that are mapped through
fantastico.mvc.controller_decorators.Controller decorator.

scanned_folder
This property returns the currently scanned folder from where mvc routes are collected.

class fantastico.mvc.base_controller.BaseController (settings_facade)
This class provides common methods useful for every concrete controller. Even if no type checking is done in
Fantastico it is recommended that every controller implementation inherits this class.

curr_request
This property returns the current http request being processed.

3.4. Model View Controller 23

http://jinja.pocoo.org/docs/
http://en.wikipedia.org/wiki/VCard

fantastico Documentation, Release 0.3.0-b106

get_component_folder ()
This method is used to retrieve the component folder name under which this controller is defined.

load_template (1pl_name, model_data=None, get_template=<function get_template at Ox19ef408>)
This method is responsible for loading a template from disk and render it using the given model data.

@ControllerProvider ()
class TestController (BaseController) :
@Controller (url="/simple/test/hello", method="GET")
def say_hello(self, request):
return Response (self.load_template("/hello.html"))

The above snippet will search for hello.html into component folder/views/.

Available filters

class fantastico.mvc.models.model filter.ModelFilterAbstract
This is the base class that defines the contract a model filter must follow. A model filter is a class that decouples
sqlalchemy framework from Fantastico MVC. This is required because in the future we might want to change

the ORM that powers Fantastico without breaking all existing code.
ModelFilterAbstract

+build(query : SglAlchemyQuery) : SglalchemyQuery
+get_expression() : SglAlchemyExpression

ModelFilter ModelFilterCom pound ModelSort

ModelFilterAnd ModelFilterOr

For seeing how to implement filters (probably you won’t need to do this) see some existing filters:
efantastico.mvc.models.model_ filter.ModelFilter
efantastico.mvc.models.model_filter_ compound.ModelFilterCompound
efantastico.mvc.models.model_filter compound.ModelFilterAnd
efantastico.mvc.models.model_filter compound.ModelFilterOr

build (query)
This method is used for appending the current filter to the query using sqlalchemy specific language.

get_expression ()
This method is used for retrieving native sqlalchemy expression held by this filter.

class fantastico.mvc.models.model_filter_compound.ModelFilterCompound (operation,
*args)
This class provides the api for compounding ModelFilter objects into a specified sql alchemy operation.

build (query)
This method transform the current compound statement into an sql alchemy filter.

get_expression ()
This method transforms calculates sqlalchemy expression held by this filter.

24 Chapter 3. Fantastico features

fantastico Documentation, Release 0.3.0-b106

class fantastico.mvc.models.model_filter.ModelFilter (column, ref_value, operation)

class

class

class

This class provides a model filter wrapper used to dynamically transform an operation to sql alchemy filter
statements. You can see below how to use it:

id_gt_filter = ModelFilter (PersonModel.id, 1, ModelFilter.GT)
build (query)
This method appends the current filter to a query object.

column
This property holds the column used in the current filter.

get_expression ()
Method used to return the underlining sqlalchemy exception held by this filter.

static get_supported_operations ()
This method returns all supported operations for model filter. For now only the following operations are
supported:

*GT - greater than comparison

*GE - greater or equals than comparison
*EQ - equals comparison

*LE - less or equals than comparison
LT - less than comparison

*LIKE - like comparison

*IN - in comparison.

operation
This property holds the operation used in the current filter.

ref value
This property holds the reference value used in the current filter.

fantastico.mvc.models.model_filter_ compound.ModelFilterAnd (*args)
This class provides a compound filter that allows and conditions against models. Below you can find a simple
example:

id_gt_filter = ModelFilter (PersonModel.id, 1, ModelFilter.GT)
id_1t_filter = ModelFilter (PersonModel.id, 5, ModelFilter.LT)
name_like_filter = ModelFilter (PersonModel.name, ' Jjohn%%’, ModelFilter.LIKE)

complex_condition = ModelFilterAnd(id_gt_filter, id_1t_filter, name_like_filter)

fantastico.mvc.models.model_filter compound.ModelFilterOr (*args)
This class provides a compound filter that allows or conditions against models. Below you can find a simple
example:

id_gt_filter = ModelFilter (PersonModel.id, 1, ModelFilter.GT)
id_1t_filter = ModelFilter (PersonModel.id, 5, ModelFilter.LT)
name_like_filter = ModelFilter (PersonModel.name, ' Jjohn%%’, ModelFilter.LIKE)

complex_condition = ModelFilterOr (id_gt_filter, id_1lt_filter, name_like_filter)

fantastico.mvc.models.model_ sort.ModelSort (column, sort_dir=None)
This class provides a filter that knows how to sort rows from a query result set. It is extremely easy to use:

3.4.

Model View Controller 25

fantastico Documentation, Release 0.3.0-b106

id_sort_asc = ModelSort (PersonModel.id, ModelSort.ASC)

build (query)
This method appends sort_by clause to the given query.

column
This property holds the column we are currently sorting.

get_expression ()
This method returns the sqlalchemy expression held by this filter.

get_supported_sort_dirs ()
This method returns all supported sort directions. Currently only ASC / DESC directions are supported.

sort_dir
This property holds the sort direction we are currently using.

3.4.6 Database session management

We all know database session management is painful and adds a lot of boiler plate code. In fantastico you don’t need to
manage database session by yourself. There is a dedicated middleware which automatically ensures there is an active
session ready to be used:

class fantastico.middleware.model_session_middleware.ModelSessionMiddleware (app,
set-
tings_facade=<class
‘fan-
tas-

tico.settings.SettingsFacc
This class is responsible for managing database connections across requests. It also takes care of connection

data pools. By default, the middleware is automatically configured to open a connection. If you don’t need mvc
(really improbable but still) you simply need to change your project active settings profile. You can read more
on fantastico.settings.BasicSettings

3.5 SDK

Starting with version 0.3.0 of Fantastico framework all dispersed shell scripts are unified under Fantastico Software
Development Kit. In addition, the sdk is complemented by autogenerated documentation.

3.5.1 Intro

Fantastico sdk was developed with the following requirements in my mind:

» Allow developers to manage Fantastico projects easily (using a single uniform command line). This is similar
to many other frameworks (e.g android sdk).

* Allow easily extension of sdk through plugins (e.g: activate off the shelf components into my project).

* Create a uniform way to provide feedback to developers (prompt user for data, show help messages, support
parameters).

* Make the sdk compliant with linux way of developing command lines.

