

 Version 1.0b /13.02.2015

ESRF - Instrument Support Group

Intelligent Controller for Positioning Applications

User Manual

S
Y

N
C

H
R

O
U

S
B

R
S

2
3
2

E
th

e
rn

e
t

Comm

STATUS

OUT

IN

DISABLE

ENABLE

A
X

IS
 I

N
T

E
R

F
A

C
E

STATUS

AUX SUPPLY

MOTION

LIMIT
-

DISABLE

ENABLE

+

A
X

IS
 I

N
T

E
R

F
A

C
E

STATUS

AUX SUPPLY

MOTION

LIMIT
-

DISABLE

ENABLE

+

A
X

IS
 I

N
T

E
R

F
A

C
E

STATUS

AUX SUPPLY

MOTION

LIMIT
-

DISABLE

ENABLE

+

A
X

IS
 I

N
T

E
R

F
A

C
E

STATUS

AUX SUPPLY

MOTION

LIMIT
-

DISABLE

ENABLE

+

A
X

IS
 I

N
T

E
R

F
A

C
E

STATUS

AUX SUPPLY

MOTION

LIMIT
-

DISABLE

ENABLE

+

A
X

IS
 I

N
T

E
R

F
A

C
E

STATUS

AUX SUPPLY

MOTION

LIMIT
-

DISABLE

ENABLE

+

A
X

IS
 I

N
T

E
R

F
A

C
E

STATUS

AUX SUPPLY

MOTION

LIMIT
-

DISABLE

ENABLE

+

A
X

IS
 I

N
T

E
R

F
A

C
E

STATUS

AUX SUPPLY

MOTION

LIMIT
-

DISABLE

ENABLE

+

2 of 155 IcePAP User Manual

Document:: IcePAP_UserManual.doc

 $Revision:: 829 $

 $Date:: 2015-05-29 11:11:39 #$

Date Version Comments

28/02/2013 0.0e Draft in construction

13/02/2015 1.0a Corresponds to firmware version 3.0

26/05/2015 1.0b Corresponds to firmware version 3.11 and higher

IcePAP User Manual 3 of 155

CONTENTS

MANUAL ORGANIZATION 5

1. INSTALLATION 6

1.1. System overview and IcePAP components 6
1.2. Hardware connections and configuration 7
1.2.1. Rack number 7
1.2.2. Board installation 7
1.2.3. Rack interconnection and termination 7
1.2.4. Rack disable 8
1.2.5. Communication links 8
1.2.6. Ethernet IP configuration 8
1.2.7. Motor and encoder connection 9
1.2.8. Ventilation 9
1.3. Installation tips 10

2. OPERATION INSTRUCTIONS 11

2.1. IcePAP concepts 11
2.1.1. Systems and boards 11
2.1.2. Motor types and built-in power stages 12
2.1.3. Driver configuration 12
2.1.4. Enabling and disabling axes 13
2.1.5. “Axis turn” as a reference mechanical displacement 13
2.1.6. Physical and functional encoders 14
2.1.7. Axis and encoder resolution 14
2.1.8. Nominal axis, measured and motor positions 15
2.1.9. Closed loop operation 15
2.1.10. Trajectory generation and motion modes 16
2.1.11. Status and diagnostics 16
2.1.12. I/O signals 16
2.1.13. Advanced functionality 16
2.2. Moving motors 17
2.2.1. Basic movements 17
2.2.2. Homing and search sequences 17
2.2.3. Tracking modes (external indexer) 17
2.2.4. Error cancellation (external feedback) 18
2.2.5. Multiaxis and group movements 18
2.2.6. Parametric movements 18
2.3. Advanced features 18
2.3.1. Motion synchronisation 18
2.3.2. Position control (control encoder) 19
2.3.3. I/O multiplexer 19
2.3.4. Electronic CAM 19
2.4. Diagnostics 20
2.4.1. Status registers 20
2.4.2. Warnings 23
2.4.3. Alarms 23
2.4.4. Data recording 23
2.5. Firmware reprogramming 23
2.6. Usage tips 23
2.7. Examples of driver configuration 23

