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ABSTRACT

Deep learning can create accurate predictive models by exploiting existing large-scale experimental
data, and guide the design of molecules. However, a major barrier is the requirement of both positive
and negative examples in the classical supervised learning frameworks. Notably, most peptide
databases come with missing information and low number of observations on negative examples, as
such sequences are hard to obtain using high-throughput screening methods. To address this challenge,
we solely exploit the limited known positive examples in a semi-supervised setting, and discover
peptide sequences that are likely to map to certain antimicrobial properties via positive-unlabeled
learning (PU). In particular, we use the two learning strategies of adapting base classifier and reliable
negative identification to build deep learning models for inferring solubility, hemolysis, binding
against SHP-2, and non-fouling activity of peptides, given their sequence. We evaluate the predictive
performance of our PU learning method and show that by only using the positive data, it can achieve
competitive performance when compared with the classical positive-negative (PN) classification
approach, where there is access to both positive and negative examples.

1 Introduction

As short-chain amino acids, peptides have attracted growing attention in pharmaceutics [1-3], therapeutics [4—6],
immunology [7-9], and biomaterials design [10—12]. However, the development of novel peptides remains a challenge
due to poor pharmacokinetic properties that restrict the design space and necessitate unnatural amino acids or cyclization,
increasing the complexity of their design.[13] Computational design and data-driven discovery strategies have arisen as
promising low-cost techniques in the pre-experiment phase to expedite the process of generating accurate predictions
of peptide properties, and shortlist promising candidates for follow-up experimental validation. Some examples of
these successful applications include single nucleotide polymorphisms (SNP) and small-indel calling [14], estimating
the impact of non-coding variants on DNA-methylation [15], as well as for the prediction of protein function [16],
structure [17, 18], and protein-protein interactions [19]. Sequence-based learning strategies aim at mapping peptide’s
natural biological function to its sequence. In a supervised learning setting, this is done by training on sequence-
function examples. This means that sequence-function relationships are learned by iteratively training on samples of
different classes (i.e. positive and negative examples in binary classification). The performance of the classifier is
highly dependent on the quality of the training samples and the ratio of the positive and negative samples [20, 21]. In
bioinformatics, a variety of supervised-learning algorithms, such as support vector machines [22], random forest [23],
logistic regression [24], and naive Bayesian classifier [25], have been successfully applied to develop classification
models.

However, lack of negative examples in numerous biological applications [26-29] limits the feasibility of constructing
such reliable classifiers. As an example, medical information records typically contain the positively diagnosed diseases
of a patient, and the absence of a diagnostic record does not necessarily rule out a disease for him/her. Most high-
throughput screening methods solely focus on identifying the positive examples, thus, it is much more straightforward
to confirm a property than to ascertain that it does not hold. As an example, a potential binding site is confirmed if a
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protein binds to a target, but failure to bind only means that the binding conditions were not satisfied under a given
experimental setting. With the technological advances, identifying specific properties can be improved, and biological
samples formerly not known to have a property can now be classified with confidence. As an example, Li et al. [30]
demonstrated on the changes in protein glycosylation site labeling throughout four time points over 10 years. Another
example is protein-protein interaction (PPI) [31, 32], where experimentally validated interacting and non-interacting
protein pairs are used as positive and negative examples, respectively. However, the selection of non-interacting protein
pairs can be challenging for two reasons: 1. As more novel PPIs are constantly being discovered over time, some
non-interacting protein pairs (i.e. negative examples) might be mislabeled. 2. The positive examples are significantly
outnumbered by a large number of protein pairs for which no interactions have been identified. Similar situations can
be found in drug—drug interaction identification [33], small non-coding RNA detection [34], gene function [35, 36] and
phage-bacteria interaction [37] prediction, and biological sequence classification [38, 39].