26 Chapter 3. Fantastico features

fantastico Documentation, Release 0.3.0-b106

3.5.2 Usage

In this section you can find samples of how to use the sdk and how to make it available in older projects.

For versions prior to #x*0.3.0#%*
pip install fantastico -U

fsdk —--help

When you invoke fantastico sdk with —help argument it will list all available commands. Similar to other linux
command lines you can obtain help hierarchical:

Show help screen for fantastico <command>
fsdk <command> —--help

In order for Fantastico SDK to work correctly make sure your project is on the PYTHONPATH. If PYTHONPATH
is not set correctly you will not be able to use some sdk extensions.

3.5.3 Supported commands
Activate extension command

This Fantastico command helps developers integrate existing components into their project very easy. One use case
is to activate in your projects contrib components (e.g: Dynamic menu). It is strongly recommended to use this sdk
command because it works on every supported operating system.

class fantastico.sdk.commands.command_activate_extension.SdkCommandActivateExtension (argv,

cmd_factor
This class provides the functionality for activating off the shelf fantastico extensions. As developer, it is ex-

tremely easy to integrate provided functionality into fantastico. For now, it supports only local extensions
provided into fantastico.contrib package. In the future, we plan to support activation of remote components into
projects.

replace <project_root_path> with your fantastico project location.
cd <project_root_path>

replace <component_root_path> with your actual folder.
fsdk activate-extension —--name dynamic_menu --comp-root <component_root_path>

exec (os_lib=<module ‘os’ from ‘/mnt/jenkins_ebs/continous_integration/fantastico_doc_workspace/pip-

deps/lib/python3.2/0s.py’>)
This method is executed to activate the given extension name.

get_arguments ()
This method returns support arguments of activate-extension command.

Version command

This command tells you what is the current installed version of Fantastico SDK.

class fantastico.sdk.commands.command_version.SdkCommandVersion (argv,
cmd_factory, ver-
sion_reader=<module
‘fantastico’ from

‘/mnt/jenkins_ebs/continous_integration/fa
This class provides the command for finding out installed version of Fantastico SDK. The value is defined in

fantastico root module code.

3.5. SDK 27

fantastico Documentation, Release 0.3.0-b106

display help information for version command in sdk context
fsdk version —-help

display the current sdk version
fsdk version

exec (print_fn=<built-in function print>)
This method prints the current fantastico framework version.

3.5.4 Technical summary

class fantastico.sdk.fantastico.SdkCore (argv, cmd_factory=<class ‘fantas-
tico.sdk.sdk_core.SdkCommandsRegistry’>, sup-
ported_prefixes=None, settings_facade_cls=<class
‘fantastico.settings.SettingsFacade’>)

This class provides the core functionality of Fantastico Software Development Kit. It wires all available com-
mands together and handles requests accordingly. To better understand how sdk is designed see the following

class diagram:

<<Interface=>
sdkCommand
+get_name() : string
+get_help(} : string
+get_arguments{) : List<SdkCommandArgument= o] SdkCare
+exec() <user> [+exec_commandicmd : String, args : List<String=)
Inject all available SDK commands
| A A A !
i T
i I
i I
I '
I '
<cuses> | i
Accepts command arguments I
i I
i I
'
SdkG gument :
+short_name : string '
+name : string H
+type : data_type I
+help : string [SdkCq] : Uses the registry to resolve registered commands.
\ | '
'
'
I
I
I
[SdkCi] [SdkC: dCreateProject] |
'
\ o .
I
I
I
FantasticoError '
'
] .
7 '

W
SdkCommandsRegistry
+get_command(cmd_name : string, cmd_args : list) : SdkCommand

FantasticoSdkError

L\

FantasticoSdkCommandError FantasticoSdkCommandNotFoundError

As you can see in above diagram, sdk core is just the main entry point of Fantastico Software Development Kit.
It wires all available sdk commands together and it adds support for uniformly executes them and pass them

arguments..

exec ()
This method does nothing because fantastico is designed to accept only registered subcommands.

get_arguments ()
This property retrieves support fantastico arguments.

class fantastico.sdk.sdk_core.SdkCommandsRegistry

This class holds all registered commands available to use in the sdk. It is important to understand that commands
and subcommands are registered by name and must be unique. This is because, by design, each command can
easily become a subcommand for another command. It facilitates very flexible extension of sdk and reusage of
existing commands.

28

Chapter 3. Fantastico features

fantastico Documentation, Release 0.3.0-b106

static add_command (cmd_name, cmd_cls)
This method registers a new command using the given name.

Parameters
¢ cmd_name (str) — Command name used to uniquely identify the command.

e cmd_class (fantastico.sdk.sdk_core.SdkCommand)— A subclass of sdk com-
mand.

Raises fantastico.sdk.sdk_exceptions.FantasticoSdkError If the given name is not unique or
cmd class is wrong.

static get__command (cmd_name, cmd_args)
This method retrieve a concrete sdk command by name with the give args passed.

Parameters
¢ cmd_name (str) — The registered command name we want to instantiate.
» cmd_args (list) — a list of arguments received from command line.
Returns Command instance.
Return type fantastico.sdk.sdk_core.SdkCommand

Raises fantastico.sdk.sdk_exceptions.FantasticoSdkCommandNotFoundError if command
is not registered.

class fantastico.sdk.sdk_core.SdkCommandArgument (arg_short_name, arg_name, arg_type,

arg_help)
This class describe the attributes supported by a command argument. For a simple example of how arguments

areused read fantastico.sdk.sdk_ core.SdkCommand

help
This read only property holds the argument help message.

name
This read only property holds the argument name. Name property will represent the long name argument
available for sdk commands. E.g: —name.

short_name
This read only property holds the argument short name. Short name property will represent the short name
argument available for sdk commands. E.g: -n.

type
This read only property holds the argument type.

class fantastico.sdk.sdk_core.SdkCommand (argv, cmd_factory)
This class provides the contract which must be provided by each concrete command. A command of sdk is just
and extension which can provide custom actions being executed by Fantastico in a uniform manner.

Below you can find a simple example of how to implement a concrete command:

In the previous example, we have shown that all received arguments from command line are magically provided
into self._arguments attribute of the command.

When a sdk command is instantiated with a list of command line arguments the first element from the list must
be the command name. This happens because all arguments passed after a command name belongs only to that
command.

exec ()
This method must be overriden by each concrete command and must provide the command execution
logic.

