
Arbin CTI Protocol Commands

Overall Command Data Format

The Overall command data format consists of Header + Command Code + Command Args + Checksum.

The header data will always contain a first byte of 0x11, then 7 bytes of 0xDD, and then the length of the

overall command. The command code determines what function to request from the CTI. The command

arguments will contain the arguments needed for the specific command code such as specifying which

channel to get information from. The checksum is at the end of the command, and is the sum of all

bytes of the header + command + command args.

When the CTI server receives a command, it will return a feedback for each command received. The

feedback will contain information related to if the command was successfully executed or not. A 10

second timeout is recommended if the client does not receive the feedback associated with the

command previously sent.

HEADER DATA

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_HEADER
{

public ulong Token; //always contains 0x11dddddddddddddd

public uint dwLen; //length of Command + Command Args + Checksum
}

dwLen = Command + Command args + Checksum for requests

dwLen = Header + Command + Command args + Checksum for feedback

COMMAND CODE

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_CMD
{

public uint dwCmd;
public uint dwCmd_Extend;

}

dwCmd (referred to as the command code) will vary based on the command request. dwCmd_Extend always equals

0x00000000.

COMMAND ARGUMENTS

Argument data will vary based on the command code.

CHECKSUM

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public unsafe struct THIRD_PARTY_TAIL_CHECK_CODE
{

public ushort CheckSum; //Checksum = add all bytes of header + command + arguments
}

COMMANDS

THIRD_PARTY_USER_LOGIN_CMD

The user must login to the CTI server first before issuing commands to the CTI server.

Command Code = 0XEEAB 0001

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct ARBINVIEWER_USER
{

public fixed Byte User[32]; //32 characters max
public fixed Byte Password[32]; //32 characters max

};

*Note: The remaining bytes of user and password need to be filled with 0x00 if the length is less than 32
characters. The same applies to other command fields that require string inputs as well.

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_USER_LOGIN_CMD
{

public ARBINVIEWER_USER UserInfo;
}

Fig1 – example data packet shown for THIRD_PARTY_USER_LOGIN_CMD with User = ‘123’, Password = ‘123’

Remarks:

None.

THIRD_PARTY_USER_LOGIN_CMD_FEEDBACK

Feedback sent from CTI server after the THIRD_PARTY_LOGIN_CMD is issued. It contains general

information about the cycler such as serial number, nickname, location, etc.

Command Code = 0XEEBA 0001

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_USER_LOGIN_FEEDBACK
{

public uint Result; //1 = successful login,2 = failure to login
public fixed Byte IP_Address[4];
public fixed Byte SN[16];
public fixed Byte Note[256];
public fixed char NickName[1024];
public fixed char Location[1024];
public fixed char EmergencyContactNameAndPhoneNumber[1024];
public fixed char OtherComments[1024];
public fixed char Email[64];
public fixed char Call[16];
public uint ITAC;
public uint Version;
public uint IsAllowToControl;
public uint dwChannelLength;
public uint dwUserType;
public uint dwPicLength;
public fixed char Picture[]

}

Remarks:

BYTE Picture[] is variable in length depending on dwPicLength.

THIRD_PARTY_CONNECT

Command used to set/unset the kickout flag. This command is also useful for testing the connection to

the CTI server.

Command Code = 0XEEAB 0002

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_CONNECT
{

public uint dwSetKickOut;

public fixed Byte btReserved1[32];

}

Remarks:

dwSetKickOut refers to if the login session can be kicked off by another user. 0 for false, 1 for true.

THIRD_PARTY_CONNECT_FEEDBACK

Reports the status of the THIRD_PARTY_CONNECT command.

Command Code = 0XEEBA 0002

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_CONNECT_FEEDBACK
{

public uint dwSetKickOut;

public uint dwConnectResult; //0: Accepted connection, 1: Rejected connection, it is full
public fixed Byte btReserved1[32];

}

Remarks:

None

THIRD_PARTY_GET_CHANNELS_INFO

This command is used to request channel information from the CTI server.

Command Code = 0XEEAB 0003

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_GET_CHANNELS_INFO
{

public short OnlyChannel;
public short InfoType;
public uint NeedTypeSet;
public fixed Byte btReserved1[32];

}

Remarks:

To get info from all channels on the cycler, set OnlyChannel = -1. A separate feedback will be returned

for each channel on the cycler.

The NeedTypeSet parameter indicates additional types of data if they are present on the cycler.

0x000 No auxiliary data required

0x100 CANBMS data required

0x200 SMB data required

0x400 Auxiliary data required

THIRD_PARTY_GET_CHANNELS_INFO_FEEDBACK

Feedback returned from the CTI for the THIRD_PARTY_GET_CHANNELS_INFO command. The data

returned is similar to the data found in the Monitor and Control window.

