
The EntropyDeviationType Python
Extension

EntropyDeviationType is an extension that is intended for finding data hidden within other data

with no knowledge of the data itself. Specifically, the intended use case is to identify executable files

(Portable Executables specifically) embedded in non-executable files. For example, malware hidden

within a Microsoft Word or PDF document. This is a common occurrence within Advanced Persistent

Threat (APT) style attacks which leverage client-side attacks in common business office file formats and

often follow the generic pattern that within the exploit is a XOR encrypted executable that is dropped to

the compromised system and then the host document is cleaned to remove the exploit.

The module contains two classes, entropyDeviationType and xorTableSearchType. Both

classes are intended as proof of concepts and not immediately exportable to production. This package

also contains an example utility, ``edfind.py``, which serves as both an immediately usable utility and as

a rough primer on how to use the extension to quickly analyze and locate rogue data hidden within

benign information streams.

1.0 DISCLAIMER

YOUR MILEAGE MAY VARY. AS WITH EVERYTHING TEST THOROUGHLY YOURSELF BEFORE UTILIZING

IN PRODUCTION CODE. THIS MODULE HAS NOT RECEIVED EXTENSIVE TESTING AND MAY CONTAIN

BUGS NO WARRANTY, EXPLICIT OR IMPLICIT IS PROVIDED. IT IS THE INTERNET. TRUST BUT VERIFY

Contents
1.0 DISCLAIMER ... 1

2.0 Class Descriptions ... 3

2.1 Python Class Descriptions ... 4

2.1.1 The entropyDeviationType Python class.. 4

2.1.2 The entDevReturnType Python Class ... 10

2.1.3 The distributionType Python class ... 12

2.1.4 The entDevType Python Class .. 13

2.1.5 The xorTableSearchType Python Class .. 15

2.1.6 The xorTableReturnType Python Class .. 17

2.2 C++ Class Descriptions .. 19

2.2.1 The chunk_t C++ structure ... 19

2.2.2 The dist_t C++ Structure .. 21

2.2.3 The entropy_retval_t C++ Structure .. 23

2.2.4 The entropy_wrapper_t C++ Class ... 26

2.2.5 The entropy_t C++ class ... 29

2.2.6 The xor_table_ret_t C++ structure .. 33

2.2.7 The xor_table_wrapper_t C++ Class .. 35

2.2.8 The xor_table_t C++ Class .. 37

3.0 The epfind.py Utility .. 39

3.0.1 epfind.py Command Line Options ... 39

3.1.0 epfind.py Example Usage ... 41

3.1.1 Analysis of a PDF Document with an embedded executable encrypted with a one-byte key .. 41

3.1.2 Files with higher-entropy embedded data / One-Time Pad XOR .. 51

2.0 Class Descriptions

This extension is written in C++ with Python bindings provided by boost::python, in all earnest, if I

was you, I would just use the C++ natively, but I am also biased towards C++. I have provided the Python

bindings because that is a commonly requested interface. Layered on top of the C++ are the two Python

classes that expose the functionality of the C++ module.

Experimental testing has shown that even with multiple iterations through the data set that this method

is far quicker than brute-force XOR methods or even generating a table of pre-computed XOR encrypted

values, id est:

for (auto x = 0; x < 255; x+=2)

 var[x] = 'M'^x;
var[x+1] = 'Z'^x;

 [...]

2.1 Python Class Descriptions

The following subsections detail the pure Python classes and related pseudo-classes that are generated

by boost::python that are the interfaces or return types by the pure Python classes. These classes

are:

 entropyDeviationType The main pure Python class.
 entDevType Pseudo-class that entropyDeviationType

interfaces with.
 entDevReturnType Pseudo-class that is the main return type used by

entDevType and
entropyDeviationType.

 distributionType Pseudo-class that is the return type used by
character frequency analysis related methods.

 xorTableSearchType The main pure Python class.
 xorTableType Pseudo-class that xorTableSearchType

interfaces with.
 xorTableReturnType Pseudo-class that is the only return type used by

the xorTableSearchType and
xorTableType classes.

2.1.1 The entropyDeviationType Python class

The entropyDeviationType class performs statistical entropy analysis to attempt to find significant

deviations in an unknown blob of data such that you can find embedded PE files or otherwise abnormal

data streams embedded into the host file. The functionality provided, theory, Python class interface

documentation and C++ class interface documentation are detailed in-depth in this document.

The basic theory is that a PE file will have a different distribution than the file it is in embedded in,

especially if it is encrypted whether it be XOR encrypted or otherwise. As such, you can split the data

into chunks and analyze the distribution and look for deviation within the file. This class performs a Chi

Square distribution test, Shannon entropy analysis and Monte Carlo Pi approximation upon a file and

provides an interface to retrieving the scores of a given block of data and the whole file and also to

calculating deviances of one block to another, the whole file or all blocks.

WARNING: IN A FUTURE RELEASE IT IS EXPECTED THAT THE MONTE CARLO PI APPROXIMATION WILL BE REMOVED

AND REPLACED BY A MORE USEFUL METRIC

2.1.1A entropyDeviationType Python Class Description

__init__(bs = 8192) Takes a parameter, bs that represents the
block size represented in byte to be used.
The default value is 8192 or 8KB

openFile(name, whole = False) Opens and reads the file specified by name
performs whole file analysis if ``whole`` is
``True``

isValidBlockNumber(idx, base = 16) Checks that a given index, idx is within
the range of valid blocks; defaults to base
16 format, modified by the ``base``
parameter. Returns True if the index is
valid.

isValidBlockRange(low, high, base = 16) Checks that a given range of indices
demarked by low` and high are valid;
defaults to base 16 format and modified by
the base parameter. Returns True if the
range is valid.

getScore(idx, base = 16) Gets the Chi, Shannon and Pi
approximation score for a given block
indicated by idx, which by default is
specified in base 16 format but can be
changed via the base parameter. Returns
a entDevReturnType class; Throws an
instance of ValueError if the idx is
invalid.

getAllScores() Retrieves the Chi, Shannon and Pi
approximation scores for all blocks in the
file. Returns a list() of
entDevReturnType objects.

getWholeFileScore() Retrieves the Chi, Shannon and Pi
approximation scores for the entire file.
Returns an entDevReturnType
instance.

getXYDeviation(x, y, base = 16) Retrieves the Chi, Shannon and Pi
approximation deviation scores between
two blocks indicated by the parameters x
and y, which by default are specified in
base 16 format but is changeable via the
base parameter. Returns an
entDevReturnType instance or throws
an instance of ValueError if the
specified range is invalid.

getBlockAllDeviation(x, base = 16) Retrieves the Chi, Shannon and Pi
approximation deviations between all

blocks in a file against the block specified
by the parameter x, which by default is
specified in base 16 format, but is
changeable via the base parameter.
Returns a list() of
entDevReturnType instances or
throws an instance of ValueError if x is
invalid.

getWholeFileDeviation(x, base = 16) Returns an entDevReturnType
instance containing the deviations for a
block indicated by the parameter ``x``
relative to the entire file. The index is
specified in base 16 by default, however
that is customizable via base parameter.
Throws an instance of ValueError if x is
invalid.

getSequentialDeviation(x = 0, y = 0, base = 16) Calculates the deviation for sequential
blocks, both prior and following within a
range of blocks that is specified by the x
and y parameters or every block in the file
by default. The x and y parameters by
default are specified in base 16 format
however this is customizable via the
``base`` parameter. Returns a list() of
dict() objects with the keys prior,
next, index and dev for the prior block
number, next block number, the block the
deviations are relative to and an instance
of entDevReturnType respectively.
Only one of the prior and next keys will
be valid in any given list element. The
other will have a value of None. Throws a
ValueError if the index range specified
by x through y is invalid.

findHighDeviation(c = 100, s = 20, e = 1) THIS METHOD IS AN ILLUSTRATED

EXAMPLE ONLY.
Attempts to find blocks with high deviation
values relative to the blocks around it.
What constitutes high deviation is
specified by the c, s and e parameters
that denote the Chi Square, Shannon and
Pi approximation Estimate respectively.
Returns a list() of
entDevReturnType instances for any
blocks that match an empty list() if
there were no matches.

getBlocksAverage(ilist) Averages the Chi, Shannon and Pi
approximation values in a list()

specified by the ilist parameter.
Returns an entDevReturnType
instance or throws a ValueError
instance if the method was passed an
empty list() for in the ilist
parameter.

isHighAverageChi(maxv, chi = 15) WARNING: METHOD IS AN ILLUSTRATED

EXAMPLE ONLY.
Identifies blocks with uniform or near
uniform Chi distributions for a range
between the first block and the block
specified by maxv. The blocks in that range
have their scores averaged and then if the
average exceeds a percentage specified by
the chi parameter it returns True.
Otherwise it returns False. The maxv
parameter is specified in base 16 format
and methods called by this method can
throw a ValueError when an invalid
maxv is specified.

priorHighAndNextLowShannon(idx, high = 20.0, low =
2.5)

WARNING: METHOD IS AN ILLUSTRATED

EXAMPLE ONLY.
Attempts to identify the beginning of a
significant deviation by attempting to
determine if the block denoted by the
parameter idx has a high percentage of
deviation in its Shannon score relative to
the prior block and a low percentage of
deviation in its Shannon score in the block
that follows it. The high and low marks are
denoted by the parameters high and low
and default to 20% and 2.5% respectively.
These values were chosen based on
deviations in a very small sample and will
result in high false negative and false
positive results. Returns True if the prior
blocks Shannon deviation exceeds high
and the following blocks is less than low,
otherwise it returns False. A
ValueError is thrown if idx, idx-1 or
idx+1 are invalid.

getSequentialLowShannon(idx, low = 1.7) WARNING: METHOD IS AN ILLUSTRATED

EXAMPLE ONLY.
Attempts to identify sequential blocks of
deviant data by looking for low Shannon
score deviations in sequential blocks. The
block to start at is specified by the idx
parameter, which is specified in base 16

format. What exactly constitutes a low
percentage of deviation is specified by the
parameter low, which defaults to 1.7%.
This value was chosen based on analysis of
a very small set of samples and is likely to
result in high amounts of false positive and
false negatives as a result. Returns the
index of the highest block following idx
that has a relative Shannon deviation less
than low, or the index specified by idx if
the following block does not match.
Throws a ValueError if the index
specified is invalid.

getSequentialCloseChi(lidx, hidx, dmax = 26.0) WARNING: METHOD IS AN ILLUSTRATED

EXAMPLE ONLY.
Attempts to identify related deviant blocks
between a range specified by the indices
lidx and hidx respectively. Specifically
this method attempts to identify blocks
that have Chi Square scores that are within
dmax percent of one another, which
defaults to 26%. This value was chosen
based on analysis of a very small sample
set and is likely to result in high false
positive and false negative rates if used as
is. The theory is based on the observation
that the distribution of shorter XOR keys
varies relatively little. Returns the highest
index of a block that follows lidx that
deviates less than dmax percent, or lidx
if the block immediately following lidx
exceeds dmax%. Throws a ValueError
if the index range specified is invalid.

coalesceSequential(lst, maxv = 2) Takes a list() of tuple()'s in the
format of tuple((lowIndex,
highIndex)) indicating a start and stop
range of blocks and checks to see if
sequential list elements have nearly
overlapping ranges with a distance less
than or equal to maxv. The concept
behind this method is that once a
sequence of suspicious blocks are
identified it is not uncommon for a few
outlier blocks to cause multiple ranges of
suspect blocks that really is a single range
of blocks. As such, this method checks to
see if that is the case and coalesces the
indices into a single range of blocks.

Returns a list() of tuple()'s with
high and low ranges.

calculateDistribution(x = 0, y = 0, base = 16) Takes a range of block indices denoted by
x and y, which are specified in base 16
format by default and calculates the
frequency each character occurs in the
block range. The idea is that shorter XOR
keys across real data tend to encounter the
value zero a lot, which leaks the key in
question. Thus by analyzing the frequency
of characters in a block range, we can
easily spot abnormal sequential
frequencies and quickly identify an XOR
key as a result. Returns a list() sorted
in descending order of
distributionType instances of length
256. Throws a ValueError if the range
specified by x through y is invalid.

2.1.2 The entDevReturnType Python Class

The entDevReturnType class is a pseudo-class that is generated by boost::python that wraps a

native C++ structure. It is used as the main return type in the entropyDeviationType Python class.

It contains the Chi-Square distribution test score, Shannon entropy analysis score and the Monte Carlo

method Pi approximation score and error values. The exact interpretation of the data within the class

varies depending on the context it is used in. It is either the exact score of a block or file, or how much

each of the respective scores deviates from another block or the entire files score.

2.1.2A entDevReturnType Python Class Description

__init__(chi = 0.0, shannon = 0.0, estimate = 0.0, error = 0.0)

The constructor optional takes the
four parameters, chi, shannon,
estimate and error that
initializes the respective member
properties, or otherwise initializes
them all to a value of 0.0.

ChiSquareValue A read-only value that contains a
Chi-Square distribution value.

chi_square_value An alias for ChiSquareValue.
ChiSquare A read-write property that contains

a Chi-Square distribution value.
chi_square An alias for ChiSquare.
ShannonValue A read-only value that contains the

Shannon Entropy distribution
value.

shannon_value An alias for ShannonValue.
Shannon A read-write property that contains

the Shannon Entropy distribution
value.

shannon An alias for Shannon
EstimateValue A read-only value that contains the

estimated Monte Carlo Pi
Approximation value.

estimate_value An alias for EstimateValue.
Estimate A read-write property that contains

the estimated Monte Carlo Pi
Approximation value.

estimate An alias for Estimate.
ErrorValue A read-only value that contains the

percentage of error from Pi that
the Estimate is.

error_value An alias for ErrorValue.

Error A read-write property that contains
the percentage of error from Pi the
Estimate is.

error An alias for Error.

2.1.3 The distributionType Python class

The distributionType class is a psuedo-class that is generated by boost::python that wraps a

native C++ structure. It is used as a return type in methods dealing with character frequency in the

entropyDeviationType Python class.

2.1.3A distributionType Class Description

__init__(value = 0, count = 0) The constructor optionally takes two parameters
that set the value of the value and count
parameters, otherwise they are initialized to
zero.

Value A read-write property that represents the byte
value in question, ranges from 0 to 255.

value An alias for Value.
Count A read-write property that is the number of times

the Value occurred.
count An alias for Count.

2.1.4 The entDevType Python Class

The distributionType class is a psuedo-class that is generated by boost::python that wraps a

native C++ class. It is used as the main interface to C++ by the entropyDeviationType pure Python

class.

2.1.4A entDevType Class Description

__init__(blockSize = 8192)
__init__(data, blockSize = 8192, whole = False)

Constructors that take the following parameters:

data The contents of the file.
blocksize The size of blocks to break data
 into.
whole Indicates whether to perform
 whole file analysis or not.

setData(data)
setData(data, blockSize = 8192, whole = False)

Sets the contents of a file to perform analysis
upon. It takes the following parameters:

data The contents of the file.
blocksize The size of the blocks to break
 data into.
whole Indicates whether to perform
 whole file analysis or not.

calculate()
calculate(x)
calculate(x,y)

Methods that perform the actual entropy analysis
that take the following parameters:

x The block to calculate.
y The ending block to calculate, forms a
 range of x through y blocks. Throws an
 instance of ValueError if any of the
 indices are invalid.

calculateDistribution(x,y) Method that calculates the frequency distribution
between a range of blocks starting with x and
ending at y. Throws an instance of
ValueError if the range x through y is invalid.

count() Returns the size of the list() of blocks
representing the file.

maxIndex() The maximum index of the list() of blocks
representing the file. Equivalent to count()-1
for values of count() that are greater than
zero.

getDeviation(x,y) Calculates the deviation between the blocks
specified by x and y. Returns an
entDevReturnType instance. Throws an

instance of ValueError if the range specified
by x through y is invalid.

getAllDeviations(x)

Calculates the deviation of *all* blocks in the file
relative to the block at index x. Returns an
entDevReturnType instance. Throws an instance
of ValueError if the index specified by x is
invalid.

getWholeFileDeviation(x) Calculates the deviation of the entire file taken as
a whole relative to the block at index x. Returns
an entDevReturnType instance. Throws an
instance of ValueError if the index specified
by x is invalid.

getScore(x) Retrieves the Chi Square, Shannon, and Monte
Carlo Pi approximation scores for the block
specified by x. Returns an instance of
entDevReturnType. Throws an instance of
ValueError if the index specified by x is
invalid.

getWholeScore() Retrieves the whole file score. Returns an
instance of entDevReturnType.

getAllScores() Retrieves the entropy scores for all blocks in the
file. Returns an instance of
entDevReturnType.

reset() Reset the internal distribution/frequency
statistics.

getDistribution() Returns the distributionType calculated by
the calculateDistribution method.

2.1.5 The xorTableSearchType Python Class

``xorTableSearchType`` is intended as a simple proof of concept that hopes to inspire incident response

teams to rethink some of their approaches to identifying this sort of data. Specifically, the common

method for identifying embedded executables is generally to attempt to brute force all possible XOR

keys looking for combinations of the DOS magic header value, the common string contained within the

DOS stub executable and/or the PE magic header. This is expensive both in terms of resources

expended and time and is prone towards false positives and false negatives as the occurrence of these

strings is not unique nor entirely uncommon, for instance all of them often occur on related mailing lists.

Moreover, in order to reduce false positives many people have grown a dependence on strings

commonly contained within the DOS stub header, which has no guarantee to actually exist.

The brute force itself is expensive, as teams often attempt to brute force all keys between 1 and 8 or

more bytes across the entire file that generates [28+216+224+232+2+240+248+256+264] keys and

with roughly the complexity of:

(N*28)+((N/216)*216)+((N/224)*224)+((N/232)*232)+

((N/240)*240)+((N/248)*248)+((N/256)*256)+((N/264)*264)

Where N is the length of the file in question. As such, this is a pretty intensive process and isn't realistic

for tasks such as real-time scanning and similar. The approach demonstrated in this class pre-computes

all possible one-byte XOR'd values for the strings MZ and PE\0\0. It then iterates across the blob of

data looking first for a value that matches the MZ string and if found then scans within a certain limit

(defaults to 512 bytes) for the string PE\0\0. If that value is found, then it uses the matching one-byte

key at the offset 0x3C from the MZ string to extract the offset to the PE header, if the value extracted

matches the location of the PE magic string previously found, then we classify it as having found an

embedded PE. It is our suspicion that using this methodology will result in a lower false-positive and

lower potential false-negative rate with a faster total overhead than methods iteratively looking for the

various strings and/or looking for the generic DOS stub string (which may not even be present). This

method is expected to result in lower false positives than the statistical approach at a much, much

higher resource and time cost, but only for one-byte XOR keys. It is of course possible to utilize the same

general algorithm for longer keys, largely bounded by the system resources. These longer key lengths

were not implemented as this was only intended as a proof-of-concept that improves upon other public

XOR brute force methods.

2.1.5A xorTableSearchType Python Class Description

__init__(maxoff = 512, base = 10) Takes the parameter maxoff which indicates
how far after an instance of the string MZ the
class should look for the PE header magic value.
Defaults to 512, specified in base 10 format but is
changeable via the base parameter

openFile(name) Opens and reads the file specified by name
findFirst()

Attempts to find the first instance of an
embedded PE executable within another stream.
Returns an instance of xorTableReturnType
if any PE files were found, otherwise it throws an
instance of UserWarning.

findAll() Attempts to find ALL instances of embedded PE
files within another stream. Returns a list() of
xorTableReturnType instances, one for
each PE file that was found. Otherwise it throws
an instance of UserWarning if there were no
embedded PE files located.

2.1.6 The xorTableReturnType Python Class

The xorTableReturnType class is a psuedo-class that is generated by boost::python that

wraps a native C++ structure. It is used as a return type in all methods that return a value in the

xorTableSearchType Python class.

2.1.6A xorTableReturnType Class Description

Offset A read-write property that contains the offset
within the file that the first byte of the encrypted
PE file was found.

offset An alias for the Offset property.
Key A read-write property that contains the value of

the key that the encrypted PE file found was
encrypted with.

key An alias for the Key property.

2.1.7 The xorTableType Python Class

The xorTableType class is a psuedo-class that is generated by boost::python that wraps a native C++

class. It is used as the main interface by the xorTableSearchType Python class.