3.5. SDK 29

fantastico Documentation, Release 0.3.0-b106

Raises fantastico.sdk.sdk_exceptions.FantasticoSdkCommandError if an exception occurs
while executing the command.

exec_command (*args, **kwargs)
This method provides a template for executing the current command if subcommands are present. Inter-
nally it invokes overriden exec method.

Raises

* fantastico.sdk.sdk_exceptions.FantasticoSdkCommandError — if an exception occurs
while executing the command.

* fantastico.sdk.sdk_exceptions.FantasticoSdkCommandNotFoundError — if a sub-
command does not exist.

get_arguments ()
This method must be overriden by each concrete command and must return the command supported argu-
ments.

class fantastico.sdk.sdk_decorators.SdkCommand (name, help, target=None)
This decorator describe the sdk commands metadata:

1.name

2.target (which is the main purpose of the command. E.g: fantastico - this mean command is designed to
work as a subcommand for fantastico cmd).

It is used in conjunction with fantastico.sdk.sdk_core.SdkCommand. Each sdk command decorated
with this decorator automatically receives get_name and get_target methods.

class fantastico.sdk.sdk_exceptions.FantasticoSdkError
This is the base exception used to describe unexpected situations occuring into fantastico sdk. Below you can
see the sdk hierarchy of concrete exceptions.

FantasticoError

FantasticoSdkError

FantasticoSdkCommandError FantasticoSdkCommandNotFoundError

class fantastico.sdk.sdk_exceptions.FantasticoSdkCommandError
This class describe an exception which occured into one of fantastico sdk commands.

class fantastico.sdk.sdk_exceptions.FantasticoSdkCommandNotFoundError
This class describe an exception which occurs when we try to execute an inexistent command.

30 Chapter 3. Fantastico features

fantastico Documentation, Release 0.3.0-b106

3.6 Component model

In Fantastico there is no enforced component model for your code but there are a set of recommendations that will
make your life a lot easier when organizing projects. A typical component structure looks like:

e <your project folder>
— component_1
* models (sql alchemy models)

+ static (static files holder)

*

views (all views used by this component controllers)

*

sql (sql scripts required to setup the component)
% __init__.py
% * py (controller module files)

You can usually structure your code as you want, but Fantastico default Model View Controller registrators are assum-
ing component name is the parent folder of the controller module. This is why is best to follow the above mentioned
structure. None of the above folders are mandatory which gives you, developer, plenty of flexibility but also responsi-
bility. For more information about models, views and controllers read MVC How to section.

3.6.1 Static folder

By default, static folder holds all static assets belonging to a component. You can find more information about this in
Static assets section.

3.6.2 Sql folder

Sql folder is used to hold all sql scripts required for a component to work correctly. In our continuous delivery process
we scan all available sql folders and execute module_setup.sql scripts. By default, we want to give developers the
chance to provide a setup script for each component in order to easily install the component database dependencies.

Sql folder example

Assume you want to create a blog module that requires a storage for Authors and Posts. module_setup.sql script is
the perfect place to provide the code. We recommend to make this code idempotent, meaning that once dependencies
are created they should not be altered anymore by this script.

An example of such a script we use in integration tests can be found under: /<fantas-
tico_framework>/samples/mvc/sql/module_setup.sql.

FHAH A A S R
Copyright 2013 Cosnita Radu Viorel

#
#
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without

restriction, including without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom

the Software is furnished to do so, subject to the following conditions:

#

#

#

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

3.6. Component model 31

fantastico Documentation, Release 0.3.0-b106

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS

IN THE SOFTWARE.

FHEH A A R R R R R R

EAE e

DROP TABLE IF EXISTS mvc_friendly_messages;
CREATE TABLE mvc_friendly_messages (

Id INT AUTO_INCREMENT,

Message TEXT,

PRIMARY KEY (id));

3.7 Component reusage

class fantastico.rendering.component .Component (environment,
url_invoker_cls=<class ‘fantas-

tico.rendering.url_invoker. FantasticoUrlInternallnvoker’>)
In fantastico, components are defined as a collection of classes and scripts grouped together as described in

Component model. Each fantastico component provides one or more public routes that can be accessed from a
browser or from other components. This class provides the mechanism for internal component referencing.

In order to gain a better understanding about internal / in process component referencing we assume Blog
component provides the following public routes:

/blog/articles/<article_id> - Retrieves information about an article.
+/blog/ui/articles/<article_id> - Displays an article within a html container.

The first url is a simple json endpoint while the second url is a simple html dynamic page. When we want to
reuse a datasource or an dynamic html page in fantastico is extremely easy to achieve. Lets first see possible
responses from the above mentioned endpoints:

/* /blog/articles/<article_id> response */

{Hid": 1,

"title": "Simple blog article",

"content": "This is a simple and easy to read blog article."}
<!-- /blog/ui/articles/<article_id> response—->

<div class="blog-article">
<p class="title">Simple blog article</p>

<p class="content">This is a simple and easy to read blog article.</p>
</div>

A very common scenario is to create multiple views for a given endpoint.

<!-- web service server side reusage —-—>
{% component url="/blog/articles/1l", template="/show_blog_formatted.html", runtime="server" %} {%

<!-- show_blog_formatted.html —-->
<p class="blog-title">{{model.title}}</p>
<p class="blog-content">{{model.content}}</p>

32 Chapter 3. Fantastico features

fantastico Documentation, Release 0.3.0-b106

As you can see, json response is plugged into a given template name. It is mandatory that the given template
exists on the component root path.

Also a very common scenario is to include an endpoint that renders partial html into a page:

<! html server side reusage >
{% component url="/blog/ui/articles/1",runtime="server" %}{% endcomponent %}

Runtime attribute is used for telling Fantastico if the rendering needs to take place on server side or on client.
Currently, only server side rendering is supported which actually means a page will be completed rendered on
server and then the markup is sent to the browser.

In order to reduce required attributes for component tag, runtime attribute is optional with server as default
value.

parse (parser)
This method is used to parse the component extension from template, identify named parameters and
render it.

Parameters parser (Jinja 2 parser.) — The Jinja 2 expression parser.
Returns A callblock able to render the component.

Raises FantasticoInsufficientArgumentsError when no / not enough arguments are provided
to component.

render (template="/raw_dump.html’, url=None, runtime="’server’, caller=<function <lambda> at

0x323c0d8>)
This method is used to render the specified url using the given parameters.

