Edit on GitHub

Expressions

Every AST node in SQLGlot is represented by a subclass of Expression.

This module contains the implementation of all supported Expression types. Additionally, it exposes a number of helper functions, which are mainly used to programmatically build SQL expressions, such as sqlglot.expressions.select.


   1"""
   2## Expressions
   3
   4Every AST node in SQLGlot is represented by a subclass of `Expression`.
   5
   6This module contains the implementation of all supported `Expression` types. Additionally,
   7it exposes a number of helper functions, which are mainly used to programmatically build
   8SQL expressions, such as `sqlglot.expressions.select`.
   9
  10----
  11"""
  12
  13from __future__ import annotations
  14
  15import datetime
  16import math
  17import numbers
  18import re
  19import typing as t
  20from collections import deque
  21from copy import deepcopy
  22from enum import auto
  23
  24from sqlglot._typing import E
  25from sqlglot.errors import ParseError
  26from sqlglot.helper import (
  27    AutoName,
  28    camel_to_snake_case,
  29    ensure_collection,
  30    ensure_list,
  31    seq_get,
  32    subclasses,
  33)
  34from sqlglot.tokens import Token
  35
  36if t.TYPE_CHECKING:
  37    from sqlglot.dialects.dialect import DialectType
  38
  39
  40class _Expression(type):
  41    def __new__(cls, clsname, bases, attrs):
  42        klass = super().__new__(cls, clsname, bases, attrs)
  43
  44        # When an Expression class is created, its key is automatically set to be
  45        # the lowercase version of the class' name.
  46        klass.key = clsname.lower()
  47
  48        # This is so that docstrings are not inherited in pdoc
  49        klass.__doc__ = klass.__doc__ or ""
  50
  51        return klass
  52
  53
  54class Expression(metaclass=_Expression):
  55    """
  56    The base class for all expressions in a syntax tree. Each Expression encapsulates any necessary
  57    context, such as its child expressions, their names (arg keys), and whether a given child expression
  58    is optional or not.
  59
  60    Attributes:
  61        key: a unique key for each class in the Expression hierarchy. This is useful for hashing
  62            and representing expressions as strings.
  63        arg_types: determines what arguments (child nodes) are supported by an expression. It
  64            maps arg keys to booleans that indicate whether the corresponding args are optional.
  65        parent: a reference to the parent expression (or None, in case of root expressions).
  66        arg_key: the arg key an expression is associated with, i.e. the name its parent expression
  67            uses to refer to it.
  68        comments: a list of comments that are associated with a given expression. This is used in
  69            order to preserve comments when transpiling SQL code.
  70        _type: the `sqlglot.expressions.DataType` type of an expression. This is inferred by the
  71            optimizer, in order to enable some transformations that require type information.
  72
  73    Example:
  74        >>> class Foo(Expression):
  75        ...     arg_types = {"this": True, "expression": False}
  76
  77        The above definition informs us that Foo is an Expression that requires an argument called
  78        "this" and may also optionally receive an argument called "expression".
  79
  80    Args:
  81        args: a mapping used for retrieving the arguments of an expression, given their arg keys.
  82    """
  83
  84    key = "expression"
  85    arg_types = {"this": True}
  86    __slots__ = ("args", "parent", "arg_key", "comments", "_type", "_meta", "_hash")
  87
  88    def __init__(self, **args: t.Any):
  89        self.args: t.Dict[str, t.Any] = args
  90        self.parent: t.Optional[Expression] = None
  91        self.arg_key: t.Optional[str] = None
  92        self.comments: t.Optional[t.List[str]] = None
  93        self._type: t.Optional[DataType] = None
  94        self._meta: t.Optional[t.Dict[str, t.Any]] = None
  95        self._hash: t.Optional[int] = None
  96
  97        for arg_key, value in self.args.items():
  98            self._set_parent(arg_key, value)
  99
 100    def __eq__(self, other) -> bool:
 101        return type(self) is type(other) and hash(self) == hash(other)
 102
 103    @property
 104    def hashable_args(self) -> t.Any:
 105        args = (self.args.get(k) for k in self.arg_types)
 106
 107        return tuple(
 108            (tuple(_norm_arg(a) for a in arg) if arg else None)
 109            if type(arg) is list
 110            else (_norm_arg(arg) if arg is not None and arg is not False else None)
 111            for arg in args
 112        )
 113
 114    def __hash__(self) -> int:
 115        if self._hash is not None:
 116            return self._hash
 117
 118        return hash((self.__class__, self.hashable_args))
 119
 120    @property
 121    def this(self):
 122        """
 123        Retrieves the argument with key "this".
 124        """
 125        return self.args.get("this")
 126
 127    @property
 128    def expression(self):
 129        """
 130        Retrieves the argument with key "expression".
 131        """
 132        return self.args.get("expression")
 133
 134    @property
 135    def expressions(self):
 136        """
 137        Retrieves the argument with key "expressions".
 138        """
 139        return self.args.get("expressions") or []
 140
 141    def text(self, key) -> str:
 142        """
 143        Returns a textual representation of the argument corresponding to "key". This can only be used
 144        for args that are strings or leaf Expression instances, such as identifiers and literals.
 145        """
 146        field = self.args.get(key)
 147        if isinstance(field, str):
 148            return field
 149        if isinstance(field, (Identifier, Literal, Var)):
 150            return field.this
 151        if isinstance(field, (Star, Null)):
 152            return field.name
 153        return ""
 154
 155    @property
 156    def is_string(self) -> bool:
 157        """
 158        Checks whether a Literal expression is a string.
 159        """
 160        return isinstance(self, Literal) and self.args["is_string"]
 161
 162    @property
 163    def is_number(self) -> bool:
 164        """
 165        Checks whether a Literal expression is a number.
 166        """
 167        return isinstance(self, Literal) and not self.args["is_string"]
 168
 169    @property
 170    def is_int(self) -> bool:
 171        """
 172        Checks whether a Literal expression is an integer.
 173        """
 174        if self.is_number:
 175            try:
 176                int(self.name)
 177                return True
 178            except ValueError:
 179                pass
 180        return False
 181
 182    @property
 183    def is_star(self) -> bool:
 184        """Checks whether an expression is a star."""
 185        return isinstance(self, Star) or (isinstance(self, Column) and isinstance(self.this, Star))
 186
 187    @property
 188    def alias(self) -> str:
 189        """
 190        Returns the alias of the expression, or an empty string if it's not aliased.
 191        """
 192        if isinstance(self.args.get("alias"), TableAlias):
 193            return self.args["alias"].name
 194        return self.text("alias")
 195
 196    @property
 197    def name(self) -> str:
 198        return self.text("this")
 199
 200    @property
 201    def alias_or_name(self) -> str:
 202        return self.alias or self.name
 203
 204    @property
 205    def output_name(self) -> str:
 206        """
 207        Name of the output column if this expression is a selection.
 208
 209        If the Expression has no output name, an empty string is returned.
 210
 211        Example:
 212            >>> from sqlglot import parse_one
 213            >>> parse_one("SELECT a").expressions[0].output_name
 214            'a'
 215            >>> parse_one("SELECT b AS c").expressions[0].output_name
 216            'c'
 217            >>> parse_one("SELECT 1 + 2").expressions[0].output_name
 218            ''
 219        """
 220        return ""
 221
 222    @property
 223    def type(self) -> t.Optional[DataType]:
 224        return self._type
 225
 226    @type.setter
 227    def type(self, dtype: t.Optional[DataType | DataType.Type | str]) -> None:
 228        if dtype and not isinstance(dtype, DataType):
 229            dtype = DataType.build(dtype)
 230        self._type = dtype  # type: ignore
 231
 232    @property
 233    def meta(self) -> t.Dict[str, t.Any]:
 234        if self._meta is None:
 235            self._meta = {}
 236        return self._meta
 237
 238    def __deepcopy__(self, memo):
 239        copy = self.__class__(**deepcopy(self.args))
 240        if self.comments is not None:
 241            copy.comments = deepcopy(self.comments)
 242
 243        if self._type is not None:
 244            copy._type = self._type.copy()
 245
 246        if self._meta is not None:
 247            copy._meta = deepcopy(self._meta)
 248
 249        return copy
 250
 251    def copy(self):
 252        """
 253        Returns a deep copy of the expression.
 254        """
 255        new = deepcopy(self)
 256        new.parent = self.parent
 257        return new
 258
 259    def add_comments(self, comments: t.Optional[t.List[str]]) -> None:
 260        if self.comments is None:
 261            self.comments = []
 262        if comments:
 263            self.comments.extend(comments)
 264
 265    def append(self, arg_key: str, value: t.Any) -> None:
 266        """
 267        Appends value to arg_key if it's a list or sets it as a new list.
 268
 269        Args:
 270            arg_key (str): name of the list expression arg
 271            value (Any): value to append to the list
 272        """
 273        if not isinstance(self.args.get(arg_key), list):
 274            self.args[arg_key] = []
 275        self.args[arg_key].append(value)
 276        self._set_parent(arg_key, value)
 277
 278    def set(self, arg_key: str, value: t.Any) -> None:
 279        """
 280        Sets `arg_key` to `value`.
 281
 282        Args:
 283            arg_key (str): name of the expression arg.
 284            value: value to set the arg to.
 285        """
 286        self.args[arg_key] = value
 287        self._set_parent(arg_key, value)
 288
 289    def _set_parent(self, arg_key: str, value: t.Any) -> None:
 290        if hasattr(value, "parent"):
 291            value.parent = self
 292            value.arg_key = arg_key
 293        elif type(value) is list:
 294            for v in value:
 295                if hasattr(v, "parent"):
 296                    v.parent = self
 297                    v.arg_key = arg_key
 298
 299    @property
 300    def depth(self) -> int:
 301        """
 302        Returns the depth of this tree.
 303        """
 304        if self.parent:
 305            return self.parent.depth + 1
 306        return 0
 307
 308    def iter_expressions(self) -> t.Iterator[t.Tuple[str, Expression]]:
 309        """Yields the key and expression for all arguments, exploding list args."""
 310        for k, vs in self.args.items():
 311            if type(vs) is list:
 312                for v in vs:
 313                    if hasattr(v, "parent"):
 314                        yield k, v
 315            else:
 316                if hasattr(vs, "parent"):
 317                    yield k, vs
 318
 319    def find(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Optional[E]:
 320        """
 321        Returns the first node in this tree which matches at least one of
 322        the specified types.
 323
 324        Args:
 325            expression_types: the expression type(s) to match.
 326            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
 327
 328        Returns:
 329            The node which matches the criteria or None if no such node was found.
 330        """
 331        return next(self.find_all(*expression_types, bfs=bfs), None)
 332
 333    def find_all(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Iterator[E]:
 334        """
 335        Returns a generator object which visits all nodes in this tree and only
 336        yields those that match at least one of the specified expression types.
 337
 338        Args:
 339            expression_types: the expression type(s) to match.
 340            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
 341
 342        Returns:
 343            The generator object.
 344        """
 345        for expression, *_ in self.walk(bfs=bfs):
 346            if isinstance(expression, expression_types):
 347                yield expression
 348
 349    def find_ancestor(self, *expression_types: t.Type[E]) -> t.Optional[E]:
 350        """
 351        Returns a nearest parent matching expression_types.
 352
 353        Args:
 354            expression_types: the expression type(s) to match.
 355
 356        Returns:
 357            The parent node.
 358        """
 359        ancestor = self.parent
 360        while ancestor and not isinstance(ancestor, expression_types):
 361            ancestor = ancestor.parent
 362        return t.cast(E, ancestor)
 363
 364    @property
 365    def parent_select(self) -> t.Optional[Select]:
 366        """
 367        Returns the parent select statement.
 368        """
 369        return self.find_ancestor(Select)
 370
 371    @property
 372    def same_parent(self) -> bool:
 373        """Returns if the parent is the same class as itself."""
 374        return type(self.parent) is self.__class__
 375
 376    def root(self) -> Expression:
 377        """
 378        Returns the root expression of this tree.
 379        """
 380        expression = self
 381        while expression.parent:
 382            expression = expression.parent
 383        return expression
 384
 385    def walk(self, bfs=True, prune=None):
 386        """
 387        Returns a generator object which visits all nodes in this tree.
 388
 389        Args:
 390            bfs (bool): if set to True the BFS traversal order will be applied,
 391                otherwise the DFS traversal will be used instead.
 392            prune ((node, parent, arg_key) -> bool): callable that returns True if
 393                the generator should stop traversing this branch of the tree.
 394
 395        Returns:
 396            the generator object.
 397        """
 398        if bfs:
 399            yield from self.bfs(prune=prune)
 400        else:
 401            yield from self.dfs(prune=prune)
 402
 403    def dfs(self, parent=None, key=None, prune=None):
 404        """
 405        Returns a generator object which visits all nodes in this tree in
 406        the DFS (Depth-first) order.
 407
 408        Returns:
 409            The generator object.
 410        """
 411        parent = parent or self.parent
 412        yield self, parent, key
 413        if prune and prune(self, parent, key):
 414            return
 415
 416        for k, v in self.iter_expressions():
 417            yield from v.dfs(self, k, prune)
 418
 419    def bfs(self, prune=None):
 420        """
 421        Returns a generator object which visits all nodes in this tree in
 422        the BFS (Breadth-first) order.
 423
 424        Returns:
 425            The generator object.
 426        """
 427        queue = deque([(self, self.parent, None)])
 428
 429        while queue:
 430            item, parent, key = queue.popleft()
 431
 432            yield item, parent, key
 433            if prune and prune(item, parent, key):
 434                continue
 435
 436            for k, v in item.iter_expressions():
 437                queue.append((v, item, k))
 438
 439    def unnest(self):
 440        """
 441        Returns the first non parenthesis child or self.
 442        """
 443        expression = self
 444        while type(expression) is Paren:
 445            expression = expression.this
 446        return expression
 447
 448    def unalias(self):
 449        """
 450        Returns the inner expression if this is an Alias.
 451        """
 452        if isinstance(self, Alias):
 453            return self.this
 454        return self
 455
 456    def unnest_operands(self):
 457        """
 458        Returns unnested operands as a tuple.
 459        """
 460        return tuple(arg.unnest() for _, arg in self.iter_expressions())
 461
 462    def flatten(self, unnest=True):
 463        """
 464        Returns a generator which yields child nodes who's parents are the same class.
 465
 466        A AND B AND C -> [A, B, C]
 467        """
 468        for node, _, _ in self.dfs(prune=lambda n, p, *_: p and not type(n) is self.__class__):
 469            if not type(node) is self.__class__:
 470                yield node.unnest() if unnest else node
 471
 472    def __str__(self) -> str:
 473        return self.sql()
 474
 475    def __repr__(self) -> str:
 476        return self._to_s()
 477
 478    def sql(self, dialect: DialectType = None, **opts) -> str:
 479        """
 480        Returns SQL string representation of this tree.
 481
 482        Args:
 483            dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
 484            opts: other `sqlglot.generator.Generator` options.
 485
 486        Returns:
 487            The SQL string.
 488        """
 489        from sqlglot.dialects import Dialect
 490
 491        return Dialect.get_or_raise(dialect)().generate(self, **opts)
 492
 493    def _to_s(self, hide_missing: bool = True, level: int = 0) -> str:
 494        indent = "" if not level else "\n"
 495        indent += "".join(["  "] * level)
 496        left = f"({self.key.upper()} "
 497
 498        args: t.Dict[str, t.Any] = {
 499            k: ", ".join(
 500                v._to_s(hide_missing=hide_missing, level=level + 1)
 501                if hasattr(v, "_to_s")
 502                else str(v)
 503                for v in ensure_list(vs)
 504                if v is not None
 505            )
 506            for k, vs in self.args.items()
 507        }
 508        args["comments"] = self.comments
 509        args["type"] = self.type
 510        args = {k: v for k, v in args.items() if v or not hide_missing}
 511
 512        right = ", ".join(f"{k}: {v}" for k, v in args.items())
 513        right += ")"
 514
 515        return indent + left + right
 516
 517    def transform(self, fun, *args, copy=True, **kwargs):
 518        """
 519        Recursively visits all tree nodes (excluding already transformed ones)
 520        and applies the given transformation function to each node.
 521
 522        Args:
 523            fun (function): a function which takes a node as an argument and returns a
 524                new transformed node or the same node without modifications. If the function
 525                returns None, then the corresponding node will be removed from the syntax tree.
 526            copy (bool): if set to True a new tree instance is constructed, otherwise the tree is
 527                modified in place.
 528
 529        Returns:
 530            The transformed tree.
 531        """
 532        node = self.copy() if copy else self
 533        new_node = fun(node, *args, **kwargs)
 534
 535        if new_node is None or not isinstance(new_node, Expression):
 536            return new_node
 537        if new_node is not node:
 538            new_node.parent = node.parent
 539            return new_node
 540
 541        replace_children(new_node, lambda child: child.transform(fun, *args, copy=False, **kwargs))
 542        return new_node
 543
 544    @t.overload
 545    def replace(self, expression: E) -> E:
 546        ...
 547
 548    @t.overload
 549    def replace(self, expression: None) -> None:
 550        ...
 551
 552    def replace(self, expression):
 553        """
 554        Swap out this expression with a new expression.
 555
 556        For example::
 557
 558            >>> tree = Select().select("x").from_("tbl")
 559            >>> tree.find(Column).replace(Column(this="y"))
 560            (COLUMN this: y)
 561            >>> tree.sql()
 562            'SELECT y FROM tbl'
 563
 564        Args:
 565            expression: new node
 566
 567        Returns:
 568            The new expression or expressions.
 569        """
 570        if not self.parent:
 571            return expression
 572
 573        parent = self.parent
 574        self.parent = None
 575
 576        replace_children(parent, lambda child: expression if child is self else child)
 577        return expression
 578
 579    def pop(self: E) -> E:
 580        """
 581        Remove this expression from its AST.
 582
 583        Returns:
 584            The popped expression.
 585        """
 586        self.replace(None)
 587        return self
 588
 589    def assert_is(self, type_: t.Type[E]) -> E:
 590        """
 591        Assert that this `Expression` is an instance of `type_`.
 592
 593        If it is NOT an instance of `type_`, this raises an assertion error.
 594        Otherwise, this returns this expression.
 595
 596        Examples:
 597            This is useful for type security in chained expressions:
 598
 599            >>> import sqlglot
 600            >>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
 601            'SELECT x, z FROM y'
 602        """
 603        assert isinstance(self, type_)
 604        return self
 605
 606    def error_messages(self, args: t.Optional[t.Sequence] = None) -> t.List[str]:
 607        """
 608        Checks if this expression is valid (e.g. all mandatory args are set).
 609
 610        Args:
 611            args: a sequence of values that were used to instantiate a Func expression. This is used
 612                to check that the provided arguments don't exceed the function argument limit.
 613
 614        Returns:
 615            A list of error messages for all possible errors that were found.
 616        """
 617        errors: t.List[str] = []
 618
 619        for k in self.args:
 620            if k not in self.arg_types:
 621                errors.append(f"Unexpected keyword: '{k}' for {self.__class__}")
 622        for k, mandatory in self.arg_types.items():
 623            v = self.args.get(k)
 624            if mandatory and (v is None or (isinstance(v, list) and not v)):
 625                errors.append(f"Required keyword: '{k}' missing for {self.__class__}")
 626
 627        if (
 628            args
 629            and isinstance(self, Func)
 630            and len(args) > len(self.arg_types)
 631            and not self.is_var_len_args
 632        ):
 633            errors.append(
 634                f"The number of provided arguments ({len(args)}) is greater than "
 635                f"the maximum number of supported arguments ({len(self.arg_types)})"
 636            )
 637
 638        return errors
 639
 640    def dump(self):
 641        """
 642        Dump this Expression to a JSON-serializable dict.
 643        """
 644        from sqlglot.serde import dump
 645
 646        return dump(self)
 647
 648    @classmethod
 649    def load(cls, obj):
 650        """
 651        Load a dict (as returned by `Expression.dump`) into an Expression instance.
 652        """
 653        from sqlglot.serde import load
 654
 655        return load(obj)
 656
 657
 658IntoType = t.Union[
 659    str,
 660    t.Type[Expression],
 661    t.Collection[t.Union[str, t.Type[Expression]]],
 662]
 663ExpOrStr = t.Union[str, Expression]
 664
 665
 666class Condition(Expression):
 667    def and_(
 668        self,
 669        *expressions: t.Optional[ExpOrStr],
 670        dialect: DialectType = None,
 671        copy: bool = True,
 672        **opts,
 673    ) -> Condition:
 674        """
 675        AND this condition with one or multiple expressions.
 676
 677        Example:
 678            >>> condition("x=1").and_("y=1").sql()
 679            'x = 1 AND y = 1'
 680
 681        Args:
 682            *expressions: the SQL code strings to parse.
 683                If an `Expression` instance is passed, it will be used as-is.
 684            dialect: the dialect used to parse the input expression.
 685            copy: whether or not to copy the involved expressions (only applies to Expressions).
 686            opts: other options to use to parse the input expressions.
 687
 688        Returns:
 689            The new And condition.
 690        """
 691        return and_(self, *expressions, dialect=dialect, copy=copy, **opts)
 692
 693    def or_(
 694        self,
 695        *expressions: t.Optional[ExpOrStr],
 696        dialect: DialectType = None,
 697        copy: bool = True,
 698        **opts,
 699    ) -> Condition:
 700        """
 701        OR this condition with one or multiple expressions.
 702
 703        Example:
 704            >>> condition("x=1").or_("y=1").sql()
 705            'x = 1 OR y = 1'
 706
 707        Args:
 708            *expressions: the SQL code strings to parse.
 709                If an `Expression` instance is passed, it will be used as-is.
 710            dialect: the dialect used to parse the input expression.
 711            copy: whether or not to copy the involved expressions (only applies to Expressions).
 712            opts: other options to use to parse the input expressions.
 713
 714        Returns:
 715            The new Or condition.
 716        """
 717        return or_(self, *expressions, dialect=dialect, copy=copy, **opts)
 718
 719    def not_(self, copy: bool = True):
 720        """
 721        Wrap this condition with NOT.
 722
 723        Example:
 724            >>> condition("x=1").not_().sql()
 725            'NOT x = 1'
 726
 727        Args:
 728            copy: whether or not to copy this object.
 729
 730        Returns:
 731            The new Not instance.
 732        """
 733        return not_(self, copy=copy)
 734
 735    def as_(
 736        self,
 737        alias: str | Identifier,
 738        quoted: t.Optional[bool] = None,
 739        dialect: DialectType = None,
 740        copy: bool = True,
 741        **opts,
 742    ) -> Alias:
 743        return alias_(self, alias, quoted=quoted, dialect=dialect, copy=copy, **opts)
 744
 745    def _binop(self, klass: t.Type[E], other: t.Any, reverse: bool = False) -> E:
 746        this = self.copy()
 747        other = convert(other, copy=True)
 748        if not isinstance(this, klass) and not isinstance(other, klass):
 749            this = _wrap(this, Binary)
 750            other = _wrap(other, Binary)
 751        if reverse:
 752            return klass(this=other, expression=this)
 753        return klass(this=this, expression=other)
 754
 755    def __getitem__(self, other: ExpOrStr | t.Tuple[ExpOrStr]):
 756        return Bracket(
 757            this=self.copy(), expressions=[convert(e, copy=True) for e in ensure_list(other)]
 758        )
 759
 760    def isin(
 761        self, *expressions: t.Any, query: t.Optional[ExpOrStr] = None, copy: bool = True, **opts
 762    ) -> In:
 763        return In(
 764            this=_maybe_copy(self, copy),
 765            expressions=[convert(e, copy=copy) for e in expressions],
 766            query=maybe_parse(query, copy=copy, **opts) if query else None,
 767        )
 768
 769    def between(self, low: t.Any, high: t.Any, copy: bool = True, **opts) -> Between:
 770        return Between(
 771            this=_maybe_copy(self, copy),
 772            low=convert(low, copy=copy, **opts),
 773            high=convert(high, copy=copy, **opts),
 774        )
 775
 776    def is_(self, other: ExpOrStr) -> Is:
 777        return self._binop(Is, other)
 778
 779    def like(self, other: ExpOrStr) -> Like:
 780        return self._binop(Like, other)
 781
 782    def ilike(self, other: ExpOrStr) -> ILike:
 783        return self._binop(ILike, other)
 784
 785    def eq(self, other: t.Any) -> EQ:
 786        return self._binop(EQ, other)
 787
 788    def neq(self, other: t.Any) -> NEQ:
 789        return self._binop(NEQ, other)
 790
 791    def rlike(self, other: ExpOrStr) -> RegexpLike:
 792        return self._binop(RegexpLike, other)
 793
 794    def __lt__(self, other: t.Any) -> LT:
 795        return self._binop(LT, other)
 796
 797    def __le__(self, other: t.Any) -> LTE:
 798        return self._binop(LTE, other)
 799
 800    def __gt__(self, other: t.Any) -> GT:
 801        return self._binop(GT, other)
 802
 803    def __ge__(self, other: t.Any) -> GTE:
 804        return self._binop(GTE, other)
 805
 806    def __add__(self, other: t.Any) -> Add:
 807        return self._binop(Add, other)
 808
 809    def __radd__(self, other: t.Any) -> Add:
 810        return self._binop(Add, other, reverse=True)
 811
 812    def __sub__(self, other: t.Any) -> Sub:
 813        return self._binop(Sub, other)
 814
 815    def __rsub__(self, other: t.Any) -> Sub:
 816        return self._binop(Sub, other, reverse=True)
 817
 818    def __mul__(self, other: t.Any) -> Mul:
 819        return self._binop(Mul, other)
 820
 821    def __rmul__(self, other: t.Any) -> Mul:
 822        return self._binop(Mul, other, reverse=True)
 823
 824    def __truediv__(self, other: t.Any) -> Div:
 825        return self._binop(Div, other)
 826
 827    def __rtruediv__(self, other: t.Any) -> Div:
 828        return self._binop(Div, other, reverse=True)
 829
 830    def __floordiv__(self, other: t.Any) -> IntDiv:
 831        return self._binop(IntDiv, other)
 832
 833    def __rfloordiv__(self, other: t.Any) -> IntDiv:
 834        return self._binop(IntDiv, other, reverse=True)
 835
 836    def __mod__(self, other: t.Any) -> Mod:
 837        return self._binop(Mod, other)
 838
 839    def __rmod__(self, other: t.Any) -> Mod:
 840        return self._binop(Mod, other, reverse=True)
 841
 842    def __pow__(self, other: t.Any) -> Pow:
 843        return self._binop(Pow, other)
 844
 845    def __rpow__(self, other: t.Any) -> Pow:
 846        return self._binop(Pow, other, reverse=True)
 847
 848    def __and__(self, other: t.Any) -> And:
 849        return self._binop(And, other)
 850
 851    def __rand__(self, other: t.Any) -> And:
 852        return self._binop(And, other, reverse=True)
 853
 854    def __or__(self, other: t.Any) -> Or:
 855        return self._binop(Or, other)
 856
 857    def __ror__(self, other: t.Any) -> Or:
 858        return self._binop(Or, other, reverse=True)
 859
 860    def __neg__(self) -> Neg:
 861        return Neg(this=_wrap(self.copy(), Binary))
 862
 863    def __invert__(self) -> Not:
 864        return not_(self.copy())
 865
 866
 867class Predicate(Condition):
 868    """Relationships like x = y, x > 1, x >= y."""
 869
 870
 871class DerivedTable(Expression):
 872    @property
 873    def alias_column_names(self) -> t.List[str]:
 874        table_alias = self.args.get("alias")
 875        if not table_alias:
 876            return []
 877        return [c.name for c in table_alias.args.get("columns") or []]
 878
 879    @property
 880    def selects(self):
 881        return self.this.selects if isinstance(self.this, Subqueryable) else []
 882
 883    @property
 884    def named_selects(self):
 885        return [select.output_name for select in self.selects]
 886
 887
 888class Unionable(Expression):
 889    def union(
 890        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
 891    ) -> Unionable:
 892        """
 893        Builds a UNION expression.
 894
 895        Example:
 896            >>> import sqlglot
 897            >>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
 898            'SELECT * FROM foo UNION SELECT * FROM bla'
 899
 900        Args:
 901            expression: the SQL code string.
 902                If an `Expression` instance is passed, it will be used as-is.
 903            distinct: set the DISTINCT flag if and only if this is true.
 904            dialect: the dialect used to parse the input expression.
 905            opts: other options to use to parse the input expressions.
 906
 907        Returns:
 908            The new Union expression.
 909        """
 910        return union(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
 911
 912    def intersect(
 913        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
 914    ) -> Unionable:
 915        """
 916        Builds an INTERSECT expression.
 917
 918        Example:
 919            >>> import sqlglot
 920            >>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
 921            'SELECT * FROM foo INTERSECT SELECT * FROM bla'
 922
 923        Args:
 924            expression: the SQL code string.
 925                If an `Expression` instance is passed, it will be used as-is.
 926            distinct: set the DISTINCT flag if and only if this is true.
 927            dialect: the dialect used to parse the input expression.
 928            opts: other options to use to parse the input expressions.
 929
 930        Returns:
 931            The new Intersect expression.
 932        """
 933        return intersect(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
 934
 935    def except_(
 936        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
 937    ) -> Unionable:
 938        """
 939        Builds an EXCEPT expression.
 940
 941        Example:
 942            >>> import sqlglot
 943            >>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
 944            'SELECT * FROM foo EXCEPT SELECT * FROM bla'
 945
 946        Args:
 947            expression: the SQL code string.
 948                If an `Expression` instance is passed, it will be used as-is.
 949            distinct: set the DISTINCT flag if and only if this is true.
 950            dialect: the dialect used to parse the input expression.
 951            opts: other options to use to parse the input expressions.
 952
 953        Returns:
 954            The new Except expression.
 955        """
 956        return except_(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
 957
 958
 959class UDTF(DerivedTable, Unionable):
 960    @property
 961    def selects(self):
 962        alias = self.args.get("alias")
 963        return alias.columns if alias else []
 964
 965
 966class Cache(Expression):
 967    arg_types = {
 968        "with": False,
 969        "this": True,
 970        "lazy": False,
 971        "options": False,
 972        "expression": False,
 973    }
 974
 975
 976class Uncache(Expression):
 977    arg_types = {"this": True, "exists": False}
 978
 979
 980class Create(Expression):
 981    arg_types = {
 982        "with": False,
 983        "this": True,
 984        "kind": True,
 985        "expression": False,
 986        "exists": False,
 987        "properties": False,
 988        "replace": False,
 989        "unique": False,
 990        "indexes": False,
 991        "no_schema_binding": False,
 992        "begin": False,
 993        "clone": False,
 994    }
 995
 996
 997# https://docs.snowflake.com/en/sql-reference/sql/create-clone
 998class Clone(Expression):
 999    arg_types = {
1000        "this": True,
1001        "when": False,
1002        "kind": False,
1003        "expression": False,
1004    }
1005
1006
1007class Describe(Expression):
1008    arg_types = {"this": True, "kind": False}
1009
1010
1011class Pragma(Expression):
1012    pass
1013
1014
1015class Set(Expression):
1016    arg_types = {"expressions": False}
1017
1018
1019class SetItem(Expression):
1020    arg_types = {
1021        "this": False,
1022        "expressions": False,
1023        "kind": False,
1024        "collate": False,  # MySQL SET NAMES statement
1025        "global": False,
1026    }
1027
1028
1029class Show(Expression):
1030    arg_types = {
1031        "this": True,
1032        "target": False,
1033        "offset": False,
1034        "limit": False,
1035        "like": False,
1036        "where": False,
1037        "db": False,
1038        "full": False,
1039        "mutex": False,
1040        "query": False,
1041        "channel": False,
1042        "global": False,
1043        "log": False,
1044        "position": False,
1045        "types": False,
1046    }
1047
1048
1049class UserDefinedFunction(Expression):
1050    arg_types = {"this": True, "expressions": False, "wrapped": False}
1051
1052
1053class CharacterSet(Expression):
1054    arg_types = {"this": True, "default": False}
1055
1056
1057class With(Expression):
1058    arg_types = {"expressions": True, "recursive": False}
1059
1060    @property
1061    def recursive(self) -> bool:
1062        return bool(self.args.get("recursive"))
1063
1064
1065class WithinGroup(Expression):
1066    arg_types = {"this": True, "expression": False}
1067
1068
1069class CTE(DerivedTable):
1070    arg_types = {"this": True, "alias": True}
1071
1072
1073class TableAlias(Expression):
1074    arg_types = {"this": False, "columns": False}
1075
1076    @property
1077    def columns(self):
1078        return self.args.get("columns") or []
1079
1080
1081class BitString(Condition):
1082    pass
1083
1084
1085class HexString(Condition):
1086    pass
1087
1088
1089class ByteString(Condition):
1090    pass
1091
1092
1093class RawString(Condition):
1094    pass
1095
1096
1097class Column(Condition):
1098    arg_types = {"this": True, "table": False, "db": False, "catalog": False, "join_mark": False}
1099
1100    @property
1101    def table(self) -> str:
1102        return self.text("table")
1103
1104    @property
1105    def db(self) -> str:
1106        return self.text("db")
1107
1108    @property
1109    def catalog(self) -> str:
1110        return self.text("catalog")
1111
1112    @property
1113    def output_name(self) -> str:
1114        return self.name
1115
1116    @property
1117    def parts(self) -> t.List[Identifier]:
1118        """Return the parts of a column in order catalog, db, table, name."""
1119        return [
1120            t.cast(Identifier, self.args[part])
1121            for part in ("catalog", "db", "table", "this")
1122            if self.args.get(part)
1123        ]
1124
1125    def to_dot(self) -> Dot:
1126        """Converts the column into a dot expression."""
1127        parts = self.parts
1128        parent = self.parent
1129
1130        while parent:
1131            if isinstance(parent, Dot):
1132                parts.append(parent.expression)
1133            parent = parent.parent
1134
1135        return Dot.build(parts)
1136
1137
1138class ColumnPosition(Expression):
1139    arg_types = {"this": False, "position": True}
1140
1141
1142class ColumnDef(Expression):
1143    arg_types = {
1144        "this": True,
1145        "kind": False,
1146        "constraints": False,
1147        "exists": False,
1148        "position": False,
1149    }
1150
1151    @property
1152    def constraints(self) -> t.List[ColumnConstraint]:
1153        return self.args.get("constraints") or []
1154
1155
1156class AlterColumn(Expression):
1157    arg_types = {
1158        "this": True,
1159        "dtype": False,
1160        "collate": False,
1161        "using": False,
1162        "default": False,
1163        "drop": False,
1164    }
1165
1166
1167class RenameTable(Expression):
1168    pass
1169
1170
1171class SetTag(Expression):
1172    arg_types = {"expressions": True, "unset": False}
1173
1174
1175class Comment(Expression):
1176    arg_types = {"this": True, "kind": True, "expression": True, "exists": False}
1177
1178
1179# https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/mergetree#mergetree-table-ttl
1180class MergeTreeTTLAction(Expression):
1181    arg_types = {
1182        "this": True,
1183        "delete": False,
1184        "recompress": False,
1185        "to_disk": False,
1186        "to_volume": False,
1187    }
1188
1189
1190# https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/mergetree#mergetree-table-ttl
1191class MergeTreeTTL(Expression):
1192    arg_types = {
1193        "expressions": True,
1194        "where": False,
1195        "group": False,
1196        "aggregates": False,
1197    }
1198
1199
1200class ColumnConstraint(Expression):
1201    arg_types = {"this": False, "kind": True}
1202
1203    @property
1204    def kind(self) -> ColumnConstraintKind:
1205        return self.args["kind"]
1206
1207
1208class ColumnConstraintKind(Expression):
1209    pass
1210
1211
1212class AutoIncrementColumnConstraint(ColumnConstraintKind):
1213    pass
1214
1215
1216class CaseSpecificColumnConstraint(ColumnConstraintKind):
1217    arg_types = {"not_": True}
1218
1219
1220class CharacterSetColumnConstraint(ColumnConstraintKind):
1221    arg_types = {"this": True}
1222
1223
1224class CheckColumnConstraint(ColumnConstraintKind):
1225    pass
1226
1227
1228class CollateColumnConstraint(ColumnConstraintKind):
1229    pass
1230
1231
1232class CommentColumnConstraint(ColumnConstraintKind):
1233    pass
1234
1235
1236class CompressColumnConstraint(ColumnConstraintKind):
1237    pass
1238
1239
1240class DateFormatColumnConstraint(ColumnConstraintKind):
1241    arg_types = {"this": True}
1242
1243
1244class DefaultColumnConstraint(ColumnConstraintKind):
1245    pass
1246
1247
1248class EncodeColumnConstraint(ColumnConstraintKind):
1249    pass
1250
1251
1252class GeneratedAsIdentityColumnConstraint(ColumnConstraintKind):
1253    # this: True -> ALWAYS, this: False -> BY DEFAULT
1254    arg_types = {
1255        "this": False,
1256        "expression": False,
1257        "on_null": False,
1258        "start": False,
1259        "increment": False,
1260        "minvalue": False,
1261        "maxvalue": False,
1262        "cycle": False,
1263    }
1264
1265
1266class InlineLengthColumnConstraint(ColumnConstraintKind):
1267    pass
1268
1269
1270class NotNullColumnConstraint(ColumnConstraintKind):
1271    arg_types = {"allow_null": False}
1272
1273
1274# https://dev.mysql.com/doc/refman/5.7/en/timestamp-initialization.html
1275class OnUpdateColumnConstraint(ColumnConstraintKind):
1276    pass
1277
1278
1279class PrimaryKeyColumnConstraint(ColumnConstraintKind):
1280    arg_types = {"desc": False}
1281
1282
1283class TitleColumnConstraint(ColumnConstraintKind):
1284    pass
1285
1286
1287class UniqueColumnConstraint(ColumnConstraintKind):
1288    arg_types = {"this": False}
1289
1290
1291class UppercaseColumnConstraint(ColumnConstraintKind):
1292    arg_types: t.Dict[str, t.Any] = {}
1293
1294
1295class PathColumnConstraint(ColumnConstraintKind):
1296    pass
1297
1298
1299class Constraint(Expression):
1300    arg_types = {"this": True, "expressions": True}
1301
1302
1303class Delete(Expression):
1304    arg_types = {"with": False, "this": False, "using": False, "where": False, "returning": False}
1305
1306    def delete(
1307        self,
1308        table: ExpOrStr,
1309        dialect: DialectType = None,
1310        copy: bool = True,
1311        **opts,
1312    ) -> Delete:
1313        """
1314        Create a DELETE expression or replace the table on an existing DELETE expression.
1315
1316        Example:
1317            >>> delete("tbl").sql()
1318            'DELETE FROM tbl'
1319
1320        Args:
1321            table: the table from which to delete.
1322            dialect: the dialect used to parse the input expression.
1323            copy: if `False`, modify this expression instance in-place.
1324            opts: other options to use to parse the input expressions.
1325
1326        Returns:
1327            Delete: the modified expression.
1328        """
1329        return _apply_builder(
1330            expression=table,
1331            instance=self,
1332            arg="this",
1333            dialect=dialect,
1334            into=Table,
1335            copy=copy,
1336            **opts,
1337        )
1338
1339    def where(
1340        self,
1341        *expressions: t.Optional[ExpOrStr],
1342        append: bool = True,
1343        dialect: DialectType = None,
1344        copy: bool = True,
1345        **opts,
1346    ) -> Delete:
1347        """
1348        Append to or set the WHERE expressions.
1349
1350        Example:
1351            >>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
1352            "DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
1353
1354        Args:
1355            *expressions: the SQL code strings to parse.
1356                If an `Expression` instance is passed, it will be used as-is.
1357                Multiple expressions are combined with an AND operator.
1358            append: if `True`, AND the new expressions to any existing expression.
1359                Otherwise, this resets the expression.
1360            dialect: the dialect used to parse the input expressions.
1361            copy: if `False`, modify this expression instance in-place.
1362            opts: other options to use to parse the input expressions.
1363
1364        Returns:
1365            Delete: the modified expression.
1366        """
1367        return _apply_conjunction_builder(
1368            *expressions,
1369            instance=self,
1370            arg="where",
1371            append=append,
1372            into=Where,
1373            dialect=dialect,
1374            copy=copy,
1375            **opts,
1376        )
1377
1378    def returning(
1379        self,
1380        expression: ExpOrStr,
1381        dialect: DialectType = None,
1382        copy: bool = True,
1383        **opts,
1384    ) -> Delete:
1385        """
1386        Set the RETURNING expression. Not supported by all dialects.
1387
1388        Example:
1389            >>> delete("tbl").returning("*", dialect="postgres").sql()
1390            'DELETE FROM tbl RETURNING *'
1391
1392        Args:
1393            expression: the SQL code strings to parse.
1394                If an `Expression` instance is passed, it will be used as-is.
1395            dialect: the dialect used to parse the input expressions.
1396            copy: if `False`, modify this expression instance in-place.
1397            opts: other options to use to parse the input expressions.
1398
1399        Returns:
1400            Delete: the modified expression.
1401        """
1402        return _apply_builder(
1403            expression=expression,
1404            instance=self,
1405            arg="returning",
1406            prefix="RETURNING",
1407            dialect=dialect,
1408            copy=copy,
1409            into=Returning,
1410            **opts,
1411        )
1412
1413
1414class Drop(Expression):
1415    arg_types = {
1416        "this": False,
1417        "kind": False,
1418        "exists": False,
1419        "temporary": False,
1420        "materialized": False,
1421        "cascade": False,
1422        "constraints": False,
1423        "purge": False,
1424    }
1425
1426
1427class Filter(Expression):
1428    arg_types = {"this": True, "expression": True}
1429
1430
1431class Check(Expression):
1432    pass
1433
1434
1435class Directory(Expression):
1436    # https://spark.apache.org/docs/3.0.0-preview/sql-ref-syntax-dml-insert-overwrite-directory-hive.html
1437    arg_types = {"this": True, "local": False, "row_format": False}
1438
1439
1440class ForeignKey(Expression):
1441    arg_types = {
1442        "expressions": True,
1443        "reference": False,
1444        "delete": False,
1445        "update": False,
1446    }
1447
1448
1449class PrimaryKey(Expression):
1450    arg_types = {"expressions": True, "options": False}
1451
1452
1453# https://www.postgresql.org/docs/9.1/sql-selectinto.html
1454# https://docs.aws.amazon.com/redshift/latest/dg/r_SELECT_INTO.html#r_SELECT_INTO-examples
1455class Into(Expression):
1456    arg_types = {"this": True, "temporary": False, "unlogged": False}
1457
1458
1459class From(Expression):
1460    @property
1461    def name(self) -> str:
1462        return self.this.name
1463
1464    @property
1465    def alias_or_name(self) -> str:
1466        return self.this.alias_or_name
1467
1468
1469class Having(Expression):
1470    pass
1471
1472
1473class Hint(Expression):
1474    arg_types = {"expressions": True}
1475
1476
1477class JoinHint(Expression):
1478    arg_types = {"this": True, "expressions": True}
1479
1480
1481class Identifier(Expression):
1482    arg_types = {"this": True, "quoted": False}
1483
1484    @property
1485    def quoted(self) -> bool:
1486        return bool(self.args.get("quoted"))
1487
1488    @property
1489    def hashable_args(self) -> t.Any:
1490        if self.quoted and any(char.isupper() for char in self.this):
1491            return (self.this, self.quoted)
1492        return self.this.lower()
1493
1494    @property
1495    def output_name(self) -> str:
1496        return self.name
1497
1498
1499class Index(Expression):
1500    arg_types = {
1501        "this": False,
1502        "table": False,
1503        "using": False,
1504        "where": False,
1505        "columns": False,
1506        "unique": False,
1507        "primary": False,
1508        "amp": False,  # teradata
1509        "partition_by": False,  # teradata
1510    }
1511
1512
1513class Insert(Expression):
1514    arg_types = {
1515        "with": False,
1516        "this": True,
1517        "expression": False,
1518        "conflict": False,
1519        "returning": False,
1520        "overwrite": False,
1521        "exists": False,
1522        "partition": False,
1523        "alternative": False,
1524    }
1525
1526    def with_(
1527        self,
1528        alias: ExpOrStr,
1529        as_: ExpOrStr,
1530        recursive: t.Optional[bool] = None,
1531        append: bool = True,
1532        dialect: DialectType = None,
1533        copy: bool = True,
1534        **opts,
1535    ) -> Insert:
1536        """
1537        Append to or set the common table expressions.
1538
1539        Example:
1540            >>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
1541            'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
1542
1543        Args:
1544            alias: the SQL code string to parse as the table name.
1545                If an `Expression` instance is passed, this is used as-is.
1546            as_: the SQL code string to parse as the table expression.
1547                If an `Expression` instance is passed, it will be used as-is.
1548            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
1549            append: if `True`, add to any existing expressions.
1550                Otherwise, this resets the expressions.
1551            dialect: the dialect used to parse the input expression.
1552            copy: if `False`, modify this expression instance in-place.
1553            opts: other options to use to parse the input expressions.
1554
1555        Returns:
1556            The modified expression.
1557        """
1558        return _apply_cte_builder(
1559            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
1560        )
1561
1562
1563class OnConflict(Expression):
1564    arg_types = {
1565        "duplicate": False,
1566        "expressions": False,
1567        "nothing": False,
1568        "key": False,
1569        "constraint": False,
1570    }
1571
1572
1573class Returning(Expression):
1574    arg_types = {"expressions": True}
1575
1576
1577# https://dev.mysql.com/doc/refman/8.0/en/charset-introducer.html
1578class Introducer(Expression):
1579    arg_types = {"this": True, "expression": True}
1580
1581
1582# national char, like n'utf8'
1583class National(Expression):
1584    pass
1585
1586
1587class LoadData(Expression):
1588    arg_types = {
1589        "this": True,
1590        "local": False,
1591        "overwrite": False,
1592        "inpath": True,
1593        "partition": False,
1594        "input_format": False,
1595        "serde": False,
1596    }
1597
1598
1599class Partition(Expression):
1600    arg_types = {"expressions": True}
1601
1602
1603class Fetch(Expression):
1604    arg_types = {
1605        "direction": False,
1606        "count": False,
1607        "percent": False,
1608        "with_ties": False,
1609    }
1610
1611
1612class Group(Expression):
1613    arg_types = {
1614        "expressions": False,
1615        "grouping_sets": False,
1616        "cube": False,
1617        "rollup": False,
1618        "totals": False,
1619    }
1620
1621
1622class Lambda(Expression):
1623    arg_types = {"this": True, "expressions": True}
1624
1625
1626class Limit(Expression):
1627    arg_types = {"this": False, "expression": True, "offset": False}
1628
1629
1630class Literal(Condition):
1631    arg_types = {"this": True, "is_string": True}
1632
1633    @property
1634    def hashable_args(self) -> t.Any:
1635        return (self.this, self.args.get("is_string"))
1636
1637    @classmethod
1638    def number(cls, number) -> Literal:
1639        return cls(this=str(number), is_string=False)
1640
1641    @classmethod
1642    def string(cls, string) -> Literal:
1643        return cls(this=str(string), is_string=True)
1644
1645    @property
1646    def output_name(self) -> str:
1647        return self.name
1648
1649
1650class Join(Expression):
1651    arg_types = {
1652        "this": True,
1653        "on": False,
1654        "side": False,
1655        "kind": False,
1656        "using": False,
1657        "method": False,
1658        "global": False,
1659        "hint": False,
1660    }
1661
1662    @property
1663    def method(self) -> str:
1664        return self.text("method").upper()
1665
1666    @property
1667    def kind(self) -> str:
1668        return self.text("kind").upper()
1669
1670    @property
1671    def side(self) -> str:
1672        return self.text("side").upper()
1673
1674    @property
1675    def hint(self) -> str:
1676        return self.text("hint").upper()
1677
1678    @property
1679    def alias_or_name(self) -> str:
1680        return self.this.alias_or_name
1681
1682    def on(
1683        self,
1684        *expressions: t.Optional[ExpOrStr],
1685        append: bool = True,
1686        dialect: DialectType = None,
1687        copy: bool = True,
1688        **opts,
1689    ) -> Join:
1690        """
1691        Append to or set the ON expressions.
1692
1693        Example:
1694            >>> import sqlglot
1695            >>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
1696            'JOIN x ON y = 1'
1697
1698        Args:
1699            *expressions: the SQL code strings to parse.
1700                If an `Expression` instance is passed, it will be used as-is.
1701                Multiple expressions are combined with an AND operator.
1702            append: if `True`, AND the new expressions to any existing expression.
1703                Otherwise, this resets the expression.
1704            dialect: the dialect used to parse the input expressions.
1705            copy: if `False`, modify this expression instance in-place.
1706            opts: other options to use to parse the input expressions.
1707
1708        Returns:
1709            The modified Join expression.
1710        """
1711        join = _apply_conjunction_builder(
1712            *expressions,
1713            instance=self,
1714            arg="on",
1715            append=append,
1716            dialect=dialect,
1717            copy=copy,
1718            **opts,
1719        )
1720
1721        if join.kind == "CROSS":
1722            join.set("kind", None)
1723
1724        return join
1725
1726    def using(
1727        self,
1728        *expressions: t.Optional[ExpOrStr],
1729        append: bool = True,
1730        dialect: DialectType = None,
1731        copy: bool = True,
1732        **opts,
1733    ) -> Join:
1734        """
1735        Append to or set the USING expressions.
1736
1737        Example:
1738            >>> import sqlglot
1739            >>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
1740            'JOIN x USING (foo, bla)'
1741
1742        Args:
1743            *expressions: the SQL code strings to parse.
1744                If an `Expression` instance is passed, it will be used as-is.
1745            append: if `True`, concatenate the new expressions to the existing "using" list.
1746                Otherwise, this resets the expression.
1747            dialect: the dialect used to parse the input expressions.
1748            copy: if `False`, modify this expression instance in-place.
1749            opts: other options to use to parse the input expressions.
1750
1751        Returns:
1752            The modified Join expression.
1753        """
1754        join = _apply_list_builder(
1755            *expressions,
1756            instance=self,
1757            arg="using",
1758            append=append,
1759            dialect=dialect,
1760            copy=copy,
1761            **opts,
1762        )
1763
1764        if join.kind == "CROSS":
1765            join.set("kind", None)
1766
1767        return join
1768
1769
1770class Lateral(UDTF):
1771    arg_types = {"this": True, "view": False, "outer": False, "alias": False}
1772
1773
1774class MatchRecognize(Expression):
1775    arg_types = {
1776        "partition_by": False,
1777        "order": False,
1778        "measures": False,
1779        "rows": False,
1780        "after": False,
1781        "pattern": False,
1782        "define": False,
1783        "alias": False,
1784    }
1785
1786
1787# Clickhouse FROM FINAL modifier
1788# https://clickhouse.com/docs/en/sql-reference/statements/select/from/#final-modifier
1789class Final(Expression):
1790    pass
1791
1792
1793class Offset(Expression):
1794    arg_types = {"this": False, "expression": True}
1795
1796
1797class Order(Expression):
1798    arg_types = {"this": False, "expressions": True}
1799
1800
1801# hive specific sorts
1802# https://cwiki.apache.org/confluence/display/Hive/LanguageManual+SortBy
1803class Cluster(Order):
1804    pass
1805
1806
1807class Distribute(Order):
1808    pass
1809
1810
1811class Sort(Order):
1812    pass
1813
1814
1815class Ordered(Expression):
1816    arg_types = {"this": True, "desc": True, "nulls_first": True}
1817
1818
1819class Property(Expression):
1820    arg_types = {"this": True, "value": True}
1821
1822
1823class AlgorithmProperty(Property):
1824    arg_types = {"this": True}
1825
1826
1827class AutoIncrementProperty(Property):
1828    arg_types = {"this": True}
1829
1830
1831class BlockCompressionProperty(Property):
1832    arg_types = {"autotemp": False, "always": False, "default": True, "manual": True, "never": True}
1833
1834
1835class CharacterSetProperty(Property):
1836    arg_types = {"this": True, "default": True}
1837
1838
1839class ChecksumProperty(Property):
1840    arg_types = {"on": False, "default": False}
1841
1842
1843class CollateProperty(Property):
1844    arg_types = {"this": True}
1845
1846
1847class DataBlocksizeProperty(Property):
1848    arg_types = {
1849        "size": False,
1850        "units": False,
1851        "minimum": False,
1852        "maximum": False,
1853        "default": False,
1854    }
1855
1856
1857class DefinerProperty(Property):
1858    arg_types = {"this": True}
1859
1860
1861class DistKeyProperty(Property):
1862    arg_types = {"this": True}
1863
1864
1865class DistStyleProperty(Property):
1866    arg_types = {"this": True}
1867
1868
1869class EngineProperty(Property):
1870    arg_types = {"this": True}
1871
1872
1873class ToTableProperty(Property):
1874    arg_types = {"this": True}
1875
1876
1877class ExecuteAsProperty(Property):
1878    arg_types = {"this": True}
1879
1880
1881class ExternalProperty(Property):
1882    arg_types = {"this": False}
1883
1884
1885class FallbackProperty(Property):
1886    arg_types = {"no": True, "protection": False}
1887
1888
1889class FileFormatProperty(Property):
1890    arg_types = {"this": True}
1891
1892
1893class FreespaceProperty(Property):
1894    arg_types = {"this": True, "percent": False}
1895
1896
1897class InputOutputFormat(Expression):
1898    arg_types = {"input_format": False, "output_format": False}
1899
1900
1901class IsolatedLoadingProperty(Property):
1902    arg_types = {
1903        "no": True,
1904        "concurrent": True,
1905        "for_all": True,
1906        "for_insert": True,
1907        "for_none": True,
1908    }
1909
1910
1911class JournalProperty(Property):
1912    arg_types = {
1913        "no": False,
1914        "dual": False,
1915        "before": False,
1916        "local": False,
1917        "after": False,
1918    }
1919
1920
1921class LanguageProperty(Property):
1922    arg_types = {"this": True}
1923
1924
1925class DictProperty(Property):
1926    arg_types = {"this": True, "kind": True, "settings": False}
1927
1928
1929class DictSubProperty(Property):
1930    pass
1931
1932
1933class DictRange(Property):
1934    arg_types = {"this": True, "min": True, "max": True}
1935
1936
1937# Clickhouse CREATE ... ON CLUSTER modifier
1938# https://clickhouse.com/docs/en/sql-reference/distributed-ddl
1939class OnCluster(Property):
1940    arg_types = {"this": True}
1941
1942
1943class LikeProperty(Property):
1944    arg_types = {"this": True, "expressions": False}
1945
1946
1947class LocationProperty(Property):
1948    arg_types = {"this": True}
1949
1950
1951class LockingProperty(Property):
1952    arg_types = {
1953        "this": False,
1954        "kind": True,
1955        "for_or_in": True,
1956        "lock_type": True,
1957        "override": False,
1958    }
1959
1960
1961class LogProperty(Property):
1962    arg_types = {"no": True}
1963
1964
1965class MaterializedProperty(Property):
1966    arg_types = {"this": False}
1967
1968
1969class MergeBlockRatioProperty(Property):
1970    arg_types = {"this": False, "no": False, "default": False, "percent": False}
1971
1972
1973class NoPrimaryIndexProperty(Property):
1974    arg_types = {}
1975
1976
1977class OnCommitProperty(Property):
1978    arg_type = {"delete": False}
1979
1980
1981class PartitionedByProperty(Property):
1982    arg_types = {"this": True}
1983
1984
1985class ReturnsProperty(Property):
1986    arg_types = {"this": True, "is_table": False, "table": False}
1987
1988
1989class RowFormatProperty(Property):
1990    arg_types = {"this": True}
1991
1992
1993class RowFormatDelimitedProperty(Property):
1994    # https://cwiki.apache.org/confluence/display/hive/languagemanual+dml
1995    arg_types = {
1996        "fields": False,
1997        "escaped": False,
1998        "collection_items": False,
1999        "map_keys": False,
2000        "lines": False,
2001        "null": False,
2002        "serde": False,
2003    }
2004
2005
2006class RowFormatSerdeProperty(Property):
2007    arg_types = {"this": True}
2008
2009
2010class SchemaCommentProperty(Property):
2011    arg_types = {"this": True}
2012
2013
2014class SerdeProperties(Property):
2015    arg_types = {"expressions": True}
2016
2017
2018class SetProperty(Property):
2019    arg_types = {"multi": True}
2020
2021
2022class SettingsProperty(Property):
2023    arg_types = {"expressions": True}
2024
2025
2026class SortKeyProperty(Property):
2027    arg_types = {"this": True, "compound": False}
2028
2029
2030class SqlSecurityProperty(Property):
2031    arg_types = {"definer": True}
2032
2033
2034class StabilityProperty(Property):
2035    arg_types = {"this": True}
2036
2037
2038class TemporaryProperty(Property):
2039    arg_types = {}
2040
2041
2042class TransientProperty(Property):
2043    arg_types = {"this": False}
2044
2045
2046class VolatileProperty(Property):
2047    arg_types = {"this": False}
2048
2049
2050class WithDataProperty(Property):
2051    arg_types = {"no": True, "statistics": False}
2052
2053
2054class WithJournalTableProperty(Property):
2055    arg_types = {"this": True}
2056
2057
2058class Properties(Expression):
2059    arg_types = {"expressions": True}
2060
2061    NAME_TO_PROPERTY = {
2062        "ALGORITHM": AlgorithmProperty,
2063        "AUTO_INCREMENT": AutoIncrementProperty,
2064        "CHARACTER SET": CharacterSetProperty,
2065        "COLLATE": CollateProperty,
2066        "COMMENT": SchemaCommentProperty,
2067        "DEFINER": DefinerProperty,
2068        "DISTKEY": DistKeyProperty,
2069        "DISTSTYLE": DistStyleProperty,
2070        "ENGINE": EngineProperty,
2071        "EXECUTE AS": ExecuteAsProperty,
2072        "FORMAT": FileFormatProperty,
2073        "LANGUAGE": LanguageProperty,
2074        "LOCATION": LocationProperty,
2075        "PARTITIONED_BY": PartitionedByProperty,
2076        "RETURNS": ReturnsProperty,
2077        "ROW_FORMAT": RowFormatProperty,
2078        "SORTKEY": SortKeyProperty,
2079    }
2080
2081    PROPERTY_TO_NAME = {v: k for k, v in NAME_TO_PROPERTY.items()}
2082
2083    # CREATE property locations
2084    # Form: schema specified
2085    #   create [POST_CREATE]
2086    #     table a [POST_NAME]
2087    #     (b int) [POST_SCHEMA]
2088    #     with ([POST_WITH])
2089    #     index (b) [POST_INDEX]
2090    #
2091    # Form: alias selection
2092    #   create [POST_CREATE]
2093    #     table a [POST_NAME]
2094    #     as [POST_ALIAS] (select * from b) [POST_EXPRESSION]
2095    #     index (c) [POST_INDEX]
2096    class Location(AutoName):
2097        POST_CREATE = auto()
2098        POST_NAME = auto()
2099        POST_SCHEMA = auto()
2100        POST_WITH = auto()
2101        POST_ALIAS = auto()
2102        POST_EXPRESSION = auto()
2103        POST_INDEX = auto()
2104        UNSUPPORTED = auto()
2105
2106    @classmethod
2107    def from_dict(cls, properties_dict: t.Dict) -> Properties:
2108        expressions = []
2109        for key, value in properties_dict.items():
2110            property_cls = cls.NAME_TO_PROPERTY.get(key.upper())
2111            if property_cls:
2112                expressions.append(property_cls(this=convert(value)))
2113            else:
2114                expressions.append(Property(this=Literal.string(key), value=convert(value)))
2115
2116        return cls(expressions=expressions)
2117
2118
2119class Qualify(Expression):
2120    pass
2121
2122
2123# https://www.ibm.com/docs/en/ias?topic=procedures-return-statement-in-sql
2124class Return(Expression):
2125    pass
2126
2127
2128class Reference(Expression):
2129    arg_types = {"this": True, "expressions": False, "options": False}
2130
2131
2132class Tuple(Expression):
2133    arg_types = {"expressions": False}
2134
2135    def isin(
2136        self, *expressions: t.Any, query: t.Optional[ExpOrStr] = None, copy: bool = True, **opts
2137    ) -> In:
2138        return In(
2139            this=_maybe_copy(self, copy),
2140            expressions=[convert(e, copy=copy) for e in expressions],
2141            query=maybe_parse(query, copy=copy, **opts) if query else None,
2142        )
2143
2144
