
NaMaster: C API and code documentation

April 1, 2017

Contents

1 Introduction 1
1.1 Dependencies . 1
1.2 Compilation and usage . 2

2 NaMaster - the program 3

3 C documentation 4
3.1 Fields . 4
3.2 Binning scheme . 5
3.3 Pseudo-C` . 6
3.4 Utility functions . 9

4 Sample program 11

1 Introduction

NaMaster is a C library, Python module and standalone program to compute full-sky angular cross-power
spectra of masked, spin-0 and spin-2 fields with an arbitrary number of known contaminants using a
pseudo-C` (aka MASTER) approach.

1.1 Dependencies

The following packages need to be installed before NaMaster.

• GSL: the GNU Scientific Library. This should be available in your usual software repositories
(e.g. synaptic for linux), but you can also download and install it from https://www.gnu.org/

software/gsl/ (the installation follows the usual ./configure, make, make install procedure.

• HEALPix: the C HEALPix subroutines are also needed. HEALPix can be downloaded from
http://healpix.jpl.nasa.gov/, and the C library can be compiled following the instructions
after typing ./configure and then make c-all. The header and library files will then be placed
in two local folders called include and lib. The user should then feel free to move these files to
a different location.

• CFITSIO: a FITS file subroutine library. This is used to read/write HEALPix maps in FITS for-
mat. cfitsio can be downloaded from http://heasarc.gsfc.nasa.gov/fitsio/fitsio.html.

• Libsharp: a fast C library for spherical harmonic transforms. Libsharp can be downloaded from
its github repository: https://github.com/dagss/libsharp. After cloning it, you should run
autoreconf -i to generate the configuration file. Then run ./configure and make, which will
compile the library and place all compilation products in the folder ./auto. The corresponding
header and library files should then be manually moved to the desired installation directories.

1

https://www.gnu.org/software/gsl/
https://www.gnu.org/software/gsl/
http://healpix.jpl.nasa.gov/
http://heasarc.gsfc.nasa.gov/fitsio/fitsio.html
https://github.com/dagss/libsharp

1.2 Compilation and usage

Installing the C library and binaries

NaMaster uses autotools for installation, which means that you should be able to install it by simply
typing

~$./configure

~$ make

~$ make install

If you don’t have default admin privileges you may have to precede the last command by sudo. If
you don’t have admin privileges at all (i.e. you can’t modify the contents of standard directories
such as /usr/lib), you can still install NaMaster by substituting the first command by ./configure

--prefix=/path/to/dir, where /path/to/dir should be the full path of the directory where you want to
install this package. This will create three sub-directories: /path/to/dir/include, /path/to/dir/lib,
/path/to/dir/bin, where the header, library and binary files will be placed respectively.

Note that, if you don’t have admin privileges, probably some of the dependencies listed in the previous
sections will also be installed in non-standard paths. If that is the case, you should make sure the
environment variables CPPFLAGS and LDFLAGS contain the corresponding -I/path/to/dir2/include

and -L/path/to/dir2/lib tags that point to the directories where these dependencies are installed (see
this link for more details on make implicit variables).

Installing the python wrapper

NaMaster comes equipped with a python wrapper. This is installed by running

~$ python setup.py install

Without admin privileges you can still make this work by running

~$ python setup.py install --user

The python wrapper needs to link with NaMaster’s library. If the latter was installed in a non-standard
path (e.g. /path/to/install), you’ll need to pass the corresponding directory to setup.py. You can
do so by running

~$ python setup.py build_ext --library-dirs=/path/to/install/lib/

--rpath=/path/to/install/lib/

before the install commands above.

Linking with the C library

If you want to use NaMaster on your own C code you’ll need to be able to link with libnmt (the NaMaster
C library). There are two main things to do:

1. Make sure to include the NaMaster header in any C file that makes use of any of the NaMaster
subroutines:

#include <namaster.h>

2. When compiling your code, make sure you link to libnmt and all dependencies. In the simplest
case, assuming you have written a C script called min code.c, the following should work:

gcc -fopenm -I/path/to/nmt/include min_code.c -o min_code

-L/path/to/nmt/lib -lnmt -lsharp -lfftpack -lc_utils

-lchealpix -lcfitsio -lgsl -lgslcblas -lm

where /path/to/nmt/include and /path/to/nmt/lib are the directories where namaster.h and
libnmt.so are installed.

Section 4 below contains a fully working C script that calls the NaMaster library.