4 of 155 IcePAP User Manual

3. DRIVER CONFIGURATION 25

3.1. Configuration parameters 25
3.1.1. Motor configuration 25
3.1.2. I/O configuration 26
3.1.3. Axis configuration 26
3.1.4. Position control and motion 27
3.2. Configuration reference 30

4. COMMUNICATION PROTOCOL 36

4.1. Communication basics 36
4.1.1. System commands 36
4.1.2. Board commands 36
4.1.3. Local driver interface 36
4.2. Interfaces 36
4.2.1. Active control clients 36
4.3. Syntax conventions 37
4.3.1. Commands and requests 37
4.3.2. Addressing 38
4.4. Terminal mode 39
4.5. Binary transfer 39
4.5.1. Serial port binary blocks 40
4.5.2. TCP binary blocks 40

5. COMMAND SET 40

5.1. Command reference 46
5.2. IcePAP command quick reference 152

IcePAP User Manual 5 of 155

MANUAL ORGANIZATION

This manual presents the IcePAP motor control system environment, the different
components, their configuration and the command set.

Section 1 gives a brief overview of the different elements of the system and provides with
information required for installation of an IcePAP system. The description is made in general
terms and specific technical details are minimised.

Section 2 describes the main IcePAP concepts and functionality.

Section 3 details the driver configuration going through all the set of parameters.

Section 4 covers the different aspects of the IcePAP system communication protocol, giving
details on types of commands, interfaces, syntax conventions and others.

Section 5 is a reference chapter that contains the full set of IcePAP commands with their
description and some usage examples.

Related Documentation

 IcePAP Hardware Manual

Presents in detail the components and functionality of the
IcePAP system and provides a complete connector
description.

 IcePAP Configuration and Test Tool
Describes the GUI tool used for driver configuration and
testing.

6 of 155 IcePAP User Manual

1. INSTALLATION

1.1. System overview and IcePAP components

IcePAP is a motor control system developed at the ESRF and optimised for high resolution
position applications. An IcePAP system may drive up to 128 axes and integrates both control
features, like trajectory generation, and the motor power management. Although motor control
in IcePAP is axis-oriented, it includes system resources that allow the execution of
synchronous multi-axis movements. In addition, all the position information signals are driven
through internal multiplexers and can be sent to external devices to properly synchronise data
acquisition during motion.
Besides high performance, IcePAP is fully software configurable and provides exhaustive
diagnostic capabilities. Most of the functionality relies on programmable components what
opens the possibility of adding new features by means of firmware upgrade.

The components of an IcePAP system are organised in racks. The mechanical support of
each rack is provided by a 19” 3U crate that includes the power supply and an interconnection
backplane with nine board slots.
The leftmost slot is wider than the others and must be always equipped with a controller
board. The remaining slots may be equipped with up to eight driver boards. Each driver board
can operate a motorised axis.
The unused slots must be covered with blank front panel plates to avoid accidental access to
internal parts with electrical power.

Figure 1 depicts an IcePAP crate populated with 5 driver boards.