2.1.7A xorTableType Class Description

__init__(max_peoff = 512)
__init__(data, max_peoff = 512)

The first constructor that takes an optional
integer, max_peoff that specifies how far in
bytes the class should search after locating the
DOS magic string value. The second constructor
takes a string, data that is the contents of the
file to be searched. The optional parameter
max_peoff indicates how far in bytes the class
should search after locating the DOS magic string
value.

setData(data) Takes a string, data that is the contents of the
file to be searched.

findFirst() Searches the contents of a file for an encrypted
PE file; returns only the first embedded PE file
found.

findAll() Searches the contents of a file for all encrypted
PE files contained within it.

2.2 C++ Class Descriptions

This extension is primarily written in C++. The aforementioned Python classes are wrappers to their

respective C++ classes and one can also elect to further extend them or otherwise extract them for their

own project.

The classes are written in portable C++11 and are free and clear from any platform specific constructs

and as such should compile without complication on any platform that has a mostly standards compliant

Standard Template Library and C++ compiler that supports C++11. Furthermore, as the classes primarily

utilize specific integer widths, the classes should have no complication on either 32-bit or 64-bit

platforms.

The classes were written initially in a Microsoft Visual Studio 2013 environment and then later exported

to a Linux/G++ environment for Python. The extension at present does not compile cleanly as a Python

module under Windows primarily due to the requirement that native extensions utilize the same MSVC

library that the Python library was compiled against, which is an extremely outdated version. Moreover,

the wrappers that convert STL C++ containers to Python data types apparently use Python C API

functionality that changed or was removed in Python 3, specifically functions relating to PyString's.

Aside from that, the classes should compile and operate cleanly against Python 3, however this has not

been tested.

2.2.1 The chunk_t C++ structure

The ``chunk_t`` structure is utilized in several places throughout the Python extension and represents

the base data type for what is referenced as blocks throughout this documentation. It is a simple

structure containing only two members which are accessible via direct access. This structure is not

accessible directly from the Python class interface and is abstracted away from the user.

2.2.1A chunk_t Structure Description

 typedef std::shared_ptr< uint8_t > byte_buf_t;

 struct chunk_t {
 byte_buf_t buf;
 std::size_t len;

 chunk_t(void);

 chunk_t(const std::vector< uint8_t >& v);
 ~chunk_t(void);
 };

 typedef std::vector< chunk_t > chunk_vec_t;

byte_buf_t buf A std::shared_ptr to uint8_t that points
to the actual data of the chunk.

std::size_t len An unsigned integer of type std::size_t that
refers to the length of the memory pointed to by
the buf member.

chunk_t(void)
chunk_t(std::vector< uint8_t >&)

The constructors with the first being the default
constructor that initializes buf to nullptr and
len to zero. The second constructor takes a
reference to std::vector< uint8_t > and
initializes buf to point to dynamically allocated
memory that is a copy of the std::vector<
uint8_t >. len is initialized to contain the
length of the buf member.

chunk_vec_t A std::vector containing an array of
chunk_t objects.

2.2.2 The dist_t C++ Structure

The dist_t structure is utilized in several places throughout the Python extension and represents the

base data type for what is referenced as blocks throughout this documentation. It is a simple structure

containing only two members which are accessible via direct access or via getter and setter methods,

which are in place primarily as to take advantage of boost::python property related functionality.

This class is the underlying C++ structure for the Python distributionType class.

2.2.2A dist_t Class Description

 struct dist_t {
 uint8_t value;
 std::size_t count;

 dist_t(void);
 dist_t(uint8_t, std::size_t);
 ~dist_t(void);
 uint8_t getValue(void);
 void setValue(uint8_t);
 std::size_t getCount(void);
 void setCount(std::size_t);
 };

 typedef std::vector< dist_t > dist_vec_t;

uint8_t value The uint8_t member that refers to the specific
byte value in question.

std::size_t count A std::size_t width integer that refers to
the number of occurrences of value.

dist_t(void)
dist_t(uint8_t, std::size_t)

The constructors, with the first taking no
parameters and initializes value and count to
values of zero. The second constructor initializes
the values of value to its first parameter and
count to its second.

uint8_t getValue(void) A getter method that is utilized by the Python
wrapper class distributionType. This
method returns the value member. This
method is called whenever a user accesses the
value or Value property in a
distributionType object in Python.

void setValue(uint8_t) A setter method that is utilized by the Python
wrapper class distributionType. This
method sets the value member to the value of
its only parameter. This method is called
whenever a user sets the value or Value
property in a distributionType object in
Python.

std::size_t getCount() A getter method that is utilized by the Python
wrapper class distributionType. This
method returns the count member. This
method is called whenever a user accesses the
count or Count property in a
distributionType object in Python.

void setCount(std::size_t) The setter method that is utilized by the Python
wrapper class distributionType. It sets the
count member to the value of its only
parameter. This method is called whenever a
user accesses the count or Count property in a
distributionType object in Python.

dist_vec_t A std::vector of dist_t objects. This is
represented by a list() of
distributionType instances in Python.

2.2.3 The entropy_retval_t C++ Structure

The entropy_retval_t structure is utilized extensively throughout the entropy_t and

entropy_wrapper_t classes and represents the main return value object type of the

entDevReturnType Python class.

It is a simple structure containing only the base data types and getter and setter methods so as to add

properties to the related Python object. This class is the underlying C++ structure for the

entDevReturnType Python object.

2.2.3A entropy_retval_t Structure Description

 struct entropy_retval_t {
 long double chisquare;
 long double shannon;
 long double estimate;
 long double error;

 entropy_retval_t(long double, long double, long double, long double);
 ~entropy_retval_t(void);

 void setChiSquare(long double);
 long double getChiSquare(void);
 void setShannon(long double);
 long double getShannon(void);
 void setEstimate(long double);
 long double getEstimate(void);
 void setError(long double);
 long double getError(void);
 };

 typedef std::vector< entropy_retval_t > entropy_retvec_t;

long double chisquare A long double that contains the value of the
Chi Square distribution test score value or the Chi
Square deviation value.

long double shannon

A long double that contains the value of the
Shannon entropy distribution score value or the
Shannon entropy deviation value.

long double estimate

A long double that contains the value of the
Monte Carlo Pi approximation value or the
Monte Carlo Pi deviation value.

long double error A long double that contains a value
representing the percent difference of
estimate relative to Pi or the deviation value
depending on the exact context of the objects
usage.

entropy_retval_t(void)
entropy_retval_t(long double, long double, long
double, long double)

The two constructors with the first initializing all
of the related members to 0.0 and the second
initializing the chisquare member to the first
parameter, the shannon member to the second
and estimate and error to the third and
fourth parameters.

void setChiSquare(long double) A method that takes a long double
parameter and sets the chisquare member's
value to its value. This method is called whenever
a user changes the value of chi_square in an
instance of an entDevReturnType object in
Python.

long double getChiSquare(void) A method that returns the long double value
of the chisquare member. This method is
called whenever a user accesses the
chi_square member of an instance of an
entDevReturnType object in Python.

void setShannon(long double) A method that takes a long double
parameter and sets the shannon member to its
value. This method is called whenever a user
changes the value of shannon in an instance of
an entDevReturnType object in Python.

long double getShannon(void) A method that returns a long double value of
the shannon member. This method is called
whenever a user accesses the shannon member
of an instance of an entDevReturnType
object in Python.

void setEstimate(long double) A method that takes a long double
parameter and sets the estimate member to
its value. This method is called whenever a user
changes the value of estimate in an instance
of an entDevReturnType object in Python.

long double getEstimate(void) A method that returns a long double value of
the estimate member. This method is called
whenever a user accesses the estimate
member of an instance of an
entDevReturnType object in Python.

void setError(long double) A method that takes a ``long double``
parameter and sets the ``error`` member to its
value. This method is called whenever a user
changes the value of error in an instance of an
entDevReturnType object in Python.

long double getError(void) A method that returns a ``long double`` value
of the ``error`` member. This method is called
whenever a user accesses the ``estimate``
member of an instance of an
``entDevReturnType`` object in Python.

2.2.4 The entropy_wrapper_t C++ Class

The entropy_wrapper_t class is a native wrapper that encapsulates the functionality of the

entropy_t class. This encapsulation encompasses both translating exceptional events and errors into

formats geared towards Python but also tying multiple disjointed parts of the entropy_t API into a single

method or similar. It contains and stores the entire file, in a std::vector, all relevant

entropy_retval_t’s for the analyzed data, an entropy_retval_t containing the scores for the

entire file, a std::vector of dist_t objects for each blocks frequency distribution and a

std::vector containing instances of chunk_t that are the actual blocks of the file.

2.2.4A entropy_wrapper_t Class Description

class entropy_wrapper_t {
 private:
 chunk_vec_t m_cvec;
 entropy_retvec_t m_retvec;
 entropy_retval_t m_whole;
 bool m_wholeDone;
 entropy_t m_entdev;
 std::vector< uint8_t > m_data;
 std::vector< dist_t > m_dist;

 protected:
 public:

 entropy_wrapper_t(std::size_t bs = 8192);
 entropy_wrapper_t(const std::vector< uint8_t >&, std::size_t bs = 8192, bool whole = false);
 ~entropy_wrapper_t(void);

 void reset(void);

 void setDataOverload(const std::vector< uint8_t >&);
 void setData(const std::vector< uint8_t >&, std::size_t bs = 8192, bool whole = false);

 std::size_t getCount(void);
 std::size_t getMaxIndex(void);

 void calculate(void);
 void calculate(std::size_t);
 void calculate(std::size_t, std::size_t);

 entropy_retval_t getChunkScore(std::size_t);
 entropy_retval_t getWholeFileScore(void);
 entropy_retvec_t getAllChunkScores(void);

 entropy_retval_t getDeviation(std::size_t, std::size_t);
 entropy_retvec_t getAllDeviations(std::size_t);
 entropy_retval_t getWholeDeviation(std::size_t);

 void calculateDistribution(std::size_t, std::size_t);
 dist_vec_t getDistribution(void);
};

chunk_vec_t m_cvec A std::vector of chunk_t structures that contain the
contents of the file being analyzed.

entropy_retvec_t m_retvec A std::vector of entropy_retval_t objects
corresponding to the scores for each block of the file.

entropy_retval_t m_whole A std::vector containing the scores for the entire file.
bool m_wholeDone A Boolean value that is set to true when the entire file has

had its scores calculated, otherwise it is false.
entropy_t m_entdev An instance of an entropy_t class, the main class of the

extension.
std::vector< uint8_t > m_data A std::vector of the data containing in the file that is

being analyzed.
std::vector< dist_t > m_dist A std::vector of dist_t objects corresponding to the

frequency distribution last calculated. It is empty if this has
never occurred.

entropy_wrapper_t(std::size_t
bs = 8192)
entropy_wrapper_t(const
std::vector< uint8_t
>&,std::size_t bs = 8192, bool
whole = false)

The constructors for the class. The first takes an optional
parameter, bs, which indicates what size blocks the input file
should be split into. The second takes a std::vector that
contains the data to be analyzed, followed by an optional
block size and finally an optional Boolean value that indicates
whether the user would like to have whole file analysis
performed on the data or not. The default block size is 8192
bytes and the default regarding whether to perform whole
file analysis is false; indicating that it will not be performed.

void reset(void) Reset the internal distribution/frequency statistics.
void setDataOverload(const
std::vector< uint8_t >&)
void setData(const std::vector<
uint8_t >&, std::size_t bs =
8192, bool whole = false)

These methods will set the m_data std::vector to
contain the contents of its first parameter. The second
method will optionally have a bs and whole parameter that
indicate what block size should be used and whether to
perform whole file analysis or not. The default block size is
8192 bytes and whole file analysis is not performed. The first
method is an overloaded version of the second, however due

to restrictions in boost::python, it was given a different
method name.

std::size_t getCount(void) Returns a std::size_t containing the value of the
number of elements in the m_data std::vector, this is
how many bytes long the file or data stream was at the time
that it was initialized via the constructor or setData()
method of this class.

std::size_t getMaxIndex(void) Returns a std::size_t containing the value of the
maximum valid index that can be used on the m_data
std::vector. It is equivalent to calling getCount() and
subtracting 1 providing that is at least 1 element in the
std::vector.

void calculate(void)
void calculate(std::size_t ce)
void calculate(std::size_t cs,
std::size_t ce)

Methods that perform the actual entropy analysis
calculations. The first takes no parameters and operates on all
blocks in the file. The second specifies only an ending block
and calculates the scores for all blocks before the index ce.
The last takes both a starting and ending index between the
rages of cs and ce and operates on blocks within that range.
If any of the indices are invalid, it will silently return raising a
ValueError in Python.

entropy_retval_t
getChunkScore(std::size_t v1)

This method returns the scores for chunk number v1; if the
index is invalid the function will silently return but raising a
ValueError in Python

entropy_retval_t
getWholeFileScore(void)

Retrieves the whole file score, first calculating it is necessary.

entropy_retvec_t
getAllChunkScores(void)

Retrieves the scores for all chunks in the file and returns them
in a std::vector containing instances of
entropy_retval_t.

entropy_retval_t
getDeviation(std::size_t v1,
std::size_t v2)

Retrieves the deviation scores for all chunks within the range
of v1 through v2. If this range is invalid the method silently
returns, however it will raise a ValueError inside of
Python.

entropy_retvec_t
getAllDeviations(std::size_t v1)

Retrieves the deviation score for all blocks relative to v1. If v1
specifies an invalid index, the method will silently return but
will however raise a ValueError in Python.

entropy_retval_t
getWholeDeviation(std::size_t
v1)

Retrieves the deviation score for the entire file relative to v1
and returns a std::vector containing instances of
entropy_retval_t.

void
calculateDistribution(std::size_t
cs, std::size_t ce)

Calculates the distribution frequency for all 256 possible
characters within the range of blocks specified by cs through
ce. If the range specified is invalid, the method silently
returns however it will raise a ValueError inside of Python.

dist_vec_t getDistribution(void) Retrieves the dist_vec_t of the distribution frequency
for all 256 possible characters as previously calculated via the
calculateDistribution() method. This vector is
empty if the calculations have not been performed.

2.2.5 The entropy_t C++ class

The entropy_t class provides the main functionality of the extension and is the ‘lowest level’ interface

available. In terms of hierarchy, when accessed in Python, it is accessed via a C++ wrapper class,

entropy_wrapper_t, which in turn is wrapped by a pseudo Python class, entDevType, which is wrapped

and utilized by a pure Python class, entropyDeviationType. As this includes multiple layers of indirection

and other functionality such as converting strings and lists to vectors, it is expected that utilizing this

class directly will yield much better performance.

That said, while a stated goal of this extension was to substantially increase the performance of these

tasks, it was not written with the goal of being super-fast production quality code.

2.2.5A entropy_t Class Description

#define IDEAL_SIZE 256

class entropy_t
{
 private:
 std::size_t m_bsize;
 std::array< std::size_t, IDEAL_SIZE > m_dist;
 long double m_freedom;
 long double m_ideal;
 long double m_csquare;
 long double m_shannon;
 std::size_t m_count;

 std::size_t m_inside;
 std::size_t m_outside;
 long double m_estimate;
 long double m_error;

 protected:
 inline long double getEstimate(void);
 inline long double getError(long double);

 public:
 entropy_t(std::size_t bs = 8192);
 entropy_t(const std::vector< uint8_t >&, std::size_t bs = 8192);
 ~entropy_t(void);

 chunk_vec_t slice(const std::vector< uint8_t >&, std::size_t = 0);

 void update(const std::vector< uint8_t >&);
 void update(const std::vector< uint8_t >&, std::size_t);
 void update(const chunk_t&);
 void update(const uint8_t*, std::size_t);

 void reset(void);
 void calculateValues(void);
 entropy_retval_t getValues(bool calculate = true);
 entropy_retval_t getBlockDeviation(entropy_retval_t& v1, entropy_retval_t& v2);
 entropy_retvec_t getBlockDeviationFromAllBlocks(const entropy_retvec_t&, std::size_t);
 dist_vec_t getDistribution(void);
};

std::size_t m_bsize A std::size_t member that indicates the size
of chunks the class operates on; defaults to
8192.

std::array< std::size_t, IDEAL_SIZE > m_dist A std::size_t of IDEAL_SIZE elements
(256) that contains a std::size_t of the
frequency distribution of each possible byte
encountered.

long double m_freedom The Chi-Square distribution degrees of freedom;
or IDEAL_SIZE – 1.

long double m_ideal A member variable that is initialized to the value
of IDEAL_SIZE, or 256, representing the
range of characters that can occur.

long double m_csquare This member variable stores the calculate Chi-
Square distribution score.

long double m_shannon This member variable stores the Shannon
entropy analysis score.

std::size_t m_count This member variable is a count of the number of
bytes analyzed.

std::size_t m_inside This represents the number of bytes that fall
inside of the 1x1 area in the Monte Carlo method
Pi Approximation test.

std::size_t m_outside This member variable represents the number of
bytes that fell outside of the 1x1 area in the
Monte Carlo method Pi Approximation test.

long double m_estimate This member variable stores the estimate value
in the Monte Carlo method Pi approximation
test.

long double m_error This member variable stores the percent
difference between m_estimate and the value
of Pi.

entropy_t(std::size_t bs = 8192)
entropy_t(const std::vector< uint8_t >& v,
std::size_t bs = 8192)

The constructors with the first taking only an
optional std::size_t parameter that
specifies the size of blocks that will be analyzed
and defaulting to 8192 bytes if not otherwise
provided. The second takes a std::vector of
uint8_t’s that contains the actual data we will
analyze, and the optional bs parameter
specifying the length of blocks desired.

chunk_vec_t slice(const std::vector< uint8_t >&,
std::size_t = 0)

This method will split the vector specified in the
first parameter into chunk_t’s the size of its
second parameter. If the optional second
parameter is not specified or explicitly passed
with a value of zero, then the block size that was
specified in the constructor is used to determine
the size of the blocks. This method returns a
std::vector of chunk_t objects
representing the file or std::vector that was
passed as the first parameter.

void update(const std::vector< uint8_t >& v)
void update(const std::vector< uint8_t >& c,
std::size_t bs)
void update(const chunk_t& v)
void update(const uint8_t* ptr, std::size_t len)

These methods all take a block of data specified
in various formats and perform the actual
analysis upon them. The first takes a parameter
of a std::vector of uint8_t’s, the second
will first split the std::vector into a
chunk_vec_t containing blocks corresponding
to the size of the second parameter and operates
on them. The third takes a reference to a
chunk_t directly and the last method is the one
that all of the others call, which takes a raw
pointer to uint8_t that points to the data to
operate on and is of a length specified in the
second parameter. If by the time the last method
which takes a raw pointer has a first parameter
which is equal to nullptr or a second
parameter that is zero, then an instance of
std::runtime_error is thrown.

void reset(void) Reset the internal distribution/frequency
statistics variables.

void calculateValues(void) This method will take the various members, such
as the distribution metrics stored in m_dist and
the count of hits inside and outside the 1x1 area
and calculate the actual scores thereby setting
the values of the related member variables.

entropy_retval_t getValues(bool calculate =
true)

This method is intended to be called after a call
to update() and depending on the value of the
calculate parameter, after a call to
calculateValues() has been made. If the
parameter calculate is true, then this
calculation is performed automagically,

otherwise it is skipped when provided a
parameter whose value is false. It returns an
entropy_retval_t with the scores calculate
for the blocks in question.

entropy_retval_t
getBlockDeviation(entropy_retval_t& v1,
entropy_retval_t& v2)

This method takes two entropy_retval_t’s
as parameters, which are the scores returned for
a block specified by v1 and the scores of a block
specified by v2. It then calculates the difference
between the two blocks and stores these values
in an entropy_retval_t structure which is
returned to the user. If either of the parameter
values are invalid, an instance of
std::runtime_error is thrown.

entropy_retvec_t
getBlockDeviationFromAllBlocks(const
entropy_retvec_t& blocks, std::size_t bnum)

This method is akin to the
getBlockDeviation() method, and indeed
has its functionality provided by iterating across
the entropy_retvec_t parameter blocks
and calculates the difference between each
blocks score values and the block specified in the
bnum parameter. If the index specified in the
second parameter is invalid, then an instance of
std::runtime_error is thrown. This
method returns a std::vector of
entropy_retval_t’s that contain the
percentage of difference between each block
relative to the bnum parameter.

dist_vec_t getDistribution(void) This method iterates across the m_dist
member and records the occurrence counts for
each of the 256 possible bytes and returns them
in a std::vector of dist_t’s.