2

https://www.gnu.org/software/make/manual/html_node/Implicit-Variables.html

2 NaMaster - the program

NaMaster comes with its own executable that computes the pseudo-C` power spectrum of two input
masked fields with possible contaminants. After installation (and assuming it has been installed in an
accessible directory), the program can be invoked by typing namaster.

The user interacts with namaster by providing parameters as command-line arguments in the form
of a pair: -<param name> <param>. After typing

~$ namaster -h

the user is presented with a list of all available input parameters:

Usage: namaster -<opt-name> <option>

Options:

-map -> path to file containing map(s)

-map_2 -> path to file containing 2nd map(s) (optional)

-mask -> path to file containing mask

-mask_2 -> path to file containing mask for 2nd map(s) (optional)

-temp -> path to file containing contaminant templates (optional)

-temp_2 -> path to file containing contaminant templates

for 2nd map(s) (optional)

-pol -> spin-0 (0) or spin-2 (1) input map(s)

-pol_2 -> spin-0 (0) or spin-2 (1) 2nd input map(s)

-pure_e -> use pure E-modes for 1st maps? (0-> no or 1-> yes (default->no))

-pure_b -> use pure B-modes for 1st maps? (0-> no or 1-> yes (default->no))

-pure_e_2 -> use pure E-modes for 2nd maps? (0-> no or 1-> yes (default->no))

-pure_b_2 -> use pure B-modes for 2nd maps? (0-> no or 1-> yes (default->no))

-cl_noise -> path to file containing noise Cl(s)

-cl_guess -> path to file containing initial guess for the Cl(s)

-coupling -> path to file containing coupling matrix (optional)

-out -> output filename

-binning -> path to file containing binning scheme

-nlb -> number of ells per bin (used only if -binning isn’t used)

-h -> this help

Some clarification is in order regarding some of these parameters:

• map and map 2: these arguments should point to FITS files containing the maps of the two fields
to correlate. These files should contain one map if pol (or pol 2) is 0 and two maps (Q and U) if
pol (or pol 2) is 1. If map 2 is not passed, the auto-correlation of map will be computed (and all
other 2 options will be ignored).

• mask and mask 2: these arguments should point to FITS files containing the masks of the two fields
to correlate (one map per file).

• temp and temp 2: these arguments should point to FITS files containing the contaminant templates
you suspect are poluting your fields. The number of contaminants will be derived by the code based
on the number of maps in the files. Note that an exception will occur if this number is not a multiple
of the number of maps corresponding to the field’s spin (see above).

• cl noise: this file should contain the expected noise bias (see discussion below Eq. 4) to be
subtracted from the estimated power spectrum. The format of this file should be N + 1 columns,
with the first column being the multipole number ` (starting at ` = 0), and the next N being
the different component of the power spectrum. N should correspond to the number of power
spectra expected given the spins of the two fields being correlated. I.e. N = 1 if pol=pol 2=0

((TT)), N = 2 if pol=0, and pol 2=1 (or vice-versa, (TE, TB)), and N = 4 if pol=pol 2=1

((EE,EB,BE,BB)). If this option is not passed, it is assumed to be 0. This file should contain
3nside rows, where nside is the HEALPix resolution parameter of the input maps.

3

• cl guess: proposal power spectrum (i.e. best guess of true power spectrum) used to compute the
deprojection bias (same format as cl noise above). This is only relevant for contaminated fields.
If not passed, the proposal power spectrum is set to 0.

• out: path to output ASCII file. First column will correspond to the effective ` in the bandpower.
All subsequent columns correspond to the different components of the power spectrum (as described
above depending on the field spins).

• binning: path to ASCII file describing the binning scheme defining the output bandpowers. This
file should contain three columns: the first column should contain the bandpower index of the
different multipoles, the second column should contain the multipoles and the third column should
contain the weight corresponding to each multipole (the sum of weights in each bandpower is
automatically normalized to 1).

• nlb: number of multipoles per bandpower. In this case the output power spectrum will be computed
by binning multipoles in sets of nlb from ` = 2 to ` = 3nside− 1.

3 C documentation

Important note: all HEALPix maps passed to NaMaster routines should be in RING order.