S
Y

N
C

H
R

O
U

S
B

R
S

2
3

2
E

th
e

rn
e

t

Comm

STATUS

OUT

IN

DISABLE

ENABLE

A
X

IS
 I

N
T

E
R

F
A

C
E

STATUS

AUX SUPPLY

MOTION

LIMIT
-

DISABLE

ENABLE

+

A
X

IS
 I

N
T

E
R

F
A

C
E

STATUS

AUX SUPPLY

MOTION

LIMIT
-

DISABLE

ENABLE

+

A
X

IS
 I

N
T

E
R

F
A

C
E

STATUS

AUX SUPPLY

MOTION

LIMIT
-

DISABLE

ENABLE

+

A
X

IS
 I

N
T

E
R

F
A

C
E

STATUS

AUX SUPPLY

MOTION

LIMIT
-

DISABLE

ENABLE

+

A
X

IS
 I

N
T

E
R

F
A

C
E

STATUS

AUX SUPPLY

MOTION

LIMIT
-

DISABLE

ENABLE

+

DriversController

Figure 1: Example of a partially equipped IcePAP rack

Several racks can be connected to form a single multirack IcePAP system. Each rack must be
identified with a different number that is visualised in a two-digit display at the front panel of
the controller board.
From the point of view of hardware implementation there are two types of controller boards:
MASTER and SLAVE. MASTER controllers have additional hardware resources such as a
communication processor and certain connectors that are not available in the SLAVE
controllers.
An IcePAP system must always include a MASTER board that plays the special role of
system master controller and takes care of system management and communication with the
host computer.

A more complete description of the IcePAP system and its hardware resources can be found
in the IcePAP Hardware Manual.

IcePAP User Manual 7 of 155

1.2. Hardware connections and configuration

1.2.1. Rack number

Each rack in a multirack system must be identified by a different rack identification number
from 0 to 15 that is unique within the same IcePAP system. The rack that contains the system
master controller must always be set to number 0. Therefore in the case of single rack
systems, the rack number has to be always set to 0.

The identification number of each rack is selected by a rotary switch located at the crate
backplane behind the controller board at the leftmost slot. In normal operation the rack
number is shown at the from panel display of the controller board as a decimal value. In order
to access the rotary switch and change the rack number, the power must be switched off
(power switch at the back of the crate) and the controller board extracted. The rack number is
selected by the rotary switch in hexadecimal values.

1.2.2. Board installation

Once the rack numbers have been properly selected, the crates can be populated with
IcePAP boards. Each rack must include a controller and up to eight driver boards. Controller
and driver boards do not required any particular intervention for hardware configuration and,
with exception of the Ethernet connection of the system master controller, controller boards
do not require any kind of functional set up. Driver configuration is fully described by software
parameters as presented in section 3 and can only be modified by mean of software
commands, preferably by using the IcePAP configuration tool. (see IcePAP Configuration and
Test Tool document).

The controller in rack 0 must always be a MASTER board to be used as system master
controller. In multirack systems the other rack controllers operate always as slave devices
regardless of whether or not they are physically MASTER or SLAVE boards. While a
MASTER board can be installed in any rack and operate as slave controller if needed, a
SLAVE board can never operate as system master controller and must never be inserted in
rack 0.

When a driver board is installed the first time in an IcePAP rack or moved from one slot to a
different one, the board becomes not active as a security measurement. This has as a
consequence that the motor power cannot be switched on and the associated axis cannot be
moved before the driver configuration is validated and the axis reactivated (see 3.1).

1.2.3. Rack interconnection and termination

Multi-rack systems needs cable links that extend the internal communication bus following a
daisy-chain scheme across all the racks in an IcePAP system. This bus extension is
implemented by cables that link the OUT connector of a controller board in one rack with the
IN connector of the controller board in the following rack in the chain. This interconnection can
chain the racks in any arbitrary order, the rack numbers are not relevant in this context, but
the total length of all the link segments must not be more than 30 meters. The internal
communication bus of any IcePAP system, even in the case of a single rack, must be
equipped with a bus terminator connected at one of the ends of the interconnection chain.
This is achieved by plugging the bus terminator either at the IN connector of the first controller
in the chain, often the master, or at the OUT connector of the last controller board in the
chain. The wiring details and the hardware terminator are described in the IcePAP Hardware
Manual.

[ADD simple scheme/drawing example with two configurations: 3-racks and single rack,
showing terminators, picture of terminator?]