2.2.6 The xor_table_ret_t C++ structure

The xor_table_ret_t structure is the object type returned by all functionality relating to the XOR

table search family of classes. In Python, the xorTableReturnType wraps it directly. It is a relatively

simple structure, that contains only two member variables and getter and setter methods that are

bound to properties in Python.

2.2.6A xor_table_ret_t Structure Description

struct xor_table_ret_t {
 std::size_t offset;
 std::uint16_t key;

 xor_table_ret_t(void) : offset(0), key(0) { return; }
 ~xor_table_ret_t(void) { return; }

 std::size_t getOffset(void) { return offset; }
 void setOffset(std::size_t o) { offset = o; return; }

 std::uint16_t getKey(void) { return key; }
 void setKey(std::uint16_t k) { key = k; return; }
};

typedef std::vector< xor_table_ret_t > xor_table_retvec_t;

std::size_t offset The offset at which the embedded PE file was
found.

std::uint16_t key The key at which the PE file located at offset
was encrypted with. This will be an 8-bit value
stored in a 16-bit integer.

xor_table_ret_t(void) The basic constructor; it initializes both the
offset and key variables to zero.

std::size_t getOffset(void) This method returns the offset variable and
exists to allow seamless property integration with
Python.

void setOffset(std::size_t) This method sets the offset variable to the
value passed for its first parameter. This setter
method exists to allow seamless property
integration with Python.

std::uint16_t getKey(void) This method returns the value of the key
variable. This getter method exists to allow
seamless property integration with Python.

void setKey(std::uint16_t) This method sets the value of the key variable to
the value of the parameter it is passed. This
setter method exists to allow seamless property
integration with Python.

typedef std::vector< xor_table_ret_t >
xor_table_retvec_t

A data-type that is a std::vector containing
instances of xor_table_ret_t. It is used for
instance by functionality the searches for more
than one instance of an embedded PE file. The
std::vector is converted to a list() when
it is exported into Python.

2.2.7 The xor_table_wrapper_t C++ Class

The xor_table_wrapper_t class is the class directly wrapped and exported to Python as the

xorTableSearchType. It encapsulates all of the functionality of the native “lower level”

xor_table_t class. As with all of the classes and structures in this family, its “proof-of-concept”

nature is clearly shown by the simplicity of the interface.

2.2.7A xor_table_wrapper_t Class Description

class xor_table_wrapper_t {
 private:
 xor_table_t m_xor;

 protected:
 public:
 xor_table_wrapper_t(std::size_t max_peoff = 512);
 xor_table_wrapper_t(const std::vector< uint8_t >&, std::size_t max_peoff = 512);
 ~xor_table_wrapper_t(void);

 void setData(const std::vector< uint8_t >&);
 xor_table_ret_t find_first(void);
 xor_table_retvec_t find_all(void);
};

xor_table_wrapper_t(std::size_t max_peoff =
512)
xor_table_wrapper_t(const std::vector< uint8_t
>&, std::size_t max_peoff = 512)

The first constructor takes only an optional
std::size_t parameter which dictates how
far after an occurrence of the ‘MZ’ string the class
should search for the ‘PE\0\0’ string. By
default, it is limited to 512 bytes which should
adequately cover most executable files. The
second constructor takes as its first parameter a
reference to a std::vector of uint8_t’s
that contain the data of the file to be analyze and
again has an optional second parameter that
dictates how far to search for the PE magic string.

void setData(const std::vector< uint8_t >&) This method takes a reference to a
std::vector of uint8_t’s that contain the
data set to be analyzed for an embedded PE file.
If the data was already set via a previous call to
this method or one of the constructors, then the
data is reset.

xor_table_ret_t find_first(void) This method will search an executable looking for
an encrypted or unencrypted instance of a PE file.
It will search the entire file but stop after the first
executable is found. If no executable is found,
then in C++ it returns an empty
xor_table_ret_t with default values all set
to zero, however in Python it will raise a
UserWarning indicating that it was unable to
locate a PE file.

xor_table_retvec_t find_all(void) This method performs the exact same
functionality as the find_first() method, however
instead of stopping its search after a single
instance of a PE file is located, it will continue its
search throughout the remainder of the data
searching for more. Thus, this function will
always search the entirety of the data set. It will
return a std::vector of
xor_table_ret_t’s—one for each PE file
that is found. If no PE files were identified, then
the std::vector will be empty and a
UserWarning exception is thrown in Python.

2.2.8 The xor_table_t C++ Class

The xor_table_t class is the bottom layer C++ class for all related XOR table search functionality. All

Python or C++ objects relating to this functionality eventually call into this class. It is only slightly more

complex than the wrapper class, which was written to create an interface that better models the

expected use of the class and as a natural work-around for constraints placed on the API by exporting an

interface to Python.

2.2.8A xor_table_t Class Description

class xor_table_t
{
 private:
 std::size_t m_span;
 std::array< uint8_t, MZ_SIZE > m_mzv;
 std::array< uint8_t, PE_SIZE > m_pev;
 uint8_t* m_vec;
 std::size_t m_siz;

 protected:
 void init_tables(void);
 bool find_pe(std::size_t kidx, std::size_t off);
 uint32_t get_peoff(std::size_t, uint8_t);
 bool findAtOffset(xor_table_ret_t& out, std::size_t offset = 0);

 public:
 xor_table_t(std::size_t max_peoff = 512);
 xor_table_t(const std::vector< uint8_t >& v, std::size_t max_peoff = 512);
 ~xor_table_t(void);
 void set_file(const std::vector< uint8_t >&);
 bool find_first(xor_table_ret_t&);
 bool find_all(xor_table_retvec_t&);
};

xor_table_t(std::size_t max_peoff = 512)
xor_table_t(const std::vector< uint8_t >& v,
std::size_t max_peoff = 512)

The first constructor takes only an optional
std::size_t parameter which dictates how
far after an occurrence of the ‘MZ’ string the class
should search for the ‘PE\0\0’ string. By
default, it is limited to 512 bytes which should
adequately cover most executable files. The
second constructor takes as its first parameter a

std::vector of uint8_t’s that contain the
data of the file to be analyze and again has an
optional second parameter that dictates how far
to search for the PE magic string.

void set_file(const std::vector< uint8_t >&) This method takes a reference to a
std::vector of uint8_t’s that contain the
data set to be analyzed for an embedded PE file.
If the data was already set via a previous call to
this method or one of the constructors, then the
data is reset.

bool find_first(xor_table_ret_t&) This method will search an executable looking for
an encrypted or unencrypted instance of a PE file.
It will search the entire file but stop after the first
executable is found. If no executable is found,
then it will return false and the parameter passed
to the function is returned with both members of
the structure initialized to zero. Otherwise the
members refer to the offset and key that the
embedded PE file was found.

bool find_all(xor_table_retvec_t&) This method performs the exact same
functionality as the find_first() method, however
instead of stopping its search after a single
instance of a PE file is located, it will continue its
search throughout the remainder of the data
searching for more. Thus, this function will
always search the entirety of the data set. It will
return true if any PE files were identified and the
offset and key for each still be stored in an
instance of xor_table_ret_t which is stored
in a std::vector. If no PE files were
identified, then the std::vector will be empty and
the method will return false

3.0 The epfind.py Utility

The edfind.py utility is a Swiss army knife of sorts for entropy analysis that demonstrates the various

functionality of the extension module. It utilizes every aspect of the module and additionally builds

example functionality on top of it. For instance, a purely proof-of-concept demonstration option

attempts to automatically check for “suspect” blocks. It was written against a single file with a one-byte

XOR encrypted executable contained within it and as such the default functionality is not expected as an

out of the box solution to meet all circumstances, it is purely for demonstration. However, when run

over approximately 1600 randomly selected Microsoft Office Word documents (doc and docx) and PDF

documents it exhibited approximately a 20% false positive rate, which is relatively impressive given that

it was written against a single file. Less impressive is that a much smaller sample set that contained XOR

encrypted executables had a false negative rate of about 6 in 10 files.

With more thorough analysis and a better attempt at fine tuning the various functionality, it is expected

that both the false positive and false negative rate could be significantly improved.

In terms of other functionality, the utility allows you to view Chi-Square distribution, Shannon entropy

and Monte Carlo method Pi approximation scores for arbitrarily sized blocks of a file or the entire file

itself. Moreover, it can be run in a deviation mode that retrieves the differences between arbitrarily

sized blocks of a file, or the entire file itself against any one or more of the blocks.

While this document attempts to be fairly in-depth and cover all aspects of the module, the source code

and edfind.py utility should be considered the premiere authoritative source for information on the

subject.

3.0.1 epfind.py Command Line Options

Below we will discuss the various command line options for the utility and in the next section we will

demonstrate the usage of the utility to identify hidden data streams.

usage: edfind.py [-h] [--blocksize BLOCKSIZE] [--blockscore] [--wholescore]
 [--blockdev] [--blocknumber BLOCKNUMBER] [--wholedev]
 [--xydev XYDEV XYDEV] [--seqdev] [--seqxy SEQXY SEQXY]
 [--suspect] [--frequency] [--freqcount FREQCOUNT]
 [--freqxy FREQXY FREQXY] [--xor] [--xorall]
 file

file The input file to scan
-h, --help show this help message and exit
--blocksize BLOCKSIZE, -b BLOCKSIZE The size of the blocks to split the input file into;

specified in bytes. If this option is not provided a
default blocksize of 8192 bytes is used.

 --blockscore, -s This option will retrieve and print the Chi,
Shannon and Pi approximation scores for every
block in the file.

--wholescore, -w The option is akin to –blockscore, however it
calculates the scores against the entire file.

--blockdev, -d The option retrieves the deviation for a given
block of data relative to all other blocks in the
file. It requires the additional option –
blocknumbe.

--blocknumber BLOCKNUMBER, -n
BLOCKNUMBER

The block number to perform –blockdev
against, specified in hexadecimal format.

--wholedev, -o Akin to –blockdev, however it retrieve the
block specified by –blocknumber’s deviation
relative to the entire file’s scores.

--xydev XYDEV XYDEV, -y XYDEV XYDEV Retrieves and prints a blocks deviation relative to
another specified block.

--seqdev, -q This option calculates and prints the deviation of
a block relative to its neighbor blocks.

--seqxy SEQXY SEQXY, -e SEQXY SEQXY Calculates and prints the sequential deviation of
a range of blocks.

--suspect, -u Experimental functionality intended as a proof of
concept that couples together multiple aspects of
the extension modules functionality and
attempts to automatically identify suspect blocks.

--frequency, -f This causes the frequency of each byte
encountered for all blocks to be retrieved and
printed; Especially useful for identify the
beginning and end of XOR encrypted streams
with short key lengths

--freqcount FREQCOUNT, -c FREQCOUNT This option implies and subsequently modifies
the –frequency option such that only
FREQCOUNT of the most common bytes have
their frequency printed out. For instance,
specifying a FREQCOUNT of 4 will retrieve and
print only the 4 most common byte values for
each block.

--freqxy FREQXY FREQXY, -r FREQXY FREQXY Akin to –frequency, however instead of
retrieving the scores for every block it will only
retrieve and print the scores between the two
parameter indices specified.

--xor, -x Attempts to locate any one-byte XOR encrypted
PE files embedded within the file via pre-

computer tables. Stops after the first instance is
found.

 --xorall, -a Attempts to locate any one-byte XOR encrypted
PE files embedded within the file via pre-
computer tables. This option will search for all
embedded executables and not just the first.

3.1.0 epfind.py Example Usage

Generally, it’s easier to understand a given feature set for a tool through demonstration. As such, I have

created a series of Word and PDF documents that I embedded a XOR encrypted executable into. The

executable in question is not malware and thus is going to deviate from the typical data that one could

expect to find in the wild, however it felt like a happy medium rather than dealing with live malware for

the sake of demonstration. The executables in question are standard Windows system binaries,

particularly cmd.exe and wowreg32.exe from a standard Windows 8.1 installation. In a couple instances

these binaries were packed as that more properly models live data as something approaching over 90%

of malware is distributed in a packed format. Interestingly, this makes the analysts job easier as the

compression and/or encryption functionality provided by most packers increases the data entropy and

makes it easier to spot.

When embedded into the files, no regard was given to making sure that it was properly inserted into the

OLE streams or similar and a random offset was chosen and the executable encrypted with an unknown

value but known length key and inserted into the host file. We will go through each of the features

looking at this data now to give the potential user a better feel for what they would be looking for in a

live data set and how to use the tool properly.

3.1.1 Analysis of a PDF Document with an embedded executable encrypted with a one-byte key

We will start with a file that has an embedded PE file with a one-byte key used to XOR encrypt it. The file

in question is a copy of Bruce Dang’s 2008 Blackhat Japan talk pertaining to parsing Microsoft Office

formats as part of analyzing and countering these exact threats. If you are not familiar with the talk

already, it’s a decent read and is recommended. The file itself is a PDF containing, presumably, the

PowerPoint exported slide deck he used for the talk. As such, its contents are primarily images, which

will exhibit compression and other patterns not entirely dissimilar from encryption. As the information

entropy for a single byte key models the same distribution as when it is not encrypted, this is in some

ways a harder case to identify than encrypted executables with longer key lengths. In other ways, its

actually incredibly easy to identify and in this example we demonstrate the difficulty and catch-22

nature that the attacker encounters when utilizing this methodology—longer keys are more secure and

harder to identify via frequency analysis, but they deviate significantly from the host data in most

circumstances. Shorter keys are easy to identify via frequency analysis, however their distribution is

closer to what we would expect from the general host file.

Starting at the most obvious place, the beginning, we first examine the block scores for the file. We use

the default of 8192 bytes as that again appears to be a happy medium. Several anti-virus industry white

papers on the average size of malware show that they are (a) growing in size over time; and (b) tend to

be in the several hundred kilobyte range. Smaller blocks result in more overhead and worse

performance, whereas larger blocks can result in the data from a hidden data stream essentially being

lost in the noise of the host file it’s embedded into. The default block size was chosen largely at random

and while it has shown itself to be fairly suitable, your own personal mileage may vary and you are

encouraged to experiment and determine if a different block size better fits your particular use case.

At any rate, we first examine the block scores of the file:

$ bin/edfind.py -s BlackHat-Japan-08-Dang-Office-Attacks-ONE.pdf | less
FILE: BlackHat-Japan-08-Dang-Office-Attacks-ONE.pdf BLOCK COUNT: 286 BLOCK SIZE: 8192

 ALL SCORES

BN: 0 C: 13022.5000 S: 7.4409 ES: 3.4414 ER: 8.7120
BN: 1 C: 573.6250 S: 7.9530 ES: 3.1445 ER: 0.0935
BN: 2 C: 808.3750 S: 7.9414 ES: 3.2266 ER: 2.6334
BN: 3 C: 679.3750 S: 7.9487 ES: 3.2031 ER: 1.9210
BN: 4 C: 4766.4375 S: 7.7627 ES: 3.1719 ER: 0.9547
BN: 5 C: 664.5625 S: 7.9483 ES: 3.1328 ER: 0.2803
BN: 6 C: 573.0000 S: 7.9540 ES: 3.2969 ER: 4.7100
BN: 7 C: 817.1250 S: 7.9420 ES: 3.1875 ER: 1.4402
BN: 8 C: 564.5625 S: 7.9519 ES: 3.3125 ER: 5.1595
BN: 9 C: 5219.1250 S: 7.7273 ES: 3.1562 ER: 0.4644
BN: A C: 696.5625 S: 7.9474 ES: 3.2383 ER: 2.9858
BN: B C: 839.5625 S: 7.9375 ES: 3.2852 ER: 4.3701
BN: C C: 3281.8750 S: 7.7451 ES: 2.9766 ER: 5.5443
BN: D C: 4168.2500 S: 7.6538 ES: 2.9219 ER: 7.5197
BN: E C: 4341.1875 S: 7.6421 ES: 2.8867 ER: 8.8292
BN: F C: 4242.0000 S: 7.6451 ES: 2.8867 ER: 8.8292
BN: 10 C: 4847.0000 S: 7.6063 ES: 2.5977 ER: 20.9395

 […]

Here, first we have an output line that seems self-evident but contains the file name being analyze, the

number of blocks the file was split into and the size of the blocks in question. For any given block

number, we can determine the offset into the file by multiplying the block number by the block size. We

passed the –s option, which indicates that we would like to calculate and print the Chi, Shannon and

Monte Carlo Pi approximation scores for each block. As noted throughout the documentation, the Pi

approximation has shown itself to be less useful than hoped and will likely be removed at a future point

in time. Essentially the idea is that as the data becomes more random, that the number of points that

intersect our 1x1 area will increase and the estimated value will get closer and closer to approaching the

value of Pi. What the result thus far has been is that the block sizes are potentially too small for this

method to be overly useful and the numbers produced are essentially sort of random in most instances

and thus not overly useful. This will likely be replaced by another metric, potentially standard deviation,

which is more useful for this task.

At any rate, the lines are in the format of:

BN: <Block Number> C: <Chi-Square Score> S: <Shannon Score> ES: <Pi
Approximation Estimate> E: <Pi approximation error>

The Estimate is the actual value we calculated whereas the Error value is the percent of difference

between the Estimate and the actual value of Pi. What testing has thus far revealed is that as the data

becomes more random, the Chi value decreases with XOR encrypted data that has a key as long as the

data (effectively a One-Time Pad) having a value generally in the 200-300 range. The Shannon entropy

score seems to peg almost precisely at 7.97 in those instances and as noted, in theory the Pi

approximation should approach Pi but often does not.

Moreover, we can see from those first 16 blocks that there is a bit of variance between each block.

What encrypted data, as we will see shortly tends to do providing the block size is small enough is result

in a far greater uniformity across blocks than native document data tends to. This is to say that blocks

0x00 through 0x0C have a fair amount of variation in them, whereas the remaining blocks displayed

start to look more like a typical cipher-text in that the Chi scores are far more uniform. However, the

scores are not quite high or low enough for our purposes. Moreover, as you use the tool more, you will

begin to note that there is a natural ebb and flow of the data with punctuations by outlier blocks. For

instance, blocks 0x0A and 0x0B are outliers that deviate significantly from the neighboring blocks in

terms of Chi and we can see from the Shannon score that they have a slightly higher density of

information entropy. Whereas the blocks that follow show a growing lack of entropy before finally

reaching a uniformity in the 4000 range for the Chi value. The Shannon scores also begin to mostly

become uniform and while the Pi scores show a lot of deviation in terms of error, we would take care to

note that the numbers to the left of the decimal and to a lesser degree in the 10s place to the right of it

also show some level of uniformity.