2145class Subqueryable(Unionable):
2146    def subquery(self, alias: t.Optional[ExpOrStr] = None, copy: bool = True) -> Subquery:
2147        """
2148        Convert this expression to an aliased expression that can be used as a Subquery.
2149
2150        Example:
2151            >>> subquery = Select().select("x").from_("tbl").subquery()
2152            >>> Select().select("x").from_(subquery).sql()
2153            'SELECT x FROM (SELECT x FROM tbl)'
2154
2155        Args:
2156            alias (str | Identifier): an optional alias for the subquery
2157            copy (bool): if `False`, modify this expression instance in-place.
2158
2159        Returns:
2160            Alias: the subquery
2161        """
2162        instance = _maybe_copy(self, copy)
2163        if not isinstance(alias, Expression):
2164            alias = TableAlias(this=to_identifier(alias)) if alias else None
2165
2166        return Subquery(this=instance, alias=alias)
2167
2168    def limit(
2169        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2170    ) -> Select:
2171        raise NotImplementedError
2172
2173    @property
2174    def ctes(self):
2175        with_ = self.args.get("with")
2176        if not with_:
2177            return []
2178        return with_.expressions
2179
2180    @property
2181    def selects(self):
2182        raise NotImplementedError("Subqueryable objects must implement `selects`")
2183
2184    @property
2185    def named_selects(self):
2186        raise NotImplementedError("Subqueryable objects must implement `named_selects`")
2187
2188    def with_(
2189        self,
2190        alias: ExpOrStr,
2191        as_: ExpOrStr,
2192        recursive: t.Optional[bool] = None,
2193        append: bool = True,
2194        dialect: DialectType = None,
2195        copy: bool = True,
2196        **opts,
2197    ) -> Subqueryable:
2198        """
2199        Append to or set the common table expressions.
2200
2201        Example:
2202            >>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
2203            'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
2204
2205        Args:
2206            alias: the SQL code string to parse as the table name.
2207                If an `Expression` instance is passed, this is used as-is.
2208            as_: the SQL code string to parse as the table expression.
2209                If an `Expression` instance is passed, it will be used as-is.
2210            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
2211            append: if `True`, add to any existing expressions.
2212                Otherwise, this resets the expressions.
2213            dialect: the dialect used to parse the input expression.
2214            copy: if `False`, modify this expression instance in-place.
2215            opts: other options to use to parse the input expressions.
2216
2217        Returns:
2218            The modified expression.
2219        """
2220        return _apply_cte_builder(
2221            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
2222        )
2223
2224
2225QUERY_MODIFIERS = {
2226    "match": False,
2227    "laterals": False,
2228    "joins": False,
2229    "pivots": False,
2230    "where": False,
2231    "group": False,
2232    "having": False,
2233    "qualify": False,
2234    "windows": False,
2235    "distribute": False,
2236    "sort": False,
2237    "cluster": False,
2238    "order": False,
2239    "limit": False,
2240    "offset": False,
2241    "locks": False,
2242    "sample": False,
2243    "settings": False,
2244    "format": False,
2245}
2246
2247
2248class Table(Expression):
2249    arg_types = {
2250        "this": True,
2251        "alias": False,
2252        "db": False,
2253        "catalog": False,
2254        "laterals": False,
2255        "joins": False,
2256        "pivots": False,
2257        "hints": False,
2258        "system_time": False,
2259    }
2260
2261    @property
2262    def db(self) -> str:
2263        return self.text("db")
2264
2265    @property
2266    def catalog(self) -> str:
2267        return self.text("catalog")
2268
2269    @property
2270    def parts(self) -> t.List[Identifier]:
2271        """Return the parts of a table in order catalog, db, table."""
2272        return [
2273            t.cast(Identifier, self.args[part])
2274            for part in ("catalog", "db", "this")
2275            if self.args.get(part)
2276        ]
2277
2278
2279# See the TSQL "Querying data in a system-versioned temporal table" page
2280class SystemTime(Expression):
2281    arg_types = {
2282        "this": False,
2283        "expression": False,
2284        "kind": True,
2285    }
2286
2287
2288class Union(Subqueryable):
2289    arg_types = {
2290        "with": False,
2291        "this": True,
2292        "expression": True,
2293        "distinct": False,
2294        **QUERY_MODIFIERS,
2295    }
2296
2297    def limit(
2298        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2299    ) -> Select:
2300        """
2301        Set the LIMIT expression.
2302
2303        Example:
2304            >>> select("1").union(select("1")).limit(1).sql()
2305            'SELECT * FROM (SELECT 1 UNION SELECT 1) AS _l_0 LIMIT 1'
2306
2307        Args:
2308            expression: the SQL code string to parse.
2309                This can also be an integer.
2310                If a `Limit` instance is passed, this is used as-is.
2311                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2312            dialect: the dialect used to parse the input expression.
2313            copy: if `False`, modify this expression instance in-place.
2314            opts: other options to use to parse the input expressions.
2315
2316        Returns:
2317            The limited subqueryable.
2318        """
2319        return (
2320            select("*")
2321            .from_(self.subquery(alias="_l_0", copy=copy))
2322            .limit(expression, dialect=dialect, copy=False, **opts)
2323        )
2324
2325    def select(
2326        self,
2327        *expressions: t.Optional[ExpOrStr],
2328        append: bool = True,
2329        dialect: DialectType = None,
2330        copy: bool = True,
2331        **opts,
2332    ) -> Union:
2333        """Append to or set the SELECT of the union recursively.
2334
2335        Example:
2336            >>> from sqlglot import parse_one
2337            >>> parse_one("select a from x union select a from y union select a from z").select("b").sql()
2338            'SELECT a, b FROM x UNION SELECT a, b FROM y UNION SELECT a, b FROM z'
2339
2340        Args:
2341            *expressions: the SQL code strings to parse.
2342                If an `Expression` instance is passed, it will be used as-is.
2343            append: if `True`, add to any existing expressions.
2344                Otherwise, this resets the expressions.
2345            dialect: the dialect used to parse the input expressions.
2346            copy: if `False`, modify this expression instance in-place.
2347            opts: other options to use to parse the input expressions.
2348
2349        Returns:
2350            Union: the modified expression.
2351        """
2352        this = self.copy() if copy else self
2353        this.this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
2354        this.expression.unnest().select(
2355            *expressions, append=append, dialect=dialect, copy=False, **opts
2356        )
2357        return this
2358
2359    @property
2360    def named_selects(self):
2361        return self.this.unnest().named_selects
2362
2363    @property
2364    def is_star(self) -> bool:
2365        return self.this.is_star or self.expression.is_star
2366
2367    @property
2368    def selects(self):
2369        return self.this.unnest().selects
2370
2371    @property
2372    def left(self):
2373        return self.this
2374
2375    @property
2376    def right(self):
2377        return self.expression
2378
2379
2380class Except(Union):
2381    pass
2382
2383
2384class Intersect(Union):
2385    pass
2386
2387
2388class Unnest(UDTF):
2389    arg_types = {
2390        "expressions": True,
2391        "ordinality": False,
2392        "alias": False,
2393        "offset": False,
2394    }
2395
2396
2397class Update(Expression):
2398    arg_types = {
2399        "with": False,
2400        "this": False,
2401        "expressions": True,
2402        "from": False,
2403        "where": False,
2404        "returning": False,
2405    }
2406
2407
2408class Values(UDTF):
2409    arg_types = {
2410        "expressions": True,
2411        "ordinality": False,
2412        "alias": False,
2413    }
2414
2415
2416class Var(Expression):
2417    pass
2418
2419
2420class Schema(Expression):
2421    arg_types = {"this": False, "expressions": False}
2422
2423
2424# https://dev.mysql.com/doc/refman/8.0/en/select.html
2425# https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/SELECT.html
2426class Lock(Expression):
2427    arg_types = {"update": True, "expressions": False, "wait": False}
2428
2429
2430class Select(Subqueryable):
2431    arg_types = {
2432        "with": False,
2433        "kind": False,
2434        "expressions": False,
2435        "hint": False,
2436        "distinct": False,
2437        "struct": False,  # https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax#return_query_results_as_a_value_table
2438        "value": False,
2439        "into": False,
2440        "from": False,
2441        **QUERY_MODIFIERS,
2442    }
2443
2444    def from_(
2445        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
2446    ) -> Select:
2447        """
2448        Set the FROM expression.
2449
2450        Example:
2451            >>> Select().from_("tbl").select("x").sql()
2452            'SELECT x FROM tbl'
2453
2454        Args:
2455            expression : the SQL code strings to parse.
2456                If a `From` instance is passed, this is used as-is.
2457                If another `Expression` instance is passed, it will be wrapped in a `From`.
2458            dialect: the dialect used to parse the input expression.
2459            copy: if `False`, modify this expression instance in-place.
2460            opts: other options to use to parse the input expressions.
2461
2462        Returns:
2463            The modified Select expression.
2464        """
2465        return _apply_builder(
2466            expression=expression,
2467            instance=self,
2468            arg="from",
2469            into=From,
2470            prefix="FROM",
2471            dialect=dialect,
2472            copy=copy,
2473            **opts,
2474        )
2475
2476    def group_by(
2477        self,
2478        *expressions: t.Optional[ExpOrStr],
2479        append: bool = True,
2480        dialect: DialectType = None,
2481        copy: bool = True,
2482        **opts,
2483    ) -> Select:
2484        """
2485        Set the GROUP BY expression.
2486
2487        Example:
2488            >>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
2489            'SELECT x, COUNT(1) FROM tbl GROUP BY x'
2490
2491        Args:
2492            *expressions: the SQL code strings to parse.
2493                If a `Group` instance is passed, this is used as-is.
2494                If another `Expression` instance is passed, it will be wrapped in a `Group`.
2495                If nothing is passed in then a group by is not applied to the expression
2496            append: if `True`, add to any existing expressions.
2497                Otherwise, this flattens all the `Group` expression into a single expression.
2498            dialect: the dialect used to parse the input expression.
2499            copy: if `False`, modify this expression instance in-place.
2500            opts: other options to use to parse the input expressions.
2501
2502        Returns:
2503            The modified Select expression.
2504        """
2505        if not expressions:
2506            return self if not copy else self.copy()
2507
2508        return _apply_child_list_builder(
2509            *expressions,
2510            instance=self,
2511            arg="group",
2512            append=append,
2513            copy=copy,
2514            prefix="GROUP BY",
2515            into=Group,
2516            dialect=dialect,
2517            **opts,
2518        )
2519
2520    def order_by(
2521        self,
2522        *expressions: t.Optional[ExpOrStr],
2523        append: bool = True,
2524        dialect: DialectType = None,
2525        copy: bool = True,
2526        **opts,
2527    ) -> Select:
2528        """
2529        Set the ORDER BY expression.
2530
2531        Example:
2532            >>> Select().from_("tbl").select("x").order_by("x DESC").sql()
2533            'SELECT x FROM tbl ORDER BY x DESC'
2534
2535        Args:
2536            *expressions: the SQL code strings to parse.
2537                If a `Group` instance is passed, this is used as-is.
2538                If another `Expression` instance is passed, it will be wrapped in a `Order`.
2539            append: if `True`, add to any existing expressions.
2540                Otherwise, this flattens all the `Order` expression into a single expression.
2541            dialect: the dialect used to parse the input expression.
2542            copy: if `False`, modify this expression instance in-place.
2543            opts: other options to use to parse the input expressions.
2544
2545        Returns:
2546            The modified Select expression.
2547        """
2548        return _apply_child_list_builder(
2549            *expressions,
2550            instance=self,
2551            arg="order",
2552            append=append,
2553            copy=copy,
2554            prefix="ORDER BY",
2555            into=Order,
2556            dialect=dialect,
2557            **opts,
2558        )
2559
2560    def sort_by(
2561        self,
2562        *expressions: t.Optional[ExpOrStr],
2563        append: bool = True,
2564        dialect: DialectType = None,
2565        copy: bool = True,
2566        **opts,
2567    ) -> Select:
2568        """
2569        Set the SORT BY expression.
2570
2571        Example:
2572            >>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
2573            'SELECT x FROM tbl SORT BY x DESC'
2574
2575        Args:
2576            *expressions: the SQL code strings to parse.
2577                If a `Group` instance is passed, this is used as-is.
2578                If another `Expression` instance is passed, it will be wrapped in a `SORT`.
2579            append: if `True`, add to any existing expressions.
2580                Otherwise, this flattens all the `Order` expression into a single expression.
2581            dialect: the dialect used to parse the input expression.
2582            copy: if `False`, modify this expression instance in-place.
2583            opts: other options to use to parse the input expressions.
2584
2585        Returns:
2586            The modified Select expression.
2587        """
2588        return _apply_child_list_builder(
2589            *expressions,
2590            instance=self,
2591            arg="sort",
2592            append=append,
2593            copy=copy,
2594            prefix="SORT BY",
2595            into=Sort,
2596            dialect=dialect,
2597            **opts,
2598        )
2599
2600    def cluster_by(
2601        self,
2602        *expressions: t.Optional[ExpOrStr],
2603        append: bool = True,
2604        dialect: DialectType = None,
2605        copy: bool = True,
2606        **opts,
2607    ) -> Select:
2608        """
2609        Set the CLUSTER BY expression.
2610
2611        Example:
2612            >>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
2613            'SELECT x FROM tbl CLUSTER BY x DESC'
2614
2615        Args:
2616            *expressions: the SQL code strings to parse.
2617                If a `Group` instance is passed, this is used as-is.
2618                If another `Expression` instance is passed, it will be wrapped in a `Cluster`.
2619            append: if `True`, add to any existing expressions.
2620                Otherwise, this flattens all the `Order` expression into a single expression.
2621            dialect: the dialect used to parse the input expression.
2622            copy: if `False`, modify this expression instance in-place.
2623            opts: other options to use to parse the input expressions.
2624
2625        Returns:
2626            The modified Select expression.
2627        """
2628        return _apply_child_list_builder(
2629            *expressions,
2630            instance=self,
2631            arg="cluster",
2632            append=append,
2633            copy=copy,
2634            prefix="CLUSTER BY",
2635            into=Cluster,
2636            dialect=dialect,
2637            **opts,
2638        )
2639
2640    def limit(
2641        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2642    ) -> Select:
2643        """
2644        Set the LIMIT expression.
2645
2646        Example:
2647            >>> Select().from_("tbl").select("x").limit(10).sql()
2648            'SELECT x FROM tbl LIMIT 10'
2649
2650        Args:
2651            expression: the SQL code string to parse.
2652                This can also be an integer.
2653                If a `Limit` instance is passed, this is used as-is.
2654                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2655            dialect: the dialect used to parse the input expression.
2656            copy: if `False`, modify this expression instance in-place.
2657            opts: other options to use to parse the input expressions.
2658
2659        Returns:
2660            Select: the modified expression.
2661        """
2662        return _apply_builder(
2663            expression=expression,
2664            instance=self,
2665            arg="limit",
2666            into=Limit,
2667            prefix="LIMIT",
2668            dialect=dialect,
2669            copy=copy,
2670            **opts,
2671        )
2672
2673    def offset(
2674        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2675    ) -> Select:
2676        """
2677        Set the OFFSET expression.
2678
2679        Example:
2680            >>> Select().from_("tbl").select("x").offset(10).sql()
2681            'SELECT x FROM tbl OFFSET 10'
2682
2683        Args:
2684            expression: the SQL code string to parse.
2685                This can also be an integer.
2686                If a `Offset` instance is passed, this is used as-is.
2687                If another `Expression` instance is passed, it will be wrapped in a `Offset`.
2688            dialect: the dialect used to parse the input expression.
2689            copy: if `False`, modify this expression instance in-place.
2690            opts: other options to use to parse the input expressions.
2691
2692        Returns:
2693            The modified Select expression.
2694        """
2695        return _apply_builder(
2696            expression=expression,
2697            instance=self,
2698            arg="offset",
2699            into=Offset,
2700            prefix="OFFSET",
2701            dialect=dialect,
2702            copy=copy,
2703            **opts,
2704        )
2705
2706    def select(
2707        self,
2708        *expressions: t.Optional[ExpOrStr],
2709        append: bool = True,
2710        dialect: DialectType = None,
2711        copy: bool = True,
2712        **opts,
2713    ) -> Select:
2714        """
2715        Append to or set the SELECT expressions.
2716
2717        Example:
2718            >>> Select().select("x", "y").sql()
2719            'SELECT x, y'
2720
2721        Args:
2722            *expressions: the SQL code strings to parse.
2723                If an `Expression` instance is passed, it will be used as-is.
2724            append: if `True`, add to any existing expressions.
2725                Otherwise, this resets the expressions.
2726            dialect: the dialect used to parse the input expressions.
2727            copy: if `False`, modify this expression instance in-place.
2728            opts: other options to use to parse the input expressions.
2729
2730        Returns:
2731            The modified Select expression.
2732        """
2733        return _apply_list_builder(
2734            *expressions,
2735            instance=self,
2736            arg="expressions",
2737            append=append,
2738            dialect=dialect,
2739            copy=copy,
2740            **opts,
2741        )
2742
2743    def lateral(
2744        self,
2745        *expressions: t.Optional[ExpOrStr],
2746        append: bool = True,
2747        dialect: DialectType = None,
2748        copy: bool = True,
2749        **opts,
2750    ) -> Select:
2751        """
2752        Append to or set the LATERAL expressions.
2753
2754        Example:
2755            >>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
2756            'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
2757
2758        Args:
2759            *expressions: the SQL code strings to parse.
2760                If an `Expression` instance is passed, it will be used as-is.
2761            append: if `True`, add to any existing expressions.
2762                Otherwise, this resets the expressions.
2763            dialect: the dialect used to parse the input expressions.
2764            copy: if `False`, modify this expression instance in-place.
2765            opts: other options to use to parse the input expressions.
2766
2767        Returns:
2768            The modified Select expression.
2769        """
2770        return _apply_list_builder(
2771            *expressions,
2772            instance=self,
2773            arg="laterals",
2774            append=append,
2775            into=Lateral,
2776            prefix="LATERAL VIEW",
2777            dialect=dialect,
2778            copy=copy,
2779            **opts,
2780        )
2781
2782    def join(
2783        self,
2784        expression: ExpOrStr,
2785        on: t.Optional[ExpOrStr] = None,
2786        using: t.Optional[ExpOrStr | t.List[ExpOrStr]] = None,
2787        append: bool = True,
2788        join_type: t.Optional[str] = None,
2789        join_alias: t.Optional[Identifier | str] = None,
2790        dialect: DialectType = None,
2791        copy: bool = True,
2792        **opts,
2793    ) -> Select:
2794        """
2795        Append to or set the JOIN expressions.
2796
2797        Example:
2798            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
2799            'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
2800
2801            >>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
2802            'SELECT 1 FROM a JOIN b USING (x, y, z)'
2803
2804            Use `join_type` to change the type of join:
2805
2806            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
2807            'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
2808
2809        Args:
2810            expression: the SQL code string to parse.
2811                If an `Expression` instance is passed, it will be used as-is.
2812            on: optionally specify the join "on" criteria as a SQL string.
2813                If an `Expression` instance is passed, it will be used as-is.
2814            using: optionally specify the join "using" criteria as a SQL string.
2815                If an `Expression` instance is passed, it will be used as-is.
2816            append: if `True`, add to any existing expressions.
2817                Otherwise, this resets the expressions.
2818            join_type: if set, alter the parsed join type.
2819            join_alias: an optional alias for the joined source.
2820            dialect: the dialect used to parse the input expressions.
2821            copy: if `False`, modify this expression instance in-place.
2822            opts: other options to use to parse the input expressions.
2823
2824        Returns:
2825            Select: the modified expression.
2826        """
2827        parse_args: t.Dict[str, t.Any] = {"dialect": dialect, **opts}
2828
2829        try:
2830            expression = maybe_parse(expression, into=Join, prefix="JOIN", **parse_args)
2831        except ParseError:
2832            expression = maybe_parse(expression, into=(Join, Expression), **parse_args)
2833
2834        join = expression if isinstance(expression, Join) else Join(this=expression)
2835
2836        if isinstance(join.this, Select):
2837            join.this.replace(join.this.subquery())
2838
2839        if join_type:
2840            method: t.Optional[Token]
2841            side: t.Optional[Token]
2842            kind: t.Optional[Token]
2843
2844            method, side, kind = maybe_parse(join_type, into="JOIN_TYPE", **parse_args)  # type: ignore
2845
2846            if method:
2847                join.set("method", method.text)
2848            if side:
2849                join.set("side", side.text)
2850            if kind:
2851                join.set("kind", kind.text)
2852
2853        if on:
2854            on = and_(*ensure_list(on), dialect=dialect, copy=copy, **opts)
2855            join.set("on", on)
2856
2857        if using:
2858            join = _apply_list_builder(
2859                *ensure_list(using),
2860                instance=join,
2861                arg="using",
2862                append=append,
2863                copy=copy,
2864                **opts,
2865            )
2866
2867        if join_alias:
2868            join.set("this", alias_(join.this, join_alias, table=True))
2869
2870        return _apply_list_builder(
2871            join,
2872            instance=self,
2873            arg="joins",
2874            append=append,
2875            copy=copy,
2876            **opts,
2877        )
2878
2879    def where(
2880        self,
2881        *expressions: t.Optional[ExpOrStr],
2882        append: bool = True,
2883        dialect: DialectType = None,
2884        copy: bool = True,
2885        **opts,
2886    ) -> Select:
2887        """
2888        Append to or set the WHERE expressions.
2889
2890        Example:
2891            >>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
2892            "SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
2893
2894        Args:
2895            *expressions: the SQL code strings to parse.
2896                If an `Expression` instance is passed, it will be used as-is.
2897                Multiple expressions are combined with an AND operator.
2898            append: if `True`, AND the new expressions to any existing expression.
2899                Otherwise, this resets the expression.
2900            dialect: the dialect used to parse the input expressions.
2901            copy: if `False`, modify this expression instance in-place.
2902            opts: other options to use to parse the input expressions.
2903
2904        Returns:
2905            Select: the modified expression.
2906        """
2907        return _apply_conjunction_builder(
2908            *expressions,
2909            instance=self,
2910            arg="where",
2911            append=append,
2912            into=Where,
2913            dialect=dialect,
2914            copy=copy,
2915            **opts,
2916        )
2917
2918    def having(
2919        self,
2920        *expressions: t.Optional[ExpOrStr],
2921        append: bool = True,
2922        dialect: DialectType = None,
2923        copy: bool = True,
2924        **opts,
2925    ) -> Select:
2926        """
2927        Append to or set the HAVING expressions.
2928
2929        Example:
2930            >>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
2931            'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
2932
2933        Args:
2934            *expressions: the SQL code strings to parse.
2935                If an `Expression` instance is passed, it will be used as-is.
2936                Multiple expressions are combined with an AND operator.
2937            append: if `True`, AND the new expressions to any existing expression.
2938                Otherwise, this resets the expression.
2939            dialect: the dialect used to parse the input expressions.
2940            copy: if `False`, modify this expression instance in-place.
2941            opts: other options to use to parse the input expressions.
2942
2943        Returns:
2944            The modified Select expression.
2945        """
2946        return _apply_conjunction_builder(
2947            *expressions,
2948            instance=self,
2949            arg="having",
2950            append=append,
2951            into=Having,
2952            dialect=dialect,
2953            copy=copy,
2954            **opts,
2955        )
2956
2957    def window(
2958        self,
2959        *expressions: t.Optional[ExpOrStr],
2960        append: bool = True,
2961        dialect: DialectType = None,
2962        copy: bool = True,
2963        **opts,
2964    ) -> Select:
2965        return _apply_list_builder(
2966            *expressions,
2967            instance=self,
2968            arg="windows",
2969            append=append,
2970            into=Window,
2971            dialect=dialect,
2972            copy=copy,
2973            **opts,
2974        )
2975
2976    def qualify(
2977        self,
2978        *expressions: t.Optional[ExpOrStr],
2979        append: bool = True,
2980        dialect: DialectType = None,
2981        copy: bool = True,
2982        **opts,
2983    ) -> Select:
2984        return _apply_conjunction_builder(
2985            *expressions,
2986            instance=self,
2987            arg="qualify",
2988            append=append,
2989            into=Qualify,
2990            dialect=dialect,
2991            copy=copy,
2992            **opts,
2993        )
2994
2995    def distinct(
2996        self, *ons: t.Optional[ExpOrStr], distinct: bool = True, copy: bool = True
2997    ) -> Select:
2998        """
2999        Set the OFFSET expression.
3000
3001        Example:
3002            >>> Select().from_("tbl").select("x").distinct().sql()
3003            'SELECT DISTINCT x FROM tbl'
3004
3005        Args:
3006            ons: the expressions to distinct on
3007            distinct: whether the Select should be distinct
3008            copy: if `False`, modify this expression instance in-place.
3009
3010        Returns:
3011            Select: the modified expression.
3012        """
3013        instance = _maybe_copy(self, copy)
3014        on = Tuple(expressions=[maybe_parse(on, copy=copy) for on in ons if on]) if ons else None
3015        instance.set("distinct", Distinct(on=on) if distinct else None)
3016        return instance
3017
3018    def ctas(
3019        self,
3020        table: ExpOrStr,
3021        properties: t.Optional[t.Dict] = None,
3022        dialect: DialectType = None,
3023        copy: bool = True,
3024        **opts,
3025    ) -> Create:
3026        """
3027        Convert this expression to a CREATE TABLE AS statement.
3028
3029        Example:
3030            >>> Select().select("*").from_("tbl").ctas("x").sql()
3031            'CREATE TABLE x AS SELECT * FROM tbl'
3032
3033        Args:
3034            table: the SQL code string to parse as the table name.
3035                If another `Expression` instance is passed, it will be used as-is.
3036            properties: an optional mapping of table properties
3037            dialect: the dialect used to parse the input table.
3038            copy: if `False`, modify this expression instance in-place.
3039            opts: other options to use to parse the input table.
3040
3041        Returns:
3042            The new Create expression.
3043        """
3044        instance = _maybe_copy(self, copy)
3045        table_expression = maybe_parse(
3046            table,
3047            into=Table,
3048            dialect=dialect,
3049            **opts,
3050        )
3051        properties_expression = None
3052        if properties:
3053            properties_expression = Properties.from_dict(properties)
3054
3055        return Create(
3056            this=table_expression,
3057            kind="table",
3058            expression=instance,
3059            properties=properties_expression,
3060        )
3061
3062    def lock(self, update: bool = True, copy: bool = True) -> Select:
3063        """
3064        Set the locking read mode for this expression.
3065
3066        Examples:
3067            >>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
3068            "SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
3069
3070            >>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
3071            "SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
3072
3073        Args:
3074            update: if `True`, the locking type will be `FOR UPDATE`, else it will be `FOR SHARE`.
3075            copy: if `False`, modify this expression instance in-place.
3076
3077        Returns:
3078            The modified expression.
3079        """
3080        inst = _maybe_copy(self, copy)
3081        inst.set("locks", [Lock(update=update)])
3082
3083        return inst
3084
3085    def hint(self, *hints: ExpOrStr, dialect: DialectType = None, copy: bool = True) -> Select:
3086        """
3087        Set hints for this expression.
3088
3089        Examples:
3090            >>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
3091            'SELECT /*+ BROADCAST(y) */ x FROM tbl'
3092
3093        Args:
3094            hints: The SQL code strings to parse as the hints.
3095                If an `Expression` instance is passed, it will be used as-is.
3096            dialect: The dialect used to parse the hints.
3097            copy: If `False`, modify this expression instance in-place.
3098
3099        Returns:
3100            The modified expression.
3101        """
3102        inst = _maybe_copy(self, copy)
3103        inst.set(
3104            "hint", Hint(expressions=[maybe_parse(h, copy=copy, dialect=dialect) for h in hints])
3105        )
3106
3107        return inst
3108
3109    @property
3110    def named_selects(self) -> t.List[str]:
3111        return [e.output_name for e in self.expressions if e.alias_or_name]
3112
3113    @property
3114    def is_star(self) -> bool:
3115        return any(expression.is_star for expression in self.expressions)
3116
3117    @property
3118    def selects(self) -> t.List[Expression]:
3119        return self.expressions
3120
3121
3122class Subquery(DerivedTable, Unionable):
3123    arg_types = {
3124        "this": True,
3125        "alias": False,
3126        "with": False,
3127        **QUERY_MODIFIERS,
3128    }
3129
3130    def unnest(self):
3131        """
3132        Returns the first non subquery.
3133        """
3134        expression = self
3135        while isinstance(expression, Subquery):
3136            expression = expression.this
3137        return expression
3138
3139    @property
3140    def is_star(self) -> bool:
3141        return self.this.is_star
3142
3143    @property
3144    def output_name(self) -> str:
3145        return self.alias
3146
3147
3148class TableSample(Expression):
3149    arg_types = {
3150        "this": False,
3151        "method": False,
3152        "bucket_numerator": False,
3153        "bucket_denominator": False,
3154        "bucket_field": False,
3155        "percent": False,
3156        "rows": False,
3157        "size": False,
3158        "seed": False,
3159        "kind": False,
3160    }
3161
3162
3163class Tag(Expression):
3164    """Tags are used for generating arbitrary sql like SELECT <span>x</span>."""
3165
3166    arg_types = {
3167        "this": False,
3168        "prefix": False,
3169        "postfix": False,
3170    }
3171
3172
3173# Represents both the standard SQL PIVOT operator and DuckDB's "simplified" PIVOT syntax
3174# https://duckdb.org/docs/sql/statements/pivot
3175class Pivot(Expression):
3176    arg_types = {
3177        "this": False,
3178        "alias": False,
3179        "expressions": True,
3180        "field": False,
3181        "unpivot": False,
3182        "using": False,
3183        "group": False,
3184        "columns": False,
3185    }
3186
3187
3188class Window(Expression):
3189    arg_types = {
3190        "this": True,
3191        "partition_by": False,
3192        "order": False,
3193        "spec": False,
3194        "alias": False,
3195        "over": False,
3196        "first": False,
3197    }
3198
3199
3200class WindowSpec(Expression):
3201    arg_types = {
3202        "kind": False,
3203        "start": False,
3204        "start_side": False,
3205        "end": False,
3206        "end_side": False,
3207    }
3208
3209
3210class Where(Expression):
3211    pass
3212
3213
3214class Star(Expression):
3215    arg_types = {"except": False, "replace": False}
3216
3217    @property
3218    def name(self) -> str:
3219        return "*"
3220
3221    @property
3222    def output_name(self) -> str:
3223        return self.name
3224
3225
3226class Parameter(Expression):
3227    arg_types = {"this": True, "wrapped": False}
3228
3229
3230class SessionParameter(Expression):
3231    arg_types = {"this": True, "kind": False}
3232
3233
3234class Placeholder(Expression):
3235    arg_types = {"this": False, "kind": False}
3236
3237
3238class Null(Condition):
3239    arg_types: t.Dict[str, t.Any] = {}
3240
3241    @property
3242    def name(self) -> str:
3243        return "NULL"
3244
3245
3246class Boolean(Condition):
3247    pass
3248
3249
3250class DataTypeSize(Expression):
3251    arg_types = {"this": True, "expression": False}
3252
3253
3254class DataType(Expression):
3255    arg_types = {
3256        "this": True,
3257        "expressions": False,
3258        "nested": False,
3259        "values": False,
3260        "prefix": False,
3261    }
3262
3263    class Type(AutoName):
3264        ARRAY = auto()
3265        BIGDECIMAL = auto()
3266        BIGINT = auto()
3267        BIGSERIAL = auto()
3268        BINARY = auto()
3269        BIT = auto()
3270        BOOLEAN = auto()
3271        CHAR = auto()
3272        DATE = auto()
3273        DATETIME = auto()
3274        DATETIME64 = auto()
3275        INT4RANGE = auto()
3276        INT4MULTIRANGE = auto()
3277        INT8RANGE = auto()
3278        INT8MULTIRANGE = auto()
3279        NUMRANGE = auto()
3280        NUMMULTIRANGE = auto()
3281        TSRANGE = auto()
3282        TSMULTIRANGE = auto()
3283        TSTZRANGE = auto()
3284        TSTZMULTIRANGE = auto()
3285        DATERANGE = auto()
3286        DATEMULTIRANGE = auto()
3287        DECIMAL = auto()
3288        DOUBLE = auto()
3289        FLOAT = auto()
3290        GEOGRAPHY = auto()
3291        GEOMETRY = auto()
3292        HLLSKETCH = auto()
3293        HSTORE = auto()
3294        IMAGE = auto()
3295        INET = auto()
3296        INT = auto()
3297        INT128 = auto()
3298        INT256 = auto()
3299        INTERVAL = auto()
3300        JSON = auto()
3301        JSONB = auto()
3302        LONGBLOB = auto()
3303        LONGTEXT = auto()
3304        MAP = auto()
3305        MEDIUMBLOB = auto()
3306        MEDIUMTEXT = auto()
3307        MONEY = auto()
3308        NCHAR = auto()
3309        NULL = auto()
3310        NULLABLE = auto()
3311        NVARCHAR = auto()
3312        OBJECT = auto()
3313        ROWVERSION = auto()
3314        SERIAL = auto()
3315        SMALLINT = auto()
3316        SMALLMONEY = auto()
3317        SMALLSERIAL = auto()
3318        STRUCT = auto()
3319        SUPER = auto()
3320        TEXT = auto()
3321        TIME = auto()
3322        TIMESTAMP = auto()
3323        TIMESTAMPTZ = auto()
3324        TIMESTAMPLTZ = auto()
3325        TINYINT = auto()
3326        UBIGINT = auto()
3327        UINT = auto()
3328        USMALLINT = auto()
3329        UTINYINT = auto()
3330        UNKNOWN = auto()  # Sentinel value, useful for type annotation
3331        UINT128 = auto()
3332        UINT256 = auto()
3333        UNIQUEIDENTIFIER = auto()
3334        UUID = auto()
3335        VARBINARY = auto()
3336        VARCHAR = auto()
3337        VARIANT = auto()
3338        XML = auto()
3339
3340    TEXT_TYPES = {
3341        Type.CHAR,
3342        Type.NCHAR,
3343        Type.VARCHAR,
3344        Type.NVARCHAR,
3345        Type.TEXT,
3346    }
3347
3348    INTEGER_TYPES = {
3349        Type.INT,
3350        Type.TINYINT,
3351        Type.SMALLINT,
3352        Type.BIGINT,
3353        Type.INT128,
3354        Type.INT256,
3355    }
3356
3357    FLOAT_TYPES = {
3358        Type.FLOAT,
3359        Type.DOUBLE,
3360    }
3361
3362    NUMERIC_TYPES = {*INTEGER_TYPES, *FLOAT_TYPES}
3363
3364    TEMPORAL_TYPES = {
3365        Type.TIMESTAMP,
3366        Type.TIMESTAMPTZ,
3367        Type.TIMESTAMPLTZ,
3368        Type.DATE,
3369        Type.DATETIME,
3370        Type.DATETIME64,
3371    }
3372
3373    @classmethod
3374    def build(
3375        cls, dtype: str | DataType | DataType.Type, dialect: DialectType = None, **kwargs
3376    ) -> DataType:
3377        from sqlglot import parse_one
3378
3379        if isinstance(dtype, str):
3380            if dtype.upper() in cls.Type.__members__:
3381                data_type_exp: t.Optional[Expression] = DataType(this=DataType.Type[dtype.upper()])
3382            else:
3383                data_type_exp = parse_one(dtype, read=dialect, into=DataType)
3384
3385            if data_type_exp is None:
3386                raise ValueError(f"Unparsable data type value: {dtype}")
3387        elif isinstance(dtype, DataType.Type):
3388            data_type_exp = DataType(this=dtype)
3389        elif isinstance(dtype, DataType):
3390            return dtype
3391        else:
3392            raise ValueError(f"Invalid data type: {type(dtype)}. Expected str or DataType.Type")
3393
3394        return DataType(**{**data_type_exp.args, **kwargs})
3395
3396    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3397        return any(self.this == DataType.build(dtype).this for dtype in dtypes)
3398
3399
3400# https://www.postgresql.org/docs/15/datatype-pseudo.html
3401class PseudoType(Expression):
3402    pass
3403
3404
3405# WHERE x <OP> EXISTS|ALL|ANY|SOME(SELECT ...)
3406class SubqueryPredicate(Predicate):
3407    pass
3408
3409
3410class All(SubqueryPredicate):
3411    pass
3412
3413
3414class Any(SubqueryPredicate):
3415    pass
3416
3417
3418class Exists(SubqueryPredicate):
3419    pass
3420
3421
3422# Commands to interact with the databases or engines. For most of the command
3423# expressions we parse whatever comes after the command's name as a string.
3424class Command(Expression):
3425    arg_types = {"this": True, "expression": False}
3426
3427
3428class Transaction(Expression):
3429    arg_types = {"this": False, "modes": False}
3430
3431
3432class Commit(Expression):
3433    arg_types = {"chain": False}
3434
3435
3436class Rollback(Expression):
3437    arg_types = {"savepoint": False}
3438
3439
3440class AlterTable(Expression):
3441    arg_types = {"this": True, "actions": True, "exists": False}
3442
3443
3444class AddConstraint(Expression):
3445    arg_types = {"this": False, "expression": False, "enforced": False}
3446
3447
3448class DropPartition(Expression):
3449    arg_types = {"expressions": True, "exists": False}
3450
3451
3452# Binary expressions like (ADD a b)
3453class Binary(Condition):
3454    arg_types = {"this": True, "expression": True}
3455
3456    @property
3457    def left(self):
3458        return self.this
3459
3460    @property
3461    def right(self):
3462        return self.expression
3463
3464
3465class Add(Binary):
3466    pass
3467
3468
3469class Connector(Binary):
3470    pass
3471
3472
3473class And(Connector):
3474    pass
3475
3476
3477class Or(Connector):
3478    pass
3479
3480
3481class BitwiseAnd(Binary):
3482    pass
3483
3484
3485class BitwiseLeftShift(Binary):
3486    pass
3487
3488
3489class BitwiseOr(Binary):
3490    pass
3491
3492
3493class BitwiseRightShift(Binary):
3494    pass
3495
3496
3497class BitwiseXor(Binary):
3498    pass
3499
3500
3501class Div(Binary):
3502    pass
3503
3504
3505class Overlaps(Binary):
3506    pass
3507
3508
3509class Dot(Binary):
3510    @property
3511    def name(self) -> str:
3512        return self.expression.name
3513
3514    @property
3515    def output_name(self) -> str:
3516        return self.name
3517
3518    @classmethod
3519    def build(self, expressions: t.Sequence[Expression]) -> Dot:
3520        """Build a Dot object with a sequence of expressions."""
3521        if len(expressions) < 2:
3522            raise ValueError(f"Dot requires >= 2 expressions.")
3523
3524        a, b, *expressions = expressions
3525        dot = Dot(this=a, expression=b)
3526
3527        for expression in expressions:
3528            dot = Dot(this=dot, expression=expression)
3529
3530        return dot
3531
3532
3533class DPipe(Binary):
3534    pass
3535
3536
3537class SafeDPipe(DPipe):
3538    pass
3539
3540
3541class EQ(Binary, Predicate):
3542    pass
3543
3544
3545class NullSafeEQ(Binary, Predicate):
3546    pass
3547
3548
3549class NullSafeNEQ(Binary, Predicate):
3550    pass
3551
3552
3553class Distance(Binary):
3554    pass
3555
3556
3557class Escape(Binary):
3558    pass
3559
3560
3561class Glob(Binary, Predicate):
3562    pass
3563
3564
3565class GT(Binary, Predicate):
3566    pass
3567
3568
3569class GTE(Binary, Predicate):
3570    pass
3571
3572
3573class ILike(Binary, Predicate):
3574    pass
3575
3576
3577class ILikeAny(Binary, Predicate):
3578    pass
3579
3580
3581class IntDiv(Binary):
3582    pass
3583
3584
3585class Is(Binary, Predicate):
3586    pass
3587
3588
3589class Kwarg(Binary):
3590    """Kwarg in special functions like func(kwarg => y)."""
3591
3592
3593class Like(Binary, Predicate):
3594    pass
3595
3596
3597class LikeAny(Binary, Predicate):
3598    pass
3599
3600
3601class LT(Binary, Predicate):
3602    pass
3603
3604
3605class LTE(Binary, Predicate):
3606    pass
3607
3608
3609class Mod(Binary):
3610    pass
3611
3612
3613class Mul(Binary):
3614    pass
3615
3616
3617class NEQ(Binary, Predicate):
3618    pass
3619
3620
3621class SimilarTo(Binary, Predicate):
3622    pass
3623
3624
3625class Slice(Binary):
3626    arg_types = {"this": False, "expression": False}
3627
3628
3629class Sub(Binary):
3630    pass
3631
3632
3633class ArrayOverlaps(Binary):
3634    pass
3635
3636
3637# Unary Expressions
3638# (NOT a)
3639class Unary(Condition):
3640    pass
3641
3642
3643class BitwiseNot(Unary):
3644    pass
3645
3646
3647class Not(Unary):
3648    pass
3649
3650
3651class Paren(Unary):
3652    arg_types = {"this": True, "with": False}
3653
3654    @property
3655    def output_name(self) -> str:
3656        return self.this.name
3657
3658
3659class Neg(Unary):
3660    pass
3661
3662
3663class Alias(Expression):
3664    arg_types = {"this": True, "alias": False}
3665
3666    @property
3667    def output_name(self) -> str:
3668        return self.alias
3669
3670
3671class Aliases(Expression):
3672    arg_types = {"this": True, "expressions": True}
3673
3674    @property
3675    def aliases(self):
3676        return self.expressions
3677
3678
3679class AtTimeZone(Expression):
3680    arg_types = {"this": True, "zone": True}
3681
3682
3683class Between(Predicate):
3684    arg_types = {"this": True, "low": True, "high": True}
3685
3686
3687class Bracket(Condition):
3688    arg_types = {"this": True, "expressions": True}
3689
3690
3691class Distinct(Expression):
3692    arg_types = {"expressions": False, "on": False}
3693
3694
3695class In(Predicate):
3696    arg_types = {
3697        "this": True,
3698        "expressions": False,
3699        "query": False,
3700        "unnest": False,
3701        "field": False,
3702        "is_global": False,
3703    }
3704
3705
3706class TimeUnit(Expression):
3707    """Automatically converts unit arg into a var."""
3708
3709    arg_types = {"unit": False}
3710
3711    def __init__(self, **args):
3712        unit = args.get("unit")
3713        if isinstance(unit, (Column, Literal)):
3714            args["unit"] = Var(this=unit.name)
3715        elif isinstance(unit, Week):
3716            unit.set("this", Var(this=unit.this.name))
3717
3718        super().__init__(**args)
3719
3720
3721class Interval(TimeUnit):
3722    arg_types = {"this": False, "unit": False}
3723
3724    @property
3725    def unit(self) -> t.Optional[Var]:
3726        return self.args.get("unit")
3727
3728
3729class IgnoreNulls(Expression):
3730    pass
3731
3732
3733class RespectNulls(Expression):
3734    pass
3735
3736
3737# Functions
3738class Func(Condition):
3739    """
3740    The base class for all function expressions.
3741
3742    Attributes:
3743        is_var_len_args (bool): if set to True the last argument defined in arg_types will be
3744            treated as a variable length argument and the argument's value will be stored as a list.
3745        _sql_names (list): determines the SQL name (1st item in the list) and aliases (subsequent items)
3746            for this function expression. These values are used to map this node to a name during parsing
3747            as well as to provide the function's name during SQL string generation. By default the SQL
3748            name is set to the expression's class name transformed to snake case.
3749    """
3750
3751    is_var_len_args = False
3752
3753    @classmethod
3754    def from_arg_list(cls, args):
3755        if cls.is_var_len_args:
3756            all_arg_keys = list(cls.arg_types)
3757            # If this function supports variable length argument treat the last argument as such.
3758            non_var_len_arg_keys = all_arg_keys[:-1] if cls.is_var_len_args else all_arg_keys
3759            num_non_var = len(non_var_len_arg_keys)
3760
3761            args_dict = {arg_key: arg for arg, arg_key in zip(args, non_var_len_arg_keys)}
3762            args_dict[all_arg_keys[-1]] = args[num_non_var:]
3763        else:
3764            args_dict = {arg_key: arg for arg, arg_key in zip(args, cls.arg_types)}
3765
3766        return cls(**args_dict)
3767
3768    @classmethod
3769    def sql_names(cls):
3770        if cls is Func:
3771            raise NotImplementedError(
3772                "SQL name is only supported by concrete function implementations"
3773            )
3774        if "_sql_names" not in cls.__dict__:
3775            cls._sql_names = [camel_to_snake_case(cls.__name__)]
3776        return cls._sql_names
3777
3778    @classmethod
3779    def sql_name(cls):
3780        return cls.sql_names()[0]
3781
3782    @classmethod
3783    def default_parser_mappings(cls):
3784        return {name: cls.from_arg_list for name in cls.sql_names()}
3785
3786
3787class AggFunc(Func):
3788    pass
3789
3790
3791class ParameterizedAgg(AggFunc):
3792    arg_types = {"this": True, "expressions": True, "params": True}
3793
3794
3795class Abs(Func):
3796    pass
3797
3798
3799class Anonymous(Func):
3800    arg_types = {"this": True, "expressions": False}
3801    is_var_len_args = True
3802
3803
3804# https://docs.snowflake.com/en/sql-reference/functions/hll
3805# https://docs.aws.amazon.com/redshift/latest/dg/r_HLL_function.html
3806class Hll(AggFunc):
3807    arg_types = {"this": True, "expressions": False}
3808    is_var_len_args = True
3809
3810
3811class ApproxDistinct(AggFunc):
3812    arg_types = {"this": True, "accuracy": False}
3813    _sql_names = ["APPROX_DISTINCT", "APPROX_COUNT_DISTINCT"]
3814
3815
3816class Array(Func):
3817    arg_types = {"expressions": False}
3818    is_var_len_args = True
3819
3820
3821# https://docs.snowflake.com/en/sql-reference/functions/to_char
3822class ToChar(Func):
3823    arg_types = {"this": True, "format": False}
3824
3825
3826class GenerateSeries(Func):
3827    arg_types = {"start": True, "end": True, "step": False}
3828
3829
3830class ArrayAgg(AggFunc):
3831    pass
3832
3833
3834class ArrayAll(Func):
3835    arg_types = {"this": True, "expression": True}
3836
3837
3838class ArrayAny(Func):
3839    arg_types = {"this": True, "expression": True}
3840
3841
3842class ArrayConcat(Func):
3843    arg_types = {"this": True, "expressions": False}
3844    is_var_len_args = True
3845
3846
3847class ArrayContains(Binary, Func):
3848    pass
3849
3850
3851class ArrayContained(Binary):
3852    pass
3853
3854
3855class ArrayFilter(Func):
3856    arg_types = {"this": True, "expression": True}
3857    _sql_names = ["FILTER", "ARRAY_FILTER"]
3858
3859
3860class ArrayJoin(Func):
3861    arg_types = {"this": True, "expression": True, "null": False}
3862
3863
3864class ArraySize(Func):
3865    arg_types = {"this": True, "expression": False}
3866
3867
3868class ArraySort(Func):
3869    arg_types = {"this": True, "expression": False}
3870
3871
3872class ArraySum(Func):
3873    pass
3874
3875
3876class ArrayUnionAgg(AggFunc):
3877    pass
3878
3879
3880class Avg(AggFunc):
3881    pass
3882
3883
3884class AnyValue(AggFunc):
3885    pass
3886
3887
3888class Case(Func):
3889    arg_types = {"this": False, "ifs": True, "default": False}
3890
3891    def when(self, condition: ExpOrStr, then: ExpOrStr, copy: bool = True, **opts) -> Case:
3892        instance = _maybe_copy(self, copy)
3893        instance.append(
3894            "ifs",
3895            If(
3896                this=maybe_parse(condition, copy=copy, **opts),
3897                true=maybe_parse(then, copy=copy, **opts),
3898            ),
3899        )
3900        return instance
3901
3902    def else_(self, condition: ExpOrStr, copy: bool = True, **opts) -> Case:
3903        instance = _maybe_copy(self, copy)
3904        instance.set("default", maybe_parse(condition, copy=copy, **opts))
3905        return instance
3906
3907
3908class Cast(Func):
3909    arg_types = {"this": True, "to": True}
3910
3911    @property
3912    def name(self) -> str:
3913        return self.this.name
3914
3915    @property
3916    def to(self) -> DataType:
3917        return self.args["to"]
3918
3919    @property
3920    def output_name(self) -> str:
3921        return self.name
3922
3923    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3924        return self.to.is_type(*dtypes)
3925
3926
3927class CastToStrType(Func):
3928    arg_types = {"this": True, "expression": True}
3929
3930
3931class Collate(Binary):
3932    pass
3933
3934
3935class TryCast(Cast):
3936    pass
3937
3938
3939class Ceil(Func):
3940    arg_types = {"this": True, "decimals": False}
3941    _sql_names = ["CEIL", "CEILING"]
3942
3943
3944class Coalesce(Func):
3945    arg_types = {"this": True, "expressions": False}
3946    is_var_len_args = True
3947    _sql_names = ["COALESCE", "IFNULL", "NVL"]
3948
3949
3950class Concat(Func):
3951    arg_types = {"expressions": True}
3952    is_var_len_args = True
3953
3954
3955class SafeConcat(Concat):
3956    pass
3957
3958
3959class ConcatWs(Concat):
3960    _sql_names = ["CONCAT_WS"]
3961
3962
3963class Count(AggFunc):
3964    arg_types = {"this": False, "expressions": False}
3965    is_var_len_args = True
3966
3967
3968class CountIf(AggFunc):
3969    pass
3970
3971
3972class CurrentDate(Func):
3973    arg_types = {"this": False}
3974
3975
3976class CurrentDatetime(Func):
3977    arg_types = {"this": False}
3978
3979
3980class CurrentTime(Func):
3981    arg_types = {"this": False}
3982
3983
3984class CurrentTimestamp(Func):
3985    arg_types = {"this": False}
3986
3987
3988class CurrentUser(Func):
3989    arg_types = {"this": False}
3990
3991
3992class DateAdd(Func, TimeUnit):
3993    arg_types = {"this": True, "expression": True, "unit": False}
3994
3995
3996class DateSub(Func, TimeUnit):
3997    arg_types = {"this": True, "expression": True, "unit": False}
3998
3999
4000class DateDiff(Func, TimeUnit):
4001    _sql_names = ["DATEDIFF", "DATE_DIFF"]
4002    arg_types = {"this": True, "expression": True, "unit": False}
4003
4004
4005class DateTrunc(Func):
4006    arg_types = {"unit": True, "this": True, "zone": False}
4007
4008
4009class DatetimeAdd(Func, TimeUnit):
4010    arg_types = {"this": True, "expression": True, "unit": False}
4011
4012
4013class DatetimeSub(Func, TimeUnit):
4014    arg_types = {"this": True, "expression": True, "unit": False}
4015
4016
4017class DatetimeDiff(Func, TimeUnit):
4018    arg_types = {"this": True, "expression": True, "unit": False}
4019
4020
4021class DatetimeTrunc(Func, TimeUnit):
4022    arg_types = {"this": True, "unit": True, "zone": False}
4023
4024
4025class DayOfWeek(Func):
4026    _sql_names = ["DAY_OF_WEEK", "DAYOFWEEK"]
4027
4028
4029class DayOfMonth(Func):
4030    _sql_names = ["DAY_OF_MONTH", "DAYOFMONTH"]
4031
4032
4033class DayOfYear(Func):
4034    _sql_names = ["DAY_OF_YEAR", "DAYOFYEAR"]
4035
4036
4037class WeekOfYear(Func):
4038    _sql_names = ["WEEK_OF_YEAR", "WEEKOFYEAR"]
4039
4040
4041class LastDateOfMonth(Func):
4042    pass
4043
4044
4045class Extract(Func):
4046    arg_types = {"this": True, "expression": True}
4047
4048
4049class TimestampAdd(Func, TimeUnit):
4050    arg_types = {"this": True, "expression": True, "unit": False}
4051
4052
4053class TimestampSub(Func, TimeUnit):
4054    arg_types = {"this": True, "expression": True, "unit": False}
4055
4056
4057class TimestampDiff(Func, TimeUnit):
4058    arg_types = {"this": True, "expression": True, "unit": False}
4059
4060
4061class TimestampTrunc(Func, TimeUnit):
4062    arg_types = {"this": True, "unit": True, "zone": False}
4063
4064
4065class TimeAdd(Func, TimeUnit):
4066    arg_types = {"this": True, "expression": True, "unit": False}
4067
4068
4069class TimeSub(Func, TimeUnit):
4070    arg_types = {"this": True, "expression": True, "unit": False}
4071
4072
4073class TimeDiff(Func, TimeUnit):
4074    arg_types = {"this": True, "expression": True, "unit": False}
4075
4076
4077class TimeTrunc(Func, TimeUnit):
4078    arg_types = {"this": True, "unit": True, "zone": False}
4079
4080
4081class DateFromParts(Func):
4082    _sql_names = ["DATEFROMPARTS"]
4083    arg_types = {"year": True, "month": True, "day": True}
4084
4085
4086class DateStrToDate(Func):
4087    pass
4088
4089
4090class DateToDateStr(Func):
4091    pass
4092
4093
4094class DateToDi(Func):
4095    pass
4096
4097
4098class Date(Func):
4099    arg_types = {"expressions": True}
4100    is_var_len_args = True
4101
4102
4103class Day(Func):
4104    pass
4105
4106
4107class Decode(Func):
4108    arg_types = {"this": True, "charset": True, "replace": False}
4109
4110
4111class DiToDate(Func):
4112    pass
4113
4114
4115class Encode(Func):
4116    arg_types = {"this": True, "charset": True}
4117
4118
4119class Exp(Func):
4120    pass
4121
4122
4123class Explode(Func):
4124    pass
4125
4126
4127class Floor(Func):
4128    arg_types = {"this": True, "decimals": False}
4129
4130
4131class FromBase64(Func):
4132    pass
4133
4134
4135class ToBase64(Func):
4136    pass
4137
4138
4139class Greatest(Func):
4140    arg_types = {"this": True, "expressions": False}
4141    is_var_len_args = True
4142
4143
4144class GroupConcat(Func):
4145    arg_types = {"this": True, "separator": False}
4146
4147
4148class Hex(Func):
4149    pass
4150
4151
4152class If(Func):
4153    arg_types = {"this": True, "true": True, "false": False}
4154
4155
4156class Initcap(Func):
4157    arg_types = {"this": True, "expression": False}
4158
4159
4160class JSONKeyValue(Expression):
4161    arg_types = {"this": True, "expression": True}
4162
4163
4164class JSONObject(Func):
4165    arg_types = {
4166        "expressions": False,
4167        "null_handling": False,
4168        "unique_keys": False,
4169        "return_type": False,
4170        "format_json": False,
4171        "encoding": False,
4172    }
4173
4174
4175class OpenJSONColumnDef(Expression):
4176    arg_types = {"this": True, "kind": True, "path": False, "as_json": False}
4177
4178
4179class OpenJSON(Func):
4180    arg_types = {"this": True, "path": False, "expressions": False}
4181
4182
4183class JSONBContains(Binary):
4184    _sql_names = ["JSONB_CONTAINS"]
4185
4186
4187class JSONExtract(Binary, Func):
4188    _sql_names = ["JSON_EXTRACT"]
4189
4190
4191class JSONExtractScalar(JSONExtract):
4192    _sql_names = ["JSON_EXTRACT_SCALAR"]
4193
4194
4195class JSONBExtract(JSONExtract):
4196    _sql_names = ["JSONB_EXTRACT"]
4197
4198
4199class JSONBExtractScalar(JSONExtract):
4200    _sql_names = ["JSONB_EXTRACT_SCALAR"]
4201
4202
4203class JSONFormat(Func):
4204    arg_types = {"this": False, "options": False}
4205    _sql_names = ["JSON_FORMAT"]
4206
4207
4208class Least(Func):
4209    arg_types = {"expressions": False}
4210    is_var_len_args = True
4211
4212
4213class Left(Func):
4214    arg_types = {"this": True, "expression": True}
4215
4216
4217class Right(Func):
4218    arg_types = {"this": True, "expression": True}
4219
4220
4221class Length(Func):
4222    _sql_names = ["LENGTH", "LEN"]
4223
4224
4225class Levenshtein(Func):
4226    arg_types = {
4227        "this": True,
4228        "expression": False,
4229        "ins_cost": False,
4230        "del_cost": False,
4231        "sub_cost": False,
4232    }
4233
4234
4235class Ln(Func):
4236    pass
4237
4238
4239class Log(Func):
4240    arg_types = {"this": True, "expression": False}
4241
4242
4243class Log2(Func):
4244    pass
4245
4246
4247class Log10(Func):
4248    pass
4249
4250
4251class LogicalOr(AggFunc):
4252    _sql_names = ["LOGICAL_OR", "BOOL_OR", "BOOLOR_AGG"]
4253
4254
4255class LogicalAnd(AggFunc):
4256    _sql_names = ["LOGICAL_AND", "BOOL_AND", "BOOLAND_AGG"]
4257
4258
4259class Lower(Func):
4260    _sql_names = ["LOWER", "LCASE"]
4261
4262
4263class Map(Func):
4264    arg_types = {"keys": False, "values": False}
4265
4266
4267class StarMap(Func):
4268    pass
4269
4270
4271class VarMap(Func):
4272    arg_types = {"keys": True, "values": True}
4273    is_var_len_args = True
4274
4275    @property
4276    def keys(self) -> t.List[Expression]:
4277        return self.args["keys"].expressions
4278
4279    @property
4280    def values(self) -> t.List[Expression]:
4281        return self.args["values"].expressions
4282
4283
4284# https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
4285class MatchAgainst(Func):
4286    arg_types = {"this": True, "expressions": True, "modifier": False}
4287
4288
4289class Max(AggFunc):
4290    arg_types = {"this": True, "expressions": False}
4291    is_var_len_args = True
4292
4293
4294class MD5(Func):
4295    _sql_names = ["MD5"]
4296
4297
4298class Min(AggFunc):
4299    arg_types = {"this": True, "expressions": False}
4300    is_var_len_args = True
4301
4302
4303class Month(Func):
4304    pass
4305
4306
4307class Nvl2(Func):
4308    arg_types = {"this": True, "true": True, "false": False}
4309
4310
4311class Posexplode(Func):
4312    pass
4313
4314
4315class Pow(Binary, Func):
4316    _sql_names = ["POWER", "POW"]
4317
4318
4319class PercentileCont(AggFunc):
4320    arg_types = {"this": True, "expression": False}
4321
4322
4323class PercentileDisc(AggFunc):
4324    arg_types = {"this": True, "expression": False}
4325
4326
4327class Quantile(AggFunc):
4328    arg_types = {"this": True, "quantile": True}
4329
4330
4331class ApproxQuantile(Quantile):
4332    arg_types = {"this": True, "quantile": True, "accuracy": False, "weight": False}
4333
4334
4335class RangeN(Func):
4336    arg_types = {"this": True, "expressions": True, "each": False}
4337
4338
4339class ReadCSV(Func):
4340    _sql_names = ["READ_CSV"]
4341    is_var_len_args = True
4342    arg_types = {"this": True, "expressions": False}
4343
4344
4345class Reduce(Func):
4346    arg_types = {"this": True, "initial": True, "merge": True, "finish": False}
4347
4348
4349class RegexpExtract(Func):
4350    arg_types = {
4351        "this": True,
4352        "expression": True,
4353        "position": False,
4354        "occurrence": False,
4355        "group": False,
4356    }
4357
4358
4359class RegexpLike(Func):
4360    arg_types = {"this": True, "expression": True, "flag": False}
4361
4362
4363class RegexpILike(Func):
4364    arg_types = {"this": True, "expression": True, "flag": False}
4365
4366
4367# https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.functions.split.html
4368# limit is the number of times a pattern is applied
4369class RegexpSplit(Func):
4370    arg_types = {"this": True, "expression": True, "limit": False}
4371
4372
4373class Repeat(Func):
4374    arg_types = {"this": True, "times": True}
4375
4376
4377class Round(Func):
4378    arg_types = {"this": True, "decimals": False}
4379
4380
4381class RowNumber(Func):
4382    arg_types: t.Dict[str, t.Any] = {}
4383
4384
4385class SafeDivide(Func):
4386    arg_types = {"this": True, "expression": True}
4387
4388
4389class SetAgg(AggFunc):
4390    pass
4391
4392
4393class SHA(Func):
4394    _sql_names = ["SHA", "SHA1"]
4395
4396
4397class SHA2(Func):
4398    _sql_names = ["SHA2"]
4399    arg_types = {"this": True, "length": False}
4400
4401
4402class SortArray(Func):
4403    arg_types = {"this": True, "asc": False}
4404
4405
4406class Split(Func):
4407    arg_types = {"this": True, "expression": True, "limit": False}
4408
4409
4410# Start may be omitted in the case of postgres
4411# https://www.postgresql.org/docs/9.1/functions-string.html @ Table 9-6
4412class Substring(Func):
4413    arg_types = {"this": True, "start": False, "length": False}
4414
4415
4416class StandardHash(Func):
4417    arg_types = {"this": True, "expression": False}
4418
4419
4420class StrPosition(Func):
4421    arg_types = {
4422        "this": True,
4423        "substr": True,
4424        "position": False,
4425        "instance": False,
4426    }
4427
4428
4429class StrToDate(Func):
4430    arg_types = {"this": True, "format": True}
4431
4432
4433class StrToTime(Func):
4434    arg_types = {"this": True, "format": True}
4435
4436
4437# Spark allows unix_timestamp()
4438# https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.sql.functions.unix_timestamp.html
4439class StrToUnix(Func):
4440    arg_types = {"this": False, "format": False}
4441
4442
4443class NumberToStr(Func):
4444    arg_types = {"this": True, "format": True}
4445
4446
4447class FromBase(Func):
4448    arg_types = {"this": True, "expression": True}
4449
4450
4451class Struct(Func):
4452    arg_types = {"expressions": True}
4453    is_var_len_args = True
4454
4455
4456class StructExtract(Func):
4457    arg_types = {"this": True, "expression": True}
4458
4459
4460class Sum(AggFunc):
4461    pass
4462
4463
4464class Sqrt(Func):
4465    pass
4466
4467
4468class Stddev(AggFunc):
4469    pass
4470
4471
4472class StddevPop(AggFunc):
4473    pass
4474
4475
4476class StddevSamp(AggFunc):
4477    pass
4478
4479
4480class TimeToStr(Func):
4481    arg_types = {"this": True, "format": True}
4482
4483
4484class TimeToTimeStr(Func):
4485    pass
4486
4487