Command Code = 0XEEBA 0003

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_GET_CHANNELS_INFO
{

public uint ChannelNum; //number of channels
THIRD_PARTY_CHANNEL Channels[] //actual length of array determined by ChannelNum

}

THIRD_PARTY_CHANNEL contents:

UINT ChannelIndex;

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_STATUS_INFOMATION
{

public short Status; //refer to Status codes table
public byte m_bCommFailure;
public fixed char Schedule[200];
public fixed char Testname[72];
public fixed byte ExitCondition[100];
public fixed byte StepAndCycleformat[64];
public fixed char Barcode[72];

public fixed char CANCfgName[200];
public fixed char SMBCfgName[200];
public ushort MasterChannel;
public double TestTime;
public double StepTime;
public float Voltage;
public float Current;
public float Power;
public float ChargeCapacity;
public float DischargeCapacity;
public float ChargeEnergy;
public float DishargeEnergy;
public float InternalResistance;
public float dvdt;
public float ACR;
public float ACI;
public float ACIPhase;
public ushort nAuxVoltageCount;

public ushort nAuxTemperatureCount;

public ushort nAuxPressureCount;
public ushort nAuxExternalCount;
public ushort nAuxFlowCount;
public ushort nAuxAoCount;
public ushort nAuxDiCount;
public ushort nAuxDoCount;
public ushort nAuxHumidityCount;
public ushort nAuxSafetyCount;
public ushort nAuxPhCount;
public ushort nAuxDensityCount;
public ushort BMSNum;
public ushort SMBNum;
THIRD_PARTY_AUX_VALUE AuxValues[]; //length determined by nAuxVoltageCount+nAuxTemperatuerCount+..

THIRD_PARTY_BMS_VALUE BMSValues[]; //length determined by BMSNum
THIRD_PARTY_SMB_VALUE SMBValues[]; //length determined by SMBNum

}

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_AUX_VALUE
{

public float Value;

public float dtValue;
}

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_BMS_VALUE
{

public uint Index;
public double Value;

}

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_SMB_VALUE
{

public uint Index;
public uint nType; //type=0 -> SMBData, type=1 -> SMBString

}

Remarks:

Auxiliary, CANBMS, and SMB data is returned in the order of batch file mapping.

THIRD_PARTY_STATUS_INFORMATION Status codes table

0x00 Idle

0x01 Transition

0x02 Charge

0x03 Discharge
0x04 Rest

0x05 Wait

0x06 External Charge

0x07 Calibration

0x08 Unsafe

0x09 Pulse

0x0A Internal Resistance

0x0B AC Impedance

0x0C ACI Cell

0x0D Test Settings

0x0E Error

0x0F Finished

0x10 Volt Meter

0x11 Waiting for ACS
0x12 Pause

0x13 Empty

0x14 Idle from MCU

0x15 Start

0x16 Running

0x17 Step Transfer

0x18 Resume

0x19 Go Pause

0x1A Go Stop

0x1B Go Next Step
0x1C Online Update

0x1D DAQ Memory Unsafe

0x1E ACR

THIRD_PARTY_CONTINUE_SCHEDULE

Command used to request the CTI to continue a channel on the cycler. This command is similar to the

“Continue” button in the Monitor and Control window.

Command Code = 0XBB32 0006

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_CONTINUE
{

public uint ChannelNum;
}

Remarks:

None

THIRD_PARTY_CONTINUE_SCHEDULE_FEEDBACK

Feedback returned from the CTI after the THIRD_PARTY_CONTINUE_SCHEDULE command is sent by

the client that indicates the continue status of the channel requested.

Command Code = 0XBB23 0006

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct
THIRD_PARTY_CONTINUE_FEED_BACK
{

public int dwIvChannelGlobalIndex;
public byte btResult;
public fixed byte Reserved1[101];

}

Remarks:

dwIvChannelGlobalIndex = -1 when requested channel successfully starts.

dwIvChannelGlobalIndex = the requested channel if requested channel fails to start.

START_SCHEDULE_FEEDBACK btResult error codes table

CTI_CONTINUE_INDEX 0X10 Invalid channel index

CTI_CONTINUE_ERROR 0X11 There is a user
controlling the monitor
window (Start/Resume
channel window is
open)

CTI_CONTINUE_CHANNEL_RUNNING 0X12 Requested channel is
running

CTI_CONTINU _CHANNEL_NOT_CONNECT 0X13 Channel not connected
to DAQ

CTI_CONTINUE_CHANNEL_CALIBRATING 0X14 Channel Calibrating

CTI_CONTINUE_NOT_PAUSE_NORMAL 0X15 Not Pause Normal

CTI_CONTINUE_CHANNEL_UNSAFE 0X16 Channel is unsafe

THIRD_PARTY_START_SCHEDULE

Command used to request the CTI to start a channel on the cycler. This command is similar to the “Start

test” button in the Monitor and Control window.