To address the challenges above, we demonstrate on a positive-unlabeled (PU) learning framework to infer peptide
sequence-function relationships, by solely exploiting the limited known positive examples in a semi-supervised setting.
Semi-supervised learning techniques are a special instance of weak supervision [40, 41], where the training is based on
partially labeled training data (i.e. labeled data can be either positive or both positive and negative samples). PU learning
builds classification models by primarily leveraging a small number of labeled positive samples and a huge volume of
unlabeled samples (i.e. a mixture of both positive (P) and negative (N) samples) [42]. Depending on how the unlabeled
(U) data is handled, existing PU learning strategies are divided into two categories. 1. Reliable negative identification:
this category identifies reliable negatives (RN) within U, and then performs ordinary supervised (PN) learning [43, 44];
2. Adapting the base classifier: this treats the U samples as N with smaller weights (biased learning) and adapts the
conventional classifiers to directly learn from P and U samples [45, 46]. The former reliable negative identification
strategies rely on heuristics to identify the RN, and they have been widely used in none-coding RNA identification [34],
none-coding RNA-disease association [47], gene function prediction [35, 48], disease gene identification [26, 49, 50],
and single-cell RNA sequencing quality control [51]. On the other hand, adapting the base classifier algorithms are
Bayesian-based approaches that focus on estimating the ratio of positive and negative samples in U (class prior), which
then can be applied for classification using the Bayes’ rule. One major limitation is that their performance largely
depends on good choices of weights of U samples, which are computationally expensive to tune [52]. Thus, compared
to the first strategy, there has been a fewer use cases of them in the literature [53-55]. An excellent overview of PU
leaning strategies can be found in [42]. Li et al. [20] also systematically reviewed the implementation of 29 PU learning
methods in a wide range of biological topics.
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Figure 1: Overview of this work. High-throughput screening methods are commonly good at identifying positive
examples, leaving imbalanced datasets (skewed towards the positive class) that are not suitable for supervised learning
algorithms. In this work, we use the positive examples only to distinguish between the positive and negative samples
using SPY technique.
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In this work, we take advantage of the flexibility of reliable negative identification PU strategy, and discover peptide
sequences that are likely to map to certain properties. Specifically, we demonstrate on a two-step technique, where Step
1 handles the deficiency of negative training examples by extracting a subset of the U samples that can be confidently
labeled as N (i.e. RN). Subsequently, Step 2 involves training a deep neural network classifier using the P and the
extracted RN, and applying it to the remaining pool of U. Reliable negative identification in Step 1, is an adaption of
the Spy technique formerly employed in handling unlabeled text data [43]. In this approach, some randomly selected
positive samples are defined as spies, and are intentionally mislabeled as negatives. The reliable negative examples are
iteratively found within the unlabeled samples for which the posterior probability is lower than the posterior probability
of the spies. We use our approach to predict different peptide properties, such as hemolysis, resistance to non-specific
interactions (non-fouling), and solubility.

This manuscript is organized as follows: in Section 2, we describe the datasets, architecture of the deep learning models,
and our choices for the hyperparameters. This is followed by evaluating the model in a comparative setting with the
classical PN classifier in Section 3. Finally, we conclude the paper in Section. 4, with a discussion of the implications
of our findings.

2 Materials and Methods

2.1 Datasets
Hemolysis

Hemolysis is referred to the disruption of erythrocyte membranes that decrease the life span of red blood cells and
causes the release of Hemoglobin. It is critical to identify non-hemolytic antimicrobial peptides as a non-toxic and
safe measure against bacterial infections. However, distinguishing between hemolytic and non-hemolytic peptides
is a challenge, since they primarily exert their activity at the charged surface of the bacterial plasma membrane. In
this work, the hemolysis classifier is trained using data from the Database of Antimicrobial Activity and Structure of
Peptides (DBAASP v3 [56]). Hemolytic activity is defined by extrapolating a measurement assuming dose response
curves to the point at which 50% of red blood cells are lysed. Activities below 100£%, are considered hemolytic. The
data contains 9,316 sequences (19.6% positives and 80.4% negatives) of only L- and canonical amino acids. Each
measurement is treated independently, so sequences can appear multiple times. This experimental dataset contains
noise, and in some observations (~40%), an identical sequence appears in both negative and positive class. As an
example, sequence “RVKRVWPLVIRTVIAGYNLYRAIKKK?” is found to be both hemolytic and non-hemolytic in two
different lab experiments (i.e. two different training examples).

Solubility

This data contains 18,453 sequences (47.6% positives and 52.4% negatives) based on PROSO II [57], where solubility
was estimated by retrospective analysis of electronic laboratory notebooks. The notebooks were part of a large effort
called the Protein Structure Initiative and consider sequences linearly through the following stages: Selected, Cloned,
Expressed, Soluble, Purified, Crystallized, HSQC (heteronuclear single quantum coherence), Structure, and deposited
in PDB [58]. The peptides were identified as soluble or insoluble by “Comparing the experimental status at two time
points, September 2009 and May 2010, we were able to derive a set of insoluble proteins defined as those which were
not soluble in September 2009 and still remained in that state 8 months later.” [57]