4488class TimeToUnix(Func):
4489    pass
4490
4491
4492class TimeStrToDate(Func):
4493    pass
4494
4495
4496class TimeStrToTime(Func):
4497    pass
4498
4499
4500class TimeStrToUnix(Func):
4501    pass
4502
4503
4504class Trim(Func):
4505    arg_types = {
4506        "this": True,
4507        "expression": False,
4508        "position": False,
4509        "collation": False,
4510    }
4511
4512
4513class TsOrDsAdd(Func, TimeUnit):
4514    arg_types = {"this": True, "expression": True, "unit": False}
4515
4516
4517class TsOrDsToDateStr(Func):
4518    pass
4519
4520
4521class TsOrDsToDate(Func):
4522    arg_types = {"this": True, "format": False}
4523
4524
4525class TsOrDiToDi(Func):
4526    pass
4527
4528
4529class Unhex(Func):
4530    pass
4531
4532
4533class UnixToStr(Func):
4534    arg_types = {"this": True, "format": False}
4535
4536
4537# https://prestodb.io/docs/current/functions/datetime.html
4538# presto has weird zone/hours/minutes
4539class UnixToTime(Func):
4540    arg_types = {"this": True, "scale": False, "zone": False, "hours": False, "minutes": False}
4541
4542    SECONDS = Literal.string("seconds")
4543    MILLIS = Literal.string("millis")
4544    MICROS = Literal.string("micros")
4545
4546
4547class UnixToTimeStr(Func):
4548    pass
4549
4550
4551class Upper(Func):
4552    _sql_names = ["UPPER", "UCASE"]
4553
4554
4555class Variance(AggFunc):
4556    _sql_names = ["VARIANCE", "VARIANCE_SAMP", "VAR_SAMP"]
4557
4558
4559class VariancePop(AggFunc):
4560    _sql_names = ["VARIANCE_POP", "VAR_POP"]
4561
4562
4563class Week(Func):
4564    arg_types = {"this": True, "mode": False}
4565
4566
4567class XMLTable(Func):
4568    arg_types = {"this": True, "passing": False, "columns": False, "by_ref": False}
4569
4570
4571class Year(Func):
4572    pass
4573
4574
4575class Use(Expression):
4576    arg_types = {"this": True, "kind": False}
4577
4578
4579class Merge(Expression):
4580    arg_types = {"this": True, "using": True, "on": True, "expressions": True}
4581
4582
4583class When(Func):
4584    arg_types = {"matched": True, "source": False, "condition": False, "then": True}
4585
4586
4587# https://docs.oracle.com/javadb/10.8.3.0/ref/rrefsqljnextvaluefor.html
4588# https://learn.microsoft.com/en-us/sql/t-sql/functions/next-value-for-transact-sql?view=sql-server-ver16
4589class NextValueFor(Func):
4590    arg_types = {"this": True, "order": False}
4591
4592
4593def _norm_arg(arg):
4594    return arg.lower() if type(arg) is str else arg
4595
4596
4597ALL_FUNCTIONS = subclasses(__name__, Func, (AggFunc, Anonymous, Func))
4598
4599
4600# Helpers
4601@t.overload
4602def maybe_parse(
4603    sql_or_expression: ExpOrStr,
4604    *,
4605    into: t.Type[E],
4606    dialect: DialectType = None,
4607    prefix: t.Optional[str] = None,
4608    copy: bool = False,
4609    **opts,
4610) -> E:
4611    ...
4612
4613
4614@t.overload
4615def maybe_parse(
4616    sql_or_expression: str | E,
4617    *,
4618    into: t.Optional[IntoType] = None,
4619    dialect: DialectType = None,
4620    prefix: t.Optional[str] = None,
4621    copy: bool = False,
4622    **opts,
4623) -> E:
4624    ...
4625
4626
4627def maybe_parse(
4628    sql_or_expression: ExpOrStr,
4629    *,
4630    into: t.Optional[IntoType] = None,
4631    dialect: DialectType = None,
4632    prefix: t.Optional[str] = None,
4633    copy: bool = False,
4634    **opts,
4635) -> Expression:
4636    """Gracefully handle a possible string or expression.
4637
4638    Example:
4639        >>> maybe_parse("1")
4640        (LITERAL this: 1, is_string: False)
4641        >>> maybe_parse(to_identifier("x"))
4642        (IDENTIFIER this: x, quoted: False)
4643
4644    Args:
4645        sql_or_expression: the SQL code string or an expression
4646        into: the SQLGlot Expression to parse into
4647        dialect: the dialect used to parse the input expressions (in the case that an
4648            input expression is a SQL string).
4649        prefix: a string to prefix the sql with before it gets parsed
4650            (automatically includes a space)
4651        copy: whether or not to copy the expression.
4652        **opts: other options to use to parse the input expressions (again, in the case
4653            that an input expression is a SQL string).
4654
4655    Returns:
4656        Expression: the parsed or given expression.
4657    """
4658    if isinstance(sql_or_expression, Expression):
4659        if copy:
4660            return sql_or_expression.copy()
4661        return sql_or_expression
4662
4663    if sql_or_expression is None:
4664        raise ParseError(f"SQL cannot be None")
4665
4666    import sqlglot
4667
4668    sql = str(sql_or_expression)
4669    if prefix:
4670        sql = f"{prefix} {sql}"
4671
4672    return sqlglot.parse_one(sql, read=dialect, into=into, **opts)
4673
4674
4675def _maybe_copy(instance: E, copy: bool = True) -> E:
4676    return instance.copy() if copy else instance
4677
4678
4679def _is_wrong_expression(expression, into):
4680    return isinstance(expression, Expression) and not isinstance(expression, into)
4681
4682
4683def _apply_builder(
4684    expression,
4685    instance,
4686    arg,
4687    copy=True,
4688    prefix=None,
4689    into=None,
4690    dialect=None,
4691    **opts,
4692):
4693    if _is_wrong_expression(expression, into):
4694        expression = into(this=expression)
4695    instance = _maybe_copy(instance, copy)
4696    expression = maybe_parse(
4697        sql_or_expression=expression,
4698        prefix=prefix,
4699        into=into,
4700        dialect=dialect,
4701        **opts,
4702    )
4703    instance.set(arg, expression)
4704    return instance
4705
4706
4707def _apply_child_list_builder(
4708    *expressions,
4709    instance,
4710    arg,
4711    append=True,
4712    copy=True,
4713    prefix=None,
4714    into=None,
4715    dialect=None,
4716    properties=None,
4717    **opts,
4718):
4719    instance = _maybe_copy(instance, copy)
4720    parsed = []
4721    for expression in expressions:
4722        if expression is not None:
4723            if _is_wrong_expression(expression, into):
4724                expression = into(expressions=[expression])
4725
4726            expression = maybe_parse(
4727                expression,
4728                into=into,
4729                dialect=dialect,
4730                prefix=prefix,
4731                **opts,
4732            )
4733            parsed.extend(expression.expressions)
4734
4735    existing = instance.args.get(arg)
4736    if append and existing:
4737        parsed = existing.expressions + parsed
4738
4739    child = into(expressions=parsed)
4740    for k, v in (properties or {}).items():
4741        child.set(k, v)
4742    instance.set(arg, child)
4743
4744    return instance
4745
4746
4747def _apply_list_builder(
4748    *expressions,
4749    instance,
4750    arg,
4751    append=True,
4752    copy=True,
4753    prefix=None,
4754    into=None,
4755    dialect=None,
4756    **opts,
4757):
4758    inst = _maybe_copy(instance, copy)
4759
4760    expressions = [
4761        maybe_parse(
4762            sql_or_expression=expression,
4763            into=into,
4764            prefix=prefix,
4765            dialect=dialect,
4766            **opts,
4767        )
4768        for expression in expressions
4769        if expression is not None
4770    ]
4771
4772    existing_expressions = inst.args.get(arg)
4773    if append and existing_expressions:
4774        expressions = existing_expressions + expressions
4775
4776    inst.set(arg, expressions)
4777    return inst
4778
4779
4780def _apply_conjunction_builder(
4781    *expressions,
4782    instance,
4783    arg,
4784    into=None,
4785    append=True,
4786    copy=True,
4787    dialect=None,
4788    **opts,
4789):
4790    expressions = [exp for exp in expressions if exp is not None and exp != ""]
4791    if not expressions:
4792        return instance
4793
4794    inst = _maybe_copy(instance, copy)
4795
4796    existing = inst.args.get(arg)
4797    if append and existing is not None:
4798        expressions = [existing.this if into else existing] + list(expressions)
4799
4800    node = and_(*expressions, dialect=dialect, copy=copy, **opts)
4801
4802    inst.set(arg, into(this=node) if into else node)
4803    return inst
4804
4805
4806def _apply_cte_builder(
4807    instance: E,
4808    alias: ExpOrStr,
4809    as_: ExpOrStr,
4810    recursive: t.Optional[bool] = None,
4811    append: bool = True,
4812    dialect: DialectType = None,
4813    copy: bool = True,
4814    **opts,
4815) -> E:
4816    alias_expression = maybe_parse(alias, dialect=dialect, into=TableAlias, **opts)
4817    as_expression = maybe_parse(as_, dialect=dialect, **opts)
4818    cte = CTE(this=as_expression, alias=alias_expression)
4819    return _apply_child_list_builder(
4820        cte,
4821        instance=instance,
4822        arg="with",
4823        append=append,
4824        copy=copy,
4825        into=With,
4826        properties={"recursive": recursive or False},
4827    )
4828
4829
4830def _combine(
4831    expressions: t.Sequence[t.Optional[ExpOrStr]],
4832    operator: t.Type[Connector],
4833    dialect: DialectType = None,
4834    copy: bool = True,
4835    **opts,
4836) -> Expression:
4837    conditions = [
4838        condition(expression, dialect=dialect, copy=copy, **opts)
4839        for expression in expressions
4840        if expression is not None
4841    ]
4842
4843    this, *rest = conditions
4844    if rest:
4845        this = _wrap(this, Connector)
4846    for expression in rest:
4847        this = operator(this=this, expression=_wrap(expression, Connector))
4848
4849    return this
4850
4851
4852def _wrap(expression: E, kind: t.Type[Expression]) -> E | Paren:
4853    return Paren(this=expression) if isinstance(expression, kind) else expression
4854
4855
4856def union(
4857    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
4858) -> Union:
4859    """
4860    Initializes a syntax tree from one UNION expression.
4861
4862    Example:
4863        >>> union("SELECT * FROM foo", "SELECT * FROM bla").sql()
4864        'SELECT * FROM foo UNION SELECT * FROM bla'
4865
4866    Args:
4867        left: the SQL code string corresponding to the left-hand side.
4868            If an `Expression` instance is passed, it will be used as-is.
4869        right: the SQL code string corresponding to the right-hand side.
4870            If an `Expression` instance is passed, it will be used as-is.
4871        distinct: set the DISTINCT flag if and only if this is true.
4872        dialect: the dialect used to parse the input expression.
4873        opts: other options to use to parse the input expressions.
4874
4875    Returns:
4876        The new Union instance.
4877    """
4878    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
4879    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
4880
4881    return Union(this=left, expression=right, distinct=distinct)
4882
4883
4884def intersect(
4885    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
4886) -> Intersect:
4887    """
4888    Initializes a syntax tree from one INTERSECT expression.
4889
4890    Example:
4891        >>> intersect("SELECT * FROM foo", "SELECT * FROM bla").sql()
4892        'SELECT * FROM foo INTERSECT SELECT * FROM bla'
4893
4894    Args:
4895        left: the SQL code string corresponding to the left-hand side.
4896            If an `Expression` instance is passed, it will be used as-is.
4897        right: the SQL code string corresponding to the right-hand side.
4898            If an `Expression` instance is passed, it will be used as-is.
4899        distinct: set the DISTINCT flag if and only if this is true.
4900        dialect: the dialect used to parse the input expression.
4901        opts: other options to use to parse the input expressions.
4902
4903    Returns:
4904        The new Intersect instance.
4905    """
4906    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
4907    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
4908
4909    return Intersect(this=left, expression=right, distinct=distinct)
4910
4911
4912def except_(
4913    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
4914) -> Except:
4915    """
4916    Initializes a syntax tree from one EXCEPT expression.
4917
4918    Example:
4919        >>> except_("SELECT * FROM foo", "SELECT * FROM bla").sql()
4920        'SELECT * FROM foo EXCEPT SELECT * FROM bla'
4921
4922    Args:
4923        left: the SQL code string corresponding to the left-hand side.
4924            If an `Expression` instance is passed, it will be used as-is.
4925        right: the SQL code string corresponding to the right-hand side.
4926            If an `Expression` instance is passed, it will be used as-is.
4927        distinct: set the DISTINCT flag if and only if this is true.
4928        dialect: the dialect used to parse the input expression.
4929        opts: other options to use to parse the input expressions.
4930
4931    Returns:
4932        The new Except instance.
4933    """
4934    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
4935    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
4936
4937    return Except(this=left, expression=right, distinct=distinct)
4938
4939
4940def select(*expressions: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
4941    """
4942    Initializes a syntax tree from one or multiple SELECT expressions.
4943
4944    Example:
4945        >>> select("col1", "col2").from_("tbl").sql()
4946        'SELECT col1, col2 FROM tbl'
4947
4948    Args:
4949        *expressions: the SQL code string to parse as the expressions of a
4950            SELECT statement. If an Expression instance is passed, this is used as-is.
4951        dialect: the dialect used to parse the input expressions (in the case that an
4952            input expression is a SQL string).
4953        **opts: other options to use to parse the input expressions (again, in the case
4954            that an input expression is a SQL string).
4955
4956    Returns:
4957        Select: the syntax tree for the SELECT statement.
4958    """
4959    return Select().select(*expressions, dialect=dialect, **opts)
4960
4961
4962def from_(expression: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
4963    """
4964    Initializes a syntax tree from a FROM expression.
4965
4966    Example:
4967        >>> from_("tbl").select("col1", "col2").sql()
4968        'SELECT col1, col2 FROM tbl'
4969
4970    Args:
4971        *expression: the SQL code string to parse as the FROM expressions of a
4972            SELECT statement. If an Expression instance is passed, this is used as-is.
4973        dialect: the dialect used to parse the input expression (in the case that the
4974            input expression is a SQL string).
4975        **opts: other options to use to parse the input expressions (again, in the case
4976            that the input expression is a SQL string).
4977
4978    Returns:
4979        Select: the syntax tree for the SELECT statement.
4980    """
4981    return Select().from_(expression, dialect=dialect, **opts)
4982
4983
4984def update(
4985    table: str | Table,
4986    properties: dict,
4987    where: t.Optional[ExpOrStr] = None,
4988    from_: t.Optional[ExpOrStr] = None,
4989    dialect: DialectType = None,
4990    **opts,
4991) -> Update:
4992    """
4993    Creates an update statement.
4994
4995    Example:
4996        >>> update("my_table", {"x": 1, "y": "2", "z": None}, from_="baz", where="id > 1").sql()
4997        "UPDATE my_table SET x = 1, y = '2', z = NULL FROM baz WHERE id > 1"
4998
4999    Args:
5000        *properties: dictionary of properties to set which are
5001            auto converted to sql objects eg None -> NULL
5002        where: sql conditional parsed into a WHERE statement
5003        from_: sql statement parsed into a FROM statement
5004        dialect: the dialect used to parse the input expressions.
5005        **opts: other options to use to parse the input expressions.
5006
5007    Returns:
5008        Update: the syntax tree for the UPDATE statement.
5009    """
5010    update_expr = Update(this=maybe_parse(table, into=Table, dialect=dialect))
5011    update_expr.set(
5012        "expressions",
5013        [
5014            EQ(this=maybe_parse(k, dialect=dialect, **opts), expression=convert(v))
5015            for k, v in properties.items()
5016        ],
5017    )
5018    if from_:
5019        update_expr.set(
5020            "from",
5021            maybe_parse(from_, into=From, dialect=dialect, prefix="FROM", **opts),
5022        )
5023    if isinstance(where, Condition):
5024        where = Where(this=where)
5025    if where:
5026        update_expr.set(
5027            "where",
5028            maybe_parse(where, into=Where, dialect=dialect, prefix="WHERE", **opts),
5029        )
5030    return update_expr
5031
5032
5033def delete(
5034    table: ExpOrStr,
5035    where: t.Optional[ExpOrStr] = None,
5036    returning: t.Optional[ExpOrStr] = None,
5037    dialect: DialectType = None,
5038    **opts,
5039) -> Delete:
5040    """
5041    Builds a delete statement.
5042
5043    Example:
5044        >>> delete("my_table", where="id > 1").sql()
5045        'DELETE FROM my_table WHERE id > 1'
5046
5047    Args:
5048        where: sql conditional parsed into a WHERE statement
5049        returning: sql conditional parsed into a RETURNING statement
5050        dialect: the dialect used to parse the input expressions.
5051        **opts: other options to use to parse the input expressions.
5052
5053    Returns:
5054        Delete: the syntax tree for the DELETE statement.
5055    """
5056    delete_expr = Delete().delete(table, dialect=dialect, copy=False, **opts)
5057    if where:
5058        delete_expr = delete_expr.where(where, dialect=dialect, copy=False, **opts)
5059    if returning:
5060        delete_expr = delete_expr.returning(returning, dialect=dialect, copy=False, **opts)
5061    return delete_expr
5062
5063
5064def insert(
5065    expression: ExpOrStr,
5066    into: ExpOrStr,
5067    columns: t.Optional[t.Sequence[ExpOrStr]] = None,
5068    overwrite: t.Optional[bool] = None,
5069    dialect: DialectType = None,
5070    copy: bool = True,
5071    **opts,
5072) -> Insert:
5073    """
5074    Builds an INSERT statement.
5075
5076    Example:
5077        >>> insert("VALUES (1, 2, 3)", "tbl").sql()
5078        'INSERT INTO tbl VALUES (1, 2, 3)'
5079
5080    Args:
5081        expression: the sql string or expression of the INSERT statement
5082        into: the tbl to insert data to.
5083        columns: optionally the table's column names.
5084        overwrite: whether to INSERT OVERWRITE or not.
5085        dialect: the dialect used to parse the input expressions.
5086        copy: whether or not to copy the expression.
5087        **opts: other options to use to parse the input expressions.
5088
5089    Returns:
5090        Insert: the syntax tree for the INSERT statement.
5091    """
5092    expr = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
5093    this: Table | Schema = maybe_parse(into, into=Table, dialect=dialect, copy=copy, **opts)
5094
5095    if columns:
5096        this = _apply_list_builder(
5097            *columns,
5098            instance=Schema(this=this),
5099            arg="expressions",
5100            into=Identifier,
5101            copy=False,
5102            dialect=dialect,
5103            **opts,
5104        )
5105
5106    return Insert(this=this, expression=expr, overwrite=overwrite)
5107
5108
5109def condition(
5110    expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
5111) -> Condition:
5112    """
5113    Initialize a logical condition expression.
5114
5115    Example:
5116        >>> condition("x=1").sql()
5117        'x = 1'
5118
5119        This is helpful for composing larger logical syntax trees:
5120        >>> where = condition("x=1")
5121        >>> where = where.and_("y=1")
5122        >>> Select().from_("tbl").select("*").where(where).sql()
5123        'SELECT * FROM tbl WHERE x = 1 AND y = 1'
5124
5125    Args:
5126        *expression: the SQL code string to parse.
5127            If an Expression instance is passed, this is used as-is.
5128        dialect: the dialect used to parse the input expression (in the case that the
5129            input expression is a SQL string).
5130        copy: Whether or not to copy `expression` (only applies to expressions).
5131        **opts: other options to use to parse the input expressions (again, in the case
5132            that the input expression is a SQL string).
5133
5134    Returns:
5135        The new Condition instance
5136    """
5137    return maybe_parse(
5138        expression,
5139        into=Condition,
5140        dialect=dialect,
5141        copy=copy,
5142        **opts,
5143    )
5144
5145
5146def and_(
5147    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
5148) -> Condition:
5149    """
5150    Combine multiple conditions with an AND logical operator.
5151
5152    Example:
5153        >>> and_("x=1", and_("y=1", "z=1")).sql()
5154        'x = 1 AND (y = 1 AND z = 1)'
5155
5156    Args:
5157        *expressions: the SQL code strings to parse.
5158            If an Expression instance is passed, this is used as-is.
5159        dialect: the dialect used to parse the input expression.
5160        copy: whether or not to copy `expressions` (only applies to Expressions).
5161        **opts: other options to use to parse the input expressions.
5162
5163    Returns:
5164        And: the new condition
5165    """
5166    return t.cast(Condition, _combine(expressions, And, dialect, copy=copy, **opts))
5167
5168
5169def or_(
5170    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
5171) -> Condition:
5172    """
5173    Combine multiple conditions with an OR logical operator.
5174
5175    Example:
5176        >>> or_("x=1", or_("y=1", "z=1")).sql()
5177        'x = 1 OR (y = 1 OR z = 1)'
5178
5179    Args:
5180        *expressions: the SQL code strings to parse.
5181            If an Expression instance is passed, this is used as-is.
5182        dialect: the dialect used to parse the input expression.
5183        copy: whether or not to copy `expressions` (only applies to Expressions).
5184        **opts: other options to use to parse the input expressions.
5185
5186    Returns:
5187        Or: the new condition
5188    """
5189    return t.cast(Condition, _combine(expressions, Or, dialect, copy=copy, **opts))
5190
5191
5192def not_(expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts) -> Not:
5193    """
5194    Wrap a condition with a NOT operator.
5195
5196    Example:
5197        >>> not_("this_suit='black'").sql()
5198        "NOT this_suit = 'black'"
5199
5200    Args:
5201        expression: the SQL code string to parse.
5202            If an Expression instance is passed, this is used as-is.
5203        dialect: the dialect used to parse the input expression.
5204        copy: whether to copy the expression or not.
5205        **opts: other options to use to parse the input expressions.
5206
5207    Returns:
5208        The new condition.
5209    """
5210    this = condition(
5211        expression,
5212        dialect=dialect,
5213        copy=copy,
5214        **opts,
5215    )
5216    return Not(this=_wrap(this, Connector))
5217
5218
5219def paren(expression: ExpOrStr, copy: bool = True) -> Paren:
5220    """
5221    Wrap an expression in parentheses.
5222
5223    Example:
5224        >>> paren("5 + 3").sql()
5225        '(5 + 3)'
5226
5227    Args:
5228        expression: the SQL code string to parse.
5229            If an Expression instance is passed, this is used as-is.
5230        copy: whether to copy the expression or not.
5231
5232    Returns:
5233        The wrapped expression.
5234    """
5235    return Paren(this=maybe_parse(expression, copy=copy))
5236
5237
5238SAFE_IDENTIFIER_RE = re.compile(r"^[_a-zA-Z][\w]*$")
5239
5240
5241@t.overload
5242def to_identifier(name: None, quoted: t.Optional[bool] = None, copy: bool = True) -> None:
5243    ...
5244
5245
5246@t.overload
5247def to_identifier(
5248    name: str | Identifier, quoted: t.Optional[bool] = None, copy: bool = True
5249) -> Identifier:
5250    ...
5251
5252
5253def to_identifier(name, quoted=None, copy=True):
5254    """Builds an identifier.
5255
5256    Args:
5257        name: The name to turn into an identifier.
5258        quoted: Whether or not force quote the identifier.
5259        copy: Whether or not to copy a passed in Identefier node.
5260
5261    Returns:
5262        The identifier ast node.
5263    """
5264
5265    if name is None:
5266        return None
5267
5268    if isinstance(name, Identifier):
5269        identifier = _maybe_copy(name, copy)
5270    elif isinstance(name, str):
5271        identifier = Identifier(
5272            this=name,
5273            quoted=not SAFE_IDENTIFIER_RE.match(name) if quoted is None else quoted,
5274        )
5275    else:
5276        raise ValueError(f"Name needs to be a string or an Identifier, got: {name.__class__}")
5277    return identifier
5278
5279
5280INTERVAL_STRING_RE = re.compile(r"\s*([0-9]+)\s*([a-zA-Z]+)\s*")
5281
5282
5283def to_interval(interval: str | Literal) -> Interval:
5284    """Builds an interval expression from a string like '1 day' or '5 months'."""
5285    if isinstance(interval, Literal):
5286        if not interval.is_string:
5287            raise ValueError("Invalid interval string.")
5288
5289        interval = interval.this
5290
5291    interval_parts = INTERVAL_STRING_RE.match(interval)  # type: ignore
5292
5293    if not interval_parts:
5294        raise ValueError("Invalid interval string.")
5295
5296    return Interval(
5297        this=Literal.string(interval_parts.group(1)),
5298        unit=Var(this=interval_parts.group(2)),
5299    )
5300
5301
5302@t.overload
5303def to_table(sql_path: str | Table, **kwargs) -> Table:
5304    ...
5305
5306
5307@t.overload
5308def to_table(sql_path: None, **kwargs) -> None:
5309    ...
5310
5311
5312def to_table(
5313    sql_path: t.Optional[str | Table], dialect: DialectType = None, **kwargs
5314) -> t.Optional[Table]:
5315    """
5316    Create a table expression from a `[catalog].[schema].[table]` sql path. Catalog and schema are optional.
5317    If a table is passed in then that table is returned.
5318
5319    Args:
5320        sql_path: a `[catalog].[schema].[table]` string.
5321        dialect: the source dialect according to which the table name will be parsed.
5322        kwargs: the kwargs to instantiate the resulting `Table` expression with.
5323
5324    Returns:
5325        A table expression.
5326    """
5327    if sql_path is None or isinstance(sql_path, Table):
5328        return sql_path
5329    if not isinstance(sql_path, str):
5330        raise ValueError(f"Invalid type provided for a table: {type(sql_path)}")
5331
5332    table = maybe_parse(sql_path, into=Table, dialect=dialect)
5333    if table:
5334        for k, v in kwargs.items():
5335            table.set(k, v)
5336
5337    return table
5338
5339
5340def to_column(sql_path: str | Column, **kwargs) -> Column:
5341    """
5342    Create a column from a `[table].[column]` sql path. Schema is optional.
5343
5344    If a column is passed in then that column is returned.
5345
5346    Args:
5347        sql_path: `[table].[column]` string
5348    Returns:
5349        Table: A column expression
5350    """
5351    if sql_path is None or isinstance(sql_path, Column):
5352        return sql_path
5353    if not isinstance(sql_path, str):
5354        raise ValueError(f"Invalid type provided for column: {type(sql_path)}")
5355    return column(*reversed(sql_path.split(".")), **kwargs)  # type: ignore
5356
5357
5358def alias_(
5359    expression: ExpOrStr,
5360    alias: str | Identifier,
5361    table: bool | t.Sequence[str | Identifier] = False,
5362    quoted: t.Optional[bool] = None,
5363    dialect: DialectType = None,
5364    copy: bool = True,
5365    **opts,
5366):
5367    """Create an Alias expression.
5368
5369    Example:
5370        >>> alias_('foo', 'bar').sql()
5371        'foo AS bar'
5372
5373        >>> alias_('(select 1, 2)', 'bar', table=['a', 'b']).sql()
5374        '(SELECT 1, 2) AS bar(a, b)'
5375
5376    Args:
5377        expression: the SQL code strings to parse.
5378            If an Expression instance is passed, this is used as-is.
5379        alias: the alias name to use. If the name has
5380            special characters it is quoted.
5381        table: Whether or not to create a table alias, can also be a list of columns.
5382        quoted: whether or not to quote the alias
5383        dialect: the dialect used to parse the input expression.
5384        copy: Whether or not to copy the expression.
5385        **opts: other options to use to parse the input expressions.
5386
5387    Returns:
5388        Alias: the aliased expression
5389    """
5390    exp = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
5391    alias = to_identifier(alias, quoted=quoted)
5392
5393    if table:
5394        table_alias = TableAlias(this=alias)
5395        exp.set("alias", table_alias)
5396
5397        if not isinstance(table, bool):
5398            for column in table:
5399                table_alias.append("columns", to_identifier(column, quoted=quoted))
5400
5401        return exp
5402
5403    # We don't set the "alias" arg for Window expressions, because that would add an IDENTIFIER node in
5404    # the AST, representing a "named_window" [1] construct (eg. bigquery). What we want is an ALIAS node
5405    # for the complete Window expression.
5406    #
5407    # [1]: https://cloud.google.com/bigquery/docs/reference/standard-sql/window-function-calls
5408
5409    if "alias" in exp.arg_types and not isinstance(exp, Window):
5410        exp.set("alias", alias)
5411        return exp
5412    return Alias(this=exp, alias=alias)
5413
5414
5415def subquery(
5416    expression: ExpOrStr,
5417    alias: t.Optional[Identifier | str] = None,
5418    dialect: DialectType = None,
5419    **opts,
5420) -> Select:
5421    """
5422    Build a subquery expression.
5423
5424    Example:
5425        >>> subquery('select x from tbl', 'bar').select('x').sql()
5426        'SELECT x FROM (SELECT x FROM tbl) AS bar'
5427
5428    Args:
5429        expression: the SQL code strings to parse.
5430            If an Expression instance is passed, this is used as-is.
5431        alias: the alias name to use.
5432        dialect: the dialect used to parse the input expression.
5433        **opts: other options to use to parse the input expressions.
5434
5435    Returns:
5436        A new Select instance with the subquery expression included.
5437    """
5438
5439    expression = maybe_parse(expression, dialect=dialect, **opts).subquery(alias)
5440    return Select().from_(expression, dialect=dialect, **opts)
5441
5442
5443def column(
5444    col: str | Identifier,
5445    table: t.Optional[str | Identifier] = None,
5446    db: t.Optional[str | Identifier] = None,
5447    catalog: t.Optional[str | Identifier] = None,
5448    quoted: t.Optional[bool] = None,
5449) -> Column:
5450    """
5451    Build a Column.
5452
5453    Args:
5454        col: Column name.
5455        table: Table name.
5456        db: Database name.
5457        catalog: Catalog name.
5458        quoted: Whether to force quotes on the column's identifiers.
5459
5460    Returns:
5461        The new Column instance.
5462    """
5463    return Column(
5464        this=to_identifier(col, quoted=quoted),
5465        table=to_identifier(table, quoted=quoted),
5466        db=to_identifier(db, quoted=quoted),
5467        catalog=to_identifier(catalog, quoted=quoted),
5468    )
5469
5470
5471def cast(expression: ExpOrStr, to: str | DataType | DataType.Type, **opts) -> Cast:
5472    """Cast an expression to a data type.
5473
5474    Example:
5475        >>> cast('x + 1', 'int').sql()
5476        'CAST(x + 1 AS INT)'
5477
5478    Args:
5479        expression: The expression to cast.
5480        to: The datatype to cast to.
5481
5482    Returns:
5483        The new Cast instance.
5484    """
5485    expression = maybe_parse(expression, **opts)
5486    return Cast(this=expression, to=DataType.build(to, **opts))
5487
5488
5489def table_(
5490    table: Identifier | str,
5491    db: t.Optional[Identifier | str] = None,
5492    catalog: t.Optional[Identifier | str] = None,
5493    quoted: t.Optional[bool] = None,
5494    alias: t.Optional[Identifier | str] = None,
5495) -> Table:
5496    """Build a Table.
5497
5498    Args:
5499        table: Table name.
5500        db: Database name.
5501        catalog: Catalog name.
5502        quote: Whether to force quotes on the table's identifiers.
5503        alias: Table's alias.
5504
5505    Returns:
5506        The new Table instance.
5507    """
5508    return Table(
5509        this=to_identifier(table, quoted=quoted),
5510        db=to_identifier(db, quoted=quoted),
5511        catalog=to_identifier(catalog, quoted=quoted),
5512        alias=TableAlias(this=to_identifier(alias)) if alias else None,
5513    )
5514
5515
5516def values(
5517    values: t.Iterable[t.Tuple[t.Any, ...]],
5518    alias: t.Optional[str] = None,
5519    columns: t.Optional[t.Iterable[str] | t.Dict[str, DataType]] = None,
5520) -> Values:
5521    """Build VALUES statement.
5522
5523    Example:
5524        >>> values([(1, '2')]).sql()
5525        "VALUES (1, '2')"
5526
5527    Args:
5528        values: values statements that will be converted to SQL
5529        alias: optional alias
5530        columns: Optional list of ordered column names or ordered dictionary of column names to types.
5531         If either are provided then an alias is also required.
5532
5533    Returns:
5534        Values: the Values expression object
5535    """
5536    if columns and not alias:
5537        raise ValueError("Alias is required when providing columns")
5538
5539    return Values(
5540        expressions=[convert(tup) for tup in values],
5541        alias=(
5542            TableAlias(this=to_identifier(alias), columns=[to_identifier(x) for x in columns])
5543            if columns
5544            else (TableAlias(this=to_identifier(alias)) if alias else None)
5545        ),
5546    )
5547
5548
5549def var(name: t.Optional[ExpOrStr]) -> Var:
5550    """Build a SQL variable.
5551
5552    Example:
5553        >>> repr(var('x'))
5554        '(VAR this: x)'
5555
5556        >>> repr(var(column('x', table='y')))
5557        '(VAR this: x)'
5558
5559    Args:
5560        name: The name of the var or an expression who's name will become the var.
5561
5562    Returns:
5563        The new variable node.
5564    """
5565    if not name:
5566        raise ValueError("Cannot convert empty name into var.")
5567
5568    if isinstance(name, Expression):
5569        name = name.name
5570    return Var(this=name)
5571
5572
5573def rename_table(old_name: str | Table, new_name: str | Table) -> AlterTable:
5574    """Build ALTER TABLE... RENAME... expression
5575
5576    Args:
5577        old_name: The old name of the table
5578        new_name: The new name of the table
5579
5580    Returns:
5581        Alter table expression
5582    """
5583    old_table = to_table(old_name)
5584    new_table = to_table(new_name)
5585    return AlterTable(
5586        this=old_table,
5587        actions=[
5588            RenameTable(this=new_table),
5589        ],
5590    )
5591
5592
5593def convert(value: t.Any, copy: bool = False) -> Expression:
5594    """Convert a python value into an expression object.
5595
5596    Raises an error if a conversion is not possible.
5597
5598    Args:
5599        value: A python object.
5600        copy: Whether or not to copy `value` (only applies to Expressions and collections).
5601
5602    Returns:
5603        Expression: the equivalent expression object.
5604    """
5605    if isinstance(value, Expression):
5606        return _maybe_copy(value, copy)
5607    if isinstance(value, str):
5608        return Literal.string(value)
5609    if isinstance(value, bool):
5610        return Boolean(this=value)
5611    if value is None or (isinstance(value, float) and math.isnan(value)):
5612        return NULL
5613    if isinstance(value, numbers.Number):
5614        return Literal.number(value)
5615    if isinstance(value, datetime.datetime):
5616        datetime_literal = Literal.string(
5617            (value if value.tzinfo else value.replace(tzinfo=datetime.timezone.utc)).isoformat()
5618        )
5619        return TimeStrToTime(this=datetime_literal)
5620    if isinstance(value, datetime.date):
5621        date_literal = Literal.string(value.strftime("%Y-%m-%d"))
5622        return DateStrToDate(this=date_literal)
5623    if isinstance(value, tuple):
5624        return Tuple(expressions=[convert(v, copy=copy) for v in value])
5625    if isinstance(value, list):
5626        return Array(expressions=[convert(v, copy=copy) for v in value])
5627    if isinstance(value, dict):
5628        return Map(
5629            keys=[convert(k, copy=copy) for k in value],
5630            values=[convert(v, copy=copy) for v in value.values()],
5631        )
5632    raise ValueError(f"Cannot convert {value}")
5633
5634
5635def replace_children(expression: Expression, fun: t.Callable, *args, **kwargs) -> None:
5636    """
5637    Replace children of an expression with the result of a lambda fun(child) -> exp.
5638    """
5639    for k, v in expression.args.items():
5640        is_list_arg = type(v) is list
5641
5642        child_nodes = v if is_list_arg else [v]
5643        new_child_nodes = []
5644
5645        for cn in child_nodes:
5646            if isinstance(cn, Expression):
5647                for child_node in ensure_collection(fun(cn, *args, **kwargs)):
5648                    new_child_nodes.append(child_node)
5649                    child_node.parent = expression
5650                    child_node.arg_key = k
5651            else:
5652                new_child_nodes.append(cn)
5653
5654        expression.args[k] = new_child_nodes if is_list_arg else seq_get(new_child_nodes, 0)
5655
5656
5657def column_table_names(expression: Expression) -> t.List[str]:
5658    """
5659    Return all table names referenced through columns in an expression.
5660
5661    Example:
5662        >>> import sqlglot
5663        >>> column_table_names(sqlglot.parse_one("a.b AND c.d AND c.e"))
5664        ['c', 'a']
5665
5666    Args:
5667        expression: expression to find table names.
5668
5669    Returns:
5670        A list of unique names.
5671    """
5672    return list(dict.fromkeys(column.table for column in expression.find_all(Column)))
5673
5674
5675def table_name(table: Table | str) -> str:
5676    """Get the full name of a table as a string.
5677
5678    Args:
5679        table: table expression node or string.
5680
5681    Examples:
5682        >>> from sqlglot import exp, parse_one
5683        >>> table_name(parse_one("select * from a.b.c").find(exp.Table))
5684        'a.b.c'
5685
5686    Returns:
5687        The table name.
5688    """
5689
5690    table = maybe_parse(table, into=Table)
5691
5692    if not table:
5693        raise ValueError(f"Cannot parse {table}")
5694
5695    return ".".join(part for part in (table.text("catalog"), table.text("db"), table.name) if part)
5696
5697
5698def replace_tables(expression: E, mapping: t.Dict[str, str], copy: bool = True) -> E:
5699    """Replace all tables in expression according to the mapping.
5700
5701    Args:
5702        expression: expression node to be transformed and replaced.
5703        mapping: mapping of table names.
5704        copy: whether or not to copy the expression.
5705
5706    Examples:
5707        >>> from sqlglot import exp, parse_one
5708        >>> replace_tables(parse_one("select * from a.b"), {"a.b": "c"}).sql()
5709        'SELECT * FROM c'
5710
5711    Returns:
5712        The mapped expression.
5713    """
5714
5715    def _replace_tables(node: Expression) -> Expression:
5716        if isinstance(node, Table):
5717            new_name = mapping.get(table_name(node))
5718            if new_name:
5719                return to_table(
5720                    new_name,
5721                    **{k: v for k, v in node.args.items() if k not in ("this", "db", "catalog")},
5722                )
5723        return node
5724
5725    return expression.transform(_replace_tables, copy=copy)
5726
5727
5728def replace_placeholders(expression: Expression, *args, **kwargs) -> Expression:
5729    """Replace placeholders in an expression.
5730
5731    Args:
5732        expression: expression node to be transformed and replaced.
5733        args: positional names that will substitute unnamed placeholders in the given order.
5734        kwargs: keyword arguments that will substitute named placeholders.
5735
5736    Examples:
5737        >>> from sqlglot import exp, parse_one
5738        >>> replace_placeholders(
5739        ...     parse_one("select * from :tbl where ? = ?"),
5740        ...     exp.to_identifier("str_col"), "b", tbl=exp.to_identifier("foo")
5741        ... ).sql()
5742        "SELECT * FROM foo WHERE str_col = 'b'"
5743
5744    Returns:
5745        The mapped expression.
5746    """
5747
5748    def _replace_placeholders(node: Expression, args, **kwargs) -> Expression:
5749        if isinstance(node, Placeholder):
5750            if node.name:
5751                new_name = kwargs.get(node.name)
5752                if new_name:
5753                    return convert(new_name)
5754            else:
5755                try:
5756                    return convert(next(args))
5757                except StopIteration:
5758                    pass
5759        return node
5760
5761    return expression.transform(_replace_placeholders, iter(args), **kwargs)
5762
5763
5764def expand(
5765    expression: Expression, sources: t.Dict[str, Subqueryable], copy: bool = True
5766) -> Expression:
5767    """Transforms an expression by expanding all referenced sources into subqueries.
5768
5769    Examples:
5770        >>> from sqlglot import parse_one
5771        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y")}).sql()
5772        'SELECT * FROM (SELECT * FROM y) AS z /* source: x */'
5773
5774        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y"), "y": parse_one("select * from z")}).sql()
5775        'SELECT * FROM (SELECT * FROM (SELECT * FROM z) AS y /* source: y */) AS z /* source: x */'
5776
5777    Args:
5778        expression: The expression to expand.
5779        sources: A dictionary of name to Subqueryables.
5780        copy: Whether or not to copy the expression during transformation. Defaults to True.
5781
5782    Returns:
5783        The transformed expression.
5784    """
5785
5786    def _expand(node: Expression):
5787        if isinstance(node, Table):
5788            name = table_name(node)
5789            source = sources.get(name)
5790            if source:
5791                subquery = source.subquery(node.alias or name)
5792                subquery.comments = [f"source: {name}"]
5793                return subquery.transform(_expand, copy=False)
5794        return node
5795
5796    return expression.transform(_expand, copy=copy)
5797
5798
5799def func(name: str, *args, dialect: DialectType = None, **kwargs) -> Func:
5800    """
5801    Returns a Func expression.
5802
5803    Examples:
5804        >>> func("abs", 5).sql()
5805        'ABS(5)'
5806
5807        >>> func("cast", this=5, to=DataType.build("DOUBLE")).sql()
5808        'CAST(5 AS DOUBLE)'
5809
5810    Args:
5811        name: the name of the function to build.
5812        args: the args used to instantiate the function of interest.
5813        dialect: the source dialect.
5814        kwargs: the kwargs used to instantiate the function of interest.
5815
5816    Note:
5817        The arguments `args` and `kwargs` are mutually exclusive.
5818
5819    Returns:
5820        An instance of the function of interest, or an anonymous function, if `name` doesn't
5821        correspond to an existing `sqlglot.expressions.Func` class.
5822    """
5823    if args and kwargs:
5824        raise ValueError("Can't use both args and kwargs to instantiate a function.")
5825
5826    from sqlglot.dialects.dialect import Dialect
5827
5828    converted: t.List[Expression] = [maybe_parse(arg, dialect=dialect) for arg in args]
5829    kwargs = {key: maybe_parse(value, dialect=dialect) for key, value in kwargs.items()}
5830
5831    parser = Dialect.get_or_raise(dialect)().parser()
5832    from_args_list = parser.FUNCTIONS.get(name.upper())
5833
5834    if from_args_list:
5835        function = from_args_list(converted) if converted else from_args_list.__self__(**kwargs)  # type: ignore
5836    else:
5837        kwargs = kwargs or {"expressions": converted}
5838        function = Anonymous(this=name, **kwargs)
5839
5840    for error_message in function.error_messages(converted):
5841        raise ValueError(error_message)
5842
5843    return function
5844
5845
5846def true() -> Boolean:
5847    """
5848    Returns a true Boolean expression.
5849    """
5850    return Boolean(this=True)
5851
5852
5853def false() -> Boolean:
5854    """
5855    Returns a false Boolean expression.
5856    """
5857    return Boolean(this=False)
5858
5859
5860def null() -> Null:
5861    """
5862    Returns a Null expression.
5863    """
5864    return Null()
5865
5866
5867# TODO: deprecate this
5868TRUE = Boolean(this=True)
5869FALSE = Boolean(this=False)
5870NULL = Null()
class Expression:
 55class Expression(metaclass=_Expression):
 56    """
 57    The base class for all expressions in a syntax tree. Each Expression encapsulates any necessary
 58    context, such as its child expressions, their names (arg keys), and whether a given child expression
 59    is optional or not.
 60
 61    Attributes:
 62        key: a unique key for each class in the Expression hierarchy. This is useful for hashing
 63            and representing expressions as strings.
 64        arg_types: determines what arguments (child nodes) are supported by an expression. It
 65            maps arg keys to booleans that indicate whether the corresponding args are optional.
 66        parent: a reference to the parent expression (or None, in case of root expressions).
 67        arg_key: the arg key an expression is associated with, i.e. the name its parent expression
 68            uses to refer to it.
 69        comments: a list of comments that are associated with a given expression. This is used in
 70            order to preserve comments when transpiling SQL code.
 71        _type: the `sqlglot.expressions.DataType` type of an expression. This is inferred by the
 72            optimizer, in order to enable some transformations that require type information.
 73
 74    Example:
 75        >>> class Foo(Expression):
 76        ...     arg_types = {"this": True, "expression": False}
 77
 78        The above definition informs us that Foo is an Expression that requires an argument called
 79        "this" and may also optionally receive an argument called "expression".
 80
 81    Args:
 82        args: a mapping used for retrieving the arguments of an expression, given their arg keys.
 83    """
 84
 85    key = "expression"
 86    arg_types = {"this": True}
 87    __slots__ = ("args", "parent", "arg_key", "comments", "_type", "_meta", "_hash")
 88
 89    def __init__(self, **args: t.Any):
 90        self.args: t.Dict[str, t.Any] = args
 91        self.parent: t.Optional[Expression] = None
 92        self.arg_key: t.Optional[str] = None
 93        self.comments: t.Optional[t.List[str]] = None
 94        self._type: t.Optional[DataType] = None
 95        self._meta: t.Optional[t.Dict[str, t.Any]] = None
 96        self._hash: t.Optional[int] = None
 97
 98        for arg_key, value in self.args.items():
 99            self._set_parent(arg_key, value)
100
101    def __eq__(self, other) -> bool:
102        return type(self) is type(other) and hash(self) == hash(other)
103
104    @property
105    def hashable_args(self) -> t.Any:
106        args = (self.args.get(k) for k in self.arg_types)
107
108        return tuple(
109            (tuple(_norm_arg(a) for a in arg) if arg else None)
110            if type(arg) is list
111            else (_norm_arg(arg) if arg is not None and arg is not False else None)
112            for arg in args
113        )
114
115    def __hash__(self) -> int:
116        if self._hash is not None:
117            return self._hash
118
119        return hash((self.__class__, self.hashable_args))
120
121    @property
122    def this(self):
123        """
124        Retrieves the argument with key "this".
125        """
126        return self.args.get("this")
127
128    @property
129    def expression(self):
130        """
131        Retrieves the argument with key "expression".
132        """
133        return self.args.get("expression")
134
135    @property
136    def expressions(self):
137        """
138        Retrieves the argument with key "expressions".
139        """
140        return self.args.get("expressions") or []
141
142    def text(self, key) -> str:
143        """
144        Returns a textual representation of the argument corresponding to "key". This can only be used
145        for args that are strings or leaf Expression instances, such as identifiers and literals.
146        """
147        field = self.args.get(key)
148        if isinstance(field, str):
149            return field
150        if isinstance(field, (Identifier, Literal, Var)):
151            return field.this
152        if isinstance(field, (Star, Null)):
153            return field.name
154        return ""
155
156    @property
157    def is_string(self) -> bool:
158        """
159        Checks whether a Literal expression is a string.
160        """
161        return isinstance(self, Literal) and self.args["is_string"]
162
163    @property
164    def is_number(self) -> bool:
165        """
166        Checks whether a Literal expression is a number.
167        """
168        return isinstance(self, Literal) and not self.args["is_string"]
169
170    @property
171    def is_int(self) -> bool:
172        """
173        Checks whether a Literal expression is an integer.
174        """
175        if self.is_number:
176            try:
177                int(self.name)
178                return True
179            except ValueError:
180                pass
181        return False
182
183    @property
184    def is_star(self) -> bool:
185        """Checks whether an expression is a star."""
186        return isinstance(self, Star) or (isinstance(self, Column) and isinstance(self.this, Star))
187
188    @property
189    def alias(self) -> str:
190        """
191        Returns the alias of the expression, or an empty string if it's not aliased.
192        """
193        if isinstance(self.args.get("alias"), TableAlias):
194            return self.args["alias"].name
195        return self.text("alias")
196
197    @property
198    def name(self) -> str:
199        return self.text("this")
200
201    @property
202    def alias_or_name(self) -> str:
203        return self.alias or self.name
204
205    @property
206    def output_name(self) -> str:
207        """
208        Name of the output column if this expression is a selection.
209
210        If the Expression has no output name, an empty string is returned.
211
212        Example:
213            >>> from sqlglot import parse_one
214            >>> parse_one("SELECT a").expressions[0].output_name
215            'a'
216            >>> parse_one("SELECT b AS c").expressions[0].output_name
217            'c'
218            >>> parse_one("SELECT 1 + 2").expressions[0].output_name
219            ''
220        """
221        return ""
222
223    @property
224    def type(self) -> t.Optional[DataType]:
225        return self._type
226
227    @type.setter
228    def type(self, dtype: t.Optional[DataType | DataType.Type | str]) -> None:
229        if dtype and not isinstance(dtype, DataType):
230            dtype = DataType.build(dtype)
231        self._type = dtype  # type: ignore
232
233    @property
234    def meta(self) -> t.Dict[str, t.Any]:
235        if self._meta is None:
236            self._meta = {}
237        return self._meta
238
239    def __deepcopy__(self, memo):
240        copy = self.__class__(**deepcopy(self.args))
241        if self.comments is not None:
242            copy.comments = deepcopy(self.comments)
243
244        if self._type is not None:
245            copy._type = self._type.copy()
246
247        if self._meta is not None:
248            copy._meta = deepcopy(self._meta)
249
250        return copy
251
252    def copy(self):
253        """
254        Returns a deep copy of the expression.
255        """
256        new = deepcopy(self)
257        new.parent = self.parent
258        return new
259
260    def add_comments(self, comments: t.Optional[t.List[str]]) -> None:
261        if self.comments is None:
262            self.comments = []
263        if comments:
264            self.comments.extend(comments)
265
266    def append(self, arg_key: str, value: t.Any) -> None:
267        """
268        Appends value to arg_key if it's a list or sets it as a new list.
269
270        Args:
271            arg_key (str): name of the list expression arg
272            value (Any): value to append to the list
273        """
274        if not isinstance(self.args.get(arg_key), list):
275            self.args[arg_key] = []
276        self.args[arg_key].append(value)
277        self._set_parent(arg_key, value)
278
279    def set(self, arg_key: str, value: t.Any) -> None:
280        """
281        Sets `arg_key` to `value`.
282
283        Args:
284            arg_key (str): name of the expression arg.
285            value: value to set the arg to.
286        """
287        self.args[arg_key] = value
288        self._set_parent(arg_key, value)
289
290    def _set_parent(self, arg_key: str, value: t.Any) -> None:
291        if hasattr(value, "parent"):
292            value.parent = self
293            value.arg_key = arg_key
294        elif type(value) is list:
295            for v in value:
296                if hasattr(v, "parent"):
297                    v.parent = self
298                    v.arg_key = arg_key
299
300    @property
301    def depth(self) -> int:
302        """
303        Returns the depth of this tree.
304        """
305        if self.parent:
306            return self.parent.depth + 1
307        return 0
308
309    def iter_expressions(self) -> t.Iterator[t.Tuple[str, Expression]]:
310        """Yields the key and expression for all arguments, exploding list args."""
311        for k, vs in self.args.items():
312            if type(vs) is list:
313                for v in vs:
314                    if hasattr(v, "parent"):
315                        yield k, v
316            else:
317                if hasattr(vs, "parent"):
318                    yield k, vs
319
320    def find(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Optional[E]:
321        """
322        Returns the first node in this tree which matches at least one of
323        the specified types.
324
325        Args:
326            expression_types: the expression type(s) to match.
327            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
328
329        Returns:
330            The node which matches the criteria or None if no such node was found.
331        """
332        return next(self.find_all(*expression_types, bfs=bfs), None)
333
334    def find_all(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Iterator[E]:
335        """
336        Returns a generator object which visits all nodes in this tree and only
337        yields those that match at least one of the specified expression types.
338
339        Args:
340            expression_types: the expression type(s) to match.
341            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
342
343        Returns:
344            The generator object.
345        """
346        for expression, *_ in self.walk(bfs=bfs):
347            if isinstance(expression, expression_types):
348                yield expression
349
350    def find_ancestor(self, *expression_types: t.Type[E]) -> t.Optional[E]:
351        """
352        Returns a nearest parent matching expression_types.
353
354        Args:
355            expression_types: the expression type(s) to match.
356
357        Returns:
358            The parent node.
359        """
360        ancestor = self.parent
361        while ancestor and not isinstance(ancestor, expression_types):
362            ancestor = ancestor.parent
363        return t.cast(E, ancestor)
364
365    @property
366    def parent_select(self) -> t.Optional[Select]:
367        """
368        Returns the parent select statement.
369        """
370        return self.find_ancestor(Select)
371
372    @property
373    def same_parent(self) -> bool:
374        """Returns if the parent is the same class as itself."""
375        return type(self.parent) is self.__class__
376
377    def root(self) -> Expression:
378        """
379        Returns the root expression of this tree.
380        """
381        expression = self
382        while expression.parent:
383            expression = expression.parent
384        return expression
385
386    def walk(self, bfs=True, prune=None):
387        """
388        Returns a generator object which visits all nodes in this tree.
389
390        Args:
391            bfs (bool): if set to True the BFS traversal order will be applied,
392                otherwise the DFS traversal will be used instead.
393            prune ((node, parent, arg_key) -> bool): callable that returns True if
394                the generator should stop traversing this branch of the tree.
395
396        Returns:
397            the generator object.
398        """
399        if bfs:
400            yield from self.bfs(prune=prune)
401        else:
402            yield from self.dfs(prune=prune)
403
404    def dfs(self, parent=None, key=None, prune=None):
405        """
406        Returns a generator object which visits all nodes in this tree in
407        the DFS (Depth-first) order.
408
409        Returns:
410            The generator object.
411        """
412        parent = parent or self.parent
413        yield self, parent, key
414        if prune and prune(self, parent, key):
415            return
416
417        for k, v in self.iter_expressions():
418            yield from v.dfs(self, k, prune)
419
420    def bfs(self, prune=None):
421        """
422        Returns a generator object which visits all nodes in this tree in
423        the BFS (Breadth-first) order.
424
425        Returns:
426            The generator object.
427        """
428        queue = deque([(self, self.parent, None)])
429
430        while queue:
431            item, parent, key = queue.popleft()
432
433            yield item, parent, key
434            if prune and prune(item, parent, key):
435                continue
436
437            for k, v in item.iter_expressions():
438                queue.append((v, item, k))
439
440    def unnest(self):
441        """
442        Returns the first non parenthesis child or self.
443        """
444        expression = self
445        while type(expression) is Paren:
446            expression = expression.this
447        return expression
448
449    def unalias(self):
450        """
451        Returns the inner expression if this is an Alias.
452        """
453        if isinstance(self, Alias):
454            return self.this
455        return self
456
457    def unnest_operands(self):
458        """
459        Returns unnested operands as a tuple.
460        """
461        return tuple(arg.unnest() for _, arg in self.iter_expressions())
462
463    def flatten(self, unnest=True):
464        """
465        Returns a generator which yields child nodes who's parents are the same class.
466
467        A AND B AND C -> [A, B, C]
468        """
469        for node, _, _ in self.dfs(prune=lambda n, p, *_: p and not type(n) is self.__class__):
470            if not type(node) is self.__class__:
471                yield node.unnest() if unnest else node
472
473    def __str__(self) -> str:
474        return self.sql()
475
476    def __repr__(self) -> str:
477        return self._to_s()
478
479    def sql(self, dialect: DialectType = None, **opts) -> str:
480        """
481        Returns SQL string representation of this tree.
482
483        Args:
484            dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
485            opts: other `sqlglot.generator.Generator` options.
486
487        Returns:
488            The SQL string.
489        """
490        from sqlglot.dialects import Dialect
491
492        return Dialect.get_or_raise(dialect)().generate(self, **opts)
493
494    def _to_s(self, hide_missing: bool = True, level: int = 0) -> str:
495        indent = "" if not level else "\n"
496        indent += "".join(["  "] * level)
497        left = f"({self.key.upper()} "
498
499        args: t.Dict[str, t.Any] = {
500            k: ", ".join(
501                v._to_s(hide_missing=hide_missing, level=level + 1)
502                if hasattr(v, "_to_s")
503                else str(v)
504                for v in ensure_list(vs)
505                if v is not None
506            )
507            for k, vs in self.args.items()
508        }
509        args["comments"] = self.comments
510        args["type"] = self.type
511        args = {k: v for k, v in args.items() if v or not hide_missing}
512
513        right = ", ".join(f"{k}: {v}" for k, v in args.items())
514        right += ")"
515
516        return indent + left + right
517
518    def transform(self, fun, *args, copy=True, **kwargs):
519        """
520        Recursively visits all tree nodes (excluding already transformed ones)
521        and applies the given transformation function to each node.
522
523        Args:
524            fun (function): a function which takes a node as an argument and returns a
525                new transformed node or the same node without modifications. If the function
526                returns None, then the corresponding node will be removed from the syntax tree.
527            copy (bool): if set to True a new tree instance is constructed, otherwise the tree is
528                modified in place.
529
530        Returns:
531            The transformed tree.
532        """
533        node = self.copy() if copy else self
534        new_node = fun(node, *args, **kwargs)
535
536        if new_node is None or not isinstance(new_node, Expression):
537            return new_node
538        if new_node is not node:
539            new_node.parent = node.parent
540            return new_node
541
542        replace_children(new_node, lambda child: child.transform(fun, *args, copy=False, **kwargs))
543        return new_node
544
545    @t.overload
546    def replace(self, expression: E) -> E:
547        ...
548
549    @t.overload
550    def replace(self, expression: None) -> None:
551        ...
552
553    def replace(self, expression):
554        """
555        Swap out this expression with a new expression.
556
557        For example::
558
559            >>> tree = Select().select("x").from_("tbl")
560            >>> tree.find(Column).replace(Column(this="y"))
561            (COLUMN this: y)
562            >>> tree.sql()
563            'SELECT y FROM tbl'
564
565        Args:
566            expression: new node
567
568        Returns:
569            The new expression or expressions.
570        """
571        if not self.parent:
572            return expression
573
574        parent = self.parent
575        self.parent = None
576
577        replace_children(parent, lambda child: expression if child is self else child)
578        return expression
579
580    def pop(self: E) -> E:
581        """
582        Remove this expression from its AST.
583
584        Returns:
585            The popped expression.
586        """
587        self.replace(None)
588        return self
589
590    def assert_is(self, type_: t.Type[E]) -> E:
591        """
592        Assert that this `Expression` is an instance of `type_`.
593
594        If it is NOT an instance of `type_`, this raises an assertion error.
595        Otherwise, this returns this expression.
596
597        Examples:
598            This is useful for type security in chained expressions:
599
600            >>> import sqlglot
601            >>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
602            'SELECT x, z FROM y'
603        """
604        assert isinstance(self, type_)
605        return self
606
607    def error_messages(self, args: t.Optional[t.Sequence] = None) -> t.List[str]:
608        """
609        Checks if this expression is valid (e.g. all mandatory args are set).
610
611        Args:
612            args: a sequence of values that were used to instantiate a Func expression. This is used
613                to check that the provided arguments don't exceed the function argument limit.
614
615        Returns:
616            A list of error messages for all possible errors that were found.
617        """
618        errors: t.List[str] = []
619
620        for k in self.args:
621            if k not in self.arg_types:
622                errors.append(f"Unexpected keyword: '{k}' for {self.__class__}")
623        for k, mandatory in self.arg_types.items():
624            v = self.args.get(k)
625            if mandatory and (v is None or (isinstance(v, list) and not v)):
626                errors.append(f"Required keyword: '{k}' missing for {self.__class__}")
627
628        if (
629            args
630            and isinstance(self, Func)
631            and len(args) > len(self.arg_types)
632            and not self.is_var_len_args
633        ):
634            errors.append(
635                f"The number of provided arguments ({len(args)}) is greater than "
636                f"the maximum number of supported arguments ({len(self.arg_types)})"
637            )
638
639        return errors
640
641    def dump(self):
642        """
643        Dump this Expression to a JSON-serializable dict.
644        """
645        from sqlglot.serde import dump
646
647        return dump(self)
648
649    @classmethod
650    def load(cls, obj):
651        """
652        Load a dict (as returned by `Expression.dump`) into an Expression instance.
653        """
654        from sqlglot.serde import load
655
656        return load(obj)