If we look at the sequential blocks of this segment of the file in its entirety, we find the following:

BN: B C: 839.5625 S: 7.9375 ES: 3.2852 ER: 4.3701
BN: C C: 3281.8750 S: 7.7451 ES: 2.9766 ER: 5.5443
BN: D C: 4168.2500 S: 7.6538 ES: 2.9219 ER: 7.5197
BN: E C: 4341.1875 S: 7.6421 ES: 2.8867 ER: 8.8292
BN: F C: 4242.0000 S: 7.6451 ES: 2.8867 ER: 8.8292
BN: 10 C: 4847.0000 S: 7.6063 ES: 2.5977 ER: 20.9395
BN: 11 C: 4757.6250 S: 7.6122 ES: 2.8008 ER: 12.1684
BN: 12 C: 4507.0000 S: 7.6192 ES: 2.7812 ER: 12.9561
BN: 13 C: 4528.1250 S: 7.6293 ES: 2.6484 ER: 18.6206

BN: 14 C: 4418.6250 S: 7.6349 ES: 2.8086 ER: 11.8564
BN: 15 C: 4794.3125 S: 7.6181 ES: 2.8047 ER: 12.0122
BN: 16 C: 4382.9375 S: 7.6404 ES: 2.8125 ER: 11.7011
BN: 17 C: 4591.1875 S: 7.6272 ES: 2.7031 ER: 16.2208
BN: 18 C: 4767.5625 S: 7.6310 ES: 2.7695 ER: 13.4341
BN: 19 C: 4695.2500 S: 7.6263 ES: 2.9102 ER: 7.9527
BN: 1A C: 4832.8750 S: 7.6253 ES: 2.8359 ER: 10.7779
BN: 1B C: 4919.8750 S: 7.6122 ES: 2.9375 ER: 6.9478
BN: 1C C: 4692.7500 S: 7.6290 ES: 2.9336 ER: 7.0902
BN: 1D C: 4621.6875 S: 7.6288 ES: 2.9414 ER: 6.8058
BN: 1E C: 3098.8125 S: 7.7362 ES: 2.8555 ER: 10.0202
BN: 1F C: 2472.5000 S: 7.7872 ES: 2.9414 ER: 6.8058
BN: 20 C: 2060.5625 S: 7.8203 ES: 2.6875 ER: 16.8965
BN: 21 C: 2042.5000 S: 7.8233 ES: 2.9727 ER: 5.6830
BN: 22 C: 1744.5625 S: 7.8512 ES: 2.9102 ER: 7.9527

The blocks 0x0D through 0x1D match the sort of pattern we might expect when looking for hidden data

streams. There is a fair amount of uniformity in the Chi and Shannon scores, and the Pi approximation

values are semi-uniform and deviate a fair amount from the surrounding blocks. If we look, very

specifically we see some “kinda sorta” uniformity in the Error percentage. Moreover, the block

immediately preceding this series of blocks shows a high rate of deviation from the block immediately

preceding it and conforms more closely to the blocks that follow it. This generic pattern is generally the

result of multiple types of data in one block and marks a shift in the underlying data. That is to say, if it is

an embedded executable it is relatively unlikely it will start immediately at the beginning of one of our

blocks and as such we will end up with both the underlying host file data and the embedded data mixed

into a block. This exhibits itself as a large deviation followed by a smaller deviation. That said, we will

add the block range 0x0D through 0x1D to our suspicious list of blocks and continue analyzing with the

intention of returning to those blocks and examining them in more detail later.

Moving further through the file, we eventually come to the following section of blocks:

BN: 28 C: 624.0000 S: 7.9501 ES: 3.2539 ER: 3.4517
BN: 29 C: 5181.0000 S: 7.7273 ES: 3.3711 ER: 6.8079
BN: 2A C: 17580.6875 S: 7.4266 ES: 3.3125 ER: 5.1595
BN: 2B C: 6910.9375 S: 7.6884 ES: 3.2773 ER: 4.1421
BN: 2C C: 10664.3125 S: 7.4915 ES: 3.4141 ER: 7.9808
BN: 2D C: 15791.9375 S: 7.4749 ES: 3.2734 ER: 4.0277
BN: 2E C: 770.8125 S: 7.9378 ES: 3.1602 ER: 0.5874
BN: 2F C: 17423.9375 S: 7.3913 ES: 3.2578 ER: 3.5674
BN: 30 C: 21339.8750 S: 7.1488 ES: 3.5898 ER: 12.4866
BN: 31 C: 655.1250 S: 7.9472 ES: 3.1719 ER: 0.9547
BN: 32 C: 666.6875 S: 7.9456 ES: 3.2070 ER: 2.0405
BN: 33 C: 87727.1250 S: 6.1935 ES: 2.2109 ER: 42.0932
BN: 34 C: 50754.6250 S: 6.3530 ES: 2.2695 ER: 38.4247

BN: 35 C: 56675.8750 S: 6.3096 ES: 2.3789 ER: 32.0604
BN: 36 C: 51845.6250 S: 6.3474 ES: 2.3047 ER: 36.3132
BN: 37 C: 57290.8125 S: 6.3268 ES: 2.4375 ER: 28.8859
BN: 38 C: 58930.5625 S: 6.3281 ES: 2.3633 ER: 32.9335
BN: 39 C: 50657.1875 S: 6.3146 ES: 2.5352 ER: 23.9211
BN: 3A C: 52939.2500 S: 6.3377 ES: 2.5195 ER: 24.6896

Here, we see a series of blocks that exhibit initially a non-uniform distribution and then suddenly at

block 0x33 we see a large spike in deviation relative to block at 0x32 followed again by a series of mostly

uniform blocks. The Chi scores all converge in the 50000-59000 range and there is about a 1.0 shift in

the Shannon score. Moreover if we again look at the Pi approximation scores, specifically the Error

percentage, we see a large shift in the error rate and those values also converge. This sort of

occurrence is precisely why this functionality hasn’t been entirely removed yet, as it is not totally useless

and in some cases is the metric of choice for identifying hidden data.

Continuing on with the blocks following 0x3A we find:

BN: 3A C: 52939.2500 S: 6.3377 ES: 2.5195 ER: 24.6896
BN: 3B C: 57933.0625 S: 6.2719 ES: 2.4258 ER: 29.5085
BN: 3C C: 55347.5625 S: 6.3213 ES: 2.4531 ER: 28.0649
BN: 3D C: 59412.5625 S: 6.2294 ES: 2.4336 ER: 29.0927
BN: 3E C: 294981.5000 S: 5.1146 ES: 1.7617 ER: 78.3254
BN: 3F C: 65713.5625 S: 6.2969 ES: 2.9336 ER: 7.0902
BN: 40 C: 51774.5000 S: 6.3365 ES: 2.5469 ER: 23.3509
BN: 41 C: 63068.0000 S: 6.3222 ES: 2.5859 ER: 21.4876
BN: 42 C: 57024.0625 S: 6.3928 ES: 2.7109 ER: 15.8858
BN: 43 C: 55179.7500 S: 6.3580 ES: 2.5117 ER: 25.0774
BN: 44 C: 50985.3125 S: 6.4162 ES: 2.6680 ER: 17.7522
BN: 45 C: 56001.9375 S: 6.3606 ES: 2.4414 ER: 28.6796
BN: 46 C: 55784.5000 S: 6.3404 ES: 2.5938 ER: 21.1216
BN: 47 C: 95045.7500 S: 6.2751 ES: 1.9727 ER: 59.2570
BN: 48 C: 350111.1875 S: 4.8677 ES: 0.1211 ER: 2494.3475
BN: 49 C: 1591737.3125 S: 1.3023 ES: 0.0625 ER: 4926.5482
BN: 4A C: 2088960.0000 S: 0.0000 ES: 0.0000 ER: inf
BN: 4B C: 2088960.0000 S: 0.0000 ES: 0.0000 ER: inf
BN: 4C C: 2088960.0000 S: 0.0000 ES: 0.0000 ER: inf
BN: 4D C: 2088960.0000 S: 0.0000 ES: 0.0000 ER: inf
BN: 4E C: 2088960.0000 S: 0.0000 ES: 0.0000 ER: inf
BN: 4F C: 2088960.0000 S: 0.0000 ES: 0.0000 ER: inf
BN: 50 C: 2088960.0000 S: 0.0000 ES: 0.0000 ER: inf
BN: 51 C: 2088448.0625 S: 0.0018 ES: 0.0000 ER: inf
BN: 52 C: 2088960.0000 S: 0.0000 ES: 0.0000 ER: inf
BN: 53 C: 2088960.0000 S: 0.0000 ES: 0.0000 ER: inf
BN: 54 C: 2088960.0000 S: 0.0000 ES: 0.0000 ER: inf
BN: 55 C: 2088960.0000 S: 0.0000 ES: 0.0000 ER: inf
BN: 56 C: 2088960.0000 S: 0.0000 ES: 0.0000 ER: inf
BN: 57 C: 626987.8750 S: 4.2029 ES: 0.0117 ER: 26708.2573
BN: 58 C: 207007.7500 S: 5.4928 ES: 0.0000 ER: inf
BN: 59 C: 370263.8125 S: 4.4937 ES: 1.1367 ER: 176.3738

Here we see that the pattern holds through block 0x3D, then deviates significantly, then converges back

on the same generally pattern at about block 0x40. This is another good sign that we’re looking at the

embedded data, but not necessarily authoritatively so. However, as soon as we get to block 0x4A we

encounter an almost entirely uniform series of blocks running through block 0x56. The Shannon and Pi

scores are 0 The Chi distribution scores sky-rocket and so on. So what is going on there? This is a decent

sign that we have encountered a series of blocks that are entirely or almost entirely one value, for

instance a block that is entirely filled with zero’s—or another value in the case of a one-byte XOR key.

This coupled with the pattern prior to these blocks should leave us pretty confident that we’ve identified

the sequence of blocks that contain the embedded executable, let’s continue through the file and see if

we can spot when exactly the pattern ends.

BN: 56 C: 2088960.0000 S: 0.0000 ES: 0.0000 ER: inf
BN: 57 C: 626987.8750 S: 4.2029 ES: 0.0117 ER: 26708.2573
BN: 58 C: 207007.7500 S: 5.4928 ES: 0.0000 ER: inf
BN: 59 C: 370263.8125 S: 4.4937 ES: 1.1367 ER: 176.3738
BN: 5A C: 584377.4375 S: 3.8567 ES: 1.2031 ER: 161.1194
BN: 5B C: 556420.9375 S: 4.5722 ES: 1.1367 ER: 176.3738
BN: 5C C: 415127.0000 S: 4.8768 ES: 1.2227 ER: 156.9482
BN: 5D C: 515672.6250 S: 3.5989 ES: 0.9062 ER: 246.6585
BN: 5E C: 194348.7500 S: 6.2318 ES: 2.2930 ER: 37.0098
BN: 5F C: 12978.0000 S: 7.4986 ES: 3.3828 ER: 7.1307
BN: 60 C: 2241.5000 S: 7.8798 ES: 3.1562 ER: 0.4644
BN: 61 C: 33056.5000 S: 7.1508 ES: 3.4727 ER: 9.5334
BN: 62 C: 617.3125 S: 7.9482 ES: 3.0703 ER: 2.3216
BN: 63 C: 549.1250 S: 7.9539 ES: 3.1406 ER: 0.0308
BN: 64 C: 877.3125 S: 7.9322 ES: 3.1133 ER: 0.9094
BN: 65 C: 7188.7500 S: 7.6370 ES: 3.3125 ER: 5.1595
BN: 66 C: 17839.1250 S: 7.2973 ES: 3.4453 ER: 8.8155
BN: 67 C: 580.8125 S: 7.9517 ES: 3.2734 ER: 4.0277
BN: 68 C: 536.2500 S: 7.9555 ES: 3.1602 ER: 0.5874

Sure enough, when we get to block 0x5D there is another marked spike in all of the values and then we

go back to a fairly non-uniform distribution. If we look at the first block range we identified, we will

notice that the shift between the distributions was far more gradual and gradient like—it increased

gradually until it was uniform and then decreased gradually until it was no longer so. Here, in the blocks

0x32 through 0x5D, the shifts in values are far more sudden and dramatic. That’s not even considering

the blocks we encountered that had precisely uniform distributions across the board—a tell-tale sign

that we’ve encountered a long string of exactly the same value, which is not something we’d generally

expect to find in a PDF document; it generally will not have several kilobytes of zero’s or similar;

executable files however often exhibit that trait. Going back to the data, we see that blocks 0x5D and

0x5E deviate significantly from all of the other blocks, the Shannon score in 0x5D drops about a full point

and then almost doubles in 0x5E. This again is going to be indicative of multiple data types colliding into

the same block. Thus, we can add blocks 0x32 or 0x33 through blocks 0x5D or 0x5E to our list for further

analysis. We can be pretty sure that we’ve found it given the values of the blocks 0x4A through 0x56,

but that wouldn’t make a very good tutorial if we stopped there.

Going through the rest of the file, the general pattern where each block shows a decent amount of

deviation from those around it and no real uniformity mostly holds. At block 0xF0 through about 0xFC

we have another string of blocks that show a fair amount of uniformity, however the shift between

them and their neighbors is more gradual. Finally, at the end of the file, the last two blocks are

significantly different from anything else in the file. In PDFs, this is actually to be expected as the data

contained at the end of a PDF is significantly different than most of the file—there is an cross-reference

table that holds a list of objects is just a sequence of ASCII block offsets followed by revision counts,

which will generally speaking cause the contents to deviate significantly from the rest of the file.

At any rate, let’s take a look at the actual frequency of the values stored in the blocks we identified as

suspect and see if we can find a pattern. For now, we will skip over the functionality that calculates the

deviation of blocks relative to one another and save that for a file that is a little harder for us to analyze.

We tell the tool this is what we want with the following options:

$ bin/edfind.py --frequency --freqcount 3 BlackHat-Japan-08-Dang-Office-Attacks-ONE.pdf | less

Specifically, the –frequency option indicates we want to retrieve the raw frequency of values in each

block and the –freqcount indicates that we only want to view the top 4 values for each block. If we

do not specify this, we will be bombarded with data showing the frequency count for every value

between zero and 256 in every block of data in the file. When executed we’re presented with the

following output:

BYTE FREQUENCY FOR BLOCKS [0 : 11D]

BN: 0 [V: 01 C: 121 P: 4.24] [V: 30 C: 115 P: 3.30] [V: C0 C: 10C P: 7.35]
BN: 1 [V: 00 C: 5F P: 45.16] [V: 01 C: 3C P: 8.70] [V: 80 C: 37 P: 9.52]
BN: 2 [V: 00 C: 7E P: 62.50] [V: 0F C: 42 P: 7.87] [V: 1E C: 3D P: 1.65]
BN: 3 [V: 00 C: 6D P: 56.47] [V: 01 C: 3D P: 1.65] [V: 03 C: 3C P: 3.39]
BN: 4 [V: 80 C: BC P: 8.31] [V: 02 C: AD P: 1.75] [V: 08 C: AA P: 1.78]
BN: 5 [V: 00 C: 64 P: 32.56] [V: 01 C: 48 P: 13.33] [V: 1E C: 3F P: 13.56]
BN: 6 [V: 00 C: 52 P: 27.78] [V: 01 C: 3E P: 3.28] [V: 40 C: 3C P: 0.00]
BN: 7 [V: 00 C: 82 P: 60.00] [V: 01 C: 46 P: 8.96] [V: 03 C: 40 P: 3.17]
BN: 8 [V: 00 C: 53 P: 42.34] [V: 40 C: 36 P: 1.87] [V: AA C: 35 P: 0.00]
BN: 9 [V: 01 C: BD P: 9.42] [V: 04 C: AC P: 4.76] [V: 47 C: A4 P: 1.23]
BN: A [V: 00 C: 63 P: 14.05] [V: 80 C: 56 P: 34.01] [V: 01 C: 3D P: 3.33]
BN: B [V: 00 C: 68 P: 20.11] [V: 80 C: 55 P: 13.84] [V: 01 C: 4A P: 6.99]
BN: C [V: 40 C: 7A P: 24.88] [V: 1D C: 5F P: 0.00] [V: 07 C: 5F P: 1.06]
BN: D [V: 3A C: 74 P: 8.07] [V: E2 C: 6B P: 1.89] [V: E9 C: 69 P: 6.90]
BN: E [V: 5C C: 73 P: 3.54] [V: E2 C: 6F P: 3.67] [V: 55 C: 6B P: 2.84]
BN: F [V: 5C C: 70 P: 1.80] [V: AE C: 6E P: 9.52] [V: E2 C: 64 P: 3.05]

BN: 10 [V: AF C: 78 P: 9.61] [V: D7 C: 6D P: 12.68] [V: 5C C: 80 P: 6.45]

Here, going through first how the output is formatted are the first 16 blocks of the file. Again, the first

field is the block number, then we’re given three sets of fields delimited by square brackets. This format

was chosen due to the fact that without the brackets it was often hard to visually identify what section

of data we were looking at. At any rate, within the brackets we have a value denoted by V, one denoted

by C and finally one denoted by P. This refer to the ‘value’, ‘count’ and ‘percentage’ respectively. The

value is the actual byte value in question—if the byte in the file is 0x41, then this field would be 0x41.

The count is the number of occurrences this value had within the given block and the percentage is how

much more frequently this value occurred than the next highest value. For instance, in the first block the

values with the highest frequencies were 0x01, 0x30 and 0xC0. 0x01 occurred 4.24% more often than

0x30, which occurred 3.30% more often than 0xC0, which in itself occurred 7.35% more frequently than

whatever was the 4th most common value.

Now that we understand the format, let’s take a look at the actual data. The specific rationale of this

functionality is that a byte with a value of Z that is exclusive-or’d with a value of zero will result in a

value of Z. Taking advantage of this, we can specifically look for places where we would expect to

encounter a lot of zero’s and actually recover the plain-text key. So, looking at the first blocks, we can

immediately discount blocks 0x01 through 0x08 and blocks 0x0A and 0x0B from being XOR encrypted.

The value most commonly encountered there is zero and any value exclusive or’d with zero is the value

itself. Unless the key was 0x00, then these blocks could not be encrypted and if it was encrypted with a

key whose value was zero, then the data was not encrypted but rather embedded into the document

plain-text.

Arriving at blocks 0x0D through 0x10, which are part of a sequence we decided earlier to analyze a bit

more in-depth, we see that the frequency doesn’t match what we would expect with a single byte XOR

key. However, in a couple of the blocks we find that there are some values that occur in the top 3

repeatedly, and as we will see later this is often indicative of a multi-byte XOR key where the values of

the key shift across the top frequency due again to the differences between where the data itself starts

and the segmenting of the file into blocks. That said, the values in question—0x5C and 0xE2 only really

occur in even distributions with values that do not repeat in other blocks. As such, we can probably

discount them as being XOR keys, although we would generally want to look at a wider set of

distributions both in terms of the values in each block (say 5-8 or so to start) and more blocks in the

series to see if a pattern with those values emerges. As the blocks 0x4A through 0x56 exhibited

extremely abnormal behavior, let’s skip ahead to block 0x32 and look at the frequency through at least

0x4A or 0x4B.

BN: 32 [V: 0B C: 4B P: 9.79] [V: 2C C: 44 P: 9.23] [V: 02 C: 3E P: 4.96]
BN: 33 [V: F9 C: 5B9 P: 96.86] [V: B1 C: 1FD P: 22.27] [V: 69 C: 197 P: 31.58]
BN: 34 [V: F9 C: 352 P: 50.18] [V: B1 C: 1FD P: 14.77] [V: 06 C: 1B7 P: 33.20]
BN: 35 [V: F9 C: 3AA P: 53.00] [V: B1 C: 221 P: 19.98] [V: 69 C: 1BE P: 6.00]
BN: 36 [V: F9 C: 35E P: 42.99] [V: B1 C: 22D P: 36.77] [V: 06 C: 180 P: 6.45]
BN: 37 [V: F9 C: 3A6 P: 48.07] [V: 06 C: 23C P: 4.65] [V: B1 C: 222 P: 44.57]
BN: 38 [V: F9 C: 406 P: 65.29] [V: B1 C: 20B P: 21.61] [V: 06 C: 1A5 P: 11.56]

BN: 39 [V: F9 C: 2D9 P: 11.61] [V: B1 C: 289 P: 34.08] [V: 06 C: 1CC P: 3.77]
BN: 3A [V: F9 C: 35A P: 39.50] [V: B1 C: 23F P: 22.87] [V: 06 C: 1C9 P: 22.38]
BN: 3B [V: F9 C: 3DD P: 61.12] [V: B1 C: 20E P: 18.71] [V: 06 C: 1B4 P: 20.48]
BN: 3C [V: F9 C: 3B6 P: 53.16] [V: B1 C: 227 P: 26.05] [V: 72 C: 1A8 P: 26.44]
BN: 3D [V: F9 C: 3AB P: 40.15] [V: B1 C: 271 P: 26.24] [V: 72 C: 1E0 P: 27.49]
BN: 3E [V: F9 C: BB8 P: 132.59] [V: 69 C: 260 P: 84.44] [V: F8 C: F7 P: 6.26]
BN: 3F [V: F9 C: 392 P: 1.99] [V: 06 C: 380 P: 71.31] [V: 10 C: 1A9 P: 31.29]
BN: 40 [V: F9 C: 2E7 P: 12.13] [V: 06 C: 292 P: 39.49] [V: B1 C: 1B9 P: 7.53]
BN: 41 [V: F9 C: 3FC P: 28.70] [V: 06 C: 2FC P: 67.60] [V: B1 C: 17A P: 27.03]
BN: 42 [V: F9 C: 3C9 P: 41.34] [V: 06 C: 27D P: 45.24] [V: B1 C: 192 P: 14.69]
BN: 43 [V: F9 C: 3AE P: 36.39] [V: 06 C: 28C P: 62.11] [V: B1 C: 157 P: 13.37]
BN: 44 [V: F9 C: 366 P: 49.64] [V: 06 C: 20C P: 2.12] [V: B1 C: 201 P: 32.13]
BN: 45 [V: F9 C: 3E4 P: 55.71] [V: B1 C: 232 P: 39.66] [V: 72 C: 178 P: 6.31]
BN: 46 [V: F9 C: 39C P: 55.96] [V: B1 C: 208 P: 12.46] [V: 72 C: 1CB P: 4.00]
BN: 47 [V: F9 C: 66B P: 128.93] [V: B1 C: 163 P: 33.17] [V: 69 C: FE P: 4.02]
BN: 48 [V: F9 C: CED P: 156.96] [V: F8 C: 18F P: 24.79] [V: FB C: 137 P: 22.54]
BN: 49 [V: F9 C: 1BF1 P: 193.45] [V: F8 C: 77 P: 72.00] [V: 89 C: 38 P: 15.38]
BN: 4A [V: F9 C: 2000 P: 0.00] [V: FF C: 0 P: 0.00] [V: FE C: 0 P: 0.00]
BN: 4B [V: F9 C: 2000 P: 0.00] [V: FF C: 0 P: 0.00] [V: FE C: 0 P: 0.00]

Here, as soon as we get to block 0x33, the distribution pegs at the value 0xF9. It generally occurs far

significantly more often than any other value—often at least 50% more and as high at 193% more.