Non-fouling

Non-fouling is defined as resistance to non-specific interactions, and this data is obtained from [59]. A non-fouling
peptide (positive example) is defined using the mechanism proposed in [60]. Briefly, White et al. [60], showed that the
exterior surfaces of proteins have a significantly different frequency of amino acids, and this increases in aggregation
prone environments, like the cytoplasm. Synthesizing self-assembling peptides that follow this amino acid distribution
and coating surfaces with the peptides creates non-fouling surfaces. This pattern was also found inside chaperone
proteins, another area where resistance to non-specific interactions is important[61]. Positive data contains 3,600
sequences. Negative examples are based on 13,585 sequences (79.1% of dataset are negatives) coming from insoluble
and hemolytic peptides, as well as, the scrambled positives. The scrambled negatives are generated with lengths sampled
from the same length range as their respective positive set, and residues sampled from the frequency distribution of the
soluble dataset. Samples are weighted to account for the class imbalance caused by the negative examples dataset size.
This dataset is gathered based on the mechanism proposed in [60].


https://doi.org/10.1101/2023.06.01.543289
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.01.543289; this version posted June 5, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Amino acid frequency vector ' l’
(Bi)LSTM Layer Normalization
— [[0.1,0, ..., 0,0.4] |
Pe ptlde concatenate AA frequencies Dro;)out Fully Connected
R..GY
sequence ' Embedding

!

Integer encoding

[ARNDCQEGHTI L KMFP ST WY V]
123456789 101112 13 14 15 16 17 18 19 20

sigmoid
e

Active: 1
Inactive: 0

Shorter sequences are padded with zeros until vector shape is 200.

i

Figure 2: RNN architecture [64]. Padded integer encoded sequences are first fed to a trainable embedding layer,
yielding a semantically more compact representation of the input essential amino acids. The use of bidirectional LSTMS
and direct inputs of amino acid frequencies prior to the fully connected layers, improves the learning of bidirectional
dependency between distant residues within a sequence. The fully connected layers are down-sized in three consecutive
steps via layer normalization and dropout regularization. The final layer outputs the probability of being active for the
desired training task using a sigmoid activation function.

SHP-2

SHP-2 is a ubiquitous protein tyrosine phosphatase, whose activity is regulated by phosphotyrosine (pY)-containing
peptides generated in response to extracellular stimuli. SHP-2 is involved in processes such as cell growth, differentiation,
migration, and immune response. [62] The SHP-2 dataset contains fixed-length peptides (5 AA residues) optimized for
binding to N-SH2 domain, obtained from [63]. Total dataset size is 300, with 50% positive examples.

Table 1: Summary of used datasets. For more details, refer to [64].

Hemolysis Solubility Non-fouling SHP-2

Definition Hemolysis is the process by which ~ Solubility was defined in PROSO  Resistance  to  non-  SHP-2 is a protein encoded by
red blood cells (RBCs) rupture  II [57] as a sequence that was specific interactions.  the PTPN11 gene in humans. It
and release their contents, mainly ~ transfectable, expressible, sec- Gathered using the  is a non-receptor protein tyrosine
Hemoglobin, into the surround-  retable, separable, and soluble in ~ mechanism  proposed  phosphatase that plays a critical
ing plasma or extracellular fluid.  E. coli system. in [60]. role in various cellular signaling
Based on DBAASP v3 [56]. pathways. [62].

Total size 9,316 18,453 17,185 300

Positive 19.6% 47.6% 20.9% 50.0%

examples

Length 1-190 AA residues 19-198 AA residues 5-198 AA residues 5 AA residues

range

2.2 Model Architecture

We build a recurrent neural network (RNN) to identify the position-invariant patterns in the peptide sequences, using a
sequential model from Keras framework [65] and the TensorFlow deep learning library back-end [66]. In specific, the
RNN employs bidirectional Long Short Term Memory (LSTM) networks to capture long-range correlations between
the amino acid residues. Compared to the conventional RNNs, LSTM networks with gate control units can learn
dependency information between distant residues within peptide sequences more effectively [67—-69]. An overview
of the RNN architecture is shown in Figure 2. This architecture is identical to the one used in our recent work in
edge-computing cheminformatics [64].
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The input peptide sequences are integer encoded as vectors of shape 200, where the integer at each position in the vector
corresponds to the index of the amino acid from the alphabet of the 20 essential amino acids: [A, R, N, D, C, Q, E, G,
H LL K,M,FEPS, T, W,Y, V]. For implementation purposes during the training step, the maximum length of the
vector is fixed at 200, padding zeros to shorter length sequences. For those sequences with shorter lengths, zeros are
padded to the integer encoding representation to keep the shape fixed at 200 for all examples, to allow input sequences
with flexible lengths. Every integer encoded sequence is first fed to an embedding layer with trainable weights, where
the indices of discrete symbols (i.e. essential amino acids), into a representation of a fixed-length vector of defined size.