The base class for all expressions in a syntax tree. Each Expression encapsulates any necessary context, such as its child expressions, their names (arg keys), and whether a given child expression is optional or not.

Attributes:
  • key: a unique key for each class in the Expression hierarchy. This is useful for hashing and representing expressions as strings.
  • arg_types: determines what arguments (child nodes) are supported by an expression. It maps arg keys to booleans that indicate whether the corresponding args are optional.
  • parent: a reference to the parent expression (or None, in case of root expressions).
  • arg_key: the arg key an expression is associated with, i.e. the name its parent expression uses to refer to it.
  • comments: a list of comments that are associated with a given expression. This is used in order to preserve comments when transpiling SQL code.
  • _type: the sqlglot.expressions.DataType type of an expression. This is inferred by the optimizer, in order to enable some transformations that require type information.
Example:
>>> class Foo(Expression):
...     arg_types = {"this": True, "expression": False}

The above definition informs us that Foo is an Expression that requires an argument called "this" and may also optionally receive an argument called "expression".

Arguments:
  • args: a mapping used for retrieving the arguments of an expression, given their arg keys.
Expression(**args: Any)
89    def __init__(self, **args: t.Any):
90        self.args: t.Dict[str, t.Any] = args
91        self.parent: t.Optional[Expression] = None
92        self.arg_key: t.Optional[str] = None
93        self.comments: t.Optional[t.List[str]] = None
94        self._type: t.Optional[DataType] = None
95        self._meta: t.Optional[t.Dict[str, t.Any]] = None
96        self._hash: t.Optional[int] = None
97
98        for arg_key, value in self.args.items():
99            self._set_parent(arg_key, value)
this

Retrieves the argument with key "this".

expression

Retrieves the argument with key "expression".

expressions

Retrieves the argument with key "expressions".

def text(self, key) -> str:
142    def text(self, key) -> str:
143        """
144        Returns a textual representation of the argument corresponding to "key". This can only be used
145        for args that are strings or leaf Expression instances, such as identifiers and literals.
146        """
147        field = self.args.get(key)
148        if isinstance(field, str):
149            return field
150        if isinstance(field, (Identifier, Literal, Var)):
151            return field.this
152        if isinstance(field, (Star, Null)):
153            return field.name
154        return ""

Returns a textual representation of the argument corresponding to "key". This can only be used for args that are strings or leaf Expression instances, such as identifiers and literals.

is_string: bool

Checks whether a Literal expression is a string.

is_number: bool

Checks whether a Literal expression is a number.

is_int: bool

Checks whether a Literal expression is an integer.

is_star: bool

Checks whether an expression is a star.

alias: str

Returns the alias of the expression, or an empty string if it's not aliased.

output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
def copy(self):
252    def copy(self):
253        """
254        Returns a deep copy of the expression.
255        """
256        new = deepcopy(self)
257        new.parent = self.parent
258        return new

Returns a deep copy of the expression.

def add_comments(self, comments: Optional[List[str]]) -> None:
260    def add_comments(self, comments: t.Optional[t.List[str]]) -> None:
261        if self.comments is None:
262            self.comments = []
263        if comments:
264            self.comments.extend(comments)
def append(self, arg_key: str, value: Any) -> None:
266    def append(self, arg_key: str, value: t.Any) -> None:
267        """
268        Appends value to arg_key if it's a list or sets it as a new list.
269
270        Args:
271            arg_key (str): name of the list expression arg
272            value (Any): value to append to the list
273        """
274        if not isinstance(self.args.get(arg_key), list):
275            self.args[arg_key] = []
276        self.args[arg_key].append(value)
277        self._set_parent(arg_key, value)

Appends value to arg_key if it's a list or sets it as a new list.

Arguments:
  • arg_key (str): name of the list expression arg
  • value (Any): value to append to the list
def set(self, arg_key: str, value: Any) -> None:
279    def set(self, arg_key: str, value: t.Any) -> None:
280        """
281        Sets `arg_key` to `value`.
282
283        Args:
284            arg_key (str): name of the expression arg.
285            value: value to set the arg to.
286        """
287        self.args[arg_key] = value
288        self._set_parent(arg_key, value)

Sets arg_key to value.

Arguments:
  • arg_key (str): name of the expression arg.
  • value: value to set the arg to.
depth: int

Returns the depth of this tree.

def iter_expressions(self) -> Iterator[Tuple[str, sqlglot.expressions.Expression]]:
309    def iter_expressions(self) -> t.Iterator[t.Tuple[str, Expression]]:
310        """Yields the key and expression for all arguments, exploding list args."""
311        for k, vs in self.args.items():
312            if type(vs) is list:
313                for v in vs:
314                    if hasattr(v, "parent"):
315                        yield k, v
316            else:
317                if hasattr(vs, "parent"):
318                    yield k, vs

Yields the key and expression for all arguments, exploding list args.

def find(self, *expression_types: Type[~E], bfs: bool = True) -> Optional[~E]:
320    def find(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Optional[E]:
321        """
322        Returns the first node in this tree which matches at least one of
323        the specified types.
324
325        Args:
326            expression_types: the expression type(s) to match.
327            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
328
329        Returns:
330            The node which matches the criteria or None if no such node was found.
331        """
332        return next(self.find_all(*expression_types, bfs=bfs), None)

Returns the first node in this tree which matches at least one of the specified types.

Arguments:
  • expression_types: the expression type(s) to match.
  • bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
Returns:

The node which matches the criteria or None if no such node was found.

def find_all(self, *expression_types: Type[~E], bfs: bool = True) -> Iterator[~E]:
334    def find_all(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Iterator[E]:
335        """
336        Returns a generator object which visits all nodes in this tree and only
337        yields those that match at least one of the specified expression types.
338
339        Args:
340            expression_types: the expression type(s) to match.
341            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
342
343        Returns:
344            The generator object.
345        """
346        for expression, *_ in self.walk(bfs=bfs):
347            if isinstance(expression, expression_types):
348                yield expression

Returns a generator object which visits all nodes in this tree and only yields those that match at least one of the specified expression types.

Arguments:
  • expression_types: the expression type(s) to match.
  • bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
Returns:

The generator object.

def find_ancestor(self, *expression_types: Type[~E]) -> Optional[~E]:
350    def find_ancestor(self, *expression_types: t.Type[E]) -> t.Optional[E]:
351        """
352        Returns a nearest parent matching expression_types.
353
354        Args:
355            expression_types: the expression type(s) to match.
356
357        Returns:
358            The parent node.
359        """
360        ancestor = self.parent
361        while ancestor and not isinstance(ancestor, expression_types):
362            ancestor = ancestor.parent
363        return t.cast(E, ancestor)

Returns a nearest parent matching expression_types.

Arguments:
  • expression_types: the expression type(s) to match.
Returns:

The parent node.

parent_select: Optional[sqlglot.expressions.Select]

Returns the parent select statement.

same_parent: bool

Returns if the parent is the same class as itself.

def root(self) -> sqlglot.expressions.Expression:
377    def root(self) -> Expression:
378        """
379        Returns the root expression of this tree.
380        """
381        expression = self
382        while expression.parent:
383            expression = expression.parent
384        return expression

Returns the root expression of this tree.

def walk(self, bfs=True, prune=None):
386    def walk(self, bfs=True, prune=None):
387        """
388        Returns a generator object which visits all nodes in this tree.
389
390        Args:
391            bfs (bool): if set to True the BFS traversal order will be applied,
392                otherwise the DFS traversal will be used instead.
393            prune ((node, parent, arg_key) -> bool): callable that returns True if
394                the generator should stop traversing this branch of the tree.
395
396        Returns:
397            the generator object.
398        """
399        if bfs:
400            yield from self.bfs(prune=prune)
401        else:
402            yield from self.dfs(prune=prune)

Returns a generator object which visits all nodes in this tree.

Arguments:
  • bfs (bool): if set to True the BFS traversal order will be applied, otherwise the DFS traversal will be used instead.
  • prune ((node, parent, arg_key) -> bool): callable that returns True if the generator should stop traversing this branch of the tree.
Returns:

the generator object.

def dfs(self, parent=None, key=None, prune=None):
404    def dfs(self, parent=None, key=None, prune=None):
405        """
406        Returns a generator object which visits all nodes in this tree in
407        the DFS (Depth-first) order.
408
409        Returns:
410            The generator object.
411        """
412        parent = parent or self.parent
413        yield self, parent, key
414        if prune and prune(self, parent, key):
415            return
416
417        for k, v in self.iter_expressions():
418            yield from v.dfs(self, k, prune)

Returns a generator object which visits all nodes in this tree in the DFS (Depth-first) order.

Returns:

The generator object.

def bfs(self, prune=None):
420    def bfs(self, prune=None):
421        """
422        Returns a generator object which visits all nodes in this tree in
423        the BFS (Breadth-first) order.
424
425        Returns:
426            The generator object.
427        """
428        queue = deque([(self, self.parent, None)])
429
430        while queue:
431            item, parent, key = queue.popleft()
432
433            yield item, parent, key
434            if prune and prune(item, parent, key):
435                continue
436
437            for k, v in item.iter_expressions():
438                queue.append((v, item, k))

Returns a generator object which visits all nodes in this tree in the BFS (Breadth-first) order.

Returns:

The generator object.

def unnest(self):
440    def unnest(self):
441        """
442        Returns the first non parenthesis child or self.
443        """
444        expression = self
445        while type(expression) is Paren:
446            expression = expression.this
447        return expression

Returns the first non parenthesis child or self.

def unalias(self):
449    def unalias(self):
450        """
451        Returns the inner expression if this is an Alias.
452        """
453        if isinstance(self, Alias):
454            return self.this
455        return self

Returns the inner expression if this is an Alias.

def unnest_operands(self):
457    def unnest_operands(self):
458        """
459        Returns unnested operands as a tuple.
460        """
461        return tuple(arg.unnest() for _, arg in self.iter_expressions())

Returns unnested operands as a tuple.

def flatten(self, unnest=True):
463    def flatten(self, unnest=True):
464        """
465        Returns a generator which yields child nodes who's parents are the same class.
466
467        A AND B AND C -> [A, B, C]
468        """
469        for node, _, _ in self.dfs(prune=lambda n, p, *_: p and not type(n) is self.__class__):
470            if not type(node) is self.__class__:
471                yield node.unnest() if unnest else node

Returns a generator which yields child nodes who's parents are the same class.

A AND B AND C -> [A, B, C]

def sql( self, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> str:
479    def sql(self, dialect: DialectType = None, **opts) -> str:
480        """
481        Returns SQL string representation of this tree.
482
483        Args:
484            dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
485            opts: other `sqlglot.generator.Generator` options.
486
487        Returns:
488            The SQL string.
489        """
490        from sqlglot.dialects import Dialect
491
492        return Dialect.get_or_raise(dialect)().generate(self, **opts)

Returns SQL string representation of this tree.

Arguments:
  • dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
  • opts: other sqlglot.generator.Generator options.
Returns:

The SQL string.

def transform(self, fun, *args, copy=True, **kwargs):
518    def transform(self, fun, *args, copy=True, **kwargs):
519        """
520        Recursively visits all tree nodes (excluding already transformed ones)
521        and applies the given transformation function to each node.
522
523        Args:
524            fun (function): a function which takes a node as an argument and returns a
525                new transformed node or the same node without modifications. If the function
526                returns None, then the corresponding node will be removed from the syntax tree.
527            copy (bool): if set to True a new tree instance is constructed, otherwise the tree is
528                modified in place.
529
530        Returns:
531            The transformed tree.
532        """
533        node = self.copy() if copy else self
534        new_node = fun(node, *args, **kwargs)
535
536        if new_node is None or not isinstance(new_node, Expression):
537            return new_node
538        if new_node is not node:
539            new_node.parent = node.parent
540            return new_node
541
542        replace_children(new_node, lambda child: child.transform(fun, *args, copy=False, **kwargs))
543        return new_node

Recursively visits all tree nodes (excluding already transformed ones) and applies the given transformation function to each node.

Arguments:
  • fun (function): a function which takes a node as an argument and returns a new transformed node or the same node without modifications. If the function returns None, then the corresponding node will be removed from the syntax tree.
  • copy (bool): if set to True a new tree instance is constructed, otherwise the tree is modified in place.
Returns:

The transformed tree.

def replace(self, expression):
553    def replace(self, expression):
554        """
555        Swap out this expression with a new expression.
556
557        For example::
558
559            >>> tree = Select().select("x").from_("tbl")
560            >>> tree.find(Column).replace(Column(this="y"))
561            (COLUMN this: y)
562            >>> tree.sql()
563            'SELECT y FROM tbl'
564
565        Args:
566            expression: new node
567
568        Returns:
569            The new expression or expressions.
570        """
571        if not self.parent:
572            return expression
573
574        parent = self.parent
575        self.parent = None
576
577        replace_children(parent, lambda child: expression if child is self else child)
578        return expression

Swap out this expression with a new expression.

For example::

>>> tree = Select().select("x").from_("tbl")
>>> tree.find(Column).replace(Column(this="y"))
(COLUMN this: y)
>>> tree.sql()
'SELECT y FROM tbl'
Arguments:
  • expression: new node
Returns:

The new expression or expressions.

def pop(self: ~E) -> ~E:
580    def pop(self: E) -> E:
581        """
582        Remove this expression from its AST.
583
584        Returns:
585            The popped expression.
586        """
587        self.replace(None)
588        return self

Remove this expression from its AST.

Returns:

The popped expression.

def assert_is(self, type_: Type[~E]) -> ~E:
590    def assert_is(self, type_: t.Type[E]) -> E:
591        """
592        Assert that this `Expression` is an instance of `type_`.
593
594        If it is NOT an instance of `type_`, this raises an assertion error.
595        Otherwise, this returns this expression.
596
597        Examples:
598            This is useful for type security in chained expressions:
599
600            >>> import sqlglot
601            >>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
602            'SELECT x, z FROM y'
603        """
604        assert isinstance(self, type_)
605        return self

Assert that this Expression is an instance of type_.

If it is NOT an instance of type_, this raises an assertion error. Otherwise, this returns this expression.

Examples:

This is useful for type security in chained expressions:

>>> import sqlglot
>>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
'SELECT x, z FROM y'
def error_messages(self, args: Optional[Sequence] = None) -> List[str]:
607    def error_messages(self, args: t.Optional[t.Sequence] = None) -> t.List[str]:
608        """
609        Checks if this expression is valid (e.g. all mandatory args are set).
610
611        Args:
612            args: a sequence of values that were used to instantiate a Func expression. This is used
613                to check that the provided arguments don't exceed the function argument limit.
614
615        Returns:
616            A list of error messages for all possible errors that were found.
617        """
618        errors: t.List[str] = []
619
620        for k in self.args:
621            if k not in self.arg_types:
622                errors.append(f"Unexpected keyword: '{k}' for {self.__class__}")
623        for k, mandatory in self.arg_types.items():
624            v = self.args.get(k)
625            if mandatory and (v is None or (isinstance(v, list) and not v)):
626                errors.append(f"Required keyword: '{k}' missing for {self.__class__}")
627
628        if (
629            args
630            and isinstance(self, Func)
631            and len(args) > len(self.arg_types)
632            and not self.is_var_len_args
633        ):
634            errors.append(
635                f"The number of provided arguments ({len(args)}) is greater than "
636                f"the maximum number of supported arguments ({len(self.arg_types)})"
637            )
638
639        return errors

Checks if this expression is valid (e.g. all mandatory args are set).

Arguments:
  • args: a sequence of values that were used to instantiate a Func expression. This is used to check that the provided arguments don't exceed the function argument limit.
Returns:

A list of error messages for all possible errors that were found.

def dump(self):
641    def dump(self):
642        """
643        Dump this Expression to a JSON-serializable dict.
644        """
645        from sqlglot.serde import dump
646
647        return dump(self)

Dump this Expression to a JSON-serializable dict.

@classmethod
def load(cls, obj):
649    @classmethod
650    def load(cls, obj):
651        """
652        Load a dict (as returned by `Expression.dump`) into an Expression instance.
653        """
654        from sqlglot.serde import load
655
656        return load(obj)

Load a dict (as returned by Expression.dump) into an Expression instance.

class Condition(Expression):
667class Condition(Expression):
668    def and_(
669        self,
670        *expressions: t.Optional[ExpOrStr],
671        dialect: DialectType = None,
672        copy: bool = True,
673        **opts,
674    ) -> Condition:
675        """
676        AND this condition with one or multiple expressions.
677
678        Example:
679            >>> condition("x=1").and_("y=1").sql()
680            'x = 1 AND y = 1'
681
682        Args:
683            *expressions: the SQL code strings to parse.
684                If an `Expression` instance is passed, it will be used as-is.
685            dialect: the dialect used to parse the input expression.
686            copy: whether or not to copy the involved expressions (only applies to Expressions).
687            opts: other options to use to parse the input expressions.
688
689        Returns:
690            The new And condition.
691        """
692        return and_(self, *expressions, dialect=dialect, copy=copy, **opts)
693
694    def or_(
695        self,
696        *expressions: t.Optional[ExpOrStr],
697        dialect: DialectType = None,
698        copy: bool = True,
699        **opts,
700    ) -> Condition:
701        """
702        OR this condition with one or multiple expressions.
703
704        Example:
705            >>> condition("x=1").or_("y=1").sql()
706            'x = 1 OR y = 1'
707
708        Args:
709            *expressions: the SQL code strings to parse.
710                If an `Expression` instance is passed, it will be used as-is.
711            dialect: the dialect used to parse the input expression.
712            copy: whether or not to copy the involved expressions (only applies to Expressions).
713            opts: other options to use to parse the input expressions.
714
715        Returns:
716            The new Or condition.
717        """
718        return or_(self, *expressions, dialect=dialect, copy=copy, **opts)
719
720    def not_(self, copy: bool = True):
721        """
722        Wrap this condition with NOT.
723
724        Example:
725            >>> condition("x=1").not_().sql()
726            'NOT x = 1'
727
728        Args:
729            copy: whether or not to copy this object.
730
731        Returns:
732            The new Not instance.
733        """
734        return not_(self, copy=copy)
735
736    def as_(
737        self,
738        alias: str | Identifier,
739        quoted: t.Optional[bool] = None,
740        dialect: DialectType = None,
741        copy: bool = True,
742        **opts,
743    ) -> Alias:
744        return alias_(self, alias, quoted=quoted, dialect=dialect, copy=copy, **opts)
745
746    def _binop(self, klass: t.Type[E], other: t.Any, reverse: bool = False) -> E:
747        this = self.copy()
748        other = convert(other, copy=True)
749        if not isinstance(this, klass) and not isinstance(other, klass):
750            this = _wrap(this, Binary)
751            other = _wrap(other, Binary)
752        if reverse:
753            return klass(this=other, expression=this)
754        return klass(this=this, expression=other)
755
756    def __getitem__(self, other: ExpOrStr | t.Tuple[ExpOrStr]):
757        return Bracket(
758            this=self.copy(), expressions=[convert(e, copy=True) for e in ensure_list(other)]
759        )
760
761    def isin(
762        self, *expressions: t.Any, query: t.Optional[ExpOrStr] = None, copy: bool = True, **opts
763    ) -> In:
764        return In(
765            this=_maybe_copy(self, copy),
766            expressions=[convert(e, copy=copy) for e in expressions],
767            query=maybe_parse(query, copy=copy, **opts) if query else None,
768        )
769
770    def between(self, low: t.Any, high: t.Any, copy: bool = True, **opts) -> Between:
771        return Between(
772            this=_maybe_copy(self, copy),
773            low=convert(low, copy=copy, **opts),
774            high=convert(high, copy=copy, **opts),
775        )
776
777    def is_(self, other: ExpOrStr) -> Is:
778        return self._binop(Is, other)
779
780    def like(self, other: ExpOrStr) -> Like:
781        return self._binop(Like, other)
782
783    def ilike(self, other: ExpOrStr) -> ILike:
784        return self._binop(ILike, other)
785
786    def eq(self, other: t.Any) -> EQ:
787        return self._binop(EQ, other)
788
789    def neq(self, other: t.Any) -> NEQ:
790        return self._binop(NEQ, other)
791
792    def rlike(self, other: ExpOrStr) -> RegexpLike:
793        return self._binop(RegexpLike, other)
794
795    def __lt__(self, other: t.Any) -> LT:
796        return self._binop(LT, other)
797
798    def __le__(self, other: t.Any) -> LTE:
799        return self._binop(LTE, other)
800
801    def __gt__(self, other: t.Any) -> GT:
802        return self._binop(GT, other)
803
804    def __ge__(self, other: t.Any) -> GTE:
805        return self._binop(GTE, other)
806
807    def __add__(self, other: t.Any) -> Add:
808        return self._binop(Add, other)
809
810    def __radd__(self, other: t.Any) -> Add:
811        return self._binop(Add, other, reverse=True)
812
813    def __sub__(self, other: t.Any) -> Sub:
814        return self._binop(Sub, other)
815
816    def __rsub__(self, other: t.Any) -> Sub:
817        return self._binop(Sub, other, reverse=True)
818
819    def __mul__(self, other: t.Any) -> Mul:
820        return self._binop(Mul, other)
821
822    def __rmul__(self, other: t.Any) -> Mul:
823        return self._binop(Mul, other, reverse=True)
824
825    def __truediv__(self, other: t.Any) -> Div:
826        return self._binop(Div, other)
827
828    def __rtruediv__(self, other: t.Any) -> Div:
829        return self._binop(Div, other, reverse=True)
830
831    def __floordiv__(self, other: t.Any) -> IntDiv:
832        return self._binop(IntDiv, other)
833
834    def __rfloordiv__(self, other: t.Any) -> IntDiv:
835        return self._binop(IntDiv, other, reverse=True)
836
837    def __mod__(self, other: t.Any) -> Mod:
838        return self._binop(Mod, other)
839
840    def __rmod__(self, other: t.Any) -> Mod:
841        return self._binop(Mod, other, reverse=True)
842
843    def __pow__(self, other: t.Any) -> Pow:
844        return self._binop(Pow, other)
845
846    def __rpow__(self, other: t.Any) -> Pow:
847        return self._binop(Pow, other, reverse=True)
848
849    def __and__(self, other: t.Any) -> And:
850        return self._binop(And, other)
851
852    def __rand__(self, other: t.Any) -> And:
853        return self._binop(And, other, reverse=True)
854
855    def __or__(self, other: t.Any) -> Or:
856        return self._binop(Or, other)
857
858    def __ror__(self, other: t.Any) -> Or:
859        return self._binop(Or, other, reverse=True)
860
861    def __neg__(self) -> Neg:
862        return Neg(this=_wrap(self.copy(), Binary))
863
864    def __invert__(self) -> Not:
865        return not_(self.copy())
def and_( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Condition:
668    def and_(
669        self,
670        *expressions: t.Optional[ExpOrStr],
671        dialect: DialectType = None,
672        copy: bool = True,
673        **opts,
674    ) -> Condition:
675        """
676        AND this condition with one or multiple expressions.
677
678        Example:
679            >>> condition("x=1").and_("y=1").sql()
680            'x = 1 AND y = 1'
681
682        Args:
683            *expressions: the SQL code strings to parse.
684                If an `Expression` instance is passed, it will be used as-is.
685            dialect: the dialect used to parse the input expression.
686            copy: whether or not to copy the involved expressions (only applies to Expressions).
687            opts: other options to use to parse the input expressions.
688
689        Returns:
690            The new And condition.
691        """
692        return and_(self, *expressions, dialect=dialect, copy=copy, **opts)

AND this condition with one or multiple expressions.

Example:
>>> condition("x=1").and_("y=1").sql()
'x = 1 AND y = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether or not to copy the involved expressions (only applies to Expressions).
  • opts: other options to use to parse the input expressions.
Returns:

The new And condition.

def or_( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Condition:
694    def or_(
695        self,
696        *expressions: t.Optional[ExpOrStr],
697        dialect: DialectType = None,
698        copy: bool = True,
699        **opts,
700    ) -> Condition:
701        """
702        OR this condition with one or multiple expressions.
703
704        Example:
705            >>> condition("x=1").or_("y=1").sql()
706            'x = 1 OR y = 1'
707
708        Args:
709            *expressions: the SQL code strings to parse.
710                If an `Expression` instance is passed, it will be used as-is.
711            dialect: the dialect used to parse the input expression.
712            copy: whether or not to copy the involved expressions (only applies to Expressions).
713            opts: other options to use to parse the input expressions.
714
715        Returns:
716            The new Or condition.
717        """
718        return or_(self, *expressions, dialect=dialect, copy=copy, **opts)

OR this condition with one or multiple expressions.

Example:
>>> condition("x=1").or_("y=1").sql()
'x = 1 OR y = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether or not to copy the involved expressions (only applies to Expressions).
  • opts: other options to use to parse the input expressions.
Returns:

The new Or condition.

def not_(self, copy: bool = True):
720    def not_(self, copy: bool = True):
721        """
722        Wrap this condition with NOT.
723
724        Example:
725            >>> condition("x=1").not_().sql()
726            'NOT x = 1'
727
728        Args:
729            copy: whether or not to copy this object.
730
731        Returns:
732            The new Not instance.
733        """
734        return not_(self, copy=copy)

Wrap this condition with NOT.

Example:
>>> condition("x=1").not_().sql()
'NOT x = 1'
Arguments:
  • copy: whether or not to copy this object.
Returns:

The new Not instance.

def as_( self, alias: str | sqlglot.expressions.Identifier, quoted: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Alias:
736    def as_(
737        self,
738        alias: str | Identifier,
739        quoted: t.Optional[bool] = None,
740        dialect: DialectType = None,
741        copy: bool = True,
742        **opts,
743    ) -> Alias:
744        return alias_(self, alias, quoted=quoted, dialect=dialect, copy=copy, **opts)
def isin( self, *expressions: Any, query: Union[str, sqlglot.expressions.Expression, NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.In:
761    def isin(
762        self, *expressions: t.Any, query: t.Optional[ExpOrStr] = None, copy: bool = True, **opts
763    ) -> In:
764        return In(
765            this=_maybe_copy(self, copy),
766            expressions=[convert(e, copy=copy) for e in expressions],
767            query=maybe_parse(query, copy=copy, **opts) if query else None,
768        )
def between( self, low: Any, high: Any, copy: bool = True, **opts) -> sqlglot.expressions.Between:
770    def between(self, low: t.Any, high: t.Any, copy: bool = True, **opts) -> Between:
771        return Between(
772            this=_maybe_copy(self, copy),
773            low=convert(low, copy=copy, **opts),
774            high=convert(high, copy=copy, **opts),
775        )
def is_( self, other: Union[str, sqlglot.expressions.Expression]) -> sqlglot.expressions.Is:
777    def is_(self, other: ExpOrStr) -> Is:
778        return self._binop(Is, other)
def like( self, other: Union[str, sqlglot.expressions.Expression]) -> sqlglot.expressions.Like:
780    def like(self, other: ExpOrStr) -> Like:
781        return self._binop(Like, other)
def ilike( self, other: Union[str, sqlglot.expressions.Expression]) -> sqlglot.expressions.ILike:
783    def ilike(self, other: ExpOrStr) -> ILike:
784        return self._binop(ILike, other)
def eq(self, other: Any) -> sqlglot.expressions.EQ:
786    def eq(self, other: t.Any) -> EQ:
787        return self._binop(EQ, other)
def neq(self, other: Any) -> sqlglot.expressions.NEQ:
789    def neq(self, other: t.Any) -> NEQ:
790        return self._binop(NEQ, other)
def rlike( self, other: Union[str, sqlglot.expressions.Expression]) -> sqlglot.expressions.RegexpLike:
792    def rlike(self, other: ExpOrStr) -> RegexpLike:
793        return self._binop(RegexpLike, other)
class Predicate(Condition):
868class Predicate(Condition):
869    """Relationships like x = y, x > 1, x >= y."""