Command Code = 0XBB32 0004

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_START
{

public fixed char TestName[72];
public uint ChannelNum;

}

Remarks:

None

THIRD_PARTY_START_SCHEDULE_FEEDBACK

Feedback returned from the CTI after the THIRD_PARTY_START_SCHEDULE command is sent by the

client that indicates the start status of the channel requested.

Command Code = 0XBB23 0004

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_START_FEED_BACK

{
public int dwIvChannelGlobalIndex;
public byte btResult;
public fixed byte Reserved1[101];

}

Remarks:

dwIvChannelGlobalIndex = -1 when requested channel successfully starts.

dwIvChannelGlobalIndex = the requested channel if requested channel fails to start.

START_SCHEDULE_FEEDBACK btResult error codes table

CTI_START_INDEX 0X10 Invalid channel index

CTI_START_ERROR 0X11 There is a user
controlling the monitor
window (Start/Resume
channel window is
open)

CTI_START_CHANNEL_RUNNING 0X12 Requested channel is
running or unsafe

CTI_START_CHANNEL_NOT_CONNECT 0X13 Channel not connected
to DAQ

CTI_START_SCHEDULE_VALID 0X14 Schedule not
compatible with current
system configuration

CTI_START_NO_SCHEDULE_ASSIGNED 0X15 No schedule assigned to
channel

CTI_START_SCHEDULE_VERSION 0X16 Schedule version does
not match current
version of MITS

CTI_START_POWER_PROTECTED 0X17 Not used

CTI_START_RESULTS_FILE_SIZE_LIMIT 0X18 Not used

CTI_START_STEP_NUMBER 0X19 Invalid step number

CTI_START_NO_CAN_CONFIGURATION_ASSIGNED 0X1A Not used

CTI_START_AUX_CHANNEL_MAP 0X1B Invalid auxiliary count in
schedule

CTI_START_BUILD_AUX_COUNT 0X1C Invalid build in auxiliary
count

CTI_START_POWER_CLAMP_CHECK 0X1D Not used

CTI_START_AI 0X1E Check Aux Test Setting
tab

CTI_START_SAFOR_GROUPCHAN 0X1F No selected channels

CTI_START_BT6000RUNNINGGROUP 0X20

CTI_START_CHANNEL_DOWNLOADING_SCHEDULE 0X21 DAQ still downloading
schedule

CTI_START_DATABASE_QUERY_TEST_NAME_ERROR 0X22 Error querying database
(database connection
closed most likely)

CTI_START_TEXTNAME_EXISTS 0X23 Testname cannot be
empty or schedule does
not match last used

 schedule in the case of
resuming

CTI_START_GO_STEP 0X24 Invalid step number

CTI_START_INVALID_PARALLEL 0X25 Invalid parallel channel
number

CTI_START_SAFETY 0X26 Schedule safety
precheck failed

CTI_START_SCHEDULE_NAME_DIFFERENT 0X27 Not used

CTI_START_BATTERYSIMULATION_NOT_PARALLEL 0X28 Battery simulation error

THIRD_PARTY_RESUME_SCHEDULE

Command used to resume a schedule. This command is similar to the “resume test” button in the

Monitor and Control window.

Command Code = 0XBB31 0002

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_RESUME
{

public int dwIvChannelGlobalIndex;
public byte ResumeAll;
public fixed byte Reserved1[101];

}

Remarks:

See THIRD_PARTY_RESUME_SCHEDULE_FEEDBACK.

THIRD_PARTY_RESUME_SCHEDULE_FEEDBACK

Feedback returned from the CTI after the THIRD_PARTY_RESUME_SCHEDULE command is sent by the

client that indicates the resume status of the requested channel.

Command Code = 0XBB13 0002

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_RESUME_FEED_BACK
{

public int dwIvChannelGlobalIndex;
public byte btResult;
public fixed byte Reserved1[101];

}

Remarks:

If ResumeAll is used in THIRD_PARTY_RESUME_SCHEDULE, an individual feedback is returned for each

channel.