The embedding layer output either goes to a double stacked bi-LSTM layer (for solubility and hemolysis) or a single
LSTM layer (for solubility and non-fouling), to identify patterns along a sequence that can be separated by large gaps.
The output from the LSTM layer is then concatenated with the relative frequency of each amino acid in the input
sequences. This choice is partially based on our earlier work [63], and helps with improving model performance. The
concatenated output is then normalized and fed to a dropout layer with a rate of 10%, followed by a dense neural
network with ReL.U activation function. This is repeated three times, and the final single-node dense layer uses a
sigmoid activation function to predict the peptide biological activity as the probability of the label being positive.

The hyperparameters are chosen based on a random search that resulted the best model performance in terms of
the area under the receiver operating characteristic curve (AUROC) and accuracy. Readers are encouraged to refer
to [64] for more details on the model architecture and its hyperparameters. We compile our Keras model using Adam
optimizer [70] with a binary cross-entropy loss function, which is defined as

N
1 . .
N > lyilog(di) + (1 — yi) log(1 — 4i)], (1
i=1
where y; is the true value of the ¢th example, y; is the corresponding prediction, and [V is the size of the dataset.

2.3 Positive-Unlabeled Learning

Let & be an example, and y € {0, 1} the true binary label for the instance Z. If Z is a positive example, y = 1, otherwise
y = 0. Let s = 1, if example 7 is labeled, and s = 0, if Z is unlabeled. Only positive examples are labeled (i.e.
p(s = 1|,y = 0) = 0). In other words, the probability that a negative example appears in the labeled set is zero.
On the other hand, the unlabeled set (s = 0|&, y) can contain positive (y = 1|Z, s = 0) or negative (y = 0|Z, s = 0)
examples. The goal is to learn a probabilistic binary classifier as a function f(Z), such that f(Z) = p(y = 1|Z), i.e. the
conditioned probability of being positive given a feature vector &.

In this work, we focus on two PU learning strategies; Adapting Base Classifier and Reliable Negative Identification.

2.3.1 Adapting Base Classifier

Adapting base classifier, also known as class prior estimation, are Bayesian-based methods that adapt the base classifier
(i.e. SVM) to estimate the expected ratio of positive or negative examples in the unlabeled set. Note that in this work,
we use an RNN as our base classifier. This approach simply tries to adjust the probability of being positive estimated by
a traditional classifier trained with positive and unlabeled examples, where the unlabeled is treated as the negative class.
The positive likelihood score p(y = 1|Z) is estimated by Elkan and Noto [71] as

p(s = 1|7)
s=1ly=1,%)’

Z) = =17) = 2
f(&) = ply = 1|7) o )
where p(s = 1|Z) is the likelihood of the example & being labeled (thus, being positive), learned from the labeled
and unlabeled data. p(s = 1|y = 1, Z) denotes the posterior probability of the example Z, i.e. positive sample being
labeled as positive in the training data. Assuming that the labeled positive samples are chosen completely randomly
from all positive examples, p(s = 1|y = 1, Z) is treated as a constant factor (c) for all the samples, that can be obtained
through a validation (held-out) set [53]. This “selected completely at random” assumption can be also written as
c=p(s=1ly =1,Z) = p(s = 1ly = 1), where c is a constant probability that a positive sample is labeled. This
assumption is analogous to the “missing completely at random” assumption that is made when learning data with
missing values [72—-74]. Among the empirical estimators for ¢ proposed in [71], we use the following average:

c=pls = 1ly=1) = ER P,

where V is the validation set, drawn in the same manner as the training set, and R C V' is a set of positive examples in
V. A threshold is adjusted within range (0 — 1/¢) to discriminate if the sample belongs to the positive or negative class,
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by maximizing Cohen’s kappa coefficient [75]. It is important to note that the Elkan and Noto [71] algorithm was not
developed to handle noisy labeled data. In addition, the theory behind its estimator limits its use to classify conditional
distributions with non-overlapping support [76].