Relationships like x = y, x > 1, x >= y.

class DerivedTable(Expression):
872class DerivedTable(Expression):
873    @property
874    def alias_column_names(self) -> t.List[str]:
875        table_alias = self.args.get("alias")
876        if not table_alias:
877            return []
878        return [c.name for c in table_alias.args.get("columns") or []]
879
880    @property
881    def selects(self):
882        return self.this.selects if isinstance(self.this, Subqueryable) else []
883
884    @property
885    def named_selects(self):
886        return [select.output_name for select in self.selects]
class Unionable(Expression):
889class Unionable(Expression):
890    def union(
891        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
892    ) -> Unionable:
893        """
894        Builds a UNION expression.
895
896        Example:
897            >>> import sqlglot
898            >>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
899            'SELECT * FROM foo UNION SELECT * FROM bla'
900
901        Args:
902            expression: the SQL code string.
903                If an `Expression` instance is passed, it will be used as-is.
904            distinct: set the DISTINCT flag if and only if this is true.
905            dialect: the dialect used to parse the input expression.
906            opts: other options to use to parse the input expressions.
907
908        Returns:
909            The new Union expression.
910        """
911        return union(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
912
913    def intersect(
914        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
915    ) -> Unionable:
916        """
917        Builds an INTERSECT expression.
918
919        Example:
920            >>> import sqlglot
921            >>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
922            'SELECT * FROM foo INTERSECT SELECT * FROM bla'
923
924        Args:
925            expression: the SQL code string.
926                If an `Expression` instance is passed, it will be used as-is.
927            distinct: set the DISTINCT flag if and only if this is true.
928            dialect: the dialect used to parse the input expression.
929            opts: other options to use to parse the input expressions.
930
931        Returns:
932            The new Intersect expression.
933        """
934        return intersect(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
935
936    def except_(
937        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
938    ) -> Unionable:
939        """
940        Builds an EXCEPT expression.
941
942        Example:
943            >>> import sqlglot
944            >>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
945            'SELECT * FROM foo EXCEPT SELECT * FROM bla'
946
947        Args:
948            expression: the SQL code string.
949                If an `Expression` instance is passed, it will be used as-is.
950            distinct: set the DISTINCT flag if and only if this is true.
951            dialect: the dialect used to parse the input expression.
952            opts: other options to use to parse the input expressions.
953
954        Returns:
955            The new Except expression.
956        """
957        return except_(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
def union( self, expression: Union[str, sqlglot.expressions.Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Unionable:
890    def union(
891        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
892    ) -> Unionable:
893        """
894        Builds a UNION expression.
895
896        Example:
897            >>> import sqlglot
898            >>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
899            'SELECT * FROM foo UNION SELECT * FROM bla'
900
901        Args:
902            expression: the SQL code string.
903                If an `Expression` instance is passed, it will be used as-is.
904            distinct: set the DISTINCT flag if and only if this is true.
905            dialect: the dialect used to parse the input expression.
906            opts: other options to use to parse the input expressions.
907
908        Returns:
909            The new Union expression.
910        """
911        return union(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)

Builds a UNION expression.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
'SELECT * FROM foo UNION SELECT * FROM bla'
Arguments:
  • expression: the SQL code string. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Union expression.

def intersect( self, expression: Union[str, sqlglot.expressions.Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Unionable:
913    def intersect(
914        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
915    ) -> Unionable:
916        """
917        Builds an INTERSECT expression.
918
919        Example:
920            >>> import sqlglot
921            >>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
922            'SELECT * FROM foo INTERSECT SELECT * FROM bla'
923
924        Args:
925            expression: the SQL code string.
926                If an `Expression` instance is passed, it will be used as-is.
927            distinct: set the DISTINCT flag if and only if this is true.
928            dialect: the dialect used to parse the input expression.
929            opts: other options to use to parse the input expressions.
930
931        Returns:
932            The new Intersect expression.
933        """
934        return intersect(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)

Builds an INTERSECT expression.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
'SELECT * FROM foo INTERSECT SELECT * FROM bla'
Arguments:
  • expression: the SQL code string. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Intersect expression.

def except_( self, expression: Union[str, sqlglot.expressions.Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Unionable:
936    def except_(
937        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
938    ) -> Unionable:
939        """
940        Builds an EXCEPT expression.
941
942        Example:
943            >>> import sqlglot
944            >>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
945            'SELECT * FROM foo EXCEPT SELECT * FROM bla'
946
947        Args:
948            expression: the SQL code string.
949                If an `Expression` instance is passed, it will be used as-is.
950            distinct: set the DISTINCT flag if and only if this is true.
951            dialect: the dialect used to parse the input expression.
952            opts: other options to use to parse the input expressions.
953
954        Returns:
955            The new Except expression.
956        """
957        return except_(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)

Builds an EXCEPT expression.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
'SELECT * FROM foo EXCEPT SELECT * FROM bla'
Arguments:
  • expression: the SQL code string. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Except expression.

class UDTF(DerivedTable, Unionable):
960class UDTF(DerivedTable, Unionable):
961    @property
962    def selects(self):
963        alias = self.args.get("alias")
964        return alias.columns if alias else []
class Cache(Expression):
967class Cache(Expression):
968    arg_types = {
969        "with": False,
970        "this": True,
971        "lazy": False,
972        "options": False,
973        "expression": False,
974    }
class Uncache(Expression):
977class Uncache(Expression):
978    arg_types = {"this": True, "exists": False}
class Create(Expression):
981class Create(Expression):
982    arg_types = {
983        "with": False,
984        "this": True,
985        "kind": True,
986        "expression": False,
987        "exists": False,
988        "properties": False,
989        "replace": False,
990        "unique": False,
991        "indexes": False,
992        "no_schema_binding": False,
993        "begin": False,
994        "clone": False,
995    }
class Clone(Expression):
 999class Clone(Expression):
1000    arg_types = {
1001        "this": True,
1002        "when": False,
1003        "kind": False,
1004        "expression": False,
1005    }
class Describe(Expression):
1008class Describe(Expression):
1009    arg_types = {"this": True, "kind": False}
class Pragma(Expression):
1012class Pragma(Expression):
1013    pass
class Set(Expression):
1016class Set(Expression):
1017    arg_types = {"expressions": False}
class SetItem(Expression):
1020class SetItem(Expression):
1021    arg_types = {
1022        "this": False,
1023        "expressions": False,
1024        "kind": False,
1025        "collate": False,  # MySQL SET NAMES statement
1026        "global": False,
1027    }
class Show(Expression):
1030class Show(Expression):
1031    arg_types = {
1032        "this": True,
1033        "target": False,
1034        "offset": False,
1035        "limit": False,
1036        "like": False,
1037        "where": False,
1038        "db": False,
1039        "full": False,
1040        "mutex": False,
1041        "query": False,
1042        "channel": False,
1043        "global": False,
1044        "log": False,
1045        "position": False,
1046        "types": False,
1047    }
class UserDefinedFunction(Expression):
1050class UserDefinedFunction(Expression):
1051    arg_types = {"this": True, "expressions": False, "wrapped": False}
class CharacterSet(Expression):
1054class CharacterSet(Expression):
1055    arg_types = {"this": True, "default": False}
class With(Expression):
1058class With(Expression):
1059    arg_types = {"expressions": True, "recursive": False}
1060
1061    @property
1062    def recursive(self) -> bool:
1063        return bool(self.args.get("recursive"))
class WithinGroup(Expression):
1066class WithinGroup(Expression):
1067    arg_types = {"this": True, "expression": False}
class CTE(DerivedTable):
1070class CTE(DerivedTable):
1071    arg_types = {"this": True, "alias": True}
class TableAlias(Expression):
1074class TableAlias(Expression):
1075    arg_types = {"this": False, "columns": False}
1076
1077    @property
1078    def columns(self):
1079        return self.args.get("columns") or []
class BitString(Condition):
1082class BitString(Condition):
1083    pass
class HexString(Condition):
1086class HexString(Condition):
1087    pass
class ByteString(Condition):
1090class ByteString(Condition):
1091    pass
class RawString(Condition):
1094class RawString(Condition):
1095    pass
class Column(Condition):
1098class Column(Condition):
1099    arg_types = {"this": True, "table": False, "db": False, "catalog": False, "join_mark": False}
1100
1101    @property
1102    def table(self) -> str:
1103        return self.text("table")
1104
1105    @property
1106    def db(self) -> str:
1107        return self.text("db")
1108
1109    @property
1110    def catalog(self) -> str:
1111        return self.text("catalog")
1112
1113    @property
1114    def output_name(self) -> str:
1115        return self.name
1116
1117    @property
1118    def parts(self) -> t.List[Identifier]:
1119        """Return the parts of a column in order catalog, db, table, name."""
1120        return [
1121            t.cast(Identifier, self.args[part])
1122            for part in ("catalog", "db", "table", "this")
1123            if self.args.get(part)
1124        ]
1125
1126    def to_dot(self) -> Dot:
1127        """Converts the column into a dot expression."""
1128        parts = self.parts
1129        parent = self.parent
1130
1131        while parent:
1132            if isinstance(parent, Dot):
1133                parts.append(parent.expression)
1134            parent = parent.parent
1135
1136        return Dot.build(parts)
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''

Return the parts of a column in order catalog, db, table, name.

def to_dot(self) -> sqlglot.expressions.Dot:
1126    def to_dot(self) -> Dot:
1127        """Converts the column into a dot expression."""
1128        parts = self.parts
1129        parent = self.parent
1130
1131        while parent:
1132            if isinstance(parent, Dot):
1133                parts.append(parent.expression)
1134            parent = parent.parent
1135
1136        return Dot.build(parts)

Converts the column into a dot expression.

class ColumnPosition(Expression):
1139class ColumnPosition(Expression):
1140    arg_types = {"this": False, "position": True}
class ColumnDef(Expression):
1143class ColumnDef(Expression):
1144    arg_types = {
1145        "this": True,
1146        "kind": False,
1147        "constraints": False,
1148        "exists": False,
1149        "position": False,
1150    }
1151
1152    @property
1153    def constraints(self) -> t.List[ColumnConstraint]:
1154        return self.args.get("constraints") or []
class AlterColumn(Expression):
1157class AlterColumn(Expression):
1158    arg_types = {
1159        "this": True,
1160        "dtype": False,
1161        "collate": False,
1162        "using": False,
1163        "default": False,
1164        "drop": False,
1165    }
class RenameTable(Expression):
1168class RenameTable(Expression):
1169    pass
class SetTag(Expression):
1172class SetTag(Expression):
1173    arg_types = {"expressions": True, "unset": False}
class Comment(Expression):
1176class Comment(Expression):
1177    arg_types = {"this": True, "kind": True, "expression": True, "exists": False}
class MergeTreeTTLAction(Expression):
1181class MergeTreeTTLAction(Expression):
1182    arg_types = {
1183        "this": True,
1184        "delete": False,
1185        "recompress": False,
1186        "to_disk": False,
1187        "to_volume": False,
1188    }
class MergeTreeTTL(Expression):
1192class MergeTreeTTL(Expression):
1193    arg_types = {
1194        "expressions": True,
1195        "where": False,
1196        "group": False,
1197        "aggregates": False,
1198    }
class ColumnConstraint(Expression):
1201class ColumnConstraint(Expression):
1202    arg_types = {"this": False, "kind": True}
1203
1204    @property
1205    def kind(self) -> ColumnConstraintKind:
1206        return self.args["kind"]
class ColumnConstraintKind(Expression):
1209class ColumnConstraintKind(Expression):
1210    pass
class AutoIncrementColumnConstraint(ColumnConstraintKind):
1213class AutoIncrementColumnConstraint(ColumnConstraintKind):
1214    pass
class CaseSpecificColumnConstraint(ColumnConstraintKind):
1217class CaseSpecificColumnConstraint(ColumnConstraintKind):
1218    arg_types = {"not_": True}
class CharacterSetColumnConstraint(ColumnConstraintKind):
1221class CharacterSetColumnConstraint(ColumnConstraintKind):
1222    arg_types = {"this": True}
class CheckColumnConstraint(ColumnConstraintKind):
1225class CheckColumnConstraint(ColumnConstraintKind):
1226    pass
class CollateColumnConstraint(ColumnConstraintKind):
1229class CollateColumnConstraint(ColumnConstraintKind):
1230    pass
class CommentColumnConstraint(ColumnConstraintKind):
1233class CommentColumnConstraint(ColumnConstraintKind):
1234    pass
class CompressColumnConstraint(ColumnConstraintKind):
1237class CompressColumnConstraint(ColumnConstraintKind):
1238    pass
class DateFormatColumnConstraint(ColumnConstraintKind):
1241class DateFormatColumnConstraint(ColumnConstraintKind):
1242    arg_types = {"this": True}
class DefaultColumnConstraint(ColumnConstraintKind):
1245class DefaultColumnConstraint(ColumnConstraintKind):
1246    pass
class EncodeColumnConstraint(ColumnConstraintKind):
1249class EncodeColumnConstraint(ColumnConstraintKind):
1250    pass
class GeneratedAsIdentityColumnConstraint(ColumnConstraintKind):
1253class GeneratedAsIdentityColumnConstraint(ColumnConstraintKind):
1254    # this: True -> ALWAYS, this: False -> BY DEFAULT
1255    arg_types = {
1256        "this": False,
1257        "expression": False,
1258        "on_null": False,
1259        "start": False,
1260        "increment": False,
1261        "minvalue": False,
1262        "maxvalue": False,
1263        "cycle": False,
1264    }
class InlineLengthColumnConstraint(ColumnConstraintKind):
1267class InlineLengthColumnConstraint(ColumnConstraintKind):
1268    pass
class NotNullColumnConstraint(ColumnConstraintKind):
1271class NotNullColumnConstraint(ColumnConstraintKind):
1272    arg_types = {"allow_null": False}
class OnUpdateColumnConstraint(ColumnConstraintKind):
1276class OnUpdateColumnConstraint(ColumnConstraintKind):
1277    pass
class PrimaryKeyColumnConstraint(ColumnConstraintKind):
1280class PrimaryKeyColumnConstraint(ColumnConstraintKind):
1281    arg_types = {"desc": False}
class TitleColumnConstraint(ColumnConstraintKind):
1284class TitleColumnConstraint(ColumnConstraintKind):
1285    pass
class UniqueColumnConstraint(ColumnConstraintKind):
1288class UniqueColumnConstraint(ColumnConstraintKind):
1289    arg_types = {"this": False}
class UppercaseColumnConstraint(ColumnConstraintKind):
1292class UppercaseColumnConstraint(ColumnConstraintKind):
1293    arg_types: t.Dict[str, t.Any] = {}
class PathColumnConstraint(ColumnConstraintKind):
1296class PathColumnConstraint(ColumnConstraintKind):
1297    pass
class Constraint(Expression):
1300class Constraint(Expression):
1301    arg_types = {"this": True, "expressions": True}
class Delete(Expression):
1304class Delete(Expression):
1305    arg_types = {"with": False, "this": False, "using": False, "where": False, "returning": False}
1306
1307    def delete(
1308        self,
1309        table: ExpOrStr,
1310        dialect: DialectType = None,
1311        copy: bool = True,
1312        **opts,
1313    ) -> Delete:
1314        """
1315        Create a DELETE expression or replace the table on an existing DELETE expression.
1316
1317        Example:
1318            >>> delete("tbl").sql()
1319            'DELETE FROM tbl'
1320
1321        Args:
1322            table: the table from which to delete.
1323            dialect: the dialect used to parse the input expression.
1324            copy: if `False`, modify this expression instance in-place.
1325            opts: other options to use to parse the input expressions.
1326
1327        Returns:
1328            Delete: the modified expression.
1329        """
1330        return _apply_builder(
1331            expression=table,
1332            instance=self,
1333            arg="this",
1334            dialect=dialect,
1335            into=Table,
1336            copy=copy,
1337            **opts,
1338        )
1339
1340    def where(
1341        self,
1342        *expressions: t.Optional[ExpOrStr],
1343        append: bool = True,
1344        dialect: DialectType = None,
1345        copy: bool = True,
1346        **opts,
1347    ) -> Delete:
1348        """
1349        Append to or set the WHERE expressions.
1350
1351        Example:
1352            >>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
1353            "DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
1354
1355        Args:
1356            *expressions: the SQL code strings to parse.
1357                If an `Expression` instance is passed, it will be used as-is.
1358                Multiple expressions are combined with an AND operator.
1359            append: if `True`, AND the new expressions to any existing expression.
1360                Otherwise, this resets the expression.
1361            dialect: the dialect used to parse the input expressions.
1362            copy: if `False`, modify this expression instance in-place.
1363            opts: other options to use to parse the input expressions.
1364
1365        Returns:
1366            Delete: the modified expression.
1367        """
1368        return _apply_conjunction_builder(
1369            *expressions,
1370            instance=self,
1371            arg="where",
1372            append=append,
1373            into=Where,
1374            dialect=dialect,
1375            copy=copy,
1376            **opts,
1377        )
1378
1379    def returning(
1380        self,
1381        expression: ExpOrStr,
1382        dialect: DialectType = None,
1383        copy: bool = True,
1384        **opts,
1385    ) -> Delete:
1386        """
1387        Set the RETURNING expression. Not supported by all dialects.
1388
1389        Example:
1390            >>> delete("tbl").returning("*", dialect="postgres").sql()
1391            'DELETE FROM tbl RETURNING *'
1392
1393        Args:
1394            expression: the SQL code strings to parse.
1395                If an `Expression` instance is passed, it will be used as-is.
1396            dialect: the dialect used to parse the input expressions.
1397            copy: if `False`, modify this expression instance in-place.
1398            opts: other options to use to parse the input expressions.
1399
1400        Returns:
1401            Delete: the modified expression.
1402        """
1403        return _apply_builder(
1404            expression=expression,
1405            instance=self,
1406            arg="returning",
1407            prefix="RETURNING",
1408            dialect=dialect,
1409            copy=copy,
1410            into=Returning,
1411            **opts,
1412        )
def delete( self, table: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Delete:
1307    def delete(
1308        self,
1309        table: ExpOrStr,
1310        dialect: DialectType = None,
1311        copy: bool = True,
1312        **opts,
1313    ) -> Delete:
1314        """
1315        Create a DELETE expression or replace the table on an existing DELETE expression.
1316
1317        Example:
1318            >>> delete("tbl").sql()
1319            'DELETE FROM tbl'
1320
1321        Args:
1322            table: the table from which to delete.
1323            dialect: the dialect used to parse the input expression.
1324            copy: if `False`, modify this expression instance in-place.
1325            opts: other options to use to parse the input expressions.
1326
1327        Returns:
1328            Delete: the modified expression.
1329        """
1330        return _apply_builder(
1331            expression=table,
1332            instance=self,
1333            arg="this",
1334            dialect=dialect,
1335            into=Table,
1336            copy=copy,
1337            **opts,
1338        )

Create a DELETE expression or replace the table on an existing DELETE expression.

Example:
>>> delete("tbl").sql()
'DELETE FROM tbl'
Arguments:
  • table: the table from which to delete.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Delete: the modified expression.

def where( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Delete:
1340    def where(
1341        self,
1342        *expressions: t.Optional[ExpOrStr],
1343        append: bool = True,
1344        dialect: DialectType = None,
1345        copy: bool = True,
1346        **opts,
1347    ) -> Delete:
1348        """
1349        Append to or set the WHERE expressions.
1350
1351        Example:
1352            >>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
1353            "DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
1354
1355        Args:
1356            *expressions: the SQL code strings to parse.
1357                If an `Expression` instance is passed, it will be used as-is.
1358                Multiple expressions are combined with an AND operator.
1359            append: if `True`, AND the new expressions to any existing expression.
1360                Otherwise, this resets the expression.
1361            dialect: the dialect used to parse the input expressions.
1362            copy: if `False`, modify this expression instance in-place.
1363            opts: other options to use to parse the input expressions.
1364
1365        Returns:
1366            Delete: the modified expression.
1367        """
1368        return _apply_conjunction_builder(
1369            *expressions,
1370            instance=self,
1371            arg="where",
1372            append=append,
1373            into=Where,
1374            dialect=dialect,
1375            copy=copy,
1376            **opts,
1377        )

Append to or set the WHERE expressions.

Example:
>>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
"DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Delete: the modified expression.

def returning( self, expression: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Delete:
1379    def returning(
1380        self,
1381        expression: ExpOrStr,
1382        dialect: DialectType = None,
1383        copy: bool = True,
1384        **opts,
1385    ) -> Delete:
1386        """
1387        Set the RETURNING expression. Not supported by all dialects.
1388
1389        Example:
1390            >>> delete("tbl").returning("*", dialect="postgres").sql()
1391            'DELETE FROM tbl RETURNING *'
1392
1393        Args:
1394            expression: the SQL code strings to parse.
1395                If an `Expression` instance is passed, it will be used as-is.
1396            dialect: the dialect used to parse the input expressions.
1397            copy: if `False`, modify this expression instance in-place.
1398            opts: other options to use to parse the input expressions.
1399
1400        Returns:
1401            Delete: the modified expression.
1402        """
1403        return _apply_builder(
1404            expression=expression,
1405            instance=self,
1406            arg="returning",
1407            prefix="RETURNING",
1408            dialect=dialect,
1409            copy=copy,
1410            into=Returning,
1411            **opts,
1412        )

Set the RETURNING expression. Not supported by all dialects.

Example:
>>> delete("tbl").returning("*", dialect="postgres").sql()
'DELETE FROM tbl RETURNING *'
Arguments:
  • expression: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Delete: the modified expression.

class Drop(Expression):
1415class Drop(Expression):
1416    arg_types = {
1417        "this": False,
1418        "kind": False,
1419        "exists": False,
1420        "temporary": False,
1421        "materialized": False,
1422        "cascade": False,
1423        "constraints": False,
1424        "purge": False,
1425    }
class Filter(Expression):
1428class Filter(Expression):
1429    arg_types = {"this": True, "expression": True}
class Check(Expression):
1432class Check(Expression):
1433    pass
class Directory(Expression):
1436class Directory(Expression):
1437    # https://spark.apache.org/docs/3.0.0-preview/sql-ref-syntax-dml-insert-overwrite-directory-hive.html
1438    arg_types = {"this": True, "local": False, "row_format": False}
class ForeignKey(Expression):
1441class ForeignKey(Expression):
1442    arg_types = {
1443        "expressions": True,
1444        "reference": False,
1445        "delete": False,
1446        "update": False,
1447    }
class PrimaryKey(Expression):
1450class PrimaryKey(Expression):
1451    arg_types = {"expressions": True, "options": False}
class Into(Expression):
1456class Into(Expression):
1457    arg_types = {"this": True, "temporary": False, "unlogged": False}
class From(Expression):
1460class From(Expression):
1461    @property
1462    def name(self) -> str:
1463        return self.this.name
1464
1465    @property
1466    def alias_or_name(self) -> str:
1467        return self.this.alias_or_name
class Having(Expression):
1470class Having(Expression):
1471    pass
class Hint(Expression):
1474class Hint(Expression):
1475    arg_types = {"expressions": True}
class JoinHint(Expression):
1478class JoinHint(Expression):
1479    arg_types = {"this": True, "expressions": True}
class Identifier(Expression):
1482class Identifier(Expression):
1483    arg_types = {"this": True, "quoted": False}
1484
1485    @property
1486    def quoted(self) -> bool:
1487        return bool(self.args.get("quoted"))
1488
1489    @property
1490    def hashable_args(self) -> t.Any:
1491        if self.quoted and any(char.isupper() for char in self.this):
1492            return (self.this, self.quoted)
1493        return self.this.lower()
1494
1495    @property
1496    def output_name(self) -> str:
1497        return self.name
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
class Index(Expression):
1500class Index(Expression):
1501    arg_types = {
1502        "this": False,
1503        "table": False,
1504        "using": False,
1505        "where": False,
1506        "columns": False,
1507        "unique": False,
1508        "primary": False,
1509        "amp": False,  # teradata
1510        "partition_by": False,  # teradata
1511    }
class Insert(Expression):
1514class Insert(Expression):
1515    arg_types = {
1516        "with": False,
1517        "this": True,
1518        "expression": False,
1519        "conflict": False,
1520        "returning": False,
1521        "overwrite": False,
1522        "exists": False,
1523        "partition": False,
1524        "alternative": False,
1525    }
1526
1527    def with_(
1528        self,
1529        alias: ExpOrStr,
1530        as_: ExpOrStr,
1531        recursive: t.Optional[bool] = None,
1532        append: bool = True,
1533        dialect: DialectType = None,
1534        copy: bool = True,
1535        **opts,
1536    ) -> Insert:
1537        """
1538        Append to or set the common table expressions.
1539
1540        Example:
1541            >>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
1542            'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
1543
1544        Args:
1545            alias: the SQL code string to parse as the table name.
1546                If an `Expression` instance is passed, this is used as-is.
1547            as_: the SQL code string to parse as the table expression.
1548                If an `Expression` instance is passed, it will be used as-is.
1549            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
1550            append: if `True`, add to any existing expressions.
1551                Otherwise, this resets the expressions.
1552            dialect: the dialect used to parse the input expression.
1553            copy: if `False`, modify this expression instance in-place.
1554            opts: other options to use to parse the input expressions.
1555
1556        Returns:
1557            The modified expression.
1558        """
1559        return _apply_cte_builder(
1560            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
1561        )
def with_( self, alias: Union[str, sqlglot.expressions.Expression], as_: Union[str, sqlglot.expressions.Expression], recursive: Optional[bool] = None, append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Insert:
1527    def with_(
1528        self,
1529        alias: ExpOrStr,
1530        as_: ExpOrStr,
1531        recursive: t.Optional[bool] = None,
1532        append: bool = True,
1533        dialect: DialectType = None,
1534        copy: bool = True,
1535        **opts,
1536    ) -> Insert:
1537        """
1538        Append to or set the common table expressions.
1539
1540        Example:
1541            >>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
1542            'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
1543
1544        Args:
1545            alias: the SQL code string to parse as the table name.
1546                If an `Expression` instance is passed, this is used as-is.
1547            as_: the SQL code string to parse as the table expression.
1548                If an `Expression` instance is passed, it will be used as-is.
1549            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
1550            append: if `True`, add to any existing expressions.
1551                Otherwise, this resets the expressions.
1552            dialect: the dialect used to parse the input expression.
1553            copy: if `False`, modify this expression instance in-place.
1554            opts: other options to use to parse the input expressions.
1555
1556        Returns:
1557            The modified expression.
1558        """
1559        return _apply_cte_builder(
1560            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
1561        )

Append to or set the common table expressions.

Example:
>>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
Arguments:
  • alias: the SQL code string to parse as the table name. If an Expression instance is passed, this is used as-is.
  • as_: the SQL code string to parse as the table expression. If an Expression instance is passed, it will be used as-is.
  • recursive: set the RECURSIVE part of the expression. Defaults to False.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified expression.

class OnConflict(Expression):
1564class OnConflict(Expression):
1565    arg_types = {
1566        "duplicate": False,
1567        "expressions": False,
1568        "nothing": False,
1569        "key": False,
1570        "constraint": False,
1571    }
class Returning(Expression):
1574class Returning(Expression):
1575    arg_types = {"expressions": True}
class Introducer(Expression):
1579class Introducer(Expression):
1580    arg_types = {"this": True, "expression": True}
class National(Expression):
1584class National(Expression):
1585    pass
class LoadData(Expression):
1588class LoadData(Expression):
1589    arg_types = {
1590        "this": True,
1591        "local": False,
1592        "overwrite": False,
1593        "inpath": True,
1594        "partition": False,
1595        "input_format": False,
1596        "serde": False,
1597    }
class Partition(Expression):
1600class Partition(Expression):
1601    arg_types = {"expressions": True}
class Fetch(Expression):
1604class Fetch(Expression):
1605    arg_types = {
1606        "direction": False,
1607        "count": False,
1608        "percent": False,
1609        "with_ties": False,
1610    }
class Group(Expression):
1613class Group(Expression):
1614    arg_types = {
1615        "expressions": False,
1616        "grouping_sets": False,
1617        "cube": False,
1618        "rollup": False,
1619        "totals": False,
1620    }
class Lambda(Expression):
1623class Lambda(Expression):
1624    arg_types = {"this": True, "expressions": True}
class Limit(Expression):
1627class Limit(Expression):
1628    arg_types = {"this": False, "expression": True, "offset": False}
class Literal(Condition):
1631class Literal(Condition):
1632    arg_types = {"this": True, "is_string": True}
1633
1634    @property
1635    def hashable_args(self) -> t.Any:
1636        return (self.this, self.args.get("is_string"))
1637
1638    @classmethod
1639    def number(cls, number) -> Literal:
1640        return cls(this=str(number), is_string=False)
1641
1642    @classmethod
1643    def string(cls, string) -> Literal:
1644        return cls(this=str(string), is_string=True)
1645
1646    @property
1647    def output_name(self) -> str:
1648        return self.name
@classmethod
def number(cls, number) -> sqlglot.expressions.Literal:
1638    @classmethod
1639    def number(cls, number) -> Literal:
1640        return cls(this=str(number), is_string=False)
@classmethod
def string(cls, string) -> sqlglot.expressions.Literal:
1642    @classmethod
1643    def string(cls, string) -> Literal:
1644        return cls(this=str(string), is_string=True)
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
class Join(Expression):
1651class Join(Expression):
1652    arg_types = {
1653        "this": True,
1654        "on": False,
1655        "side": False,
1656        "kind": False,
1657        "using": False,
1658        "method": False,
1659        "global": False,
1660        "hint": False,
1661    }
1662
1663    @property
1664    def method(self) -> str:
1665        return self.text("method").upper()
1666
1667    @property
1668    def kind(self) -> str:
1669        return self.text("kind").upper()
1670
1671    @property
1672    def side(self) -> str:
1673        return self.text("side").upper()
1674
1675    @property
1676    def hint(self) -> str:
1677        return self.text("hint").upper()
1678
1679    @property
1680    def alias_or_name(self) -> str:
1681        return self.this.alias_or_name
1682
1683    def on(
1684        self,
1685        *expressions: t.Optional[ExpOrStr],
1686        append: bool = True,
1687        dialect: DialectType = None,
1688        copy: bool = True,
1689        **opts,
1690    ) -> Join:
1691        """
1692        Append to or set the ON expressions.
1693
1694        Example:
1695            >>> import sqlglot
1696            >>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
1697            'JOIN x ON y = 1'
1698
1699        Args:
1700            *expressions: the SQL code strings to parse.
1701                If an `Expression` instance is passed, it will be used as-is.
1702                Multiple expressions are combined with an AND operator.
1703            append: if `True`, AND the new expressions to any existing expression.
1704                Otherwise, this resets the expression.
1705            dialect: the dialect used to parse the input expressions.
1706            copy: if `False`, modify this expression instance in-place.
1707            opts: other options to use to parse the input expressions.
1708
1709        Returns:
1710            The modified Join expression.
1711        """
1712        join = _apply_conjunction_builder(
1713            *expressions,
1714            instance=self,
1715            arg="on",
1716            append=append,
1717            dialect=dialect,
1718            copy=copy,
1719            **opts,
1720        )
1721
1722        if join.kind == "CROSS":
1723            join.set("kind", None)
1724
1725        return join
1726
1727    def using(
1728        self,
1729        *expressions: t.Optional[ExpOrStr],
1730        append: bool = True,
1731        dialect: DialectType = None,
1732        copy: bool = True,
1733        **opts,
1734    ) -> Join:
1735        """
1736        Append to or set the USING expressions.
1737
1738        Example:
1739            >>> import sqlglot
1740            >>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
1741            'JOIN x USING (foo, bla)'
1742
1743        Args:
1744            *expressions: the SQL code strings to parse.
1745                If an `Expression` instance is passed, it will be used as-is.
1746            append: if `True`, concatenate the new expressions to the existing "using" list.
1747                Otherwise, this resets the expression.
1748            dialect: the dialect used to parse the input expressions.
1749            copy: if `False`, modify this expression instance in-place.
1750            opts: other options to use to parse the input expressions.
1751
1752        Returns:
1753            The modified Join expression.
1754        """
1755        join = _apply_list_builder(
1756            *expressions,
1757            instance=self,
1758            arg="using",
1759            append=append,
1760            dialect=dialect,
1761            copy=copy,
1762            **opts,
1763        )
1764
1765        if join.kind == "CROSS":
1766            join.set("kind", None)
1767
1768        return join
def on( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Join:
1683    def on(
1684        self,
1685        *expressions: t.Optional[ExpOrStr],
1686        append: bool = True,
1687        dialect: DialectType = None,
1688        copy: bool = True,
1689        **opts,
1690    ) -> Join:
1691        """
1692        Append to or set the ON expressions.
1693
1694        Example:
1695            >>> import sqlglot
1696            >>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
1697            'JOIN x ON y = 1'
1698
1699        Args:
1700            *expressions: the SQL code strings to parse.
1701                If an `Expression` instance is passed, it will be used as-is.
1702                Multiple expressions are combined with an AND operator.
1703            append: if `True`, AND the new expressions to any existing expression.
1704                Otherwise, this resets the expression.
1705            dialect: the dialect used to parse the input expressions.
1706            copy: if `False`, modify this expression instance in-place.
1707            opts: other options to use to parse the input expressions.
1708
1709        Returns:
1710            The modified Join expression.
1711        """
1712        join = _apply_conjunction_builder(
1713            *expressions,
1714            instance=self,
1715            arg="on",
1716            append=append,
1717            dialect=dialect,
1718            copy=copy,
1719            **opts,
1720        )
1721
1722        if join.kind == "CROSS":
1723            join.set("kind", None)
1724
1725        return join

Append to or set the ON expressions.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
'JOIN x ON y = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Join expression.

def using( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Join:
1727    def using(
1728        self,
1729        *expressions: t.Optional[ExpOrStr],
1730        append: bool = True,
1731        dialect: DialectType = None,
1732        copy: bool = True,
1733        **opts,
1734    ) -> Join:
1735        """
1736        Append to or set the USING expressions.
1737
1738        Example:
1739            >>> import sqlglot
1740            >>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
1741            'JOIN x USING (foo, bla)'
1742
1743        Args:
1744            *expressions: the SQL code strings to parse.
1745                If an `Expression` instance is passed, it will be used as-is.
1746            append: if `True`, concatenate the new expressions to the existing "using" list.
1747                Otherwise, this resets the expression.
1748            dialect: the dialect used to parse the input expressions.
1749            copy: if `False`, modify this expression instance in-place.
1750            opts: other options to use to parse the input expressions.
1751
1752        Returns:
1753            The modified Join expression.
1754        """
1755        join = _apply_list_builder(
1756            *expressions,
1757            instance=self,
1758            arg="using",
1759            append=append,
1760            dialect=dialect,
1761            copy=copy,
1762            **opts,
1763        )
1764
1765        if join.kind == "CROSS":
1766            join.set("kind", None)
1767
1768        return join

Append to or set the USING expressions.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
'JOIN x USING (foo, bla)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, concatenate the new expressions to the existing "using" list. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Join expression.

class Lateral(UDTF):
1771class Lateral(UDTF):
1772    arg_types = {"this": True, "view": False, "outer": False, "alias": False}
class MatchRecognize(Expression):
1775class MatchRecognize(Expression):
1776    arg_types = {
1777        "partition_by": False,
1778        "order": False,
1779        "measures": False,
1780        "rows": False,
1781        "after": False,
1782        "pattern": False,
1783        "define": False,
1784        "alias": False,
1785    }
class Final(Expression):
1790class Final(Expression):
1791    pass
class Offset(Expression):
1794class Offset(Expression):
1795    arg_types = {"this": False, "expression": True}
class Order(Expression):
1798class Order(Expression):
1799    arg_types = {"this": False, "expressions": True}
class Cluster(Order):
1804class Cluster(Order):
1805    pass
class Distribute(Order):
1808class Distribute(Order):
1809    pass
class Sort(Order):
1812class Sort(Order):
1813    pass
class Ordered(Expression):
1816class Ordered(Expression):
1817    arg_types = {"this": True, "desc": True, "nulls_first": True}
class Property(Expression):
1820class Property(Expression):
1821    arg_types = {"this": True, "value": True}
class AlgorithmProperty(Property):
1824class AlgorithmProperty(Property):
1825    arg_types = {"this": True}
class AutoIncrementProperty(Property):
1828class AutoIncrementProperty(Property):
1829    arg_types = {"this": True}
class BlockCompressionProperty(Property):
1832class BlockCompressionProperty(Property):
1833    arg_types = {"autotemp": False, "always": False, "default": True, "manual": True, "never": True}
class CharacterSetProperty(Property):
1836class CharacterSetProperty(Property):
1837    arg_types = {"this": True, "default": True}
class ChecksumProperty(Property):
1840class ChecksumProperty(Property):
1841    arg_types = {"on": False, "default": False}
class CollateProperty(Property):
1844class CollateProperty(Property):
1845    arg_types = {"this": True}
class DataBlocksizeProperty(Property):
1848class DataBlocksizeProperty(Property):
1849    arg_types = {
1850        "size": False,
1851        "units": False,
1852        "minimum": False,
1853        "maximum": False,
1854        "default": False,
1855    }
class DefinerProperty(Property):
1858class DefinerProperty(Property):
1859    arg_types = {"this": True}
class DistKeyProperty(Property):
1862class DistKeyProperty(Property):
1863    arg_types = {"this": True}
class DistStyleProperty(Property):
1866class DistStyleProperty(Property):
1867    arg_types = {"this": True}
class EngineProperty(Property):
1870class EngineProperty(Property):
1871    arg_types = {"this": True}
class ToTableProperty(Property):
1874class ToTableProperty(Property):
1875    arg_types = {"this": True}
class ExecuteAsProperty(Property):
1878class ExecuteAsProperty(Property):
1879    arg_types = {"this": True}
class ExternalProperty(Property):
1882class ExternalProperty(Property):
1883    arg_types = {"this": False}
class FallbackProperty(Property):
1886class FallbackProperty(Property):
1887    arg_types = {"no": True, "protection": False}
class FileFormatProperty(Property):
1890class FileFormatProperty(Property):
1891    arg_types = {"this": True}
class FreespaceProperty(Property):
1894class FreespaceProperty(Property):
1895    arg_types = {"this": True, "percent": False}
class InputOutputFormat(Expression):
1898class InputOutputFormat(Expression):
1899    arg_types = {"input_format": False, "output_format": False}
class IsolatedLoadingProperty(Property):
1902class IsolatedLoadingProperty(Property):
1903    arg_types = {
1904        "no": True,
1905        "concurrent": True,
1906        "for_all": True,
1907        "for_insert": True,
1908        "for_none": True,
1909    }
class JournalProperty(Property):
1912class JournalProperty(Property):
1913    arg_types = {
1914        "no": False,
1915        "dual": False,
1916        "before": False,
1917        "local": False,
1918        "after": False,
1919    }
class LanguageProperty(Property):
1922class LanguageProperty(Property):
1923    arg_types = {"this": True}
class DictProperty(Property):
1926class DictProperty(Property):
1927    arg_types = {"this": True, "kind": True, "settings": False}
class DictSubProperty(Property):
1930class DictSubProperty(Property):
1931    pass
class DictRange(Property):
1934class DictRange(Property):
1935    arg_types = {"this": True, "min": True, "max": True}
class OnCluster(Property):
1940class OnCluster(Property):
1941    arg_types = {"this": True}
class LikeProperty(Property):
1944class LikeProperty(Property):
1945    arg_types = {"this": True, "expressions": False}
class LocationProperty(Property):
1948class LocationProperty(Property):
1949    arg_types = {"this": True}
class LockingProperty(Property):
1952class LockingProperty(Property):
1953    arg_types = {
1954        "this": False,
1955        "kind": True,
1956        "for_or_in": True,
1957        "lock_type": True,
1958        "override": False,
1959    }
class LogProperty(Property):
1962class LogProperty(Property):
1963    arg_types = {"no": True}
class MaterializedProperty(Property):
1966class MaterializedProperty(Property):
1967    arg_types = {"this": False}
class MergeBlockRatioProperty(Property):
1970class MergeBlockRatioProperty(Property):
1971    arg_types = {"this": False, "no": False, "default": False, "percent": False}
class NoPrimaryIndexProperty(Property):
1974class NoPrimaryIndexProperty(Property):
1975    arg_types = {}
class OnCommitProperty(Property):
1978class OnCommitProperty(Property):
1979    arg_type = {"delete": False}
class PartitionedByProperty(Property):
1982class PartitionedByProperty(Property):
1983    arg_types = {"this": True}
class ReturnsProperty(Property):
1986class ReturnsProperty(Property):
1987    arg_types = {"this": True, "is_table": False, "table": False}
class RowFormatProperty(Property):
1990class RowFormatProperty(Property):
1991    arg_types = {"this": True}
class RowFormatDelimitedProperty(Property):
1994class RowFormatDelimitedProperty(Property):
1995    # https://cwiki.apache.org/confluence/display/hive/languagemanual+dml
1996    arg_types = {
1997        "fields": False,
1998        "escaped": False,
1999        "collection_items": False,
2000        "map_keys": False,
2001        "lines": False,
2002        "null": False,
2003        "serde": False,
2004    }
class RowFormatSerdeProperty(Property):
2007class RowFormatSerdeProperty(Property):
2008    arg_types = {"this": True}
class SchemaCommentProperty(Property):
2011class SchemaCommentProperty(Property):
2012    arg_types = {"this": True}
class SerdeProperties(Property):
2015class SerdeProperties(Property):
2016    arg_types = {"expressions": True}
class SetProperty(Property):
2019class SetProperty(Property):
2020    arg_types = {"multi": True}
class SettingsProperty(Property):
2023class SettingsProperty(Property):
2024    arg_types = {"expressions": True}
class SortKeyProperty(Property):
2027class SortKeyProperty(Property):
2028    arg_types = {"this": True, "compound": False}
class SqlSecurityProperty(Property):
2031class SqlSecurityProperty(Property):
2032    arg_types = {"definer": True}
class StabilityProperty(Property):
2035class StabilityProperty(Property):
2036    arg_types = {"this": True}
class TemporaryProperty(Property):
2039class TemporaryProperty(Property):
2040    arg_types = {}
class TransientProperty(Property):
2043class TransientProperty(Property):
2044    arg_types = {"this": False}
class VolatileProperty(Property):
2047class VolatileProperty(Property):
2048    arg_types = {"this": False}
class WithDataProperty(Property):
2051class WithDataProperty(Property):
2052    arg_types = {"no": True, "statistics": False}
class WithJournalTableProperty(Property):
2055class WithJournalTableProperty(Property):
2056    arg_types = {"this": True}
class Properties(Expression):
2059class Properties(Expression):
2060    arg_types = {"expressions": True}
2061
2062    NAME_TO_PROPERTY = {
2063        "ALGORITHM": AlgorithmProperty,
2064        "AUTO_INCREMENT": AutoIncrementProperty,
2065        "CHARACTER SET": CharacterSetProperty,
2066        "COLLATE": CollateProperty,
2067        "COMMENT": SchemaCommentProperty,
2068        "DEFINER": DefinerProperty,
2069        "DISTKEY": DistKeyProperty,
2070        "DISTSTYLE": DistStyleProperty,
2071        "ENGINE": EngineProperty,
2072        "EXECUTE AS": ExecuteAsProperty,
2073        "FORMAT": FileFormatProperty,
2074        "LANGUAGE": LanguageProperty,
2075        "LOCATION": LocationProperty,
2076        "PARTITIONED_BY": PartitionedByProperty,
2077        "RETURNS": ReturnsProperty,
2078        "ROW_FORMAT": RowFormatProperty,
2079        "SORTKEY": SortKeyProperty,
2080    }
2081
2082    PROPERTY_TO_NAME = {v: k for k, v in NAME_TO_PROPERTY.items()}
2083
2084    # CREATE property locations
2085    # Form: schema specified
2086    #   create [POST_CREATE]
2087    #     table a [POST_NAME]
2088    #     (b int) [POST_SCHEMA]
2089    #     with ([POST_WITH])
2090    #     index (b) [POST_INDEX]
2091    #
2092    # Form: alias selection
2093    #   create [POST_CREATE]
2094    #     table a [POST_NAME]
2095    #     as [POST_ALIAS] (select * from b) [POST_EXPRESSION]
2096    #     index (c) [POST_INDEX]
2097    class Location(AutoName):
2098        POST_CREATE = auto()
2099        POST_NAME = auto()
2100        POST_SCHEMA = auto()
2101        POST_WITH = auto()
2102        POST_ALIAS = auto()
2103        POST_EXPRESSION = auto()
2104        POST_INDEX = auto()
2105        UNSUPPORTED = auto()
2106
2107    @classmethod
2108    def from_dict(cls, properties_dict: t.Dict) -> Properties:
2109        expressions = []
2110        for key, value in properties_dict.items():
2111            property_cls = cls.NAME_TO_PROPERTY.get(key.upper())
2112            if property_cls:
2113                expressions.append(property_cls(this=convert(value)))
2114            else:
2115                expressions.append(Property(this=Literal.string(key), value=convert(value)))
2116
2117        return cls(expressions=expressions)
@classmethod
def from_dict(cls, properties_dict: Dict) -> sqlglot.expressions.Properties:
2107    @classmethod
2108    def from_dict(cls, properties_dict: t.Dict) -> Properties:
2109        expressions = []
2110        for key, value in properties_dict.items():
2111            property_cls = cls.NAME_TO_PROPERTY.get(key.upper())
2112            if property_cls:
2113                expressions.append(property_cls(this=convert(value)))
2114            else:
2115                expressions.append(Property(this=Literal.string(key), value=convert(value)))
2116
2117        return cls(expressions=expressions)
class Properties.Location(sqlglot.helper.AutoName):
2097    class Location(AutoName):
2098        POST_CREATE = auto()
2099        POST_NAME = auto()
2100        POST_SCHEMA = auto()
2101        POST_WITH = auto()
2102        POST_ALIAS = auto()
2103        POST_EXPRESSION = auto()
2104        POST_INDEX = auto()
2105        UNSUPPORTED = auto()

An enumeration.

POST_CREATE = <Location.POST_CREATE: 'POST_CREATE'>
POST_NAME = <Location.POST_NAME: 'POST_NAME'>
POST_SCHEMA = <Location.POST_SCHEMA: 'POST_SCHEMA'>
POST_WITH = <Location.POST_WITH: 'POST_WITH'>
POST_ALIAS = <Location.POST_ALIAS: 'POST_ALIAS'>
POST_EXPRESSION = <Location.POST_EXPRESSION: 'POST_EXPRESSION'>
POST_INDEX = <Location.POST_INDEX: 'POST_INDEX'>
UNSUPPORTED = <Location.UNSUPPORTED: 'UNSUPPORTED'>
Inherited Members
enum.Enum
name
value
class Qualify(Expression):
2120class Qualify(Expression):
2121    pass
class Return(Expression):
2125class Return(Expression):
2126    pass
class Reference(Expression):
2129class Reference(Expression):
2130    arg_types = {"this": True, "expressions": False, "options": False}
class Tuple(Expression):
2133class Tuple(Expression):
2134    arg_types = {"expressions": False}
2135
2136    def isin(
2137        self, *expressions: t.Any, query: t.Optional[ExpOrStr] = None, copy: bool = True, **opts
2138    ) -> In:
2139        return In(
2140            this=_maybe_copy(self, copy),
2141            expressions=[convert(e, copy=copy) for e in expressions],
2142            query=maybe_parse(query, copy=copy, **opts) if query else None,
2143        )
def isin( self, *expressions: Any, query: Union[str, sqlglot.expressions.Expression, NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.In:
2136    def isin(
2137        self, *expressions: t.Any, query: t.Optional[ExpOrStr] = None, copy: bool = True, **opts
2138    ) -> In:
2139        return In(
2140            this=_maybe_copy(self, copy),
2141            expressions=[convert(e, copy=copy) for e in expressions],
2142            query=maybe_parse(query, copy=copy, **opts) if query else None,
2143        )
class Subqueryable(Unionable):
2146class Subqueryable(Unionable):
2147    def subquery(self, alias: t.Optional[ExpOrStr] = None, copy: bool = True) -> Subquery:
2148        """
2149        Convert this expression to an aliased expression that can be used as a Subquery.
2150
2151        Example:
2152            >>> subquery = Select().select("x").from_("tbl").subquery()
2153            >>> Select().select("x").from_(subquery).sql()
2154            'SELECT x FROM (SELECT x FROM tbl)'
2155
2156        Args:
2157            alias (str | Identifier): an optional alias for the subquery
2158            copy (bool): if `False`, modify this expression instance in-place.
2159
2160        Returns:
2161            Alias: the subquery
2162        """
2163        instance = _maybe_copy(self, copy)
2164        if not isinstance(alias, Expression):
2165            alias = TableAlias(this=to_identifier(alias)) if alias else None
2166
2167        return Subquery(this=instance, alias=alias)
2168
2169    def limit(
2170        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2171    ) -> Select:
2172        raise NotImplementedError
2173
2174    @property
2175    def ctes(self):
2176        with_ = self.args.get("with")
2177        if not with_:
2178            return []
2179        return with_.expressions
2180
2181    @property
2182    def selects(self):
2183        raise NotImplementedError("Subqueryable objects must implement `selects`")
2184
2185    @property
2186    def named_selects(self):
2187        raise NotImplementedError("Subqueryable objects must implement `named_selects`")
2188
2189    def with_(
2190        self,
2191        alias: ExpOrStr,
2192        as_: ExpOrStr,
2193        recursive: t.Optional[bool] = None,
2194        append: bool = True,
2195        dialect: DialectType = None,
2196        copy: bool = True,
2197        **opts,
2198    ) -> Subqueryable:
2199        """
2200        Append to or set the common table expressions.
2201
2202        Example:
2203            >>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
2204            'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
2205
2206        Args:
2207            alias: the SQL code string to parse as the table name.
2208                If an `Expression` instance is passed, this is used as-is.
2209            as_: the SQL code string to parse as the table expression.
2210                If an `Expression` instance is passed, it will be used as-is.
2211            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
2212            append: if `True`, add to any existing expressions.
2213                Otherwise, this resets the expressions.
2214            dialect: the dialect used to parse the input expression.
2215            copy: if `False`, modify this expression instance in-place.
2216            opts: other options to use to parse the input expressions.
2217
2218        Returns:
2219            The modified expression.
2220        """
2221        return _apply_cte_builder(
2222            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
2223        )
def subquery( self, alias: Union[str, sqlglot.expressions.Expression, NoneType] = None, copy: bool = True) -> sqlglot.expressions.Subquery:
2147    def subquery(self, alias: t.Optional[ExpOrStr] = None, copy: bool = True) -> Subquery:
2148        """
2149        Convert this expression to an aliased expression that can be used as a Subquery.
2150
2151        Example:
2152            >>> subquery = Select().select("x").from_("tbl").subquery()
2153            >>> Select().select("x").from_(subquery).sql()
2154            'SELECT x FROM (SELECT x FROM tbl)'
2155
2156        Args:
2157            alias (str | Identifier): an optional alias for the subquery
2158            copy (bool): if `False`, modify this expression instance in-place.
2159
2160        Returns:
2161            Alias: the subquery
2162        """
2163        instance = _maybe_copy(self, copy)
2164        if not isinstance(alias, Expression):
2165            alias = TableAlias(this=to_identifier(alias)) if alias else None
2166
2167        return Subquery(this=instance, alias=alias)

Convert this expression to an aliased expression that can be used as a Subquery.

