
THE LABELLED PEER CODE

FOR KNOT AND LINK DIAGRAMS

A labelled peer code is a descriptive syntax for a diagram of a knot or link on a two di-

mensional sphere. The syntax is able to describe classical, virtual, welded or flat knot and link

diagrams.

1 Peer Codes

Let D be an oriented diagram of a knot or link with k components and let I(D) be the immersion

of D in the plane. Thus I(D) is a 4-regular plane graph with n vertices and 2n edges, and it inherits

an orientation from D. Each vertex in I(D) has two incoming edges and two outgoing edges, with

respect to the orientation. The two incoming edges are called peers, or peer edges.

Choose an initial component of D and a basepoint b for that component that does not map to a

vertex in I(D). Number the edges in I(D) consecutively from zero starting at the edge containing

image of b and following the path determined by the orientation of D. This results in crossings of

I(D) whose incoming edges have both been numbered having one peer assigned an even number

and the other peer an odd number.

Now proceed successively through the remaining components of D in a similar manner, each

time choosing the next component so that its image in I(D) involves a crossing that has already had

a number assigned to one of its incoming edges. Extend the numbering to the corresponding edges

in I(D) choosing a basepoint on the next component so that crossings whose incoming edges have

both been numbered have one peer assigned an even number and the other peer an odd number. It

is always possible to choose such a basepoint: the following argument is due to Roger Fenn.

Lemma Let S be a shadow in general position. Then the edges of S can be coloured by two

colours, orange and emerald, so that at each crossing the incoming edges have different colours, as

do the outgoing edges. Moreover the colours change as the edges cross the crossing.

Proof Colour the regions black and white chessboard fashion. That this is possible depends

crucially on the fact that the shadow lies in the plane (or sphere). Now orient the crossings so that

the incoming edges are on the left and the outgoing edges are on the right. If the region above is

black colour the top edges orange and the bottom edges emerald. If the region above is white, do

the opposite. It is easy to check that this defines a coherent colour for each edge which satisfies the

above.

Corollary The edges of a shadow in general position with n crossings can be labelled con-

secutively respecting the orientation with the integers from 1 to 2n such that at any crossing the

incoming edges are odd and even; likewise the outgoing edges.

Proof Colour the edges orange and emerald as in the above lemma. Pick an orange edge

and label it 1. Continue past the next crossing and label the next edge, coloured with emerald, 2.

Continue in this fashion until all the integers from 1 to 2k say are used for this component. For the

second component chose an orange edge and label it 2k+1, etc

The numbering of edges in I(D) induces a unique numbering of the vertices 0, . . . , n − 1 by

assigning the vertex at which edge 2i terminates the number i.
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Definition 1.1 We shall refer to the edge numbered 2i terminating at vertex i as the naming

edge for that vertex.

Note also that the numbering of the edges of I(D) determines a permutation ρ on n elements as

follows. At each vertex i the incoming edges are numbered 2i and 2j − 1 for some j ∈ {0, . . . , n− 1}

where we count edges modulo 2n. Define ρ(i) = j. This permutation allows us to enumerate peer

codes, as described below.

From the numbering of the edges of I(D) we may write a list of the odd numbered peers in

the order determined by the vertex numbering. We separate this list into the peers of those naming

edges that are associated with the same component of D
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Figure 1.

For example, for the immersion and edge numbering shown in Figure 1, the list of odd peers is

11 9, 3 1 13 5 7

1.1 Type I and Type II crossings

There are two possibilites for the relative numbering of incoming edges at a vertex of I(D), as

shown in Figure 2.
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Figure 2.

Definition 1.2 A crossing of the type shown in Figure 2 a) is called a Type I crossing and a

crossing of the type shown in Figure 2 b) is called a Type II crossing.
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The list of odd peers may be supplemented to record the type of each crossing by writing each

odd peer associated with a Type I crossing as a negative number.

For the immersion in Figure 1 we get

−11 9, −3 1 − 13 5 − 7

we refer to this code as a peer code.

2 Labelled Peer Codes

We may describe a knot or link diagram D fully by giving its peer code together with a set of

labels that describe each crossing. For classical crossings we assign the label + if the naming edge

in I(D) forms part of the over-arc of the crossing and the label − if it forms part of the under-arc.

For virtual or welded crossings we assign the label ∗ and for flat crossings we assign the label #.

Definition 2.1 A labelled peer code for a diagram D is a peer code for D together with a set

of labels, one for each crossing. It is written as the peer code followed by a ’/’ character, followed in

turn by the labels. The labels appear in the order induced on the vertices of I(D) by the numbering

of its edges.
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Figure 3.

Thus, the labelled peer code for the link and numbering shown in Figure 3 is

−11 9, −3 1 − 13 5 − 7 / + − − + − + −

For the purposes of distinguishing labelled peer codes from other codes when using a computer

the peer code will be enclosed in square brackets, as follows:

[−11 9, −3 1 − 13 5 − 7] / + − − + − + −
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2.1 Realizable Peer Codes

Although patently the peer code for a link diagram is not unique, an interesting question is

to ask when a given peer code corresponds to a realizable diagram. This may be answered by

noticing that a connected immersion I(D) determines a cellular decomposition of S2 and so by

Euler’s theorem the number of components of S2 − I(D) is n + 2.

Definition 2.2 For each even numbered edge e in a connected immersion I(D) there is a

sequence of edges e0, . . . , ek with e = e0 = ek called the left turning cycle obtained by turning

left at each crossing we encounter as we trace around I(D) starting by moving along e following

the orientation of I(D). Similarly we define the right turning cycle for e as the corresponding

sequence obtained by always turning right. We define left and right turning cycles for odd numbered

edges in the same way but require that we start by moving along the edge against the orientation

of I(D).

Clearly every edge in a left (right) turning cycle will determine the same left (right) turning

cycle.

Given a peer code, we are able to determine unambiguously the edge we encounter when turning

left or right at a crossing, whether we have arrived following the orientation or not (see Figure 2). We

are therefore able to determine whether the peer code is connected or not and, if so, may determine

L the set of distinct left turning cycles, R the set of distinct right turning cycles, and c = |L|+ |R|.

If each edge appears exactly once in L and exactly once in R and if c = n+2 then the peer code

is realizable. We may construct a cellular 2-sphere from discs whose boundaries correspond to the

turning cycles of L and R, and whose 1-skeleton is an immersion that yields our given peer code.

Since we may enumerate permuations of n elements, and may designate crossings as Type I or

Type II in only a finite number of ways, and there are only a finite number of ways that we may

allocate commas to denote link components, we may determine how many realizable peer codes are

possible with n crossings and m components. This has been done by computer search to produce

the following table.

number of realizable peer codes
crossings, n m = 1 m = 2 m = 3

3 2 0 0
4 4 8 48
5 12 112 144
6 84 468 1120
7 394 2736 10800
8 1972 17416 68304
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Clearly, these realizable codes contain many symmetries and redendancies. Reversing the cross-

ing types results in a reflection of the immersion. Starting the numbering of a component at a

different edge, possibly reversing the orientation at the same time, or numbering the components in

a different order, produces a different code for the same diagram. The above table was calculated

assuming no Reidemeister type I moves, another redundancy that may be detected by a computer

is when a diagram is a connected sum. Removing these symmetries and redundancies results in the

following table.

number of realizable peer codes
crossings, n m = 1 m = 2 m = 3 m = 4

3 1 0 0 0
4 1 1 0 0
5 2 1 0 0
6 3 4 2 0
7 10 7 1 0
8 27 27 7 1
9 101 77 19 1
10 364 341
11 1610
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