2.3.2 Reliable Negative Identification

Reliable negative identification adopts two independent algorithms: 1) identify the reliable negatives (RN) within the
unlabeled set given the likelihood and 2) train a binary classifier to distinguish the labeled positive examples from the
identified RN set. This approach is based on two assumptions of smoothness and separability, which simply means
that all the positive examples are similar to the labeled examples, and that the negative examples are very different
from them, respectively [42]. Several techniques have been proposed to extract the reliable negatives or positives from
the unlabeled set, such as Spy [43], Cosine-Rocchio [77], Rocchio [44], 1DNF [78], PNLH [79], and Augmented
Negatives [80], and DILCA [81].

In this work, we use Spy to find the reliable negatives. First, a small randomly selected group of positive examples (S)
are removed and put in the unlabeled data as spies. This allows us to define new datasets Ps and U, respectively. The
percentage of positive instances used as spies is defined by spy-rate (in this work, we use 0.2). Then, a classifier f7 is
trained based on P; and U,. Next, the boundary of RN under the rule that most of the spies are classified as positives
is found, based on spy-tolerance (€). € determines what percentage of spies can remain in the unlabeled set when the
decision boundary threshold (¢,) is calculated (in this work, we use 0.05). In other words, ¢, is the posterior likelihood
such that all added spies during training f1 are classified as positives. All samples in U, whose posterior likelihood is
smaller than ¢4 are considered RN. Finally, we train a new classifier f5 given original positive samples (P) and the
found RN.

Algorithm 1 Reliable Negative Identification with Spy

1: Initialize RN = {}

Randomly sample spy-rate% from P
P,=P-SU;=UUS

Assign P toy = 1 class, and U, to y = 0 class
Train classifier f; on P, and Uy

Use fj to classify Us and find p(y = 1|Us)
Adjust ¢, such that ratio% of the positively classed Us is less than e
for z € Uy do

9: if p(y = 1|z) < ts then

10: RN =RNUz

11: Us=Us—x

12: end if

13: end for

14: return RN, U,

15: Train classifier fo on P and RN

3 Results and Discussion

In this section, we evaluate the estimated generalization error of our PU approach, and compare it with the classical PN
classification, where both positive and negative examples are available for training. Note that the test data contains
unobserved real positive and negative examples. We take two approaches to generate the unlabeled data: 1) Unlabeled
Data Generated from Positive and Negatives Samples. In this setting, the unlabeled data is generated from a mixture of
known positive and negative examples for each task. 2) Unlabeled Data Generated from Mutated Positive Samples.
Given a distribution of positive examples, we generate unlabeled examples by randomly breaking the positive examples
into sub-sequences, and filling up a similar-length sequence, with these sub-sequences. Duplicate sequence are removed
after the generation step. This allows us to generate the unlabeled data, by creating mutations of the positive examples
without any knowledge on what the true negative examples are.

3.1 Unlabeled Data Generated from Positive and Negatives Samples

Performance comparison between our PU learning methods and classical PN learning for different prediction tasks are
presented in Table 2. Results for all the PN models are based on our earlier work in [64]. For every task, we make
comparisons of the model accuracy (ACC%), and the area under the receiver operating characteristic curve (AUROC),
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using the two the Adapting Base classifier, and the Reliable Negative Identification PU methods. Across all prediction
tasks, with one exception of Hemolysis and Solubility with the Adapting Base Classifier method, the accuracy of our
PU methods are considerably higher than the PN classification. Comparing the two PU methods, it is observed that
Reliable Negative Identification outperforms Adapting Base Classifier method for all prediction tasks. Surprisingly, for
the non-fouling and SHP-2 predictions, both PU methods outperform the PN classifier.

Table 2: Performance comparison between PU learning and classical PN learning for different prediction tasks, with the
unlabeled data generated from positive and negatives samples. PN models are trained by having access to both positive
and negative data, based on our earlier work in [64].

PU PN

Task PU Method ACC(%) AUROC | ACC(%) AUROC
Hemolysis Adapting Base Classifier 83.1 0.78 84.0 0.84
Hemolysis Reliable Negative Identification 84.1 0.80
Non-fouling Adapting Base Classifier 93.8 0.93 82.0 0.93
Non-fouling Reliable Negative Identification 95.0 0.93
Solubility Adapting Base Classifier 53.0 0.59 70.0 0.76
Solubility Reliable Negative Identification 86.7 0.68
SHP-2 Adapting Base Classifier 84.1 0.87 83.3 0.82
SHP-2 Reliable Negative Identification 90.2 0.93

3.2 Unlabeled Data Generated from Mutated Positive Samples

Table 3 shows performance comparison between our PU learning method and classical PN learning for different
prediction tasks. Considering the much better performance of Reliable Negative Identification compared to the Adapting
Base Classifier observed in Table 2, we only consider the Reliable Negative Identification PU method for this unlabeled
data generation scenario. Note that the solubility model in this setting showed a poor performance, and was excluded
in our comparison. Considering the ACC and AUROC reported in Table 3, our PU method is able to reasonably
discriminate between the positive and the reliable negatives identified from the generated unlabeled examples.