Before we even get to blocks 0x4A and 0x4B, we can be pretty positive these blocks are XOR encrypted

with the value 0xF9. The values 0xB1 and 0x06 occur fairly frequently as well, and so in a more general

sense we might have encountered a multi-byte XOR key, although in those instances we would not

expect one value to be so far above and beyond the top value relative to others. Then we arrive at

blocks 0x4A and 0x4B and we can more or less confirm our suspicions—the value 0xF9 occurs 0x2000

(8192) times in a block of size 8192. This is as we expected, a tell-tale sign that we found the XOR key

due to the trait that key XOR zero = key. Just to confirm that and demonstrate the XOR Table Search

functionality, we are going to double check that, but we can be pretty sure we are done here. If we were

an anti-virus or similar scanner that was processing a lot of attachments with the purpose of flagging

files for further analysis or human intervention, we would definitely flag this one based off of the

distribution scores we discussed previously and the almost certain frequency distribution that indicates

to us that not only is part of the file XOR encrypted, but that those sections were XOR encrypted with a

key value of 0xF9.

To run the XOR table search functionality, you pass either the –xor or –xorall flags to the utility,

these are by far the slowest parts of the application, but it will confirm or deny our suspicions to some

value approaching 100%.

$ bin/edfind.py --xorall BlackHat-Japan-08-Dang-Office-Attacks-
ONE.pdf
FILE: BlackHat-Japan-08-Dang-Office-Attacks-ONE.pdf BLOCK COUNT: 286
BLOCK SIZE: 8192

 XOR TABLE SEARCH ALL
 OFFSET: 6622E (33) KEY: F9

Here, we confirm our results—the pre-computed XOR table search has identified a PE executable header

at offset 0x6622E that is encrypted with the key 0xF9. If we divide that offset by the block size, 8192, we

confirm that indeed the embedded executable starts in block 0x33.

To review what we’ve covered and learned, let’s reiterate out points:

 We review the distribution of blocks, both in terms of uniformity and deviation to attempt to

identify changes of note in the underlying data.

 Blocks with Chi-Square values in the 200-300 range and Shannon entropy values at or near 7.97

are sure fire signs of high entropy data—when looking at XOR encrypted data, we are typically

talking about data that was encrypted with a longer length key.

 To initially identify deviant data, we want to look for sudden spikes, whether they be towards

higher or lower values that deviate from the blocks around it. We then want to see some level

of uniformity in the distribution.

 The Pi approximation values are not entirely useless, in the case above the percentage of Error

was nearly constant across the embedded data and significantly higher than any other

sequential series of blocks in the file.

 We can use frequency analysis to help identify not only if data is XOR encrypted, but also we

can often recover the key in this manner. The underlying theory takes advantage that XOR

encryption leaks the key whenever it attempts to encrypt a value of zero.

 A file encrypted with a single byte XOR key exhibits the same distribution as the plain-text,

which in some ways makes it harder to spot. However analyzing the frequency will generally

make this data immediately stand-out if the other statistically anomaly metrics based on

entropy analysis do not do so themselves.

 A sequence of blocks with uniformity are not for sure signs of hidden data, this occurs

frequently and is natural—the spikes surrounding them however often do not.

 The first and last blocks of embedded data tend to get lost into the host file and are sometimes

harder to identify due to their not being aligned to our block size.

3.1.2 Files with higher-entropy embedded data / One-Time Pad XOR

So now that we’ve taken a look at a file with an embedded executable with a lower amount of entropy,

let’s take a look at the other end of the spectrum and review the same file with the same embedded

executable, but this time instead of being encrypted with a single byte key, let’s review it with a longer

key—one as long as the embedded file simulating a one-time pad. This will give us a better idea of what

true encryption will look like and also give us a better understanding of what the entropy analytics are

actually analyzing. We will skip over the parts we already have and take a look almost strictly at the

embedded data. It’s pretty easy to spot just by reviewing the distribution scores so we are not skipping

over anything overly important. We again pass the –blockscore (or –s) option and look at the file:

BN: E4 C: 22454.6875 S: 7.1427 ES: 3.4766 ER: 9.6351
BN: E5 C: 2943.5625 S: 7.8130 ES: 3.0078 ER: 4.4478
BN: E6 C: 19197.6875 S: 7.2480 ES: 3.4609 ER: 9.2271
BN: E7 C: 23342.6250 S: 7.1397 ES: 3.5508 ER: 11.5239
BN: E8 C: 32748.1875 S: 6.9164 ES: 3.6055 ER: 12.8659
BN: E9 C: 2094.6250 S: 7.8732 ES: 3.2383 ER: 2.9858
BN: EA C: 335.0000 S: 7.9705 ES: 3.0938 ER: 1.5464
BN: EB C: 294.3750 S: 7.9739 ES: 3.1914 ER: 1.5609
BN: EC C: 238.1875 S: 7.9790 ES: 3.2344 ER: 2.8686
BN: ED C: 284.3125 S: 7.9745 ES: 3.1289 ER: 0.4055
BN: EE C: 281.9375 S: 7.9752 ES: 3.1172 ER: 0.7829
BN: EF C: 261.0625 S: 7.9766 ES: 3.1445 ER: 0.0935
BN: F0 C: 253.3125 S: 7.9777 ES: 3.0820 ER: 1.9325
BN: F1 C: 228.4375 S: 7.9798 ES: 3.1602 ER: 0.5874
BN: F2 C: 257.6875 S: 7.9775 ES: 3.2773 ER: 4.1421
BN: F3 C: 281.8125 S: 7.9750 ES: 3.0859 ER: 1.8035
BN: F4 C: 287.5625 S: 7.9745 ES: 3.1250 ER: 0.5310
BN: F5 C: 206.7500 S: 7.9815 ES: 3.1328 ER: 0.2803
BN: F6 C: 285.8125 S: 7.9748 ES: 3.0977 ER: 1.4184
BN: F7 C: 255.7500 S: 7.9772 ES: 3.2227 ER: 2.5154
BN: F8 C: 264.2500 S: 7.9766 ES: 3.2227 ER: 2.5154
BN: F9 C: 248.8125 S: 7.9778 ES: 3.2188 ER: 2.3971
BN: FA C: 235.0625 S: 7.9794 ES: 3.2070 ER: 2.0405
BN: FB C: 217.9375 S: 7.9810 ES: 3.1445 ER: 0.0935
BN: FC C: 270.0625 S: 7.9760 ES: 3.0781 ER: 2.0619
BN: FD C: 279.8750 S: 7.9751 ES: 3.1016 ER: 1.2906
BN: FE C: 276.9375 S: 7.9756 ES: 3.1016 ER: 1.2906
BN: FF C: 254.5625 S: 7.9773 ES: 3.1836 ER: 1.3193
BN: 100 C: 263.2500 S: 7.9763 ES: 3.1133 ER: 0.9094
BN: 101 C: 256.5000 S: 7.9771 ES: 3.1133 ER: 0.9094
BN: 102 C: 250.1875 S: 7.9776 ES: 3.0820 ER: 1.9325

So here, with blocks 0xE4 through 0xE9, we see a decent amount of deviation per block with the natural

flow of the data starting to decrease in entropy as we get closer to 0xE8, the increases slightly and when

we reach 0xEA the entropy spikes and the Chi score for each block starts to become uniform at around

200-300 or so and the Shannon score becomes fairly uniform at about 7.97 or so. The Pi approximation

values all begin to approach a much closer approximation of Pi as well. As I said, it is actually much

easier to spot this sort of XOR encryption than ones with lower length keys, or at least is easier to spot

just by looking at the scores. If we look at the actual frequency distribution alone, it becomes less of an

easy task which is precisely the inverse of what we saw when dealing with a single byte length key.

BN: E7 [V: 20 C: 1C5 P: 36.55] [V: 01 C: 139 P: 4.91] [V: 80 C: 12A P: 4.46] [V: 10 C: 11D P:3.57]
BN: E8 [V: 20 C: 265 P: 61.41] [V: 40 C: 145 P: 2.18] [V: 10 C: 13E P: 0.31] [V: 04 C: 13D P:0.32]
BN: E9 [V: 20 C: BE P: 52.49] [V: 65 C: 6F P: 25.38] [V: 74 C: 56 P: 2.35] [V: 0A C: 54 P: 2.41]
BN: EA [V: EA C: 36 P: 7.69] [V: E0 C: 32 P: 4.08] [V: 01 C: 30 P: 2.11] [V: EC C: 2F P: 0.00]
BN: EB [V: 96 C: 34 P: 8.00] [V: 26 C: 30 P: 2.11] [V: D3 C: 2F P: 0.00] [V: 22 C: 2F P: 2.15]
BN: EC [V: 24 C: 2E P: 2.20] [V: 1E C: 2D P: 2.25] [V: E3 C: 2C P: 0.00] [V: 33 C: 2C P: 2.30]
BN: ED [V: E8 C: 2F P: 0.00] [V: 61 C: 2F P: 4.35] [V: 5B C: 2D P: 0.00] [V: 50 C: 2D P: 0.00]
BN: EE [V: 1C C: 35 P: 1.90] [V: 98 C: 34 P: 8.00] [V: 16 C: 30 P: 2.11] [V: D8 C: 2F P: 4.35]
BN: EF [V: CD C: 32 P: 8.33] [V: 38 C: 2E P: 2.20] [V: DB C: 2D P: 0.00] [V: 65 C: 2D P: 2.25]
BN: F0 [V: C4 C: 34 P: 10.10] [V: B8 C: 2F P: 2.15] [V: 55 C: 2E P: 4.44] [V: D6 C: 2C P: 0.00]
BN: F1 [V: BA C: 35 P: 18.56] [V: FB C: 2C P: 0.00] [V: 31 C: 2C P: 0.00] [V: 0E C: 2C P: 2.30]
BN: F2 [V: 4C C: 2E P: 2.20] [V: CE C: 2D P: 0.00] [V: 61 C: 2D P: 2.25] [V: A7 C: 2C P: 0.00]
BN: F3 [V: 57 C: 31 P: 4.17] [V: 4B C: 2F P: 2.15] [V: 96 C: 2E P: 2.20] [V: C1 C: 2D P: 0.00]
BN: F4 [V: 01 C: 30 P: 2.11] [V: 49 C: 2F P: 2.15] [V: A3 C: 2E P: 2.20] [V: A9 C: 2D P: 0.00]

Here we see in the first few blocks that the distribution doesn’t really have any uniformity or spikes in

the occurrence of any character that is out of the usual. The value 0x20 occurs a lot, but that is to be

expected in a PDF as 0x20 correlates to an ASCII space character and there will be a lot of spaces in the

PDF, which has a plain-text ASCII format. Then we reach the sections that contain our cipher text and

the distribution evens out mostly. There is no single occurrence of any value that dominates, but at least

in the top four values which a few significant outliers, we see that the distribution evens out between

the variables for the most part—each value is between 0.00% to 2.5% or so as common as the next.

This is specifically what we are measuring with our Chi-Square distribution test that the distribution of

byte values evens out and each value has a frequency about the same as every other value. To

demonstrate this more clearly, let’s look at the entire range of values for a given block that is encrypted

with the one-time pad.

BYTE FREQUENCY FOR BLOCKS [EC : ED]

BN:EC [V: 24 C: 2E P: 2.20] [V: 1E C: 2D P: 2.25] [V: E3 C: 2C P: 0.00] [V: 33 C: 2C P: 2.30]
BN:EC [V: B4 C: 2B P: 2.35] [V: CA C: 2A P: 0.00] [V: 59 C: 2A P: 0.00] [V: 58 C: 2A P: 0.00]
BN:EC [V: 1B C: 2A P: 2.41] [V: FF C: 29 P: 0.00] [V: E7 C: 29 P: 0.00] [V: 89 C: 29 P: 0.00]
BN:EC [V: E1 C: 28 P: 0.00] [V: DF C: 28 P: 0.00] [V: D0 C: 28 P: 0.00] [V: CB C: 28 P: 0.00]
BN:EC [V: 73 C: 28 P: 0.00] [V: 5A C: 28 P: 0.00] [V: 48 C: 28 P: 0.00] [V: 28 C: 28 P: 0.00]
BN:EC [V: 0C C: 28 P:0.00] [V: 0B C: 28 P: 2.53] [V: FD C: 27 P: 0.00] [V: F1 C: 27 P: 0.00]
BN:EC [V: C4 C: 27 P:0.00] [V: 8D C: 27 P: 0.00] [V: 87 C: 27 P: 0.00] [V: 81 C: 27 P: 0.00]
BN:EC [V: 52 C: 27 P: 0.00] [V: 47 C: 27 P: 0.00] [V: 32 C: 27 P: 0.00] [V: 09 C: 27 P: 0.00]
BN:EC [V: BA C: 26 P: 0.00] [V: 88 C: 26 P: 0.00] [V: 57 C: 26 P: 0.00] [V: 54 C: 26 P: 0.00]
BN:EC [V: DC C: 25 P: 0.00] [V: DA C: 25 P: 0.00] [V: BB C: 25 P: 0.00] [V: A0 C: 25 P: 0.00]
BN:EC [V: 7E C: 25 P: 0.00] [V: 49 C: 25 P: 0.00] [V: 40 C: 25 P: 0.00] [V: 39 C: 25 P: 0.00]
BN:EC [V: 0A C: 25 P: 0.00] [V: 07 C: 25 P: 0.00] [V: 00 C: 25 P: 2.74] [V: DE C: 24 P: 0.00]
BN:EC [V: A4 C: 24 P: 0.00] [V: 7D C: 24 P: 0.00] [V: 78 C: 24 P: 0.00] [V: 3C C: 24 P: 0.00]
BN:EC [V: 15 C: 24 P:2.82] [V: FE C: 23 P: 0.00] [V: F5 C: 23 P: 0.00] [V: E4 C: 23 P: 0.00]
BN:EC [V: D6 C: 23 P:0.00] [V: CC C: 23 P: 0.00] [V: BF C: 23 P: 0.00] [V: AD C: 23 P: 0.00]
BN:EC [V: A3 C: 23 P: 0.00] [V: 8E C: 23 P: 0.00] [V: 70 C: 23 P: 0.00] [V: 64 C: 23 P: 0.00]
BN:EC [V: 37 C: 23 P:0.00] [V: 30 C: 23 P: 0.00] [V: 17 C: 23 P: 0.00] [V: 14 C: 23 P: 0.00]
BN:EC [V: 05 C: 23 P: 2.90] [V: F2 C: 22 P: 0.00] [V: DD C: 22 P: 0.00] [V: CD C: 22 P: 0.00]
BN:EC [V: BC C: 22 P:0.00] [V: B6 C: 22 P: 0.00] [V: B1 C: 22 P: 0.00] [V: 76 C: 22 P: 0.00]
BN:EC [V: 55 C: 22 P: 0.00] [V: 38 C: 22 P: 0.00] [V: 2D C: 22 P: 2.99] [V: FB C: 21 P: 0.00]
BN:EC [V: E2 C: 21 P: 0.00] [V: C0 C: 21 P: 0.00] [V: BD C: 21 P: 0.00] [V: A7 C: 21 P: 0.00]
BN:EC [V: 9C C: 21 P: 0.00] [V: 7A C: 21 P: 0.00] [V: 79 C: 21 P: 0.00] [V: 6D C: 21 P: 0.00]
BN:EC [V: 61 C: 21 P: 0.00] [V: 56 C: 21 P: 0.00] [V: 3B C: 21 P: 3.08] [V: F3 C: 20 P: 0.00]
BN:EC [V: D8 C: 20 P: 0.00] [V: D3 C: 20 P: 0.00] [V: C2 C: 20 P: 0.00] [V: C1 C: 20 P: 0.00]
BN:EC [V: 94 C: 20 P: 0.00] [V: 8C C: 20 P: 0.00] [V: 7B C: 20 P: 0.00] [V: 72 C: 20 P: 0.00]
BN:EC [V: 5B C: 20 P: 0.00] [V: 53 C: 20 P: 0.00] [V: 2B C: 20 P: 0.00] [V: 26 C: 20 P: 0.00]
BN:EC [V: 1A C: 20 P: 0.00] [V: 06 C: 20 P: 3.17] [V: FC C: 1F P: 0.00] [V: F8 C: 1F P: 0.00]
BN:EC [V: E6 C: 1F P: 0.00] [V: D5 C: 1F P: 0.00] [V: B9 C: 1F P: 0.00] [V: AE C: 1F P: 0.00]
BN:EC [V: 9F C: 1F P: 0.00] [V: 9E C: 1F P: 0.00] [V: 96 C: 1F P: 0.00] [V: 8A C: 1F P: 0.00]
BN:EC [V: 68 C: 1F P: 0.00] [V: 4A C: 1F P: 0.00] [V: 3E C: 1F P: 0.00] [V: 25 C: 1F P: 0.00]
BN:EC [V: EB C: 1E P: 0.00] [V: AF C: 1E P: 0.00] [V: AC C: 1E P: 0.00] [V: A8 C: 1E P: 0.00]
BN:EC [V: 8F C: 1E P: 0.00] [V: 84 C: 1E P: 0.00] [V: 7F C: 1E P: 0.00] [V: 6A C: 1E P: 0.00]
BN:EC [V: 5D C: 1E P: 0.00] [V: 3A C: 1E P: 0.00] [V: 20 C: 1E P: 0.00] [V: 1F C: 1E P: 0.00]
BN:EC [V: 18 C: 1E P: 0.00] [V: 03 C: 1E P: 3.39] [V: E8 C: 1D P: 0.00] [V: D1 C: 1D P: 0.00]
BN:EC [V: BE C: 1D P: 0.00] [V: B0 C: 1D P: 0.00] [V: AB C: 1D P: 0.00] [V: 9B C: 1D P: 0.00]
BN:EC [V: 95 C: 1D P: 0.00] [V: 80 C: 1D P: 0.00] [V: 77 C: 1D P: 0.00] [V: 74 C: 1D P: 0.00]
BN:EC [V: 66 C: 1D P: 0.00] [V: 65 C: 1D P: 0.00] [V: 50 C: 1D P: 0.00] [V: 31 C: 1D P: 0.00]
BN:EC [V: 29 C: 1D P: 0.00] [V: 04 C: 1D P: 3.51] [V: F7 C: 1C P: 0.00] [V: EA C: 1C P: 0.00]
BN:EC [V: 62 C: 1C P: 0.00] [V: 5E C: 1C P: 0.00] [V: 4F C: 1C P: 0.00] [V: 45 C: 1C P: 0.00]
BN:EC [V: FA C: 1B P: 0.00] [V: CF C: 1B P: 0.00] [V: C9 C: 1B P: 0.00] [V: B3 C: 1B P: 0.00]
BN:EC [V: 93 C: 1B P: 0.00] [V: 90 C: 1B P: 0.00] [V: 8B C: 1B P: 0.00] [V: 67 C: 1B P: 0.00]
BN:EC [V: 43 C: 1B P: 0.00] [V: 34 C: 1B P: 0.00] [V: 2E C: 1B P: 0.00] [V: 27 C: 1B P: 0.00]
BN:EC [V: 0D C: 1B P: 0.00] [V: 08 C: 1B P: 3.77] [V: ED C: 1A P: 0.00] [V: 86 C: 1A P: 0.00]
BN:EC [V: 83 C: 1A P: 0.00] [V: 60 C: 1A P: 0.00] [V: 4B C: 1A P: 0.00] [V: 3D C: 1A P: 0.00]
BN:EC [V: 10 C: 1A P: 3.92] [V: F6 C: 19 P: 0.00] [V: F0 C: 19 P: 0.00] [V: D2 C: 19 P: 0.00]
BN:EC [V: C6 C: 19 P: 0.00] [V: B8 C: 19 P: 0.00] [V: B7 C: 19 P: 0.00] [V: B5 C: 19 P: 0.00]