Example:
>>> subquery = Select().select("x").from_("tbl").subquery()
>>> Select().select("x").from_(subquery).sql()
'SELECT x FROM (SELECT x FROM tbl)'
Arguments:
  • alias (str | Identifier): an optional alias for the subquery
  • copy (bool): if False, modify this expression instance in-place.
Returns:

Alias: the subquery

def limit( self, expression: Union[str, sqlglot.expressions.Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2169    def limit(
2170        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2171    ) -> Select:
2172        raise NotImplementedError
def with_( self, alias: Union[str, sqlglot.expressions.Expression], as_: Union[str, sqlglot.expressions.Expression], recursive: Optional[bool] = None, append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Subqueryable:
2189    def with_(
2190        self,
2191        alias: ExpOrStr,
2192        as_: ExpOrStr,
2193        recursive: t.Optional[bool] = None,
2194        append: bool = True,
2195        dialect: DialectType = None,
2196        copy: bool = True,
2197        **opts,
2198    ) -> Subqueryable:
2199        """
2200        Append to or set the common table expressions.
2201
2202        Example:
2203            >>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
2204            'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
2205
2206        Args:
2207            alias: the SQL code string to parse as the table name.
2208                If an `Expression` instance is passed, this is used as-is.
2209            as_: the SQL code string to parse as the table expression.
2210                If an `Expression` instance is passed, it will be used as-is.
2211            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
2212            append: if `True`, add to any existing expressions.
2213                Otherwise, this resets the expressions.
2214            dialect: the dialect used to parse the input expression.
2215            copy: if `False`, modify this expression instance in-place.
2216            opts: other options to use to parse the input expressions.
2217
2218        Returns:
2219            The modified expression.
2220        """
2221        return _apply_cte_builder(
2222            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
2223        )

Append to or set the common table expressions.

Example:
>>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
Arguments:
  • alias: the SQL code string to parse as the table name. If an Expression instance is passed, this is used as-is.
  • as_: the SQL code string to parse as the table expression. If an Expression instance is passed, it will be used as-is.
  • recursive: set the RECURSIVE part of the expression. Defaults to False.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified expression.

class Table(Expression):
2249class Table(Expression):
2250    arg_types = {
2251        "this": True,
2252        "alias": False,
2253        "db": False,
2254        "catalog": False,
2255        "laterals": False,
2256        "joins": False,
2257        "pivots": False,
2258        "hints": False,
2259        "system_time": False,
2260    }
2261
2262    @property
2263    def db(self) -> str:
2264        return self.text("db")
2265
2266    @property
2267    def catalog(self) -> str:
2268        return self.text("catalog")
2269
2270    @property
2271    def parts(self) -> t.List[Identifier]:
2272        """Return the parts of a table in order catalog, db, table."""
2273        return [
2274            t.cast(Identifier, self.args[part])
2275            for part in ("catalog", "db", "this")
2276            if self.args.get(part)
2277        ]

Return the parts of a table in order catalog, db, table.

class SystemTime(Expression):
2281class SystemTime(Expression):
2282    arg_types = {
2283        "this": False,
2284        "expression": False,
2285        "kind": True,
2286    }
class Union(Subqueryable):
2289class Union(Subqueryable):
2290    arg_types = {
2291        "with": False,
2292        "this": True,
2293        "expression": True,
2294        "distinct": False,
2295        **QUERY_MODIFIERS,
2296    }
2297
2298    def limit(
2299        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2300    ) -> Select:
2301        """
2302        Set the LIMIT expression.
2303
2304        Example:
2305            >>> select("1").union(select("1")).limit(1).sql()
2306            'SELECT * FROM (SELECT 1 UNION SELECT 1) AS _l_0 LIMIT 1'
2307
2308        Args:
2309            expression: the SQL code string to parse.
2310                This can also be an integer.
2311                If a `Limit` instance is passed, this is used as-is.
2312                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2313            dialect: the dialect used to parse the input expression.
2314            copy: if `False`, modify this expression instance in-place.
2315            opts: other options to use to parse the input expressions.
2316
2317        Returns:
2318            The limited subqueryable.
2319        """
2320        return (
2321            select("*")
2322            .from_(self.subquery(alias="_l_0", copy=copy))
2323            .limit(expression, dialect=dialect, copy=False, **opts)
2324        )
2325
2326    def select(
2327        self,
2328        *expressions: t.Optional[ExpOrStr],
2329        append: bool = True,
2330        dialect: DialectType = None,
2331        copy: bool = True,
2332        **opts,
2333    ) -> Union:
2334        """Append to or set the SELECT of the union recursively.
2335
2336        Example:
2337            >>> from sqlglot import parse_one
2338            >>> parse_one("select a from x union select a from y union select a from z").select("b").sql()
2339            'SELECT a, b FROM x UNION SELECT a, b FROM y UNION SELECT a, b FROM z'
2340
2341        Args:
2342            *expressions: the SQL code strings to parse.
2343                If an `Expression` instance is passed, it will be used as-is.
2344            append: if `True`, add to any existing expressions.
2345                Otherwise, this resets the expressions.
2346            dialect: the dialect used to parse the input expressions.
2347            copy: if `False`, modify this expression instance in-place.
2348            opts: other options to use to parse the input expressions.
2349
2350        Returns:
2351            Union: the modified expression.
2352        """
2353        this = self.copy() if copy else self
2354        this.this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
2355        this.expression.unnest().select(
2356            *expressions, append=append, dialect=dialect, copy=False, **opts
2357        )
2358        return this
2359
2360    @property
2361    def named_selects(self):
2362        return self.this.unnest().named_selects
2363
2364    @property
2365    def is_star(self) -> bool:
2366        return self.this.is_star or self.expression.is_star
2367
2368    @property
2369    def selects(self):
2370        return self.this.unnest().selects
2371
2372    @property
2373    def left(self):
2374        return self.this
2375
2376    @property
2377    def right(self):
2378        return self.expression
def limit( self, expression: Union[str, sqlglot.expressions.Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2298    def limit(
2299        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2300    ) -> Select:
2301        """
2302        Set the LIMIT expression.
2303
2304        Example:
2305            >>> select("1").union(select("1")).limit(1).sql()
2306            'SELECT * FROM (SELECT 1 UNION SELECT 1) AS _l_0 LIMIT 1'
2307
2308        Args:
2309            expression: the SQL code string to parse.
2310                This can also be an integer.
2311                If a `Limit` instance is passed, this is used as-is.
2312                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2313            dialect: the dialect used to parse the input expression.
2314            copy: if `False`, modify this expression instance in-place.
2315            opts: other options to use to parse the input expressions.
2316
2317        Returns:
2318            The limited subqueryable.
2319        """
2320        return (
2321            select("*")
2322            .from_(self.subquery(alias="_l_0", copy=copy))
2323            .limit(expression, dialect=dialect, copy=False, **opts)
2324        )

Set the LIMIT expression.

Example:
>>> select("1").union(select("1")).limit(1).sql()
'SELECT * FROM (SELECT 1 UNION SELECT 1) AS _l_0 LIMIT 1'
Arguments:
  • expression: the SQL code string to parse. This can also be an integer. If a Limit instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Limit.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The limited subqueryable.

def select( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Union:
2326    def select(
2327        self,
2328        *expressions: t.Optional[ExpOrStr],
2329        append: bool = True,
2330        dialect: DialectType = None,
2331        copy: bool = True,
2332        **opts,
2333    ) -> Union:
2334        """Append to or set the SELECT of the union recursively.
2335
2336        Example:
2337            >>> from sqlglot import parse_one
2338            >>> parse_one("select a from x union select a from y union select a from z").select("b").sql()
2339            'SELECT a, b FROM x UNION SELECT a, b FROM y UNION SELECT a, b FROM z'
2340
2341        Args:
2342            *expressions: the SQL code strings to parse.
2343                If an `Expression` instance is passed, it will be used as-is.
2344            append: if `True`, add to any existing expressions.
2345                Otherwise, this resets the expressions.
2346            dialect: the dialect used to parse the input expressions.
2347            copy: if `False`, modify this expression instance in-place.
2348            opts: other options to use to parse the input expressions.
2349
2350        Returns:
2351            Union: the modified expression.
2352        """
2353        this = self.copy() if copy else self
2354        this.this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
2355        this.expression.unnest().select(
2356            *expressions, append=append, dialect=dialect, copy=False, **opts
2357        )
2358        return this

Append to or set the SELECT of the union recursively.

Example:
>>> from sqlglot import parse_one
>>> parse_one("select a from x union select a from y union select a from z").select("b").sql()
'SELECT a, b FROM x UNION SELECT a, b FROM y UNION SELECT a, b FROM z'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Union: the modified expression.

is_star: bool

Checks whether an expression is a star.

class Except(Union):
2381class Except(Union):
2382    pass
class Intersect(Union):
2385class Intersect(Union):
2386    pass
class Unnest(UDTF):
2389class Unnest(UDTF):
2390    arg_types = {
2391        "expressions": True,
2392        "ordinality": False,
2393        "alias": False,
2394        "offset": False,
2395    }
class Update(Expression):
2398class Update(Expression):
2399    arg_types = {
2400        "with": False,
2401        "this": False,
2402        "expressions": True,
2403        "from": False,
2404        "where": False,
2405        "returning": False,
2406    }
class Values(UDTF):
2409class Values(UDTF):
2410    arg_types = {
2411        "expressions": True,
2412        "ordinality": False,
2413        "alias": False,
2414    }
class Var(Expression):
2417class Var(Expression):
2418    pass
class Schema(Expression):
2421class Schema(Expression):
2422    arg_types = {"this": False, "expressions": False}
class Lock(Expression):
2427class Lock(Expression):
2428    arg_types = {"update": True, "expressions": False, "wait": False}
class Select(Subqueryable):
2431class Select(Subqueryable):
2432    arg_types = {
2433        "with": False,
2434        "kind": False,
2435        "expressions": False,
2436        "hint": False,
2437        "distinct": False,
2438        "struct": False,  # https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax#return_query_results_as_a_value_table
2439        "value": False,
2440        "into": False,
2441        "from": False,
2442        **QUERY_MODIFIERS,
2443    }
2444
2445    def from_(
2446        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
2447    ) -> Select:
2448        """
2449        Set the FROM expression.
2450
2451        Example:
2452            >>> Select().from_("tbl").select("x").sql()
2453            'SELECT x FROM tbl'
2454
2455        Args:
2456            expression : the SQL code strings to parse.
2457                If a `From` instance is passed, this is used as-is.
2458                If another `Expression` instance is passed, it will be wrapped in a `From`.
2459            dialect: the dialect used to parse the input expression.
2460            copy: if `False`, modify this expression instance in-place.
2461            opts: other options to use to parse the input expressions.
2462
2463        Returns:
2464            The modified Select expression.
2465        """
2466        return _apply_builder(
2467            expression=expression,
2468            instance=self,
2469            arg="from",
2470            into=From,
2471            prefix="FROM",
2472            dialect=dialect,
2473            copy=copy,
2474            **opts,
2475        )
2476
2477    def group_by(
2478        self,
2479        *expressions: t.Optional[ExpOrStr],
2480        append: bool = True,
2481        dialect: DialectType = None,
2482        copy: bool = True,
2483        **opts,
2484    ) -> Select:
2485        """
2486        Set the GROUP BY expression.
2487
2488        Example:
2489            >>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
2490            'SELECT x, COUNT(1) FROM tbl GROUP BY x'
2491
2492        Args:
2493            *expressions: the SQL code strings to parse.
2494                If a `Group` instance is passed, this is used as-is.
2495                If another `Expression` instance is passed, it will be wrapped in a `Group`.
2496                If nothing is passed in then a group by is not applied to the expression
2497            append: if `True`, add to any existing expressions.
2498                Otherwise, this flattens all the `Group` expression into a single expression.
2499            dialect: the dialect used to parse the input expression.
2500            copy: if `False`, modify this expression instance in-place.
2501            opts: other options to use to parse the input expressions.
2502
2503        Returns:
2504            The modified Select expression.
2505        """
2506        if not expressions:
2507            return self if not copy else self.copy()
2508
2509        return _apply_child_list_builder(
2510            *expressions,
2511            instance=self,
2512            arg="group",
2513            append=append,
2514            copy=copy,
2515            prefix="GROUP BY",
2516            into=Group,
2517            dialect=dialect,
2518            **opts,
2519        )
2520
2521    def order_by(
2522        self,
2523        *expressions: t.Optional[ExpOrStr],
2524        append: bool = True,
2525        dialect: DialectType = None,
2526        copy: bool = True,
2527        **opts,
2528    ) -> Select:
2529        """
2530        Set the ORDER BY expression.
2531
2532        Example:
2533            >>> Select().from_("tbl").select("x").order_by("x DESC").sql()
2534            'SELECT x FROM tbl ORDER BY x DESC'
2535
2536        Args:
2537            *expressions: the SQL code strings to parse.
2538                If a `Group` instance is passed, this is used as-is.
2539                If another `Expression` instance is passed, it will be wrapped in a `Order`.
2540            append: if `True`, add to any existing expressions.
2541                Otherwise, this flattens all the `Order` expression into a single expression.
2542            dialect: the dialect used to parse the input expression.
2543            copy: if `False`, modify this expression instance in-place.
2544            opts: other options to use to parse the input expressions.
2545
2546        Returns:
2547            The modified Select expression.
2548        """
2549        return _apply_child_list_builder(
2550            *expressions,
2551            instance=self,
2552            arg="order",
2553            append=append,
2554            copy=copy,
2555            prefix="ORDER BY",
2556            into=Order,
2557            dialect=dialect,
2558            **opts,
2559        )
2560
2561    def sort_by(
2562        self,
2563        *expressions: t.Optional[ExpOrStr],
2564        append: bool = True,
2565        dialect: DialectType = None,
2566        copy: bool = True,
2567        **opts,
2568    ) -> Select:
2569        """
2570        Set the SORT BY expression.
2571
2572        Example:
2573            >>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
2574            'SELECT x FROM tbl SORT BY x DESC'
2575
2576        Args:
2577            *expressions: the SQL code strings to parse.
2578                If a `Group` instance is passed, this is used as-is.
2579                If another `Expression` instance is passed, it will be wrapped in a `SORT`.
2580            append: if `True`, add to any existing expressions.
2581                Otherwise, this flattens all the `Order` expression into a single expression.
2582            dialect: the dialect used to parse the input expression.
2583            copy: if `False`, modify this expression instance in-place.
2584            opts: other options to use to parse the input expressions.
2585
2586        Returns:
2587            The modified Select expression.
2588        """
2589        return _apply_child_list_builder(
2590            *expressions,
2591            instance=self,
2592            arg="sort",
2593            append=append,
2594            copy=copy,
2595            prefix="SORT BY",
2596            into=Sort,
2597            dialect=dialect,
2598            **opts,
2599        )
2600
2601    def cluster_by(
2602        self,
2603        *expressions: t.Optional[ExpOrStr],
2604        append: bool = True,
2605        dialect: DialectType = None,
2606        copy: bool = True,
2607        **opts,
2608    ) -> Select:
2609        """
2610        Set the CLUSTER BY expression.
2611
2612        Example:
2613            >>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
2614            'SELECT x FROM tbl CLUSTER BY x DESC'
2615
2616        Args:
2617            *expressions: the SQL code strings to parse.
2618                If a `Group` instance is passed, this is used as-is.
2619                If another `Expression` instance is passed, it will be wrapped in a `Cluster`.
2620            append: if `True`, add to any existing expressions.
2621                Otherwise, this flattens all the `Order` expression into a single expression.
2622            dialect: the dialect used to parse the input expression.
2623            copy: if `False`, modify this expression instance in-place.
2624            opts: other options to use to parse the input expressions.
2625
2626        Returns:
2627            The modified Select expression.
2628        """
2629        return _apply_child_list_builder(
2630            *expressions,
2631            instance=self,
2632            arg="cluster",
2633            append=append,
2634            copy=copy,
2635            prefix="CLUSTER BY",
2636            into=Cluster,
2637            dialect=dialect,
2638            **opts,
2639        )
2640
2641    def limit(
2642        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2643    ) -> Select:
2644        """
2645        Set the LIMIT expression.
2646
2647        Example:
2648            >>> Select().from_("tbl").select("x").limit(10).sql()
2649            'SELECT x FROM tbl LIMIT 10'
2650
2651        Args:
2652            expression: the SQL code string to parse.
2653                This can also be an integer.
2654                If a `Limit` instance is passed, this is used as-is.
2655                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2656            dialect: the dialect used to parse the input expression.
2657            copy: if `False`, modify this expression instance in-place.
2658            opts: other options to use to parse the input expressions.
2659
2660        Returns:
2661            Select: the modified expression.
2662        """
2663        return _apply_builder(
2664            expression=expression,
2665            instance=self,
2666            arg="limit",
2667            into=Limit,
2668            prefix="LIMIT",
2669            dialect=dialect,
2670            copy=copy,
2671            **opts,
2672        )
2673
2674    def offset(
2675        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2676    ) -> Select:
2677        """
2678        Set the OFFSET expression.
2679
2680        Example:
2681            >>> Select().from_("tbl").select("x").offset(10).sql()
2682            'SELECT x FROM tbl OFFSET 10'
2683
2684        Args:
2685            expression: the SQL code string to parse.
2686                This can also be an integer.
2687                If a `Offset` instance is passed, this is used as-is.
2688                If another `Expression` instance is passed, it will be wrapped in a `Offset`.
2689            dialect: the dialect used to parse the input expression.
2690            copy: if `False`, modify this expression instance in-place.
2691            opts: other options to use to parse the input expressions.
2692
2693        Returns:
2694            The modified Select expression.
2695        """
2696        return _apply_builder(
2697            expression=expression,
2698            instance=self,
2699            arg="offset",
2700            into=Offset,
2701            prefix="OFFSET",
2702            dialect=dialect,
2703            copy=copy,
2704            **opts,
2705        )
2706
2707    def select(
2708        self,
2709        *expressions: t.Optional[ExpOrStr],
2710        append: bool = True,
2711        dialect: DialectType = None,
2712        copy: bool = True,
2713        **opts,
2714    ) -> Select:
2715        """
2716        Append to or set the SELECT expressions.
2717
2718        Example:
2719            >>> Select().select("x", "y").sql()
2720            'SELECT x, y'
2721
2722        Args:
2723            *expressions: the SQL code strings to parse.
2724                If an `Expression` instance is passed, it will be used as-is.
2725            append: if `True`, add to any existing expressions.
2726                Otherwise, this resets the expressions.
2727            dialect: the dialect used to parse the input expressions.
2728            copy: if `False`, modify this expression instance in-place.
2729            opts: other options to use to parse the input expressions.
2730
2731        Returns:
2732            The modified Select expression.
2733        """
2734        return _apply_list_builder(
2735            *expressions,
2736            instance=self,
2737            arg="expressions",
2738            append=append,
2739            dialect=dialect,
2740            copy=copy,
2741            **opts,
2742        )
2743
2744    def lateral(
2745        self,
2746        *expressions: t.Optional[ExpOrStr],
2747        append: bool = True,
2748        dialect: DialectType = None,
2749        copy: bool = True,
2750        **opts,
2751    ) -> Select:
2752        """
2753        Append to or set the LATERAL expressions.
2754
2755        Example:
2756            >>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
2757            'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
2758
2759        Args:
2760            *expressions: the SQL code strings to parse.
2761                If an `Expression` instance is passed, it will be used as-is.
2762            append: if `True`, add to any existing expressions.
2763                Otherwise, this resets the expressions.
2764            dialect: the dialect used to parse the input expressions.
2765            copy: if `False`, modify this expression instance in-place.
2766            opts: other options to use to parse the input expressions.
2767
2768        Returns:
2769            The modified Select expression.
2770        """
2771        return _apply_list_builder(
2772            *expressions,
2773            instance=self,
2774            arg="laterals",
2775            append=append,
2776            into=Lateral,
2777            prefix="LATERAL VIEW",
2778            dialect=dialect,
2779            copy=copy,
2780            **opts,
2781        )
2782
2783    def join(
2784        self,
2785        expression: ExpOrStr,
2786        on: t.Optional[ExpOrStr] = None,
2787        using: t.Optional[ExpOrStr | t.List[ExpOrStr]] = None,
2788        append: bool = True,
2789        join_type: t.Optional[str] = None,
2790        join_alias: t.Optional[Identifier | str] = None,
2791        dialect: DialectType = None,
2792        copy: bool = True,
2793        **opts,
2794    ) -> Select:
2795        """
2796        Append to or set the JOIN expressions.
2797
2798        Example:
2799            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
2800            'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
2801
2802            >>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
2803            'SELECT 1 FROM a JOIN b USING (x, y, z)'
2804
2805            Use `join_type` to change the type of join:
2806
2807            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
2808            'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
2809
2810        Args:
2811            expression: the SQL code string to parse.
2812                If an `Expression` instance is passed, it will be used as-is.
2813            on: optionally specify the join "on" criteria as a SQL string.
2814                If an `Expression` instance is passed, it will be used as-is.
2815            using: optionally specify the join "using" criteria as a SQL string.
2816                If an `Expression` instance is passed, it will be used as-is.
2817            append: if `True`, add to any existing expressions.
2818                Otherwise, this resets the expressions.
2819            join_type: if set, alter the parsed join type.
2820            join_alias: an optional alias for the joined source.
2821            dialect: the dialect used to parse the input expressions.
2822            copy: if `False`, modify this expression instance in-place.
2823            opts: other options to use to parse the input expressions.
2824
2825        Returns:
2826            Select: the modified expression.
2827        """
2828        parse_args: t.Dict[str, t.Any] = {"dialect": dialect, **opts}
2829
2830        try:
2831            expression = maybe_parse(expression, into=Join, prefix="JOIN", **parse_args)
2832        except ParseError:
2833            expression = maybe_parse(expression, into=(Join, Expression), **parse_args)
2834
2835        join = expression if isinstance(expression, Join) else Join(this=expression)
2836
2837        if isinstance(join.this, Select):
2838            join.this.replace(join.this.subquery())
2839
2840        if join_type:
2841            method: t.Optional[Token]
2842            side: t.Optional[Token]
2843            kind: t.Optional[Token]
2844
2845            method, side, kind = maybe_parse(join_type, into="JOIN_TYPE", **parse_args)  # type: ignore
2846
2847            if method:
2848                join.set("method", method.text)
2849            if side:
2850                join.set("side", side.text)
2851            if kind:
2852                join.set("kind", kind.text)
2853
2854        if on:
2855            on = and_(*ensure_list(on), dialect=dialect, copy=copy, **opts)
2856            join.set("on", on)
2857
2858        if using:
2859            join = _apply_list_builder(
2860                *ensure_list(using),
2861                instance=join,
2862                arg="using",
2863                append=append,
2864                copy=copy,
2865                **opts,
2866            )
2867
2868        if join_alias:
2869            join.set("this", alias_(join.this, join_alias, table=True))
2870
2871        return _apply_list_builder(
2872            join,
2873            instance=self,
2874            arg="joins",
2875            append=append,
2876            copy=copy,
2877            **opts,
2878        )
2879
2880    def where(
2881        self,
2882        *expressions: t.Optional[ExpOrStr],
2883        append: bool = True,
2884        dialect: DialectType = None,
2885        copy: bool = True,
2886        **opts,
2887    ) -> Select:
2888        """
2889        Append to or set the WHERE expressions.
2890
2891        Example:
2892            >>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
2893            "SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
2894
2895        Args:
2896            *expressions: the SQL code strings to parse.
2897                If an `Expression` instance is passed, it will be used as-is.
2898                Multiple expressions are combined with an AND operator.
2899            append: if `True`, AND the new expressions to any existing expression.
2900                Otherwise, this resets the expression.
2901            dialect: the dialect used to parse the input expressions.
2902            copy: if `False`, modify this expression instance in-place.
2903            opts: other options to use to parse the input expressions.
2904
2905        Returns:
2906            Select: the modified expression.
2907        """
2908        return _apply_conjunction_builder(
2909            *expressions,
2910            instance=self,
2911            arg="where",
2912            append=append,
2913            into=Where,
2914            dialect=dialect,
2915            copy=copy,
2916            **opts,
2917        )
2918
2919    def having(
2920        self,
2921        *expressions: t.Optional[ExpOrStr],
2922        append: bool = True,
2923        dialect: DialectType = None,
2924        copy: bool = True,
2925        **opts,
2926    ) -> Select:
2927        """
2928        Append to or set the HAVING expressions.
2929
2930        Example:
2931            >>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
2932            'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
2933
2934        Args:
2935            *expressions: the SQL code strings to parse.
2936                If an `Expression` instance is passed, it will be used as-is.
2937                Multiple expressions are combined with an AND operator.
2938            append: if `True`, AND the new expressions to any existing expression.
2939                Otherwise, this resets the expression.
2940            dialect: the dialect used to parse the input expressions.
2941            copy: if `False`, modify this expression instance in-place.
2942            opts: other options to use to parse the input expressions.
2943
2944        Returns:
2945            The modified Select expression.
2946        """
2947        return _apply_conjunction_builder(
2948            *expressions,
2949            instance=self,
2950            arg="having",
2951            append=append,
2952            into=Having,
2953            dialect=dialect,
2954            copy=copy,
2955            **opts,
2956        )
2957
2958    def window(
2959        self,
2960        *expressions: t.Optional[ExpOrStr],
2961        append: bool = True,
2962        dialect: DialectType = None,
2963        copy: bool = True,
2964        **opts,
2965    ) -> Select:
2966        return _apply_list_builder(
2967            *expressions,
2968            instance=self,
2969            arg="windows",
2970            append=append,
2971            into=Window,
2972            dialect=dialect,
2973            copy=copy,
2974            **opts,
2975        )
2976
2977    def qualify(
2978        self,
2979        *expressions: t.Optional[ExpOrStr],
2980        append: bool = True,
2981        dialect: DialectType = None,
2982        copy: bool = True,
2983        **opts,
2984    ) -> Select:
2985        return _apply_conjunction_builder(
2986            *expressions,
2987            instance=self,
2988            arg="qualify",
2989            append=append,
2990            into=Qualify,
2991            dialect=dialect,
2992            copy=copy,
2993            **opts,
2994        )
2995
2996    def distinct(
2997        self, *ons: t.Optional[ExpOrStr], distinct: bool = True, copy: bool = True
2998    ) -> Select:
2999        """
3000        Set the OFFSET expression.
3001
3002        Example:
3003            >>> Select().from_("tbl").select("x").distinct().sql()
3004            'SELECT DISTINCT x FROM tbl'
3005
3006        Args:
3007            ons: the expressions to distinct on
3008            distinct: whether the Select should be distinct
3009            copy: if `False`, modify this expression instance in-place.
3010
3011        Returns:
3012            Select: the modified expression.
3013        """
3014        instance = _maybe_copy(self, copy)
3015        on = Tuple(expressions=[maybe_parse(on, copy=copy) for on in ons if on]) if ons else None
3016        instance.set("distinct", Distinct(on=on) if distinct else None)
3017        return instance
3018
3019    def ctas(
3020        self,
3021        table: ExpOrStr,
3022        properties: t.Optional[t.Dict] = None,
3023        dialect: DialectType = None,
3024        copy: bool = True,
3025        **opts,
3026    ) -> Create:
3027        """
3028        Convert this expression to a CREATE TABLE AS statement.
3029
3030        Example:
3031            >>> Select().select("*").from_("tbl").ctas("x").sql()
3032            'CREATE TABLE x AS SELECT * FROM tbl'
3033
3034        Args:
3035            table: the SQL code string to parse as the table name.
3036                If another `Expression` instance is passed, it will be used as-is.
3037            properties: an optional mapping of table properties
3038            dialect: the dialect used to parse the input table.
3039            copy: if `False`, modify this expression instance in-place.
3040            opts: other options to use to parse the input table.
3041
3042        Returns:
3043            The new Create expression.
3044        """
3045        instance = _maybe_copy(self, copy)
3046        table_expression = maybe_parse(
3047            table,
3048            into=Table,
3049            dialect=dialect,
3050            **opts,
3051        )
3052        properties_expression = None
3053        if properties:
3054            properties_expression = Properties.from_dict(properties)
3055
3056        return Create(
3057            this=table_expression,
3058            kind="table",
3059            expression=instance,
3060            properties=properties_expression,
3061        )
3062
3063    def lock(self, update: bool = True, copy: bool = True) -> Select:
3064        """
3065        Set the locking read mode for this expression.
3066
3067        Examples:
3068            >>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
3069            "SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
3070
3071            >>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
3072            "SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
3073
3074        Args:
3075            update: if `True`, the locking type will be `FOR UPDATE`, else it will be `FOR SHARE`.
3076            copy: if `False`, modify this expression instance in-place.
3077
3078        Returns:
3079            The modified expression.
3080        """
3081        inst = _maybe_copy(self, copy)
3082        inst.set("locks", [Lock(update=update)])
3083
3084        return inst
3085
3086    def hint(self, *hints: ExpOrStr, dialect: DialectType = None, copy: bool = True) -> Select:
3087        """
3088        Set hints for this expression.
3089
3090        Examples:
3091            >>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
3092            'SELECT /*+ BROADCAST(y) */ x FROM tbl'
3093
3094        Args:
3095            hints: The SQL code strings to parse as the hints.
3096                If an `Expression` instance is passed, it will be used as-is.
3097            dialect: The dialect used to parse the hints.
3098            copy: If `False`, modify this expression instance in-place.
3099
3100        Returns:
3101            The modified expression.
3102        """
3103        inst = _maybe_copy(self, copy)
3104        inst.set(
3105            "hint", Hint(expressions=[maybe_parse(h, copy=copy, dialect=dialect) for h in hints])
3106        )
3107
3108        return inst
3109
3110    @property
3111    def named_selects(self) -> t.List[str]:
3112        return [e.output_name for e in self.expressions if e.alias_or_name]
3113
3114    @property
3115    def is_star(self) -> bool:
3116        return any(expression.is_star for expression in self.expressions)
3117
3118    @property
3119    def selects(self) -> t.List[Expression]:
3120        return self.expressions
def from_( self, expression: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2445    def from_(
2446        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
2447    ) -> Select:
2448        """
2449        Set the FROM expression.
2450
2451        Example:
2452            >>> Select().from_("tbl").select("x").sql()
2453            'SELECT x FROM tbl'
2454
2455        Args:
2456            expression : the SQL code strings to parse.
2457                If a `From` instance is passed, this is used as-is.
2458                If another `Expression` instance is passed, it will be wrapped in a `From`.
2459            dialect: the dialect used to parse the input expression.
2460            copy: if `False`, modify this expression instance in-place.
2461            opts: other options to use to parse the input expressions.
2462
2463        Returns:
2464            The modified Select expression.
2465        """
2466        return _apply_builder(
2467            expression=expression,
2468            instance=self,
2469            arg="from",
2470            into=From,
2471            prefix="FROM",
2472            dialect=dialect,
2473            copy=copy,
2474            **opts,
2475        )

Set the FROM expression.

Example:
>>> Select().from_("tbl").select("x").sql()
'SELECT x FROM tbl'
Arguments:
  • expression : the SQL code strings to parse. If a From instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a From.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def group_by( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2477    def group_by(
2478        self,
2479        *expressions: t.Optional[ExpOrStr],
2480        append: bool = True,
2481        dialect: DialectType = None,
2482        copy: bool = True,
2483        **opts,
2484    ) -> Select:
2485        """
2486        Set the GROUP BY expression.
2487
2488        Example:
2489            >>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
2490            'SELECT x, COUNT(1) FROM tbl GROUP BY x'
2491
2492        Args:
2493            *expressions: the SQL code strings to parse.
2494                If a `Group` instance is passed, this is used as-is.
2495                If another `Expression` instance is passed, it will be wrapped in a `Group`.
2496                If nothing is passed in then a group by is not applied to the expression
2497            append: if `True`, add to any existing expressions.
2498                Otherwise, this flattens all the `Group` expression into a single expression.
2499            dialect: the dialect used to parse the input expression.
2500            copy: if `False`, modify this expression instance in-place.
2501            opts: other options to use to parse the input expressions.
2502
2503        Returns:
2504            The modified Select expression.
2505        """
2506        if not expressions:
2507            return self if not copy else self.copy()
2508
2509        return _apply_child_list_builder(
2510            *expressions,
2511            instance=self,
2512            arg="group",
2513            append=append,
2514            copy=copy,
2515            prefix="GROUP BY",
2516            into=Group,
2517            dialect=dialect,
2518            **opts,
2519        )

Set the GROUP BY expression.

Example:
>>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
'SELECT x, COUNT(1) FROM tbl GROUP BY x'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Group. If nothing is passed in then a group by is not applied to the expression
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Group expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def order_by( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2521    def order_by(
2522        self,
2523        *expressions: t.Optional[ExpOrStr],
2524        append: bool = True,
2525        dialect: DialectType = None,
2526        copy: bool = True,
2527        **opts,
2528    ) -> Select:
2529        """
2530        Set the ORDER BY expression.
2531
2532        Example:
2533            >>> Select().from_("tbl").select("x").order_by("x DESC").sql()
2534            'SELECT x FROM tbl ORDER BY x DESC'
2535
2536        Args:
2537            *expressions: the SQL code strings to parse.
2538                If a `Group` instance is passed, this is used as-is.
2539                If another `Expression` instance is passed, it will be wrapped in a `Order`.
2540            append: if `True`, add to any existing expressions.
2541                Otherwise, this flattens all the `Order` expression into a single expression.
2542            dialect: the dialect used to parse the input expression.
2543            copy: if `False`, modify this expression instance in-place.
2544            opts: other options to use to parse the input expressions.
2545
2546        Returns:
2547            The modified Select expression.
2548        """
2549        return _apply_child_list_builder(
2550            *expressions,
2551            instance=self,
2552            arg="order",
2553            append=append,
2554            copy=copy,
2555            prefix="ORDER BY",
2556            into=Order,
2557            dialect=dialect,
2558            **opts,
2559        )

Set the ORDER BY expression.

Example:
>>> Select().from_("tbl").select("x").order_by("x DESC").sql()
'SELECT x FROM tbl ORDER BY x DESC'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Order.
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Order expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def sort_by( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2561    def sort_by(
2562        self,
2563        *expressions: t.Optional[ExpOrStr],
2564        append: bool = True,
2565        dialect: DialectType = None,
2566        copy: bool = True,
2567        **opts,
2568    ) -> Select:
2569        """
2570        Set the SORT BY expression.
2571
2572        Example:
2573            >>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
2574            'SELECT x FROM tbl SORT BY x DESC'
2575
2576        Args:
2577            *expressions: the SQL code strings to parse.
2578                If a `Group` instance is passed, this is used as-is.
2579                If another `Expression` instance is passed, it will be wrapped in a `SORT`.
2580            append: if `True`, add to any existing expressions.
2581                Otherwise, this flattens all the `Order` expression into a single expression.
2582            dialect: the dialect used to parse the input expression.
2583            copy: if `False`, modify this expression instance in-place.
2584            opts: other options to use to parse the input expressions.
2585
2586        Returns:
2587            The modified Select expression.
2588        """
2589        return _apply_child_list_builder(
2590            *expressions,
2591            instance=self,
2592            arg="sort",
2593            append=append,
2594            copy=copy,
2595            prefix="SORT BY",
2596            into=Sort,
2597            dialect=dialect,
2598            **opts,
2599        )

Set the SORT BY expression.

Example:
>>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
'SELECT x FROM tbl SORT BY x DESC'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a SORT.
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Order expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def cluster_by( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2601    def cluster_by(
2602        self,
2603        *expressions: t.Optional[ExpOrStr],
2604        append: bool = True,
2605        dialect: DialectType = None,
2606        copy: bool = True,
2607        **opts,
2608    ) -> Select:
2609        """
2610        Set the CLUSTER BY expression.
2611
2612        Example:
2613            >>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
2614            'SELECT x FROM tbl CLUSTER BY x DESC'
2615
2616        Args:
2617            *expressions: the SQL code strings to parse.
2618                If a `Group` instance is passed, this is used as-is.
2619                If another `Expression` instance is passed, it will be wrapped in a `Cluster`.
2620            append: if `True`, add to any existing expressions.
2621                Otherwise, this flattens all the `Order` expression into a single expression.
2622            dialect: the dialect used to parse the input expression.
2623            copy: if `False`, modify this expression instance in-place.
2624            opts: other options to use to parse the input expressions.
2625
2626        Returns:
2627            The modified Select expression.
2628        """
2629        return _apply_child_list_builder(
2630            *expressions,
2631            instance=self,
2632            arg="cluster",
2633            append=append,
2634            copy=copy,
2635            prefix="CLUSTER BY",
2636            into=Cluster,
2637            dialect=dialect,
2638            **opts,
2639        )

Set the CLUSTER BY expression.

Example:
>>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
'SELECT x FROM tbl CLUSTER BY x DESC'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Cluster.
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Order expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def limit( self, expression: Union[str, sqlglot.expressions.Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2641    def limit(
2642        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2643    ) -> Select:
2644        """
2645        Set the LIMIT expression.
2646
2647        Example:
2648            >>> Select().from_("tbl").select("x").limit(10).sql()
2649            'SELECT x FROM tbl LIMIT 10'
2650
2651        Args:
2652            expression: the SQL code string to parse.
2653                This can also be an integer.
2654                If a `Limit` instance is passed, this is used as-is.
2655                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2656            dialect: the dialect used to parse the input expression.
2657            copy: if `False`, modify this expression instance in-place.
2658            opts: other options to use to parse the input expressions.
2659
2660        Returns:
2661            Select: the modified expression.
2662        """
2663        return _apply_builder(
2664            expression=expression,
2665            instance=self,
2666            arg="limit",
2667            into=Limit,
2668            prefix="LIMIT",
2669            dialect=dialect,
2670            copy=copy,
2671            **opts,
2672        )

Set the LIMIT expression.

Example:
>>> Select().from_("tbl").select("x").limit(10).sql()
'SELECT x FROM tbl LIMIT 10'
Arguments:
  • expression: the SQL code string to parse. This can also be an integer. If a Limit instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Limit.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Select: the modified expression.

def offset( self, expression: Union[str, sqlglot.expressions.Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2674    def offset(
2675        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2676    ) -> Select:
2677        """
2678        Set the OFFSET expression.
2679
2680        Example:
2681            >>> Select().from_("tbl").select("x").offset(10).sql()
2682            'SELECT x FROM tbl OFFSET 10'
2683
2684        Args:
2685            expression: the SQL code string to parse.
2686                This can also be an integer.
2687                If a `Offset` instance is passed, this is used as-is.
2688                If another `Expression` instance is passed, it will be wrapped in a `Offset`.
2689            dialect: the dialect used to parse the input expression.
2690            copy: if `False`, modify this expression instance in-place.
2691            opts: other options to use to parse the input expressions.
2692
2693        Returns:
2694            The modified Select expression.
2695        """
2696        return _apply_builder(
2697            expression=expression,
2698            instance=self,
2699            arg="offset",
2700            into=Offset,
2701            prefix="OFFSET",
2702            dialect=dialect,
2703            copy=copy,
2704            **opts,
2705        )

Set the OFFSET expression.

Example:
>>> Select().from_("tbl").select("x").offset(10).sql()
'SELECT x FROM tbl OFFSET 10'
Arguments:
  • expression: the SQL code string to parse. This can also be an integer. If a Offset instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Offset.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def select( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2707    def select(
2708        self,
2709        *expressions: t.Optional[ExpOrStr],
2710        append: bool = True,
2711        dialect: DialectType = None,
2712        copy: bool = True,
2713        **opts,
2714    ) -> Select:
2715        """
2716        Append to or set the SELECT expressions.
2717
2718        Example:
2719            >>> Select().select("x", "y").sql()
2720            'SELECT x, y'
2721
2722        Args:
2723            *expressions: the SQL code strings to parse.
2724                If an `Expression` instance is passed, it will be used as-is.
2725            append: if `True`, add to any existing expressions.
2726                Otherwise, this resets the expressions.
2727            dialect: the dialect used to parse the input expressions.
2728            copy: if `False`, modify this expression instance in-place.
2729            opts: other options to use to parse the input expressions.
2730
2731        Returns:
2732            The modified Select expression.
2733        """
2734        return _apply_list_builder(
2735            *expressions,
2736            instance=self,
2737            arg="expressions",
2738            append=append,
2739            dialect=dialect,
2740            copy=copy,
2741            **opts,
2742        )

Append to or set the SELECT expressions.

Example:
>>> Select().select("x", "y").sql()
'SELECT x, y'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def lateral( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2744    def lateral(
2745        self,
2746        *expressions: t.Optional[ExpOrStr],
2747        append: bool = True,
2748        dialect: DialectType = None,
2749        copy: bool = True,
2750        **opts,
2751    ) -> Select:
2752        """
2753        Append to or set the LATERAL expressions.
2754
2755        Example:
2756            >>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
2757            'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
2758
2759        Args:
2760            *expressions: the SQL code strings to parse.
2761                If an `Expression` instance is passed, it will be used as-is.
2762            append: if `True`, add to any existing expressions.
2763                Otherwise, this resets the expressions.
2764            dialect: the dialect used to parse the input expressions.
2765            copy: if `False`, modify this expression instance in-place.
2766            opts: other options to use to parse the input expressions.
2767
2768        Returns:
2769            The modified Select expression.
2770        """
2771        return _apply_list_builder(
2772            *expressions,
2773            instance=self,
2774            arg="laterals",
2775            append=append,
2776            into=Lateral,
2777            prefix="LATERAL VIEW",
2778            dialect=dialect,
2779            copy=copy,
2780            **opts,
2781        )

Append to or set the LATERAL expressions.

Example:
>>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def join( self, expression: Union[str, sqlglot.expressions.Expression], on: Union[str, sqlglot.expressions.Expression, NoneType] = None, using: Union[str, sqlglot.expressions.Expression, List[Union[str, sqlglot.expressions.Expression]], NoneType] = None, append: bool = True, join_type: Optional[str] = None, join_alias: Union[sqlglot.expressions.Identifier, str, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2783    def join(
2784        self,
2785        expression: ExpOrStr,
2786        on: t.Optional[ExpOrStr] = None,
2787        using: t.Optional[ExpOrStr | t.List[ExpOrStr]] = None,
2788        append: bool = True,
2789        join_type: t.Optional[str] = None,
2790        join_alias: t.Optional[Identifier | str] = None,
2791        dialect: DialectType = None,
2792        copy: bool = True,
2793        **opts,
2794    ) -> Select:
2795        """
2796        Append to or set the JOIN expressions.
2797
2798        Example:
2799            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
2800            'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
2801
2802            >>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
2803            'SELECT 1 FROM a JOIN b USING (x, y, z)'
2804
2805            Use `join_type` to change the type of join:
2806
2807            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
2808            'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
2809
2810        Args:
2811            expression: the SQL code string to parse.
2812                If an `Expression` instance is passed, it will be used as-is.
2813            on: optionally specify the join "on" criteria as a SQL string.
2814                If an `Expression` instance is passed, it will be used as-is.
2815            using: optionally specify the join "using" criteria as a SQL string.
2816                If an `Expression` instance is passed, it will be used as-is.
2817            append: if `True`, add to any existing expressions.
2818                Otherwise, this resets the expressions.
2819            join_type: if set, alter the parsed join type.
2820            join_alias: an optional alias for the joined source.
2821            dialect: the dialect used to parse the input expressions.
2822            copy: if `False`, modify this expression instance in-place.
2823            opts: other options to use to parse the input expressions.
2824
2825        Returns:
2826            Select: the modified expression.
2827        """
2828        parse_args: t.Dict[str, t.Any] = {"dialect": dialect, **opts}
2829
2830        try:
2831            expression = maybe_parse(expression, into=Join, prefix="JOIN", **parse_args)
2832        except ParseError:
2833            expression = maybe_parse(expression, into=(Join, Expression), **parse_args)
2834
2835        join = expression if isinstance(expression, Join) else Join(this=expression)
2836
2837        if isinstance(join.this, Select):
2838            join.this.replace(join.this.subquery())
2839
2840        if join_type:
2841            method: t.Optional[Token]
2842            side: t.Optional[Token]
2843            kind: t.Optional[Token]
2844
2845            method, side, kind = maybe_parse(join_type, into="JOIN_TYPE", **parse_args)  # type: ignore
2846
2847            if method:
2848                join.set("method", method.text)
2849            if side:
2850                join.set("side", side.text)
2851            if kind:
2852                join.set("kind", kind.text)
2853
2854        if on:
2855            on = and_(*ensure_list(on), dialect=dialect, copy=copy, **opts)
2856            join.set("on", on)
2857
2858        if using:
2859            join = _apply_list_builder(
2860                *ensure_list(using),
2861                instance=join,
2862                arg="using",
2863                append=append,
2864                copy=copy,
2865                **opts,
2866            )
2867
2868        if join_alias:
2869            join.set("this", alias_(join.this, join_alias, table=True))
2870
2871        return _apply_list_builder(
2872            join,
2873            instance=self,
2874            arg="joins",
2875            append=append,
2876            copy=copy,
2877            **opts,
2878        )

Append to or set the JOIN expressions.

Example:
>>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
>>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
'SELECT 1 FROM a JOIN b USING (x, y, z)'

Use join_type to change the type of join:

>>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
Arguments:
  • expression: the SQL code string to parse. If an Expression instance is passed, it will be used as-is.
  • on: optionally specify the join "on" criteria as a SQL string. If an Expression instance is passed, it will be used as-is.
  • using: optionally specify the join "using" criteria as a SQL string. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • join_type: if set, alter the parsed join type.
  • join_alias: an optional alias for the joined source.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Select: the modified expression.

def where( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2880    def where(
2881        self,
2882        *expressions: t.Optional[ExpOrStr],
2883        append: bool = True,
2884        dialect: DialectType = None,
2885        copy: bool = True,
2886        **opts,
2887    ) -> Select:
2888        """
2889        Append to or set the WHERE expressions.
2890
2891        Example:
2892            >>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
2893            "SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
2894
2895        Args:
2896            *expressions: the SQL code strings to parse.
2897                If an `Expression` instance is passed, it will be used as-is.
2898                Multiple expressions are combined with an AND operator.
2899            append: if `True`, AND the new expressions to any existing expression.
2900                Otherwise, this resets the expression.
2901            dialect: the dialect used to parse the input expressions.
2902            copy: if `False`, modify this expression instance in-place.
2903            opts: other options to use to parse the input expressions.
2904
2905        Returns:
2906            Select: the modified expression.
2907        """
2908        return _apply_conjunction_builder(
2909            *expressions,
2910            instance=self,
2911            arg="where",
2912            append=append,
2913            into=Where,
2914            dialect=dialect,
2915            copy=copy,
2916            **opts,
2917        )

Append to or set the WHERE expressions.

Example:
>>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
"SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Select: the modified expression.

def having( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2919    def having(
2920        self,
2921        *expressions: t.Optional[ExpOrStr],
2922        append: bool = True,
2923        dialect: DialectType = None,
2924        copy: bool = True,
2925        **opts,
2926    ) -> Select:
2927        """
2928        Append to or set the HAVING expressions.
2929
2930        Example:
2931            >>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
2932            'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
2933
2934        Args:
2935            *expressions: the SQL code strings to parse.
2936                If an `Expression` instance is passed, it will be used as-is.
2937                Multiple expressions are combined with an AND operator.
2938            append: if `True`, AND the new expressions to any existing expression.
2939                Otherwise, this resets the expression.
2940            dialect: the dialect used to parse the input expressions.
2941            copy: if `False`, modify this expression instance in-place.
2942            opts: other options to use to parse the input expressions.
2943
2944        Returns:
2945            The modified Select expression.
2946        """
2947        return _apply_conjunction_builder(
2948            *expressions,
2949            instance=self,
2950            arg="having",
2951            append=append,
2952            into=Having,
2953            dialect=dialect,
2954            copy=copy,
2955            **opts,
2956        )

Append to or set the HAVING expressions.

Example:
>>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def window( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2958    def window(
2959        self,
2960        *expressions: t.Optional[ExpOrStr],
2961        append: bool = True,
2962        dialect: DialectType = None,
2963        copy: bool = True,
2964        **opts,
2965    ) -> Select:
2966        return _apply_list_builder(
2967            *expressions,
2968            instance=self,
2969            arg="windows",
2970            append=append,
2971            into=Window,
2972            dialect=dialect,
2973            copy=copy,
2974            **opts,
2975        )
def qualify( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2977    def qualify(
2978        self,
2979        *expressions: t.Optional[ExpOrStr],
2980        append: bool = True,
2981        dialect: DialectType = None,
2982        copy: bool = True,
2983        **opts,
2984    ) -> Select:
2985        return _apply_conjunction_builder(
2986            *expressions,
2987            instance=self,
2988            arg="qualify",
2989            append=append,
2990            into=Qualify,
2991            dialect=dialect,
2992            copy=copy,
2993            **opts,
2994        )
def distinct( self, *ons: Union[str, sqlglot.expressions.Expression, NoneType], distinct: bool = True, copy: bool = True) -> sqlglot.expressions.Select:
2996    def distinct(
2997        self, *ons: t.Optional[ExpOrStr], distinct: bool = True, copy: bool = True
2998    ) -> Select:
2999        """
3000        Set the OFFSET expression.
3001
3002        Example:
3003            >>> Select().from_("tbl").select("x").distinct().sql()
3004            'SELECT DISTINCT x FROM tbl'
3005
3006        Args:
3007            ons: the expressions to distinct on
3008            distinct: whether the Select should be distinct
3009            copy: if `False`, modify this expression instance in-place.
3010
3011        Returns:
3012            Select: the modified expression.
3013        """
3014        instance = _maybe_copy(self, copy)
3015        on = Tuple(expressions=[maybe_parse(on, copy=copy) for on in ons if on]) if ons else None
3016        instance.set("distinct", Distinct(on=on) if distinct else None)
3017        return instance

Set the OFFSET expression.

Example:
>>> Select().from_("tbl").select("x").distinct().sql()
'SELECT DISTINCT x FROM tbl'
Arguments:
  • ons: the expressions to distinct on
  • distinct: whether the Select should be distinct
  • copy: if False, modify this expression instance in-place.
Returns:

Select: the modified expression.

def ctas( self, table: Union[str, sqlglot.expressions.Expression], properties: Optional[Dict] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Create:
3019    def ctas(
3020        self,
3021        table: ExpOrStr,
3022        properties: t.Optional[t.Dict] = None,
3023        dialect: DialectType = None,
3024        copy: bool = True,
3025        **opts,
3026    ) -> Create:
3027        """
3028        Convert this expression to a CREATE TABLE AS statement.
3029
3030        Example:
3031            >>> Select().select("*").from_("tbl").ctas("x").sql()
3032            'CREATE TABLE x AS SELECT * FROM tbl'
3033
3034        Args:
3035            table: the SQL code string to parse as the table name.
3036                If another `Expression` instance is passed, it will be used as-is.
3037            properties: an optional mapping of table properties
3038            dialect: the dialect used to parse the input table.
3039            copy: if `False`, modify this expression instance in-place.
3040            opts: other options to use to parse the input table.
3041
3042        Returns:
3043            The new Create expression.
3044        """
3045        instance = _maybe_copy(self, copy)
3046        table_expression = maybe_parse(
3047            table,
3048            into=Table,
3049            dialect=dialect,
3050            **opts,
3051        )
3052        properties_expression = None
3053        if properties:
3054            properties_expression = Properties.from_dict(properties)
3055
3056        return Create(
3057            this=table_expression,
3058            kind="table",
3059            expression=instance,
3060            properties=properties_expression,
3061        )

Convert this expression to a CREATE TABLE AS statement.

Example:
>>> Select().select("*").from_("tbl").ctas("x").sql()
'CREATE TABLE x AS SELECT * FROM tbl'
Arguments:
  • table: the SQL code string to parse as the table name. If another Expression instance is passed, it will be used as-is.
  • properties: an optional mapping of table properties
  • dialect: the dialect used to parse the input table.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input table.
Returns:

The new Create expression.

def lock( self, update: bool = True, copy: bool = True) -> sqlglot.expressions.Select:
3063    def lock(self, update: bool = True, copy: bool = True) -> Select:
3064        """
3065        Set the locking read mode for this expression.
3066
3067        Examples:
3068            >>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
3069            "SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
3070
3071            >>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
3072            "SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
3073
3074        Args:
3075            update: if `True`, the locking type will be `FOR UPDATE`, else it will be `FOR SHARE`.
3076            copy: if `False`, modify this expression instance in-place.
3077
3078        Returns:
3079            The modified expression.
3080        """
3081        inst = _maybe_copy(self, copy)
3082        inst.set("locks", [Lock(update=update)])
3083
3084        return inst

Set the locking read mode for this expression.