RESUME_SCHEDULE_FEEDBACK btResult error codes table

CTI_START_INDEX 0X10 Invalid channel index

CTI_START_ERROR 0X11 There is a user
controlling the monitor
window (Start/Resume
channel window is
open)

CTI_START_CHANNEL_RUNNING 0X12 Requested channel is
running or unsafe

CTI_START_CHANNEL_NOT_CONNECT 0X13 Channel not connected
to DAQ

CTI_START_SCHEDULE_VALID 0X14 Schedule not
compatible with current
system configuration

CTI_START_NO_SCHEDULE_ASSIGNED 0X15 No schedule assigned to
channel

CTI_START_SCHEDULE_VERSION 0X16 Schedule version does
not match current
version of MITS

CTI_START_POWER_PROTECTED 0X17 Not used

CTI_START_RESULTS_FILE_SIZE_LIMIT 0X18 Not used

CTI_START_STEP_NUMBER 0X19 Invalid step number

CTI_START_NO_CAN_CONFIGURATION_ASSIGNED 0X1A Not used

CTI_START_AUX_CHANNEL_MAP 0X1B Invalid auxiliary count in
schedule

CTI_START_BUILD_AUX_COUNT 0X1C Invalid build in auxiliary
count

CTI_START_POWER_CLAMP_CHECK 0X1D Not used

CTI_START_AI 0X1E Check Aux Test Setting
tab

CTI_START_SAFOR_GROUPCHAN 0X1F No selected channels

CTI_START_BT6000RUNNINGGROUP 0X20

CTI_START_CHANNEL_DOWNLOADING_SCHEDULE 0X21 DAQ still downloading
schedule

CTI_START_DATABASE_QUERY_TEST_NAME_ERROR 0X22 Error querying database
(database connection
closed most likely)

CTI_START_TEXTNAME_EXISTS 0X23 Testname cannot be
empty or schedule does
not match last used
schedule in the case of
resuming

CTI_START_LOAD_RESUME 0X24 Not used

CTI_START_MAX_MULTIPLE_RESULT 0X25 Not used

CTI_START_SAFETY 0X26 Schedule safety
precheck failed

CTI_START_BATTERYSIMULATION_NOT_PARALLEL 0X27 Battery simulation error

THIRD_PARTY_STOP_SCHEDULE

Command used to stop a running test. This command is similar to the “Stop test” button in the Monitor

and Control window.

Command Code = 0XBB31 0001

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_STOP
{

public uint m_dwIvChannelGlobalIndex;
public Byte m_btStopAll;
public fixed Byte m_btReserved1[101];

}

Remarks:

None

THIRD_PARTY_STOP_SCHEDULE_FEEDBACK

Feedback returned by the CTI server after the THIRD_PARTY_STOP_SCHEDULE command is sent by the

client that indicates the stop status of the requested channel.

Command Code = 0XBB13 0001

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public unsafe struct THIRD_PARTY_SCHEDULE_STOP_FEED_BACK
{

public int m_dwIvChannelGlobalIndex;
public Byte m_btResult;
public fixed Byte m_btReserved1[101];

}

Remarks:

If StopAll is used in THIRD_PARTY_STOP_SCHEDULE, a separate feedback is returned for each channel.

STOP_SCHEDULE_FEEDBACK m_btResult error codes table

CTI_STOP_INDEX 0x10 Channel index does not exist

CTI_STOP_ERROR 0x11 Someone else is controlling
monitor window at the
moment

CTI_STOP_NOT_RUNNING 0x12 Not used

CTI_STOP_CHANNEL_NOT_CONNECT 0x13 Not used

THIRD_PARTY_ASSIGN_SCHEDULE

Command used to assign a schedule to a channel. This command is similar to assigning schedules in the

Monitor and Control window.

Command Code = 0XBB21 0001

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_ASSIGN_SDU
{

public int dwIvChannelGlobalIndex;
public byte AssignSduAll;
public fixed char ScheduleName[200];
public float flCapacity;
public fixed char ItemId[72];
public float fMV_UD1;
public float fMV_UD2;
public float fMV_UD3;
public float fMV_UD4;
public float fMV_UD5;
public float fMV_UD6;
public float fMV_UD7;
public float fMV_UD8;
public float fMV_UD9;
public float fMV_UD10;
public float fMV_UD11;
public float fMV_UD12;
public float fMV_UD13;
public float fMV_UD14;
public float fMV_UD15;
public float fMV_UD16;
public fixed byte Reserved1[32];

}

Remarks:

The parameters flCapacity to fMV_UD16 are used in MITS7 only. Using these parameters in MITS8 does

not have any effect.

THIRD_PARTY_ASSIGN_SCHEDULE_FEEDBACK

Feedback returned by the CTI server after the THIRD_PARTY_ASSIGN_SCHEDULE command is sent by

the client. It indicates the schedule assignment status of the channel requested.

Command Code = 0XBB12 0001

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_ASSIGN_SDU_FEED_BACK
{

public int dwIvChannelGlobalIndex;
public byte btResult;
public fixed byte Reserved1[101];

}

Remarks:

A separate feedback is sent for each channel if “AssignSduAll” = 1 in the

THIRD_PARTY_ASSIGN_SCHEDULE command.