3.1 Fields

The definition of the fields to be correlated (including their masks and possible contaminants) is handled
through a C structure called nmt field. The following routines exist to manage this structure:

nmt field alloc

nmt field * nmt field alloc(long nside,double *mask,int pol,double **maps,

int ntemp,double ***temp,double *beam,int pure e,int pure b)

This is the constructor for nmt field. The input variables are:

• nside: the HEALPix resolution of all maps involved
• mask: sky mask (as a single scalar HEALPix map).
• pol: set to 0 if this is a spin-0 field. Set to 1 if it’s a spin-2 field.
• maps: set of maps corresponding to observed field. This would correspond to one map for a scalar

field or two maps for spin-2 quantities (e.g. Q and U for polarization maps or γ1, γ2 for cosmic
shear). The first dimension of this double array would correspond to the number of maps, while
the second dimension runs through the different pixels of each map.

• ntemp: number of contaminant templates for this field.
• temp: contaminant templates as HEALPix maps. The first dimension should run through the

different templates, the second dimension corresponds to the number of maps per template (e.g. 1
for spin-0 and 2 for spin-2) and the third dimension corresponds to the number of pixels.

• beam: spherical harmonic transform of the instrumental beam (assumed to be rotationally sym-
metric - i.e. no m dependence). If NULL, no beam will be corrected for. Otherwise, this array
should have 3× nside elements, corresponding to multipoles ` ∈ [0, 3 nside− 1].

• pure e, pure b: set to a value different from 0 if you want to use pure-E/B modes for this field.
Note that, in this case you should make sure the mask and its first derivatives are continuous on
its boundary (see nmt apodize mask below).

nmt field read

nmt field * nmt field read(char *fname mask,char *fname maps,char *fname temp,

char *fname beam,int pol,int pure e,int pure b)

As nmt field alloc, this returns a pointer to a nmt field structure based on:

4

• pol: set to 0 if this is a spin-0 field. Set to 1 if it’s a spin-2 field.
• fname mask: file name pointing to a FITS file containing the sky mask (as a single scalar HEALPix

map).
• fname maps: file name pointing to a FITS file containing the maps of the observed field. This file

should contain a single map for pol=0 and two maps for pol=1.
• fname temp: file name pointing to a FITS file containing the contaminant templates as HEALPix

maps. Each template should contain N maps with N = 1 for pol=0 and N = 2 for pol=1.
Pass “none” if no contaminants are needed (in which case deprojection and debiasing will not take
place).

• fname beam: file name pointing to an ASCII file containing the spherical harmonic transform of the
instrumental beam (assumed to be rotationally symmetric - i.e. no m dependence). If ‘‘none’’,
no beam will be corrected for. Otherwise, this file should contain two columns (` and b`) and
3× nside columns, corresponding to multipoles ` ∈ [0, 3 nside− 1].

• pure e, pure b: set to a value different from 0 if you want to use pure-E/B modes for this field.
Note that, in this case you should make sure the mask and its first derivatives are continuous on
its boundary (see nmt apodize mask below).

nmt field free

void nmt field free(nmt field *fl)

This frees up all memory associated to a previously-allocated nmt field.

3.2 Binning scheme

The definition of bandpowers is managed through C structures called nmt binning scheme. The following
routines allow you to interact with this structure:

nmt bins constant

nmt binning scheme * nmt bins constant(int nlb,int lmax)

Creates an nmt binning scheme structure (and returns a pointer to it) where the bandpowers are
constant intervals of nlb multipoles with equal weights between ` = 2 and ` = lmax.

nmt bins create

nmt binning scheme * nmt bins create(int nell,int *bpws,int *ells,

double *weights,int lmax)

Creates an nmt binning scheme structure (and returns a pointer to it) with bandpowers defined by
the following parameters:

• ells: array of multipole indices
• bpws: array containing the band power each ` in ells corresponds to.
• weights: array containing the weight for each ` in ells. These need not be normalized, but they

will be normalized such that the sum of weights within each bandpower equals 1.
• nell: number of elements in the three previous arrays.
• lmax: all multipoles ` > lmax will be ignored.

nmt bins read

nmt binning scheme * nmt bins read(char *fname,int lmax)

Creates an nmt binning scheme structure (and returns a pointer to it) with bandpowers defined by
the contents of an ASCII file with name fname. This file should contain three columns corresponding

5

to the arrays bpws, ells and weights passed to nmt bins create. All multipoles ` > lmax will be
ignored.

nmt bins free

void nmt bins free(nmt binning scheme *bin)

Frees all memory associated with an allocated nmt binning scheme structure.

nmt bin cls

void nmt bin cls(nmt binning scheme *bin,double **cls in,double **cls out,int ncls)

Performs a binning operation:

