
The EntropyDeviationType Python 
Extension 

 

EntropyDeviationType is an extension that is intended for finding data hidden within other data 

with no knowledge of the data itself. Specifically, the intended use case is to identify executable files 

(Portable Executables specifically) embedded in non-executable files. For example, malware hidden 

within a Microsoft Word or PDF document. This is a common occurrence within Advanced Persistent 

Threat (APT) style attacks which leverage client-side attacks in common business office file formats and 

often follow the generic pattern that within the exploit is a XOR encrypted executable that is dropped to 

the compromised system and then the host document is cleaned to remove the exploit. 

 

The module contains two classes, entropyDeviationType and xorTableSearchType. Both 

classes are intended as proof of concepts and not immediately exportable to production. This package 

also contains an example utility, ``edfind.py``, which serves as both an immediately usable utility and as 

a rough primer on how to use the extension to quickly analyze and locate rogue data hidden within 

benign information streams. 

 

1.0 DISCLAIMER 
 

YOUR MILEAGE MAY VARY. AS WITH EVERYTHING TEST THOROUGHLY YOURSELF BEFORE UTILIZING 

IN PRODUCTION CODE. THIS MODULE HAS NOT RECEIVED EXTENSIVE TESTING AND MAY CONTAIN 

BUGS NO WARRANTY, EXPLICIT OR IMPLICIT IS PROVIDED. IT IS THE INTERNET. TRUST BUT VERIFY 

  



Contents 
1.0 DISCLAIMER ............................................................................................................................................. 1 

2.0 Class Descriptions ................................................................................................................................... 3 

2.1 Python Class Descriptions ................................................................................................................... 4 

2.1.1 The entropyDeviationType Python class...................................................................................... 4 

2.1.2 The entDevReturnType Python Class ......................................................................................... 10 

2.1.3 The distributionType Python class ............................................................................................. 12 

2.1.4 The entDevType Python Class .................................................................................................... 13 

2.1.5 The xorTableSearchType Python Class ...................................................................................... 15 

2.1.6 The xorTableReturnType Python Class ...................................................................................... 17 

2.2 C++ Class Descriptions ...................................................................................................................... 19 

2.2.1 The chunk_t C++ structure ......................................................................................................... 19 

2.2.2 The dist_t C++ Structure ............................................................................................................ 21 

2.2.3 The entropy_retval_t C++ Structure .......................................................................................... 23 

2.2.4 The entropy_wrapper_t C++ Class ............................................................................................. 26 

2.2.5 The entropy_t C++ class ............................................................................................................. 29 

2.2.6 The xor_table_ret_t C++ structure ............................................................................................ 33 

2.2.7 The xor_table_wrapper_t C++ Class .......................................................................................... 35 

2.2.8 The xor_table_t C++ Class .......................................................................................................... 37 

3.0 The epfind.py Utility .............................................................................................................................. 39 

3.0.1 epfind.py Command Line Options ................................................................................................. 39 

3.1.0 epfind.py Example Usage ............................................................................................................... 41 

3.1.1 Analysis of a PDF Document with an embedded executable encrypted with a one-byte key .. 41 

3.1.2 Files with higher-entropy embedded data / One-Time Pad XOR .............................................. 51 

 

  



2.0 Class Descriptions 
 

This extension is written in C++ with Python bindings provided by boost::python, in all earnest, if I 

was you, I would just use the C++ natively, but I am also biased towards C++. I have provided the Python 

bindings because that is a commonly requested interface. Layered on top of the C++ are the two Python 

classes that expose the functionality of the C++ module. 

Experimental testing has shown that even with multiple iterations through the data set that this method 

is far quicker than brute-force XOR methods or even generating a table of pre-computed XOR encrypted 

values, id est: 

 
for (auto x = 0; x < 255; x+=2) 

                                                                              var[x]     = 'M'^x; 
var[x+1] = 'Z'^x; 

                                                                   [...] 
 

 

  



2.1 Python Class Descriptions 

 

The following subsections detail the pure Python classes and related pseudo-classes that are generated 

by boost::python that are the interfaces or return types by the pure Python classes. These classes 

are: 

 entropyDeviationType The main pure Python class. 
 entDevType Pseudo-class that entropyDeviationType 

interfaces with. 
 entDevReturnType Pseudo-class that is the main return type used by 

entDevType and 
entropyDeviationType. 

 distributionType Pseudo-class that is the return type used by 
character frequency analysis related methods.  

 xorTableSearchType The main pure Python class. 
 xorTableType Pseudo-class that xorTableSearchType 

interfaces with. 
 xorTableReturnType Pseudo-class that is the only return type used by 

the xorTableSearchType and 
xorTableType classes. 

 

   

2.1.1 The entropyDeviationType Python class 

 

The entropyDeviationType class performs statistical entropy analysis to attempt to find significant 

deviations in an unknown blob of data such that you can find embedded PE files or otherwise abnormal 

data streams embedded into the host file. The functionality provided, theory, Python class interface 

documentation and C++ class interface documentation are detailed in-depth in this document. 

The basic theory is that a PE file will have a different distribution than the file it is in embedded in, 

especially if it is encrypted whether it be XOR encrypted or otherwise. As such, you can split the data 

into chunks and analyze the distribution and look for deviation within the file. This class performs a Chi 

Square distribution test, Shannon entropy analysis and Monte Carlo Pi approximation upon a file and 

provides an interface to retrieving the scores of a given block of data and the whole file and also to 

calculating deviances of one block to another, the whole file or all blocks.  

WARNING: IN A FUTURE RELEASE IT IS EXPECTED THAT THE MONTE CARLO PI APPROXIMATION WILL BE REMOVED 

AND REPLACED BY A MORE USEFUL METRIC 

 

 

 



2.1.1A entropyDeviationType Python Class Description 

 

 

__init__(bs = 8192) Takes a parameter, bs that represents the 
block size represented in byte to be used.  
The default value is 8192 or 8KB 

openFile(name, whole = False) Opens and reads the file specified by name 
performs whole file analysis if ``whole`` is 
``True`` 

isValidBlockNumber(idx, base = 16) Checks that a given index, idx is within 
the range of valid blocks; defaults to base 
16 format, modified by the ``base`` 
parameter. Returns True if the index is 
valid.  

isValidBlockRange(low, high, base = 16) Checks that a given range of indices 
demarked by low` and high are valid; 
defaults to base 16 format and modified by 
the base parameter. Returns True if the 
range is valid.  

getScore(idx, base = 16) Gets the Chi, Shannon and Pi 
approximation score for a given block 
indicated by idx, which by default is 
specified in base 16 format but can be 
changed via the base parameter. Returns 
a entDevReturnType class; Throws an 
instance of ValueError if the idx is 
invalid. 

getAllScores() Retrieves the Chi, Shannon and Pi 
approximation scores for all blocks in the 
file. Returns a list() of 
entDevReturnType objects. 

getWholeFileScore() Retrieves the Chi, Shannon and Pi 
approximation scores for the entire file. 
Returns an entDevReturnType 
instance. 

getXYDeviation(x, y, base = 16) Retrieves the Chi, Shannon and Pi 
approximation deviation scores between 
two blocks indicated by the parameters x 
and y, which by default are specified in 
base 16 format but is changeable via the 
base parameter. Returns an 
entDevReturnType instance or throws 
an instance of ValueError if the 
specified range is invalid. 

getBlockAllDeviation(x, base = 16) Retrieves the Chi, Shannon and Pi 
approximation deviations between all 



blocks in a file against the block specified 
by the parameter x, which by default is 
specified in base 16 format, but is 
changeable via the base parameter.  
Returns a list() of 
entDevReturnType instances or 
throws an instance of ValueError if x is 
invalid. 

getWholeFileDeviation(x, base = 16) Returns an entDevReturnType 
instance containing the deviations for a 
block indicated by the parameter ``x`` 
relative to the entire file. The index is 
specified in base 16 by default, however 
that is customizable via base parameter. 
Throws an instance of ValueError if x is 
invalid. 

getSequentialDeviation(x = 0, y = 0, base = 16) Calculates the deviation for sequential 
blocks, both prior and following within a 
range of blocks that is specified by the x 
and y parameters or every block in the file 
by default. The x and y parameters by 
default are specified in base 16 format 
however this is customizable via the 
``base`` parameter. Returns a list() of 
dict() objects with the keys prior, 
next,  index and dev for the prior block 
number, next block number, the block the 
deviations are relative to and an instance 
of entDevReturnType respectively. 
Only one of the prior and next keys will 
be valid in any given list element. The 
other will have a value of None.  Throws a 
ValueError if the index range specified 
by x through y is invalid. 

findHighDeviation(c = 100, s = 20, e = 1) THIS METHOD IS AN ILLUSTRATED 

EXAMPLE ONLY. 
Attempts to find blocks with high deviation 
values relative to the blocks around it. 
What constitutes high deviation is 
specified by the c, s and e parameters 
that denote the Chi Square, Shannon and 
Pi approximation Estimate respectively. 
Returns a list() of 
entDevReturnType instances for any 
blocks that match an empty list() if 
there were no matches.  

getBlocksAverage(ilist) Averages the Chi, Shannon and Pi 
approximation values in a list() 



specified by the ilist parameter. 
Returns an entDevReturnType 
instance or throws a ValueError 
instance if the method was passed an 
empty list() for in the ilist 
parameter. 

isHighAverageChi(maxv, chi = 15) WARNING: METHOD IS AN ILLUSTRATED 

EXAMPLE ONLY. 
Identifies blocks with uniform or near 
uniform Chi distributions for a range 
between the first block and the block 
specified by maxv. The blocks in that range 
have their scores averaged and then if the 
average exceeds a percentage specified by 
the chi parameter it returns True. 
Otherwise it returns False. The maxv 
parameter is specified in base 16 format 
and methods called by this method can 
throw a ValueError when an invalid 
maxv is specified. 

priorHighAndNextLowShannon(idx, high = 20.0, low = 
2.5) 

WARNING: METHOD IS AN ILLUSTRATED 

EXAMPLE ONLY. 
Attempts to identify the beginning of a 
significant deviation by attempting to 
determine if the block denoted by the 
parameter idx has a high percentage of 
deviation in its Shannon score relative to 
the prior block and a low percentage of 
deviation in its Shannon score in the block 
that follows it. The high and low marks are 
denoted by the parameters high and low 
and default to 20% and 2.5% respectively. 
These values were chosen based on 
deviations in a very small sample and will 
result in high false negative and false 
positive results. Returns True if the prior 
blocks Shannon deviation exceeds high 
and the following blocks is less than low, 
otherwise it returns False.  A 
ValueError is thrown if idx, idx-1 or 
idx+1 are invalid. 

getSequentialLowShannon(idx, low = 1.7) WARNING: METHOD IS AN ILLUSTRATED 

EXAMPLE ONLY. 
Attempts to identify sequential blocks of 
deviant data by looking for low Shannon 
score deviations in sequential blocks.  The 
block to start at is specified by the idx 
parameter, which is specified in base 16 



format. What exactly constitutes a low 
percentage of deviation is specified by the 
parameter low, which defaults to 1.7%. 
This value was chosen based on analysis of 
a very small set of samples and is likely to 
result in high amounts of false positive and 
false negatives as a result. Returns the 
index of the highest block following idx 
that has a relative Shannon deviation less 
than low, or the index specified by idx if 
the following block does not match. 
Throws a ValueError if the index 
specified is invalid. 

getSequentialCloseChi(lidx, hidx, dmax = 26.0) WARNING: METHOD IS AN ILLUSTRATED 

EXAMPLE ONLY. 
Attempts to identify related deviant blocks 
between a range specified by the indices 
lidx and hidx respectively. Specifically 
this method attempts to identify blocks 
that have Chi Square scores that are within 
dmax percent of one another, which 
defaults to 26%. This value was chosen 
based on analysis of a very small sample 
set and is likely to result in high false 
positive and false negative rates if used as 
is. The theory is based on the observation 
that the distribution of shorter XOR keys 
varies relatively little. Returns the highest 
index of a block that follows lidx that 
deviates less than dmax percent, or lidx 
if the block immediately following lidx 
exceeds dmax%. Throws a ValueError 
if the index range specified is invalid. 

coalesceSequential(lst, maxv = 2) Takes a list() of tuple()'s in the 
format of tuple((lowIndex, 
highIndex)) indicating a start and stop 
range of blocks and checks to see if 
sequential list elements have nearly 
overlapping ranges  with a distance less 
than or equal to maxv. The concept 
behind this method is that once a 
sequence of suspicious blocks are 
identified it is not uncommon for a few 
outlier blocks to cause multiple ranges of 
suspect blocks that really is a single range 
of blocks. As such, this method checks to 
see if that is the case and coalesces the 
indices into a single range of blocks. 



Returns a list() of tuple()'s with 
high and low ranges. 

calculateDistribution(x = 0, y = 0, base = 16) Takes a range of block indices denoted by 
x and y, which are specified in base 16 
format by default and calculates the 
frequency each character occurs in the 
block range. The idea is that shorter XOR 
keys across real data tend to encounter the 
value zero a lot, which leaks the key in 
question. Thus by analyzing the frequency 
of characters in a block range, we can 
easily spot abnormal sequential 
frequencies and quickly identify an XOR 
key as a result. Returns a list() sorted 
in descending order of 
distributionType instances of length 
256. Throws a ValueError if the range 
specified by x through y is invalid. 

 

 

  

 

 

 

  



2.1.2 The entDevReturnType Python Class  

 

The entDevReturnType class is a pseudo-class that is generated by boost::python that wraps a 

native C++ structure. It is used as the main return type in the entropyDeviationType Python class. 

It contains the Chi-Square distribution test score, Shannon entropy analysis score and the Monte Carlo 

method Pi approximation score and error values. The exact interpretation of the data within the class 

varies depending on the context it is used in. It is either the exact score of a block or file, or how much 

each of the respective scores deviates from another block or the entire files score. 

 

2.1.2A entDevReturnType Python Class Description 

 

__init__(chi = 0.0, shannon = 0.0, estimate = 0.0, error = 0.0) 
 

The constructor optional takes the 
four parameters, chi, shannon, 
estimate and error that 
initializes the respective member 
properties, or otherwise initializes 
them all to a value of 0.0. 

ChiSquareValue A read-only value that contains a 
Chi-Square distribution value. 

chi_square_value An alias for ChiSquareValue. 
ChiSquare A read-write property that contains 

a Chi-Square distribution value. 
chi_square An alias for ChiSquare. 
ShannonValue A read-only value that contains the 

Shannon Entropy distribution 
value. 

shannon_value An alias for ShannonValue. 
Shannon A read-write property that contains 

the Shannon Entropy distribution 
value. 

shannon An alias for Shannon 
EstimateValue A read-only value that contains the 

estimated Monte Carlo Pi 
Approximation value. 

estimate_value An alias for EstimateValue. 
Estimate A read-write property that contains 

the estimated Monte Carlo Pi 
Approximation value. 

estimate An alias for Estimate. 
ErrorValue A read-only value that contains the 

percentage of error from Pi that 
the Estimate is. 

error_value An alias for ErrorValue. 



Error A read-write property that contains 
the percentage of error from Pi the 
Estimate is. 

error An alias for Error. 
 

 

  



2.1.3 The distributionType Python class  

 

The distributionType class is a psuedo-class that is generated by boost::python that wraps a 

native C++ structure. It is used as a return type in methods dealing with character frequency in the 

entropyDeviationType Python class. 

 

2.1.3A distributionType Class Description 

 

__init__(value = 0, count = 0) The constructor optionally takes two parameters 
that set the value of the value and count 
parameters, otherwise they are initialized to 
zero. 

Value  A read-write property that represents the byte 
value in question, ranges from 0 to 255. 

value An alias for Value. 
Count A read-write property that is the number of times 

the Value occurred. 
count An alias for Count. 

 

  



2.1.4 The entDevType Python Class 

 

The distributionType class is a psuedo-class that is generated by boost::python that wraps a 

native C++ class. It is used as the main interface to C++ by the entropyDeviationType pure Python 

class. 

 

2.1.4A entDevType Class Description 

 

__init__(blockSize = 8192) 
__init__(data, blockSize = 8192, whole = False) 

Constructors that take the following parameters:  
 
data               The contents of the file. 
blocksize     The size of blocks to break data  
                             into. 
whole                Indicates whether to perform   
                            whole file analysis or not. 

setData(data) 
setData(data, blockSize = 8192, whole = False) 

Sets the contents of a file to perform analysis 
upon. It takes the following parameters: 
 
data               The contents of the file. 
blocksize The size of the blocks to break  
                             data into. 
whole                Indicates whether to perform  
                             whole file analysis or not. 

calculate() 
calculate(x) 
calculate(x,y) 

Methods that perform the actual entropy analysis 
that take the following parameters: 
 
x The block to calculate. 
y The ending block to calculate, forms a  
               range of x through y blocks. Throws an  
               instance of ValueError if any of the  
               indices are invalid. 

calculateDistribution(x,y) Method that calculates the frequency distribution 
between a range of blocks starting with x and 
ending at y. Throws an instance of 
ValueError if the range x through y is invalid. 

count() Returns the size of the list() of blocks 
representing the file. 

maxIndex() The maximum index of the list() of blocks 
representing the file. Equivalent to count()-1 
for values of count() that are greater than 
zero. 

getDeviation(x,y) Calculates the deviation between the blocks 
specified by x and y. Returns an 
entDevReturnType instance. Throws an 



instance of ValueError if the range specified 
by x through y is invalid. 

getAllDeviations(x) 
 

Calculates the deviation of *all* blocks in the file 
relative to the block at index x. Returns an 
entDevReturnType instance. Throws an instance 
of ValueError if the index specified by x is 
invalid. 

getWholeFileDeviation(x) Calculates the deviation of the entire file taken as 
a whole relative to the block at index x. Returns 
an entDevReturnType instance. Throws an 
instance of ValueError if the index specified 
by x is invalid. 

getScore(x)  Retrieves the Chi Square, Shannon, and Monte 
Carlo Pi approximation scores for the block 
specified by x. Returns an instance of 
entDevReturnType. Throws an instance of 
ValueError if the index specified by x is 
invalid. 

getWholeScore() Retrieves the whole file score. Returns an 
instance of entDevReturnType. 

getAllScores() Retrieves the entropy scores for all blocks in the 
file. Returns an instance of 
entDevReturnType. 

reset() Reset the internal distribution/frequency 
statistics. 

getDistribution() Returns the distributionType calculated by 
the calculateDistribution method. 

 

  



2.1.5 The xorTableSearchType Python Class 

 

``xorTableSearchType`` is intended as a simple proof of concept that hopes to inspire incident response 

teams to rethink some of their approaches to identifying this sort of data. Specifically, the common 

method for identifying embedded executables is generally to attempt to brute force all possible XOR 

keys looking for combinations of the DOS magic header value, the common string contained within the 

DOS stub executable and/or the PE magic header. This is expensive both in terms  of resources 

expended and time and is prone towards false positives and false negatives as the occurrence of these 

strings is not unique nor entirely uncommon, for instance all of them often occur on related mailing lists. 

Moreover, in order to reduce false positives many people have grown a dependence on strings 

commonly contained within the DOS stub header, which has no guarantee to actually exist. 

The brute force itself is expensive, as teams often attempt to brute force all keys between 1 and 8 or 

more bytes across the entire file that generates [28+216+224+232+2+240+248+256+264] keys and 

with roughly the complexity of: 

  

 
(N*28)+((N/216)*216)+((N/224)*224)+((N/232)*232)+ 

((N/240)*240)+((N/248)*248)+((N/256)*256)+((N/264)*264) 
 

 

Where N is the length of the file in question. As such, this is a pretty intensive process and isn't realistic 

for tasks such as real-time scanning and similar. The approach demonstrated in this class pre-computes 

all possible one-byte XOR'd values for the strings MZ and PE\0\0. It then iterates across the blob of 

data looking first for a value that matches the MZ string and if found then scans within a certain limit 

(defaults to 512 bytes) for the string PE\0\0. If that value is found, then it uses the matching one-byte 

key at the offset 0x3C from the MZ string to extract the offset to the PE header, if the value extracted 

matches the location of the PE magic string previously found, then we classify it as having found an 

embedded PE. It is our suspicion that using this methodology will result in a lower false-positive and 

lower potential false-negative rate with a faster total overhead than methods iteratively looking for the 

various strings and/or looking for the generic DOS stub string (which may not even be present). This 

method is expected to result in lower false positives than the statistical approach at a much, much 

higher resource and time cost, but only for one-byte XOR keys. It is of course possible to utilize the same 

general algorithm for longer keys, largely bounded by the system resources. These longer key lengths 

were not implemented as this was only intended as a proof-of-concept that improves upon other public 

XOR brute force methods. 

 

 

 

 



2.1.5A xorTableSearchType Python Class Description 

 

__init__(maxoff = 512, base = 10) Takes the parameter maxoff which indicates 
how far after an instance of the string MZ the 
class should look for the PE header magic value. 
Defaults to 512, specified in base 10 format but is 
changeable via the base parameter 

openFile(name) Opens and reads the file specified by name 
findFirst() 
 

Attempts to find the first instance of an 
embedded PE executable within another stream. 
Returns an instance of xorTableReturnType 
if any PE files were found, otherwise it throws an 
instance of UserWarning. 

findAll() Attempts to find ALL instances of embedded PE 
files within another stream. Returns a list() of 
xorTableReturnType instances, one for 
each PE file that was found. Otherwise it throws 
an instance of UserWarning if there were no 
embedded PE files located. 