8 of 155 IcePAP User Manual

1.2.4. Rack disable

Each rack includes a disable connector at the rear panel that allows disabling remotely the
motor power of all the driver boards in that rack. By default, the polarity of the disable circuitry
is of type NC (normally closed).
If the rack disable feature is not used in a particular installation, it is good practice to install a
dummy plug in the rack disable connector to short-circuit the disable line.

Each full system has a default polarity value (NORMAL = normally closed, INVERTED =
normally open). All the rack controllers receive this polarity at start-up from the master
controller. The rack controllers use the default polarity except those that have been assigned
explicitly a different polarity.

The default polarity of a system can be changed with the RDISPOL command.
The RDISPOL command allows also to force the use of a default polarity in all the racks of
the system, or to change the polarity of a single rack.

 For more details on the RDISPOL command, see the command reference (chapter 5).

1.2.5. Communication links

Remote access and control of an IcePAP system can be achieved through one of the
communication interfaces of the system master controller plugged in rack 0. Although a
multirack system may include more than one MASTER board as rack controllers, only the
board operating as system controller in rack 0 can be used for communication and system
control. The other MASTER boards operate as slave controllers and do not activate their
communication ports.
The interfaces and main functional parameters are summarised in the table.

The interfaces currently available are RS232 and Ethernet. The connectors are accessible at
the front panel of the system master controller and the wiring and connectivity details are
compiled in the IcePAP Hardware Manual. The functional configuration of the RS232 port is
fixed as described in the table while the possible configuration methods of the Ethernet port
are discussed in 1.2.6. The communication protocols and syntax conventions are described in
section 4.
Note that although the hardware of the USB port is functional, this interface cannot be used
with the current firmware and there are no plans to implement this control interface in the
future.

1.2.6. Ethernet IP configuration

The IcePAP system controller requires an IP configuration of the Ethernet port that is
compatible with the parameters of the local network to which it is connected. Once the
controller has a valid IP configuration, it can be accessed from any computer in the network.
IcePAP accepts multiple simultaneous connections from different computers. If that can be
seen as potential security issue, it is possible to restrict partially the access to a particular
IcePAP system by setting the controller to reject commands that come from computers that
are not in a certain range of IP addresses (see IPMASK command).

Interface Type Parameters

Serial Line RS232 9600 bauds, no parity, 1 stop bit

Ethernet 100baseTFullDuplex TCP sockets, port 5000

Universal Serial Bus USB 1.0 Not implemented

IcePAP User Manual 9 of 155

The last IP configuration is always stored in the non volatile RAM of the system controller. At
power up, if the configuration values are not changed, the system controller reuses the
previous IP configuration. There are various methods to modify the IP configuration but
whichever is used, when the IP configuration changes, the system controller writes the new
values in its non-volatile memory and reboots to reinitialise the network parameters. This
process takes about 30 seconds.

The IP configuration can be modified by using either a DHCP server or the external
application “ipassign”:

DHCP Server

The DHCP server must listen to the local area network (LAN) where IcePAP is connected and
be configured to answer requests from the MAC address of the master controller. This
address is unique and is written on a label on the embedded processor module in the system
master controller board (ex: 00-0c-c6-69-13-1c). The DHCP server must be set to provide the
following information:

 Hostname (ex: iceid321)

 IP address (ex: 160.103.52.202)

 Netmask (ex: 255.255.255.0)

 Gateway (ex: 160.103.52.99)

 Broadcast (ex: 160.103.52.55)

“ipassign” Tool

The application “ipassign” is a tool specifically designed for IcePAP at ESRF. It uses the
Multicast Protocol to communicate with a master controller. Therefore, even if the previous IP
configuration is not valid, “ipassign” will be able to automatically detect any IcePAP master on
the network and configure it.

1.2.7. Motor and encoder connection

The motor and encoder connections are described in the IcePAP Hardware Manual. As
power and control lines are combined in the same cable and connectors, it is particularly
important to respect proper grounding techniques during the cabling of the electromechanical
components and in particular not to break the continuity of the external and internal cable
shieldings from the motor connector down to the motor housing.