BN:EC [V: 91 C: 19 P: 0.00] [V: 7C C: 19 P: 0.00] [V: 6C C: 19 P: 0.00] [V: 5C C: 19 P: 0.00]
BN:EC [V: 2C C: 19 P: 0.00] [V: 22 C: 19 P: 0.00] [V: 21 C: 19 P: 4.08] [V: F9 C: 18 P: 0.00]
BN:EC [V: D7 C: 18 P: 0.00] [V: 98 C: 18 P: 0.00] [V: 6B C: 18 P: 0.00] [V: 4E C: 18 P: 0.00]
BN:EC [V: 02 C: 18 P: 4.26] [V: E0 C: 17 P: 0.00] [V: 92 C: 17 P: 4.44] [V: 3F C: 16 P: 0.00]
BN:EC [V: E9 C: 15 P: 0.00] [V: A5 C: 15 P: 0.00] [V: 6E C: 15 P: 0.00] [V: 4D C: 15 P: 4.88]

Here, we see the entire range of all possible 256 values within block 0xEC.As we look through the data,

what we see is each value is more or less as probable as every other character—with a large volume of

them exhibiting exactly the same volume as others. This is what we would expect from random data, as

there will be either no or very little bias towards any specific value if it’s random and each value has a

probability of occurrence as every other value. Generally speaking, data that is encrypted will have a

more even distribution—in the actual encryption algorithms like AES and similar, this is a desired quality

in part to help prevent known-plaintext attacks. This is complicated by the fact that compressed files

and encrypted files tend to look pretty similar to our analytics, for instance, consider the following

distributions for file compressed with different algorithms:

ZIP file (.zip):
BN:30 [V: D7 C: 33 P: 0.00] [V: 05 C: 33 P: 10.31] [V: F2 C: 2E P: 2.20] [V: 0D C: 2D P: 2.25]
BN:31 [V: 8F C: 34 P: 8.00] [V: D3 C: 30 P: 0.00] [V: B3 C: 30 P: 0.00] [V: 14 C: 30 P: 2.11]
BN:32 [V: D5 C: 35 P: 5.83] [V: FB C: 32 P: 2.02] [V: E9 C: 31 P: 2.06] [V: 13 C: 30 P: 2.11]
BN:33 [V: 67 C: 34 P: 1.94] [V: DF C: 33 P: 1.98] [V: 33 C: 32 P: 6.19] [V: 6D C: 2F P: 2.15]
BN:34 [V: 75 C: 35 P: 1.90] [V: F5 C: 34 P: 3.92] [V: AD C: 32 P:0.00] [V: 76 C: 32 P: 8.33]
BN:35 [V: 7E C: 31 P: 2.06] [V: F4 C: 30 P: 4.26] [V: FC C: 2E P: 0.00] [V: 77 C: 2E P: 0.00]
BN:36 [V: F9 C: 30 P: 0.00] [V: 99 C: 30 P: 2.11] [V: FD C: 2F P: 0.00] [V: B2 C: 2F P: 0.00]

BZip2 (.tar.bz2):
BN:30 [V: 7F C: 31 P: 6.32] [V: A9 C: 2E P: 0.00] [V: 7B C: 2E P: 2.20] [V: 33 C: 2D P: 0.00]
BN:31 [V: 00 C: 3F P: 23.01] [V: 4C C: 32 P: 2.02] [V: 94 C: 31 P: 4.17] [V: 3D C: 2F P: 2.15]
BN:32 [V: 00 C: 48 P: 32.26] [V: 27 C: 34 P: 0.00] [V: 02 C: 34 P: 1.94] [V: 6F C: 33 P: 1.98]
BN:33 [V: 00 C: 37 P: 9.52] [V: 6C C: 32 P: 6.19] [V: E6 C: 2F P: 0.00] [V: A7 C: 2F P: 2.15]
BN:34 [V: 00 C: 49 P: 35.48] [V: 18 C: 33 P: 4.00] [V: FB C: 31 P: 0.00] [V: DB C: 31 P: 6.32]
BN:35 [V: 00 C: 35 P: 3.85] [V: 08 C: 33 P: 4.00] [V: BD C: 31 P: 8.51] [V: 81 C: 2D P: 2.25]
BN:36 [V: C0 C: 31 P: 4.17] [V: 29 C: 2F P: 2.15] [V: 00 C: 2E P: 2.20] [V: A0 C: 2D P: 0.00]

Gzip (.tar.gz):
BN:30 [V: BF C: 34 P: 14.43] [V: D7 C: 2D P 0.00] [V: AF C: 2D P: 2.25] [V: ED C: 2C P: 0.00]
BN:31 [V: 7C C: 37 P: 17.82] [V: 1C C: 2E P: 2.20] [V: DF C: 2D P: 0.00] [V: 4F C: 2D P: 2.25]
BN:32 [V: 3B C: 33 P: 1.98] [V: A5 C: 32 P:4.08] [V: 4B C: 30 P: 6.45] [V: EE C: 2D P: 0.00]
BN:33 [V: DE C: 41 P: 26.09] [V: CA C: 32 P:8.33] [V: E9 C: 2E P: 2.20] [V: AF C: 2D P: 0.00]
BN:34 [V: EA C: 34 P: 8.00] [V: D0 C: 30 P:0.00] [V: AD C: 30 P: 6.45] [V: B5 C: 2D P: 0.00]
BN:35 [V: F5 C: 30 P: 0.00] [V: 1E C: 30 P: 2.11] [V: BE C: 2F P: 2.15] [V: 53 C: 2E P: 2.20]
BN:36 [V: CB C: 2F P: 0.00] [V: 8F C: 2F P: 2.15] [V: 9B C: 2E P: 2.20] [V: 81 C: 2D P: 4.55]

LZMA (.tar.xz):

BN: 30 [V: A0 C: 34 P: 8.00] [V: F2 C: 30 P: 0.00] [V: 3A C: 30 P: 6.45] [V: 6C C: 2D P: 0.00]
BN: 31 [V: 3C C: 2F P: 0.00] [V: 05 C: 2F P: 2.15] [V: 8E C: 2E P: 2.20] [V: 73 C: 2D P: 4.55]
BN: 32 [V: F5 C: 33 P: 1.98] [V: 19 C: 32 P: 6.19] [V: FC C: 2F P: 2.15] [V: B6 C: 2E P: 2.20]
BN: 33 [V: C7 C: 32 P: 2.02] [V: 26 C: 31 P: 4.17] [V: 1D C: 2F P: 0.00] [V: 03 C: 2F P: 2.15]
BN: 34 [V: 31 C: 31 P: 0.00] [V: 19 C: 31 P: 2.06] [V: 3C C: 30 P: 2.11] [V: F5 C: 2F P: 2.15]
BN: 35 [V: 44 C: 30 P: 0.00] [V: 2D C: 30 P: 4.26] [V: FA C: 2E P: 0.00] [V: C4 C: 2E P: 2.20]
BN: 36 [V: 0A C: 34 P: 10.10] [V: AA C: 2F P: 4.35] [V: A6 C: 2D P: 0.00] [V: 6B C: 2D P: 2.25]

AES-256 Encrypted ZIP (.zip):
BN:30 [V: D1 C: 2F P: 0.00] [V: 96 C: 2F P: 0.00] [V: 42 C: 2F P: 0.00] [V: 27 C: 2F P: 4.35]
BN:31 [V: 6F C: 31 P: 0.00] [V: 6D C: 31 P: 8.51] [V: DD C: 2D P: .25] [V: FF C: 2C P: 0.00]
BN:32 [V: C7 C: 30 P: 2.11] [V: 62 C: 2F P: 2.15] [V: 74 C: 2E P: 0.00] [V: 15 C: 2E P: 2.20]
BN:33 [V: DC C: 37 P: 9.52] [V: 6C C: 32 P: 8.33] [V: 93 C: 2E P: 0.00] [V: 2F C: 2E P: 0.00]
BN:34 [V: FF C: 30 P: 4.26] [V: BE C: 2E P: 0.00] [V: 59 C: 2E P: 0.00] [V: 51 C: 2E P: 0.00]
BN:35 [V: 63 C: 32 P: 8.33] [V: 4E C: 2E P: 2.20] [V: FC C: 2D P: 2.25] [V: E1 C: 2C P: 0.00]
BN:36 [V: 04 C: 32 P: 6.19] [V: 8A C: 2F P: 6.59] [V: A9 C: 2C P: 2.30] [V: B5 C: 2B P: 0.00]

The blocks from the file were chosen more or less at random with the only real criteria being that they

didn’t come from the beginning or end of the file and that they more or less modeled the distribution

and generally didn’t have too many outliers relative to the rest of the file. As we can see, the distribution

of the values looks a lot like the encrypted data with the only really significant difference being that this

even distribution tends to be punctuated by higher deviations than with the cipher-text. When we get to

the last file, which is a ZIP file that was subsequently also AES-256 encrypted with a password, these

punctuations decrease quite a bit and the distribution evens out more.

As such, we obviously cannot use entropy analysis to do all of the work for identifying hidden data—

there are just too many edge cases where it becomes implausible to discern whether deviant data we’re

looking at is normal or not. Thus, this is mostly a library that is intended to serve as a starting point for

things like host intrusion prevention systems (HIDS), Anti-virus (AV), and so on—to help better identify

what data should be given the more resource intensive validation checks such as attempting to parse

the actual file structure and similar. In fact, using entropy analysis in a similar manner already is used

extensively throughout the industry—just in a slightly different context. It’s used fairly extensively to

determine when an executable file is packed and to aid in the automated unpacking of the executable.

So, by taking the same concepts and applying it to data that mixes multiple data streams with one

embedded and hidden in another is not really that large of a leap.

So to reiterate our points in this section:

 Data encrypted with longer XOR keys have much more entropy. They’re easier to spot as

deviant from other data that itself is not high entropy, but harder to identify by the raw

frequency counts alone.

 Unlike shorter XOR keys, we will not be able to utilize the ‘value zero trick’ in these

circumstances because One-Time Pads utilize a key that is as long as the data being encrypted.

 If the entropy of the host file data is closer to the embedded data, we may not be able to overly

discern which is which through these methods.

 Compressed data tends to look a lot like high-entropy encrypted data, just with intermittent

spikes in the frequency that deviate relatively significantly from cipher-text.

 Entropy analysis and statistical analysis should not be thought of as a magic bullet and really

should only improve the performance of existing more resource intensive methods by more

properly targeting them towards suspect data.

3.1.3 The effect of different sizes of block on the entropy analysis scores

Earlier we said that as the data gets more random the Chi-Square distribution test scores approach the

200-300 range, the Shannon entropy score approaches 7.97 and the Pi approximation scores approach

Pi, albeit only “kinda sorta”. This isn’t entirely true, all of these are dependent on the size of the block in

question. As the blocks get bigger, how close the Pi approximation approaches Pi decreases the more

random the data is. The Chi-Square score is modified, albeit not as dramatically as other scores and the

Shannon score reaches higher values—for instance 7.99 or higher.

To demonstrate this, let’s examine a block of data generated by a PRNG in different block sizes. We

generated the data by pointing the dd program to /dev/random and as such the data should be as

random as one can expect from the Linux PRNG. One significant caveat however is that this was done

inside of a virtual machine. To help improve this, we seeded the Linux PRNG repeatedly with data from

the hardware generators from www.random.org. At any rate, let’s take a look at the file with the default

block size:

FILE: random-34k.data BLOCK COUNT: 5 BLOCK SIZE: 8192

ALL SCORES
BN: 0 C: 266.3750 S: 7.9762 ES: 3.1836 ER: 1.3193
BN: 1 C: 250.0000 S: 7.9780 ES: 3.1562 ER: 0.4644
BN: 2 C: 235.6875 S: 7.9792 ES: 3.1992 ER: 1.8013
BN: 3 C: 236.9375 S: 7.9790 ES: 3.1367 ER: 0.1554
BN: 4 C: 249.1514 S: 7.8458 ES: 3.1258 ER: 0.5043

As we can see, at the default block size of 8192 bytes or 8KB, the scores fall into the range previously

stated—the Chi score hovers around 250 and the Shannon score is mostly at 7.97. The Pi approximation

scores approach Pi, but there is really no discernable pattern to them as the error ranges between 0.4

and 1.8. If we resize the blocks so that they’re twice as large, or 16384 bytes/16KB, we get the following

values:

http://www.random.org/

FILE: random-34k.data BLOCK COUNT: 3 BLOCK SIZE: 16384

ALL SCORES
BN: 0 C: 238.1875 S: 7.9895 ES: 3.1699 ER: 0.8937
BN: 1 C: 236.1250 S: 7.9896 ES: 3.1680 ER: 0.8326
BN: 2 C: 249.1514 S: 7.8458 ES: 3.1258 ER: 0.5043

Here we can see that the Chi-Square scores stayed mostly the same but decreased slightly and the

Shannon scores increased into the 7.98 range for the most part. The last block decreased slightly, but

that conforms to what we saw in the default block size. The Monte Carlo method Pi approximation

scores indeed got closer to the correct value of Pi, which is what we expect for random data that

increases in size. So let’s take a look at even larger blocks and see how it modifies the scores, this time

let’s look at blocks three times the default size, or 24KB:

FILE: random-34k.data BLOCK COUNT: 2 BLOCK SIZE: 24576

ALL SCORES
BN: 0 C: 231.2708 S: 7.9932 ES: 3.1797 ER: 1.1981
BN: 1 C: 230.2965 S: 7.9821 ES: 3.1353 ER: 0.2001

Here again, we same relative deviation is encountered, the Chi score decreases slightly and hovers

around 230 and the Shannon scores increase into the 7.99/7.98 range. The Pi score however deviates

from what we expected somewhat and in one block the error is larger and in the other it’s smaller. This

sort of less deterministic behavior is why we’re probably going to replace the Pi approximation in a later

release, it is useful, just not as much as we had hoped.

Okay, so we have seen above that as the block size increases, the same high-entropy data generates

scores that change—with the Chi score decreasing, the Shannon score increasing and the Pi

approximation scores further approaching Pi, albeit in a somewhat random fashion. So the obvious next

question is what happens when the block size of high-entropy data decreases? Does the pattern still

hold in that the Chi score will increase, the Shannon score decrease and the Pi approximation score start

to deviate further? To determine that, let’s take a look at the same file this time with smaller blocks.

Let’s first start out with a block half the size of the default, or 4096 bytes in length:

FILE: random-34k.data BLOCK COUNT: 9 BLOCK SIZE: 4096

ALL SCORES
BN: 0 C: 272.2500 S: 7.9518 ES: 3.1797 ER: 1.1981
BN: 1 C: 256.6250 S: 7.9536 ES: 3.1875 ER: 1.4402
BN: 2 C: 230.7500 S: 7.9592 ES: 3.1484 ER: 0.2174

BN: 3 C: 241.8750 S: 7.9566 ES: 3.1641 ER: 0.7102
BN: 4 C: 223.2500 S: 7.9595 ES: 3.2422 ER: 3.1027
BN: 5 C: 279.7500 S: 7.9505 ES: 3.1562 ER: 0.4644
BN: 6 C: 257.7500 S: 7.9533 ES: 3.1406 ER: 0.0308
BN: 7 C: 241.7500 S: 7.9565 ES: 3.1328 ER: 0.2803
BN: 8 C: 249.1514 S: 7.8458 ES: 3.1258 ER: 0.5043

As we review the data, we see that indeed the scores deviate mostly as expected. The Chi scores

increase, but remain within the mid-200s range albeit slightly smaller than the scores retrieved by the

default block size of 8192. The Shannon score decreases to mostly the 7.95 range, and the Pi

approximation scores start to become more distanced from Pi, against, in a less deterministic fashion

than hoped. If this pattern holds, then when we again decrease the size, we should see the Chi scores

increase into even higher values, the Shannon decrease slightly and the Pi approximation scores deviate

even further. As such, let’s look at the file in 2KB blocks:

FILE: random-34k.data BLOCK COUNT: 17 BLOCK SIZE: 2048

ALL SCORES
BN: 0 C: 265.2500 S: 7.9035 ES: 3.2969 ER: 4.7100
BN: 1 C: 265.7500 S: 7.9060 ES: 3.0625 ER: 2.5826
BN: 2 C: 306.2500 S: 7.8924 ES: 3.1562 ER: 0.4644
BN: 3 C: 222.7500 S: 7.9181 ES: 3.2188 ER: 2.3971
BN: 4 C: 236.0000 S: 7.9158 ES: 3.2344 ER: 2.8686
BN: 5 C: 267.5000 S: 7.9044 ES: 3.0625 ER: 2.5826
BN: 6 C: 245.2500 S: 7.9119 ES: 3.1250 ER: 0.5310
BN: 7 C: 240.5000 S: 7.9124 ES: 3.2031 ER: 1.9210
BN: 8 C: 193.7500 S: 7.9301 ES: 3.2344 ER: 2.8686
BN: 9 C: 234.0000 S: 7.9142 ES: 3.2500 ER: 3.3356
BN: A C: 264.2500 S: 7.9070 ES: 3.0938 ER: 1.5464
BN: B C: 267.5000 S: 7.9035 ES: 3.2188 ER: 2.3971
BN: C C: 243.5000 S: 7.9117 ES: 3.0938 ER: 1.5464
BN: D C: 247.2500 S: 7.9073 ES: 3.1875 ER: 1.4402
BN: E C: 213.0000 S: 7.9218 ES: 3.1406 ER: 0.0308
BN: F C: 237.0000 S: 7.9133 ES: 3.1250 ER: 0.5310
BN: 10 C: 249.1514 S: 7.8458 ES: 3.1258 ER: 0.5043

Indeed, the pattern holds. The Chi scores mostly gravitate towards the mid-to-high end of the 200s with

a single block reaching the low 300 range, the Shannon scores decrease into the 7.90-7.98 range and we

begin to see even more deviation from the Pi scores. So, if we were to view the file as a whole, what we

would expect is a Chi score that sits somewhere in the mid-200 range, a higher Shannon score and a Pi

score that further approaches Pi:

FILE: random-34k.data BLOCK COUNT: 5 BLOCK SIZE: 8192

WHOLE FILE SCORE
C: 242.8282 S: 7.9948 ES: 3.1674 ER: 0.8152

And indeed, the pattern again holds. So, to review what we’ve discussed we can make the following

observations:

 When dealing with high-entropy data such as random data or cipher-texts, the bigger the block

the lower the Chi-Square scores are, although they average out somewhat. Furthermore, the

Shannon score slightly increases and the Pi approximation scores become more accurate and

approach Pi a bit more although it does so somewhat randomly.

 Inversely, when we decrease the block size, the scores show a similar inverse deviation.

 Pi approximation scores work better with larger blocks of data.