 

  



2.1.6 The xorTableReturnType Python Class 

 

The xorTableReturnType class is a psuedo-class that is generated by boost::python that 

wraps a native C++ structure. It is used as a return type in all methods that return a value in the 

xorTableSearchType Python class.  

 

2.1.6A xorTableReturnType Class Description 

 

Offset A read-write property that contains the offset 
within the file that the first byte of the encrypted 
PE file was found. 

offset An alias for the Offset property. 
Key A read-write property that contains the value of 

the key that the encrypted PE file found was 
encrypted with. 

key An alias for the Key property. 
 

  



2.1.7 The xorTableType Python Class  

The xorTableType class is a psuedo-class that is generated by boost::python that wraps a native C++ 

class. It is used as the main interface by the xorTableSearchType Python class. 

 

2.1.7A xorTableType Class Description 

 

__init__(max_peoff = 512) 
__init__(data, max_peoff = 512) 

The first constructor that takes an optional 
integer, max_peoff that specifies how far in 
bytes the class should search after locating the 
DOS magic string value. The second constructor 
takes a string, data that is the contents of the 
file to be searched. The optional parameter 
max_peoff indicates how far in bytes the class 
should search after locating the DOS magic string 
value. 

setData(data) Takes a string, data that is the contents of the 
file to be searched. 

findFirst() Searches the contents of a file for an encrypted 
PE file; returns only the first embedded PE file 
found. 

findAll() Searches the contents of a file for all encrypted 
PE files contained within it.  

 

  



2.2 C++ Class Descriptions 

 

This extension is primarily written in C++. The aforementioned Python classes are wrappers to their 

respective C++ classes and one can also elect to further extend them or otherwise extract them for their 

own project. 

The classes are written in portable C++11 and are free and clear from any platform specific constructs 

and as such should compile without complication on any platform that has a mostly standards compliant 

Standard Template Library and C++ compiler that supports C++11. Furthermore, as the classes primarily 

utilize specific integer widths, the classes should have no complication on either 32-bit or 64-bit 

platforms. 

 

The classes were written initially in a Microsoft Visual Studio 2013 environment and then later exported 

to a Linux/G++ environment for Python. The extension at present does not compile cleanly as a Python 

module under Windows primarily due to the requirement that native extensions utilize the same MSVC 

library that the Python library was compiled against, which is an extremely outdated version. Moreover, 

the wrappers that convert STL C++ containers to Python data types apparently use Python C API 

functionality that changed or was removed in Python 3, specifically functions relating to PyString's. 

Aside from that, the classes should compile and operate cleanly against Python 3, however this has not 

been tested. 

 

 

2.2.1 The chunk_t C++ structure 

 

The ``chunk_t`` structure is utilized in several places throughout the Python extension and represents 

the base data type for what is referenced as blocks throughout this documentation. It is a simple 

structure containing only two members which are accessible via direct access. This structure is not 

accessible directly from the Python class interface and is abstracted away from the user. 

 

2.2.1A chunk_t Structure Description 

 

 
 typedef std::shared_ptr< uint8_t > byte_buf_t; 
 
 struct chunk_t { 
         byte_buf_t  buf; 
         std::size_t len; 
 
         chunk_t(void); 



         chunk_t(const std::vector< uint8_t >& v); 
         ~chunk_t(void); 
 }; 
 
 typedef std::vector< chunk_t > chunk_vec_t; 
 

 

byte_buf_t buf A std::shared_ptr to uint8_t that points 
to the actual data of the chunk. 

std::size_t len An unsigned integer of type std::size_t that 
refers to the length of the memory pointed to by 
the buf member. 

chunk_t(void) 
chunk_t(std::vector< uint8_t >&) 

The constructors with the first being the default 
constructor that initializes buf to nullptr and 
len to zero. The second constructor takes a 
reference to std::vector< uint8_t > and 
initializes buf to point to dynamically allocated 
memory that is a copy of the std::vector< 
uint8_t >. len is initialized to contain the 
length of the buf member. 
 

chunk_vec_t A std::vector containing an array of 
chunk_t objects. 

 

  



2.2.2 The dist_t C++ Structure 

 

The dist_t structure is utilized in several places throughout the Python extension and represents the 

base data type for what is referenced as blocks throughout this documentation. It is a simple structure 

containing only two members which are accessible via direct access or via getter and setter methods, 

which are in place primarily as to take advantage of boost::python property related functionality. 

This class is the underlying C++ structure for the Python distributionType class. 

 

2.2.2A dist_t Class Description 

 

 
 struct dist_t { 
         uint8_t         value; 
         std::size_t     count; 
 
         dist_t(void); 
         dist_t(uint8_t, std::size_t); 
         ~dist_t(void); 
         uint8_t getValue(void); 
         void setValue(uint8_t); 
         std::size_t getCount(void); 
         void setCount(std::size_t); 
 }; 
 
 typedef std::vector< dist_t > dist_vec_t; 
 

 

 

uint8_t value The uint8_t member that refers to the specific 
byte value in question. 

std::size_t count A std::size_t width integer that refers to 
the number of occurrences of value. 

dist_t(void) 
dist_t(uint8_t, std::size_t) 

The constructors, with the first taking no 
parameters and initializes value and count to 
values of zero. The second constructor initializes 
the values of value to its first parameter and 
count to its second. 

uint8_t getValue(void) A getter method that is utilized by the Python 
wrapper class distributionType. This 
method returns the value member. This 
method is called whenever a user accesses the 
value or Value property in a 
distributionType object in Python. 



void setValue(uint8_t) A setter method that is utilized by the Python 
wrapper class distributionType. This 
method sets the value member to the value of 
its only parameter. This method is called 
whenever a user sets the value or Value 
property in a distributionType object in 
Python. 

std::size_t getCount() A getter method that is utilized by the Python 
wrapper class distributionType. This 
method returns the count member. This 
method is called whenever a user accesses the 
count or Count property in a 
distributionType object in Python. 

void setCount(std::size_t) The setter method that is utilized by the Python 
wrapper class distributionType. It sets the 
count member to the value of its only 
parameter. This method is called whenever a 
user accesses the count or Count property in a 
distributionType object in Python. 

dist_vec_t A std::vector of dist_t objects. This is 
represented by a list() of 
distributionType instances in Python. 

 

  



2.2.3 The entropy_retval_t C++ Structure 

 

The entropy_retval_t structure is utilized extensively throughout the entropy_t and 

entropy_wrapper_t classes and represents the main return value object type of the 

entDevReturnType Python class.   

It is a simple structure containing only the base data types and getter and setter methods so as to add 

properties to the related Python object. This class is the underlying C++ structure for the 

entDevReturnType Python object. 

 

2.2.3A entropy_retval_t Structure Description 

 

 
 struct entropy_retval_t { 
         long double chisquare; 
         long double shannon; 
         long double estimate; 
         long double error; 
 
         entropy_retval_t(long double, long double, long double, long double); 
         ~entropy_retval_t(void); 
 
                void setChiSquare(long double); 
                long double getChiSquare(void); 
                void setShannon(long double); 
                long double getShannon(void); 
                void setEstimate(long double); 
                long double getEstimate(void); 
                 void setError(long double); 
                long double getError(void); 
 }; 
 
 typedef std::vector< entropy_retval_t > entropy_retvec_t; 
 

 

long double chisquare A long double that contains the value of the 
Chi Square distribution test score value or the Chi 
Square deviation value. 

long double shannon 
 

A long double that contains the value of the 
Shannon entropy distribution score value or the 
Shannon entropy deviation value. 

long double estimate 
 

A long double that contains the value of the 
Monte Carlo Pi approximation value or the 
Monte Carlo Pi deviation value. 



long double error A long double that contains a value 
representing the percent difference of 
estimate relative to Pi or the deviation value 
depending on the exact context of the objects 
usage. 

entropy_retval_t(void) 
entropy_retval_t(long double, long double, long 
double, long double) 

The two constructors with the first initializing all 
of the related members to 0.0 and the second 
initializing the chisquare member to the first 
parameter, the shannon member to the second 
and estimate and error to the third and 
fourth parameters. 

void setChiSquare(long double) A method that takes a long double 
parameter and sets the chisquare member's 
value to its value. This method is called whenever 
a user changes the value of chi_square in an 
instance of an entDevReturnType object in 
Python. 

long double getChiSquare(void) A method that returns the long double value 
of the chisquare member. This method is 
called whenever a user accesses the 
chi_square member of an instance of an 
entDevReturnType object in Python. 

void setShannon(long double) A method that takes a long double 
parameter and sets the shannon member to its 
value. This method is called whenever a user 
changes the value of shannon in an instance of 
an entDevReturnType object in Python. 

long double getShannon(void) A method that returns a long double value of 
the shannon member. This method is called 
whenever a user accesses the shannon member 
of an instance of an entDevReturnType 
object in Python. 

void setEstimate(long double) A method that takes a long double 
parameter and sets the estimate member to 
its value. This method is called whenever a user 
changes the value of estimate in an instance 
of an entDevReturnType object in Python. 

long double getEstimate(void) A method that returns a long double value of 
the estimate member. This method is called 
whenever a user accesses the estimate 
member of an instance of an 
entDevReturnType object in Python. 

void setError(long double) A method that takes a ``long double`` 
parameter and sets the ``error`` member to its 
value. This method is called whenever a user 
changes the value of error in an instance of an 
entDevReturnType object in Python. 



long double getError(void) A method that returns a ``long double`` value 
of the ``error`` member. This method is called 
whenever a user accesses the ``estimate`` 
member of an instance of an 
``entDevReturnType`` object in Python. 
 

 

 

 

  



 

2.2.4 The entropy_wrapper_t C++ Class 

 

The entropy_wrapper_t class is a native wrapper that encapsulates the functionality of the 

entropy_t class. This encapsulation encompasses both translating exceptional events and errors into 

formats geared towards Python but also tying multiple disjointed parts of the entropy_t API into a single 

method or similar. It contains and stores the entire file, in a std::vector, all relevant 

entropy_retval_t’s for the analyzed data, an entropy_retval_t containing the scores for the 

entire file, a std::vector of dist_t objects for each blocks frequency distribution and a 

std::vector containing instances of chunk_t that are the actual blocks of the file. 

 

2.2.4A entropy_wrapper_t Class Description 

 

 
class entropy_wrapper_t { 
 private: 
  chunk_vec_t   m_cvec; 
  entropy_retvec_t m_retvec; 
  entropy_retval_t  m_whole; 
  bool   m_wholeDone; 
  entropy_t   m_entdev; 
  std::vector< uint8_t >    m_data; 
  std::vector< dist_t >      m_dist; 
 
 protected: 
 public: 
 
 entropy_wrapper_t(std::size_t bs = 8192); 
 entropy_wrapper_t(const std::vector< uint8_t >&, std::size_t bs = 8192, bool whole = false); 
 ~entropy_wrapper_t(void); 
 
 void reset(void); 
 
 void setDataOverload(const std::vector< uint8_t >&); 
 void setData(const std::vector< uint8_t >&, std::size_t bs = 8192, bool whole = false); 
 
 std::size_t getCount(void); 
 std::size_t getMaxIndex(void); 
 
 void calculate(void); 
 void calculate(std::size_t); 
 void calculate(std::size_t, std::size_t); 
 



 entropy_retval_t getChunkScore(std::size_t); 
 entropy_retval_t getWholeFileScore(void); 
 entropy_retvec_t getAllChunkScores(void); 
 
 entropy_retval_t getDeviation(std::size_t, std::size_t); 
 entropy_retvec_t getAllDeviations(std::size_t); 
 entropy_retval_t getWholeDeviation(std::size_t); 
 
 void calculateDistribution(std::size_t, std::size_t); 
 dist_vec_t getDistribution(void);  
}; 
 

 
 

 

  
  
  

chunk_vec_t m_cvec A std::vector of chunk_t structures that contain the 
contents of the file being analyzed. 

entropy_retvec_t m_retvec A std::vector of entropy_retval_t objects 
corresponding to the scores for each block of the file. 

entropy_retval_t m_whole A std::vector containing the scores for the entire file. 
bool m_wholeDone A Boolean value that is set to true when the entire file has 

had its scores calculated, otherwise it is false. 
entropy_t m_entdev An instance of an entropy_t class, the main class of the 

extension. 
std::vector< uint8_t > m_data A std::vector of the data containing in the file that is 

being analyzed. 
std::vector< dist_t >  m_dist A std::vector of dist_t objects corresponding to the 

frequency distribution last calculated. It is empty if this has 
never occurred. 

entropy_wrapper_t(std::size_t 
bs = 8192) 
entropy_wrapper_t(const 
std::vector< uint8_t 
>&,std::size_t bs = 8192, bool 
whole = false) 

The constructors for the class. The first takes an optional 
parameter, bs, which indicates what size blocks the input file 
should be split into. The second takes a std::vector that 
contains the data to be analyzed, followed by an optional 
block size and finally an optional Boolean value that indicates 
whether the user would like to have whole file analysis 
performed on the data or not. The default block size is 8192 
bytes and the default regarding whether to perform whole 
file analysis is false; indicating that it will not be performed. 

void reset(void) Reset the internal distribution/frequency statistics. 
void setDataOverload(const 
std::vector< uint8_t >&) 
void setData(const std::vector< 
uint8_t >&, std::size_t bs = 
8192, bool whole = false) 

These methods will set the m_data std::vector to 
contain the contents of its first parameter. The second 
method will optionally have a bs and whole parameter that 
indicate what block size should be used and whether to 
perform whole file analysis or not. The default block size is 
8192 bytes and whole file analysis is not performed. The first 
method is an overloaded version of the second, however due 

 



to restrictions in boost::python, it was given a different 
method name. 

std::size_t getCount(void) Returns a std::size_t containing the value of the 
number of elements in the m_data std::vector, this is 
how many bytes long the file or data stream was at the time 
that it was initialized via the constructor or setData() 
method of this class. 

std::size_t getMaxIndex(void) Returns a std::size_t containing the value of the 
maximum valid index that can be used on the m_data 
std::vector. It is equivalent to calling getCount() and 
subtracting 1 providing that is at least 1 element in the 
std::vector. 

void calculate(void) 
void calculate(std::size_t ce) 
void calculate(std::size_t cs, 
std::size_t ce) 

Methods that perform the actual entropy analysis 
calculations. The first takes no parameters and operates on all 
blocks in the file. The second specifies only an ending block 
and calculates the scores for all blocks before the index ce.  
The last takes both a starting and ending index between the 
rages of cs and ce and operates on blocks within that range. 
If any of the indices are invalid, it will silently return raising a 
ValueError in Python. 

entropy_retval_t 
getChunkScore(std::size_t v1) 

This method returns the scores for chunk number v1; if the 
index is invalid the function will silently return but raising a 
ValueError in Python 

entropy_retval_t 
getWholeFileScore(void) 

Retrieves the whole file score, first calculating it is necessary.  

entropy_retvec_t 
getAllChunkScores(void) 

Retrieves the scores for all chunks in the file and returns them 
in a std::vector containing instances of 
entropy_retval_t. 

entropy_retval_t 
getDeviation(std::size_t v1, 
std::size_t v2) 

Retrieves the deviation scores for all chunks within the range 
of v1 through v2. If this range is invalid the method silently 
returns, however it will raise a ValueError inside of 
Python. 

entropy_retvec_t 
getAllDeviations(std::size_t v1) 

Retrieves the deviation score for all blocks relative to v1. If v1 
specifies an invalid index, the method will silently return but 
will however raise a ValueError in Python. 

entropy_retval_t 
getWholeDeviation(std::size_t 
v1) 

Retrieves the deviation score for the entire file relative to v1 
and returns a std::vector containing instances of 
entropy_retval_t.  

void 
calculateDistribution(std::size_t 
cs, std::size_t ce) 

Calculates the distribution frequency for all 256 possible 
characters within the range of blocks specified by cs through 
ce. If the range specified is invalid, the method silently 
returns however it will raise a ValueError inside of Python. 

dist_vec_t getDistribution(void) Retrieves the dist_vec_t of the distribution frequency 
for all 256 possible characters as previously calculated via the 
calculateDistribution() method. This vector is 
empty if the calculations have not been performed. 

 

  
 



2.2.5 The entropy_t C++ class 

 

The entropy_t class provides the main functionality of the extension and is the ‘lowest level’ interface 

available. In terms of hierarchy, when accessed in Python, it is accessed via a C++ wrapper class, 

entropy_wrapper_t, which in turn is wrapped by a pseudo Python class, entDevType, which is wrapped 

and utilized by a pure Python class, entropyDeviationType. As this includes multiple layers of indirection 

and other functionality such as converting strings and lists to vectors, it is expected that utilizing this 

class directly will yield much better performance. 

That said, while a stated goal of this extension was to substantially increase the performance of these 

tasks, it was not written with the goal of being super-fast production quality code.  

 

2.2.5A entropy_t Class Description 

 

 
#define IDEAL_SIZE 256 
 
class entropy_t 
{ 
        private: 
                std::size_t                                                 m_bsize; 
                std::array< std::size_t, IDEAL_SIZE >   m_dist; 
                long double                                              m_freedom; 
                long double                                              m_ideal; 
                long double                                              m_csquare; 
                long double                                              m_shannon; 
                std::size_t                                                 m_count; 
 
                std::size_t                                                 m_inside; 
                std::size_t                                                 m_outside; 
                long double                                              m_estimate; 
                long double                                              m_error; 
 
        protected: 
                inline long double getEstimate(void); 
                inline long double getError(long double); 
 
        public: 
                entropy_t(std::size_t bs = 8192); 
                entropy_t(const std::vector< uint8_t >&, std::size_t bs = 8192); 
                ~entropy_t(void); 
 
                chunk_vec_t slice(const std::vector< uint8_t >&, std::size_t = 0); 
 



                void update(const std::vector< uint8_t >&); 
                void update(const std::vector< uint8_t >&, std::size_t); 
                void update(const chunk_t&); 
                void update(const uint8_t*, std::size_t); 
 
                void reset(void); 
                void calculateValues(void); 
                entropy_retval_t getValues(bool calculate = true); 
                entropy_retval_t getBlockDeviation(entropy_retval_t& v1, entropy_retval_t& v2); 
                entropy_retvec_t getBlockDeviationFromAllBlocks(const entropy_retvec_t&, std::size_t); 
                dist_vec_t getDistribution(void); 
}; 
 

 

 

std::size_t  m_bsize A std::size_t member that indicates the size 
of chunks the class operates on; defaults to 
8192. 

std::array< std::size_t, IDEAL_SIZE >   m_dist A std::size_t of IDEAL_SIZE elements 
(256) that contains a std::size_t of the 
frequency distribution of each possible byte 
encountered. 

long double m_freedom The Chi-Square distribution degrees of freedom; 
or IDEAL_SIZE – 1. 

long double m_ideal A member variable that is initialized to the value 
of IDEAL_SIZE, or 256, representing the 
range of characters that can occur. 

long double m_csquare This member variable stores the calculate Chi-
Square distribution score. 

long double m_shannon This member variable stores the Shannon 
entropy analysis score. 

std::size_t m_count This member variable is a count of the number of 
bytes analyzed. 

std::size_t m_inside This represents the number of bytes that fall 
inside of the 1x1 area in the Monte Carlo method 
Pi Approximation test. 

std::size_t m_outside This member variable represents the number of 
bytes that fell outside of the 1x1 area in the 
Monte Carlo method Pi Approximation test. 

long double m_estimate This member variable stores the estimate value 
in the Monte Carlo method Pi approximation 
test. 

long double m_error This member variable stores the percent 
difference between m_estimate and the value 
of Pi. 



entropy_t(std::size_t bs = 8192) 
entropy_t(const std::vector< uint8_t >& v, 
std::size_t bs = 8192) 

The constructors with the first taking only an 
optional std::size_t parameter that 
specifies the size of blocks that will be analyzed 
and defaulting to 8192 bytes if not otherwise 
provided. The second takes a std::vector of 
uint8_t’s that contains the actual data we will 
analyze, and the optional bs parameter 
specifying the length of blocks desired. 

chunk_vec_t slice(const std::vector< uint8_t >&, 
std::size_t = 0) 

This method will split the vector specified in the 
first parameter into chunk_t’s the size of its 
second parameter. If the optional second 
parameter is not specified or explicitly passed 
with a value of zero, then the block size that was 
specified in the constructor is used to determine 
the size of the blocks. This method returns a 
std::vector of chunk_t objects 
representing the file or std::vector that was 
passed as the first parameter. 

void update(const std::vector< uint8_t >& v) 
void update(const std::vector< uint8_t >& c, 
std::size_t bs) 
void update(const chunk_t& v) 
void update(const uint8_t* ptr, std::size_t len) 

These methods all take a block of data specified 
in various formats and perform the actual 
analysis upon them. The first takes a parameter 
of a std::vector of uint8_t’s, the second 
will first split the std::vector into a 
chunk_vec_t containing blocks corresponding 
to the size of the second parameter and operates 
on them. The third takes a reference to a 
chunk_t directly and the last method is the one 
that all of the others call, which takes a raw 
pointer to uint8_t that points to the data to 
operate on and is of a length specified in the 
second parameter. If by the time the last method 
which takes a raw pointer has a first parameter 
which is equal to nullptr or a second 
parameter that is zero, then an instance of 
std::runtime_error is thrown. 

void reset(void) Reset the internal distribution/frequency 
statistics variables. 

void calculateValues(void) This method will take the various members, such 
as the distribution metrics stored in m_dist and 
the count of hits inside and outside the 1x1 area 
and calculate the actual scores thereby setting 
the values of the related member variables. 

entropy_retval_t getValues(bool calculate = 
true) 

This method is intended to be called after a call 
to update() and depending on the value of the 
calculate parameter, after a call to 
calculateValues() has been made. If the 
parameter calculate is true, then this 
calculation is performed automagically, 



otherwise it is skipped when provided a 
parameter whose value is false. It returns an 
entropy_retval_t with the scores calculate 
for the blocks in question. 

entropy_retval_t 
getBlockDeviation(entropy_retval_t& v1, 
entropy_retval_t& v2) 
 

This method takes two entropy_retval_t’s 
as parameters, which are the scores returned for 
a block specified by v1 and the scores of a block 
specified by v2. It then calculates the difference 
between the two blocks and stores these values 
in an entropy_retval_t structure which is 
returned to the user. If either of the parameter 
values are invalid, an instance of 
std::runtime_error is thrown.  

entropy_retvec_t 
getBlockDeviationFromAllBlocks(const 
entropy_retvec_t& blocks, std::size_t bnum) 

This method is akin to the 
getBlockDeviation() method, and indeed 
has its functionality provided by iterating across 
the entropy_retvec_t parameter blocks 
and calculates the difference between each 
blocks score values and the block specified in the 
bnum parameter. If the index specified in the 
second parameter is invalid, then an instance of 
std::runtime_error is thrown. This 
method returns a std::vector of 
entropy_retval_t’s that contain the 
percentage of difference between each block 
relative to the bnum parameter. 

dist_vec_t getDistribution(void) This method iterates across the m_dist 
member and records the occurrence counts for 
each of the 256 possible bytes and returns them 
in a std::vector of dist_t’s.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.2.6 The xor_table_ret_t C++ structure 

 

The xor_table_ret_t structure is the object type returned by all functionality relating to the XOR 

table search family of classes. In Python, the xorTableReturnType wraps it directly. It is a relatively 

simple structure, that contains only two member variables and getter and setter methods that are 

bound to properties in Python. 