By default the disable pin of the motor connector must be connected to the ground pin unless
an external axis disable specific circuitry is used. Leaving the disable line unconnected may
prevent the driver board to switch on the motor power and inhibit the operation of the axis.

An IcePAP driver has three encoder inputs that accept position encoder signals: two at the
rear panel “Encoder” connector and another one at the front panel “Axis Interface” connector.
The rear panel encoder inputs are named EncIn and AbsEnc in the IcePAP firmware. The first
one accepts incremental encoder signals while the other one implements an SSI absolute
encoder interface. The front panel input is also an incremental encoder input and is named
InPos.
From the point of view of functionality, all the encoder inputs are interchangeable. See the
explanation about functional encoders in 2.1.6. In most of the simple applications that include
a single position encoder, it is usually preferable to connect the encoder at the rear of the rack
either at AbsEnc or EncIn inputs depending on whether the encoder is absolute or
incremental.

1.2.8. Ventilation

10 of 155 IcePAP User Manual

IcePAP racks do not include internal fans or other method for forced ventilation. External
ventilation may be necessary in case of installation in enclosures with reduced air circulation
such as 19’’ cabinets.

1.3. Installation tips

[TO BE COMPLETED]

 Check that the master front panel “COMM” led is green which means that the controller
is ready to communicate over the Ethernet and the serial line

IcePAP User Manual 11 of 155

2. OPERATION INSTRUCTIONS

2.1. IcePAP concepts

2.1.1. Systems and boards

As explained in 1.1, an IcePAP system may include a variable number of driver boards
organised in several racks. Every rack in the system must have a unique identification
number that is displayed in the front panel of the rack controller board. The controller board in
rack number 0 acts as system master controller and manages communication and system
functionality. The communication cable (RS232 or Ethernet) must be plugged into the
corresponding connector of the system master controller.

Each board in the system, either driver or controller, has a unique address A that is the
decimal number formed as A = 10×R + S, where R is the rack number and S is the slot
occupied by the board in the rack. Rack controllers always occupy the slot 0, while driver
boards are installed in the slots 1 to 8. With this convention the last decimal digit of the board
address easily identifies if the board is a controller or a driver and its slot number. The
address 0 is always assigned to the system controller.

The system controller receives and processes ASCII commands from the host computer. If a
command includes a prefix starting by a numeric board address, it is considered as a board
command and is dispatched to the corresponding board for execution. Board commands can
be addressed to both controllers and drivers. If the command does not include an address
prefix, it is considered as a system command and is directly processed and executed by the
system controller.
Commands that request an answer from an IcePAP module always start by a question mark
character (‘?’) and are often called “queries” in this document.
It is also possible to address board commands to all the boards in the system by using a
broadcast mechanism. See chapter 4 for more details on the communication protocol and the
command format.

When a system and a board commands have analogous functionality, they usually share the
same name. However, as system and board commands are processed in a different way and
produce different results, they should not be considered as being the same command.
System commands and board commands are grouped in two sets that are presented in
chapter 4.5.2.
Some board commands are not implemented in rack controllers and can only be executed by
driver boards. Note also that the system master controller executes both system commands
as well as board commands sent to the address 0.

At any time the host computer may obtain information about the current configuration of an
IcePAP system by issuing ?SYSSTAT system queries. This query reports information about
the racks connected in the system, the driver boards plugged in each rack and if the plugged
boards are responsive or not.

Another useful system query is ?MODE that returns the current functional mode. In normal
operation conditions an IcePAP system must be always in OPER mode (see ?MODE system
query). Other system modes are useful only for maintenance interventions such as firmware
reprogramming or factory testing. Every board can also return its individual mode by the
?MODE board query. The only cases in which the board mode may be reported as different
from the system mode are either when a driver is being configured (CONFIG mode), or when
there is an unrecoverable hardware failure that switches a driver board into FAIL mode.