ASSIGN_SCHEDULE_FEEDBACK error codes table

CTI_ASSIGN_INDEX 0x10 Channel does not exist

CTI_ASSIGN_ERROR 0x11 Monitor window in use at
the moment

CTI_ASSIGN_SCHEDULE_NAME_EMPTY_ERROR 0x12 Schedule name cannot be
empty

CTI_ASSIGN_SCHEDULE_NOT_FIND_ERROR 0x13 Schedule name not found

CTI_ASSIGN_CHANNEL_RUNNING_ERROR 0x14 Channel is running

CTI_ASSIGN_CHANNEL_DOWNLOAD_ERROR 0x15 Channel is downloading
another schedule
currently

CTI_ASSIGN_BATCH_FILE_OPENED 0x16 Cannot assign schedule
when batch file is open

CTI_ASSIGN_SDU_CANNOT_ASSIGN_SCHEDULE 0x17 Assign failed

CTI_ASSIGN_SDU_SAVE_FAILED 0x18 Not used

THIRD_PARTY_SET_MV_VALUE

Command used to set the user defined meta-variables found in the “Log and Others” tab of the schedule

editor.

Command Code = 0XBB15 0001

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_SET_MV_VALUE

{
public uint m_dwIvChannelGlobalIndex;
public int MV_Type;

public int MV_MetaCode;
public fixed Byte m_btReserved1[16];
public int MV_ValueType;

public float MV_Data;
public fixed Byte m_btReserved2[16];

}

Remarks:

The channel must be running for this command to take effect. CTI only allows MV_Type = 1, and

MV_ValueType = 1.

The MV_MetaCode values for MV_UD1-16 located in the schedule editor are shown in the table below:

MetaCode_MV_UD1 52 (decimal)

MetaCode_MV_UD2 53

MetaCode_MV_UD3 54
MetaCode_MV_UD4 55

MetaCode_MV_UD5 105

MetaCode_MV_UD6 106

MetaCode_MV_UD7 107

MetaCode_MV_UD8 108
MetaCode_MV_UD9 109

MetaCode_MV_UD10 110

MetaCode_MV_UD11 111

MetaCode_MV_UD12 112
MetaCode_MV_UD13 113

MetaCode_MV_UD14 114

MetaCode_MV_UD15 115

MetaCode_MV_UD16 116

THIRD_PARTY_SET_MV_VALUE_FEEDBACK

Feedback returned by the CTI server after the THIRD_PARTY_SET_MV_VALUE command is sent by the

client. It indicates the status of setting the metavariables for the requested channel.

Command Code = 0XBB51 0001

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public unsafe struct THIRD_PARTY_SET_MV_Value_FEED_BACK
{

public int m_dwIvChannelGlobalIndex;
public Byte m_btResult;
public fixed Byte m_btReserved1[101];

}

Remarks:

SET_MV_VALUE b_btResult values.

CTI_SET_MV_ERROR 0x10 Set MV failed

CTI_SET_MV_METACODE_NOTEXIST 0x11 MV meta code does not exist

CTI_EST_MV_CHANNEL_NOT_STARTED 0x12 Channel is not running

CTI_SET_MV_METACODE_NOTEXIST_Pro7 0x13 This meta code does not exist
in Mits Pro7

THIRD_PARTY_UPDATE_MV_ADVANCED

Command used to set the user defined meta-variables found in the “Log and Others” tab of the schedule

editor.

Command Code = 0XBB15 0002

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public unsafe struct METAVARIABLE_DATA_CH_CODE
{

public ushort m_ChannelIndexInGlobal;
public ushort m_MV_MetaCode;
public float fMV_Value;

}

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public unsafe struct THIRD_PARTY_UPDATE_META_VARIABLE_ADVANCED_CODE
{

public ushort m_nMV_Total;

public fixed Byte m_btReserved1[18];
public METAVARIABLE_DATA_CH_CODE m_MV_Data[MAX_METAVARIABLE_SINGLE_PACK];

}

Remarks:

The MV_MetaCode values for MV_UD1-16 located in the schedule editor are shown in the table below:

MetaCode_MV_UD1 52 (decimal)

MetaCode_MV_UD2 53
MetaCode_MV_UD3 54

MetaCode_MV_UD4 55

MetaCode_MV_UD5 105

MetaCode_MV_UD6 106

MetaCode_MV_UD7 107

MetaCode_MV_UD8 108
MetaCode_MV_UD9 109

MetaCode_MV_UD10 110

MetaCode_MV_UD11 111

MetaCode_MV_UD12 112
MetaCode_MV_UD13 113

MetaCode_MV_UD14 114

MetaCode_MV_UD15 115

MetaCode_MV_UD16 116

THIRD_PARTY_UPDATE_MV_ADVANCED_FEEDBACK

Feedback returned by the CTI server after the THIRD_PARTY_SET_MV_VALUE command is sent by the

client. It indicates the status of setting the metavariables for the requested channel.