 

2.2.6A xor_table_ret_t Structure Description 

 

 
struct xor_table_ret_t { 
        std::size_t     offset; 
        std::uint16_t   key; 
 
        xor_table_ret_t(void) : offset(0), key(0) { return; } 
        ~xor_table_ret_t(void) { return; } 
 
        std::size_t getOffset(void) { return offset; } 
        void setOffset(std::size_t o) { offset = o; return; } 
 
        std::uint16_t getKey(void) { return key; } 
        void setKey(std::uint16_t k) { key = k; return; } 
}; 
 
typedef std::vector< xor_table_ret_t > xor_table_retvec_t; 
 

 

std::size_t offset The offset at which the embedded PE file was 
found. 

std::uint16_t key The key at which the PE file located at offset 
was encrypted with. This will be an 8-bit value 
stored in a 16-bit integer. 

xor_table_ret_t(void) The basic constructor; it initializes both the 
offset and key variables to zero. 

std::size_t getOffset(void) This method returns the offset variable and 
exists to allow seamless property integration with 
Python. 

void setOffset(std::size_t) This method sets the offset variable to the 
value passed for its first parameter. This setter 
method exists to allow seamless property 
integration with Python. 

std::uint16_t getKey(void) This method returns the value of the key 
variable. This getter method exists to allow 
seamless property integration with Python. 



void setKey(std::uint16_t) This method sets the value of the key variable to 
the value of the parameter it is passed. This 
setter method exists to allow seamless property 
integration with Python. 

typedef std::vector< xor_table_ret_t > 
xor_table_retvec_t 

A data-type that is a std::vector containing 
instances of xor_table_ret_t. It is used for 
instance by functionality the searches for more 
than one instance of an embedded PE file. The 
std::vector is converted to a list() when 
it is exported into Python. 

 

  

  



2.2.7 The xor_table_wrapper_t C++ Class 

 

The xor_table_wrapper_t class is the class directly wrapped and exported to Python as the 

xorTableSearchType. It encapsulates all of the functionality of the native “lower level” 

xor_table_t class. As with all of the classes and structures in this family, its “proof-of-concept” 

nature is clearly shown by the simplicity of the interface. 

 

2.2.7A xor_table_wrapper_t Class Description 

 

 
class xor_table_wrapper_t { 
        private: 
                xor_table_t     m_xor; 
 
        protected: 
        public: 
                xor_table_wrapper_t(std::size_t max_peoff = 512); 
                xor_table_wrapper_t(const std::vector< uint8_t >&, std::size_t max_peoff = 512); 
                ~xor_table_wrapper_t(void); 
 
                void setData(const std::vector< uint8_t >&); 
                xor_table_ret_t find_first(void); 
                xor_table_retvec_t find_all(void); 
}; 
 

 

xor_table_wrapper_t(std::size_t max_peoff = 
512) 
xor_table_wrapper_t(const std::vector< uint8_t 
>&, std::size_t max_peoff = 512) 

The first constructor takes only an optional 
std::size_t parameter which dictates how 
far after an occurrence of the ‘MZ’ string the class 
should search for the ‘PE\0\0’ string. By 
default, it is limited to 512 bytes which should 
adequately cover most executable files. The 
second constructor takes as its first parameter a 
reference to a std::vector of uint8_t’s 
that contain the data of the file to be analyze and 
again has an optional second parameter that 
dictates how far to search for the PE magic string. 

void setData(const std::vector< uint8_t >&) This method takes a reference to a 
std::vector of uint8_t’s that contain the 
data set to be analyzed for an embedded PE file. 
If the data was already set via a previous call to 
this method or one of the constructors, then the 
data is reset. 



xor_table_ret_t find_first(void) This method will search an executable looking for 
an encrypted or unencrypted instance of a PE file. 
It will search the entire file but stop after the first 
executable is found. If no executable is found, 
then in C++ it returns an empty 
xor_table_ret_t with default values all set 
to zero, however in Python it will raise a 
UserWarning indicating that it was unable to 
locate a PE file. 

xor_table_retvec_t find_all(void) This method performs the exact same 
functionality as the find_first() method, however 
instead of stopping its search after a single 
instance of a PE file is located, it will continue its 
search throughout the remainder of the data 
searching for more. Thus, this function will 
always search the entirety of the data set. It will 
return a std::vector of 
xor_table_ret_t’s—one for each PE file 
that is found. If no PE files were identified, then 
the std::vector will be empty and a 
UserWarning exception is thrown in Python. 

 

  



2.2.8 The xor_table_t C++ Class 

 

The xor_table_t class is the bottom layer C++ class for all related XOR table search functionality. All 

Python or C++ objects relating to this functionality eventually call into this class. It is only slightly more 

complex than the wrapper class, which was written to create an interface that better models the 

expected use of the class and as a natural work-around for constraints placed on the API by exporting an 

interface to Python. 

 

2.2.8A xor_table_t Class Description 

 

 
class xor_table_t 
{ 
        private: 
                std::size_t                                             m_span; 
                std::array< uint8_t, MZ_SIZE >         m_mzv; 
                std::array< uint8_t, PE_SIZE >          m_pev; 
                uint8_t*                                                m_vec; 
                std::size_t                                             m_siz; 
 
        protected: 
                void init_tables(void); 
                bool find_pe(std::size_t kidx, std::size_t off); 
                uint32_t get_peoff(std::size_t, uint8_t); 
                bool findAtOffset(xor_table_ret_t& out, std::size_t offset = 0); 
 
        public: 
                xor_table_t(std::size_t max_peoff = 512); 
                xor_table_t(const std::vector< uint8_t >& v, std::size_t max_peoff = 512); 
                ~xor_table_t(void); 
                void set_file(const std::vector< uint8_t >&); 
                bool find_first(xor_table_ret_t&); 
                bool find_all(xor_table_retvec_t&); 
}; 
 

 

xor_table_t(std::size_t max_peoff = 512) 
xor_table_t(const std::vector< uint8_t >& v, 
std::size_t max_peoff = 512) 

The first constructor takes only an optional 
std::size_t parameter which dictates how 
far after an occurrence of the ‘MZ’ string the class 
should search for the ‘PE\0\0’ string. By 
default, it is limited to 512 bytes which should 
adequately cover most executable files. The 
second constructor takes as its first parameter a 



std::vector of uint8_t’s that contain the 
data of the file to be analyze and again has an 
optional second parameter that dictates how far 
to search for the PE magic string. 

void set_file(const std::vector< uint8_t >&) This method takes a reference to a 
std::vector of uint8_t’s that contain the 
data set to be analyzed for an embedded PE file. 
If the data was already set via a previous call to 
this method or one of the constructors, then the 
data is reset. 

bool find_first(xor_table_ret_t&) This method will search an executable looking for 
an encrypted or unencrypted instance of a PE file. 
It will search the entire file but stop after the first 
executable is found. If no executable is found, 
then it will return false and the parameter passed 
to the function is returned with both members of 
the structure initialized to zero. Otherwise the 
members refer to the offset and key that the 
embedded PE file was found. 

bool find_all(xor_table_retvec_t&) This method performs the exact same 
functionality as the find_first() method, however 
instead of stopping its search after a single 
instance of a PE file is located, it will continue its 
search throughout the remainder of the data 
searching for more. Thus, this function will 
always search the entirety of the data set. It will 
return true if any PE files were identified and the 
offset and key for each still be stored in an 
instance of xor_table_ret_t which is stored 
in a std::vector. If no PE files were 
identified, then the std::vector will be empty and 
the method will return false 

 

  



3.0 The epfind.py Utility 
 

The edfind.py utility is a Swiss army knife of sorts for entropy analysis that demonstrates the various 

functionality of the extension module. It utilizes every aspect of the module and additionally builds 

example functionality on top of it. For instance, a purely proof-of-concept demonstration option 

attempts to automatically check for “suspect” blocks. It was written against a single file with a one-byte 

XOR encrypted executable contained within it and as such the default functionality is not expected as an 

out of the box solution to meet all circumstances, it is purely for demonstration. However, when run 

over approximately 1600 randomly selected Microsoft Office Word documents (doc and docx) and PDF 

documents it exhibited approximately a 20% false positive rate, which is relatively impressive given that 

it was written against a single file. Less impressive is that a much smaller sample set that contained XOR 

encrypted executables had a false negative rate of about 6 in 10 files. 

With more thorough analysis and a better attempt at fine tuning the various functionality, it is expected 

that both the false positive and false negative rate could be significantly improved. 

In terms of other functionality, the utility allows you to view Chi-Square distribution, Shannon entropy 

and Monte Carlo method Pi approximation scores for arbitrarily sized blocks of a file or the entire file 

itself. Moreover, it can be run in a deviation mode that retrieves the differences between arbitrarily 

sized blocks of a file, or the entire file itself against any one or more of the blocks. 

While this document attempts to be fairly in-depth and cover all aspects of the module, the source code 

and edfind.py utility should be considered the premiere authoritative source for information on the 

subject. 

 

3.0.1 epfind.py Command Line Options 

 

Below we will discuss the various command line options for the utility and in the next section we will 

demonstrate the usage of the utility to identify hidden data streams. 

 

 
usage: edfind.py [-h] [--blocksize BLOCKSIZE] [--blockscore] [--wholescore] 
                 [--blockdev] [--blocknumber BLOCKNUMBER] [--wholedev] 
                 [--xydev XYDEV XYDEV] [--seqdev] [--seqxy SEQXY SEQXY] 
                 [--suspect] [--frequency] [--freqcount FREQCOUNT] 
                 [--freqxy FREQXY FREQXY] [--xor] [--xorall] 
                 file 
 

 

 

 



file                     The input file to scan 
-h, --help             show this help message and exit 
--blocksize BLOCKSIZE, -b BLOCKSIZE The size of the blocks to split the input file into; 

specified in bytes. If this option is not provided a 
default blocksize of 8192 bytes is used. 

  --blockscore, -s       This option will retrieve and print the Chi, 
Shannon and Pi approximation scores for every 
block in the file. 

--wholescore, -w       The option is akin to –blockscore, however it 
calculates the scores against the entire file. 

--blockdev, -d         The option retrieves the deviation for a given 
block of data relative to all other blocks in the 
file. It requires the additional option –
blocknumbe. 

--blocknumber BLOCKNUMBER, -n 
BLOCKNUMBER 

The block number to perform –blockdev 
against, specified in hexadecimal format. 

--wholedev, -o         Akin to –blockdev, however it retrieve the 
block specified by –blocknumber’s deviation 
relative to the entire file’s scores. 

--xydev XYDEV XYDEV, -y XYDEV XYDEV Retrieves and prints a blocks deviation relative to 
another specified block. 

--seqdev, -q           This option calculates and prints the deviation of 
a block relative to its neighbor blocks. 

--seqxy SEQXY SEQXY, -e SEQXY SEQXY Calculates and prints the sequential deviation of 
a range of blocks. 

--suspect, -u          Experimental functionality intended as a proof of 
concept that couples together multiple aspects of 
the extension modules functionality and 
attempts to automatically identify suspect blocks. 

--frequency, -f        This causes the frequency of each byte 
encountered for all blocks to be retrieved and 
printed; Especially useful for identify the 
beginning and end of XOR encrypted streams 
with short key lengths 

--freqcount FREQCOUNT, -c FREQCOUNT This option implies and subsequently modifies 
the –frequency option such that only 
FREQCOUNT of the most common bytes have 
their frequency printed out. For instance, 
specifying a FREQCOUNT of 4 will retrieve and 
print only the 4 most common byte values for 
each block. 

--freqxy FREQXY FREQXY, -r FREQXY FREQXY Akin to –frequency, however instead of 
retrieving the scores for every block it will only 
retrieve and print the scores between the two 
parameter indices specified. 

--xor, -x              Attempts to locate any one-byte XOR encrypted 
PE files embedded within the file via pre-



computer tables. Stops after the first instance is 
found. 

  --xorall, -a           Attempts to locate any one-byte XOR encrypted 
PE files embedded within the file via pre-
computer tables. This option will search for all 
embedded executables and not just the first. 

 

  

3.1.0 epfind.py Example Usage 

 

Generally, it’s easier to understand a given feature set for a tool through demonstration. As such, I have 

created a series of Word and PDF documents that I embedded a XOR encrypted executable into. The 

executable in question is not malware and thus is going to deviate from the typical data that one could 

expect to find in the wild, however it felt like a happy medium rather than dealing with live malware for 

the sake of demonstration. The executables in question are standard Windows system binaries, 

particularly cmd.exe and wowreg32.exe from a standard Windows 8.1 installation. In a couple instances 

these binaries were packed as that more properly models live data as something approaching over 90% 

of malware is distributed in a packed format. Interestingly, this makes the analysts job easier as the 

compression and/or encryption functionality provided by most packers increases the data entropy and 

makes it easier to spot. 

When embedded into the files, no regard was given to making sure that it was properly inserted into the 

OLE streams or similar and a random offset was chosen and the executable encrypted with an unknown 

value but known length key and inserted into the host file. We will go through each of the features 

looking at this data now to give the potential user a better feel for what they would be looking for in a 

live data set and how to use the tool properly. 

 

3.1.1 Analysis of a PDF Document with an embedded executable encrypted with a one-byte key 

 

We will start with a file that has an embedded PE file with a one-byte key used to XOR encrypt it. The file 

in question is a copy of Bruce Dang’s 2008 Blackhat Japan talk pertaining to parsing Microsoft Office 

formats as part of analyzing and countering these exact threats. If you are not familiar with the talk 

already, it’s a decent read and is recommended. The file itself is a PDF containing, presumably, the 

PowerPoint exported slide deck he used for the talk. As such, its contents are primarily images, which 

will exhibit compression and other patterns not entirely dissimilar from encryption. As the information 

entropy for a single byte key models the same distribution as when it is not encrypted, this is in some 

ways a harder case to identify than encrypted executables with longer key lengths. In other ways, its 

actually incredibly easy to identify and in this example we demonstrate the difficulty and catch-22 

nature that the attacker encounters when utilizing this methodology—longer keys are more secure and 

harder to identify via frequency analysis, but they deviate significantly from the host data in most 



circumstances. Shorter keys are easy to identify via frequency analysis, however their distribution is 

closer to what we would expect from the general host file. 

Starting at the most obvious place, the beginning, we first examine the block scores for the file. We use 

the default of 8192 bytes as that again appears to be a happy medium. Several anti-virus industry white 

papers on the average size of malware show that they are (a) growing in size over time; and (b) tend to 

be in the several hundred kilobyte range. Smaller blocks result in more overhead and worse 

performance, whereas larger blocks can result in the data from a hidden data stream essentially being 

lost in the noise of the host file it’s embedded into. The default block size was chosen largely at random 

and while it has shown itself to be fairly suitable, your own personal mileage may vary and you are 

encouraged to experiment and determine if a different block size better fits your particular use case. 

At any rate, we first examine the block scores of the file: 

 

 
$ bin/edfind.py -s BlackHat-Japan-08-Dang-Office-Attacks-ONE.pdf | less 
FILE: BlackHat-Japan-08-Dang-Office-Attacks-ONE.pdf BLOCK COUNT: 286 BLOCK SIZE: 8192 
 
        ALL SCORES 

BN:   0 C: 13022.5000 S: 7.4409 ES: 3.4414 ER: 8.7120  
BN:   1 C: 573.6250 S: 7.9530 ES: 3.1445 ER: 0.0935  
BN:   2 C: 808.3750 S: 7.9414 ES: 3.2266 ER: 2.6334  
BN:   3 C: 679.3750 S: 7.9487 ES: 3.2031 ER: 1.9210  
BN:   4 C: 4766.4375 S: 7.7627 ES: 3.1719 ER: 0.9547  
BN:   5 C: 664.5625 S: 7.9483 ES: 3.1328 ER: 0.2803  
BN:   6 C: 573.0000 S: 7.9540 ES: 3.2969 ER: 4.7100  
BN:   7 C: 817.1250 S: 7.9420 ES: 3.1875 ER: 1.4402  
BN:   8 C: 564.5625 S: 7.9519 ES: 3.3125 ER: 5.1595  
BN:   9 C: 5219.1250 S: 7.7273 ES: 3.1562 ER: 0.4644  
BN:   A C: 696.5625 S: 7.9474 ES: 3.2383 ER: 2.9858  
BN:   B C: 839.5625 S: 7.9375 ES: 3.2852 ER: 4.3701  
BN:   C C: 3281.8750 S: 7.7451 ES: 2.9766 ER: 5.5443  
BN:   D C: 4168.2500 S: 7.6538 ES: 2.9219 ER: 7.5197  
BN:   E C: 4341.1875 S: 7.6421 ES: 2.8867 ER: 8.8292  
BN:   F C: 4242.0000 S: 7.6451 ES: 2.8867 ER: 8.8292  
BN:  10 C: 4847.0000 S: 7.6063 ES: 2.5977 ER: 20.9395 

 
 […] 

 

Here, first we have an output line that seems self-evident but contains the file name being analyze, the 

number of blocks the file was split into and the size of the blocks in question. For any given block 

number, we can determine the offset into the file by multiplying the block number by the block size. We 

passed the –s option, which indicates that we would like to calculate and print the Chi, Shannon and 

Monte Carlo Pi approximation scores for each block. As noted throughout the documentation, the Pi 

approximation has shown itself to be less useful than hoped and will likely be removed at a future point 



in time. Essentially the idea is that as the data becomes more random, that the number of points that 

intersect our 1x1 area will increase and the estimated value will get closer and closer to approaching the 

value of Pi. What the result thus far has been is that the block sizes are potentially too small for this 

method to be overly useful and the numbers produced are essentially sort of random in most instances 

and thus not overly useful. This will likely be replaced by another metric, potentially standard deviation, 

which is more useful for this task. 

At any rate, the lines are in the format of: 

BN: <Block Number> C: <Chi-Square Score> S: <Shannon Score> ES: <Pi 
Approximation Estimate> E: <Pi approximation error> 

The Estimate is the actual value we calculated whereas the Error value is the percent of difference 

between the Estimate and the actual value of Pi. What testing has thus far revealed is that as the data 

becomes more random, the Chi value decreases with XOR encrypted data that has a key as long as the 

data (effectively a One-Time Pad) having a value generally in the 200-300 range. The Shannon entropy 

score seems to peg almost precisely at 7.97 in those instances and as noted, in theory the Pi 

approximation should approach Pi but often does not. 

Moreover, we can see from those first 16 blocks that there is a bit of variance between each block. 

What encrypted data, as we will see shortly tends to do providing the block size is small enough is result 

in a far greater uniformity across blocks than native document data tends to. This is to say that blocks 

0x00 through 0x0C have a fair amount of variation in them, whereas the remaining blocks displayed 

start to look more like a typical cipher-text in that the Chi scores are far more uniform. However, the 

scores are not quite high or low enough for our purposes. Moreover, as you use the tool more, you will 

begin to note that there is a natural ebb and flow of the data with punctuations by outlier blocks. For 

instance, blocks 0x0A and 0x0B are outliers that deviate significantly from the neighboring blocks in 

terms of Chi and we can see from the Shannon score that they have a slightly higher density of 

information entropy. Whereas the blocks that follow show a growing lack of entropy before finally 

reaching a uniformity in the 4000 range for the Chi value. The Shannon scores also begin to mostly 

become uniform and while the Pi scores show a lot of deviation in terms of error, we would take care to 

note that the numbers to the left of the decimal and to a lesser degree in the 10s place to the right of it 

also show some level of uniformity.  