12 of 155 IcePAP User Manual

Trajectory generator

MOVE JOG HOME SEARCH

Communication

Mechanics

Motor

Encoders and sensors

Target regulation
(position)

Shaft regulation
(position)

Electrical phase

MOTOR

INDEXER – AXIS

Nominal axis position

torque/current

regulation

External power driver

Axis tracking

Shaft Encoder

SHFTENC

Target Encoder

TGTENC

Home

Lim-

Lim+

External indexer
MEASURE

(position)

INDEXER – AXIS

Nominal axis position

2.1.2. Motor types and built-in power stages
Although an IcePAP driver can be configured to drive a motor by using an external power
module, in most of the cases the driver boards operate by using their built-in internal PWM
amplifiers and motor power regulation schemes.
With the current firmware release, the IcePAP power drivers support current regulation of two
motor phases what is sufficient to drive most stepper motors. Support of three-phase motors
and torque regulation is foreseen in future firmware releases and will open the use of IcePAP
to various kinds of DC and brushless motors as well as three-phase steppers without the
need of external power drivers.

In addition to allowing current regulation and measurement over a rather wide range of
values, one particularity of the IcePAP built-in power stage is the possibility of programming
also the operating voltage of the output PWM amplifiers. This extends the capability of driving
properly motors of quite different electrical characteristics with the same hardware module.

2.1.3. Driver configuration
IcePAP drivers are highly configurable boards. All the internal functional parameters, such as
power and regulation settings, functional modes or I/O and encoder configuration can be set
and modified via software commands. The detailed description of the configuration procedure
and parameters is presented in chapter 3.
The configuration is stored permanently in the non-volatile memory of the driver boards and
can be retrieved at anytime via the ?CFG query. It must be noted that the rack controllers do
not require any particular functional configuration.

A convenient way of checking and changing the configuration of IcePAP drivers is by using
the graphical tool IcepapCMS that eases considerably the configuration procedure and stores

IcePAP User Manual 13 of 155

the configuration data in an external database for backup purposes. Using IcepapCMS is
particularly appropriated when it is needed to manage a large number of IcePAP systems and
axes. (see IcePAP Configuration and Test Tool document for further info on that procedure).

2.1.4. Enabling and disabling axes
Prior to any axis movement, the drivers must be active and the motor power must be switched
on. Axis activation is requested by setting a flag in the configuration parameters. The
activation state can be checked at any time during operation with the ?ACTIVE query. If an
axis is not active, most of the commands addressed to that axis are rejected, the motor power
cannot be switched on and the axis is inhibited. The activation flag of an axis can be
intentionally cleared by changing the ACTIVE configuration parameter, but the flag is also
cleared automatically when the driver board is installed in a new system or if it is moved to a
different rack or slot in the same system. This feature prevents switching on the motor power
or using a driver board that has never been configured after being plugged in a new slot. A
driver can also clear its active flag if it detects a severe mismatch between its own firmware
and the one in the system master controller.

Once the axis has been properly configured and activated, the motor power can be switched
on (see POWER command). The advent of any alarm condition (see ?ALARM command in
chapter 5 for more information) will switch motor power off again. The alarm condition must
be removed in order be able to switch the motor power back on. Examples of alarm
conditions are over-current conditions, external alarm signals or excessive follow errors when
a driver operates in position closed loop mode.

Alarms should not be confused with warnings. Warnings will not prevent the axis from being
powered on, but might indicate non ideal conditions that could lead later to an alarm condition
or damage the board (i.e. over-temperature).

A driver can be set to restore its previous motor power state after a rack power on/off cycle
(see 3.1.1). If any alarm condition is present at power on, the axis will not proceed with the
motor power on procedure even if it is configured to do so.