Command Code = 0XBB51 0002

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public unsafe struct THIRD_PARTY_SET_MV_Value_FEED_BACK
{

public int m_dwIvChannelGlobalIndex;
public Byte m_btResult;
public fixed Byte m_btReserved1[101];

}

Remarks:

SET_MV_VALUE b_btResult values.

CTI_SET_MV_ERROR 0x10 Set MV failed

CTI_SET_MV_METACODE_NOTEXIST 0x11 MV meta code does not exist

CTI_EST_MV_CHANNEL_NOT_STARTED 0x12 Channel is not running

CTI_SET_MV_METACODE_NOTEXIST_Pro7 0x13 This meta code does not exist in
Mits Pro7

CTI_SET_MV_METACODE_UPDATE_TOO_FREQU
ENTLY_200MS

0x14 Update too frequently (updated
every 200 milliseconds)

THIRD_PARTY_JUMP_CHANNEL

Command used to request a running channel to jump to a particular step in its schedule. This command

is similar to the “Jump Step” button in the Monitor and Control window.

Command Code = 0XBB32 0005

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_JUMP_CHANNEL
{

public int m_stepNum;
public int m_channelIndex;
public fixed Byte m_btReserved1[101];

}

Remarks:

m_stepNum is 0-indexed. If a step number is given and it does not exist in the schedule, the test will stop

automatically.

THIRD_PARTY_JUMP_CHANNEL_FEEDBACK

Feedback returned by the CTI server after the THIRD_PARTY_JUMP_CHANNEL command is sent by the

client. It indicates whether a channel has successfully jumped to another step or not in its schedule.

Command Code = 0XBB23 0005

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_JUMP_CHANNEL_FEED_BACK
{

public int dwIvChannelGlobalIndex;
public Byte m_btResult;
public fixed Byte m_btReserved1[101];

}

Remarks:

Sending a step number greater than the number of steps in the schedule will stop the test. Step

numbers are 0-indexed.

JUMP_CHANNEL m_btResult error codes table:

CTI_JUMP_INDEX 0x10 Not used

CTI_JUMP_ERROR 0x11 Someone else is using the
monitor window at the
moment

CTI_JUMP_CHANNEL_RUNNING 0x12 Channel not running

CTI_JUMP_CHANNEL_NOT_CONNECT 0x13 Channel not connected to
DAQ

CTI_JUMP_SCHEDULE_VALID 0x14 Invalid schedule

CTI_JUMP_NO_SCHEDULE_ASSIGNED 0x15 No schedule assigned

CTI_JUMP_SCHEDULE_VERSION 0x16 Invalid schedule version

CTI_JUMP_POWER_PROTECTED 0x17 Not used

CTI_JUMP_RESULTS_FILE_SIZE_LIMIT 0x18 Not used

CTI_JUMP_STEP_NUMBER 0x19 Schedule cannot contain
over 200 steps

CTI_JUMP_NO_CAN_CONFIGURATION_ASSIGNED 0x1A Not used

CTI_JUMP_AUX_CHANNEL_MAP 0x1B Not used

CTI_JUMP_BUILD_AUX_COUNT 0x1C Not used

CTI_JUMP_POWER_CLAMP_CHECK 0x1D Not used

CTI_JUMP_AI 0x1E Not used

CTI_JUMP_SAFOR_GROUPCHAN 0x1F Not used

CTI_JUMP_BT6000RUNNINGGROUP 0x20 Not used

CTI_JUMP_CHANNEL_DOWNLOADING_SCHEDULE 0x21 DAQ still downloading
schedule

CTI_JUMP_DATABASE_QUERY_TEST_NAME_ERROR 0x22 Not used

CTI_JUMP_TESTNAME_EXISTS 0x23 Not used

CTI_JUMP_GO_STEP 0x24 Schedule contains invalid
step limit setting

CTI_JUMP_INVALID_PARALLEL 0x25 Invalid parallel setting

CTI_JUMP_SAFETY 0x26 Schedule safety check not
safe

CTI_JUMP_SCHEDULE_NAME_DIFFERENT 0x27 Not used

CTI_JUMP_BATTERYSIMULATION_NOT_PARALLEL 0x28 Battery simulation not
parllel

THIRD_PARTY_BROWSE_DIRECTORY

This command allows you to browse the valid folders and files inside the MITS_PRO directory.