Examples:
>>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
"SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
>>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
"SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
Arguments:
  • update: if True, the locking type will be FOR UPDATE, else it will be FOR SHARE.
  • copy: if False, modify this expression instance in-place.
Returns:

The modified expression.

def hint( self, *hints: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True) -> sqlglot.expressions.Select:
3086    def hint(self, *hints: ExpOrStr, dialect: DialectType = None, copy: bool = True) -> Select:
3087        """
3088        Set hints for this expression.
3089
3090        Examples:
3091            >>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
3092            'SELECT /*+ BROADCAST(y) */ x FROM tbl'
3093
3094        Args:
3095            hints: The SQL code strings to parse as the hints.
3096                If an `Expression` instance is passed, it will be used as-is.
3097            dialect: The dialect used to parse the hints.
3098            copy: If `False`, modify this expression instance in-place.
3099
3100        Returns:
3101            The modified expression.
3102        """
3103        inst = _maybe_copy(self, copy)
3104        inst.set(
3105            "hint", Hint(expressions=[maybe_parse(h, copy=copy, dialect=dialect) for h in hints])
3106        )
3107
3108        return inst

Set hints for this expression.

Examples:
>>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
'SELECT /*+ BROADCAST(y) */ x FROM tbl'
Arguments:
  • hints: The SQL code strings to parse as the hints. If an Expression instance is passed, it will be used as-is.
  • dialect: The dialect used to parse the hints.
  • copy: If False, modify this expression instance in-place.
Returns:

The modified expression.

is_star: bool

Checks whether an expression is a star.

class Subquery(DerivedTable, Unionable):
3123class Subquery(DerivedTable, Unionable):
3124    arg_types = {
3125        "this": True,
3126        "alias": False,
3127        "with": False,
3128        **QUERY_MODIFIERS,
3129    }
3130
3131    def unnest(self):
3132        """
3133        Returns the first non subquery.
3134        """
3135        expression = self
3136        while isinstance(expression, Subquery):
3137            expression = expression.this
3138        return expression
3139
3140    @property
3141    def is_star(self) -> bool:
3142        return self.this.is_star
3143
3144    @property
3145    def output_name(self) -> str:
3146        return self.alias
def unnest(self):
3131    def unnest(self):
3132        """
3133        Returns the first non subquery.
3134        """
3135        expression = self
3136        while isinstance(expression, Subquery):
3137            expression = expression.this
3138        return expression

Returns the first non subquery.

is_star: bool

Checks whether an expression is a star.

output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
class TableSample(Expression):
3149class TableSample(Expression):
3150    arg_types = {
3151        "this": False,
3152        "method": False,
3153        "bucket_numerator": False,
3154        "bucket_denominator": False,
3155        "bucket_field": False,
3156        "percent": False,
3157        "rows": False,
3158        "size": False,
3159        "seed": False,
3160        "kind": False,
3161    }
class Tag(Expression):
3164class Tag(Expression):
3165    """Tags are used for generating arbitrary sql like SELECT <span>x</span>."""
3166
3167    arg_types = {
3168        "this": False,
3169        "prefix": False,
3170        "postfix": False,
3171    }

Tags are used for generating arbitrary sql like SELECT x.

class Pivot(Expression):
3176class Pivot(Expression):
3177    arg_types = {
3178        "this": False,
3179        "alias": False,
3180        "expressions": True,
3181        "field": False,
3182        "unpivot": False,
3183        "using": False,
3184        "group": False,
3185        "columns": False,
3186    }
class Window(Expression):
3189class Window(Expression):
3190    arg_types = {
3191        "this": True,
3192        "partition_by": False,
3193        "order": False,
3194        "spec": False,
3195        "alias": False,
3196        "over": False,
3197        "first": False,
3198    }
class WindowSpec(Expression):
3201class WindowSpec(Expression):
3202    arg_types = {
3203        "kind": False,
3204        "start": False,
3205        "start_side": False,
3206        "end": False,
3207        "end_side": False,
3208    }
class Where(Expression):
3211class Where(Expression):
3212    pass
class Star(Expression):
3215class Star(Expression):
3216    arg_types = {"except": False, "replace": False}
3217
3218    @property
3219    def name(self) -> str:
3220        return "*"
3221
3222    @property
3223    def output_name(self) -> str:
3224        return self.name
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
class Parameter(Expression):
3227class Parameter(Expression):
3228    arg_types = {"this": True, "wrapped": False}
class SessionParameter(Expression):
3231class SessionParameter(Expression):
3232    arg_types = {"this": True, "kind": False}
class Placeholder(Expression):
3235class Placeholder(Expression):
3236    arg_types = {"this": False, "kind": False}
class Null(Condition):
3239class Null(Condition):
3240    arg_types: t.Dict[str, t.Any] = {}
3241
3242    @property
3243    def name(self) -> str:
3244        return "NULL"
class Boolean(Condition):
3247class Boolean(Condition):
3248    pass
class DataTypeSize(Expression):
3251class DataTypeSize(Expression):
3252    arg_types = {"this": True, "expression": False}
class DataType(Expression):
3255class DataType(Expression):
3256    arg_types = {
3257        "this": True,
3258        "expressions": False,
3259        "nested": False,
3260        "values": False,
3261        "prefix": False,
3262    }
3263
3264    class Type(AutoName):
3265        ARRAY = auto()
3266        BIGDECIMAL = auto()
3267        BIGINT = auto()
3268        BIGSERIAL = auto()
3269        BINARY = auto()
3270        BIT = auto()
3271        BOOLEAN = auto()
3272        CHAR = auto()
3273        DATE = auto()
3274        DATETIME = auto()
3275        DATETIME64 = auto()
3276        INT4RANGE = auto()
3277        INT4MULTIRANGE = auto()
3278        INT8RANGE = auto()
3279        INT8MULTIRANGE = auto()
3280        NUMRANGE = auto()
3281        NUMMULTIRANGE = auto()
3282        TSRANGE = auto()
3283        TSMULTIRANGE = auto()
3284        TSTZRANGE = auto()
3285        TSTZMULTIRANGE = auto()
3286        DATERANGE = auto()
3287        DATEMULTIRANGE = auto()
3288        DECIMAL = auto()
3289        DOUBLE = auto()
3290        FLOAT = auto()
3291        GEOGRAPHY = auto()
3292        GEOMETRY = auto()
3293        HLLSKETCH = auto()
3294        HSTORE = auto()
3295        IMAGE = auto()
3296        INET = auto()
3297        INT = auto()
3298        INT128 = auto()
3299        INT256 = auto()
3300        INTERVAL = auto()
3301        JSON = auto()
3302        JSONB = auto()
3303        LONGBLOB = auto()
3304        LONGTEXT = auto()
3305        MAP = auto()
3306        MEDIUMBLOB = auto()
3307        MEDIUMTEXT = auto()
3308        MONEY = auto()
3309        NCHAR = auto()
3310        NULL = auto()
3311        NULLABLE = auto()
3312        NVARCHAR = auto()
3313        OBJECT = auto()
3314        ROWVERSION = auto()
3315        SERIAL = auto()
3316        SMALLINT = auto()
3317        SMALLMONEY = auto()
3318        SMALLSERIAL = auto()
3319        STRUCT = auto()
3320        SUPER = auto()
3321        TEXT = auto()
3322        TIME = auto()
3323        TIMESTAMP = auto()
3324        TIMESTAMPTZ = auto()
3325        TIMESTAMPLTZ = auto()
3326        TINYINT = auto()
3327        UBIGINT = auto()
3328        UINT = auto()
3329        USMALLINT = auto()
3330        UTINYINT = auto()
3331        UNKNOWN = auto()  # Sentinel value, useful for type annotation
3332        UINT128 = auto()
3333        UINT256 = auto()
3334        UNIQUEIDENTIFIER = auto()
3335        UUID = auto()
3336        VARBINARY = auto()
3337        VARCHAR = auto()
3338        VARIANT = auto()
3339        XML = auto()
3340
3341    TEXT_TYPES = {
3342        Type.CHAR,
3343        Type.NCHAR,
3344        Type.VARCHAR,
3345        Type.NVARCHAR,
3346        Type.TEXT,
3347    }
3348
3349    INTEGER_TYPES = {
3350        Type.INT,
3351        Type.TINYINT,
3352        Type.SMALLINT,
3353        Type.BIGINT,
3354        Type.INT128,
3355        Type.INT256,
3356    }
3357
3358    FLOAT_TYPES = {
3359        Type.FLOAT,
3360        Type.DOUBLE,
3361    }
3362
3363    NUMERIC_TYPES = {*INTEGER_TYPES, *FLOAT_TYPES}
3364
3365    TEMPORAL_TYPES = {
3366        Type.TIMESTAMP,
3367        Type.TIMESTAMPTZ,
3368        Type.TIMESTAMPLTZ,
3369        Type.DATE,
3370        Type.DATETIME,
3371        Type.DATETIME64,
3372    }
3373
3374    @classmethod
3375    def build(
3376        cls, dtype: str | DataType | DataType.Type, dialect: DialectType = None, **kwargs
3377    ) -> DataType:
3378        from sqlglot import parse_one
3379
3380        if isinstance(dtype, str):
3381            if dtype.upper() in cls.Type.__members__:
3382                data_type_exp: t.Optional[Expression] = DataType(this=DataType.Type[dtype.upper()])
3383            else:
3384                data_type_exp = parse_one(dtype, read=dialect, into=DataType)
3385
3386            if data_type_exp is None:
3387                raise ValueError(f"Unparsable data type value: {dtype}")
3388        elif isinstance(dtype, DataType.Type):
3389            data_type_exp = DataType(this=dtype)
3390        elif isinstance(dtype, DataType):
3391            return dtype
3392        else:
3393            raise ValueError(f"Invalid data type: {type(dtype)}. Expected str or DataType.Type")
3394
3395        return DataType(**{**data_type_exp.args, **kwargs})
3396
3397    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3398        return any(self.this == DataType.build(dtype).this for dtype in dtypes)
@classmethod
def build( cls, dtype: str | sqlglot.expressions.DataType | sqlglot.expressions.DataType.Type, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **kwargs) -> sqlglot.expressions.DataType:
3374    @classmethod
3375    def build(
3376        cls, dtype: str | DataType | DataType.Type, dialect: DialectType = None, **kwargs
3377    ) -> DataType:
3378        from sqlglot import parse_one
3379
3380        if isinstance(dtype, str):
3381            if dtype.upper() in cls.Type.__members__:
3382                data_type_exp: t.Optional[Expression] = DataType(this=DataType.Type[dtype.upper()])
3383            else:
3384                data_type_exp = parse_one(dtype, read=dialect, into=DataType)
3385
3386            if data_type_exp is None:
3387                raise ValueError(f"Unparsable data type value: {dtype}")
3388        elif isinstance(dtype, DataType.Type):
3389            data_type_exp = DataType(this=dtype)
3390        elif isinstance(dtype, DataType):
3391            return dtype
3392        else:
3393            raise ValueError(f"Invalid data type: {type(dtype)}. Expected str or DataType.Type")
3394
3395        return DataType(**{**data_type_exp.args, **kwargs})
def is_type( self, *dtypes: str | sqlglot.expressions.DataType | sqlglot.expressions.DataType.Type) -> bool:
3397    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3398        return any(self.this == DataType.build(dtype).this for dtype in dtypes)
class DataType.Type(sqlglot.helper.AutoName):
3264    class Type(AutoName):
3265        ARRAY = auto()
3266        BIGDECIMAL = auto()
3267        BIGINT = auto()
3268        BIGSERIAL = auto()
3269        BINARY = auto()
3270        BIT = auto()
3271        BOOLEAN = auto()
3272        CHAR = auto()
3273        DATE = auto()
3274        DATETIME = auto()
3275        DATETIME64 = auto()
3276        INT4RANGE = auto()
3277        INT4MULTIRANGE = auto()
3278        INT8RANGE = auto()
3279        INT8MULTIRANGE = auto()
3280        NUMRANGE = auto()
3281        NUMMULTIRANGE = auto()
3282        TSRANGE = auto()
3283        TSMULTIRANGE = auto()
3284        TSTZRANGE = auto()
3285        TSTZMULTIRANGE = auto()
3286        DATERANGE = auto()
3287        DATEMULTIRANGE = auto()
3288        DECIMAL = auto()
3289        DOUBLE = auto()
3290        FLOAT = auto()
3291        GEOGRAPHY = auto()
3292        GEOMETRY = auto()
3293        HLLSKETCH = auto()
3294        HSTORE = auto()
3295        IMAGE = auto()
3296        INET = auto()
3297        INT = auto()
3298        INT128 = auto()
3299        INT256 = auto()
3300        INTERVAL = auto()
3301        JSON = auto()
3302        JSONB = auto()
3303        LONGBLOB = auto()
3304        LONGTEXT = auto()
3305        MAP = auto()
3306        MEDIUMBLOB = auto()
3307        MEDIUMTEXT = auto()
3308        MONEY = auto()
3309        NCHAR = auto()
3310        NULL = auto()
3311        NULLABLE = auto()
3312        NVARCHAR = auto()
3313        OBJECT = auto()
3314        ROWVERSION = auto()
3315        SERIAL = auto()
3316        SMALLINT = auto()
3317        SMALLMONEY = auto()
3318        SMALLSERIAL = auto()
3319        STRUCT = auto()
3320        SUPER = auto()
3321        TEXT = auto()
3322        TIME = auto()
3323        TIMESTAMP = auto()
3324        TIMESTAMPTZ = auto()
3325        TIMESTAMPLTZ = auto()
3326        TINYINT = auto()
3327        UBIGINT = auto()
3328        UINT = auto()
3329        USMALLINT = auto()
3330        UTINYINT = auto()
3331        UNKNOWN = auto()  # Sentinel value, useful for type annotation
3332        UINT128 = auto()
3333        UINT256 = auto()
3334        UNIQUEIDENTIFIER = auto()
3335        UUID = auto()
3336        VARBINARY = auto()
3337        VARCHAR = auto()
3338        VARIANT = auto()
3339        XML = auto()

An enumeration.

ARRAY = <Type.ARRAY: 'ARRAY'>
BIGDECIMAL = <Type.BIGDECIMAL: 'BIGDECIMAL'>
BIGINT = <Type.BIGINT: 'BIGINT'>
BIGSERIAL = <Type.BIGSERIAL: 'BIGSERIAL'>
BINARY = <Type.BINARY: 'BINARY'>
BIT = <Type.BIT: 'BIT'>
BOOLEAN = <Type.BOOLEAN: 'BOOLEAN'>
CHAR = <Type.CHAR: 'CHAR'>
DATE = <Type.DATE: 'DATE'>
DATETIME = <Type.DATETIME: 'DATETIME'>
DATETIME64 = <Type.DATETIME64: 'DATETIME64'>
INT4RANGE = <Type.INT4RANGE: 'INT4RANGE'>
INT4MULTIRANGE = <Type.INT4MULTIRANGE: 'INT4MULTIRANGE'>
INT8RANGE = <Type.INT8RANGE: 'INT8RANGE'>
INT8MULTIRANGE = <Type.INT8MULTIRANGE: 'INT8MULTIRANGE'>
NUMRANGE = <Type.NUMRANGE: 'NUMRANGE'>
NUMMULTIRANGE = <Type.NUMMULTIRANGE: 'NUMMULTIRANGE'>
TSRANGE = <Type.TSRANGE: 'TSRANGE'>
TSMULTIRANGE = <Type.TSMULTIRANGE: 'TSMULTIRANGE'>
TSTZRANGE = <Type.TSTZRANGE: 'TSTZRANGE'>
TSTZMULTIRANGE = <Type.TSTZMULTIRANGE: 'TSTZMULTIRANGE'>
DATERANGE = <Type.DATERANGE: 'DATERANGE'>
DATEMULTIRANGE = <Type.DATEMULTIRANGE: 'DATEMULTIRANGE'>
DECIMAL = <Type.DECIMAL: 'DECIMAL'>
DOUBLE = <Type.DOUBLE: 'DOUBLE'>
FLOAT = <Type.FLOAT: 'FLOAT'>
GEOGRAPHY = <Type.GEOGRAPHY: 'GEOGRAPHY'>
GEOMETRY = <Type.GEOMETRY: 'GEOMETRY'>
HLLSKETCH = <Type.HLLSKETCH: 'HLLSKETCH'>
HSTORE = <Type.HSTORE: 'HSTORE'>
IMAGE = <Type.IMAGE: 'IMAGE'>
INET = <Type.INET: 'INET'>
INT = <Type.INT: 'INT'>
INT128 = <Type.INT128: 'INT128'>
INT256 = <Type.INT256: 'INT256'>
INTERVAL = <Type.INTERVAL: 'INTERVAL'>
JSON = <Type.JSON: 'JSON'>
JSONB = <Type.JSONB: 'JSONB'>
LONGBLOB = <Type.LONGBLOB: 'LONGBLOB'>
LONGTEXT = <Type.LONGTEXT: 'LONGTEXT'>
MAP = <Type.MAP: 'MAP'>
MEDIUMBLOB = <Type.MEDIUMBLOB: 'MEDIUMBLOB'>
MEDIUMTEXT = <Type.MEDIUMTEXT: 'MEDIUMTEXT'>
MONEY = <Type.MONEY: 'MONEY'>
NCHAR = <Type.NCHAR: 'NCHAR'>
NULL = <Type.NULL: 'NULL'>
NULLABLE = <Type.NULLABLE: 'NULLABLE'>
NVARCHAR = <Type.NVARCHAR: 'NVARCHAR'>
OBJECT = <Type.OBJECT: 'OBJECT'>
ROWVERSION = <Type.ROWVERSION: 'ROWVERSION'>
SERIAL = <Type.SERIAL: 'SERIAL'>
SMALLINT = <Type.SMALLINT: 'SMALLINT'>
SMALLMONEY = <Type.SMALLMONEY: 'SMALLMONEY'>
SMALLSERIAL = <Type.SMALLSERIAL: 'SMALLSERIAL'>
STRUCT = <Type.STRUCT: 'STRUCT'>
SUPER = <Type.SUPER: 'SUPER'>
TEXT = <Type.TEXT: 'TEXT'>
TIME = <Type.TIME: 'TIME'>
TIMESTAMP = <Type.TIMESTAMP: 'TIMESTAMP'>
TIMESTAMPTZ = <Type.TIMESTAMPTZ: 'TIMESTAMPTZ'>
TIMESTAMPLTZ = <Type.TIMESTAMPLTZ: 'TIMESTAMPLTZ'>
TINYINT = <Type.TINYINT: 'TINYINT'>
UBIGINT = <Type.UBIGINT: 'UBIGINT'>
UINT = <Type.UINT: 'UINT'>
USMALLINT = <Type.USMALLINT: 'USMALLINT'>
UTINYINT = <Type.UTINYINT: 'UTINYINT'>
UNKNOWN = <Type.UNKNOWN: 'UNKNOWN'>
UINT128 = <Type.UINT128: 'UINT128'>
UINT256 = <Type.UINT256: 'UINT256'>
UNIQUEIDENTIFIER = <Type.UNIQUEIDENTIFIER: 'UNIQUEIDENTIFIER'>
UUID = <Type.UUID: 'UUID'>
VARBINARY = <Type.VARBINARY: 'VARBINARY'>
VARCHAR = <Type.VARCHAR: 'VARCHAR'>
VARIANT = <Type.VARIANT: 'VARIANT'>
XML = <Type.XML: 'XML'>
Inherited Members
enum.Enum
name
value
class PseudoType(Expression):
3402class PseudoType(Expression):
3403    pass
class SubqueryPredicate(Predicate):
3407class SubqueryPredicate(Predicate):
3408    pass
class All(SubqueryPredicate):
3411class All(SubqueryPredicate):
3412    pass
class Any(SubqueryPredicate):
3415class Any(SubqueryPredicate):
3416    pass
class Exists(SubqueryPredicate):
3419class Exists(SubqueryPredicate):
3420    pass
class Command(Expression):
3425class Command(Expression):
3426    arg_types = {"this": True, "expression": False}
class Transaction(Expression):
3429class Transaction(Expression):
3430    arg_types = {"this": False, "modes": False}
class Commit(Expression):
3433class Commit(Expression):
3434    arg_types = {"chain": False}
class Rollback(Expression):
3437class Rollback(Expression):
3438    arg_types = {"savepoint": False}
class AlterTable(Expression):
3441class AlterTable(Expression):
3442    arg_types = {"this": True, "actions": True, "exists": False}
class AddConstraint(Expression):
3445class AddConstraint(Expression):
3446    arg_types = {"this": False, "expression": False, "enforced": False}
class DropPartition(Expression):
3449class DropPartition(Expression):
3450    arg_types = {"expressions": True, "exists": False}
class Binary(Condition):
3454class Binary(Condition):
3455    arg_types = {"this": True, "expression": True}
3456
3457    @property
3458    def left(self):
3459        return self.this
3460
3461    @property
3462    def right(self):
3463        return self.expression
class Add(Binary):
3466class Add(Binary):
3467    pass
class Connector(Binary):
3470class Connector(Binary):
3471    pass
class And(Connector):
3474class And(Connector):
3475    pass
class Or(Connector):
3478class Or(Connector):
3479    pass
class BitwiseAnd(Binary):
3482class BitwiseAnd(Binary):
3483    pass
class BitwiseLeftShift(Binary):
3486class BitwiseLeftShift(Binary):
3487    pass
class BitwiseOr(Binary):
3490class BitwiseOr(Binary):
3491    pass
class BitwiseRightShift(Binary):
3494class BitwiseRightShift(Binary):
3495    pass
class BitwiseXor(Binary):
3498class BitwiseXor(Binary):
3499    pass
class Div(Binary):
3502class Div(Binary):
3503    pass
class Overlaps(Binary):
3506class Overlaps(Binary):
3507    pass
class Dot(Binary):
3510class Dot(Binary):
3511    @property
3512    def name(self) -> str:
3513        return self.expression.name
3514
3515    @property
3516    def output_name(self) -> str:
3517        return self.name
3518
3519    @classmethod
3520    def build(self, expressions: t.Sequence[Expression]) -> Dot:
3521        """Build a Dot object with a sequence of expressions."""
3522        if len(expressions) < 2:
3523            raise ValueError(f"Dot requires >= 2 expressions.")
3524
3525        a, b, *expressions = expressions
3526        dot = Dot(this=a, expression=b)
3527
3528        for expression in expressions:
3529            dot = Dot(this=dot, expression=expression)
3530
3531        return dot
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
@classmethod
def build( self, expressions: Sequence[sqlglot.expressions.Expression]) -> sqlglot.expressions.Dot:
3519    @classmethod
3520    def build(self, expressions: t.Sequence[Expression]) -> Dot:
3521        """Build a Dot object with a sequence of expressions."""
3522        if len(expressions) < 2:
3523            raise ValueError(f"Dot requires >= 2 expressions.")
3524
3525        a, b, *expressions = expressions
3526        dot = Dot(this=a, expression=b)
3527
3528        for expression in expressions:
3529            dot = Dot(this=dot, expression=expression)
3530
3531        return dot

Build a Dot object with a sequence of expressions.

class DPipe(Binary):
3534class DPipe(Binary):
3535    pass
class SafeDPipe(DPipe):
3538class SafeDPipe(DPipe):
3539    pass
class EQ(Binary, Predicate):
3542class EQ(Binary, Predicate):
3543    pass
class NullSafeEQ(Binary, Predicate):
3546class NullSafeEQ(Binary, Predicate):
3547    pass
class NullSafeNEQ(Binary, Predicate):
3550class NullSafeNEQ(Binary, Predicate):
3551    pass
class Distance(Binary):
3554class Distance(Binary):
3555    pass
class Escape(Binary):
3558class Escape(Binary):
3559    pass
class Glob(Binary, Predicate):
3562class Glob(Binary, Predicate):
3563    pass
class GT(Binary, Predicate):
3566class GT(Binary, Predicate):
3567    pass
class GTE(Binary, Predicate):
3570class GTE(Binary, Predicate):
3571    pass
class ILike(Binary, Predicate):
3574class ILike(Binary, Predicate):
3575    pass
class ILikeAny(Binary, Predicate):
3578class ILikeAny(Binary, Predicate):
3579    pass
class IntDiv(Binary):
3582class IntDiv(Binary):
3583    pass
class Is(Binary, Predicate):
3586class Is(Binary, Predicate):
3587    pass
class Kwarg(Binary):
3590class Kwarg(Binary):
3591    """Kwarg in special functions like func(kwarg => y)."""

Kwarg in special functions like func(kwarg => y).

class Like(Binary, Predicate):
3594class Like(Binary, Predicate):
3595    pass
class LikeAny(Binary, Predicate):
3598class LikeAny(Binary, Predicate):
3599    pass
class LT(Binary, Predicate):
3602class LT(Binary, Predicate):
3603    pass
class LTE(Binary, Predicate):
3606class LTE(Binary, Predicate):
3607    pass
class Mod(Binary):
3610class Mod(Binary):
3611    pass
class Mul(Binary):
3614class Mul(Binary):
3615    pass
class NEQ(Binary, Predicate):
3618class NEQ(Binary, Predicate):
3619    pass
class SimilarTo(Binary, Predicate):
3622class SimilarTo(Binary, Predicate):
3623    pass
class Slice(Binary):
3626class Slice(Binary):
3627    arg_types = {"this": False, "expression": False}
class Sub(Binary):
3630class Sub(Binary):
3631    pass
class ArrayOverlaps(Binary):
3634class ArrayOverlaps(Binary):
3635    pass
class Unary(Condition):
3640class Unary(Condition):
3641    pass
class BitwiseNot(Unary):
3644class BitwiseNot(Unary):
3645    pass
class Not(Unary):
3648class Not(Unary):
3649    pass
class Paren(Unary):
3652class Paren(Unary):
3653    arg_types = {"this": True, "with": False}
3654
3655    @property
3656    def output_name(self) -> str:
3657        return self.this.name
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
class Neg(Unary):
3660class Neg(Unary):
3661    pass
class Alias(Expression):
3664class Alias(Expression):
3665    arg_types = {"this": True, "alias": False}
3666
3667    @property
3668    def output_name(self) -> str:
3669        return self.alias
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
class Aliases(Expression):
3672class Aliases(Expression):
3673    arg_types = {"this": True, "expressions": True}
3674
3675    @property
3676    def aliases(self):
3677        return self.expressions
class AtTimeZone(Expression):
3680class AtTimeZone(Expression):
3681    arg_types = {"this": True, "zone": True}
class Between(Predicate):
3684class Between(Predicate):
3685    arg_types = {"this": True, "low": True, "high": True}
class Bracket(Condition):
3688class Bracket(Condition):
3689    arg_types = {"this": True, "expressions": True}
class Distinct(Expression):
3692class Distinct(Expression):
3693    arg_types = {"expressions": False, "on": False}
class In(Predicate):
3696class In(Predicate):
3697    arg_types = {
3698        "this": True,
3699        "expressions": False,
3700        "query": False,
3701        "unnest": False,
3702        "field": False,
3703        "is_global": False,
3704    }
class TimeUnit(Expression):
3707class TimeUnit(Expression):
3708    """Automatically converts unit arg into a var."""
3709
3710    arg_types = {"unit": False}
3711
3712    def __init__(self, **args):
3713        unit = args.get("unit")
3714        if isinstance(unit, (Column, Literal)):
3715            args["unit"] = Var(this=unit.name)
3716        elif isinstance(unit, Week):
3717            unit.set("this", Var(this=unit.this.name))
3718
3719        super().__init__(**args)

Automatically converts unit arg into a var.

TimeUnit(**args)
3712    def __init__(self, **args):
3713        unit = args.get("unit")
3714        if isinstance(unit, (Column, Literal)):
3715            args["unit"] = Var(this=unit.name)
3716        elif isinstance(unit, Week):
3717            unit.set("this", Var(this=unit.this.name))
3718
3719        super().__init__(**args)
class Interval(TimeUnit):
3722class Interval(TimeUnit):
3723    arg_types = {"this": False, "unit": False}
3724
3725    @property
3726    def unit(self) -> t.Optional[Var]:
3727        return self.args.get("unit")
class IgnoreNulls(Expression):
3730class IgnoreNulls(Expression):
3731    pass
class RespectNulls(Expression):
3734class RespectNulls(Expression):
3735    pass
class Func(Condition):
3739class Func(Condition):
3740    """
3741    The base class for all function expressions.
3742
3743    Attributes:
3744        is_var_len_args (bool): if set to True the last argument defined in arg_types will be
3745            treated as a variable length argument and the argument's value will be stored as a list.
3746        _sql_names (list): determines the SQL name (1st item in the list) and aliases (subsequent items)
3747            for this function expression. These values are used to map this node to a name during parsing
3748            as well as to provide the function's name during SQL string generation. By default the SQL
3749            name is set to the expression's class name transformed to snake case.
3750    """
3751
3752    is_var_len_args = False
3753
3754    @classmethod
3755    def from_arg_list(cls, args):
3756        if cls.is_var_len_args:
3757            all_arg_keys = list(cls.arg_types)
3758            # If this function supports variable length argument treat the last argument as such.
3759            non_var_len_arg_keys = all_arg_keys[:-1] if cls.is_var_len_args else all_arg_keys
3760            num_non_var = len(non_var_len_arg_keys)
3761
3762            args_dict = {arg_key: arg for arg, arg_key in zip(args, non_var_len_arg_keys)}
3763            args_dict[all_arg_keys[-1]] = args[num_non_var:]
3764        else:
3765            args_dict = {arg_key: arg for arg, arg_key in zip(args, cls.arg_types)}
3766
3767        return cls(**args_dict)
3768
3769    @classmethod
3770    def sql_names(cls):
3771        if cls is Func:
3772            raise NotImplementedError(
3773                "SQL name is only supported by concrete function implementations"
3774            )
3775        if "_sql_names" not in cls.__dict__:
3776            cls._sql_names = [camel_to_snake_case(cls.__name__)]
3777        return cls._sql_names
3778
3779    @classmethod
3780    def sql_name(cls):
3781        return cls.sql_names()[0]
3782
3783    @classmethod
3784    def default_parser_mappings(cls):
3785        return {name: cls.from_arg_list for name in cls.sql_names()}

The base class for all function expressions.

Attributes:
  • is_var_len_args (bool): if set to True the last argument defined in arg_types will be treated as a variable length argument and the argument's value will be stored as a list.
  • _sql_names (list): determines the SQL name (1st item in the list) and aliases (subsequent items) for this function expression. These values are used to map this node to a name during parsing as well as to provide the function's name during SQL string generation. By default the SQL name is set to the expression's class name transformed to snake case.
@classmethod
def from_arg_list(cls, args):
3754    @classmethod
3755    def from_arg_list(cls, args):
3756        if cls.is_var_len_args:
3757            all_arg_keys = list(cls.arg_types)
3758            # If this function supports variable length argument treat the last argument as such.
3759            non_var_len_arg_keys = all_arg_keys[:-1] if cls.is_var_len_args else all_arg_keys
3760            num_non_var = len(non_var_len_arg_keys)
3761
3762            args_dict = {arg_key: arg for arg, arg_key in zip(args, non_var_len_arg_keys)}
3763            args_dict[all_arg_keys[-1]] = args[num_non_var:]
3764        else:
3765            args_dict = {arg_key: arg for arg, arg_key in zip(args, cls.arg_types)}
3766
3767        return cls(**args_dict)
@classmethod
def sql_names(cls):
3769    @classmethod
3770    def sql_names(cls):
3771        if cls is Func:
3772            raise NotImplementedError(
3773                "SQL name is only supported by concrete function implementations"
3774            )
3775        if "_sql_names" not in cls.__dict__:
3776            cls._sql_names = [camel_to_snake_case(cls.__name__)]
3777        return cls._sql_names
@classmethod
def sql_name(cls):
3779    @classmethod
3780    def sql_name(cls):
3781        return cls.sql_names()[0]
@classmethod
def default_parser_mappings(cls):
3783    @classmethod
3784    def default_parser_mappings(cls):
3785        return {name: cls.from_arg_list for name in cls.sql_names()}
class AggFunc(Func):
3788class AggFunc(Func):
3789    pass
class ParameterizedAgg(AggFunc):
3792class ParameterizedAgg(AggFunc):
3793    arg_types = {"this": True, "expressions": True, "params": True}
class Abs(Func):
3796class Abs(Func):
3797    pass
class Anonymous(Func):
3800class Anonymous(Func):
3801    arg_types = {"this": True, "expressions": False}
3802    is_var_len_args = True
class Hll(AggFunc):
3807class Hll(AggFunc):
3808    arg_types = {"this": True, "expressions": False}
3809    is_var_len_args = True
class ApproxDistinct(AggFunc):
3812class ApproxDistinct(AggFunc):
3813    arg_types = {"this": True, "accuracy": False}
3814    _sql_names = ["APPROX_DISTINCT", "APPROX_COUNT_DISTINCT"]
class Array(Func):
3817class Array(Func):
3818    arg_types = {"expressions": False}
3819    is_var_len_args = True
class ToChar(Func):
3823class ToChar(Func):
3824    arg_types = {"this": True, "format": False}
class GenerateSeries(Func):
3827class GenerateSeries(Func):
3828    arg_types = {"start": True, "end": True, "step": False}
class ArrayAgg(AggFunc):
3831class ArrayAgg(AggFunc):
3832    pass
class ArrayAll(Func):
3835class ArrayAll(Func):
3836    arg_types = {"this": True, "expression": True}
class ArrayAny(Func):
3839class ArrayAny(Func):
3840    arg_types = {"this": True, "expression": True}
class ArrayConcat(Func):
3843class ArrayConcat(Func):
3844    arg_types = {"this": True, "expressions": False}
3845    is_var_len_args = True
class ArrayContains(Binary, Func):
3848class ArrayContains(Binary, Func):
3849    pass
class ArrayContained(Binary):
3852class ArrayContained(Binary):
3853    pass
class ArrayFilter(Func):
3856class ArrayFilter(Func):
3857    arg_types = {"this": True, "expression": True}
3858    _sql_names = ["FILTER", "ARRAY_FILTER"]
class ArrayJoin(Func):
3861class ArrayJoin(Func):
3862    arg_types = {"this": True, "expression": True, "null": False}
class ArraySize(Func):
3865class ArraySize(Func):
3866    arg_types = {"this": True, "expression": False}
class ArraySort(Func):
3869class ArraySort(Func):
3870    arg_types = {"this": True, "expression": False}
class ArraySum(Func):
3873class ArraySum(Func):
3874    pass
class ArrayUnionAgg(AggFunc):
3877class ArrayUnionAgg(AggFunc):
3878    pass
class Avg(AggFunc):
3881class Avg(AggFunc):
3882    pass
class AnyValue(AggFunc):
3885class AnyValue(AggFunc):
3886    pass
class Case(Func):
3889class Case(Func):
3890    arg_types = {"this": False, "ifs": True, "default": False}
3891
3892    def when(self, condition: ExpOrStr, then: ExpOrStr, copy: bool = True, **opts) -> Case:
3893        instance = _maybe_copy(self, copy)
3894        instance.append(
3895            "ifs",
3896            If(
3897                this=maybe_parse(condition, copy=copy, **opts),
3898                true=maybe_parse(then, copy=copy, **opts),
3899            ),
3900        )
3901        return instance
3902
3903    def else_(self, condition: ExpOrStr, copy: bool = True, **opts) -> Case:
3904        instance = _maybe_copy(self, copy)
3905        instance.set("default", maybe_parse(condition, copy=copy, **opts))
3906        return instance
def when( self, condition: Union[str, sqlglot.expressions.Expression], then: Union[str, sqlglot.expressions.Expression], copy: bool = True, **opts) -> sqlglot.expressions.Case:
3892    def when(self, condition: ExpOrStr, then: ExpOrStr, copy: bool = True, **opts) -> Case:
3893        instance = _maybe_copy(self, copy)
3894        instance.append(
3895            "ifs",
3896            If(
3897                this=maybe_parse(condition, copy=copy, **opts),
3898                true=maybe_parse(then, copy=copy, **opts),
3899            ),
3900        )
3901        return instance
def else_( self, condition: Union[str, sqlglot.expressions.Expression], copy: bool = True, **opts) -> sqlglot.expressions.Case:
3903    def else_(self, condition: ExpOrStr, copy: bool = True, **opts) -> Case:
3904        instance = _maybe_copy(self, copy)
3905        instance.set("default", maybe_parse(condition, copy=copy, **opts))
3906        return instance
class Cast(Func):
3909class Cast(Func):
3910    arg_types = {"this": True, "to": True}
3911
3912    @property
3913    def name(self) -> str:
3914        return self.this.name
3915
3916    @property
3917    def to(self) -> DataType:
3918        return self.args["to"]
3919
3920    @property
3921    def output_name(self) -> str:
3922        return self.name
3923
3924    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3925        return self.to.is_type(*dtypes)
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
def is_type( self, *dtypes: str | sqlglot.expressions.DataType | sqlglot.expressions.DataType.Type) -> bool:
3924    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3925        return self.to.is_type(*dtypes)
class CastToStrType(Func):
3928class CastToStrType(Func):
3929    arg_types = {"this": True, "expression": True}
class Collate(Binary):
3932class Collate(Binary):
3933    pass
class TryCast(Cast):
3936class TryCast(Cast):
3937    pass
class Ceil(Func):
3940class Ceil(Func):
3941    arg_types = {"this": True, "decimals": False}
3942    _sql_names = ["CEIL", "CEILING"]
class Coalesce(Func):
3945class Coalesce(Func):
3946    arg_types = {"this": True, "expressions": False}
3947    is_var_len_args = True
3948    _sql_names = ["COALESCE", "IFNULL", "NVL"]
class Concat(Func):
3951class Concat(Func):
3952    arg_types = {"expressions": True}
3953    is_var_len_args = True
class SafeConcat(Concat):
3956class SafeConcat(Concat):
3957    pass
class ConcatWs(Concat):
3960class ConcatWs(Concat):
3961    _sql_names = ["CONCAT_WS"]
class Count(AggFunc):
3964class Count(AggFunc):
3965    arg_types = {"this": False, "expressions": False}
3966    is_var_len_args = True
class CountIf(AggFunc):
3969class CountIf(AggFunc):
3970    pass
class CurrentDate(Func):
3973class CurrentDate(Func):
3974    arg_types = {"this": False}
class CurrentDatetime(Func):
3977class CurrentDatetime(Func):
3978    arg_types = {"this": False}
class CurrentTime(Func):
3981class CurrentTime(Func):
3982    arg_types = {"this": False}
class CurrentTimestamp(Func):
3985class CurrentTimestamp(Func):
3986    arg_types = {"this": False}
class CurrentUser(Func):
3989class CurrentUser(Func):
3990    arg_types = {"this": False}
class DateAdd(Func, TimeUnit):
3993class DateAdd(Func, TimeUnit):
3994    arg_types = {"this": True, "expression": True, "unit": False}
class DateSub(Func, TimeUnit):
3997class DateSub(Func, TimeUnit):
3998    arg_types = {"this": True, "expression": True, "unit": False}
class DateDiff(Func, TimeUnit):
4001class DateDiff(Func, TimeUnit):
4002    _sql_names = ["DATEDIFF", "DATE_DIFF"]
4003    arg_types = {"this": True, "expression": True, "unit": False}
class DateTrunc(Func):
4006class DateTrunc(Func):
4007    arg_types = {"unit": True, "this": True, "zone": False}
class DatetimeAdd(Func, TimeUnit):
4010class DatetimeAdd(Func, TimeUnit):
4011    arg_types = {"this": True, "expression": True, "unit": False}
class DatetimeSub(Func, TimeUnit):
4014class DatetimeSub(Func, TimeUnit):
4015    arg_types = {"this": True, "expression": True, "unit": False}
class DatetimeDiff(Func, TimeUnit):
4018class DatetimeDiff(Func, TimeUnit):
4019    arg_types = {"this": True, "expression": True, "unit": False}
class DatetimeTrunc(Func, TimeUnit):
4022class DatetimeTrunc(Func, TimeUnit):
4023    arg_types = {"this": True, "unit": True, "zone": False}
class DayOfWeek(Func):
4026class DayOfWeek(Func):
4027    _sql_names = ["DAY_OF_WEEK", "DAYOFWEEK"]
class DayOfMonth(Func):
4030class DayOfMonth(Func):
4031    _sql_names = ["DAY_OF_MONTH", "DAYOFMONTH"]
class DayOfYear(Func):
4034class DayOfYear(Func):
4035    _sql_names = ["DAY_OF_YEAR", "DAYOFYEAR"]
class WeekOfYear(Func):
4038class WeekOfYear(Func):
4039    _sql_names = ["WEEK_OF_YEAR", "WEEKOFYEAR"]
class LastDateOfMonth(Func):
4042class LastDateOfMonth(Func):
4043    pass
class Extract(Func):
4046class Extract(Func):
4047    arg_types = {"this": True, "expression": True}
class TimestampAdd(Func, TimeUnit):
4050class TimestampAdd(Func, TimeUnit):
4051    arg_types = {"this": True, "expression": True, "unit": False}
class TimestampSub(Func, TimeUnit):
4054class TimestampSub(Func, TimeUnit):
4055    arg_types = {"this": True, "expression": True, "unit": False}
class TimestampDiff(Func, TimeUnit):
4058class TimestampDiff(Func, TimeUnit):
4059    arg_types = {"this": True, "expression": True, "unit": False}
class TimestampTrunc(Func, TimeUnit):
4062class TimestampTrunc(Func, TimeUnit):
4063    arg_types = {"this": True, "unit": True, "zone": False}
class TimeAdd(Func, TimeUnit):
4066class TimeAdd(Func, TimeUnit):
4067    arg_types = {"this": True, "expression": True, "unit": False}
class TimeSub(Func, TimeUnit):
4070class TimeSub(Func, TimeUnit):
4071    arg_types = {"this": True, "expression": True, "unit": False}
class TimeDiff(Func, TimeUnit):
4074class TimeDiff(Func, TimeUnit):
4075    arg_types = {"this": True, "expression": True, "unit": False}
class TimeTrunc(Func, TimeUnit):
4078class TimeTrunc(Func, TimeUnit):
4079    arg_types = {"this": True, "unit": True, "zone": False}
class DateFromParts(Func):
4082class DateFromParts(Func):
4083    _sql_names = ["DATEFROMPARTS"]
4084    arg_types = {"year": True, "month": True, "day": True}
class DateStrToDate(Func):
4087class DateStrToDate(Func):
4088    pass
class DateToDateStr(Func):
4091class DateToDateStr(Func):
4092    pass
class DateToDi(Func):
4095class DateToDi(Func):
4096    pass
class Date(Func):
4099class Date(Func):
4100    arg_types = {"expressions": True}
4101    is_var_len_args = True
class Day(Func):
4104class Day(Func):
4105    pass
class Decode(Func):
4108class Decode(Func):
4109    arg_types = {"this": True, "charset": True, "replace": False}
class DiToDate(Func):
4112class DiToDate(Func):
4113    pass
class Encode(Func):
4116class Encode(Func):
4117    arg_types = {"this": True, "charset": True}
class Exp(Func):
4120class Exp(Func):
4121    pass
class Explode(Func):
4124class Explode(Func):
4125    pass
class Floor(Func):
4128class Floor(Func):
4129    arg_types = {"this": True, "decimals": False}
class FromBase64(Func):
4132class FromBase64(Func):
4133    pass
class ToBase64(Func):
4136class ToBase64(Func):
4137    pass
class Greatest(Func):
4140class Greatest(Func):
4141    arg_types = {"this": True, "expressions": False}
4142    is_var_len_args = True
class GroupConcat(Func):
4145class GroupConcat(Func):
4146    arg_types = {"this": True, "separator": False}
class Hex(Func):
4149class Hex(Func):
4150    pass
class If(Func):
4153class If(Func):
4154    arg_types = {"this": True, "true": True, "false": False}
class Initcap(Func):
4157class Initcap(Func):
4158    arg_types = {"this": True, "expression": False}
class JSONKeyValue(Expression):
4161class JSONKeyValue(Expression):
4162    arg_types = {"this": True, "expression": True}
class JSONObject(Func):
4165class JSONObject(Func):
4166    arg_types = {
4167        "expressions": False,
4168        "null_handling": False,
4169        "unique_keys": False,
4170        "return_type": False,
4171        "format_json": False,
4172        "encoding": False,
4173    }
class OpenJSONColumnDef(Expression):
4176class OpenJSONColumnDef(Expression):
4177    arg_types = {"this": True, "kind": True, "path": False, "as_json": False}
class OpenJSON(Func):
4180class OpenJSON(Func):
4181    arg_types = {"this": True, "path": False, "expressions": False}
class JSONBContains(Binary):
4184class JSONBContains(Binary):
4185    _sql_names = ["JSONB_CONTAINS"]
class JSONExtract(Binary, Func):
4188class JSONExtract(Binary, Func):
4189    _sql_names = ["JSON_EXTRACT"]
class JSONExtractScalar(JSONExtract):
4192class JSONExtractScalar(JSONExtract):
4193    _sql_names = ["JSON_EXTRACT_SCALAR"]
class JSONBExtract(JSONExtract):
4196class JSONBExtract(JSONExtract):
4197    _sql_names = ["JSONB_EXTRACT"]
class JSONBExtractScalar(JSONExtract):
4200class JSONBExtractScalar(JSONExtract):
4201    _sql_names = ["JSONB_EXTRACT_SCALAR"]
class JSONFormat(Func):
4204class JSONFormat(Func):
4205    arg_types = {"this": False, "options": False}
4206    _sql_names = ["JSON_FORMAT"]
class Least(Func):
4209class Least(Func):
4210    arg_types = {"expressions": False}
4211    is_var_len_args = True
class Left(Func):
4214class Left(Func):
4215    arg_types = {"this": True, "expression": True}
class Length(Func):
4222class Length(Func):
4223    _sql_names = ["LENGTH", "LEN"]
class Levenshtein(Func):
4226class Levenshtein(Func):
4227    arg_types = {
4228        "this": True,
4229        "expression": False,
4230        "ins_cost": False,
4231        "del_cost": False,
4232        "sub_cost": False,
4233    }
class Ln(Func):
4236class Ln(Func):
4237    pass
class Log(Func):
4240class Log(Func):
4241    arg_types = {"this": True, "expression": False}
class Log2(Func):
4244class Log2(Func):
4245    pass
class Log10(Func):
4248class Log10(Func):
4249    pass
class LogicalOr(AggFunc):
4252class LogicalOr(AggFunc):
4253    _sql_names = ["LOGICAL_OR", "BOOL_OR", "BOOLOR_AGG"]
class LogicalAnd(AggFunc):
4256class LogicalAnd(AggFunc):
4257    _sql_names = ["LOGICAL_AND", "BOOL_AND", "BOOLAND_AGG"]
class Lower(Func):
4260class Lower(Func):
4261    _sql_names = ["LOWER", "LCASE"]
class Map(Func):
4264class Map(Func):
4265    arg_types = {"keys": False, "values": False}
class StarMap(Func):
4268class StarMap(Func):
4269    pass
class VarMap(Func):
4272class VarMap(Func):
4273    arg_types = {"keys": True, "values": True}
4274    is_var_len_args = True
4275
4276    @property
4277    def keys(self) -> t.List[Expression]:
4278        return self.args["keys"].expressions
4279
4280    @property
4281    def values(self) -> t.List[Expression]:
4282        return self.args["values"].expressions
class MatchAgainst(Func):
4286class MatchAgainst(Func):
4287    arg_types = {"this": True, "expressions": True, "modifier": False}
class Max(AggFunc):
4290class Max(AggFunc):
4291    arg_types = {"this": True, "expressions": False}
4292    is_var_len_args = True
class MD5(Func):
4295class MD5(Func):
4296    _sql_names = ["MD5"]
class Min(AggFunc):
4299class Min(AggFunc):
4300    arg_types = {"this": True, "expressions": False}
4301    is_var_len_args = True
class Month(Func):
4304class Month(Func):
4305    pass
class Nvl2(Func):
4308class Nvl2(Func):
4309    arg_types = {"this": True, "true": True, "false": False}
class Posexplode(Func):
4312class Posexplode(Func):
4313    pass
class Pow(Binary, Func):
4316class Pow(Binary, Func):
4317    _sql_names = ["POWER", "POW"]
class PercentileCont(AggFunc):
4320class PercentileCont(AggFunc):
4321    arg_types = {"this": True, "expression": False}
class PercentileDisc(AggFunc):
4324class PercentileDisc(AggFunc):
4325    arg_types = {"this": True, "expression": False}
class Quantile(AggFunc):
4328class Quantile(AggFunc):
4329    arg_types = {"this": True, "quantile": True}
class ApproxQuantile(Quantile):
4332class ApproxQuantile(Quantile):
4333    arg_types = {"this": True, "quantile": True, "accuracy": False, "weight": False}
class RangeN(Func):
4336class RangeN(Func):
4337    arg_types = {"this": True, "expressions": True, "each": False}
class ReadCSV(Func):
4340class ReadCSV(Func):
4341    _sql_names = ["READ_CSV"]
4342    is_var_len_args = True
4343    arg_types = {"this": True, "expressions": False}
class Reduce(Func):
4346class Reduce(Func):
4347    arg_types = {"this": True, "initial": True, "merge": True, "finish": False}
class RegexpExtract(Func):
4350class RegexpExtract(Func):
4351    arg_types = {
4352        "this": True,
4353        "expression": True,
4354        "position": False,
4355        "occurrence": False,
4356        "group": False,
4357    }
class RegexpLike(Func):
4360class RegexpLike(Func):
4361    arg_types = {"this": True, "expression": True, "flag": False}
class RegexpILike(Func):
4364class RegexpILike(Func):
4365    arg_types = {"this": True, "expression": True, "flag": False}
class RegexpSplit(Func):
4370class RegexpSplit(Func):
4371    arg_types = {"this": True, "expression": True, "limit": False}
class Repeat(Func):
4374class Repeat(Func):
4375    arg_types = {"this": True, "times": True}
class Round(Func):
4378class Round(Func):
4379    arg_types = {"this": True, "decimals": False}
class RowNumber(Func):
4382class RowNumber(Func):
4383    arg_types: t.Dict[str, t.Any] = {}
class SafeDivide(Func):
4386class SafeDivide(Func):
4387    arg_types = {"this": True, "expression": True}
class SetAgg(AggFunc):
4390class SetAgg(AggFunc):
4391    pass
class SHA(Func):
4394class SHA(Func):
4395    _sql_names = ["SHA", "SHA1"]
class SHA2(Func):
4398class SHA2(Func):
4399    _sql_names = ["SHA2"]
4400    arg_types = {"this": True, "length": False}
class SortArray(Func):
4403class SortArray(Func):
4404    arg_types = {"this": True, "asc": False}
class Split(Func):
4407class Split(Func):
4408    arg_types = {"this": True, "expression": True, "limit": False}
class Substring(Func):
4413class Substring(Func):
4414    arg_types = {"this": True, "start": False, "length": False}
class StandardHash(Func):
4417class StandardHash(Func):
4418    arg_types = {"this": True, "expression": False}
class StrPosition(Func):
4421class StrPosition(Func):
4422    arg_types = {
4423        "this": True,
4424        "substr": True,
4425        "position": False,
4426        "instance": False,
4427    }
class StrToDate(Func):
4430class StrToDate(Func):
4431    arg_types = {"this": True, "format": True}
class StrToTime(Func):
4434class StrToTime(Func):
4435    arg_types = {"this": True, "format": True}
class StrToUnix(Func):
4440class StrToUnix(Func):
4441    arg_types = {"this": False, "format": False}
class NumberToStr(Func):
4444class NumberToStr(Func):
4445    arg_types = {"this": True, "format": True}
class FromBase(Func):
4448class FromBase(Func):
4449    arg_types = {"this": True, "expression": True}
class Struct(Func):
4452class Struct(Func):
4453    arg_types = {"expressions": True}
4454    is_var_len_args = True
class StructExtract(Func):
4457class StructExtract(Func):
4458    arg_types = {"this": True, "expression": True}
class Sum(AggFunc):
4461class Sum(AggFunc):
4462    pass
class Sqrt(Func):
4465class Sqrt(Func):
4466    pass
class Stddev(AggFunc):
4469class Stddev(AggFunc):
4470    pass
class StddevPop(AggFunc):
4473class StddevPop(AggFunc):
4474    pass
class StddevSamp(AggFunc):
4477class StddevSamp(AggFunc):
4478    pass
class TimeToStr(Func):
4481class TimeToStr(Func):
4482    arg_types = {"this": True, "format": True}
class TimeToTimeStr(Func):
4485class TimeToTimeStr(Func):
4486    pass
class TimeToUnix(Func):
4489class TimeToUnix(Func):
4490    pass
class TimeStrToDate(Func):
4493class TimeStrToDate(Func):
4494    pass
class TimeStrToTime(Func):
4497class TimeStrToTime(Func):
4498    pass
class TimeStrToUnix(Func):
4501class TimeStrToUnix(Func):
4502    pass
class Trim(Func):
4505class Trim(Func):
4506    arg_types = {
4507        "this": True,
4508        "expression": False,
4509        "position": False,
4510        "collation": False,
4511    }
class TsOrDsAdd(Func, TimeUnit):
4514class TsOrDsAdd(Func, TimeUnit):
4515    arg_types = {"this": True, "expression": True, "unit": False}
class TsOrDsToDateStr(Func):
4518class TsOrDsToDateStr(Func):
4519    pass
class TsOrDsToDate(Func):
4522class TsOrDsToDate(Func):
4523    arg_types = {"this": True, "format": False}
class TsOrDiToDi(Func):
4526class TsOrDiToDi(Func):
4527    pass
class Unhex(Func):
4530class Unhex(Func):
4531    pass
class UnixToStr(Func):
4534class UnixToStr(Func):
4535    arg_types = {"this": True, "format": False}
class UnixToTime(Func):
4540class UnixToTime(Func):
4541    arg_types = {"this": True, "scale": False, "zone": False, "hours": False, "minutes": False}
4542
4543    SECONDS = Literal.string("seconds")
4544    MILLIS = Literal.string("millis")
4545    MICROS = Literal.string("micros")
class UnixToTimeStr(Func):
4548class UnixToTimeStr(Func):
4549    pass
class Upper(Func):
4552class Upper(Func):
4553    _sql_names = ["UPPER", "UCASE"]
class Variance(AggFunc):
4556class Variance(AggFunc):
4557    _sql_names = ["VARIANCE", "VARIANCE_SAMP", "VAR_SAMP"]
class VariancePop(AggFunc):
4560class VariancePop(AggFunc):
4561    _sql_names = ["VARIANCE_POP", "VAR_POP"]
class Week(Func):
4564class Week(Func):
4565    arg_types = {"this": True, "mode": False}
class XMLTable(Func):
4568class XMLTable(Func):
4569    arg_types = {"this": True, "passing": False, "columns": False, "by_ref": False}
class Year(Func):
4572class Year(Func):
4573    pass
class Use(Expression):
4576class Use(Expression):
4577    arg_types = {"this": True, "kind": False}
class Merge(Expression):
4580class Merge(Expression):
4581    arg_types = {"this": True, "using": True, "on": True, "expressions": True}
class When(Func):
4584class When(Func):
4585    arg_types = {"matched": True, "source": False, "condition": False, "then": True}
class NextValueFor(Func):
4590class NextValueFor(Func):
4591    arg_types = {"this": True, "order": False}
def maybe_parse( sql_or_expression: Union[str, sqlglot.expressions.Expression], *, into: Union[str, Type[sqlglot.expressions.Expression], Collection[Union[str, Type[sqlglot.expressions.Expression]]], NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, prefix: Optional[str] = None, copy: bool = False, **opts) -> sqlglot.expressions.Expression:
4628def maybe_parse(
4629    sql_or_expression: ExpOrStr,
4630    *,
4631    into: t.Optional[IntoType] = None,
4632    dialect: DialectType = None,
4633    prefix: t.Optional[str] = None,
4634    copy: bool = False,
4635    **opts,
4636) -> Expression:
4637    """Gracefully handle a possible string or expression.
4638
4639    Example:
4640        >>> maybe_parse("1")
4641        (LITERAL this: 1, is_string: False)
4642        >>> maybe_parse(to_identifier("x"))
4643        (IDENTIFIER this: x, quoted: False)
4644
4645    Args:
4646        sql_or_expression: the SQL code string or an expression
4647        into: the SQLGlot Expression to parse into
4648        dialect: the dialect used to parse the input expressions (in the case that an
4649            input expression is a SQL string).
4650        prefix: a string to prefix the sql with before it gets parsed
4651            (automatically includes a space)
4652        copy: whether or not to copy the expression.
4653        **opts: other options to use to parse the input expressions (again, in the case
4654            that an input expression is a SQL string).
4655
4656    Returns:
4657        Expression: the parsed or given expression.
4658    """
4659    if isinstance(sql_or_expression, Expression):
4660        if copy:
4661            return sql_or_expression.copy()
4662        return sql_or_expression
4663
4664    if sql_or_expression is None:
4665        raise ParseError(f"SQL cannot be None")
4666
4667    import sqlglot
4668
4669    sql = str(sql_or_expression)
4670    if prefix:
4671        sql = f"{prefix} {sql}"
4672
4673    return sqlglot.parse_one(sql, read=dialect, into=into, **opts)

Gracefully handle a possible string or expression.