Table 3: Performance comparison between PU learning and classical PN learning for different prediction tasks, with the
unlabeled data generated from mutated positive samples. Generated unlabeled is 8 times larger than the positive size.
PN models are trained by having access to both positive and negative data, based on our earlier work in [64].

PU PN
Task PU Method ACC(%) AUROC | ACC(%) AUROC
Hemolysis Reliable Negative Identification 76.8 0.75 84.0 0.84
Non-fouling Reliable Negative Identification 94.1 0.87 82.0 0.93
SHP-2 Reliable Negative Identification 84.8 0.91 83.3 0.82

It is important to note that with the unlabeled data generation, we can control how large the size of the generated
unlabeled examples are. The generated unlabeled:labeled ratio reported in Table 3 is fixed at 8.0. Next, we investigate
the effect of unlabeled:labeled ratio on the performance of Reliable Negative Identification strategy across all prediction
tasks in Figure 3. Each point represents the average value of AUROC and ACC% (left and right panel, respectively)
over 6 models trained with a different choice of randomly selected spy positives, and error bars show the magnitude of
the standard deviation. Horizontal dashed lines show the performance of the PN classifier for each task represented
as a baseline for performance comparison. With very small generated unlabeled samples (i.e. unlabeled:1abeled ratio
~ 2.0), the exploration of new examples that can qualify as reliable negatives will be largely limited. Thus, the trained
fo classifier has a significantly lower performance compared to the baseline PN classifier and to the other PU models
trained with higher generated unlabeled:labeled ratios. With larger unlabeled:labeled ratios (i.e. > 10.0), we see a better
prediction performance across all the tasks. There are two significant observations; 1. With more unlabeled sequences
generated, the trained PU models have a competitive performance with the PN models. In specific, for binding against
SHP2, we observe that the PU model beats the PN classifier in both AUROC and ACC%. 2. Surprisingly, the PU models
become more confident in their predictions with the increase of the unlabeled:1abeled ratio (compare magnitude of error
bars in Figure 3). This can bring a major advantage in implementing our approach in a generative setting, where we can
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Figure 3: Effect of generated unlabeled:labeled ratio on the performance of the Reliable Negative Identification strategy
for the three prediction tasks. Horizontal dashed lines show the performance of the PN classifier from Table 3 used as
a baseline for comparison. At the low ratio regime, the pool of unlabeled data is not big enough to obtain promising
candidates as reliable negatives. With larger unlabeled:1abeled ratios, the PU model gets to identify a better choice of
sequences as reliable negatives, despite the major existing class imbalance in the traning data.

predict the properties of new peptide sequences without having to worry much about the class imbalance between the
positive and the negative examples, which can majorly reduce model performance, if the learning is supervised.

Comparing AUROC and ACC in Tables 2 and 3, we observe that Reliable Negative Identification with mutated positive
samples has a relative lower performance compared to the other scenario, where the unlabeled data is generated from a
distribution of positive and negative examples. Despite this minor lower performance, using the new unlabeled sequence
generation, one can explore the newly unlabeled samples, and make predictions on peptide properties by only having
access to the examples from one class (i.e. positive). The sequence-based peptide property prediction in this work is
limited to four different tasks. However, with the positive data available, this work can be further extended to developing
predictive models for inferring other peptide properties.

4 Conclusions

We’ve showed a semi-supervised learning framework to infer the mapping from peptides’ sequence to function for
properties such as hemolysis, solubility, non-fouling, and binding against SHP-2. Our positive unlabeled learning
method aims at identifying likely negative candidates(reliable negatives), from the generated unlabeled sequences,
given random permutations of subsequences within the available positive samples. The reliable negative identification
strategy is agnostic with respect to the model architecture used, giving generality. Our method will be most beneficial in
biology screening experiments, where most high-throughput screening methods solely focus on identifying the positive
example. All PU models showed a comparative predictive ability and robustness across the different prediction tasks,
when compared to training with both positive and negative examples. This learning strategy can provide a robust
feasible path towards estimating how amino acids positional substitutions can affect peptide’s functional response for
unknown sequences, and accelerate the design and discovery of novel therapeutics.
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