If we look at the sequential blocks of this segment of the file in its entirety, we find the following: 

 

 
BN:   B C: 839.5625 S: 7.9375 ES: 3.2852 ER: 4.3701  
BN:   C C: 3281.8750 S: 7.7451 ES: 2.9766  ER: 5.5443  
BN:   D C: 4168.2500 S: 7.6538 ES: 2.9219 ER: 7.5197  
BN:   E C: 4341.1875 S: 7.6421 ES: 2.8867 ER: 8.8292  
BN:   F C: 4242.0000 S: 7.6451 ES: 2.8867 ER: 8.8292  
BN:  10 C: 4847.0000 S: 7.6063 ES: 2.5977 ER: 20.9395 
BN:  11 C: 4757.6250 S: 7.6122 ES: 2.8008 ER: 12.1684 
BN:  12 C: 4507.0000 S: 7.6192 ES: 2.7812 ER: 12.9561 
BN:  13 C: 4528.1250 S: 7.6293 ES: 2.6484 ER: 18.6206 



BN:  14 C: 4418.6250 S: 7.6349 ES: 2.8086 ER: 11.8564 
BN:  15 C: 4794.3125 S: 7.6181 ES: 2.8047 ER: 12.0122 
BN:  16 C: 4382.9375 S: 7.6404 ES: 2.8125 ER: 11.7011 
BN:  17 C: 4591.1875 S: 7.6272 ES: 2.7031 ER: 16.2208 
BN:  18 C: 4767.5625 S: 7.6310 ES: 2.7695 ER: 13.4341 
BN:  19 C: 4695.2500 S: 7.6263 ES: 2.9102 ER: 7.9527  
BN:  1A C: 4832.8750 S: 7.6253 ES: 2.8359 ER: 10.7779 
BN:  1B C: 4919.8750 S: 7.6122 ES: 2.9375 ER: 6.9478  
BN:  1C C: 4692.7500 S: 7.6290 ES: 2.9336 ER: 7.0902  
BN:  1D C: 4621.6875 S: 7.6288 ES: 2.9414 ER: 6.8058  
BN:  1E C: 3098.8125 S: 7.7362 ES: 2.8555 ER: 10.0202 
BN:  1F C: 2472.5000 S: 7.7872 ES: 2.9414 ER: 6.8058  
BN:  20 C: 2060.5625 S: 7.8203 ES: 2.6875 ER: 16.8965 
BN:  21 C: 2042.5000 S: 7.8233 ES: 2.9727 ER: 5.6830  
BN:  22 C: 1744.5625 S: 7.8512 ES: 2.9102 ER: 7.9527 

 

 

The blocks 0x0D through 0x1D match the sort of pattern we might expect when looking for hidden data 

streams. There is a fair amount of uniformity in the Chi and Shannon scores, and the Pi approximation 

values are semi-uniform and deviate a fair amount from the surrounding blocks. If we look, very 

specifically we see some “kinda sorta” uniformity in the Error percentage. Moreover, the block 

immediately preceding this series of blocks shows a high rate of deviation from the block immediately 

preceding it and conforms more closely to the blocks that follow it. This generic pattern is generally the 

result of multiple types of data in one block and marks a shift in the underlying data. That is to say, if it is 

an embedded executable it is relatively unlikely it will start immediately at the beginning of one of our 

blocks and as such we will end up with both the underlying host file data and the embedded data mixed 

into a block. This exhibits itself as a large deviation followed by a smaller deviation. That said, we will 

add the block range 0x0D through 0x1D to our suspicious list of blocks and continue analyzing with the 

intention of returning to those blocks and examining them in more detail later. 

Moving further through the file, we eventually come to the following section of blocks: 

 

 
BN:  28 C: 624.0000 S: 7.9501 ES: 3.2539 ER: 3.4517  
BN:  29 C: 5181.0000 S: 7.7273 ES: 3.3711 ER: 6.8079  
BN:  2A C: 17580.6875 S: 7.4266 ES: 3.3125 ER: 5.1595  
BN:  2B C: 6910.9375 S: 7.6884 ES: 3.2773 ER: 4.1421  
BN:  2C C: 10664.3125 S: 7.4915 ES: 3.4141 ER: 7.9808  
BN:  2D C: 15791.9375 S: 7.4749 ES: 3.2734 ER: 4.0277  
BN:  2E C: 770.8125 S: 7.9378 ES: 3.1602 ER: 0.5874  
BN:  2F C: 17423.9375 S: 7.3913 ES: 3.2578 ER: 3.5674  
BN:  30 C: 21339.8750 S: 7.1488 ES: 3.5898 ER: 12.4866 
BN:  31 C: 655.1250 S: 7.9472 ES: 3.1719 ER: 0.9547  
BN:  32 C: 666.6875 S: 7.9456 ES: 3.2070 ER: 2.0405  
BN:  33 C: 87727.1250 S: 6.1935 ES: 2.2109 ER: 42.0932 
BN:  34 C: 50754.6250 S: 6.3530 ES: 2.2695 ER: 38.4247 



BN:  35 C: 56675.8750 S: 6.3096 ES: 2.3789 ER: 32.0604 
BN:  36 C: 51845.6250 S: 6.3474 ES: 2.3047 ER: 36.3132 
BN:  37 C: 57290.8125 S: 6.3268 ES: 2.4375 ER: 28.8859 
BN:  38 C: 58930.5625 S: 6.3281 ES: 2.3633 ER: 32.9335 
BN:  39 C: 50657.1875 S: 6.3146 ES: 2.5352 ER: 23.9211 
BN:  3A C: 52939.2500 S: 6.3377 ES: 2.5195 ER: 24.6896 

 

 
 
Here, we see a series of blocks that exhibit initially a non-uniform distribution and then suddenly at 

block 0x33 we see a large spike in deviation relative to block at 0x32 followed again by a series of mostly 

uniform blocks. The Chi scores all converge in the 50000-59000 range and there is about a 1.0 shift in 

the Shannon score. Moreover if we again look at the Pi approximation scores, specifically the Error 

percentage, we see a large shift in the error rate and those values also converge. This sort of 

occurrence is precisely why this functionality hasn’t been entirely removed yet, as it is not totally useless 

and in some cases is the metric of choice for identifying hidden data. 

Continuing on with the blocks following 0x3A we find: 

 
BN:  3A C: 52939.2500 S: 6.3377 ES: 2.5195 ER: 24.6896 
BN:  3B C: 57933.0625 S: 6.2719 ES: 2.4258 ER: 29.5085 
BN:  3C C: 55347.5625 S: 6.3213 ES: 2.4531 ER: 28.0649 
BN:  3D C: 59412.5625 S: 6.2294 ES: 2.4336 ER: 29.0927 
BN:  3E C: 294981.5000 S: 5.1146 ES: 1.7617 ER: 78.3254 
BN:  3F C: 65713.5625 S: 6.2969 ES: 2.9336 ER: 7.0902  
BN:  40 C: 51774.5000 S: 6.3365 ES: 2.5469 ER: 23.3509 
BN:  41 C: 63068.0000 S: 6.3222 ES: 2.5859 ER: 21.4876 
BN:  42 C: 57024.0625 S: 6.3928 ES: 2.7109 ER: 15.8858 
BN:  43 C: 55179.7500 S: 6.3580 ES: 2.5117 ER: 25.0774 
BN:  44 C: 50985.3125 S: 6.4162 ES: 2.6680 ER: 17.7522 
BN:  45 C: 56001.9375 S: 6.3606 ES: 2.4414 ER: 28.6796 
BN:  46 C: 55784.5000 S: 6.3404 ES: 2.5938 ER: 21.1216 
BN:  47 C: 95045.7500 S: 6.2751 ES: 1.9727 ER: 59.2570 
BN:  48 C: 350111.1875 S: 4.8677 ES: 0.1211 ER: 2494.3475 
BN:  49 C: 1591737.3125 S: 1.3023 ES: 0.0625 ER: 4926.5482 
BN:  4A C: 2088960.0000 S: 0.0000 ES: 0.0000 ER:   inf   
BN:  4B C: 2088960.0000 S: 0.0000 ES: 0.0000 ER:   inf   
BN:  4C C: 2088960.0000 S: 0.0000 ES: 0.0000 ER:   inf   
BN:  4D C: 2088960.0000 S: 0.0000 ES: 0.0000 ER:   inf   
BN:  4E C: 2088960.0000 S: 0.0000 ES: 0.0000 ER:   inf   
BN:  4F C: 2088960.0000 S: 0.0000 ES: 0.0000 ER:   inf   
BN:  50 C: 2088960.0000 S: 0.0000 ES: 0.0000 ER:   inf   
BN:  51 C: 2088448.0625 S: 0.0018 ES: 0.0000 ER:   inf   
BN:  52 C: 2088960.0000 S: 0.0000 ES: 0.0000 ER:   inf   
BN:  53 C: 2088960.0000 S: 0.0000 ES: 0.0000 ER:   inf   
BN:  54 C: 2088960.0000 S: 0.0000 ES: 0.0000 ER:   inf   
BN:  55 C: 2088960.0000 S: 0.0000 ES: 0.0000 ER:   inf   
BN:  56 C: 2088960.0000 S: 0.0000 ES: 0.0000 ER:   inf   
BN:  57 C: 626987.8750 S: 4.2029 ES: 0.0117 ER: 26708.2573 
BN:  58 C: 207007.7500 S: 5.4928 ES: 0.0000 ER:   inf   
BN:  59 C: 370263.8125 S: 4.4937 ES: 1.1367 ER: 176.3738 

 
 

 



Here we see that the pattern holds through block 0x3D, then deviates significantly, then converges back 

on the same generally pattern at about block 0x40. This is another good sign that we’re looking at the 

embedded data, but not necessarily authoritatively so. However, as soon as we get to block 0x4A we 

encounter an almost entirely uniform series of blocks running through block 0x56. The Shannon and Pi 

scores are 0 The Chi distribution scores sky-rocket and so on. So what is going on there? This is a decent 

sign that we have encountered a series of blocks that are entirely or almost entirely one value, for 

instance a block that is entirely filled with zero’s—or another value in the case of a one-byte XOR key. 

This coupled with the pattern prior to these blocks should leave us pretty confident that we’ve identified 

the sequence of blocks that contain the embedded executable, let’s continue through the file and see if 

we can spot when exactly the pattern ends. 

 
BN:  56 C: 2088960.0000 S: 0.0000        ES: 0.0000 ER:   inf   
BN:  57 C: 626987.8750  S: 4.2029        ES: 0.0117       ER: 26708.2573 
BN:  58 C: 207007.7500  S: 5.4928        ES: 0.0000       ER:   inf   
BN:  59 C: 370263.8125   S: 4.4937        ES: 1.1367       ER: 176.3738 
BN:  5A C: 584377.4375   S: 3.8567        ES: 1.2031       ER: 161.1194 
BN:  5B C: 556420.9375   S: 4.5722        ES: 1.1367       ER: 176.3738 
BN:  5C C: 415127.0000   S: 4.8768        ES: 1.2227       ER: 156.9482 
BN:  5D C: 515672.6250   S: 3.5989        ES: 0.9062       ER: 246.6585 
BN:  5E C: 194348.7500   S: 6.2318        ES: 2.2930       ER: 37.0098 
BN:  5F C: 12978.0000     S: 7.4986        ES: 3.3828       ER: 7.1307  
BN:  60 C: 2241.5000       S: 7.8798        ES: 3.1562       ER: 0.4644  
BN:  61 C: 33056.5000     S: 7.1508        ES: 3.4727       ER: 9.5334  
BN:  62 C: 617.3125    S: 7.9482        ES: 3.0703       ER: 2.3216 
BN:  63 C: 549.1250    S: 7.9539        ES: 3.1406       ER: 0.0308 
BN:  64 C: 877.3125         S: 7.9322        ES: 3.1133       ER: 0.9094  
BN:  65 C: 7188.7500       S: 7.6370        ES: 3.3125       ER: 5.1595  
BN:  66 C: 17839.1250     S: 7.2973        ES: 3.4453       ER: 8.8155  
BN:  67 C: 580.8125          S: 7.9517 ES: 3.2734       ER: 4.0277  
BN:  68 C: 536.2500          S: 7.9555 ES: 3.1602       ER: 0.5874 

 
 

 

Sure enough, when we get to block 0x5D there is another marked spike in all of the values and then we 

go back to a fairly non-uniform distribution. If we look at the first block range we identified, we will 

notice that the shift between the distributions was far more gradual and gradient like—it increased 

gradually until it was uniform and then decreased gradually until it was no longer so. Here, in the blocks 

0x32 through 0x5D, the shifts in values are far more sudden and dramatic. That’s not even considering 

the blocks we encountered that had precisely uniform distributions across the board—a tell-tale sign 

that we’ve encountered a long string of exactly the same value, which is not something we’d generally 

expect to find in a PDF document; it generally will not have several kilobytes of zero’s or similar; 

executable files however often exhibit that trait. Going back to the data, we see that blocks 0x5D and 

0x5E deviate significantly from all of the other blocks, the Shannon score in 0x5D drops about a full point 

and then almost doubles in 0x5E. This again is going to be indicative of multiple data types colliding into 

the same block. Thus, we can add blocks 0x32 or 0x33 through blocks 0x5D or 0x5E to our list for further 



analysis. We can be pretty sure that we’ve found it given the values of the blocks 0x4A through 0x56, 

but that wouldn’t make a very good tutorial if we stopped there.  

Going through the rest of the file, the general pattern where each block shows a decent amount of 

deviation from those around it and no real uniformity mostly holds. At block 0xF0 through about 0xFC 

we have another string of blocks that show a fair amount of uniformity, however the shift between 

them and their neighbors is more gradual. Finally, at the end of the file, the last two blocks are 

significantly different from anything else in the file. In PDFs, this is actually to be expected as the data 

contained at the end of a PDF is significantly different than most of the file—there is an cross-reference 

table that holds a list of objects is just a sequence of ASCII block offsets followed by revision counts, 

which will generally speaking cause the contents to deviate significantly from the rest of the file. 

At any rate, let’s take a look at the actual frequency of the values stored in the blocks we identified as 

suspect and see if we can find a pattern. For now, we will skip over the functionality that calculates the 

deviation of blocks relative to one another and save that for a file that is a little harder for us to analyze. 

We tell the tool this is what we want with the following options: 

 
$ bin/edfind.py --frequency --freqcount 3 BlackHat-Japan-08-Dang-Office-Attacks-ONE.pdf | less 
 

 

Specifically, the –frequency option indicates we want to retrieve the raw frequency of values in each 

block and the –freqcount indicates that we only want to view the top 4 values for each block. If we 

do not specify this, we will be bombarded with data showing the frequency count for every value 

between zero and 256 in every block of data in the file. When executed we’re presented with the 

following output: 

 

   
BYTE FREQUENCY FOR BLOCKS [  0  : 11D ] 

BN:   0 [V: 01 C:  121 P:    4.24] [V: 30 C:  115 P:    3.30] [V: C0 C:  10C P:    7.35]  
BN:   1 [V: 00 C:   5F P:   45.16]  [V: 01 C:   3C P:    8.70]  [V: 80 C:   37 P:    9.52]  
BN:   2 [V: 00 C:   7E P:   62.50]  [V: 0F C:   42 P:    7.87]  [V: 1E C:   3D P:    1.65]  
BN:   3 [V: 00 C:   6D P:   56.47]  [V: 01 C:   3D P:    1.65]  [V: 03 C:   3C P:    3.39]  
BN:   4 [V: 80 C:   BC P:    8.31]  [V: 02 C:   AD P:    1.75]  [V: 08 C:   AA P:    1.78]  
BN:   5 [V: 00 C:   64 P:   32.56]  [V: 01 C:   48 P:   13.33]  [V: 1E C:   3F P:   13.56]  
BN:   6 [V: 00 C:   52 P:   27.78]  [V: 01 C:   3E P:    3.28]  [V: 40 C:   3C P:    0.00]  
BN:   7 [V: 00 C:   82 P:   60.00]  [V: 01 C:   46 P:    8.96]  [V: 03 C:   40 P:    3.17]  
BN:   8 [V: 00 C:   53 P:   42.34]  [V: 40 C:   36 P:    1.87]  [V: AA C:   35 P:    0.00]  
BN:   9 [V: 01 C:   BD P:    9.42]  [V: 04 C:   AC P:    4.76]  [V: 47 C:   A4 P:    1.23]  
BN:   A [V: 00 C:   63 P:   14.05]  [V: 80 C:   56 P:   34.01]  [V: 01 C:   3D P:    3.33]  
BN:   B [V: 00 C:   68 P:   20.11]  [V: 80 C:   55 P:   13.84]  [V: 01 C:   4A P:    6.99]  
BN:   C [V: 40 C:   7A P:   24.88]  [V: 1D C:   5F P:    0.00]  [V: 07 C:   5F P:    1.06]  
BN:   D [V: 3A C:   74 P:    8.07]  [V: E2 C:   6B P:    1.89]  [V: E9 C:   69 P:    6.90]  
BN:   E [V: 5C C:   73 P:    3.54]  [V: E2 C:   6F P:    3.67]  [V: 55 C:   6B P:    2.84]  
BN:   F [V: 5C C:   70 P:    1.80]  [V: AE C:   6E P:    9.52]  [V: E2 C:   64 P:    3.05]  



BN:  10  [V: AF C:   78 P:    9.61]  [V: D7 C:   6D P:   12.68] [V: 5C C:   80 P:    6.45] 
 

 

 

Here, going through first how the output is formatted are the first 16 blocks of the file. Again, the first 

field is the block number, then we’re given three sets of fields delimited by square brackets. This format 

was chosen due to the fact that without the brackets it was often hard to visually identify what section 

of data we were looking at. At any rate, within the brackets we have a value denoted by V, one denoted 

by C and finally one denoted by P. This refer to the ‘value’, ‘count’ and ‘percentage’ respectively. The 

value is the actual byte value in question—if the byte in the file is 0x41, then this field would be 0x41. 

The count is the number of occurrences this value had within the given block and the percentage is how 

much more frequently this value occurred than the next highest value. For instance, in the first block the 

values with the highest frequencies were 0x01, 0x30 and 0xC0. 0x01 occurred 4.24% more often than 

0x30, which occurred 3.30% more often than 0xC0, which in itself occurred 7.35% more frequently than 

whatever was the 4th most common value. 

Now that we understand the format, let’s take a look at the actual data. The specific rationale of this 

functionality is that a byte with a value of Z that is exclusive-or’d with a value of zero will result in a 

value of Z. Taking advantage of this, we can specifically look for places where we would expect to 

encounter a lot of zero’s and actually recover the plain-text key. So, looking at the first blocks, we can 

immediately discount blocks 0x01 through 0x08 and blocks 0x0A and 0x0B from being XOR encrypted. 

The value most commonly encountered there is zero and any value exclusive or’d with zero is the value 

itself. Unless the key was 0x00, then these blocks could not be encrypted and if it was encrypted with a 

key whose value was zero, then the data was not encrypted but rather embedded into the document 

plain-text. 

Arriving at blocks 0x0D through 0x10, which are part of a sequence we decided earlier to analyze a bit 

more in-depth, we see that the frequency doesn’t match what we would expect with a single byte XOR 

key. However, in a couple of the blocks we find that there are some values that occur in the top 3 

repeatedly, and as we will see later this is often indicative of a multi-byte XOR key where the values of 

the key shift across the top frequency due again to the differences between where the data itself starts 

and the segmenting of the file into blocks. That said, the values in question—0x5C and 0xE2 only really 

occur in even distributions with values that do not repeat in other blocks. As such, we can probably 

discount them as being XOR keys, although we would generally want to look at a wider set of 

distributions both in terms of the values in each block (say 5-8 or so to start) and more blocks in the 

series to see if a pattern with those values emerges. As the blocks 0x4A through 0x56 exhibited 

extremely abnormal behavior, let’s skip ahead to block 0x32 and look at the frequency through at least 

0x4A or 0x4B. 