Example:
>>> maybe_parse("1")
(LITERAL this: 1, is_string: False)
>>> maybe_parse(to_identifier("x"))
(IDENTIFIER this: x, quoted: False)
Arguments:
  • sql_or_expression: the SQL code string or an expression
  • into: the SQLGlot Expression to parse into
  • dialect: the dialect used to parse the input expressions (in the case that an input expression is a SQL string).
  • prefix: a string to prefix the sql with before it gets parsed (automatically includes a space)
  • copy: whether or not to copy the expression.
  • **opts: other options to use to parse the input expressions (again, in the case that an input expression is a SQL string).
Returns:

Expression: the parsed or given expression.

def union( left: Union[str, sqlglot.expressions.Expression], right: Union[str, sqlglot.expressions.Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Union:
4857def union(
4858    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
4859) -> Union:
4860    """
4861    Initializes a syntax tree from one UNION expression.
4862
4863    Example:
4864        >>> union("SELECT * FROM foo", "SELECT * FROM bla").sql()
4865        'SELECT * FROM foo UNION SELECT * FROM bla'
4866
4867    Args:
4868        left: the SQL code string corresponding to the left-hand side.
4869            If an `Expression` instance is passed, it will be used as-is.
4870        right: the SQL code string corresponding to the right-hand side.
4871            If an `Expression` instance is passed, it will be used as-is.
4872        distinct: set the DISTINCT flag if and only if this is true.
4873        dialect: the dialect used to parse the input expression.
4874        opts: other options to use to parse the input expressions.
4875
4876    Returns:
4877        The new Union instance.
4878    """
4879    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
4880    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
4881
4882    return Union(this=left, expression=right, distinct=distinct)

Initializes a syntax tree from one UNION expression.

Example:
>>> union("SELECT * FROM foo", "SELECT * FROM bla").sql()
'SELECT * FROM foo UNION SELECT * FROM bla'
Arguments:
  • left: the SQL code string corresponding to the left-hand side. If an Expression instance is passed, it will be used as-is.
  • right: the SQL code string corresponding to the right-hand side. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Union instance.

def intersect( left: Union[str, sqlglot.expressions.Expression], right: Union[str, sqlglot.expressions.Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Intersect:
4885def intersect(
4886    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
4887) -> Intersect:
4888    """
4889    Initializes a syntax tree from one INTERSECT expression.
4890
4891    Example:
4892        >>> intersect("SELECT * FROM foo", "SELECT * FROM bla").sql()
4893        'SELECT * FROM foo INTERSECT SELECT * FROM bla'
4894
4895    Args:
4896        left: the SQL code string corresponding to the left-hand side.
4897            If an `Expression` instance is passed, it will be used as-is.
4898        right: the SQL code string corresponding to the right-hand side.
4899            If an `Expression` instance is passed, it will be used as-is.
4900        distinct: set the DISTINCT flag if and only if this is true.
4901        dialect: the dialect used to parse the input expression.
4902        opts: other options to use to parse the input expressions.
4903
4904    Returns:
4905        The new Intersect instance.
4906    """
4907    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
4908    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
4909
4910    return Intersect(this=left, expression=right, distinct=distinct)

Initializes a syntax tree from one INTERSECT expression.

Example:
>>> intersect("SELECT * FROM foo", "SELECT * FROM bla").sql()
'SELECT * FROM foo INTERSECT SELECT * FROM bla'
Arguments:
  • left: the SQL code string corresponding to the left-hand side. If an Expression instance is passed, it will be used as-is.
  • right: the SQL code string corresponding to the right-hand side. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Intersect instance.

def except_( left: Union[str, sqlglot.expressions.Expression], right: Union[str, sqlglot.expressions.Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Except:
4913def except_(
4914    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
4915) -> Except:
4916    """
4917    Initializes a syntax tree from one EXCEPT expression.
4918
4919    Example:
4920        >>> except_("SELECT * FROM foo", "SELECT * FROM bla").sql()
4921        'SELECT * FROM foo EXCEPT SELECT * FROM bla'
4922
4923    Args:
4924        left: the SQL code string corresponding to the left-hand side.
4925            If an `Expression` instance is passed, it will be used as-is.
4926        right: the SQL code string corresponding to the right-hand side.
4927            If an `Expression` instance is passed, it will be used as-is.
4928        distinct: set the DISTINCT flag if and only if this is true.
4929        dialect: the dialect used to parse the input expression.
4930        opts: other options to use to parse the input expressions.
4931
4932    Returns:
4933        The new Except instance.
4934    """
4935    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
4936    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
4937
4938    return Except(this=left, expression=right, distinct=distinct)

Initializes a syntax tree from one EXCEPT expression.

Example:
>>> except_("SELECT * FROM foo", "SELECT * FROM bla").sql()
'SELECT * FROM foo EXCEPT SELECT * FROM bla'
Arguments:
  • left: the SQL code string corresponding to the left-hand side. If an Expression instance is passed, it will be used as-is.
  • right: the SQL code string corresponding to the right-hand side. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Except instance.

def select( *expressions: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Select:
4941def select(*expressions: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
4942    """
4943    Initializes a syntax tree from one or multiple SELECT expressions.
4944
4945    Example:
4946        >>> select("col1", "col2").from_("tbl").sql()
4947        'SELECT col1, col2 FROM tbl'
4948
4949    Args:
4950        *expressions: the SQL code string to parse as the expressions of a
4951            SELECT statement. If an Expression instance is passed, this is used as-is.
4952        dialect: the dialect used to parse the input expressions (in the case that an
4953            input expression is a SQL string).
4954        **opts: other options to use to parse the input expressions (again, in the case
4955            that an input expression is a SQL string).
4956
4957    Returns:
4958        Select: the syntax tree for the SELECT statement.
4959    """
4960    return Select().select(*expressions, dialect=dialect, **opts)

Initializes a syntax tree from one or multiple SELECT expressions.

Example:
>>> select("col1", "col2").from_("tbl").sql()
'SELECT col1, col2 FROM tbl'
Arguments:
  • *expressions: the SQL code string to parse as the expressions of a SELECT statement. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expressions (in the case that an input expression is a SQL string).
  • **opts: other options to use to parse the input expressions (again, in the case that an input expression is a SQL string).
Returns:

Select: the syntax tree for the SELECT statement.

def from_( expression: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Select:
4963def from_(expression: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
4964    """
4965    Initializes a syntax tree from a FROM expression.
4966
4967    Example:
4968        >>> from_("tbl").select("col1", "col2").sql()
4969        'SELECT col1, col2 FROM tbl'
4970
4971    Args:
4972        *expression: the SQL code string to parse as the FROM expressions of a
4973            SELECT statement. If an Expression instance is passed, this is used as-is.
4974        dialect: the dialect used to parse the input expression (in the case that the
4975            input expression is a SQL string).
4976        **opts: other options to use to parse the input expressions (again, in the case
4977            that the input expression is a SQL string).
4978
4979    Returns:
4980        Select: the syntax tree for the SELECT statement.
4981    """
4982    return Select().from_(expression, dialect=dialect, **opts)

Initializes a syntax tree from a FROM expression.

Example:
>>> from_("tbl").select("col1", "col2").sql()
'SELECT col1, col2 FROM tbl'
Arguments:
  • *expression: the SQL code string to parse as the FROM expressions of a SELECT statement. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression (in the case that the input expression is a SQL string).
  • **opts: other options to use to parse the input expressions (again, in the case that the input expression is a SQL string).
Returns:

Select: the syntax tree for the SELECT statement.

def update( table: str | sqlglot.expressions.Table, properties: dict, where: Union[str, sqlglot.expressions.Expression, NoneType] = None, from_: Union[str, sqlglot.expressions.Expression, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Update:
4985def update(
4986    table: str | Table,
4987    properties: dict,
4988    where: t.Optional[ExpOrStr] = None,
4989    from_: t.Optional[ExpOrStr] = None,
4990    dialect: DialectType = None,
4991    **opts,
4992) -> Update:
4993    """
4994    Creates an update statement.
4995
4996    Example:
4997        >>> update("my_table", {"x": 1, "y": "2", "z": None}, from_="baz", where="id > 1").sql()
4998        "UPDATE my_table SET x = 1, y = '2', z = NULL FROM baz WHERE id > 1"
4999
5000    Args:
5001        *properties: dictionary of properties to set which are
5002            auto converted to sql objects eg None -> NULL
5003        where: sql conditional parsed into a WHERE statement
5004        from_: sql statement parsed into a FROM statement
5005        dialect: the dialect used to parse the input expressions.
5006        **opts: other options to use to parse the input expressions.
5007
5008    Returns:
5009        Update: the syntax tree for the UPDATE statement.
5010    """
5011    update_expr = Update(this=maybe_parse(table, into=Table, dialect=dialect))
5012    update_expr.set(
5013        "expressions",
5014        [
5015            EQ(this=maybe_parse(k, dialect=dialect, **opts), expression=convert(v))
5016            for k, v in properties.items()
5017        ],
5018    )
5019    if from_:
5020        update_expr.set(
5021            "from",
5022            maybe_parse(from_, into=From, dialect=dialect, prefix="FROM", **opts),
5023        )
5024    if isinstance(where, Condition):
5025        where = Where(this=where)
5026    if where:
5027        update_expr.set(
5028            "where",
5029            maybe_parse(where, into=Where, dialect=dialect, prefix="WHERE", **opts),
5030        )
5031    return update_expr

Creates an update statement.

Example:
>>> update("my_table", {"x": 1, "y": "2", "z": None}, from_="baz", where="id > 1").sql()
"UPDATE my_table SET x = 1, y = '2', z = NULL FROM baz WHERE id > 1"
Arguments:
  • *properties: dictionary of properties to set which are auto converted to sql objects eg None -> NULL
  • where: sql conditional parsed into a WHERE statement
  • from_: sql statement parsed into a FROM statement
  • dialect: the dialect used to parse the input expressions.
  • **opts: other options to use to parse the input expressions.
Returns:

Update: the syntax tree for the UPDATE statement.

def delete( table: Union[str, sqlglot.expressions.Expression], where: Union[str, sqlglot.expressions.Expression, NoneType] = None, returning: Union[str, sqlglot.expressions.Expression, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Delete:
5034def delete(
5035    table: ExpOrStr,
5036    where: t.Optional[ExpOrStr] = None,
5037    returning: t.Optional[ExpOrStr] = None,
5038    dialect: DialectType = None,
5039    **opts,
5040) -> Delete:
5041    """
5042    Builds a delete statement.
5043
5044    Example:
5045        >>> delete("my_table", where="id > 1").sql()
5046        'DELETE FROM my_table WHERE id > 1'
5047
5048    Args:
5049        where: sql conditional parsed into a WHERE statement
5050        returning: sql conditional parsed into a RETURNING statement
5051        dialect: the dialect used to parse the input expressions.
5052        **opts: other options to use to parse the input expressions.
5053
5054    Returns:
5055        Delete: the syntax tree for the DELETE statement.
5056    """
5057    delete_expr = Delete().delete(table, dialect=dialect, copy=False, **opts)
5058    if where:
5059        delete_expr = delete_expr.where(where, dialect=dialect, copy=False, **opts)
5060    if returning:
5061        delete_expr = delete_expr.returning(returning, dialect=dialect, copy=False, **opts)
5062    return delete_expr

Builds a delete statement.

Example:
>>> delete("my_table", where="id > 1").sql()
'DELETE FROM my_table WHERE id > 1'
Arguments:
  • where: sql conditional parsed into a WHERE statement
  • returning: sql conditional parsed into a RETURNING statement
  • dialect: the dialect used to parse the input expressions.
  • **opts: other options to use to parse the input expressions.
Returns:

Delete: the syntax tree for the DELETE statement.

def insert( expression: Union[str, sqlglot.expressions.Expression], into: Union[str, sqlglot.expressions.Expression], columns: Optional[Sequence[Union[str, sqlglot.expressions.Expression]]] = None, overwrite: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Insert:
5065def insert(
5066    expression: ExpOrStr,
5067    into: ExpOrStr,
5068    columns: t.Optional[t.Sequence[ExpOrStr]] = None,
5069    overwrite: t.Optional[bool] = None,
5070    dialect: DialectType = None,
5071    copy: bool = True,
5072    **opts,
5073) -> Insert:
5074    """
5075    Builds an INSERT statement.
5076
5077    Example:
5078        >>> insert("VALUES (1, 2, 3)", "tbl").sql()
5079        'INSERT INTO tbl VALUES (1, 2, 3)'
5080
5081    Args:
5082        expression: the sql string or expression of the INSERT statement
5083        into: the tbl to insert data to.
5084        columns: optionally the table's column names.
5085        overwrite: whether to INSERT OVERWRITE or not.
5086        dialect: the dialect used to parse the input expressions.
5087        copy: whether or not to copy the expression.
5088        **opts: other options to use to parse the input expressions.
5089
5090    Returns:
5091        Insert: the syntax tree for the INSERT statement.
5092    """
5093    expr = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
5094    this: Table | Schema = maybe_parse(into, into=Table, dialect=dialect, copy=copy, **opts)
5095
5096    if columns:
5097        this = _apply_list_builder(
5098            *columns,
5099            instance=Schema(this=this),
5100            arg="expressions",
5101            into=Identifier,
5102            copy=False,
5103            dialect=dialect,
5104            **opts,
5105        )
5106
5107    return Insert(this=this, expression=expr, overwrite=overwrite)

Builds an INSERT statement.

Example:
>>> insert("VALUES (1, 2, 3)", "tbl").sql()
'INSERT INTO tbl VALUES (1, 2, 3)'
Arguments:
  • expression: the sql string or expression of the INSERT statement
  • into: the tbl to insert data to.
  • columns: optionally the table's column names.
  • overwrite: whether to INSERT OVERWRITE or not.
  • dialect: the dialect used to parse the input expressions.
  • copy: whether or not to copy the expression.
  • **opts: other options to use to parse the input expressions.
Returns:

Insert: the syntax tree for the INSERT statement.

def condition( expression: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Condition:
5110def condition(
5111    expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
5112) -> Condition:
5113    """
5114    Initialize a logical condition expression.
5115
5116    Example:
5117        >>> condition("x=1").sql()
5118        'x = 1'
5119
5120        This is helpful for composing larger logical syntax trees:
5121        >>> where = condition("x=1")
5122        >>> where = where.and_("y=1")
5123        >>> Select().from_("tbl").select("*").where(where).sql()
5124        'SELECT * FROM tbl WHERE x = 1 AND y = 1'
5125
5126    Args:
5127        *expression: the SQL code string to parse.
5128            If an Expression instance is passed, this is used as-is.
5129        dialect: the dialect used to parse the input expression (in the case that the
5130            input expression is a SQL string).
5131        copy: Whether or not to copy `expression` (only applies to expressions).
5132        **opts: other options to use to parse the input expressions (again, in the case
5133            that the input expression is a SQL string).
5134
5135    Returns:
5136        The new Condition instance
5137    """
5138    return maybe_parse(
5139        expression,
5140        into=Condition,
5141        dialect=dialect,
5142        copy=copy,
5143        **opts,
5144    )

Initialize a logical condition expression.

Example:
>>> condition("x=1").sql()
'x = 1'

This is helpful for composing larger logical syntax trees:

>>> where = condition("x=1")
>>> where = where.and_("y=1")
>>> Select().from_("tbl").select("*").where(where).sql()
'SELECT * FROM tbl WHERE x = 1 AND y = 1'
Arguments:
  • *expression: the SQL code string to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression (in the case that the input expression is a SQL string).
  • copy: Whether or not to copy expression (only applies to expressions).
  • **opts: other options to use to parse the input expressions (again, in the case that the input expression is a SQL string).
Returns:

The new Condition instance

def and_( *expressions: Union[str, sqlglot.expressions.Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Condition:
5147def and_(
5148    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
5149) -> Condition:
5150    """
5151    Combine multiple conditions with an AND logical operator.
5152
5153    Example:
5154        >>> and_("x=1", and_("y=1", "z=1")).sql()
5155        'x = 1 AND (y = 1 AND z = 1)'
5156
5157    Args:
5158        *expressions: the SQL code strings to parse.
5159            If an Expression instance is passed, this is used as-is.
5160        dialect: the dialect used to parse the input expression.
5161        copy: whether or not to copy `expressions` (only applies to Expressions).
5162        **opts: other options to use to parse the input expressions.
5163
5164    Returns:
5165        And: the new condition
5166    """
5167    return t.cast(Condition, _combine(expressions, And, dialect, copy=copy, **opts))

Combine multiple conditions with an AND logical operator.

Example:
>>> and_("x=1", and_("y=1", "z=1")).sql()
'x = 1 AND (y = 1 AND z = 1)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether or not to copy expressions (only applies to Expressions).
  • **opts: other options to use to parse the input expressions.
Returns:

And: the new condition

def or_( *expressions: Union[str, sqlglot.expressions.Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Condition:
5170def or_(
5171    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
5172) -> Condition:
5173    """
5174    Combine multiple conditions with an OR logical operator.
5175
5176    Example:
5177        >>> or_("x=1", or_("y=1", "z=1")).sql()
5178        'x = 1 OR (y = 1 OR z = 1)'
5179
5180    Args:
5181        *expressions: the SQL code strings to parse.
5182            If an Expression instance is passed, this is used as-is.
5183        dialect: the dialect used to parse the input expression.
5184        copy: whether or not to copy `expressions` (only applies to Expressions).
5185        **opts: other options to use to parse the input expressions.
5186
5187    Returns:
5188        Or: the new condition
5189    """
5190    return t.cast(Condition, _combine(expressions, Or, dialect, copy=copy, **opts))

Combine multiple conditions with an OR logical operator.

Example:
>>> or_("x=1", or_("y=1", "z=1")).sql()
'x = 1 OR (y = 1 OR z = 1)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether or not to copy expressions (only applies to Expressions).
  • **opts: other options to use to parse the input expressions.
Returns:

Or: the new condition

def not_( expression: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Not:
5193def not_(expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts) -> Not:
5194    """
5195    Wrap a condition with a NOT operator.
5196
5197    Example:
5198        >>> not_("this_suit='black'").sql()
5199        "NOT this_suit = 'black'"
5200
5201    Args:
5202        expression: the SQL code string to parse.
5203            If an Expression instance is passed, this is used as-is.
5204        dialect: the dialect used to parse the input expression.
5205        copy: whether to copy the expression or not.
5206        **opts: other options to use to parse the input expressions.
5207
5208    Returns:
5209        The new condition.
5210    """
5211    this = condition(
5212        expression,
5213        dialect=dialect,
5214        copy=copy,
5215        **opts,
5216    )
5217    return Not(this=_wrap(this, Connector))

Wrap a condition with a NOT operator.

Example:
>>> not_("this_suit='black'").sql()
"NOT this_suit = 'black'"
Arguments:
  • expression: the SQL code string to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy the expression or not.
  • **opts: other options to use to parse the input expressions.
Returns:

The new condition.

def paren( expression: Union[str, sqlglot.expressions.Expression], copy: bool = True) -> sqlglot.expressions.Paren:
5220def paren(expression: ExpOrStr, copy: bool = True) -> Paren:
5221    """
5222    Wrap an expression in parentheses.
5223
5224    Example:
5225        >>> paren("5 + 3").sql()
5226        '(5 + 3)'
5227
5228    Args:
5229        expression: the SQL code string to parse.
5230            If an Expression instance is passed, this is used as-is.
5231        copy: whether to copy the expression or not.
5232
5233    Returns:
5234        The wrapped expression.
5235    """
5236    return Paren(this=maybe_parse(expression, copy=copy))

Wrap an expression in parentheses.

Example:
>>> paren("5 + 3").sql()
'(5 + 3)'
Arguments:
  • expression: the SQL code string to parse. If an Expression instance is passed, this is used as-is.
  • copy: whether to copy the expression or not.
Returns:

The wrapped expression.

def to_identifier(name, quoted=None, copy=True):
5254def to_identifier(name, quoted=None, copy=True):
5255    """Builds an identifier.
5256
5257    Args:
5258        name: The name to turn into an identifier.
5259        quoted: Whether or not force quote the identifier.
5260        copy: Whether or not to copy a passed in Identefier node.
5261
5262    Returns:
5263        The identifier ast node.
5264    """
5265
5266    if name is None:
5267        return None
5268
5269    if isinstance(name, Identifier):
5270        identifier = _maybe_copy(name, copy)
5271    elif isinstance(name, str):
5272        identifier = Identifier(
5273            this=name,
5274            quoted=not SAFE_IDENTIFIER_RE.match(name) if quoted is None else quoted,
5275        )
5276    else:
5277        raise ValueError(f"Name needs to be a string or an Identifier, got: {name.__class__}")
5278    return identifier

Builds an identifier.

Arguments:
  • name: The name to turn into an identifier.
  • quoted: Whether or not force quote the identifier.
  • copy: Whether or not to copy a passed in Identefier node.
Returns:

The identifier ast node.

def to_interval( interval: str | sqlglot.expressions.Literal) -> sqlglot.expressions.Interval:
5284def to_interval(interval: str | Literal) -> Interval:
5285    """Builds an interval expression from a string like '1 day' or '5 months'."""
5286    if isinstance(interval, Literal):
5287        if not interval.is_string:
5288            raise ValueError("Invalid interval string.")
5289
5290        interval = interval.this
5291
5292    interval_parts = INTERVAL_STRING_RE.match(interval)  # type: ignore
5293
5294    if not interval_parts:
5295        raise ValueError("Invalid interval string.")
5296
5297    return Interval(
5298        this=Literal.string(interval_parts.group(1)),
5299        unit=Var(this=interval_parts.group(2)),
5300    )

Builds an interval expression from a string like '1 day' or '5 months'.

def to_table( sql_path: Union[str, sqlglot.expressions.Table, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **kwargs) -> Optional[sqlglot.expressions.Table]:
5313def to_table(
5314    sql_path: t.Optional[str | Table], dialect: DialectType = None, **kwargs
5315) -> t.Optional[Table]:
5316    """
5317    Create a table expression from a `[catalog].[schema].[table]` sql path. Catalog and schema are optional.
5318    If a table is passed in then that table is returned.
5319
5320    Args:
5321        sql_path: a `[catalog].[schema].[table]` string.
5322        dialect: the source dialect according to which the table name will be parsed.
5323        kwargs: the kwargs to instantiate the resulting `Table` expression with.
5324
5325    Returns:
5326        A table expression.
5327    """
5328    if sql_path is None or isinstance(sql_path, Table):
5329        return sql_path
5330    if not isinstance(sql_path, str):
5331        raise ValueError(f"Invalid type provided for a table: {type(sql_path)}")
5332
5333    table = maybe_parse(sql_path, into=Table, dialect=dialect)
5334    if table:
5335        for k, v in kwargs.items():
5336            table.set(k, v)
5337
5338    return table

Create a table expression from a [catalog].[schema].[table] sql path. Catalog and schema are optional. If a table is passed in then that table is returned.

Arguments:
  • sql_path: a [catalog].[schema].[table] string.
  • dialect: the source dialect according to which the table name will be parsed.
  • kwargs: the kwargs to instantiate the resulting Table expression with.
Returns:

A table expression.

def to_column( sql_path: str | sqlglot.expressions.Column, **kwargs) -> sqlglot.expressions.Column:
5341def to_column(sql_path: str | Column, **kwargs) -> Column:
5342    """
5343    Create a column from a `[table].[column]` sql path. Schema is optional.
5344
5345    If a column is passed in then that column is returned.
5346
5347    Args:
5348        sql_path: `[table].[column]` string
5349    Returns:
5350        Table: A column expression
5351    """
5352    if sql_path is None or isinstance(sql_path, Column):
5353        return sql_path
5354    if not isinstance(sql_path, str):
5355        raise ValueError(f"Invalid type provided for column: {type(sql_path)}")
5356    return column(*reversed(sql_path.split(".")), **kwargs)  # type: ignore

Create a column from a [table].[column] sql path. Schema is optional.

If a column is passed in then that column is returned.

Arguments:
  • sql_path: [table].[column] string
Returns:

Table: A column expression

def alias_( expression: Union[str, sqlglot.expressions.Expression], alias: str | sqlglot.expressions.Identifier, table: Union[bool, Sequence[str | sqlglot.expressions.Identifier]] = False, quoted: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts):
5359def alias_(
5360    expression: ExpOrStr,
5361    alias: str | Identifier,
5362    table: bool | t.Sequence[str | Identifier] = False,
5363    quoted: t.Optional[bool] = None,
5364    dialect: DialectType = None,
5365    copy: bool = True,
5366    **opts,
5367):
5368    """Create an Alias expression.
5369
5370    Example:
5371        >>> alias_('foo', 'bar').sql()
5372        'foo AS bar'
5373
5374        >>> alias_('(select 1, 2)', 'bar', table=['a', 'b']).sql()
5375        '(SELECT 1, 2) AS bar(a, b)'
5376
5377    Args:
5378        expression: the SQL code strings to parse.
5379            If an Expression instance is passed, this is used as-is.
5380        alias: the alias name to use. If the name has
5381            special characters it is quoted.
5382        table: Whether or not to create a table alias, can also be a list of columns.
5383        quoted: whether or not to quote the alias
5384        dialect: the dialect used to parse the input expression.
5385        copy: Whether or not to copy the expression.
5386        **opts: other options to use to parse the input expressions.
5387
5388    Returns:
5389        Alias: the aliased expression
5390    """
5391    exp = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
5392    alias = to_identifier(alias, quoted=quoted)
5393
5394    if table:
5395        table_alias = TableAlias(this=alias)
5396        exp.set("alias", table_alias)
5397
5398        if not isinstance(table, bool):
5399            for column in table:
5400                table_alias.append("columns", to_identifier(column, quoted=quoted))
5401
5402        return exp
5403
5404    # We don't set the "alias" arg for Window expressions, because that would add an IDENTIFIER node in
5405    # the AST, representing a "named_window" [1] construct (eg. bigquery). What we want is an ALIAS node
5406    # for the complete Window expression.
5407    #
5408    # [1]: https://cloud.google.com/bigquery/docs/reference/standard-sql/window-function-calls
5409
5410    if "alias" in exp.arg_types and not isinstance(exp, Window):
5411        exp.set("alias", alias)
5412        return exp
5413    return Alias(this=exp, alias=alias)

Create an Alias expression.

Example:
>>> alias_('foo', 'bar').sql()
'foo AS bar'
>>> alias_('(select 1, 2)', 'bar', table=['a', 'b']).sql()
'(SELECT 1, 2) AS bar(a, b)'
Arguments:
  • expression: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • alias: the alias name to use. If the name has special characters it is quoted.
  • table: Whether or not to create a table alias, can also be a list of columns.
  • quoted: whether or not to quote the alias
  • dialect: the dialect used to parse the input expression.
  • copy: Whether or not to copy the expression.
  • **opts: other options to use to parse the input expressions.
Returns:

Alias: the aliased expression

def subquery( expression: Union[str, sqlglot.expressions.Expression], alias: Union[sqlglot.expressions.Identifier, str, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Select:
5416def subquery(
5417    expression: ExpOrStr,
5418    alias: t.Optional[Identifier | str] = None,
5419    dialect: DialectType = None,
5420    **opts,
5421) -> Select:
5422    """
5423    Build a subquery expression.
5424
5425    Example:
5426        >>> subquery('select x from tbl', 'bar').select('x').sql()
5427        'SELECT x FROM (SELECT x FROM tbl) AS bar'
5428
5429    Args:
5430        expression: the SQL code strings to parse.
5431            If an Expression instance is passed, this is used as-is.
5432        alias: the alias name to use.
5433        dialect: the dialect used to parse the input expression.
5434        **opts: other options to use to parse the input expressions.
5435
5436    Returns:
5437        A new Select instance with the subquery expression included.
5438    """
5439
5440    expression = maybe_parse(expression, dialect=dialect, **opts).subquery(alias)
5441    return Select().from_(expression, dialect=dialect, **opts)

Build a subquery expression.

Example:
>>> subquery('select x from tbl', 'bar').select('x').sql()
'SELECT x FROM (SELECT x FROM tbl) AS bar'
Arguments:
  • expression: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • alias: the alias name to use.
  • dialect: the dialect used to parse the input expression.
  • **opts: other options to use to parse the input expressions.
Returns:

A new Select instance with the subquery expression included.

def column( col: str | sqlglot.expressions.Identifier, table: Union[sqlglot.expressions.Identifier, str, NoneType] = None, db: Union[sqlglot.expressions.Identifier, str, NoneType] = None, catalog: Union[sqlglot.expressions.Identifier, str, NoneType] = None, quoted: Optional[bool] = None) -> sqlglot.expressions.Column:
5444def column(
5445    col: str | Identifier,
5446    table: t.Optional[str | Identifier] = None,
5447    db: t.Optional[str | Identifier] = None,
5448    catalog: t.Optional[str | Identifier] = None,
5449    quoted: t.Optional[bool] = None,
5450) -> Column:
5451    """
5452    Build a Column.
5453
5454    Args:
5455        col: Column name.
5456        table: Table name.
5457        db: Database name.
5458        catalog: Catalog name.
5459        quoted: Whether to force quotes on the column's identifiers.
5460
5461    Returns:
5462        The new Column instance.
5463    """
5464    return Column(
5465        this=to_identifier(col, quoted=quoted),
5466        table=to_identifier(table, quoted=quoted),
5467        db=to_identifier(db, quoted=quoted),
5468        catalog=to_identifier(catalog, quoted=quoted),
5469    )

Build a Column.

Arguments:
  • col: Column name.
  • table: Table name.
  • db: Database name.
  • catalog: Catalog name.
  • quoted: Whether to force quotes on the column's identifiers.
Returns:

The new Column instance.

def cast( expression: Union[str, sqlglot.expressions.Expression], to: str | sqlglot.expressions.DataType | sqlglot.expressions.DataType.Type, **opts) -> sqlglot.expressions.Cast:
5472def cast(expression: ExpOrStr, to: str | DataType | DataType.Type, **opts) -> Cast:
5473    """Cast an expression to a data type.
5474
5475    Example:
5476        >>> cast('x + 1', 'int').sql()
5477        'CAST(x + 1 AS INT)'
5478
5479    Args:
5480        expression: The expression to cast.
5481        to: The datatype to cast to.
5482
5483    Returns:
5484        The new Cast instance.
5485    """
5486    expression = maybe_parse(expression, **opts)
5487    return Cast(this=expression, to=DataType.build(to, **opts))

Cast an expression to a data type.

Example:
>>> cast('x + 1', 'int').sql()
'CAST(x + 1 AS INT)'
Arguments:
  • expression: The expression to cast.
  • to: The datatype to cast to.
Returns:

The new Cast instance.

def table_( table: sqlglot.expressions.Identifier | str, db: Union[sqlglot.expressions.Identifier, str, NoneType] = None, catalog: Union[sqlglot.expressions.Identifier, str, NoneType] = None, quoted: Optional[bool] = None, alias: Union[sqlglot.expressions.Identifier, str, NoneType] = None) -> sqlglot.expressions.Table:
5490def table_(
5491    table: Identifier | str,
5492    db: t.Optional[Identifier | str] = None,
5493    catalog: t.Optional[Identifier | str] = None,
5494    quoted: t.Optional[bool] = None,
5495    alias: t.Optional[Identifier | str] = None,
5496) -> Table:
5497    """Build a Table.
5498
5499    Args:
5500        table: Table name.
5501        db: Database name.
5502        catalog: Catalog name.
5503        quote: Whether to force quotes on the table's identifiers.
5504        alias: Table's alias.
5505
5506    Returns:
5507        The new Table instance.
5508    """
5509    return Table(
5510        this=to_identifier(table, quoted=quoted),
5511        db=to_identifier(db, quoted=quoted),
5512        catalog=to_identifier(catalog, quoted=quoted),
5513        alias=TableAlias(this=to_identifier(alias)) if alias else None,
5514    )

Build a Table.

Arguments:
  • table: Table name.
  • db: Database name.
  • catalog: Catalog name.
  • quote: Whether to force quotes on the table's identifiers.
  • alias: Table's alias.
Returns:

The new Table instance.

def values( values: Iterable[Tuple[Any, ...]], alias: Optional[str] = None, columns: Union[Iterable[str], Dict[str, sqlglot.expressions.DataType], NoneType] = None) -> sqlglot.expressions.Values:
5517def values(
5518    values: t.Iterable[t.Tuple[t.Any, ...]],
5519    alias: t.Optional[str] = None,
5520    columns: t.Optional[t.Iterable[str] | t.Dict[str, DataType]] = None,
5521) -> Values:
5522    """Build VALUES statement.
5523
5524    Example:
5525        >>> values([(1, '2')]).sql()
5526        "VALUES (1, '2')"
5527
5528    Args:
5529        values: values statements that will be converted to SQL
5530        alias: optional alias
5531        columns: Optional list of ordered column names or ordered dictionary of column names to types.
5532         If either are provided then an alias is also required.
5533
5534    Returns:
5535        Values: the Values expression object
5536    """
5537    if columns and not alias:
5538        raise ValueError("Alias is required when providing columns")
5539
5540    return Values(
5541        expressions=[convert(tup) for tup in values],
5542        alias=(
5543            TableAlias(this=to_identifier(alias), columns=[to_identifier(x) for x in columns])
5544            if columns
5545            else (TableAlias(this=to_identifier(alias)) if alias else None)
5546        ),
5547    )

Build VALUES statement.

Example:
>>> values([(1, '2')]).sql()
"VALUES (1, '2')"
Arguments:
  • values: values statements that will be converted to SQL
  • alias: optional alias
  • columns: Optional list of ordered column names or ordered dictionary of column names to types. If either are provided then an alias is also required.
Returns:

Values: the Values expression object

def var( name: Union[str, sqlglot.expressions.Expression, NoneType]) -> sqlglot.expressions.Var:
5550def var(name: t.Optional[ExpOrStr]) -> Var:
5551    """Build a SQL variable.
5552
5553    Example:
5554        >>> repr(var('x'))
5555        '(VAR this: x)'
5556
5557        >>> repr(var(column('x', table='y')))
5558        '(VAR this: x)'
5559
5560    Args:
5561        name: The name of the var or an expression who's name will become the var.
5562
5563    Returns:
5564        The new variable node.
5565    """
5566    if not name:
5567        raise ValueError("Cannot convert empty name into var.")
5568
5569    if isinstance(name, Expression):
5570        name = name.name
5571    return Var(this=name)

Build a SQL variable.

Example:
>>> repr(var('x'))
'(VAR this: x)'
>>> repr(var(column('x', table='y')))
'(VAR this: x)'
Arguments:
  • name: The name of the var or an expression who's name will become the var.
Returns:

The new variable node.

def rename_table( old_name: str | sqlglot.expressions.Table, new_name: str | sqlglot.expressions.Table) -> sqlglot.expressions.AlterTable:
5574def rename_table(old_name: str | Table, new_name: str | Table) -> AlterTable:
5575    """Build ALTER TABLE... RENAME... expression
5576
5577    Args:
5578        old_name: The old name of the table
5579        new_name: The new name of the table
5580
5581    Returns:
5582        Alter table expression
5583    """
5584    old_table = to_table(old_name)
5585    new_table = to_table(new_name)
5586    return AlterTable(
5587        this=old_table,
5588        actions=[
5589            RenameTable(this=new_table),
5590        ],
5591    )

Build ALTER TABLE... RENAME... expression

Arguments:
  • old_name: The old name of the table
  • new_name: The new name of the table
Returns:

Alter table expression

def convert(value: Any, copy: bool = False) -> sqlglot.expressions.Expression:
5594def convert(value: t.Any, copy: bool = False) -> Expression:
5595    """Convert a python value into an expression object.
5596
5597    Raises an error if a conversion is not possible.
5598
5599    Args:
5600        value: A python object.
5601        copy: Whether or not to copy `value` (only applies to Expressions and collections).
5602
5603    Returns:
5604        Expression: the equivalent expression object.
5605    """
5606    if isinstance(value, Expression):
5607        return _maybe_copy(value, copy)
5608    if isinstance(value, str):
5609        return Literal.string(value)
5610    if isinstance(value, bool):
5611        return Boolean(this=value)
5612    if value is None or (isinstance(value, float) and math.isnan(value)):
5613        return NULL
5614    if isinstance(value, numbers.Number):
5615        return Literal.number(value)
5616    if isinstance(value, datetime.datetime):
5617        datetime_literal = Literal.string(
5618            (value if value.tzinfo else value.replace(tzinfo=datetime.timezone.utc)).isoformat()
5619        )
5620        return TimeStrToTime(this=datetime_literal)
5621    if isinstance(value, datetime.date):
5622        date_literal = Literal.string(value.strftime("%Y-%m-%d"))
5623        return DateStrToDate(this=date_literal)
5624    if isinstance(value, tuple):
5625        return Tuple(expressions=[convert(v, copy=copy) for v in value])
5626    if isinstance(value, list):
5627        return Array(expressions=[convert(v, copy=copy) for v in value])
5628    if isinstance(value, dict):
5629        return Map(
5630            keys=[convert(k, copy=copy) for k in value],
5631            values=[convert(v, copy=copy) for v in value.values()],
5632        )
5633    raise ValueError(f"Cannot convert {value}")

Convert a python value into an expression object.

Raises an error if a conversion is not possible.

Arguments:
  • value: A python object.
  • copy: Whether or not to copy value (only applies to Expressions and collections).
Returns:

Expression: the equivalent expression object.

def replace_children( expression: sqlglot.expressions.Expression, fun: Callable, *args, **kwargs) -> None:
5636def replace_children(expression: Expression, fun: t.Callable, *args, **kwargs) -> None:
5637    """
5638    Replace children of an expression with the result of a lambda fun(child) -> exp.
5639    """
5640    for k, v in expression.args.items():
5641        is_list_arg = type(v) is list
5642
5643        child_nodes = v if is_list_arg else [v]
5644        new_child_nodes = []
5645
5646        for cn in child_nodes:
5647            if isinstance(cn, Expression):
5648                for child_node in ensure_collection(fun(cn, *args, **kwargs)):
5649                    new_child_nodes.append(child_node)
5650                    child_node.parent = expression
5651                    child_node.arg_key = k
5652            else:
5653                new_child_nodes.append(cn)
5654
5655        expression.args[k] = new_child_nodes if is_list_arg else seq_get(new_child_nodes, 0)

Replace children of an expression with the result of a lambda fun(child) -> exp.

def column_table_names(expression: sqlglot.expressions.Expression) -> List[str]:
5658def column_table_names(expression: Expression) -> t.List[str]:
5659    """
5660    Return all table names referenced through columns in an expression.
5661
5662    Example:
5663        >>> import sqlglot
5664        >>> column_table_names(sqlglot.parse_one("a.b AND c.d AND c.e"))
5665        ['c', 'a']
5666
5667    Args:
5668        expression: expression to find table names.
5669
5670    Returns:
5671        A list of unique names.
5672    """
5673    return list(dict.fromkeys(column.table for column in expression.find_all(Column)))

Return all table names referenced through columns in an expression.

Example:
>>> import sqlglot
>>> column_table_names(sqlglot.parse_one("a.b AND c.d AND c.e"))
['c', 'a']
Arguments:
  • expression: expression to find table names.
Returns:

A list of unique names.

def table_name(table: sqlglot.expressions.Table | str) -> str:
5676def table_name(table: Table | str) -> str:
5677    """Get the full name of a table as a string.
5678
5679    Args:
5680        table: table expression node or string.
5681
5682    Examples:
5683        >>> from sqlglot import exp, parse_one
5684        >>> table_name(parse_one("select * from a.b.c").find(exp.Table))
5685        'a.b.c'
5686
5687    Returns:
5688        The table name.
5689    """
5690
5691    table = maybe_parse(table, into=Table)
5692
5693    if not table:
5694        raise ValueError(f"Cannot parse {table}")
5695
5696    return ".".join(part for part in (table.text("catalog"), table.text("db"), table.name) if part)

Get the full name of a table as a string.

Arguments:
  • table: table expression node or string.
Examples:
>>> from sqlglot import exp, parse_one
>>> table_name(parse_one("select * from a.b.c").find(exp.Table))
'a.b.c'
Returns:

The table name.

def replace_tables(expression: ~E, mapping: Dict[str, str], copy: bool = True) -> ~E:
5699def replace_tables(expression: E, mapping: t.Dict[str, str], copy: bool = True) -> E:
5700    """Replace all tables in expression according to the mapping.
5701
5702    Args:
5703        expression: expression node to be transformed and replaced.
5704        mapping: mapping of table names.
5705        copy: whether or not to copy the expression.
5706
5707    Examples:
5708        >>> from sqlglot import exp, parse_one
5709        >>> replace_tables(parse_one("select * from a.b"), {"a.b": "c"}).sql()
5710        'SELECT * FROM c'
5711
5712    Returns:
5713        The mapped expression.
5714    """
5715
5716    def _replace_tables(node: Expression) -> Expression:
5717        if isinstance(node, Table):
5718            new_name = mapping.get(table_name(node))
5719            if new_name:
5720                return to_table(
5721                    new_name,
5722                    **{k: v for k, v in node.args.items() if k not in ("this", "db", "catalog")},
5723                )
5724        return node
5725
5726    return expression.transform(_replace_tables, copy=copy)

Replace all tables in expression according to the mapping.

Arguments:
  • expression: expression node to be transformed and replaced.
  • mapping: mapping of table names.
  • copy: whether or not to copy the expression.
Examples:
>>> from sqlglot import exp, parse_one
>>> replace_tables(parse_one("select * from a.b"), {"a.b": "c"}).sql()
'SELECT * FROM c'
Returns:

The mapped expression.

def replace_placeholders( expression: sqlglot.expressions.Expression, *args, **kwargs) -> sqlglot.expressions.Expression:
5729def replace_placeholders(expression: Expression, *args, **kwargs) -> Expression:
5730    """Replace placeholders in an expression.
5731
5732    Args:
5733        expression: expression node to be transformed and replaced.
5734        args: positional names that will substitute unnamed placeholders in the given order.
5735        kwargs: keyword arguments that will substitute named placeholders.
5736
5737    Examples:
5738        >>> from sqlglot import exp, parse_one
5739        >>> replace_placeholders(
5740        ...     parse_one("select * from :tbl where ? = ?"),
5741        ...     exp.to_identifier("str_col"), "b", tbl=exp.to_identifier("foo")
5742        ... ).sql()
5743        "SELECT * FROM foo WHERE str_col = 'b'"
5744
5745    Returns:
5746        The mapped expression.
5747    """
5748
5749    def _replace_placeholders(node: Expression, args, **kwargs) -> Expression:
5750        if isinstance(node, Placeholder):
5751            if node.name:
5752                new_name = kwargs.get(node.name)
5753                if new_name:
5754                    return convert(new_name)
5755            else:
5756                try:
5757                    return convert(next(args))
5758                except StopIteration:
5759                    pass
5760        return node
5761
5762    return expression.transform(_replace_placeholders, iter(args), **kwargs)

Replace placeholders in an expression.

Arguments:
  • expression: expression node to be transformed and replaced.
  • args: positional names that will substitute unnamed placeholders in the given order.
  • kwargs: keyword arguments that will substitute named placeholders.
Examples:
>>> from sqlglot import exp, parse_one
>>> replace_placeholders(
...     parse_one("select * from :tbl where ? = ?"),
...     exp.to_identifier("str_col"), "b", tbl=exp.to_identifier("foo")
... ).sql()
"SELECT * FROM foo WHERE str_col = 'b'"
Returns:

The mapped expression.

def expand( expression: sqlglot.expressions.Expression, sources: Dict[str, sqlglot.expressions.Subqueryable], copy: bool = True) -> sqlglot.expressions.Expression:
5765def expand(
5766    expression: Expression, sources: t.Dict[str, Subqueryable], copy: bool = True
5767) -> Expression:
5768    """Transforms an expression by expanding all referenced sources into subqueries.
5769
5770    Examples:
5771        >>> from sqlglot import parse_one
5772        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y")}).sql()
5773        'SELECT * FROM (SELECT * FROM y) AS z /* source: x */'
5774
5775        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y"), "y": parse_one("select * from z")}).sql()
5776        'SELECT * FROM (SELECT * FROM (SELECT * FROM z) AS y /* source: y */) AS z /* source: x */'
5777
5778    Args:
5779        expression: The expression to expand.
5780        sources: A dictionary of name to Subqueryables.
5781        copy: Whether or not to copy the expression during transformation. Defaults to True.
5782
5783    Returns:
5784        The transformed expression.
5785    """
5786
5787    def _expand(node: Expression):
5788        if isinstance(node, Table):
5789            name = table_name(node)
5790            source = sources.get(name)
5791            if source:
5792                subquery = source.subquery(node.alias or name)
5793                subquery.comments = [f"source: {name}"]
5794                return subquery.transform(_expand, copy=False)
5795        return node
5796
5797    return expression.transform(_expand, copy=copy)

Transforms an expression by expanding all referenced sources into subqueries.

Examples:
>>> from sqlglot import parse_one
>>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y")}).sql()
'SELECT * FROM (SELECT * FROM y) AS z /* source: x */'
>>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y"), "y": parse_one("select * from z")}).sql()
'SELECT * FROM (SELECT * FROM (SELECT * FROM z) AS y /* source: y */) AS z /* source: x */'
Arguments:
  • expression: The expression to expand.
  • sources: A dictionary of name to Subqueryables.
  • copy: Whether or not to copy the expression during transformation. Defaults to True.
Returns:

The transformed expression.

def func( name: str, *args, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **kwargs) -> sqlglot.expressions.Func:
5800def func(name: str, *args, dialect: DialectType = None, **kwargs) -> Func:
5801    """
5802    Returns a Func expression.
5803
5804    Examples:
5805        >>> func("abs", 5).sql()
5806        'ABS(5)'
5807
5808        >>> func("cast", this=5, to=DataType.build("DOUBLE")).sql()
5809        'CAST(5 AS DOUBLE)'
5810
5811    Args:
5812        name: the name of the function to build.
5813        args: the args used to instantiate the function of interest.
5814        dialect: the source dialect.
5815        kwargs: the kwargs used to instantiate the function of interest.
5816
5817    Note:
5818        The arguments `args` and `kwargs` are mutually exclusive.
5819
5820    Returns:
5821        An instance of the function of interest, or an anonymous function, if `name` doesn't
5822        correspond to an existing `sqlglot.expressions.Func` class.
5823    """
5824    if args and kwargs:
5825        raise ValueError("Can't use both args and kwargs to instantiate a function.")
5826
5827    from sqlglot.dialects.dialect import Dialect
5828
5829    converted: t.List[Expression] = [maybe_parse(arg, dialect=dialect) for arg in args]
5830    kwargs = {key: maybe_parse(value, dialect=dialect) for key, value in kwargs.items()}
5831
5832    parser = Dialect.get_or_raise(dialect)().parser()
5833    from_args_list = parser.FUNCTIONS.get(name.upper())
5834
5835    if from_args_list:
5836        function = from_args_list(converted) if converted else from_args_list.__self__(**kwargs)  # type: ignore
5837    else:
5838        kwargs = kwargs or {"expressions": converted}
5839        function = Anonymous(this=name, **kwargs)
5840
5841    for error_message in function.error_messages(converted):
5842        raise ValueError(error_message)
5843
5844    return function

Returns a Func expression.

Examples:
>>> func("abs", 5).sql()
'ABS(5)'
>>> func("cast", this=5, to=DataType.build("DOUBLE")).sql()
'CAST(5 AS DOUBLE)'
Arguments:
  • name: the name of the function to build.
  • args: the args used to instantiate the function of interest.
  • dialect: the source dialect.
  • kwargs: the kwargs used to instantiate the function of interest.
Note:

The arguments args and kwargs are mutually exclusive.

Returns:

An instance of the function of interest, or an anonymous function, if name doesn't correspond to an existing sqlglot.expressions.Func class.

def true() -> sqlglot.expressions.Boolean:
5847def true() -> Boolean:
5848    """
5849    Returns a true Boolean expression.
5850    """
5851    return Boolean(this=True)

Returns a true Boolean expression.

def false() -> sqlglot.expressions.Boolean:
5854def false() -> Boolean:
5855    """
5856    Returns a false Boolean expression.
5857    """
5858    return Boolean(this=False)

Returns a false Boolean expression.

def null() -> sqlglot.expressions.Null:
5861def null() -> Null:
5862    """
5863    Returns a Null expression.
5864    """
5865    return Null()

Returns a Null expression.