Bk =
∑
`∈~̀k

w`C`. (1)

Here, C` → cls in is a set of ncls angular power spectra, Bk → cls out is a set of bandpowers and
w` and ~̀

k are the weights and multipole ranges defining the binning scheme bin. Both cls in and
cls out should have been previously allocated. The first dimension of both cls in and cls out should
run from 0 to ncls − 1. Their second dimension should correspond to the number of multipoles and
bandpowers used to create bin respectively (for instance, the latter can be accessed as bin->n bands).

nmt unbin cls

void nmt unbin cls(nmt binning scheme *bin,double **cls in,double **cls out,int ncls)

Performs a un-binning operation:

C` =
∑
k

BkΘ(` ∈ ~̀k) (2)

Here, Bk → cls in is a set of ncls bandpowers, C` → cls out is a set of angular power spectra and w`

and ~̀k are the weights and multipole ranges defining the binning scheme bin. The function Θ(` ∈ `k)
is 1 for all multipoles contained in the k-th bandpower and zero otherwise. Both cls in and cls out

should have been previously allocated. The first dimension of both cls in and cls out should run
from 0 to ncls − 1. Their second dimension should correspond to the number of bandpowers and
multipoles used to create bin respectively (for instance, the former can be accessed as bin->n bands).

nmt ell eff

void nmt ell eff(nmt binning scheme *bin,double *larr)

This function returns, in the output array larr, the effective multipole corresponding to each band-
power defined by bin. This is computed as:

`eff
k =

∑
`∈~̀k

`w`, (3)

where w` are the bandpower weights. larr should have been previously allocated to the number of
bandpowers defined by bin.

3.3 Pseudo-C`

The implementation of the pseudo-C` estimator can be split into the following steps:

1. Clean up your best guess of the known contaminants in your data maps. This step can be skipped
if you think your maps are clean of contaminants. This step is automatically carried out when
initializing an nmt field structure with template contaminants.

6

2. Compute the cross-pseudo-C` of the cleaned maps C̃clean
` .

3. Compute the bias on the pseudo-C` caused by the statistical residual contaminants C̃cont
` .

4. Compute the mode-coupling matrix associated with the field masks M``′ .

5. Compute the de-coupled and de-biased bandpowers:

Bk =
∑
k′

(M)−1
kk′

∑
`∈~̀k′

w`′

[
C̃clean

`′ − C̃cont
`′ − C̃noise

`′

]
, (4)

where M is the binned coupling matrix:

Mkk′ ≡
∑
`∈~̀k

∑
`′∈~̀k′

w`M``′ . (5)

When auto-correlating a field with noise, it is in general also desirable to remove the noise bias
on the power spectrum. This has been included in Eq. 4 above as C̃noise

` . This should be the
pseudo-C` of the noise component (i.e. the angular power spectrum of masked noise realizations),
which can be computed from Monte-Carlo simulations (or analytically for sufficiently simple noise
models).

In NaMaster, these computations are carried out through a C structure called nmt workspace. The
relevant functions are described below. Once the pseudo-C` coupling matrix corresponding to two fields
has been computed and stored in an nmt workspace, the same workspace can be re-used to compute the
pseudo-C` of any pair of fields as long as they have the same polarizations, masks and choices for E and
B purification as the original fields.

Note that the input and output power spectra are given as 2D arrays. The first dimension runs
through Nspec, the number of different cross-spectra:

1. For two spin-0 fields f1 and f2, Nspec = 1: C` =
(
Cf1f2

`

)
.

2. For a spin-0 field f1 and a spin-2 field f2, Nspec = 2: C` =
(
C

f1f
E
2

` , C
f1f

B
2

`

)
, where fE,B

2 are the E

and B-modes of f2.

3. For two spin-2 fields f1 and f2, Nspec = 4: C` =
(
C

fE
1 fE

2

` , C
fE
1 fB

2

` , C
fB
1 fE

2

` , C
fB
1 fB

2

`

)
, where fE,B

x are

the E and B-modes of fx.