 
BN:  32 [V: 0B C:   4B P:    9.79]    [V: 2C C:   44 P:    9.23]     [V: 02 C:   3E P:    4.96]  
BN:  33 [V: F9 C:  5B9 P:   96.86]  [V: B1 C:  1FD P:   22.27]  [V: 69 C:  197 P:   31.58]  
BN:  34 [V: F9 C:  352 P:   50.18]    [V: B1 C:  1FD P:   14.77]  [V: 06 C:  1B7 P:   33.20]  
BN:  35 [V: F9 C:  3AA P:   53.00]    [V: B1 C:  221 P:   19.98]  [V: 69 C:  1BE P:    6.00]  
BN:  36 [V: F9 C:  35E P:   42.99]     [V: B1 C:  22D P:   36.77]  [V: 06 C:  180 P:    6.45]  
BN:  37 [V: F9 C:  3A6 P:   48.07]    [V: 06 C:  23C P:    4.65]     [V: B1 C:  222 P:   44.57]  
BN:  38 [V: F9 C:  406 P:   65.29]    [V: B1 C:  20B P:   21.61]  [V: 06 C:  1A5 P:   11.56]  



BN:  39 [V: F9 C:  2D9 P:   11.61]    [V: B1 C:  289 P:   34.08]  [V: 06 C:  1CC P:    3.77]  
BN:  3A [V: F9 C:  35A P:   39.50]    [V: B1 C:  23F P:   22.87]  [V: 06 C:  1C9 P:   22.38]  
BN:  3B [V: F9 C:  3DD P:   61.12]    [V: B1 C:  20E P:   18.71]  [V: 06 C:  1B4 P:   20.48]  
BN:  3C [V: F9 C:  3B6 P:   53.16]    [V: B1 C:  227 P:   26.05]  [V: 72 C:  1A8 P:   26.44]  
BN:  3D [V: F9 C:  3AB P:   40.15]    [V: B1 C:  271 P:   26.24]  [V: 72 C:  1E0 P:   27.49]  
BN:  3E [V: F9 C:  BB8 P:  132.59]    [V: 69 C:  260 P:   84.44]  [V: F8 C:   F7 P:    6.26]  
BN:  3F [V: F9 C:  392 P:    1.99]     [V: 06 C:  380 P:   71.31]  [V: 10 C:  1A9 P:   31.29]  
BN:  40 [V: F9 C:  2E7 P:   12.13]    [V: 06 C:  292 P:   39.49]  [V: B1 C:  1B9 P:    7.53]  
BN:  41 [V: F9 C:  3FC P:   28.70]   [V: 06 C:  2FC P:   67.60]  [V: B1 C:  17A P:   27.03]  
BN:  42 [V: F9 C:  3C9 P:   41.34]   [V: 06 C:  27D P:   45.24]  [V: B1 C:  192 P:   14.69]  
BN:  43 [V: F9 C:  3AE P:   36.39]   [V: 06 C:  28C P:   62.11]  [V: B1 C:  157 P:   13.37]  
BN:  44 [V: F9 C:  366 P:   49.64]   [V: 06 C:  20C P:    2.12]     [V: B1 C:  201 P:   32.13]  
BN:  45 [V: F9 C:  3E4 P:   55.71]   [V: B1 C:  232 P:   39.66]  [V: 72 C:  178 P:    6.31]  
BN:  46 [V: F9 C:  39C P:   55.96]  [V: B1 C:  208 P:   12.46]  [V: 72 C:  1CB P:    4.00]  
BN:  47 [V: F9 C:  66B P:  128.93]  [V: B1 C:  163 P:   33.17]  [V: 69 C:   FE P:    4.02]  
BN:  48 [V: F9 C:  CED P:  156.96]  [V: F8 C:  18F P:   24.79]    [V: FB C:  137 P:   22.54]  
BN:  49 [V: F9 C: 1BF1 P:  193.45] [V: F8 C:   77 P:   72.00]    [V: 89 C:   38 P:   15.38]  
BN:  4A [V: F9 C: 2000 P:    0.00]    [V: FF C:    0 P:    0.00]          [V: FE C:    0 P:    0.00]  
BN:  4B [V: F9 C: 2000 P:    0.00]   [V: FF C:    0 P:    0.00]       [V: FE C:    0 P:    0.00] 

 
 

 

Here, as soon as we get to block 0x33, the distribution pegs at the value 0xF9. It generally occurs far 

significantly more often than any other value—often at least 50% more and as high at 193% more. 

Before we even get to blocks 0x4A and 0x4B, we can be pretty positive these blocks are XOR encrypted 

with the value 0xF9. The values 0xB1 and 0x06 occur fairly frequently as well, and so in a more general 

sense we might have encountered a multi-byte XOR key, although in those instances we would not 

expect one value to be so far above and beyond the top value relative to others. Then we arrive at 

blocks 0x4A and 0x4B and we can more or less confirm our suspicions—the value 0xF9 occurs 0x2000 

(8192) times in a block of size 8192. This is as we expected, a tell-tale sign that we found the XOR key 

due to the trait that key XOR zero = key. Just to confirm that and demonstrate the XOR Table Search 

functionality, we are going to double check that, but we can be pretty sure we are done here. If we were 

an anti-virus or similar scanner that was processing a lot of attachments with the purpose of flagging 

files for further analysis or human intervention, we would definitely flag this one based off of the 

distribution scores we discussed previously and the almost certain frequency distribution that indicates 

to us that not only is part of the file XOR encrypted, but that those sections were XOR encrypted with a 

key value of 0xF9. 

 

To run the XOR table search functionality, you pass either the –xor or –xorall flags to the utility, 

these are by far the slowest parts of the application, but it will confirm or deny our suspicions to some 

value approaching 100%. 

 
$ bin/edfind.py --xorall BlackHat-Japan-08-Dang-Office-Attacks-
ONE.pdf  
FILE: BlackHat-Japan-08-Dang-Office-Attacks-ONE.pdf BLOCK COUNT: 286 
BLOCK SIZE: 8192 



 
 XOR TABLE SEARCH ALL 
  OFFSET: 6622E ( 33  ) KEY: F9 
 
 

Here, we confirm our results—the pre-computed XOR table search has identified a PE executable header 

at offset 0x6622E that is encrypted with the key 0xF9. If we divide that offset by the block size, 8192, we 

confirm that indeed the embedded executable starts in block 0x33. 

To review what we’ve covered and learned, let’s reiterate out points: 

 We review the distribution of blocks, both in terms of uniformity and deviation to attempt to 

identify changes of note in the underlying data. 

 Blocks with Chi-Square values in the 200-300 range and Shannon entropy values at or near 7.97 

are sure fire signs of high entropy data—when looking at XOR encrypted data, we are typically 

talking about data that was encrypted with a longer length key. 

 To initially identify deviant data, we want to look for sudden spikes, whether they be towards 

higher or lower values that deviate from the blocks around it. We then want to see some level 

of uniformity in the distribution. 

 The Pi approximation values are not entirely useless, in the case above the percentage of Error 

was nearly constant across the embedded data and significantly higher than any other 

sequential series of blocks in the file. 

 We can use frequency analysis to help identify not only if data is XOR encrypted, but also we 

can often recover the key in this manner. The underlying theory takes advantage that XOR 

encryption leaks the key whenever it attempts to encrypt a value of zero. 

 A file encrypted with a single byte XOR key exhibits the same distribution as the plain-text, 

which in some ways makes it harder to spot. However analyzing the frequency will generally 

make this data immediately stand-out if the other statistically anomaly metrics based on 

entropy analysis do not do so themselves. 

 A sequence of blocks with uniformity are not for sure signs of hidden data, this occurs 

frequently and is natural—the spikes surrounding them however often do not. 

 The first and last blocks of embedded data tend to get lost into the host file and are sometimes 

harder to identify due to their not being aligned to our block size. 

  



3.1.2 Files with higher-entropy embedded data / One-Time Pad XOR  

 

So now that we’ve taken a look at a file with an embedded executable with a lower amount of entropy, 

let’s take a look at the other end of the spectrum and review the same file with the same embedded 

executable, but this time instead of being encrypted with a single byte key, let’s review it with a longer 

key—one as long as the embedded file simulating a one-time pad. This will give us a better idea of what 

true encryption will look like and also give us a better understanding of what the entropy analytics are 

actually analyzing. We will skip over the parts we already have and take a look almost strictly at the 

embedded data. It’s pretty easy to spot just by reviewing the distribution scores so we are not skipping 

over anything overly important. We again pass the –blockscore (or –s) option and look at the file: 

 
BN:  E4 C: 22454.6875 S: 7.1427 ES: 3.4766 ER: 9.6351  
BN:  E5 C: 2943.5625 S: 7.8130 ES: 3.0078 ER: 4.4478  
BN:  E6 C: 19197.6875 S: 7.2480 ES: 3.4609 ER: 9.2271  
BN:  E7 C: 23342.6250 S: 7.1397 ES: 3.5508 ER: 11.5239 
BN:  E8 C: 32748.1875 S: 6.9164 ES: 3.6055 ER: 12.8659 
BN:  E9 C: 2094.6250 S: 7.8732 ES: 3.2383 ER: 2.9858  
BN:  EA C: 335.0000 S: 7.9705 ES: 3.0938 ER: 1.5464  
BN:  EB C: 294.3750 S: 7.9739 ES: 3.1914 ER: 1.5609  
BN:  EC C: 238.1875 S: 7.9790 ES: 3.2344 ER: 2.8686  
BN:  ED C: 284.3125 S: 7.9745 ES: 3.1289 ER: 0.4055  
BN:  EE C: 281.9375 S: 7.9752 ES: 3.1172 ER: 0.7829  
BN:  EF C: 261.0625 S: 7.9766 ES: 3.1445 ER: 0.0935  
BN:  F0 C: 253.3125 S: 7.9777 ES: 3.0820 ER: 1.9325  
BN:  F1 C: 228.4375 S: 7.9798 ES: 3.1602 ER: 0.5874  
BN:  F2 C: 257.6875 S: 7.9775 ES: 3.2773 ER: 4.1421  
BN:  F3 C: 281.8125 S: 7.9750 ES: 3.0859 ER: 1.8035  
BN:  F4 C: 287.5625 S: 7.9745 ES: 3.1250 ER: 0.5310  
BN:  F5 C: 206.7500 S: 7.9815 ES: 3.1328 ER: 0.2803  
BN:  F6 C: 285.8125 S: 7.9748 ES: 3.0977 ER: 1.4184  
BN:  F7 C: 255.7500 S: 7.9772 ES: 3.2227 ER: 2.5154  
BN:  F8 C: 264.2500 S: 7.9766 ES: 3.2227 ER: 2.5154  
BN:  F9 C: 248.8125 S: 7.9778 ES: 3.2188 ER: 2.3971  
BN:  FA C: 235.0625 S: 7.9794 ES: 3.2070 ER: 2.0405  
BN:  FB C: 217.9375 S: 7.9810 ES: 3.1445 ER: 0.0935  
BN:  FC C: 270.0625 S: 7.9760 ES: 3.0781 ER: 2.0619  
BN:  FD C: 279.8750 S: 7.9751 ES: 3.1016 ER: 1.2906  
BN:  FE C: 276.9375 S: 7.9756 ES: 3.1016 ER: 1.2906  
BN:  FF C: 254.5625 S: 7.9773 ES: 3.1836 ER: 1.3193  
BN:  100 C: 263.2500 S: 7.9763 ES: 3.1133 ER: 0.9094  
BN:  101 C: 256.5000 S: 7.9771 ES: 3.1133 ER: 0.9094  
BN:  102 C: 250.1875 S: 7.9776 ES: 3.0820 ER: 1.9325 

 
 

 



So here, with blocks 0xE4 through 0xE9, we see a decent amount of deviation per block with the natural 

flow of the data starting to decrease in entropy as we get closer to 0xE8, the increases slightly and when 

we reach 0xEA the entropy spikes and the Chi score for each block starts to become uniform at around 

200-300 or so and the Shannon score becomes fairly uniform at about 7.97 or so. The Pi approximation 

values all begin to approach a much closer approximation of Pi as well. As I said, it is actually much 

easier to spot this sort of XOR encryption than ones with lower length keys, or at least is easier to spot 

just by looking at the scores. If we look at the actual frequency distribution alone, it becomes less of an 

easy task which is precisely the inverse of what we saw when dealing with a single byte length key. 

 

 
BN:  E7 [V: 20 C: 1C5 P: 36.55] [V: 01 C: 139 P:  4.91] [V: 80 C: 12A P:  4.46] [V: 10 C: 11D P:3.57]  
BN:  E8 [V: 20 C: 265 P: 61.41] [V: 40 C: 145 P:  2.18] [V: 10 C: 13E P:  0.31] [V: 04 C: 13D P:0.32]  
BN:  E9 [V: 20 C: BE P: 52.49] [V: 65 C: 6F P: 25.38] [V: 74 C: 56 P:  2.35] [V: 0A C: 54 P:  2.41]  
BN:  EA [V: EA C:  36 P:  7.69] [V: E0 C: 32 P:  4.08] [V: 01 C: 30 P:  2.11] [V: EC C: 2F P:  0.00]  
BN:  EB [V: 96 C: 34 P:  8.00] [V: 26 C: 30 P:  2.11] [V: D3 C: 2F P:  0.00] [V: 22 C: 2F P:  2.15]  
BN:  EC [V: 24 C: 2E P:  2.20] [V: 1E C: 2D P:  2.25] [V: E3 C: 2C P:  0.00] [V: 33 C: 2C P:  2.30]  
BN:  ED [V: E8 C: 2F P:  0.00] [V: 61 C: 2F P:  4.35] [V: 5B C: 2D P:  0.00] [V: 50 C: 2D P:  0.00]  
BN:  EE [V: 1C C: 35 P:  1.90] [V: 98 C: 34 P:  8.00] [V: 16 C: 30 P:  2.11] [V: D8 C: 2F P:  4.35]  
BN:  EF [V: CD C: 32 P:  8.33] [V: 38 C: 2E P:  2.20] [V: DB C: 2D P:  0.00] [V: 65 C: 2D P:  2.25]  
BN:  F0 [V: C4 C: 34 P: 10.10] [V: B8 C: 2F P:  2.15] [V: 55 C: 2E P:  4.44] [V: D6 C: 2C P:  0.00]  
BN:  F1 [V: BA C: 35 P: 18.56] [V: FB C: 2C P:  0.00] [V: 31 C: 2C P:  0.00] [V: 0E C: 2C P:  2.30]  
BN:  F2 [V: 4C C: 2E P:  2.20] [V: CE C: 2D P:  0.00] [V: 61 C: 2D P: 2.25] [V: A7 C: 2C P:  0.00]  
BN:  F3 [V: 57 C: 31 P:  4.17] [V: 4B C: 2F P: 2.15] [V: 96 C: 2E P:  2.20] [V: C1 C: 2D P:  0.00]  
BN:  F4 [V: 01 C: 30 P:  2.11] [V: 49 C: 2F P:  2.15] [V: A3 C: 2E P:  2.20] [V: A9 C: 2D P: 0.00] 

 
 

 

 

Here we see in the first few blocks that the distribution doesn’t really have any uniformity or spikes in 

the occurrence of any character that is out of the usual. The value 0x20 occurs a lot, but that is to be 

expected in a PDF as 0x20 correlates to an ASCII space character and there will be a lot of spaces in the 

PDF, which has a plain-text ASCII format. Then we reach the sections that contain our cipher text and 

the distribution evens out mostly. There is no single occurrence of any value that dominates, but at least 

in the top four values which a few significant outliers, we see that the distribution evens out between 

the variables for the most part—each value is between 0.00% to 2.5% or so as common as the next. 

 

This is specifically what we are measuring with our Chi-Square distribution test that the distribution of 

byte values evens out and each value has a frequency about the same as every other value. To 

demonstrate this more clearly, let’s look at the entire range of values for a given block that is encrypted 

with the one-time pad. 

 

 

 

 

 

 



 
BYTE FREQUENCY FOR BLOCKS [ EC  : ED  ] 

BN:EC [V: 24 C: 2E P: 2.20] [V: 1E C: 2D P:  2.25] [V: E3 C: 2C P:  0.00] [V: 33 C: 2C P:  2.30] 
BN:EC [V: B4 C: 2B P: 2.35] [V: CA C: 2A P:  0.00] [V: 59 C: 2A P:  0.00] [V: 58 C: 2A P:  0.00]  
BN:EC [V: 1B C: 2A P: 2.41] [V: FF C: 29 P:  0.00] [V: E7 C: 29 P:  0.00] [V: 89 C: 29 P:  0.00] 
BN:EC  [V: E1 C: 28 P: 0.00]  [V: DF C: 28 P:  0.00] [V: D0 C: 28 P:  0.00] [V: CB C: 28 P:  0.00]  
BN:EC  [V: 73 C: 28 P: 0.00]  [V: 5A C: 28 P:  0.00] [V: 48 C: 28 P:  0.00] [V: 28 C: 28 P:  0.00]  
BN:EC  [V: 0C C: 28 P:0.00]  [V: 0B C: 28 P:  2.53] [V: FD C: 27 P:  0.00] [V: F1 C: 27 P:  0.00]  
BN:EC  [V: C4 C: 27 P:0.00]  [V: 8D C: 27 P:  0.00] [V: 87 C: 27 P:  0.00] [V: 81 C: 27 P:  0.00]  
BN:EC [V: 52 C: 27 P: 0.00]  [V: 47 C: 27 P:  0.00] [V: 32 C: 27 P:  0.00] [V: 09 C: 27 P:  0.00]  
BN:EC [V: BA C: 26 P: 0.00]  [V: 88 C: 26 P:  0.00] [V: 57 C: 26 P:  0.00] [V: 54 C: 26 P:  0.00]  
BN:EC [V: DC C: 25 P: 0.00] [V: DA C: 25 P: 0.00] [V: BB C: 25 P:  0.00] [V: A0 C: 25 P:  0.00]  
BN:EC [V: 7E C: 25 P: 0.00]  [V: 49 C: 25 P:  0.00] [V: 40 C: 25 P:  0.00] [V: 39 C: 25 P:  0.00]  
BN:EC [V: 0A C: 25 P: 0.00]  [V: 07 C: 25 P:  0.00] [V: 00 C: 25 P:  2.74] [V: DE C: 24 P:  0.00]  
BN:EC [V: A4 C: 24 P: 0.00] [V: 7D C: 24 P:  0.00] [V: 78 C: 24 P:  0.00] [V: 3C C: 24 P:  0.00]  
BN:EC [V: 15 C: 24 P:2.82]  [V: FE C: 23 P:  0.00] [V: F5 C: 23 P:  0.00] [V: E4 C: 23 P:  0.00]  
BN:EC [V: D6 C: 23 P:0.00] [V: CC C: 23 P:  0.00] [V: BF C: 23 P:  0.00] [V: AD C: 23 P:  0.00]  
BN:EC [V: A3 C: 23 P: 0.00]  [V: 8E C: 23 P:  0.00] [V: 70 C: 23 P:  0.00] [V: 64 C: 23 P:  0.00]  
BN:EC [V: 37 C: 23 P:0.00]  [V: 30 C: 23 P:  0.00] [V: 17 C: 23 P:  0.00] [V: 14 C: 23 P:  0.00]  
BN:EC [V: 05 C: 23 P: 2.90]  [V: F2 C: 22 P:  0.00] [V: DD C: 22 P:  0.00] [V: CD C: 22 P:  0.00]  
BN:EC [V: BC C: 22 P:0.00] [V: B6 C: 22 P:  0.00] [V: B1 C: 22 P:  0.00] [V: 76 C: 22 P:  0.00]  
BN:EC  [V: 55 C: 22 P: 0.00]  [V: 38 C: 22 P:  0.00] [V: 2D C: 22 P:  2.99] [V: FB C: 21 P:  0.00]  
BN:EC  [V: E2 C: 21 P: 0.00]  [V: C0 C: 21 P:  0.00] [V: BD C: 21 P:  0.00] [V: A7 C: 21 P:  0.00]  
BN:EC  [V: 9C C: 21 P: 0.00]  [V: 7A C: 21 P:  0.00] [V: 79 C: 21 P:  0.00] [V: 6D C: 21 P:  0.00]  
BN:EC  [V: 61 C: 21 P: 0.00]  [V: 56 C: 21 P:  0.00] [V: 3B C: 21 P:  3.08] [V: F3 C: 20 P:  0.00]  
BN:EC  [V: D8 C: 20 P: 0.00]  [V: D3 C: 20 P:  0.00] [V: C2 C: 20 P:  0.00] [V: C1 C: 20 P:  0.00]  
BN:EC  [V: 94 C: 20 P: 0.00]  [V: 8C C: 20 P:  0.00] [V: 7B C: 20 P:  0.00] [V: 72 C: 20 P:  0.00]  
BN:EC  [V: 5B C: 20 P: 0.00]  [V: 53 C: 20 P:  0.00] [V: 2B C: 20 P:  0.00] [V: 26 C: 20 P:  0.00]  
BN:EC  [V: 1A C: 20 P: 0.00]  [V: 06 C: 20 P:  3.17] [V: FC C: 1F P:  0.00] [V: F8 C: 1F P:  0.00] 
BN:EC  [V: E6 C: 1F P: 0.00]  [V: D5 C: 1F P:  0.00] [V: B9 C: 1F P:  0.00] [V: AE C: 1F P:  0.00]  
BN:EC  [V: 9F C: 1F P: 0.00]  [V: 9E C: 1F P:  0.00] [V: 96 C: 1F P:  0.00] [V: 8A C: 1F P:  0.00]  
BN:EC  [V: 68 C: 1F P: 0.00]  [V: 4A C: 1F P:  0.00] [V: 3E C: 1F P:  0.00] [V: 25 C: 1F P:  0.00] 
BN:EC  [V: EB C: 1E P: 0.00]  [V: AF C: 1E P:  0.00] [V: AC C: 1E P:  0.00] [V: A8 C: 1E P:  0.00]  
BN:EC  [V: 8F C: 1E P: 0.00]  [V: 84 C: 1E P:  0.00] [V: 7F C: 1E P:  0.00] [V: 6A C: 1E P:  0.00]  
BN:EC  [V: 5D C: 1E P: 0.00]  [V: 3A C: 1E P:  0.00] [V: 20 C: 1E P:  0.00] [V: 1F C: 1E P:  0.00]  
BN:EC  [V: 18 C: 1E P: 0.00]  [V: 03 C: 1E P:  3.39] [V: E8 C: 1D P:  0.00] [V: D1 C: 1D P:  0.00] 
BN:EC  [V: BE C: 1D P: 0.00]  [V: B0 C: 1D P:  0.00] [V: AB C: 1D P:  0.00] [V: 9B C: 1D P:  0.00]  
BN:EC  [V: 95 C: 1D P: 0.00]  [V: 80 C: 1D P:  0.00] [V: 77 C: 1D P:  0.00] [V: 74 C: 1D P:  0.00]  
BN:EC  [V: 66 C: 1D P: 0.00]  [V: 65 C: 1D P:  0.00] [V: 50 C: 1D P:  0.00] [V: 31 C: 1D P:  0.00]  
BN:EC  [V: 29 C: 1D P: 0.00]  [V: 04 C: 1D P:  3.51] [V: F7 C: 1C P:  0.00] [V: EA C: 1C P:  0.00]  
BN:EC  [V: 62 C: 1C P: 0.00]  [V: 5E C: 1C P:  0.00] [V: 4F C: 1C P:  0.00] [V: 45 C: 1C P:  0.00]  
BN:EC  [V: FA C: 1B P: 0.00]  [V: CF C: 1B P:  0.00] [V: C9 C: 1B P:  0.00] [V: B3 C: 1B P:  0.00]  
BN:EC  [V: 93 C: 1B P: 0.00] [V: 90 C: 1B P:  0.00] [V: 8B C: 1B P:  0.00] [V: 67 C: 1B P:  0.00]  
BN:EC  [V: 43 C: 1B P: 0.00]  [V: 34 C: 1B P:  0.00] [V: 2E C: 1B P:  0.00] [V: 27 C: 1B P:  0.00]  
BN:EC  [V: 0D C: 1B P: 0.00]  [V: 08 C: 1B P:  3.77] [V: ED C: 1A P:  0.00] [V: 86 C: 1A P:  0.00]  
BN:EC  [V: 83 C: 1A P: 0.00]  [V: 60 C: 1A P:  0.00] [V: 4B C: 1A P:  0.00] [V: 3D C: 1A P:  0.00]  
BN:EC  [V: 10 C: 1A P: 3.92]  [V: F6 C: 19 P:  0.00] [V: F0 C: 19 P:  0.00] [V: D2 C: 19 P:  0.00]  
BN:EC  [V: C6 C: 19 P: 0.00]  [V: B8 C: 19 P:  0.00] [V: B7 C: 19 P:  0.00] [V: B5 C: 19 P:  0.00]  