Command Code = 0XCC13 0001

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_BROWSE_DIRECTORY
{

public fixed char DirectoryPath[1024];
}

Remarks:

Valid directories include the Simulation, Work, Support, SMB Config, and CANBMS Config paths. The

Directorypath is limited to 1024 characters.

THIRD_PARTY_BROWSE_DIRECTORY_FEED

Feedback returned by the CTI server after the THIRD_PARTY_BROWSE_DIRECTORY command is sent by

the client. It contains file directory information, and error code if any.

Command Code = 0XCC31 0001

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_BROWSE_DIRECTORY_FEED
{

public uint Result;

public uint nDirFileCount; //total number of files and directories
public DirFileInfo DirFileList[]

}

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public unsafe struct DirFileInfo
{

public uint Type; //0: directory, 1: file
public fixed char DirFileName[64];
public int dwSize; //file size

public fixed char wcModified[32]; //last time modified
}

Remarks:

BROWSE_DIRECTORY Result values:

CTI_BROWSE_DIRECTORY_SUCCESS 0x1 Valid directory, return success

CTI_BROWSE_SCHEDULE_SUCCESS 0x2 Schedule directory, return success

CTI_BROWSE_DIRECTORY_FAILED 0x3 Invalid directory, return failed

THIRD_PARTY_DOWNLOAD_FILE

This command allows the client to download a file from the MITS_PRO directory on the CTI server side.

Command Code = 0XCC13 0002

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_DOWNLOAD_CODE
{

public fixed char FilePath[THIRD_PARTY_PATH_MAX_LENGHT_CONTAIN_ZERO];
public double DownloadTime; //timestamp

}

Remarks:

None

THIRD_PARTY_DOWNLOAD_FILE_FEEDBACK

This command contains the file data and extra information needed to receive the file client side after

the THIRD_PARTY_DOWNLOAD_FILE command is sent by the client.

Command Code = 0XCC31 0002

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_DOWNLOAD_FEED_CODE
{

public uint Result;
public double DownloadTime;

public uint uGeneralPackage; //Number of total packages to be sent
public uint uPackageIndex; //Current package index

public fixed byte m_MD5[16]; //MD5
public ulong ulFileLength; //File data comes after uFileLength

}

Remarks:

File packages are broken into chunks of 512 KB.

Compute the MD5 of the file chunk received with the m_MD5 field to check for data consistency.

DOWNLOAD_FILE_FEEDBACK Result error codes table

CTI_DOWNLOAD_SUCCESS 1 File download success

CTI_DOWNLOAD_FAILED 2 Error in file download

CTI_DOWNLOAD_MD5_ERR 3 MD5 hash of file data does not
match

CTI_DOWNLOAD_MAX_LENGTH_ERR 4 File size exceeded

THIRD_PARTY_UPLOAD_FILE

This command is used to upload a file from client side to the CTI server side.

Command Code = 0XCC13 0003

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_UPLOAD_CODE
{

public fixed char FilePath[THIRD_PARTY_PATH_MAX_LENGHT_CONTAIN_ZERO];
public ulong ulFileLength;
public uint uGeneralPackage;
public uint uPackageIndex;
public double UploadTime;
public fixed byte m_MD5[16];

}

Remarks:

File chunks can be broken up to different sizes with the chunk size specified in ulFileLength.

THIRD_PARTY_UPLOAD_FILE_FEEDBACK

Command Code = 0XCC31 0003

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_UPLOAD_FEED_CODE
{

public double UploadTime;
public uint uGeneralPackage;
public uint uPackageIndex;
public uint Result;

}

Remarks:

None

UPLOAD_FILE_FEEDBACK Result error codes table

CTI_UPLOAD_SUCCESS 1 Upload to CTI success

CTI_UPLOAD_FAILED 2 Upload to CTI failed

CTI_UPLOAD_MD5_ERR 3 MD5 mismatch

THIRD_PARTY_NEW_OR_DELETE_FOLDER

Command used for creating or folder or deleting a folder/file in the MITS_PRO directory on the CTI

server.

Command Code = 0XCC13 0004

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public unsafe struct THIRD_PARTY_NEW_OR_DELETE_CODE
{

public uint Type; //0: delete, 1: create
public fixed char FilePath[1024];

}

Remarks:

This command only allows to create new folders, but allows to delete files/folders. Use the

THIRD_PARTY_UPLOAD_FILE command to create and upload a new file.

Only allows deleting files ending in .sdx, .sdu, .can, .smb, and .txt file extension. FilePath is limited to

1024 characters.