Parameters
* template (string) — The template we want to render into the result of the url.
e url (string) — The url we want to invoke.

* runtime (string) — The runtime we execute the rendering into. Only server is supported
for now.

e caller (macro) — The caller macro that can retrieve the body of the tag when invoked.
Returns The rendered component result.
Raises

* fantastico.exceptions.FantasticoTemplateNotFoundError — Whenever we try to render
a template which does not exist.

« fantastico.exceptions.FantasticoUrlInvokerError — Whenever an exception occurs in-
voking a url within the container.

3.8 Built in components

Fantastico framework is really young and continuously improving. As of version 0.2.0 it is extremely easy to reuse
components provided urls in other context. This feature opens the possibility to provide common day by day used
components in new projects in order to accelerate development. In this document you can find a detailed list of built
in components as well as sample of how to use them:

3.8. Built in components 33

fantastico Documentation, Release 0.3.0-b106

3.8.1 Dynamic menu

Menus are a core part of every web site / application as well as mobile applications. More over, again and again
developers will want a quick way to define menu items without actually redefining menu data structure again and
again. This component which we generic named dynamic menu simply provides the controller and the model for easy
development of menus.

Integration

In order to use dynamic menu component within your project follow the steps below:

Component files activation deprecated

1. Create a symbolic link under your root components folder to dynamic_menu.

mkdir <components root>/dynamic_menu

cd <components root>/dynamic_menu

In -s ../../pip-deps/lib/python[version]/site-packages/fantastico/contrib/dynamic_menu/sql
In -s ../../pip-deps/lib/python|[version]/site-packages/fantastico/contrib/dynamic_menu/tests
In -s ../../pip-deps/lib/python|[version]/site-packages/fantastico/contrib/dynamic_menu/*.py

Component files activation (SDK)

fantastico activate-extension ——-name dynamic_menu

Component sample + db data

1. Create a template in one of your components in which you define the menu view:

<!-- #sample _menu.html+ — simple snippet for creating a left / right side dockable menu. —-—->
{% for menu_item in model["items"] %}

{{menu_

{% endfor %}

2. In all views where you want to reuse the component you can paste the following snippet:

{% component template="sample_menu.html", url="/dynamic-menu/menus/1/items/" %}{% endcomponent

3. Make sure you run dynamic_menu/sql/module_setup.sql against your configured database.

4. This script will create menus and menu_items tables into your database. Below you can find a sample script
for creating a menu:

INSERT INTO menus (name) VALUES ('My First Menu’);
INSERT INTO menu_items (target, url, title, label)

VALUES (’_Dblank’, ’/homepage’, ’'Simple and friendly description’, ’Home’, <menu_id from previous
(" _blank’, " /page2’, ’'Simple and friendly description’, ’'Page 2’, <menu_id from previous
(" _blank’, " /page3’, ’'Simple and friendly description’, ’'Page 3’, <menu_id from previous

By default, when this component is first setup into an application, the sample menu mentioned above
is created in database. You can test to see that dynamic menu works by accessing dev server url:
http://localhost:12000/dynamic-menu/menus/1/items/.

34 Chapter 3. Fantastico features

http://localhost:12000/dynamic-menu/menus/1/items/

fantastico Documentation, Release 0.3.0-b106

Current limitations
Because Fantastico framework is developed using an Agile mindset, only the minimum valuable scope was delivered
for Dynamic Menu component. This mean is not currently possible to:

* Localize your menu items.

 Display the menu items in the request language dynamically.

* Only first 100 menu items can be currently retrieved.

Technical summary

class fantastico.contrib.dynamic_menu.menu_controller.DynamicMenuController (settings_facade)
This class provides the controller for dynamic menus. The following routes are automatically made available
when dynamic menu component is deployed:

/dynamic-menu/menus/<menu_id>/items/ — This route loads menu items from database and re-
trieve them in json format.

Below you can see a diagram describing relation model of the menu:

i menu_items A
1"; id integer{10)
(i menus | [J target varchar{s0)
i integer(10) fl_menuitems_menu D url varchar{255)
LD name varchar150) J‘I """"""""""""""" 7 title varchar(255)
D label varchar255)

<'Hmenu_.id integer{10)

max_items
This property retrieves the maximum number of items allowed for a menu.

retrieve_menu_items (*args, **kwargs)
This method is used to retrieve all items associated with a specified menu.

Parameters

* request (HTTP request) — Http request being processed.

* menu_id (inf) — Menu unique identifier we want to retrieve information for.
Returns A JSON array containing all available menu items.

Raises fantastico.contrib.dynamic_menu.menu_exceptions.FantasticoMenuNotFoundException
Whenever the requested menu does not exist.

class fantastico.contrib.dynamic_menu.menu_exceptions.FantasticoMenuNotFoundException
This class defines a concrete fantastico menu not found exception raised whenever someone tries to access an
inexistent menu attributes.

3.8. Built in components 35

fantastico Documentation, Release 0.3.0-b106

36 Chapter 3. Fantastico features

CHAPTER
FOUR

HOW TO ARTICLES

4.1 MVC How to

In this article you can see how to assemble various pieces together in order to create a feature for a virtual blog
application. If you follow this step by step guide in the end you will have a running blog which can list all posts.

4.1.1 Code the model

Below you can find how to easily create post model.
1. Create a new package called blog
2. Create a new package called blog.models
3. Create a new module called posts and paste the following code into it:

class Post (BaseModel) :

__tablename___ = "posts"
id = Column ("id", Integer, primary_key=True)
blog_id =

title = Column("title", String(150))

tags = Column ("tags", String(150))

created_date = Column ("registered_date", DateTime (), default=datetime.now)
content = Column ("content", Text (100))

Now you have a fully functional post model mapped over posts table.

4.1.2 Code the controller

1. Create a new package called blog.controllers
2. Create a new module called blog_controller and paste the following code into it:

@ControllerProvider ()
class BlogsController (BaseController) :
@Controller (url="/blogs/ (?P<blog_id>\\d{1, }) /posts/$", method="GET",

models={"Post": "fantastico.plugins.blog.models.posts.Post"])
def list_blog _posts(self, request, blog_id):
Post = request.models.Post

blog_id = int (blog_id)

posts = Post.get_records_paged(start_record=1, end_record=100,

37

fantastico Documentation, Release 0.3.0-b106

sort_expr=[ModelSort (Post.model_cls.created_date, ModelSort.?Z
ModelSort (Post.title, ModelSort.DESC)],
filter_expr=[ModelFilter (Post.model_cls.blog_id, blog_id, Moc

response = Response ()

response.text = self.load_template("/posts_listing.html",
{"posts": posts,
"blog_id": blog_id})

return response

Now you have a fully functional controller that will list first 100 posts.