BN:EC  [V: 91 C: 19 P: 0.00]  [V: 7C C: 19 P:  0.00] [V: 6C C: 19 P:  0.00] [V: 5C C: 19 P:  0.00]  
BN:EC  [V: 2C C: 19 P: 0.00]  [V: 22 C: 19 P:  0.00] [V: 21 C: 19 P:  4.08] [V: F9 C: 18 P:  0.00]  
BN:EC  [V: D7 C: 18 P: 0.00]  [V: 98 C: 18 P:  0.00] [V: 6B C: 18 P:  0.00] [V: 4E C: 18 P:  0.00]  
BN:EC  [V: 02 C: 18 P: 4.26]  [V: E0 C: 17 P:  0.00] [V: 92 C: 17 P:  4.44] [V: 3F C: 16 P:  0.00]  
BN:EC  [V: E9 C: 15 P: 0.00]  [V: A5 C: 15 P:  0.00] [V: 6E C: 15 P:  0.00] [V: 4D C: 15 P:  4.88] 

 
 

 

 

Here, we see the entire range of all possible 256 values within block 0xEC.As we look through the data, 

what we see is each value is more or less as probable as every other character—with a large volume of 

them exhibiting exactly the same volume as others. This is what we would expect from random data, as 

there will be either no or very little bias towards any specific value if it’s random and each value has a 

probability of occurrence as every other value. Generally speaking, data that is encrypted will have a 

more even distribution—in the actual encryption algorithms like AES and similar, this is a desired quality 

in part to help prevent known-plaintext attacks. This is complicated by the fact that compressed files 

and encrypted files tend to look pretty similar to our analytics, for instance, consider the following 

distributions for file compressed with different algorithms: 

 

 
ZIP file (.zip): 
BN:30 [V: D7 C: 33 P: 0.00] [V: 05 C: 33 P: 10.31] [V: F2 C: 2E P: 2.20] [V: 0D C: 2D P: 2.25]  
BN:31 [V: 8F C: 34 P: 8.00] [V: D3 C: 30 P: 0.00] [V: B3 C: 30 P: 0.00] [V: 14 C: 30 P: 2.11]  
BN:32 [V: D5 C: 35 P: 5.83] [V: FB C: 32 P: 2.02] [V: E9 C: 31 P: 2.06] [V: 13 C: 30 P: 2.11]  
BN:33 [V: 67 C: 34 P: 1.94] [V: DF C: 33 P: 1.98] [V: 33 C: 32 P: 6.19] [V: 6D C: 2F P: 2.15]  
BN:34 [V: 75 C: 35 P: 1.90] [V: F5 C: 34 P: 3.92] [V: AD C: 32 P:0.00] [V: 76 C: 32 P: 8.33]  
BN:35 [V: 7E C: 31 P: 2.06] [V: F4 C: 30 P: 4.26] [V: FC C: 2E P: 0.00] [V: 77 C: 2E P: 0.00]  
BN:36 [V: F9 C: 30 P: 0.00] [V: 99 C: 30 P: 2.11] [V: FD C: 2F P: 0.00] [V: B2 C: 2F P: 0.00] 

 
BZip2 (.tar.bz2): 
BN:30 [V: 7F C: 31 P: 6.32] [V: A9 C: 2E P: 0.00] [V: 7B C: 2E P: 2.20] [V: 33 C: 2D P: 0.00]  
BN:31 [V: 00 C: 3F P: 23.01] [V: 4C C: 32 P: 2.02] [V: 94 C: 31 P: 4.17] [V: 3D C: 2F P: 2.15]  
BN:32 [V: 00 C: 48 P: 32.26] [V: 27 C: 34 P: 0.00] [V: 02 C: 34 P: 1.94] [V: 6F C: 33 P: 1.98]  
BN:33 [V: 00 C: 37 P: 9.52] [V: 6C C: 32 P: 6.19] [V: E6 C: 2F P: 0.00] [V: A7 C: 2F P: 2.15]  
BN:34 [V: 00 C: 49 P: 35.48] [V: 18 C: 33 P: 4.00] [V: FB C: 31 P: 0.00] [V: DB C: 31 P: 6.32]  
BN:35 [V: 00 C: 35 P: 3.85] [V: 08 C: 33 P: 4.00] [V: BD C: 31 P: 8.51] [V: 81 C: 2D P: 2.25]  
BN:36 [V: C0 C: 31 P: 4.17] [V: 29 C: 2F P: 2.15] [V: 00 C: 2E P: 2.20] [V: A0 C: 2D P: 0.00] 

 
Gzip (.tar.gz): 
BN:30 [V: BF C: 34 P: 14.43] [V: D7 C: 2D P 0.00] [V: AF C: 2D P: 2.25] [V: ED C: 2C P: 0.00]  
BN:31 [V: 7C C: 37 P: 17.82] [V: 1C C: 2E P: 2.20] [V: DF C: 2D P: 0.00] [V: 4F C: 2D P: 2.25]  
BN:32 [V: 3B C: 33 P: 1.98] [V: A5 C: 32 P:4.08] [V: 4B C: 30 P: 6.45] [V: EE C: 2D P: 0.00]  
BN:33 [V: DE C: 41 P: 26.09] [V: CA C: 32 P:8.33] [V: E9 C: 2E P: 2.20] [V: AF C: 2D P: 0.00]  
BN:34 [V: EA C: 34 P: 8.00] [V: D0 C: 30 P:0.00] [V: AD C:  30 P: 6.45] [V: B5 C: 2D P: 0.00]  
BN:35 [V: F5 C: 30 P: 0.00] [V: 1E C: 30 P: 2.11] [V: BE C: 2F P: 2.15] [V: 53 C: 2E P: 2.20]  
BN:36 [V: CB C: 2F P: 0.00] [V: 8F C: 2F P: 2.15] [V: 9B C: 2E P: 2.20] [V: 81 C: 2D P: 4.55] 

 
LZMA (.tar.xz): 



BN:  30 [V: A0 C: 34 P:  8.00] [V: F2 C: 30 P: 0.00] [V: 3A C: 30 P: 6.45] [V: 6C C: 2D P: 0.00]  
BN:  31 [V: 3C C: 2F P:  0.00] [V: 05 C: 2F P: 2.15] [V: 8E C: 2E P: 2.20] [V: 73 C: 2D P: 4.55] 
BN:  32 [V: F5 C: 33 P:  1.98] [V: 19 C: 32 P: 6.19] [V: FC C: 2F P: 2.15] [V: B6 C: 2E P: 2.20]  
BN:  33 [V: C7 C: 32 P:  2.02] [V: 26 C: 31 P: 4.17] [V: 1D C: 2F P: 0.00] [V: 03 C: 2F P: 2.15]  
BN:  34 [V: 31 C: 31 P:  0.00] [V: 19 C: 31 P: 2.06] [V: 3C C: 30 P: 2.11] [V: F5 C: 2F P: 2.15]  
BN:  35 [V: 44 C: 30 P:  0.00] [V: 2D C: 30 P: 4.26] [V: FA C: 2E P: 0.00] [V: C4 C: 2E P: 2.20]  
BN:  36 [V: 0A C: 34 P: 10.10] [V: AA C: 2F P: 4.35] [V: A6 C: 2D P: 0.00] [V: 6B C: 2D P: 2.25] 

 
AES-256 Encrypted ZIP (.zip): 
BN:30 [V: D1 C: 2F P: 0.00] [V: 96 C: 2F P: 0.00] [V: 42 C: 2F P: 0.00] [V: 27 C:   2F P: 4.35]  
BN:31 [V: 6F C: 31 P: 0.00] [V: 6D C: 31 P:  8.51] [V: DD C: 2D P:  .25] [V: FF C:   2C P: 0.00]  
BN:32 [V: C7 C: 30 P: 2.11] [V: 62 C: 2F P:  2.15] [V: 74 C: 2E P:  0.00] [V: 15 C:   2E P: 2.20]  
BN:33 [V: DC C: 37 P: 9.52] [V: 6C C: 32 P:  8.33] [V: 93 C: 2E P:  0.00] [V: 2F C:   2E P: 0.00]  
BN:34 [V: FF C:  30 P: 4.26] [V: BE C: 2E P:  0.00] [V: 59 C: 2E P:  0.00] [V: 51 C:   2E P: 0.00]  
BN:35 [V: 63 C: 32 P: 8.33] [V: 4E C: 2E P:  2.20] [V: FC C: 2D P:  2.25] [V: E1 C:   2C P: 0.00]  
BN:36 [V: 04 C: 32 P: 6.19] [V: 8A C: 2F P:  6.59] [V: A9 C: 2C P:  2.30] [V: B5 C:   2B P: 0.00] 

 
 

 

 

The blocks from the file were chosen more or less at random with the only real criteria being that they 

didn’t come from the beginning or end of the file and that they more or less modeled the distribution 

and generally didn’t have too many outliers relative to the rest of the file. As we can see, the distribution 

of the values looks a lot like the encrypted data with the only really significant difference being that this 

even distribution tends to be punctuated by higher deviations than with the cipher-text. When we get to 

the last file, which is a ZIP file that was subsequently also AES-256 encrypted with a password, these 

punctuations decrease quite a bit and the distribution evens out more. 

 

As such, we obviously cannot use entropy analysis to do all of the work for identifying hidden data—

there are just too many edge cases where it becomes implausible to discern whether deviant data we’re 

looking at is normal or not. Thus, this is mostly a library that is intended to serve as a starting point for 

things like host intrusion prevention systems (HIDS), Anti-virus (AV), and so on—to help better identify 

what data should be given the more resource intensive validation checks such as attempting to parse 

the actual file structure and similar. In fact, using entropy analysis in a similar manner already is used 

extensively throughout the industry—just in a slightly different context. It’s used fairly extensively to 

determine when an executable file is packed and to aid in the automated unpacking of the executable. 

So, by taking the same concepts and applying it to data that mixes multiple data streams with one 

embedded and hidden in another is not really that large of a leap. 

 

So to reiterate our points in this section: 

 Data encrypted with longer XOR keys have much more entropy. They’re easier to spot as 

deviant from other data that itself is not high entropy, but harder to identify by the raw 

frequency counts alone. 

 Unlike shorter XOR keys, we will not be able to utilize the ‘value zero trick’ in these 

circumstances because One-Time Pads utilize a key that is as long as the data being encrypted. 



 If the entropy of the host file data is closer to the embedded data, we may not be able to overly 

discern which is which through these methods. 

 Compressed data tends to look a lot like high-entropy encrypted data, just with intermittent 

spikes in the frequency that deviate relatively significantly from cipher-text. 

 Entropy analysis and statistical analysis should not be thought of as a magic bullet and really 

should only improve the performance of existing more resource intensive methods by more 

properly targeting them towards suspect data. 

 

 

 

3.1.3 The effect of different sizes of block on the entropy analysis scores 

 

Earlier we said that as the data gets more random the Chi-Square distribution test scores approach the 

200-300 range, the Shannon entropy score approaches 7.97 and the Pi approximation scores approach 

Pi, albeit only “kinda sorta”. This isn’t entirely true, all of these are dependent on the size of the block in 

question. As the blocks get bigger, how close the Pi approximation approaches Pi decreases the more 

random the data is. The Chi-Square score is modified, albeit not as dramatically as other scores and the 

Shannon score reaches higher values—for instance 7.99 or higher. 

 

To demonstrate this, let’s examine a block of data generated by a PRNG in different block sizes. We 

generated the data by pointing the dd program to /dev/random and as such the data should be as 

random as one can expect from the Linux PRNG. One significant caveat however is that this was done 

inside of a virtual machine. To help improve this, we seeded the Linux PRNG repeatedly with data from 

the hardware generators from www.random.org. At any rate, let’s take a look at the file with the default 

block size: 

 

 
FILE: random-34k.data BLOCK COUNT: 5 BLOCK SIZE: 8192 
 
ALL SCORES 
BN:   0 C: 266.3750 S: 7.9762  ES: 3.1836  ER: 1.3193  
BN:   1 C: 250.0000 S: 7.9780  ES: 3.1562  ER: 0.4644  
BN:   2 C: 235.6875 S: 7.9792  ES: 3.1992  ER: 1.8013  
BN:   3 C: 236.9375 S: 7.9790  ES: 3.1367  ER: 0.1554  
BN:   4 C: 249.1514 S: 7.8458  ES: 3.1258 ER: 0.5043 

 
 

 

As we can see, at the default block size of 8192 bytes or 8KB, the scores fall into the range previously 

stated—the Chi score hovers around 250 and the Shannon score is mostly at 7.97. The Pi approximation 

scores approach Pi, but there is really no discernable pattern to them as the error ranges between 0.4 

and 1.8. If we resize the blocks so that they’re twice as large, or 16384 bytes/16KB, we get the following 

values: 

 

 

 

http://www.random.org/


 
FILE: random-34k.data BLOCK COUNT: 3 BLOCK SIZE: 16384 
 
ALL SCORES 
BN:   0 C: 238.1875 S: 7.9895 ES: 3.1699 ER: 0.8937  
BN:   1 C: 236.1250 S: 7.9896 ES: 3.1680 ER: 0.8326  
BN:   2 C: 249.1514 S: 7.8458 ES: 3.1258 ER: 0.5043 

 
 

 

Here we can see that the Chi-Square scores stayed mostly the same but decreased slightly and the 

Shannon scores increased into the 7.98 range for the most part. The last block decreased slightly, but 

that conforms to what we saw in the default block size. The Monte Carlo method Pi approximation 

scores indeed got closer to the correct value of Pi, which is what we expect for random data that 

increases in size. So let’s take a look at even larger blocks and see how it modifies the scores, this time 

let’s look at blocks three times the default size, or 24KB: 

 

 
FILE: random-34k.data BLOCK COUNT: 2 BLOCK SIZE: 24576 
 
ALL SCORES 
BN:   0 C: 231.2708 S: 7.9932 ES: 3.1797 ER: 1.1981  
BN:   1 C: 230.2965 S: 7.9821 ES: 3.1353 ER: 0.2001 

 
 

 

Here again, we same relative deviation is encountered, the Chi score decreases slightly and hovers 

around 230 and the Shannon scores increase into the 7.99/7.98 range. The Pi score however deviates 

from what we expected somewhat and in one block the error is larger and in the other it’s smaller. This 

sort of less deterministic behavior is why we’re probably going to replace the Pi approximation in a later 

release, it is useful, just not as much as we had hoped. 

 

Okay, so we have seen above that as the block size increases, the same high-entropy data generates 

scores that change—with the Chi score decreasing, the Shannon score increasing and the Pi 

approximation scores further approaching Pi, albeit in a somewhat random fashion. So the obvious next 

question is what happens when the block size of high-entropy data decreases? Does the pattern still 

hold in that the Chi score will increase, the Shannon score decrease and the Pi approximation score start 

to deviate further? To determine that, let’s take a look at the same file this time with smaller blocks. 

Let’s first start out with a block half the size of the default, or 4096 bytes in length: 

 

 

 
FILE: random-34k.data BLOCK COUNT: 9 BLOCK SIZE: 4096 
 
ALL SCORES 
BN:   0 C: 272.2500 S: 7.9518 ES: 3.1797 ER: 1.1981  
BN:   1 C: 256.6250 S: 7.9536 ES: 3.1875 ER: 1.4402  
BN:   2 C: 230.7500 S: 7.9592 ES: 3.1484 ER: 0.2174  



BN:   3 C: 241.8750 S: 7.9566 ES: 3.1641 ER: 0.7102  
BN:   4 C: 223.2500 S: 7.9595 ES: 3.2422 ER: 3.1027  
BN:   5 C: 279.7500 S: 7.9505 ES: 3.1562 ER: 0.4644  
BN:   6 C: 257.7500 S: 7.9533 ES: 3.1406 ER: 0.0308  
BN:   7 C: 241.7500 S: 7.9565 ES: 3.1328 ER: 0.2803  
BN:   8 C: 249.1514 S: 7.8458 ES: 3.1258 ER: 0.5043 

 
 

 

As we review the data, we see that indeed the scores deviate mostly as expected. The Chi scores 

increase, but remain within the mid-200s range albeit slightly smaller than the scores retrieved by the 

default block size of 8192. The Shannon score decreases to mostly the 7.95 range, and the Pi 

approximation scores start to become more distanced from Pi, against, in a less deterministic fashion 

than hoped. If this pattern holds, then when we again decrease the size, we should see the Chi scores 

increase into even higher values, the Shannon decrease slightly and the Pi approximation scores deviate 

even further. As such, let’s look at the file in 2KB blocks: 

 

 

 
FILE: random-34k.data BLOCK COUNT: 17 BLOCK SIZE: 2048 
 
ALL SCORES 
BN:   0 C: 265.2500 S: 7.9035 ES: 3.2969 ER: 4.7100  
BN:   1 C: 265.7500 S: 7.9060 ES: 3.0625 ER: 2.5826  
BN:   2 C: 306.2500 S: 7.8924 ES: 3.1562 ER: 0.4644  
BN:   3 C: 222.7500 S: 7.9181 ES: 3.2188 ER: 2.3971  
BN:   4 C: 236.0000 S: 7.9158 ES: 3.2344 ER: 2.8686  
BN:   5 C: 267.5000 S: 7.9044 ES: 3.0625 ER: 2.5826  
BN:   6 C: 245.2500 S: 7.9119 ES: 3.1250 ER: 0.5310  
BN:   7 C: 240.5000 S: 7.9124 ES: 3.2031 ER: 1.9210  
BN:   8 C: 193.7500 S: 7.9301 ES: 3.2344 ER: 2.8686  
BN:   9 C: 234.0000 S: 7.9142 ES: 3.2500 ER: 3.3356  
BN:   A C: 264.2500 S: 7.9070 ES: 3.0938 ER: 1.5464  
BN:   B C: 267.5000 S: 7.9035 ES: 3.2188 ER: 2.3971  
BN:   C C: 243.5000 S: 7.9117 ES: 3.0938 ER: 1.5464  
BN:   D C: 247.2500 S: 7.9073 ES: 3.1875 ER: 1.4402  
BN:   E  C: 213.0000 S: 7.9218 ES: 3.1406 ER: 0.0308  
BN:   F C: 237.0000 S: 7.9133 ES: 3.1250 ER: 0.5310  
BN:  10 C: 249.1514 S: 7.8458 ES: 3.1258 ER: 0.5043 

 
 

 

 

Indeed, the pattern holds. The Chi scores mostly gravitate towards the mid-to-high end of the 200s with 

a single block reaching the low 300 range, the Shannon scores decrease into the 7.90-7.98 range and we 

begin to see even more deviation from the Pi scores. So, if we were to view the file as a whole, what we 

would expect is a Chi score that sits somewhere in the mid-200 range, a higher Shannon score and a Pi 

score that further approaches Pi: 



 

 

 

 
FILE: random-34k.data BLOCK COUNT: 5 BLOCK SIZE: 8192 
 
WHOLE FILE SCORE 
C: 242.8282 S: 7.9948  ES: 3.1674  ER: 0.8152 
    

 

 

 

And indeed, the pattern again holds. So, to review what we’ve discussed we can make the following 

observations: 

 When dealing with high-entropy data such as random data or cipher-texts, the bigger the block 

the lower the Chi-Square scores are, although they average out somewhat. Furthermore, the 

Shannon score slightly increases and the Pi approximation scores become more accurate and 

approach Pi a bit more although it does so somewhat randomly. 

 Inversely, when we decrease the block size, the scores show a similar inverse deviation. 

 Pi approximation scores work better with larger blocks of data. 