The second dimension runs through the different multipole indices or bandpowers. For power spectra,
before binning into bandpowers, this index runs from 0 to `max = 3 nside − 1, where nside is the
HEALPix resolution of the fields. For bandpowers, this index runs through the number of different
bandpowers defined by the associated nmt binning scale structure.

nmt compute coupling matrix

nmt workspace * nmt compute coupling matrix(nmt field *fl1,nmt field *fl2,

nmt binning scheme *bin)

Computes the coupling matrix and the binned coupling matrix for the two fields fl1 and fl2 and the
binning scheme bin. Note that the only information needed from the two fields is their masks and
spins. These matrices are stored internally in the nmt workspace structure returned by this function.

nmt workspace write

void nmt workspace write(nmt workspace *w,char *fname)

Writes an nmt workspace structure into a file fname (using an internal binary format).

nmt workspace read

7

nmt workspace * nmt workspace read(char *fname)

Returns a pointer to a nmt workspace structured read from file fname. This file should have been
generated by nmt workspace write. These two functions are useful when computing the power spec-
trum of several pairs of fields with the same pairs of masks, for which the coupling matrices only need
to be computed once.

nmt workspace free

void nmt workspace free(nmt workspace *w)

Frees up all memory associated with an nmt workspace structure.

nmt compute deprojection bias

void nmt compute deprojection bias(nmt field *fl1,nmt field *fl2,

double **cl proposal,double **cl bias)

Estimates the bias to the cross-power spectrum of two fields fl1 and fl2 induced by the contaminant
cleaning (i.e. Ccont

` in Eq. 4). This is returned into the variable cl bias, which should have been
previously allocated (see description in the introduction to this section). The estimate of this bias
depends on a guess for the true power spectrum of both fields, given by cl proposal1. Note that this
operation does not require knowledge of the mode-coupling matrix, and therefore no nmt workspace

structure is needed.

nmt compute coupled cell

void nmt compute coupled cell(nmt field *fl1,nmt field *fl2,double **cl out,int iter)

This computes the full-sky angular cross-power spectrum of two masked fields fl1 and fl2 with-
out aiming to deconvolve the mode-coupling matrix. Effectively, this is equivalent as calling the
usual HEALPix anafast routine on the masked and contaminant-cleaned maps. The coupled power
spectrum is returned in cl out, which should have been previously allocated (see description in the
introduction to this section). The variable iter corresponds to the number of iterations used to com-
pute the spherical harmonic transform. A value of 0 will correspond to the fastest but most inaccurate
computation. Higher values will yield more accurate results at high-` (niter = 3 is usually enough in
most cases).

Since no attempt is made to deconvolve the mode-coupling matrix, this function does not require
a nmt workspace structure.

nmt decouple cl l

void nmt decouple cl l(nmt workspace *w,double **cl in,double **cl noise in,

double **cl bias,double **cl out)

This function performs the operation in Eq. 4: debiasing and decoupling of a power spectrum computed
from nmt compute coupled cell. The coupled power spectrum C̃clean

` must be provided in cl in. The

contaminant bias C̃cont
` (e.g. computed through nmt compute deprojection bias) and noise bias

C̃noise
` must be provided through cl bias and cl noise in respectively. The mode-coupling matrix

M (and its binned version M) are stored within w, and the de-coupled bandpowers are returned in
cl out.

nmt compute power spectra

1Thus, the pseudo-C` can be thought of as a recursive algorithm, where the estimate of the true power spectrum in a
previous iteration is used as a proposal for the computation of the contaminant bias in the next one.

8

nmt workspace * nmt compute power spectra(nmt field *fl1,nmt field *fl2,

nmt binning scheme *bin,nmt workspace *w0,double **cl noise,double **cl proposal,

double **cl out)

Carries out steps 2-5 of the pseudo-C` estimator described in the introduction of this section. fl1

and fl2 are the two fields to correlate, bin defines the output bandpowers, cl noise is the noise bias,
cl proposal is the best guess for the true power spectrum needed to estimate the contaminant bias
C̃cont

` (see nmt compute deprojection bias). The output bandpowers are stored in cl out, which
should have been pre-allocated.

This function also accepts an input pointer to a nmt workspace structure, w0. If a NULL pointer is
passed, the function will compute the mode-coupling matrix and return a newly-allocated nmt workspace

structure containing this information. Otherwise, the function will skip this computation and use the
mode-coupling matrix stored in w0. In this latter case, the function would return a pointer to w0.
Note that a call to this function is equivalent to a successive call to nmt compute coupling matrix,
nmt compute deprojection bias, nmt compute coupled cell and nmt decouple cl l.

nmt couple cl l

void nmt couple cl l(nmt workspace *w,double **cl in,double **cl out)

Convolves an input power spectrum cl in with the mode-coupling matrix stored in w, and provides
the output in cl out. I.e.:

Cout
` =

∑
`′

M``′C
in
`′ (6)

where Cout
` → cl out and C in

` → cl in.