4.1.3 Code the view

1. Create a new folder called blog.views
2. Create a new view under blog.views called posts_listing.html and paste the following code into it:

<html>
<head>
<title>List all available posts from blog {{blog_id}}</title>
</head>

<body>

{% for post in posts %}

{{post.title}} | {{post.created_date}}</1li>

{% endfor %}

</body>

</html>

4.1.4 Test your application

1. Start fantastico dev server by executing script run_dev_server.sh (Development mode)

2. Open a browser and visit http://localhost: 12000/blogs/1/posts.

4.2 Deployment how to

In this how to we guide you to Fantastico deployment to production. Below you can find various deployment scenarios
that can be used for various needs.

38 Chapter 4. How to articles

http://localhost:12000/blogs/1/posts

fantastico Documentation, Release 0.3.0-b106

4.2.1 Low usage (simplest scenario)

Internet

HTTP Requests

v

All in one Web Layer

==artifact==> El
nginx

|
| proxy requests

==artifact=> EI
uwsgi + Fantastico

| 1o

=<<artifact=> D
local storage

|
|
|
|
|
|
|
' o
|
|
|
|
|
|
|

Above diagram described the simplest scenario for rolling out Fantastico to production. You can use this scenario for

minimalistic web applications like:
¢ Presentation website
¢ Personal website

* Blog

We usually recommend to start with this deployment scenario and the migrate to more complex scenarios when you

application requires it.

Advantages Disadvantages
Extremely easy to deploy Does not scale well for more than couple of requests /
second

Minimal os configuration

All components are bundled on one node without any
failover.

Automatic scripts for configuring the os

Does not support vertical scaling out of the box.

Easy to achieve horizontal scaling for all components
at once.

Static files are not served from a cdn.

4.2. Deployment how to

39

fantastico Documentation, Release 0.3.0-b106

Setup

Ll

5.

Install Fantastico framework on the production machine (Installation manual.).
Goto $SFANTASTICO_ROOT
export ROOT_PASSWD=<your root password>

fantastico_setup_low_usage_<os_distribution) —ipaddress <desired_ip> —vhost-name <desired_vhost> —uwsgi-
port <uwsgi port> —root-folder <desired root folder> —modules-folder <desired modules folder> (e.g fan-
tastico_setup_low_usage_ubuntu.sh —ipaddress 127.0.0.1 —vhost-name fantastico-framework.com —uwsgi-port
12090 —root-folder ‘pwd* —modules-folder /fantastico/samples)

Done.

It is usually a good idea to change the number of parallel connections supported by your linux kernel:

1.

sudo nano /etc/sysctl.conf

. Search for net.core.somaxconn.

2
3.
4

If it does not exist you can add net.core.somaxconn = 8192 to the bottom of the file.

. Restart the os.

4.2.2 Low usage AWS

Internet

HTTP Requests

AWS EC2 web layer AWS EBS storage

==artifact=> DI T }'
nginx

| proxy requests 1o

<<artifact== O
uwsgi + Fantastico

This scenario is a little bit more complex than Low usage (simplest scenario) but it provides some advantages:

Advantages Disadvantages
Can be autoscaled. Requires AWS EC2 instances
Easier crash recovery Requires manual configuration

Very easy monitoring support (CloudWatch) | Requires AWS EBS.

Requires some AWS know how.

Static files are not served from a cdn.

40

Chapter 4. How to articles

fantastico Documentation, Release 0.3.0-b106

This scenario is recommended if you want to rollout you application on AWS infrastructure. Usually it is non expensive
to do this as it requires micro instances and low cost storage. For more information about AWS required components
read:

1. AWS Instance types.
2. AWS EBS.

Setup

1. Create an AWS account. (AWS Getting Started).

Create an EC2 instance from AWS Management Console (EC2 setup).

SSH on EC2 instance.

Install Fantastico framework on the production machine (Installation manual.).
Goto SFANTASTICO_ROOT

fantastico_setup_low_usage_<os_distribution).sh (e.g fantastico_setup_low_usage_ubuntu.sh)

N oA »N

Done.

Optimization

This scenario can be easily optimized by using AWS S3 buckets for static files. This ensures faileover for static files
and very easy horizontal scaling for sites. Below you can find the new diagram:

Internet

HTTP Requests

AWS 53 Storage
W
AWS EC2 web layer Vo <<artifact=> O
- ___ L static files
==artifact==> B
nginx
T
: proxy requests
AWS EBS storage
==artifact=> D Vo
uwsgi + Fantastico e = <<artifact== O
module files

You can read more about AWS S3 storage on http://aws.amazon.com/s3/. In this version of fantastico there is no way
to sync static module files with S3 buckets. This feature is going to be implemented in upcoming Fantastico features.
As a workaround you can easily copy static folder content from each module on S3 using the tool provided from AWS
Management Console.

You can see how to use AWS Management Console S3 tool on http://www.youtube.com/watch?v=1qrjFb0ZTm8

4.2. Deployment how to a1

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ebs/
http://aws.amazon.com/documentation/gettingstarted/
http://www.youtube.com/watch?v=WBro0TEAd7g
http://aws.amazon.com/s3/
http://www.youtube.com/watch?v=1qrjFb0ZTm8

fantastico Documentation, Release 0.3.0-b106

Setup with S3

1. export ROOT_PASSWD=<your root password>

Create an AWS account. (AWS Getting Started).

Create an EC2 instance from AWS Management Console (EC2 setup).

SSH on EC2 instance.

Install Fantastico framework on the production machine (Installation manual.).

Goto SFANTASTICO_ROOT/deployment

NS A »N

fantastico_setup_low_usage_s3_<os_distribution).sh —ipaddress <desired_ip> —vhost-name <desired_vhost> —
uwsgi-port <uwsgi port> —root-folder <desired root folder> —modules-folder <desired modules folder> (e.g fan-
tastico_setup_low_usage_s3_ubuntu.sh —ipaddress 127.0.0.1 —vhost-name fantastico-framework.com —uwsgi-
port 12090 —root-folder ‘pwd‘ —modules-folder /fantastico/samples)

8. Done.
It is usually a good idea to change the number of parallel connections supported by your linux kernel:
1. sudo nano /etc/sysctl.conf
2. Search for net.core.somaxconn.
3. If it does not exist you can add net.core.somaxconn = 8192 to the bottom of the file.