 

3.1.4 Block score deviation demonstrated via 8-byte XOR 

 

Okay, so we have reviewed just the generic block scores so far and have done so at two ends of the 

spectrum: with a 1-byte XOR key and an XOR key that is as long as the embedded file. Both were pretty 

easy to spot albeit with different methods. The 1-byte XOR data more closely conformed to the host file 

sans the blocks full of zeroes and looking at the raw frequency data showed us pretty clearly that the 

data was XOR encrypted. When we looked at the longer XOR key, the data had a pretty uniform 

distribution and looking at the raw frequency data was less useful, but the standard scoring metrics 

showed us that such data is pretty easy to spot. Moreover, we haven’t even discussed other aspects of 

the extension, in particular functionality that calculates differences between the scores for blocks and 

block ranges. So let’s take a look briefly at the same PDF file with the same embedded executable, but 

this time let’s use a longer XOR key, say 8 bytes. In this instance, we can again easily spot the blocks full 

of zeroes and the general pattern of a large deviation followed by relative uniformity holds as well, so 

we will skip straight to the relevant sections of the file: 

 

 
BN:  AA C: 2342.4375 S: 7.8711 ES: 3.1758 ER: 1.0765  
BN:  AB C: 33199.0000 S: 7.1964 ES: 3.4023 ER: 7.6639  
BN:  AC C: 603.3750 S: 7.9501 ES: 3.1289 ER: 0.4055  
BN:  AD C: 486.8125 S: 7.9587  ES: 3.1719 ER: 0.9547  
BN:  AE C: 23303.5000 S: 7.2774  ES: 3.4180 ER: 8.0860  
BN:  AF C: 6687.7500 S: 7.5337 ES: 3.3438 ER: 6.0458  
BN:  B0 C: 6607.6250 S: 7.5587 ES: 3.3047 ER: 4.9353  



BN:  B1 C: 6717.0625 S: 7.5527 ES: 3.3633 ER: 6.5914  
BN:  B2 C: 6416.8125 S: 7.5628 ES: 3.3711 ER: 6.8079  
BN:  B3 C: 6785.5000 S: 7.5451 ES: 3.4102 ER: 7.8754  
BN:  B4 C: 6624.5000 S: 7.5521 ES: 3.4219 ER: 8.1909  
BN:  B5 C: 6518.8125 S: 7.5538 ES: 3.4258 ER: 8.2956  
BN:  B6 C: 6759.1875 S: 7.5448 ES: 3.4062 ER: 7.7698  
BN:  B7 C: 6721.2500 S: 7.5509 ES: 3.4062 ER: 7.7698  
BN:  B8 C: 7210.3750 S: 7.5255 ES: 3.3438 ER: 6.0458  
BN:  B9 C: 14706.0000 S: 7.2823 ES: 3.4258 ER: 8.2956  
BN:  BA C: 24410.5000 S: 7.0843 ES: 3.6016 ER: 12.7714 
BN:  BB C: 6947.8750 S: 7.5286 ES: 3.3672 ER: 6.6998  
BN:  BC C: 6047.8750 S: 7.5769 ES: 3.4062 ER: 7.7698  
BN:  BD C: 7235.6250 S: 7.5357 ES: 3.3945  ER: 7.4514  
BN:  BE C: 6651.3125 S: 7.5610 ES: 3.4922 ER: 10.0394 
BN:  BF C: 6332.2500 S: 7.5693 ES: 3.4258 ER: 8.2956  
BN:  C0 C: 5886.3125 S: 7.5881 ES: 3.3867 ER: 7.2379  
BN:  C1 C: 6651.4375 S: 7.5643 ES: 3.3008 ER: 4.8228  
BN:  C2 C: 5274.0000 S: 7.6159 ES: 3.3984 ER: 7.5577  
BN:  C3 C: 32201.8750 S: 7.0112 ES: 3.5820 ER: 12.2958 
BN:  C3 C: 32201.8750 S: 7.0112 ES: 3.5820 ER: 12.2958 
BN:  C4 C: 81919.3125 S: 6.0033 ES: 3.5352 ER: 11.1328 
BN:  C5 C: 253952.0000 S: 3.0000 ES: 4.0000 ER: 21.4602 
BN:  C6 C: 253952.0000 S: 3.0000 ES: 4.0000 ER: 21.4602 
BN:  C7 C: 253952.0000 S: 3.0000 ES: 4.0000 ER: 21.4602 
BN:  C8 C: 253952.0000 S: 3.0000 ES: 4.0000 ER: 21.4602 
BN:  C9 C: 253952.0000 S: 3.0000 ES: 4.0000 ER: 21.4602 
     

 

 

For the same of demonstration, let’s assume the blocks full of zero’s don’t exist. This is fairly appropriate 

given that malware in the wild is less likely to have that trait due to packing and encryption and so on. In 

order to “fix” the zero problem, the data would have to be encrypted with an XOR key that is at least as 

long as the entire run of zeroes or else we will encounter the same distributions for those sections. 

Given that, we can still see the fairly uniform distribution in the Shannon and Chi scores when we 

encounter the file. The Chi scores are mostly in the 6000-7000 range, which differs by a fair amount 

from neighbor blocks around it. However, the scores themselves begin to approach a value more 

consistent with the host data, for instance the range we identified as potentially suspect when we 

looked at the file with a one-byte XOR key has scores in the 4000 range. Sometimes however, especially 

when dealing with high-entropy host data with high-entropy embedded data, the differences are not so 

easy to spot by eye and the uniformity of the scores gets lost. In those instances, it’s often easier to look 

at the same data in terms of percent of differences than the actual scores. 

 

We have multiple modes of operation that handle this case, for instance the –blockdev mode 

calculates a given blocks percent of difference from all of the other blocks, --devxy is similar, except 

that it calculates the differences between two specific blocks and finally we have –seqdev and –

seqxy. The first.will calculate the percentage of deviation between sequential blocks, which is to say 

we calculate the difference for block 1 from block 2, block 2 from block 3 and so on. The second option 



performs the exact same task, but instead of doing it against all blocks in the file it takes two parameters 

that denote the start and stop indices for a range of blocks we want to calculate the differences for. 

 

Let’s start by taking a look at the deviation of regular blocks of host data so we can get a feel for that, we 

do so by passing the –blockdev option and a specified --blocknumber: 

 

 
$ bin/edfind.py -d -n 5 BlackHat-Japan-08-Dang-Office-Attacks-EIGHT.pdf | less 
 

 

Which produces, in part, the following: 

 

 
FILE: BlackHat-Japan-08-Dang-Office-Attacks-EIGHT.pdf BLOCK COUNT: 286 BLOCK SIZE: 8192 
 
BLOCK   5   DEVIATION RELATIVE ALL BLOCKS 
BN:   0 C: 180.5784 S: 6.5931 ES: 9.3880 ER: 187.5330 
BN:   1 C: 14.6888 S: 0.0601 ES: 0.3734 ER: 99.9762 
BN:   2 C: 19.5273 S: 0.0870 ES: 2.9484 ER: 161.5248 
BN:   3 C: 2.2043 S: 0.0052 ES: 2.2195 ER: 149.0724 
BN:   4 C: 151.0541 S: 2.3622 ES: 1.2392 ER: 109.2246 
BN:   5 C: 14.7972 S: 0.0720 ES: 5.1033 ER: 177.5351 
BN:   6 C: 20.5931 S: 0.0792 ES: 1.7305 ER: 134.8410 
BN:   7 C: 16.2717 S: 0.0451 ES: 5.5758 ER: 179.3913 
BN:   8 C: 154.8200 S: 2.8190 ES: 0.7453 ER: 49.4529 
BN:   9 C: 4.7020 S: 0.0111 ES: 3.3109 ER: 165.6756 
BN:   A C: 23.2693 S: 0.1359 ES: 4.7474 ER: 175.8930 
BN:   B C: 132.6418 S: 2.5889 ES: 5.1151 ER: 180.7530 
BN:   C C: 144.9958 S: 3.7745 ES: 6.9677 ER: 185.6275 
BN:   D C: 146.8961 S: 3.9277 ES: 8.1765 ER: 187.6935 
BN:   E C: 145.8226 S: 3.8883 ES: 8.1765 ER: 187.6935 
BN:   F C: 151.7696 S: 4.3970 ES: 18.6776 ER: 194.7169 
BN:  10 C: 150.9746 S: 4.3200 ES: 11.1916 ER: 190.9946 
BN:  11 C: 148.5987 S: 4.2271 ES: 11.8890 ER: 191.5305 
BN:  12 C: 148.8078 S: 4.0953 ES: 16.7568 ER: 194.0688 
BN:  13 C: 147.7051 S: 4.0217 ES: 10.9139 ER: 190.7631 
BN:  14 C: 151.3041 S: 4.2417 ES: 11.0526 ER: 190.8801 
BN:  15 C: 147.3353 S: 3.9494 ES: 10.7753 ER: 190.6433 

 
 

 

 

We chose block number 5 somewhat at random with really only a criteria that it wasn’t at the beginning 

or end of the file. As we look at the data, we see the same sort of spikes and valleys that the scores 

themselves have however the Shannon scores show that at least for the nine blocks after the first block 

(file headers and footers tend to deviate significantly from the rest of their content), that the 



information entropy is more or less the same. Here the Pi scores don’t serve us very well as almost all of 

them are in ranges well over 100% difference. 

 

However, when we get to blocks 0x0B through 0x15, we see that the amount of difference between 

block 0x05 and them starts to become more uniform, as does the Shannon and Pi approximation scores. 

This is more or less to be expected because we’re really looking at the same data as when we were 

viewing the scores earlier, we’re just viewing it in terms of differences than as raw scores. For the same 

reasons as when we first looked at the file when it had a one-byte XOR encrypted executable embedded 

in it, we would likely take a closer look at all ranges that are relatively uniform. Let’s take a look at that 

now specifically looking at a block that falls within that mostly uniform range, say 0x0D: 

 

 
BN:   C C: 23.7949 S: 1.1859 ES: 1.8543 ER: 30.2422 
BN:   D C: 4.0646 S: 0.1532 ES: 1.2105 ER: 16.0187 
BN:   F C: 1.7538 S: 0.1138 ES: 1.2105 ER: 16.0187 
BN:  10 C: 15.0578 S: 0.6228 ES: 11.7481 ER: 94.3086 
BN:  11 C: 13.2060 S: 0.5457 ES: 4.2321 ER: 47.2232 
BN:  12 C: 7.8096 S: 0.4528 ES: 4.9315 ER: 53.1004 
BN:  13 C: 8.2764 S: 0.3210 ES: 9.8177 ER: 84.9327 
BN:  14 C: 5.8316 S: 0.2473 ES: 3.9536 ER: 44.7630 
BN:  15 C: 13.9706 S: 0.4674 ES: 4.0928 ER: 46.0012 
BN:  16 C: 5.0212 S: 0.1750 ES: 3.8147 ER: 43.5083 
BN:  17 C: 9.6567 S: 0.3483 ES: 7.7778 ER: 73.3010 
BN:  18 C: 13.4137 S: 0.2990 ES: 5.3535 ER: 56.4512 
BN:  19 C: 11.8915 S: 0.3605 ES: 0.4019 ER: 5.5966  
BN:  1A C: 14.7676 S: 0.3728 ES: 2.9851 ER: 35.6130 
BN:  1B C: 16.5408 S: 0.5457 ES: 0.5333 ER: 7.9061  
BN:  1C C: 11.8384 S: 0.3242 ES: 0.4003 ER: 5.8796  
BN:  1D C: 10.3172 S: 0.3273 ES: 0.6662 ER: 9.9674  
BN:  1E C: 29.4325 S: 1.0712 ES: 2.2989 ER: 28.5116 
BN:  1F C: 51.0710 S: 1.7271 ES: 0.6662 ER: 9.9674  
BN:  20 C: 67.6754 S: 2.1520 ES: 8.3565 ER: 76.8073 
BN:  21 C: 68.4539 S: 2.1903 ES: 1.7230 ER: 27.8235 
BN:  22 C: 81.9809 S: 2.5465 ES: 0.4019 ER: 5.5966  
BN:  23 C: 68.4350 S: 2.2414 ES: 2.9851 ER: 35.6130 
BN:  24 C: 74.1537 S: 2.3939 ES: 0.2677 ER: 3.7612  
BN:  25 C: 51.3289 S: 1.8181 ES: 1.6173 ER: 20.8788 
BN:  26 C: 94.6866 S: 3.0066 ES: 0.9402 ER: 12.6527 
BN:  27 C: 136.2424 S: 3.6503 ES: 8.2051 ER: 154.9369 
BN:  28 C: 147.9159 S: 3.7974 ES: 10.7527 ER: 74.1581 

 
 

 

 

As we look at the data sequentially around and following block 0x0D, we see that the data is relatively 

uniform relative to the other blocks, but we should notice a loose trend—which is that as we process 

the blocks that follow, they most increase in the volume of difference in terms of the Chi score. The 



Shannon scores also fluctuate and grow more, but the difference is not as noticeable as it is in the Chi 

scores. If we go back and look at the scores themselves, we notice that this pattern loosely holds there 

as well, however it didn’t jump out at us in the same way that looking at the differences did. If we 

contrast these differences with a block of embedded data relative to the other embedded data, we will 

see even more differences between the host file data that is somewhat uniform and the hidden data 

stream: 

 

 
BN:  AE C: 110.5005 S: 3.7129 ES: 1.6129 ER: 20.3651 
BN:  AF C: 0.4373 S: 0.2518 ES: 0.5824 ER: 8.6349  
BN:  B0 C: 1.6426 S: 0.0791 ES: 1.7575 ER: 28.7364 
BN:  B2 C: 4.5721 S: 0.1344 ES: 0.2320 ER: 3.2311  
BN:  B3 C: 1.0137 S: 0.1007 ES: 1.3841 ER: 17.7505 
BN:  B4 C: 1.3876 S: 0.0075 ES: 1.7271 ER: 21.6402 
BN:  B5 C: 2.9956 S: 0.0146 ES: 1.8412 ER: 22.8944 
BN:  B6 C: 0.6252 S: 0.1050 ES: 1.2695 ER: 16.4098 
BN:  B7 C: 0.0623 S: 0.0231 ES: 1.2695 ER: 16.4098 
BN:  B8 C: 7.0840 S: 0.3611 ES: 0.5824 ER: 8.6349  
BN:  B9 C: 74.5826 S: 3.6457 ES: 1.8412 ER: 22.8944 
BN:  BA C: 113.6834 S: 6.3999 ES: 6.8424 ER: 63.8332 
BN:  BB C: 3.3782 S: 0.3193 ES: 0.1161 ER: 1.6306  
BN:  BC C: 10.4848 S: 0.3199 ES: 1.2695 ER: 16.4098 
BN:  BD C: 7.4332 S: 0.2253 ES: 0.9249 ER: 12.2471 
BN:  BE C: 0.9837 S: 0.1105 ES: 3.7607 ER: 41.4647 
BN:  BF C: 5.8978 S: 0.2193 ES: 1.8412 ER: 22.8944 
BN:  C0 C: 13.1830 S: 0.4676 ES: 0.6944 ER: 9.3486  
BN:  C1 C: 0.9818 S: 0.1535 ES: 1.8757 ER: 30.9909 
BN:  C2 C: 24.0690 S: 0.8330 ES: 1.0399 ER: 13.6587 
BN:  C3 C: 130.9636 S: 7.4364 ES: 6.2992 ER: 60.4042 
BN:  C4 C: 169.6871 S: 22.8591 ES: 4.9830 ER: 51.2451 
BN:  C5 C: 189.6926 S: 86.2849 ES: 17.2944 ER: 106.0099 
BN: C6 C: 189.6926      S: 86.2849       ES: 17.2944      ER: 106.0099 

 
 

 

As we review this data corresponding to the differences between block 0xB1 and the other embedded 

data, we should immediately see the differences between this data and the aforementioned data that 

showed some level of uniformity. For instance, the level of uniformity in the Chi scores is greater with 

the difference between the blocks ranging in single digit percentages and in some cases less than 1%. 

This contrasts with the other blocks which entirely showed double digit percentage differences in the 

Chi score. Secondly, the Chi scores do not show an upward trend like the other blocks did. There is 

actually no real discernable pattern here, sometimes it’s a few points more, sometimes a bit less. Next, 

the level of information entropy is somewhat constant. There is the outlier block at index 0xBA, however 

by and large the difference is less than 1%, often in the 0.3% range. Finally, there is a higher level of 

uniformity in the Pi approximation errors as well. Thus we can say with some degree of certainty that 

the distributions here are more uniform than the earlier blocks, there are no upward or downward 



trends and as such they are more indicative of cipher-text as the distribution should conform to this 

model when dealing with cipher-texts. 

 

Okay, let’s recap what we’ve discussed in this section and move onto something a bit closer to the 

actual threat data we’d be looking at and while we’re at it demonstrate the sequential deviation feature. 

 

 Sometimes the scores themselves make patterns harder to discern, we can elect to view the 

scores as percentage of difference relative to other blocks which will sometimes make them 

easier to spot. 

 When view in this manner, we can often differentiate blocks that have somewhat uniform 

scores from blocks that really are uniform. 

 Blocks of related data will often have a certain structure to them, but they will also often follow 

a discernable pattern—for instance in this example the percent of differences gradually 

increased for the most part showing; moreover, when we viewed them this way we noted that 

the differences between the blocks were higher than we really thought. 

 When we viewed the actual encrypted executable in this manner, we noted that this ascending 

pattern vanished and that the data was far more uniform in its distribution. 

 

3.1.5 Packed Executables in a File with Higher Entropy 

 

Okay, thus far we’ve been using a sorta unrealistic use-case, which is that the executable in question 

was really only hidden by the XOR and due to this sections that were filled entirely with zeroes made the 

executable pretty easy to spot. This is due to the executables not being packed or otherwise obfuscated 

precisely because they were standard executable programs and not actually malware. Many academic 

and industry reports have shown that over 90% of malware is packed and so we can expect that this will 

be the case in most instances where we are viewing live data. Moreover, the file we used was relatively 

low in entropy and so when a long XOR key was used, it was equally easy to identify. 

So, let’s get closer to reality and look at a different file with some packed instances of cmd.exe. As it 

turns out, US President Barack Obama’s long-form birth certificate fits this model very well. Let’s take a 

look at the file without anything embedded in it: 

 
FILE: birth-certificate-long-form-CLEAN.pdf BLOCK COUNT: 47 BLOCK SIZE: 8192 
 
ALL SCORES 
BN:   0   C: 2015.8750 S: 7.8790  ES: 3.2383  ER: 2.9858  
BN:   1   C: 814.5625 S: 7.9356  ES: 3.2188  ER: 2.3971  
BN:   2   C: 623.9375 S: 7.9503  ES: 3.2266  ER: 2.6334  
BN:   3   C: 675.6250 S: 7.9454  ES: 3.0938  ER: 1.5464  
BN:   4   C: 681.8750 S: 7.9456  ES: 3.1250  ER: 0.5310  
BN:   5   C: 772.6250 S: 7.9394  ES: 3.1328  ER: 0.2803  
BN:   6   C: 582.6875 S: 7.9514  ES: 3.1445  ER: 0.0935  
BN:   7   C: 593.7500 S: 7.9532  ES: 3.1914  ER: 1.5609  
BN:   8   C: 1954.5625 S: 7.8853  ES: 3.0938  ER: 1.5464  



BN:   9   C: 802.8750 S: 7.9308  ES: 3.0195  ER: 4.0424  
BN:   A   C: 635.4375 S: 7.9456  ES: 3.1055  ER: 1.1632  
BN:   B   C: 652.0000 S: 7.9417  ES: 3.1523  ER: 0.3411  
BN:   C   C: 737.0625 S: 7.9361  ES: 3.1719  ER: 0.9547  
BN:   D   C: 689.4375 S: 7.9405  ES: 3.1602  ER: 0.5874  
BN:   E   C: 662.6875 S: 7.9445  ES: 3.1328  ER: 0.2803  
BN:   F   C: 747.0625 S: 7.9374  ES: 3.1406  ER: 0.0308  
BN:  10   C: 717.8750 S: 7.9417  ES: 3.2305  ER: 2.7512  
BN:  11   C: 608.0625 S: 7.9481  ES: 3.1836  ER: 1.3193  
BN:  12   C: 737.4375 S: 7.9357  ES: 3.2305  ER: 2.7512  
BN:  13   C: 550.0000 S: 7.9539  ES: 3.0664  ER: 2.4519  
BN:  14   C: 733.7500 S: 7.9402  ES: 3.1328  ER: 0.2803  
BN:  15   C: 832.3750 S: 7.9336  ES: 3.0938  ER: 1.5464  
BN:  16   C: 816.5625 S: 7.9349  ES: 3.1328  ER: 0.2803  
BN:  17   C: 602.0625 S: 7.9484  ES: 3.1016  ER: 1.2906  
BN:  18   C: 831.0000 S: 7.9340  ES: 3.0977  ER: 1.4184  
BN:  19   C: 645.1250 S: 7.9464  ES: 3.0625  ER: 2.5826  
BN:  1A   C: 696.0625 S: 7.9394  ES: 3.0273  ER: 3.7739  
BN:  1B   C: 706.2500 S: 7.9401  ES: 3.0547  ER: 2.8450  
BN:  1C   C: 590.0625 S: 7.9495  ES: 3.2539  ER: 3.4517  
BN:  1D   C: 683.2500 S: 7.9425  ES: 3.1055  ER: 1.1632  
BN:  1E   C: 678.3750 S: 7.9418  ES: 3.1250  ER: 0.5310  
BN:  1F   C: 709.5000 S: 7.9405  ES: 3.0586  ER: 2.7136  
BN:  20   C: 692.5625 S: 7.9415  ES: 3.0117  ER: 4.3123  
BN:  21   C: 669.6250 S: 7.9436  ES: 3.1367  ER: 0.1554  
BN:  22   C: 689.4375 S: 7.9432  ES: 3.1328  ER: 0.2803  
BN:  23   C: 695.0625 S: 7.9405  ES: 3.2305  ER: 2.7512  
BN:  24   C: 851.0625 S: 7.9285  ES: 3.1602  ER: 0.5874  
BN:  25   C: 834.0000 S: 7.9343  ES: 3.1875  ER: 1.4402  
BN:  26   C: 772.1875 S: 7.9327  ES: 3.0469  ER: 3.1087  
BN:  27   C: 657.9375 S: 7.9426  ES: 3.0547  ER: 2.8450  
BN:  28   C: 554.0000 S: 7.9511  ES: 3.0469  ER: 3.1087  
BN:  29   C: 821.1875 S: 7.9343  ES: 3.0273  ER: 3.7739  
BN:  2A   C: 946.8125 S: 7.9167  ES: 3.1172  ER: 0.7829  
BN:  2B   C: 908.6875 S: 7.9203  ES: 3.1250  ER: 0.5310  
BN:  2C   C: 1061.7500 S: 7.9084  ES: 3.0586  ER: 2.7136  
BN:  2D   C: 2115.1250 S: 7.8768 ES: 3.1289  ER: 0.4055  
BN:  2E   C: 28234.6827 S: 7.0330  ES: 3.5515 ER: 11.5425 

 
 

 

Here when we review the data, we see that the file contains almost entirely sections that fall within the 

600-800 range for its Chi-Square score. The values of the Shannon score are also mostly uniform and the 

Pi approximation scores almost all approach Pi significantly. This file has been analyzed up and down by 

a good cross-section of the world and basically we know that it’s (a) Real or at least wasn’t modified 

significantly after the digital copy was created (Research suggests that we can determine that the only 

real modification was that someone switched the orientation of the scanned document so that it faced 



right side up), (b) that it was created on a fairly high-end scanner (Xerox WorkCenter) and (c) That the 

contents of the file in its entirety almost contain compressed images. 