THIRD_PARTY_NEW_OR_DELETE_FOLDER_FEEDBACK

Feedback returned by the CTI server after the THIRD_PARTY_NEW_OR_DELETE_FOLDER command is

sent by the client. It contains the error code for the command request.

Command Code = 0XCC31 0004

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public unsafe struct THIRD_PARTY_NEW_OR_DELETE_FEED_CODE
{

public uint Result;
}

Remarks:

NEW_OR_DELETE_FOLDER_FEEDBACK Result error codes table

CTI_NEW_SUCCESS 0x1 New file success

CTI_DELETE_SUCCESS 0x2 Delete file success

CTI_NEW_FAILED 0x3 New file failed

CTI_NEW_FAILED_ADD_FOLDER 0x4 Cannot add folders in this
directory

CTI_DELETE_FAILED 0x5 Delete file failed

CTI_DELETE_FAILED_EXTENSION 0x6 Cannot delete files of this
type

CTI_DELETE_FAILED_TEXT_RUNNING 0x7 File is in use

CTI_DELETE_FAILED_EXIST 0x8 File does not exist

THIRD_PARTY_NEW_DIRECTORY

Specific command used to create new folders only.

Command Code = 0XCC13 0005

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_NEW_FOLDER_CODE
{

public fixed char FilePath[1024];
}

Remarks:

FilePath is limited to 1024 characters.

THIRD_PARTY_NEW_DIRECTORY_FEEDBACK

Feedback returned by the CTI server indicating the success status of the

THIRD_PARTY_NEW_DIRECTORY command.

Command Code = 0XCC31 0005

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_NEW_FOLDER_CODE
{

public int Result;
}

Remarks:

See THIRD_PARTY_NEW_OR_DELETE_FOLDER remarks for the error codes returned in Result.

THIRD_PARTY_GET_SERIAL

Command Code = 0XBB34 0001

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public unsafe struct THIRD_PARTY_GET_SERIAL
{

public uint m_dwGetSerialNum;
public Byte m_btResult;
public fixed Byte m_btReserved1[101];

}

Remarks:

None

THIRD_PARTY_GET_SERIAL_FEEDBACK

Command Code = 0XBB43 0001

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_GET_SERIAL_FEED_BACK
{

public uint m_dwGetSerialNum;
public Byte m_btResult;
public fixed Byte m_btReserved1[101];

}

Remarks:

None

THIRD_PARTY_DELETE_DIRECTORY

Specific command used to delete a file or folder from the MITS_PRO directory on the CTI server.

Command Code = 0XCC13 0006

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_NEW_FOLDER_CODE
{

public fixed char FilePath[1024];
}

Remarks:

The FilePath is limited to 1024 characters.

THIRD_PARTY_DELETE_DIRECTORY_FEEDBACK

Feedback returned by the CTI server after the THIRD_PARTY_DELETE_DIRECTORY command is sent by

the client. It indicates the success status of the command request.

Command Code = 0XCC31 0006

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public unsafe struct THIRD_PARTY_DELETE_FOLDER_FEED_CODE
{

public uint Result;
}

Remarks:

See THIRD_PARTY_NEW_OR_DELETE_FOLDER remarks for the error codes returned in Result.

THIRD_PARTY_SEND_MSG_TO_CTI_CODE

This command is used to send a message to the CTI server. A message popup window will show on the

CTI server when it receives the message.

Command Code = 0XCD14 0002

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public unsafe struct THIRD_PARTY_SEND_MSG_TO_CTI_CODE
{

public fixed char Msg[1024];
}

Remarks:

Message is limited to 1024 characters.

THIRD_PARTY_SEND_MSG_TO_CTI_FEED_CODE

Feedback returned by the CTI server indicating if the THIRD_PARTY_SEND_MSG_TO_CTI_CODE

command was successfully received from the client.

Command Code = 0XCD41 0002

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public unsafe struct THIRD_PARTY_SEND_MSG_TO_CTI_FEED_CODE
{

public uint Result;
};

Remarks:

Result = 0x1; successfully sent and received by CTI

THIRD_PARTY_AUTOCALI_START_CODE

Command used to start auto calibration on the cycler connected to MITS running the CTI server.

Command Code = 0XCD14 0001

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public unsafe struct THIRD_PARTY_AUTOCALI_START_CODE

{

public fixed Byte Reserved[102];

}

Remarks:

This command starts auto-calibration. The Calibration window must be opened when this command is

used.

THIRD_PARTY_AUTOCALI_START_FEED_CODE

Feedback returned from the CTI server indicating whether auto calibration has started successfully or

not.

Command Code = 0XCD41 0001

Command Args

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public unsafe struct THIRD_PARTY_AUTOCALI_START_CODE

{
public uint Result; //0: start failed, 1: start success

}

Remarks:

None