4. Restart the os.

4.3 Static assets

By default, static assets can be any file that is publicly available. Most of the time, here you can place:
* css files
* png, jpg, gif files
* downloadable pdf
* movie files
* any other file format you can think about

For Production environment, requests to these files are handled by the web server you are using. You only need to
place them under static folder of your component (Component model).

There are several scenario in which Fantastico projects are deployed which influence where your component static
files are stored. I recommend you read Deployment how to section.

4.3.1 Static assets on dev

Of course, on development environment you are not required to have a web server in front of your Fantastico dev
server. For this purpose, fantastico framework provides a special controller which can easily serve static files. Even
though it works as expected, please do not use it in production. It does not send headers required by browser for
caching purposes.

Static assets routes are the same between prod and dev environments.

42 Chapter 4. How to articles

http://aws.amazon.com/documentation/gettingstarted/
http://www.youtube.com/watch?v=WBro0TEAd7g

fantastico Documentation, Release 0.3.0-b106

Favicon
If you want your site to also have an icon which is automatically presented by browsers, in your project root folder do
the following:

1. mkdir static

2. cd static

3. Copy your favicon.ico file in here.

4.3.2 Static assets on prod

There is no difference between static assets on dev and static assets on production from routes point of view. From
handling requests point of view, nginx configuration for your project takes care of serving static assets and sending
correct http caching headers.

4.4 Creating a new project

A new Fantastico based project can be easily setup by following this how to. In this how to we are going to create a
project named fantastico_first.

1. cd~/

mkdir fantastico_first

cd fantastico_first

virtualenv-3.2 —distribute pip-deps
. pip-deps/bin/activate

pip install fantastico

A T R

fantastico_setup_project.sh python3.2 my_project

The last step might take a while because it will also install all fantastico dependencies (e.g sphinx, sqlalchemy, ...).
Please make sure your replace python3.2 with the correct python version. In order to test the current project do the
following:

1. fantastico_run_dev_server
2. Access http://localhost:12000/fantastico/samples/mvc/static/sample.jpg
3. Access http://localhost: 12000/mvc/hello-world

Your newly project is setup correctly and it runs fantastico default samples project.

4.4.1 Create first component

After the new project it’s correctly setup we can create our first component.
1. . pip-deps/bin/activate
2. export FANTASTICO_ACTIVE_CONFIG=my_project.settings.BaseProfile
3. cd my_project

4. mkdir componentl

4.4. Creating a new project 43

http://localhost:12000/fantastico/samples/mvc/static/sample.jpg
http://localhost:12000/mvc/hello-world

fantastico Documentation, Release 0.3.0-b106

cd component1
mkdir static
Paste an image into static folder (e.g first_photo.jpg)

touch __init__.py

o ® =2 aow

touch hello_world.py
10. Paste the code listed below into hello_world.py

from fantastico.mvc.base controller import BaseController
from fantastico.mvc.controller decorators import ControllerProvider, Controller
from webob.response import Response

@ControllerProvider ()
class HelloWorldController (BaseController) :
/7’This 1is a very simple controller provider.

rr

@Controller (url="/componentl/hello")
def say_hello(self, request):
77’This method simply returns an html hello world text.’’’

msg = "Hello world from my project"
return Response (content_type="text/html", text=msg)

11. fantastico_dev_server
12. Now you can access Hello route.

13. Now you can access First photo route.

4.4.2 Customize dev server

For understanding how to customize dev server please read Development mode

4.4.3 Customize uwsgi prod server
By design, each Fantastico project provides built in support for running it on uWSGI server. If you want to customize
uwsgi parameters for your server you can follow these steps:
1. cd SFANTASTICO_PROJECT_FOLDER/deployment/conf/nginx
nano fantastico-uwsgi.ini
Change the options you want and save the file.

fantastico_run_prod_server (for testing the production server).

A

Be aware that first you need an nginx configured and your project config file deployed (Read Deployment how
10).

44 Chapter 4. How to articles

http://localhost:12000/component1/hello
http://localhost:12000/component1/static/first_photo.jpg
http://uwsgi-docs.readthedocs.org/en/latest/

CHAPTER
FIVE

* v0.3.0

e v0.2.2

e v(.2.1

* v0.2.0

e v0.1.2

* v0.1.1

CHANGES

Fantastico SDK core is available.
Fantastico SDK activate-extension command is available.

Samples of how to activate extensions for an existing project are provided.

Update dynamic menu activation documentation.
Fix a serious bug in engine management and too many sql connections opened.
Fix a bug in db session close when an unexpected error occurs when opening the connection.

Add extensive unit tests for db session management.

Fix packaging of pypi package. Now it is usable and contains rendering package as well as contrib
package.

Framework documentation is tracked using Google Analytics
Component reusage is done using { % component %} tag.
Dynamic menu pluggable component can be used out of the box.
MVC documentation improvements.

Fix a bug in DB session management cache when configuration was changed at runtime.

Nginx config file now also maps www.<vhost_name>
Redirect support from controllers

Setup fantastico framework script does not override deployment files anymore

Favicon route handling.

Deployment scripts error handling and root folder execution (rather than execution only for deploy-
ment subfolder).

MVC how to article was changed to use get_records_paged instead of all_paged method (it used to
be a bug in documentation).

45

fantastico Documentation, Release 0.3.0-b106

* v0.1.0

DB Session manager was changed from one singleton connection to connection / request.

FantasticolntegrationTestCase now has a property that holds os environment variable name for setting
up Fantastico active config.

Built in router that can be easily extended.
WebOb Request / Response architecture.

Request context support for accessing various attributes (current language, current user and other
attributes).

Multiple project profiles support.

Database simple configuration for multiple environments.
Model - View - Controller support.

Automatic model facade generator.

Model facade injection into Controllers.

Templating engine support for views (jinja2).

Documentation generator for pdf / html / epub formats.
Automatic framework packaging and deployment.

Helper scripts for creating projects based on Fantastico.

Easy rollout script for running Fantastico projects behind nginx.
Rollout scenarios for deploying Fantastico projects on Amazon (AWS).

How to sections for creating new projects and components using Fantastico.

46

Chapter 5. Changes

CHAPTER
SIX

BUILD STATUS

If you want to see the current build status of the project visit Build status.