 

So we can explain why these values look almost like a cipher-text, although they lack the appropriate 

level of overall uniformity—every block or two has a healthy amount of deviation. This is going to be due 

to the compression that was used, which if you recall often results in entropy scores that look fairly 

similar to encryption. Again, because the file is a PDF, we note that the last few sections are significantly 

different than the rest of the file and this is easily explained by the type of data that comes towards the 

end of a PDF (and indeed, PDF files are generally parsed from bottom up as a result). 

 

At any rate, let’s take a look at the file with some packed executables embedded and then look at the 

file with one of the same packed executables that has also been encrypted with a one-byte XOR key. 

 

 
Packed with: Enigma64 (DEMO) 
BN:  10          C: 717.8750 S: 7.9417 ES: 3.2305 ER: 2.7512  
BN:  11          C: 608.0625 S: 7.9481 ES: 3.1836 ER: 1.3193  
BN:  12          C: 737.4375 S: 7.9357 ES: 3.2305 ER: 2.7512  
BN:  13          C: 550.0000 S: 7.9539 ES: 3.0664 ER: 2.4519  
BN:  14          C: 733.7500 S: 7.9402 ES: 3.1328 ER: 0.2803  
BN:  15          C: 832.3750 S: 7.9336 ES: 3.0938  ER: 1.5464  
BN:  16          C: 816.5625 S: 7.9349 ES: 3.1328 ER: 0.2803  
BN:  17          C: 602.0625 S: 7.9484 ES: 3.1016 ER: 1.2906  
BN:  18          C: 831.0000 S: 7.9340 ES: 3.0977 ER: 1.4184  
BN:  19          C: 645.1250 S: 7.9464 ES: 3.0625 ER: 2.5826  
BN:  1A          C: 696.0625 S: 7.9394 ES: 3.0273 ER: 3.7739  
BN:  1B          C: 17884.1250 S: 7.6515 ES: 3.1719 ER: 0.9547  
BN:  1C          C: 249.7500 S: 7.9778 ES: 3.1797 ER: 1.1981  
BN:  1D          C: 261.5625 S: 7.9767 ES: 3.2109 ER: 2.1596  
BN:  1E          C: 242.7500 S: 7.9783 ES: 3.1172 ER: 0.7829  
BN:  1F          C: 302.8750 S: 7.9730 ES: 3.1016 ER: 1.2906  
BN:  20          C: 242.2500 S: 7.9787 ES: 3.2578 ER: 3.5674  
BN:  21          C: 228.2500 S: 7.9801 ES: 3.1523 ER: 0.3411  
BN:  22          C: 260.0625 S: 7.9767 ES: 3.1719 ER: 0.9547  
BN:  23          C: 260.9375 S: 7.9767 ES: 3.1523 ER: 0.3411  
BN:  24          C: 262.0000 S: 7.9769 ES: 3.1172 ER: 0.7829  
BN:  25          C: 250.3750 S: 7.9782 ES: 3.1875 ER: 1.4402  
BN:  26          C: 217.6875 S: 7.9806 ES: 3.1641 ER: 0.7102  
BN:  27          C: 8627.2500 S: 7.7907 ES: 3.1680 ER: 0.8326  
BN:  28          C: 108569.0625 S: 6.8816 ES: 3.4375 ER: 8.6082  
BN:  29          C: 1090000.4375 S: 2.3658 ES: 3.7617 ER: 16.4852 
BN:  2A          C: 153039.6250 S: 6.5503 ES: 3.3555 ER: 6.3740  
BN:  2B          C: 627246.3750 S: 3.0964 ES: 3.5625 ER: 11.8149 
BN:  2C          C: 494859.5000 S: 4.1338 ES: 3.7227 ER: 15.6088 

 
 

 



As we should really expect, the embedded executable was trivial to identify. This is not surprising 

because the executable is embedded in plain-text, and so will have a significant spike in locations 

associated with the executable files headers even though it’s compressed and encrypted. We see exactly 

that, where the Chi distribution score spikes far above average and then drops well below average into 

the ranges we’d associate with a cipher-text. As we get to more plain-text executable data structures, 

we see that the Chi score again grows and the Shannon entropy score decreases. This ease is to be 

expected and is one of the reasons the embedded executables are often encrypted.  

 

Let’s take a look at another that is packed with a different packer:  

 

 
Packed with: Obsidium64 (DEMO) 
BN:   7 C: 593.7500 S: 7.9532 ES: 3.1914 ER: 1.5609  
BN:   8 C: 458745.6250 S: 5.0382 ES: 3.5977 ER: 12.6767 
BN:   9 C: 723316.1250 S: 3.8925 ES: 3.7305 ER: 15.7856 
BN:   A C: 313847.8750 S: 5.4424 ES: 2.4297 ER: 29.3003 
BN:   B C: 615406.6875 S: 3.2006 ES: 1.1445 ER: 174.4873 
BN:   C C: 182168.5000 S: 5.9883 ES: 2.7656 ER: 13.5943 
BN:   D C: 227.3750 S: 7.9797 ES: 3.1523 ER: 0.3411  
BN:   E C: 258.5625 S: 7.9771 ES: 3.1523 ER: 0.3411  
BN:   F C: 228.3750 S: 7.9797 ES: 3.1367 ER: 0.1554  
BN:  10 C: 261.1875 S: 7.9769 ES: 3.1602 ER: 0.5874  
BN:  11 C: 278.9375 S: 7.9765 ES: 3.1172 ER: 0.7829  
BN:  12 C: 277.3125 S: 7.9753 ES: 3.1680 ER: 0.8326  
BN:  13 C: 273.5000 S: 7.9759 ES: 3.1641 ER: 0.7102  
BN:  14 C: 261.8125 S: 7.9772 ES: 3.1328 ER: 0.2803  
BN:  15 C: 242.1875 S: 7.9785 ES: 3.0312 ER: 3.6402  
BN:  16 C: 246.3125 S: 7.9781 ES: 3.1758 ER: 1.0765  
BN:  17 C: 239.9375 S: 7.9789 ES: 3.1523 ER: 0.3411  
BN:  18 C: 244.0625 S: 7.9781 ES: 3.1055 ER: 1.1632  
BN:  19 C: 288.5000 S: 7.9746 ES: 3.1641 ER: 0.7102  
BN:  1A C: 241.8750 S: 7.9788 ES: 3.1797 ER: 1.1981 

 
 

 

We again see the same pattern, even if the Chi and Shannon scores didn’t deviate so much from the 

plain-text portions of the executable, we’d notice the large deviance values when we got to the cipher-

text portions. So let’s take a look at something that is a packer but isn’t really meant for protection 

purposes and just uses compression, UPX for instance: 

 

 
Packed with: UPX 
BN:  1F C: 19556.5000 S: 7.6185 ES: 3.1172 ER: 0.7829  
BN:  20 C: 1051.3125 S: 7.9135 ES: 3.2461 ER: 3.2193  
BN:  21 C: 932.1250 S: 7.9234 ES: 3.3516 ER: 6.2648  
BN:  22 C: 987.8125 S: 7.9185 ES: 3.2070 ER: 2.0405  
BN:  23 C: 1112.6250 S: 7.9087 ES: 3.3242 ER: 5.4938  



BN:  24 C: 901.3125 S: 7.9243 ES: 3.2461 ER: 3.2193  
BN:  25 C: 882.8125 S: 7.9252 ES: 3.3750 ER: 6.9158  
BN:  26 C: 1076.2500 S: 7.9129 ES: 3.3203 ER: 5.3826  
BN:  27 C: 804.1875 S: 7.9321 ES: 3.3594  ER: 6.4828  
BN:  28 C: 879.6875 S: 7.9282 ES: 3.3086 ER:5.0475  
BN:  29 C: 909.3750 S: 7.9233 ES: 3.3984 ER:7.5577  
BN:  2A C: 1694.2500 S: 7.8676 ES: 3.4258 ER: 8.2956  
BN:  2B C: 13921.1875 S: 7.5441 ES: 3.2344 ER: 2.8686  
BN:  2C C: 201092.0000 S: 6.0933 ES: 3.5625 ER: 11.8149 
BN:  2D C: 1008145.8750 S: 2.8663 ES: 3.7617 ER: 16.4852 
BN:  2E C: 191183.8750 S: 6.1814 ES: 3.4258 ER: 8.2956  
BN:  2F C: 657594.1250 S: 3.0702 ES: 3.6445 ER: 13.7998 
BN:  30 C: 343743.0625 S: 4.5307 ES: 3.7578 ER: 16.3984 
BN:  31 C: 4400.4375  S: 7.8389 ES: 3.1680 

 
 

 

Here again, we see the large deviations when it encounters the plain-text data structures, however the 

executable data itself conforms pretty closely to the data in the host file—this is because it is not 

encrypted but rather compressed, just like the data stored in the file. So that was trivial, but at least in 

part because we could easily see the plain-text portions due to the large deviations and/or the cipher-

text where the level of information entropy grew significantly. How about we take a look at the UPX 

data again, but this time let’s use a one-byte XOR key: 

 

 
BN:  17 C: 602.0625 S: 7.9484 ES: 3.1016 ER: 1.2906  
BN:  18 C: 831.0000 S: 7.9340 ES: 3.0977 ER: 1.4184  
BN:  19 C: 704.5000 S: 7.9427 ES: 3.0938 ER: 1.5464  
BN:  1A C: 16275.0000 S: 7.6213 ES: 3.2734 ER: 4.0277  
BN:  1B C: 927.0625 S: 7.9235 ES: 3.3047 ER: 4.9353  
BN:  1C C: 1001.1250 S: 7.9185 ES: 3.3789 ER: 7.0234  
BN:  1D C: 1043.6875 S: 7.9123 ES: 3.2773 ER: 4.1421  
BN:  1E C: 988.3125 S: 7.9188 ES: 3.2656 ER: 3.7981  
BN:  1F C: 898.3750 S: 7.9250 ES: 3.3203 ER: 5.3826  
BN:  20 C: 987.8125 S: 7.9191 ES: 3.4297 ER: 8.4000  
BN:  21 C: 864.8125 S: 7.9262 ES: 3.3242 ER: 5.4938  
BN:  22 C: 814.2500 S: 7.9335 ES: 3.2891 ER: 4.4836  
BN:  23 C: 979.1875 S: 7.9175 ES: 3.3750 ER: 6.9158  
BN:  24 C: 1247.6875 S: 7.8982 ES: 3.4414 ER: 8.7120  
BN:  25 C: 10055.5000 S: 7.6308 ES: 3.3594 ER: 6.4828  
BN:  26 C: 71387.8750 S: 6.9820 ES: 3.4180 ER: 8.0860  
BN:  27 C: 1076078.0000 S: 2.4082 ES: 3.7930 ER: 17.1733 
BN:  28 C: 159641.3125 S: 6.5189 ES: 3.4180 ER: 8.0860  
BN:  29 C: 616041.1250 S: 3.1197 ES: 3.4688 ER: 9.4316  
BN:  2A C: 547725.6250 S: 3.8207 ES: 3.7188 ER: 15.5202 
BN:  2B C: 18376.4375 S: 7.4728 ES: 3.3359 ER: 5.8258 

 
 

 



Here we have the same executable still embedded in the long-form birth certificate. It has been packed 

with UPX and then the resulting executable was encrypted with a single byte XOR key. As with the plain-

text executable, it’s fairly trivial to spot where it starts. If you said block 0x1A, you’d be almost correct. It 

actually starts in block 0x19 however it starts almost at the very end of that block and thus doesn’t 

significantly impact the distribution as a result. So we can see that even with the executable being 

packed and then encrypted, the differences between it and even compressed data is significant enough 

to easily spot it relative to the host file. To demonstrate one last feature, let’s take a look at this file 

when the utility is told to generate the data for sequential deviations—which is to say that it will print 

the differences between scores for block 1 to block 2, and block 2 to block 3 and block 3 to block 4 and 

so on. We’re not going to spend a whole lot of time on it, as it doesn’t actually show us a whole lot new 

in terms of analyzing this file, but it’s actually a pretty handy feature for spotting abnormal spikes and 

valley’s within the data relative to one block to another. 

 

We specify that by passing the –seqdev option, or we can pass one of the other related options such 

as –seqxy which operates the same but you can specify only a subset of the blocks that you want to 

view: 

 

 
$ bin/edfind.py --seqdev birth-certificate-long-form-ONE-UPX.pdf | less 
 

 

Which produces the output: 

 

 
BN [ 17  : 18  ] C: 31.9508 S: 0.1822 ES: 0.1260 ER: 9.4300  
BN [ 18  : 19  ] C: 16.4767 S: 0.1103 ES: 0.1262 ER: 8.6382  
BN [ 19  : 1A  ] C: 183.4035 S: 4.1303 ES: 5.6442 ER: 89.0285 
BN [ 1A  : 1B  ] C: 178.4430 S: 3.8880 ES: 0.9501 ER: 20.2508 
BN [ 1B  : 1C  ] C: 7.6821 S: 0.0636 ES: 2.2209 ER: 34.9225 
BN [ 1C  : 1D  ] C: 4.1630 S: 0.0785 ES: 3.0516 ER: 51.6104 
BN [ 1D  : 1E  ] C: 5.4503 S: 0.0829 ES: 0.3582 ER: 8.6644  
BN [ 1E  : 1F  ] C: 9.5339 S: 0.0783 ES: 1.6607 ER: 34.5179 
BN [ 1F  : 20  ] C: 9.4834 S: 0.0749 ES: 3.2407 ER: 43.7856 
BN [ 20  : 21  ] C: 13.2785 S: 0.0897 ES: 3.1232 ER: 41.8348 
BN [ 21  : 22  ] C: 6.0227 S: 0.0928 ES: 1.0632 ER: 20.2489 
BN [ 22  : 23  ] C: 18.3934 S: 0.2023 ES: 2.5791 ER: 42.6711 
BN [ 23  : 24  ] C: 24.1145 S: 0.2447 ES: 1.9484 ER: 22.9871 
BN [ 24  : 25  ] C: 155.8465 S: 3.4438 ES: 2.4124 ER: 29.3407 
BN [ 25  : 26  ] C: 150.6135 S: 8.8797 ES: 1.7291 ER: 22.0080 
BN [ 26  : 27  ] C: 175.1146 S: 97.4170 ES: 10.4009 ER: 71.9521 

 
 

 

 

Here the format is slightly different, where the block number is in other output is actually a range of 

block numbers, specifying that we’re comparing one block to another—for instance the first line “BN [ 

17 : 18 ]” says that the data being produced is the difference in scores for block 0x17 to block 0x18. 



The rest of the line has the standard format. As we can see, once we get out of the XOR encrypted 

executable header data and into the compressed body, the difference between sequential blocks is 

relatively low. Moreover the variance between the Shannon scores is extremely low, mostly ranging less 

than 0.09%. While we’re not demonstrating any new analysis in this particular example, this feature is 

useful once a suspect range has been identified and you want to say essentially “and show me all of the 

blocks that come after the suspect block that only vary by X%”. 

 

So to review what we’ve covered: 

 Packed executables do not overly present a problem, especially the ones focused more on 

providing software security versus ones that just exist to make the executable smaller. This is 

largely due to the fact that the cipher-text varies significantly and really won’t occur at the ratios 

examined unless the host file data is also encrypted. 

 Even when the packed file is subsequently XOR encrypted, we can easily spot the differences 

from the host file data. 

 A packer or similar scheme that compressed the data instead of encrypting it is more likely to 

bypass any entropy-based anomaly checks. 

 The sequential deviation option can be useful in more automated analysis styles to tell the tool 

to also show you blocks which only deviate a certain amount after an initial suspect block is 

identified. 

 

 

3.2 Putting it all together: automated analysis 

 

While much of this manual has been focused on using the included example utility, edfind.py, the actual 

intention of this module is to provide a basic starting point for analyzing potentially suspicious files 

without performing expensive XOR brute force searches or similar. We can attempt to identify 

differences in the entropy levels and when we encounter a circumstance that matches then we can “drill 

down” and perform more expensive analysis. 

Included in the edfind.py utility is a pure example function that attempts to identify suspicious block 

ranges in the spirit of performing such analysis in an automated manner. As stated elsewhere in the 

manual, these tests and in particular the ratios used are not expected to be overly successful when 

operating on real data sets and is not intended to do so. Rather, it is intended to provide a starting 

pointing for a person who seeks to utilize entropy analysis to identify hidden data as to the types of tests 

that can be performed and serve as a mental Launchpad of sorts for extending and modifying the base 

ideas presented in this module and manual. What follows is a brief description of the type of tests it 

performs. 

The steps performed, in order are: 

1. Attempt to find blocks with a high amount of deviation related to blocks around them. This calls 

into the Python extension and retrieves the sequential deviation for each block. It then 

compares this deviation to values passed as parameters to the method. 

2. From this list of blocks, it attempts to identify sequential blocks that have: 

a. Relative uniformity in their Chi-Square score 



b. Deviate significantly from their neighbor blocks 

3. If the suspicious blocks we’ve identified match the prior criteria, we then check to see if the 

Shannon score for the block immediately preceding it to see if it differs significantly in the 

amount of information entropy it has, and if so it checks the block that follows to see if the two 

blocks have relative uniformity in the amount of information entropy they both have. 

4. If the results of (3) are positive, then we attempt to identify the entire range of blocks by looking 

for sequential blocks that have relative low Shannon scores when compared to one another. 

5. If the results of (4) are positive, then we check the range to see if there is relative uniformity in 

the Chi-Squared scores when compared to one another. 

6. We take all of the block ranges that conform to these standards and compile them into a list. 

We then check that list for ranges that neighbor each other but are within a short distance from 

one another. We do this due to the fact that there is often significant outlier blocks in the data 

and this will cause blocks that are part of the same executable to be identified as two different 

suspicious ranges of blocks. By coalescing this, we can better identify them as a contiguous 

region. 

7. We then print out the blocks that have matched all of these criteria. 

 

The tests themselves are written very loosely, as stated towards the beginning of this document it had a 

relatively high false positive rate and a higher than wanted false negative rate, but that this functionality 

was written against a single file with an embedded executable and not overly tested against a more 

authoritative dataset. This functionality is largely intended as an illustrated example of the types of tests 

that can be put together to help weed through large data-sets and thus save the more resource 

intensive tests for files that more adequately fit a criteria rather than attempting them on every single 

file. 

 

3.3 Conclusion  

 

In this manual, we have outlined the Python and C++ classes that comprise the extension, we have 

further illustrated example usages of a demonstration utility included with the distribution. We have 

analyzed files and demonstrated that the method of utilizing entropy analysis to help identify rogue data 

from benign is indeed useful. We have further tied together various parts of the utility into a very simple 

series of tests that demonstrate the type of tests one would want to perform to weed out benign data 

from the more interesting data in order to optimize the over-arching process. We have shown that when 

viewed from this perspective, it is actually not trivial to hide the embedded file without taking significant 

steps to match the embedded data to its host file and that utilizing encryption often makes it easier to 

identify, not harder. As such the attacker is forced into a trade-off, where in one sense it is harder to 

identify the hidden data because it is not embedded plain-text, but is easier to identify as being deviant 

relative to the host file precisely because it is not plain-text and deviates significantly from the data it is 

embedded in. 

It is expected as time progresses the techniques used to embed this data will evolve and better model 

its host, but for the time being: this is not the case and entropy analysis is a cheap useful tool to deploy. 