3.4 Utility functions

nmt apodize mask

void nmt apodize mask(long nside,double *mask in,double *mask out,double aposize,

char *apotype)

This function apodizes an input mask, provided in mask in as a HEALPix map, and stores the result
in mask out. The apodization is defined by an apodization scale aposize (in degrees) and an apodiza-
tion type apotype. Three different apodization types are supported (in what follows θ∗ will be the
apodization scale aposize):

• apotype=“C1”. All pixels are multiplied by a factor f given by:

f =

{
x− sin(2πx)/(2π) x < 1

1 otherwise
(7)

where x ≡
√

(1− cos θ)/(1− cos θ∗), and θ is the angular separation between the pixel and its
closest masked pixel (i.e. the closest pixel where the mask is zero.

• apotype=“C2”. All pixels are multiplied by a factor f given by:

f =

{
1
2 [1− cos(π x)] x < 1

1 otherwise
(8)

where x ≡
√

(1− cos θ)/(1− cos θ∗), and θ is the angular separation between the pixel and its
closest masked pixel (i.e. the closest pixel where the mask is zero.

• apotype=“Smooth”. This apodization is carried out in three steps:

1. All pixels within a disc of radius 2.5θ∗ of a masked pixel (i.e. where the mask is zero) are
masked.

9

2. The resulting map is smoothed with a Gaussian window function with standard deviation
σ = θ∗.

3. One final pass is made through all pixels to ensure that all pixels that were originally masked
remain masked after the smoothing operation.

10

4 Sample program

Here’s a simple code using the NaMaster library. This code takes, as command-line options, filenames
for two FITS files containing HEALPix maps for a spin-0 field and a mask, and writes the MASTER
estimate of its power spectrum into an ASCII file. This file can be found in test/sample.c, and can be
compiled as described in Section 1.2.

1 #include <s t d l i b . h>
2 #include <s t d i o . h>
3 #include <namaster . h>
4 #include <math . h>
5
6 int main (int argc , char ∗∗ argv)
7 {
8 long i , n s ide ;
9 i f (argc !=4) {

10 f p r i n t f (s tde r r , ”Usage : . / sample <fname map> <fname mask> <fname out>\n”) ;
11 e x i t (1) ;
12 }
13
14 //Create spin−0 f i e l d
15 nmt f i e l d ∗ f l 1=nmt f i e l d r e ad (argv [2] , argv [1] , ”none” , ”none” ,0) ;
16
17 //Create a b inning scheme (20 mu l t i po l e s per bandpower)
18 nmt binning scheme ∗bin=nmt bins constant (20 , f l 1−>lmax) ;
19 //Compute array o f e f f e c t i v e mu l t i p o l e s
20 double ∗ e l l e f f=c a l l o c (bin−>n bands , s izeof (double)) ;
21 nm t e l l e f f (bin , e l l e f f) ;
22
23 // A l l o ca t e memory fo r power spectrum
24 double ∗ c l o u t=mal loc (bin−>n bands∗ s izeof (double)) ;
25
26 //Dummy array to be passed as proposa l and noise power spectrum
27 //These are not needed here , because we don ’ t want to remove noise b i a s
28 //and we have assumed the f i e l d i s not contaminated
29 double ∗cl dum=c a l l o c ((f l 1−>lmax+1) , s izeof (double)) ;
30
31 //Compute pseudo−Cl es t imator
32 nmt workspace ∗w=nmt compute power spectra (f l 1 , f l 1 , bin ,NULL,&cl dum ,&cl dum ,& c l o u t) ;
33
34 //Write output
35 FILE ∗ f o=fopen (argv [3] , ”w”) ;
36 for (i =0; i<bin−>n bands ; i++)
37 f p r i n t f (fo , ”%.2 lE %lE\n” , e l l e f f [i] , c l o u t [i]) ;
38 f c l o s e (f o) ;
39
40 //Free s t u f f up
41 nmt workspace f ree (w) ;
42 f r e e (cl dum) ;
43 f r e e (c l o u t) ;
44 f r e e (e l l e f f) ;
45 nmt b in s f r e e (bin) ;
46 nm t f i e l d f r e e (f l 1) ;
47
48 return 0 ;
49 }

11

	Introduction
	Dependencies
	Compilation and usage

	NaMaster - the program
	C documentation
	Fields
	Binning scheme
	Pseudo-C
	Utility functions

	Sample program