47

http://jenkins.scrum-expert.ro:8080/job/fantastico-framework/badge/icon/

fantastico Documentation, Release 0.3.0-b106

48 Chapter 6. Build status

CHAPTER
SEVEN

LICENSE

Copyright 2013 Cosnita Radu Viorel

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

49

fantastico Documentation, Release 0.3.0-b106

50 Chapter 7. License

Symbols

_check_server_started() (fantas-

tico.server.tests.itest_dev_server.DevServerIntegr:RH}Hj()

method), 8

INDEX

build() (fantastico.mvc.models.model_filter_compound.ModelFilterCompo
method), 24

(fantastico.mvc.models.model_sort.ModelSort
method), 26

_envs (fantastico.tests.base_case.FantasticoIntegrationTestC@e

attribute), 7

_get_class_root_folder() (fantas-
tico.tests.base_case.FantasticoUnitTestsCase
method), 7

_get_root_folder() (fantas-
tico.tests.base_case.FantasticoUnitTestsCase
method), 7

_get_server_base_url() (fantas-

tico.server.tests.itest_dev_server.DevServerIntegration

check_original_methods() (fantas-
tico.tests.base_case.FantasticoUnitTestsCase
method), 7

code (fantastico.locale.language.Language attribute), 14

column (fantastico.mvc.models.model_filter. ModelFilter

attribute), 25

(fantastico.mvc.models.model_sort.ModelSort
attribute), 26

column

method), 8 Component (class in fantastico.rendering.component), 32
_restore_call_methods() (fantas- Controller (class in fantastico.mvc.controller_decorators),
tico.tests.base_case.FantasticolntegrationTestCase 18
method), 7 ControllerRouteLoader (class in fantas-
_run_test_against_dev_server() (fantas- tico.mvc.controller_registrator), 23
tico.server.tests.itest_dev_server.DevServerIntegratismt_records() (fantas-
method), 8 tico.mvc.model_facade.ModelFacade method),
_run_test_all_envs() (fantas- 20
tico.tests.base_case.FantasticolntegrationTestCasecreate() (fantastico.mve.model_facade.ModelFacade
method), 7 method), 20

_save_call_methods() (fantas-

tico.tests.base_case.FantasticolntegrationTestCase

method), 7

A

add_command() (fantas-
tico.sdk.sdk_core.SdkCommandsRegistry
static method), 28

B

BaseController (class in fantastico.mvc.base_controller),
23

BasicSettings (class in fantastico.settings), 4

build() (fantastico.mvc.models.model_filter. ModelFilter
method), 25

curr_request (fantastico.mvc.base_controller.BaseController
attribute), 23

D

database_config (fantastico.settings.BasicSettings at-
tribute), 4

delete() (fantastico.mvc.model_facade.ModelFacade
method), 20

dev_server_host (fantastico.settings.BasicSettings at-
tribute), 5

dev_server_port (fantastico.settings.BasicSettings at-
tribute), 5

DevServer (class in fantastico.server.dev_server), 9

DevServerlntegration (class in fantas-

tico.server.tests.itest_dev_server), 8

build() (fantastico.mve.models.model_filter.ModelFilter Abstisplay_test() (fantastico.routing_engine.dummy_routeloader. DummyRoute

method), 24

method), 17

51

fantastico Documentation, Release 0.3.0-b106

DummyRouteLoader (class in fantas- FantasticoSdkCommandError (class in fantas-
tico.routing_engine.dummy_routeloader), tico.sdk.sdk_exceptions), 30
17 FantasticoSdkCommandNotFoundError (class in fantas-
DynamicMenuController (class in fantas- tico.sdk.sdk_exceptions), 30
tico.contrib.dynamic_menu.menu_controller), FantasticoSdkError (class in fantas-
35 tico.sdk.sdk_exceptions), 30
FantasticoSettingNotFoundError ~ (class in fantas-
E tico.exceptions), 11
exec() (fantastico.sdk.commands.command_activate_extensicanSukiCotompldiaNothieEdbnsoon (class in fantas-
method), 27 tico.exceptions), 12
exec() (fantastico.sdk.commands.command_version.SdkCorramadfieetioit TestsCase (class in fantas-
method), 28 tico.tests.base_case), 6
exec() (fantastico.sdk.fantastico.SdkCore method), 28 FantasticoUrlInvokerError (class in fantas-
exec() (fantastico.sdk.sdk_core.SdkCommand method), tico.exceptions), 12
29 find_by_pk() (fantastico.mvc.model_facade.ModelFacade
exec_command() (fantastico.sdk.sdk_core.SdkCommand method), 21
method), 30 fn_handler (fantastico.mvc.controller_decorators.Controller

attribute), 19

F

fantastico_cfg_os_key (fantas- G
tico.tests.base_case.FantasticolntegrationTestCaseget() (fantastico.settings.SettingsFacade method), 5
attribute), 7 get_arguments() (fantas-

FantasticoClassNotFoundError (class in fantas- tico.sdk.commands.command_activate_extension.SdkCommand/
tico.exceptions), 11 method), 27

FantasticoContentTypeError (class in fantas- get_arguments() (fantastico.sdk.fantastico.SdkCore
tico.exceptions), 12 method), 28

FantasticoControllerInvalidError ~ (class in fantas- get_arguments() (fantastico.sdk.sdk_core.SdkCommand
tico.exceptions), 11 method), 30

FantasticoDbError (class in fantastico.exceptions), 12 get_command() (fantas-

FantasticoDbNotFoundError (class in fantas- tico.sdk.sdk_core.SdkCommandsRegistry
tico.exceptions), 12 static method), 29

FantasticoDuplicateRouteError ~ (class in fantas- get_component_folder() (fantas-
tico.exceptions), 11 tico.mvc.base_controller.BaseController

FantasticoError (class in fantastico.exceptions), 11 method), 23

FantasticoHttpVerbNotSupported ~ (class in fantas- get_config() (fantastico.settings.SettingsFacade method),
tico.exceptions), 12 6

FantasticolncompatibleClassError (class in fantas- get_expression() (fantas-
tico.exceptions), 12 tico.mvc.models.model_filter. ModelFilter

FantasticolnsufficientArgumentsError (class in fantas- method), 25
tico.exceptions), 12 get_expression() (fantas-

FantasticolntegrationTestCase (class in fantas- tico.mvc.models.model_filter. ModelFilterAbstract
tico.tests.base_case), 7 method), 24