2.1.5. “Axis turn” as a reference mechanical displacement
The configuration of an axis requires as first step the definition of mechanical displacement
that is taken as mechanical reference and that is called an “axis turn”. That name is chosen
because in the large majority of applications the most convenient and intuitive reference
displacement is a turn of the motor. However in certain cases it may be more convenient to
use other reference displacement such for instance one revolution of a gear box output shaft
or one turn of a transmission screw in the mechanics. In the case of linear motors, the
reference displacement necessarily corresponds to a certain linear displacement of the
mechanics. However, regardless of whether the motor is rotary or linear and which reference
displacement is adopted, that reference displacement is always called “axis turn” in IcePAP
terminology and is used to configure the conversion of electrical to mechanical units as well
as the resolution of the axis and any encoder that is connected to the board.

The “axis turn” can be chosen freely based on application convenience and the only
requirement is that the displacement must correspond to an integer number of full electrical
periods of the motor. The conversion of electrical to mechanical units is then simply defined
by expressing the number of electrical periods that correspond to one “axis turn”. If the “axis
turn” for a rotary motor is chosen to match exactly one motor turn, then the number of
electrical periods corresponds to the number of pole pairs in the motor. That is why the
number of electrical periods in one “axis turn” is considered to be the number of effective “axis
pole pairs” in IcePAP. See 3.1.1 and 3.1.3 for more details on the configuration parameters.

As an example, in a conventional two-phase stepper motor with 200 full-steps per turn, four
per electrical period, if the “axis turn” is taken to match one motor turn, the axis must defined
as having 50 “axis pole pairs”.

14 of 155 IcePAP User Manual

2.1.6. Physical and functional encoders
Each driver board has three encoder inputs named EncIn (rear incremental encoder input),
InPos (front axis connector) and AbsEnc (absolute SSI encoder input at the rear encoder
connector). The encoders connected to those inputs are referred in the documentation as
physical encoders and do not have assigned any predefined function in the control of the axis.

The driver may use the position values of the physical encoders for a variety of purposes but
the function of each encoder must be selected first by setting the appropriate configuration
parameters. Instead of selecting a particular function for a specific encoder input, the
configuration of an IcePAP axis uses the concept of functional encoders. A functional encoder
is a generic name used to represent a specific internal function. The assignment of specific
functions to the physical axis encoders is then achieved by selecting which encoder input is
used for each particular functional encoder. The functional encoders in an IcePAP axis are
the following:

 Target Encoder (TGTENC): This functional encoder is supposed to monitor the final
position of the mechanics and may be used for position regulation in closed loop operation.

 Shaft Encoder (SHFTENC): This encoder is required to measure the motor shaft position
for torque control algorithms. It can be also be used for position regulation.

 Control Encoder (CTRLENC): The IcePAP driver uses this encoder as a hardware
protection mechanism. The driver monitors the axis operation and trip alarms if the
discrepancy between the control encoder and the axis position exceeds a certain safety
value.

If any of the functional encoders is not assigned to a physical encoder input, the specific
functionality associated to that encoder is usually disabled.

2.1.7. Axis and encoder resolution
The position resolution of an IcePAP axis is determined by defining the size of one axis step.
The axis step unit is used to report axis positions and position errors as well as to define
parameters such as velocities. All displacements and position values in movement commands
are expressed in such units.

The axis step is defined during the configuration of the driver board by selecting arbitrarily the
increment of the motor electrical phase that corresponds to such a step. The choice of the
step size can be actually independent of the motor and the encoders associated to that axis
although in the cases of axis operating in closed loop modes it is convenient to select values
that are consistent. By defining a very small axis step, the IcePAP resolution can be higher
than the actual mechanical resolution of the axis, however the use of excessively high
resolution values is discouraged because it is both useless in practice and can be a potential
source of problems such as producing position overflows that may be difficult to track and
debug.