3.1.4 Block score deviation demonstrated via 8-byte XOR

Okay, so we have reviewed just the generic block scores so far and have done so at two ends of the

spectrum: with a 1-byte XOR key and an XOR key that is as long as the embedded file. Both were pretty

easy to spot albeit with different methods. The 1-byte XOR data more closely conformed to the host file

sans the blocks full of zeroes and looking at the raw frequency data showed us pretty clearly that the

data was XOR encrypted. When we looked at the longer XOR key, the data had a pretty uniform

distribution and looking at the raw frequency data was less useful, but the standard scoring metrics

showed us that such data is pretty easy to spot. Moreover, we haven’t even discussed other aspects of

the extension, in particular functionality that calculates differences between the scores for blocks and

block ranges. So let’s take a look briefly at the same PDF file with the same embedded executable, but

this time let’s use a longer XOR key, say 8 bytes. In this instance, we can again easily spot the blocks full

of zeroes and the general pattern of a large deviation followed by relative uniformity holds as well, so

we will skip straight to the relevant sections of the file:

BN: AA C: 2342.4375 S: 7.8711 ES: 3.1758 ER: 1.0765
BN: AB C: 33199.0000 S: 7.1964 ES: 3.4023 ER: 7.6639
BN: AC C: 603.3750 S: 7.9501 ES: 3.1289 ER: 0.4055
BN: AD C: 486.8125 S: 7.9587 ES: 3.1719 ER: 0.9547
BN: AE C: 23303.5000 S: 7.2774 ES: 3.4180 ER: 8.0860
BN: AF C: 6687.7500 S: 7.5337 ES: 3.3438 ER: 6.0458
BN: B0 C: 6607.6250 S: 7.5587 ES: 3.3047 ER: 4.9353

BN: B1 C: 6717.0625 S: 7.5527 ES: 3.3633 ER: 6.5914
BN: B2 C: 6416.8125 S: 7.5628 ES: 3.3711 ER: 6.8079
BN: B3 C: 6785.5000 S: 7.5451 ES: 3.4102 ER: 7.8754
BN: B4 C: 6624.5000 S: 7.5521 ES: 3.4219 ER: 8.1909
BN: B5 C: 6518.8125 S: 7.5538 ES: 3.4258 ER: 8.2956
BN: B6 C: 6759.1875 S: 7.5448 ES: 3.4062 ER: 7.7698
BN: B7 C: 6721.2500 S: 7.5509 ES: 3.4062 ER: 7.7698
BN: B8 C: 7210.3750 S: 7.5255 ES: 3.3438 ER: 6.0458
BN: B9 C: 14706.0000 S: 7.2823 ES: 3.4258 ER: 8.2956
BN: BA C: 24410.5000 S: 7.0843 ES: 3.6016 ER: 12.7714
BN: BB C: 6947.8750 S: 7.5286 ES: 3.3672 ER: 6.6998
BN: BC C: 6047.8750 S: 7.5769 ES: 3.4062 ER: 7.7698
BN: BD C: 7235.6250 S: 7.5357 ES: 3.3945 ER: 7.4514
BN: BE C: 6651.3125 S: 7.5610 ES: 3.4922 ER: 10.0394
BN: BF C: 6332.2500 S: 7.5693 ES: 3.4258 ER: 8.2956
BN: C0 C: 5886.3125 S: 7.5881 ES: 3.3867 ER: 7.2379
BN: C1 C: 6651.4375 S: 7.5643 ES: 3.3008 ER: 4.8228
BN: C2 C: 5274.0000 S: 7.6159 ES: 3.3984 ER: 7.5577
BN: C3 C: 32201.8750 S: 7.0112 ES: 3.5820 ER: 12.2958
BN: C3 C: 32201.8750 S: 7.0112 ES: 3.5820 ER: 12.2958
BN: C4 C: 81919.3125 S: 6.0033 ES: 3.5352 ER: 11.1328
BN: C5 C: 253952.0000 S: 3.0000 ES: 4.0000 ER: 21.4602
BN: C6 C: 253952.0000 S: 3.0000 ES: 4.0000 ER: 21.4602
BN: C7 C: 253952.0000 S: 3.0000 ES: 4.0000 ER: 21.4602
BN: C8 C: 253952.0000 S: 3.0000 ES: 4.0000 ER: 21.4602
BN: C9 C: 253952.0000 S: 3.0000 ES: 4.0000 ER: 21.4602

For the same of demonstration, let’s assume the blocks full of zero’s don’t exist. This is fairly appropriate

given that malware in the wild is less likely to have that trait due to packing and encryption and so on. In

order to “fix” the zero problem, the data would have to be encrypted with an XOR key that is at least as

long as the entire run of zeroes or else we will encounter the same distributions for those sections.

Given that, we can still see the fairly uniform distribution in the Shannon and Chi scores when we

encounter the file. The Chi scores are mostly in the 6000-7000 range, which differs by a fair amount

from neighbor blocks around it. However, the scores themselves begin to approach a value more

consistent with the host data, for instance the range we identified as potentially suspect when we

looked at the file with a one-byte XOR key has scores in the 4000 range. Sometimes however, especially

when dealing with high-entropy host data with high-entropy embedded data, the differences are not so

easy to spot by eye and the uniformity of the scores gets lost. In those instances, it’s often easier to look

at the same data in terms of percent of differences than the actual scores.

We have multiple modes of operation that handle this case, for instance the –blockdev mode

calculates a given blocks percent of difference from all of the other blocks, --devxy is similar, except

that it calculates the differences between two specific blocks and finally we have –seqdev and –

seqxy. The first.will calculate the percentage of deviation between sequential blocks, which is to say

we calculate the difference for block 1 from block 2, block 2 from block 3 and so on. The second option

performs the exact same task, but instead of doing it against all blocks in the file it takes two parameters

that denote the start and stop indices for a range of blocks we want to calculate the differences for.

Let’s start by taking a look at the deviation of regular blocks of host data so we can get a feel for that, we

do so by passing the –blockdev option and a specified --blocknumber:

$ bin/edfind.py -d -n 5 BlackHat-Japan-08-Dang-Office-Attacks-EIGHT.pdf | less

Which produces, in part, the following:

FILE: BlackHat-Japan-08-Dang-Office-Attacks-EIGHT.pdf BLOCK COUNT: 286 BLOCK SIZE: 8192

BLOCK 5 DEVIATION RELATIVE ALL BLOCKS
BN: 0 C: 180.5784 S: 6.5931 ES: 9.3880 ER: 187.5330
BN: 1 C: 14.6888 S: 0.0601 ES: 0.3734 ER: 99.9762
BN: 2 C: 19.5273 S: 0.0870 ES: 2.9484 ER: 161.5248
BN: 3 C: 2.2043 S: 0.0052 ES: 2.2195 ER: 149.0724
BN: 4 C: 151.0541 S: 2.3622 ES: 1.2392 ER: 109.2246
BN: 5 C: 14.7972 S: 0.0720 ES: 5.1033 ER: 177.5351
BN: 6 C: 20.5931 S: 0.0792 ES: 1.7305 ER: 134.8410
BN: 7 C: 16.2717 S: 0.0451 ES: 5.5758 ER: 179.3913
BN: 8 C: 154.8200 S: 2.8190 ES: 0.7453 ER: 49.4529
BN: 9 C: 4.7020 S: 0.0111 ES: 3.3109 ER: 165.6756
BN: A C: 23.2693 S: 0.1359 ES: 4.7474 ER: 175.8930
BN: B C: 132.6418 S: 2.5889 ES: 5.1151 ER: 180.7530
BN: C C: 144.9958 S: 3.7745 ES: 6.9677 ER: 185.6275
BN: D C: 146.8961 S: 3.9277 ES: 8.1765 ER: 187.6935
BN: E C: 145.8226 S: 3.8883 ES: 8.1765 ER: 187.6935
BN: F C: 151.7696 S: 4.3970 ES: 18.6776 ER: 194.7169
BN: 10 C: 150.9746 S: 4.3200 ES: 11.1916 ER: 190.9946
BN: 11 C: 148.5987 S: 4.2271 ES: 11.8890 ER: 191.5305
BN: 12 C: 148.8078 S: 4.0953 ES: 16.7568 ER: 194.0688
BN: 13 C: 147.7051 S: 4.0217 ES: 10.9139 ER: 190.7631
BN: 14 C: 151.3041 S: 4.2417 ES: 11.0526 ER: 190.8801
BN: 15 C: 147.3353 S: 3.9494 ES: 10.7753 ER: 190.6433

We chose block number 5 somewhat at random with really only a criteria that it wasn’t at the beginning

or end of the file. As we look at the data, we see the same sort of spikes and valleys that the scores

themselves have however the Shannon scores show that at least for the nine blocks after the first block

(file headers and footers tend to deviate significantly from the rest of their content), that the

information entropy is more or less the same. Here the Pi scores don’t serve us very well as almost all of

them are in ranges well over 100% difference.

However, when we get to blocks 0x0B through 0x15, we see that the amount of difference between

block 0x05 and them starts to become more uniform, as does the Shannon and Pi approximation scores.

This is more or less to be expected because we’re really looking at the same data as when we were

viewing the scores earlier, we’re just viewing it in terms of differences than as raw scores. For the same

reasons as when we first looked at the file when it had a one-byte XOR encrypted executable embedded

in it, we would likely take a closer look at all ranges that are relatively uniform. Let’s take a look at that

now specifically looking at a block that falls within that mostly uniform range, say 0x0D:

BN: C C: 23.7949 S: 1.1859 ES: 1.8543 ER: 30.2422
BN: D C: 4.0646 S: 0.1532 ES: 1.2105 ER: 16.0187
BN: F C: 1.7538 S: 0.1138 ES: 1.2105 ER: 16.0187
BN: 10 C: 15.0578 S: 0.6228 ES: 11.7481 ER: 94.3086
BN: 11 C: 13.2060 S: 0.5457 ES: 4.2321 ER: 47.2232
BN: 12 C: 7.8096 S: 0.4528 ES: 4.9315 ER: 53.1004
BN: 13 C: 8.2764 S: 0.3210 ES: 9.8177 ER: 84.9327
BN: 14 C: 5.8316 S: 0.2473 ES: 3.9536 ER: 44.7630
BN: 15 C: 13.9706 S: 0.4674 ES: 4.0928 ER: 46.0012
BN: 16 C: 5.0212 S: 0.1750 ES: 3.8147 ER: 43.5083
BN: 17 C: 9.6567 S: 0.3483 ES: 7.7778 ER: 73.3010
BN: 18 C: 13.4137 S: 0.2990 ES: 5.3535 ER: 56.4512
BN: 19 C: 11.8915 S: 0.3605 ES: 0.4019 ER: 5.5966
BN: 1A C: 14.7676 S: 0.3728 ES: 2.9851 ER: 35.6130
BN: 1B C: 16.5408 S: 0.5457 ES: 0.5333 ER: 7.9061
BN: 1C C: 11.8384 S: 0.3242 ES: 0.4003 ER: 5.8796
BN: 1D C: 10.3172 S: 0.3273 ES: 0.6662 ER: 9.9674
BN: 1E C: 29.4325 S: 1.0712 ES: 2.2989 ER: 28.5116
BN: 1F C: 51.0710 S: 1.7271 ES: 0.6662 ER: 9.9674
BN: 20 C: 67.6754 S: 2.1520 ES: 8.3565 ER: 76.8073
BN: 21 C: 68.4539 S: 2.1903 ES: 1.7230 ER: 27.8235
BN: 22 C: 81.9809 S: 2.5465 ES: 0.4019 ER: 5.5966
BN: 23 C: 68.4350 S: 2.2414 ES: 2.9851 ER: 35.6130
BN: 24 C: 74.1537 S: 2.3939 ES: 0.2677 ER: 3.7612
BN: 25 C: 51.3289 S: 1.8181 ES: 1.6173 ER: 20.8788
BN: 26 C: 94.6866 S: 3.0066 ES: 0.9402 ER: 12.6527
BN: 27 C: 136.2424 S: 3.6503 ES: 8.2051 ER: 154.9369
BN: 28 C: 147.9159 S: 3.7974 ES: 10.7527 ER: 74.1581

As we look at the data sequentially around and following block 0x0D, we see that the data is relatively

uniform relative to the other blocks, but we should notice a loose trend—which is that as we process

the blocks that follow, they most increase in the volume of difference in terms of the Chi score. The

Shannon scores also fluctuate and grow more, but the difference is not as noticeable as it is in the Chi

scores. If we go back and look at the scores themselves, we notice that this pattern loosely holds there

as well, however it didn’t jump out at us in the same way that looking at the differences did. If we

contrast these differences with a block of embedded data relative to the other embedded data, we will

see even more differences between the host file data that is somewhat uniform and the hidden data

stream:

BN: AE C: 110.5005 S: 3.7129 ES: 1.6129 ER: 20.3651
BN: AF C: 0.4373 S: 0.2518 ES: 0.5824 ER: 8.6349
BN: B0 C: 1.6426 S: 0.0791 ES: 1.7575 ER: 28.7364
BN: B2 C: 4.5721 S: 0.1344 ES: 0.2320 ER: 3.2311
BN: B3 C: 1.0137 S: 0.1007 ES: 1.3841 ER: 17.7505
BN: B4 C: 1.3876 S: 0.0075 ES: 1.7271 ER: 21.6402
BN: B5 C: 2.9956 S: 0.0146 ES: 1.8412 ER: 22.8944
BN: B6 C: 0.6252 S: 0.1050 ES: 1.2695 ER: 16.4098
BN: B7 C: 0.0623 S: 0.0231 ES: 1.2695 ER: 16.4098
BN: B8 C: 7.0840 S: 0.3611 ES: 0.5824 ER: 8.6349
BN: B9 C: 74.5826 S: 3.6457 ES: 1.8412 ER: 22.8944
BN: BA C: 113.6834 S: 6.3999 ES: 6.8424 ER: 63.8332
BN: BB C: 3.3782 S: 0.3193 ES: 0.1161 ER: 1.6306
BN: BC C: 10.4848 S: 0.3199 ES: 1.2695 ER: 16.4098
BN: BD C: 7.4332 S: 0.2253 ES: 0.9249 ER: 12.2471
BN: BE C: 0.9837 S: 0.1105 ES: 3.7607 ER: 41.4647
BN: BF C: 5.8978 S: 0.2193 ES: 1.8412 ER: 22.8944
BN: C0 C: 13.1830 S: 0.4676 ES: 0.6944 ER: 9.3486
BN: C1 C: 0.9818 S: 0.1535 ES: 1.8757 ER: 30.9909
BN: C2 C: 24.0690 S: 0.8330 ES: 1.0399 ER: 13.6587
BN: C3 C: 130.9636 S: 7.4364 ES: 6.2992 ER: 60.4042
BN: C4 C: 169.6871 S: 22.8591 ES: 4.9830 ER: 51.2451
BN: C5 C: 189.6926 S: 86.2849 ES: 17.2944 ER: 106.0099
BN: C6 C: 189.6926 S: 86.2849 ES: 17.2944 ER: 106.0099

As we review this data corresponding to the differences between block 0xB1 and the other embedded

data, we should immediately see the differences between this data and the aforementioned data that

showed some level of uniformity. For instance, the level of uniformity in the Chi scores is greater with

the difference between the blocks ranging in single digit percentages and in some cases less than 1%.

This contrasts with the other blocks which entirely showed double digit percentage differences in the

Chi score. Secondly, the Chi scores do not show an upward trend like the other blocks did. There is

actually no real discernable pattern here, sometimes it’s a few points more, sometimes a bit less. Next,

the level of information entropy is somewhat constant. There is the outlier block at index 0xBA, however

by and large the difference is less than 1%, often in the 0.3% range. Finally, there is a higher level of

uniformity in the Pi approximation errors as well. Thus we can say with some degree of certainty that

the distributions here are more uniform than the earlier blocks, there are no upward or downward

trends and as such they are more indicative of cipher-text as the distribution should conform to this

model when dealing with cipher-texts.

Okay, let’s recap what we’ve discussed in this section and move onto something a bit closer to the

actual threat data we’d be looking at and while we’re at it demonstrate the sequential deviation feature.

 Sometimes the scores themselves make patterns harder to discern, we can elect to view the

scores as percentage of difference relative to other blocks which will sometimes make them

easier to spot.

 When view in this manner, we can often differentiate blocks that have somewhat uniform

scores from blocks that really are uniform.

 Blocks of related data will often have a certain structure to them, but they will also often follow

a discernable pattern—for instance in this example the percent of differences gradually

increased for the most part showing; moreover, when we viewed them this way we noted that

the differences between the blocks were higher than we really thought.

 When we viewed the actual encrypted executable in this manner, we noted that this ascending

pattern vanished and that the data was far more uniform in its distribution.

3.1.5 Packed Executables in a File with Higher Entropy

Okay, thus far we’ve been using a sorta unrealistic use-case, which is that the executable in question

was really only hidden by the XOR and due to this sections that were filled entirely with zeroes made the

executable pretty easy to spot. This is due to the executables not being packed or otherwise obfuscated

precisely because they were standard executable programs and not actually malware. Many academic

and industry reports have shown that over 90% of malware is packed and so we can expect that this will

be the case in most instances where we are viewing live data. Moreover, the file we used was relatively

low in entropy and so when a long XOR key was used, it was equally easy to identify.

So, let’s get closer to reality and look at a different file with some packed instances of cmd.exe. As it

turns out, US President Barack Obama’s long-form birth certificate fits this model very well. Let’s take a

look at the file without anything embedded in it:

FILE: birth-certificate-long-form-CLEAN.pdf BLOCK COUNT: 47 BLOCK SIZE: 8192

ALL SCORES
BN: 0 C: 2015.8750 S: 7.8790 ES: 3.2383 ER: 2.9858
BN: 1 C: 814.5625 S: 7.9356 ES: 3.2188 ER: 2.3971
BN: 2 C: 623.9375 S: 7.9503 ES: 3.2266 ER: 2.6334
BN: 3 C: 675.6250 S: 7.9454 ES: 3.0938 ER: 1.5464
BN: 4 C: 681.8750 S: 7.9456 ES: 3.1250 ER: 0.5310
BN: 5 C: 772.6250 S: 7.9394 ES: 3.1328 ER: 0.2803
BN: 6 C: 582.6875 S: 7.9514 ES: 3.1445 ER: 0.0935
BN: 7 C: 593.7500 S: 7.9532 ES: 3.1914 ER: 1.5609
BN: 8 C: 1954.5625 S: 7.8853 ES: 3.0938 ER: 1.5464

BN: 9 C: 802.8750 S: 7.9308 ES: 3.0195 ER: 4.0424
BN: A C: 635.4375 S: 7.9456 ES: 3.1055 ER: 1.1632
BN: B C: 652.0000 S: 7.9417 ES: 3.1523 ER: 0.3411
BN: C C: 737.0625 S: 7.9361 ES: 3.1719 ER: 0.9547
BN: D C: 689.4375 S: 7.9405 ES: 3.1602 ER: 0.5874
BN: E C: 662.6875 S: 7.9445 ES: 3.1328 ER: 0.2803
BN: F C: 747.0625 S: 7.9374 ES: 3.1406 ER: 0.0308
BN: 10 C: 717.8750 S: 7.9417 ES: 3.2305 ER: 2.7512
BN: 11 C: 608.0625 S: 7.9481 ES: 3.1836 ER: 1.3193
BN: 12 C: 737.4375 S: 7.9357 ES: 3.2305 ER: 2.7512
BN: 13 C: 550.0000 S: 7.9539 ES: 3.0664 ER: 2.4519
BN: 14 C: 733.7500 S: 7.9402 ES: 3.1328 ER: 0.2803
BN: 15 C: 832.3750 S: 7.9336 ES: 3.0938 ER: 1.5464
BN: 16 C: 816.5625 S: 7.9349 ES: 3.1328 ER: 0.2803
BN: 17 C: 602.0625 S: 7.9484 ES: 3.1016 ER: 1.2906
BN: 18 C: 831.0000 S: 7.9340 ES: 3.0977 ER: 1.4184
BN: 19 C: 645.1250 S: 7.9464 ES: 3.0625 ER: 2.5826
BN: 1A C: 696.0625 S: 7.9394 ES: 3.0273 ER: 3.7739
BN: 1B C: 706.2500 S: 7.9401 ES: 3.0547 ER: 2.8450
BN: 1C C: 590.0625 S: 7.9495 ES: 3.2539 ER: 3.4517
BN: 1D C: 683.2500 S: 7.9425 ES: 3.1055 ER: 1.1632
BN: 1E C: 678.3750 S: 7.9418 ES: 3.1250 ER: 0.5310
BN: 1F C: 709.5000 S: 7.9405 ES: 3.0586 ER: 2.7136
BN: 20 C: 692.5625 S: 7.9415 ES: 3.0117 ER: 4.3123
BN: 21 C: 669.6250 S: 7.9436 ES: 3.1367 ER: 0.1554
BN: 22 C: 689.4375 S: 7.9432 ES: 3.1328 ER: 0.2803
BN: 23 C: 695.0625 S: 7.9405 ES: 3.2305 ER: 2.7512
BN: 24 C: 851.0625 S: 7.9285 ES: 3.1602 ER: 0.5874
BN: 25 C: 834.0000 S: 7.9343 ES: 3.1875 ER: 1.4402
BN: 26 C: 772.1875 S: 7.9327 ES: 3.0469 ER: 3.1087
BN: 27 C: 657.9375 S: 7.9426 ES: 3.0547 ER: 2.8450
BN: 28 C: 554.0000 S: 7.9511 ES: 3.0469 ER: 3.1087
BN: 29 C: 821.1875 S: 7.9343 ES: 3.0273 ER: 3.7739
BN: 2A C: 946.8125 S: 7.9167 ES: 3.1172 ER: 0.7829
BN: 2B C: 908.6875 S: 7.9203 ES: 3.1250 ER: 0.5310
BN: 2C C: 1061.7500 S: 7.9084 ES: 3.0586 ER: 2.7136
BN: 2D C: 2115.1250 S: 7.8768 ES: 3.1289 ER: 0.4055
BN: 2E C: 28234.6827 S: 7.0330 ES: 3.5515 ER: 11.5425

Here when we review the data, we see that the file contains almost entirely sections that fall within the

600-800 range for its Chi-Square score. The values of the Shannon score are also mostly uniform and the

Pi approximation scores almost all approach Pi significantly. This file has been analyzed up and down by

a good cross-section of the world and basically we know that it’s (a) Real or at least wasn’t modified

significantly after the digital copy was created (Research suggests that we can determine that the only

real modification was that someone switched the orientation of the scanned document so that it faced

right side up), (b) that it was created on a fairly high-end scanner (Xerox WorkCenter) and (c) That the

contents of the file in its entirety almost contain compressed images.