FantasticoMenuNotFoundException (class in fantas- get_expression() (fantas-
tico.contrib.dynamic_menu.menu_exceptions), tico.mvc.models.model_filter_compound.ModelFilterCompound
35 method), 24

FantasticoNoRequestError (class in fantas- get_expression() (fantas-
tico.exceptions), 12 tico.mvc.models.model_sort.ModelSort

FantasticoNoRoutesError (class in fantastico.exceptions), method), 26
12 get_loaders() (fantastico.routing_engine.router.Router

FantasticoNotSupportedError ~ (class in fantas- method), 15
tico.exceptions), 11 get_records_paged() (fantas-

FantasticoRouteNotFoundError (class in fantas- tico.mvc.model_facade.ModelFacade method),
tico.exceptions), 12 21

52 Index

fantastico Documentation, Release 0.3.0-b106

get_registered_routes() (fantas-
tico.mvc.controller_decorators.Controller
class method), 19

get_root_folder() (fantastico.settings.SettingsFacade
method), 6

get_supported_operations() (fantas-
tico.mvc.models.model_filter. ModelFilter
static method), 25

get_supported_sort_dirs()
tico.mvc.models.model_sort.ModelSort
method), 26

(fantas-

H

handle_route() (fantastico.routing_engine.router.Router
method), 15

help (fantastico.sdk.sdk_core.SdkCommandArgument at-
tribute), 29

ModelFilterOr (class in fantas-
tico.mvc.models.model_filter_compound),
25

models (fantastico.mvc.controller_decorators.Controller
attribute), 19

ModelSessionMiddleware (class in fantas-
tico.middleware.model_session_middleware),
26

ModelSort (class in fantastico.mvc.models.model_sort),
25

N

name (fantastico.sdk.sdk_core.SdkCommandArgument
attribute), 29
new_model() (fantastico.mvc.model_facade.ModelFacade

method), 22

http_verb (fantastico.exceptions.FantasticoHttpVerbNotSup[Qted

attribute), 12

installed_middleware
attribute), 5

(fantastico.settings.BasicSettings

L

Language (class in fantastico.locale.language), 14

language (fantastico.middleware.request_context.RequesthqgemectReSponse

attribute), 13

operation (fantastico.mvc.models.model_filter. ModelFilter
attribute), 25

P

parse() (fantastico.rendering.component.Component

method), 33

R

(class in fantas-
tico.routing_engine.custom_responses), 14

load_routes() (fantastico.mvc.controller_registrator.Controllgg}{%q%qmsﬁco.mVC_models.mode] filter. ModelFilter

method), 23

attribute), 25

load_routes() (fantastico.routing_engine.routing_loaders.Ropég}s?&d_%utes() (fantastico.routing_engine.router.Router

method), 16

load_template() (fantas-
tico.mvc.base_controller.BaseController
method), 24

M

method), 15

render() (fantastico.rendering.component.Component
method), 33

RequestContext (class in fantas-
tico.middleware.request_context), 13

RequestMiddleware (class in fantas-

max_items (fantastico.contrib.dynamic_menu.menu_controller. Dynamjg¥lgnu@ientipdlesquest_middleware), 13

attribute), 35

method (fantastico.mvc.controller_decorators.Controller
attribute), 19

model_cls (fantastico.mvc.model_facade.ModelFacade
attribute), 22

ModelFacade (class in fantastico.mvc.model_facade), 20

retrieve_menu_items() (fantas-

tico.contrib.dynamic_menu.menu_controller. DynamicMenuContt

method), 35
RouteLoader (class in
tico.routing_engine.routing_loaders), 16
Router (class in fantastico.routing_engine.router), 15

fantas-

ModelFilter (class in fantas- routes_loaders (fantastico.settings.BasicSettings at-
tico.mvc.models.model_filter), 24 tribute), 5

ModelFilterAbstract (class in fantas- RoutingMiddleware (class in fantas-
tico.mve.models.model_filter), 24 tico.middleware.routing_middleware), 17

ModelFilterAnd (class in fantas-
tico.mvc.models.model_filter_compound), S

ModelFil 25C d 1 . . scanned_folder (fantas-

ode 1t§r ompoun (class n antas- tico.mvc.controller_registrator.ControllerRouteLoader

tico.mvc.models.model_filter_compound), attribute), 23
24 T

Index 53

fantastico Documentation, Release 0.3.0-b106

SdkCommand (class in fantastico.sdk.sdk_core), 29

SdkCommand (class in fantastico.sdk.sdk_decorators), 30

SdkCommandActivateExtension (class in fantas-
tico.sdk.commands.command_activate_extension),

27

SdkCommandArgument (class in fantas-
tico.sdk.sdk_core), 29

SdkCommandsRegistry (class in fantas-
tico.sdk.sdk_core), 28

SdkCommand Version (class in fantas-

tico.sdk.commands.command_version), 27

SdkCore (class in fantastico.sdk.fantastico), 28

settings (fantastico.middleware.request_context.RequestContext
attribute), 13

SettingsFacade (class in fantastico.settings), 5

setup_once() (fantastico.tests.base_case.FantasticoUnitTestsCase
class method), 7

short_name (fantastico.sdk.sdk_core.SdkCommandArgument
attribute), 29

sort_dir (fantastico.mvc.models.model_sort.ModelSort
attribute), 26

start() (fantastico.server.dev_server.DevServer method), 9

started (fantastico.server.dev_server.DevServer attribute),
9

stop() (fantastico.server.dev_server.DevServer method), 9

supported_languages (fantastico.settings.BasicSettings
attribute), 5

T

templates_config (fantastico.settings.BasicSettings
attribute), 5

type (fantastico.sdk.sdk_core.SdkCommandArgument at-
tribute), 29

U

update() (fantastico.mvc.model_facade.ModelFacade
method), 22

url (fantastico.mvc.controller_decorators.Controller at-
tribute), 19

W

wsgi_app (fantastico.middleware.request_context.RequestContext
attribute), 14

54

Index

	Introduction
	Why another python framework?
	Fantastico's initial ideas

	Getting started
	Installation manual
	Fantastico settings
	Contribute
	Development mode

	Fantastico features
	Exceptions hierarchy
	Request lifecycle
	Routing engine
	Model View Controller
	SDK
	Component model
	Component reusage
	Built in components

	How to articles
	MVC How to
	Deployment how to
	Static assets
	Creating a new project

	Changes
	Build status
	License
	Index