So we can explain why these values look almost like a cipher-text, although they lack the appropriate

level of overall uniformity—every block or two has a healthy amount of deviation. This is going to be due

to the compression that was used, which if you recall often results in entropy scores that look fairly

similar to encryption. Again, because the file is a PDF, we note that the last few sections are significantly

different than the rest of the file and this is easily explained by the type of data that comes towards the

end of a PDF (and indeed, PDF files are generally parsed from bottom up as a result).

At any rate, let’s take a look at the file with some packed executables embedded and then look at the

file with one of the same packed executables that has also been encrypted with a one-byte XOR key.

Packed with: Enigma64 (DEMO)
BN: 10 C: 717.8750 S: 7.9417 ES: 3.2305 ER: 2.7512
BN: 11 C: 608.0625 S: 7.9481 ES: 3.1836 ER: 1.3193
BN: 12 C: 737.4375 S: 7.9357 ES: 3.2305 ER: 2.7512
BN: 13 C: 550.0000 S: 7.9539 ES: 3.0664 ER: 2.4519
BN: 14 C: 733.7500 S: 7.9402 ES: 3.1328 ER: 0.2803
BN: 15 C: 832.3750 S: 7.9336 ES: 3.0938 ER: 1.5464
BN: 16 C: 816.5625 S: 7.9349 ES: 3.1328 ER: 0.2803
BN: 17 C: 602.0625 S: 7.9484 ES: 3.1016 ER: 1.2906
BN: 18 C: 831.0000 S: 7.9340 ES: 3.0977 ER: 1.4184
BN: 19 C: 645.1250 S: 7.9464 ES: 3.0625 ER: 2.5826
BN: 1A C: 696.0625 S: 7.9394 ES: 3.0273 ER: 3.7739
BN: 1B C: 17884.1250 S: 7.6515 ES: 3.1719 ER: 0.9547
BN: 1C C: 249.7500 S: 7.9778 ES: 3.1797 ER: 1.1981
BN: 1D C: 261.5625 S: 7.9767 ES: 3.2109 ER: 2.1596
BN: 1E C: 242.7500 S: 7.9783 ES: 3.1172 ER: 0.7829
BN: 1F C: 302.8750 S: 7.9730 ES: 3.1016 ER: 1.2906
BN: 20 C: 242.2500 S: 7.9787 ES: 3.2578 ER: 3.5674
BN: 21 C: 228.2500 S: 7.9801 ES: 3.1523 ER: 0.3411
BN: 22 C: 260.0625 S: 7.9767 ES: 3.1719 ER: 0.9547
BN: 23 C: 260.9375 S: 7.9767 ES: 3.1523 ER: 0.3411
BN: 24 C: 262.0000 S: 7.9769 ES: 3.1172 ER: 0.7829
BN: 25 C: 250.3750 S: 7.9782 ES: 3.1875 ER: 1.4402
BN: 26 C: 217.6875 S: 7.9806 ES: 3.1641 ER: 0.7102
BN: 27 C: 8627.2500 S: 7.7907 ES: 3.1680 ER: 0.8326
BN: 28 C: 108569.0625 S: 6.8816 ES: 3.4375 ER: 8.6082
BN: 29 C: 1090000.4375 S: 2.3658 ES: 3.7617 ER: 16.4852
BN: 2A C: 153039.6250 S: 6.5503 ES: 3.3555 ER: 6.3740
BN: 2B C: 627246.3750 S: 3.0964 ES: 3.5625 ER: 11.8149
BN: 2C C: 494859.5000 S: 4.1338 ES: 3.7227 ER: 15.6088

As we should really expect, the embedded executable was trivial to identify. This is not surprising

because the executable is embedded in plain-text, and so will have a significant spike in locations

associated with the executable files headers even though it’s compressed and encrypted. We see exactly

that, where the Chi distribution score spikes far above average and then drops well below average into

the ranges we’d associate with a cipher-text. As we get to more plain-text executable data structures,

we see that the Chi score again grows and the Shannon entropy score decreases. This ease is to be

expected and is one of the reasons the embedded executables are often encrypted.

Let’s take a look at another that is packed with a different packer:

Packed with: Obsidium64 (DEMO)
BN: 7 C: 593.7500 S: 7.9532 ES: 3.1914 ER: 1.5609
BN: 8 C: 458745.6250 S: 5.0382 ES: 3.5977 ER: 12.6767
BN: 9 C: 723316.1250 S: 3.8925 ES: 3.7305 ER: 15.7856
BN: A C: 313847.8750 S: 5.4424 ES: 2.4297 ER: 29.3003
BN: B C: 615406.6875 S: 3.2006 ES: 1.1445 ER: 174.4873
BN: C C: 182168.5000 S: 5.9883 ES: 2.7656 ER: 13.5943
BN: D C: 227.3750 S: 7.9797 ES: 3.1523 ER: 0.3411
BN: E C: 258.5625 S: 7.9771 ES: 3.1523 ER: 0.3411
BN: F C: 228.3750 S: 7.9797 ES: 3.1367 ER: 0.1554
BN: 10 C: 261.1875 S: 7.9769 ES: 3.1602 ER: 0.5874
BN: 11 C: 278.9375 S: 7.9765 ES: 3.1172 ER: 0.7829
BN: 12 C: 277.3125 S: 7.9753 ES: 3.1680 ER: 0.8326
BN: 13 C: 273.5000 S: 7.9759 ES: 3.1641 ER: 0.7102
BN: 14 C: 261.8125 S: 7.9772 ES: 3.1328 ER: 0.2803
BN: 15 C: 242.1875 S: 7.9785 ES: 3.0312 ER: 3.6402
BN: 16 C: 246.3125 S: 7.9781 ES: 3.1758 ER: 1.0765
BN: 17 C: 239.9375 S: 7.9789 ES: 3.1523 ER: 0.3411
BN: 18 C: 244.0625 S: 7.9781 ES: 3.1055 ER: 1.1632
BN: 19 C: 288.5000 S: 7.9746 ES: 3.1641 ER: 0.7102
BN: 1A C: 241.8750 S: 7.9788 ES: 3.1797 ER: 1.1981

We again see the same pattern, even if the Chi and Shannon scores didn’t deviate so much from the

plain-text portions of the executable, we’d notice the large deviance values when we got to the cipher-

text portions. So let’s take a look at something that is a packer but isn’t really meant for protection

purposes and just uses compression, UPX for instance:

Packed with: UPX
BN: 1F C: 19556.5000 S: 7.6185 ES: 3.1172 ER: 0.7829
BN: 20 C: 1051.3125 S: 7.9135 ES: 3.2461 ER: 3.2193
BN: 21 C: 932.1250 S: 7.9234 ES: 3.3516 ER: 6.2648
BN: 22 C: 987.8125 S: 7.9185 ES: 3.2070 ER: 2.0405
BN: 23 C: 1112.6250 S: 7.9087 ES: 3.3242 ER: 5.4938

BN: 24 C: 901.3125 S: 7.9243 ES: 3.2461 ER: 3.2193
BN: 25 C: 882.8125 S: 7.9252 ES: 3.3750 ER: 6.9158
BN: 26 C: 1076.2500 S: 7.9129 ES: 3.3203 ER: 5.3826
BN: 27 C: 804.1875 S: 7.9321 ES: 3.3594 ER: 6.4828
BN: 28 C: 879.6875 S: 7.9282 ES: 3.3086 ER:5.0475
BN: 29 C: 909.3750 S: 7.9233 ES: 3.3984 ER:7.5577
BN: 2A C: 1694.2500 S: 7.8676 ES: 3.4258 ER: 8.2956
BN: 2B C: 13921.1875 S: 7.5441 ES: 3.2344 ER: 2.8686
BN: 2C C: 201092.0000 S: 6.0933 ES: 3.5625 ER: 11.8149
BN: 2D C: 1008145.8750 S: 2.8663 ES: 3.7617 ER: 16.4852
BN: 2E C: 191183.8750 S: 6.1814 ES: 3.4258 ER: 8.2956
BN: 2F C: 657594.1250 S: 3.0702 ES: 3.6445 ER: 13.7998
BN: 30 C: 343743.0625 S: 4.5307 ES: 3.7578 ER: 16.3984
BN: 31 C: 4400.4375 S: 7.8389 ES: 3.1680

Here again, we see the large deviations when it encounters the plain-text data structures, however the

executable data itself conforms pretty closely to the data in the host file—this is because it is not

encrypted but rather compressed, just like the data stored in the file. So that was trivial, but at least in

part because we could easily see the plain-text portions due to the large deviations and/or the cipher-

text where the level of information entropy grew significantly. How about we take a look at the UPX

data again, but this time let’s use a one-byte XOR key:

BN: 17 C: 602.0625 S: 7.9484 ES: 3.1016 ER: 1.2906
BN: 18 C: 831.0000 S: 7.9340 ES: 3.0977 ER: 1.4184
BN: 19 C: 704.5000 S: 7.9427 ES: 3.0938 ER: 1.5464
BN: 1A C: 16275.0000 S: 7.6213 ES: 3.2734 ER: 4.0277
BN: 1B C: 927.0625 S: 7.9235 ES: 3.3047 ER: 4.9353
BN: 1C C: 1001.1250 S: 7.9185 ES: 3.3789 ER: 7.0234
BN: 1D C: 1043.6875 S: 7.9123 ES: 3.2773 ER: 4.1421
BN: 1E C: 988.3125 S: 7.9188 ES: 3.2656 ER: 3.7981
BN: 1F C: 898.3750 S: 7.9250 ES: 3.3203 ER: 5.3826
BN: 20 C: 987.8125 S: 7.9191 ES: 3.4297 ER: 8.4000
BN: 21 C: 864.8125 S: 7.9262 ES: 3.3242 ER: 5.4938
BN: 22 C: 814.2500 S: 7.9335 ES: 3.2891 ER: 4.4836
BN: 23 C: 979.1875 S: 7.9175 ES: 3.3750 ER: 6.9158
BN: 24 C: 1247.6875 S: 7.8982 ES: 3.4414 ER: 8.7120
BN: 25 C: 10055.5000 S: 7.6308 ES: 3.3594 ER: 6.4828
BN: 26 C: 71387.8750 S: 6.9820 ES: 3.4180 ER: 8.0860
BN: 27 C: 1076078.0000 S: 2.4082 ES: 3.7930 ER: 17.1733
BN: 28 C: 159641.3125 S: 6.5189 ES: 3.4180 ER: 8.0860
BN: 29 C: 616041.1250 S: 3.1197 ES: 3.4688 ER: 9.4316
BN: 2A C: 547725.6250 S: 3.8207 ES: 3.7188 ER: 15.5202
BN: 2B C: 18376.4375 S: 7.4728 ES: 3.3359 ER: 5.8258

Here we have the same executable still embedded in the long-form birth certificate. It has been packed

with UPX and then the resulting executable was encrypted with a single byte XOR key. As with the plain-

text executable, it’s fairly trivial to spot where it starts. If you said block 0x1A, you’d be almost correct. It

actually starts in block 0x19 however it starts almost at the very end of that block and thus doesn’t

significantly impact the distribution as a result. So we can see that even with the executable being

packed and then encrypted, the differences between it and even compressed data is significant enough

to easily spot it relative to the host file. To demonstrate one last feature, let’s take a look at this file

when the utility is told to generate the data for sequential deviations—which is to say that it will print

the differences between scores for block 1 to block 2, and block 2 to block 3 and block 3 to block 4 and

so on. We’re not going to spend a whole lot of time on it, as it doesn’t actually show us a whole lot new

in terms of analyzing this file, but it’s actually a pretty handy feature for spotting abnormal spikes and

valley’s within the data relative to one block to another.

We specify that by passing the –seqdev option, or we can pass one of the other related options such

as –seqxy which operates the same but you can specify only a subset of the blocks that you want to

view:

$ bin/edfind.py --seqdev birth-certificate-long-form-ONE-UPX.pdf | less

Which produces the output:

BN [17 : 18] C: 31.9508 S: 0.1822 ES: 0.1260 ER: 9.4300
BN [18 : 19] C: 16.4767 S: 0.1103 ES: 0.1262 ER: 8.6382
BN [19 : 1A] C: 183.4035 S: 4.1303 ES: 5.6442 ER: 89.0285
BN [1A : 1B] C: 178.4430 S: 3.8880 ES: 0.9501 ER: 20.2508
BN [1B : 1C] C: 7.6821 S: 0.0636 ES: 2.2209 ER: 34.9225
BN [1C : 1D] C: 4.1630 S: 0.0785 ES: 3.0516 ER: 51.6104
BN [1D : 1E] C: 5.4503 S: 0.0829 ES: 0.3582 ER: 8.6644
BN [1E : 1F] C: 9.5339 S: 0.0783 ES: 1.6607 ER: 34.5179
BN [1F : 20] C: 9.4834 S: 0.0749 ES: 3.2407 ER: 43.7856
BN [20 : 21] C: 13.2785 S: 0.0897 ES: 3.1232 ER: 41.8348
BN [21 : 22] C: 6.0227 S: 0.0928 ES: 1.0632 ER: 20.2489
BN [22 : 23] C: 18.3934 S: 0.2023 ES: 2.5791 ER: 42.6711
BN [23 : 24] C: 24.1145 S: 0.2447 ES: 1.9484 ER: 22.9871
BN [24 : 25] C: 155.8465 S: 3.4438 ES: 2.4124 ER: 29.3407
BN [25 : 26] C: 150.6135 S: 8.8797 ES: 1.7291 ER: 22.0080
BN [26 : 27] C: 175.1146 S: 97.4170 ES: 10.4009 ER: 71.9521

Here the format is slightly different, where the block number is in other output is actually a range of

block numbers, specifying that we’re comparing one block to another—for instance the first line “BN [

17 : 18]” says that the data being produced is the difference in scores for block 0x17 to block 0x18.

The rest of the line has the standard format. As we can see, once we get out of the XOR encrypted

executable header data and into the compressed body, the difference between sequential blocks is

relatively low. Moreover the variance between the Shannon scores is extremely low, mostly ranging less

than 0.09%. While we’re not demonstrating any new analysis in this particular example, this feature is

useful once a suspect range has been identified and you want to say essentially “and show me all of the

blocks that come after the suspect block that only vary by X%”.

So to review what we’ve covered:

 Packed executables do not overly present a problem, especially the ones focused more on

providing software security versus ones that just exist to make the executable smaller. This is

largely due to the fact that the cipher-text varies significantly and really won’t occur at the ratios

examined unless the host file data is also encrypted.

 Even when the packed file is subsequently XOR encrypted, we can easily spot the differences

from the host file data.

 A packer or similar scheme that compressed the data instead of encrypting it is more likely to

bypass any entropy-based anomaly checks.

 The sequential deviation option can be useful in more automated analysis styles to tell the tool

to also show you blocks which only deviate a certain amount after an initial suspect block is

identified.

3.2 Putting it all together: automated analysis

While much of this manual has been focused on using the included example utility, edfind.py, the actual

intention of this module is to provide a basic starting point for analyzing potentially suspicious files

without performing expensive XOR brute force searches or similar. We can attempt to identify

differences in the entropy levels and when we encounter a circumstance that matches then we can “drill

down” and perform more expensive analysis.

Included in the edfind.py utility is a pure example function that attempts to identify suspicious block

ranges in the spirit of performing such analysis in an automated manner. As stated elsewhere in the

manual, these tests and in particular the ratios used are not expected to be overly successful when

operating on real data sets and is not intended to do so. Rather, it is intended to provide a starting

pointing for a person who seeks to utilize entropy analysis to identify hidden data as to the types of tests

that can be performed and serve as a mental Launchpad of sorts for extending and modifying the base

ideas presented in this module and manual. What follows is a brief description of the type of tests it

performs.

The steps performed, in order are:

1. Attempt to find blocks with a high amount of deviation related to blocks around them. This calls

into the Python extension and retrieves the sequential deviation for each block. It then

compares this deviation to values passed as parameters to the method.

2. From this list of blocks, it attempts to identify sequential blocks that have:

a. Relative uniformity in their Chi-Square score

b. Deviate significantly from their neighbor blocks

3. If the suspicious blocks we’ve identified match the prior criteria, we then check to see if the

Shannon score for the block immediately preceding it to see if it differs significantly in the

amount of information entropy it has, and if so it checks the block that follows to see if the two

blocks have relative uniformity in the amount of information entropy they both have.

4. If the results of (3) are positive, then we attempt to identify the entire range of blocks by looking

for sequential blocks that have relative low Shannon scores when compared to one another.

5. If the results of (4) are positive, then we check the range to see if there is relative uniformity in

the Chi-Squared scores when compared to one another.

6. We take all of the block ranges that conform to these standards and compile them into a list.

We then check that list for ranges that neighbor each other but are within a short distance from

one another. We do this due to the fact that there is often significant outlier blocks in the data

and this will cause blocks that are part of the same executable to be identified as two different

suspicious ranges of blocks. By coalescing this, we can better identify them as a contiguous

region.

7. We then print out the blocks that have matched all of these criteria.

The tests themselves are written very loosely, as stated towards the beginning of this document it had a

relatively high false positive rate and a higher than wanted false negative rate, but that this functionality

was written against a single file with an embedded executable and not overly tested against a more

authoritative dataset. This functionality is largely intended as an illustrated example of the types of tests

that can be put together to help weed through large data-sets and thus save the more resource

intensive tests for files that more adequately fit a criteria rather than attempting them on every single

file.

3.3 Conclusion

In this manual, we have outlined the Python and C++ classes that comprise the extension, we have

further illustrated example usages of a demonstration utility included with the distribution. We have

analyzed files and demonstrated that the method of utilizing entropy analysis to help identify rogue data

from benign is indeed useful. We have further tied together various parts of the utility into a very simple

series of tests that demonstrate the type of tests one would want to perform to weed out benign data

from the more interesting data in order to optimize the over-arching process. We have shown that when

viewed from this perspective, it is actually not trivial to hide the embedded file without taking significant

steps to match the embedded data to its host file and that utilizing encryption often makes it easier to

identify, not harder. As such the attacker is forced into a trade-off, where in one sense it is harder to

identify the hidden data because it is not embedded plain-text, but is easier to identify as being deviant

relative to the host file precisely because it is not plain-text and deviates significantly from the data it is

embedded in.

It is expected as time progresses the techniques used to embed this data will evolve and better model

its host, but for the time being: this is not the case and entropy analysis is a cheap useful tool to deploy.