Expressing positions in steps allows to present axis positions to the user as 32-bit integer
values that are interpreted as number of axis steps as in the large majority of motor
controllers. All encoder positions are also represented as signed 32-bit integer values.
However the driver board converts and manages internally all positions as 64-bit fixed point
values in electrical units that are completely independent of the actual resolution of the
encoders or the arbitrary definition of the axis step. This approach provides calculation
resolution that can be considered unlimited in practice, allows combining in the same driver
encoders of different step size than the axis and allows for instance certain closed loop
operation modes with effective position resolution that is smaller than one axis step.

As it is detailed in 3.1.3, the effective size of an axis step in IcePAP is determined by defining
the total number of such steps that correspond to a given number of “axis turns”. An “axis
turn” is not necessarily equal to a motor turn as discussed in 2.1.5. However, whenever it is
possible, it is a good practice to set the “axis turn” equal to one motor turn and define the axis
step by specifying the total number of steps per motor rotation.

IcePAP User Manual 15 of 155

The same scheme used to select the axis step must be used to configure the resolution of
any physical encoder connected to an IcePAP driver as explained in 3.1.3. The resolution of
each encoder is configured independently as the total number of actual encoder steps that
corresponds a certain integer number of “axis turns”. It must be taken into account that the
“axis turn” may not match the encoder turn.

As the encoders connected to the same driver board can have different resolution that can in
addition be different from the nominal resolution of the axis as defined by the axis step, there
are two different commands, ?ENC and ?POS, to retrieve the current position of the
encoders. ?ENC returns the position of an encoder in the particular units of that encoder while
?POS returns the encoder position as its equivalent in axis steps.

2.1.8. Nominal axis, measured and motor positions
The axis position of an IcePAP driver is the value used for movement commands and
reported by default by the ?POS and ?FPOS queries. The nominal position is expressed by
default in axis steps and in normal operation it only changes during axis movements. The axis
position does never change when a movement is finished and the axis is idle.
In addition to the nominal position, a driver manages a measured axis position. The measured
position is obtained from the target or shaft encoders that are assigned to that axis. If both
functional encoders are defined, the target encoder is used. If no target or shaft encoders are
defined, the driver reports the nominal axis position as the measured position. The measured
position can be obtained with the ?POS MEASURE and ?FPOS MEASURE queries for
instance. When the measured position is actually retrieved from a physical encoder, its value
may change of fluctuate due to mechanical drifts or electronics noise even if the axis is not
moving.

The measured position is usually used for reporting purposes. At the end of each movement it
may differ from the actual nominal axis position in particular if the axis operates in open loop.
If this discrepancy is not desired, it is recommended to set the axis to operate in position
closed loop. If in a particular application closed loop operation is not appropriate, the driver
can be instructed to replace at the end of each movement the final axis position with the
actual measured position (see 3.1.4). This feature is however strongly discouraged and
should be only used to cope with limitations of the host computer software.

In closed loop modes, the driver board has to adjust the electrical phase of the motor to
compensate for errors in the position of the mechanics measured by the encoder. In these
cases the motor electrical phase does not match in general the nominal position of the axis
and, in addition to the nominal and measured positions, the driver board must manage the
motor electrical phase as a different position value. Although such a motor position is in
general an internal value of little practical interest for the normal operation, it can be used for
diagnostic and retrieved with the ?POS MOTOR query. In open loop operation, the motor
position should always match the nominal axis position.

2.1.9. Closed loop operation
The position closed loop is an integral correction algorithm that forces the feedback encoder
signal to follow the nominal position of the axis. Closed loop operation is activated by
configuring which functional encoder, TGTENC of SHFTENC is to be used as feedback
device. At any moment, the closed loop operation can be disabled and re-enabled with the
command PCLOOP. Various additional parameters introduced in 3.1.4 allow to fine tune the
closed loop mode although not all of them need to be always configured. Only the regulation
time constant and the maximum acceptable follow error are critical for setting up closed loop
operation. Depending on the setup some times it is also convenient to configure a deadband
in which the correction algorithm is disabled.

Two bits are updated in the status of each axis to provide information on the position closed
loop behaviour. The inwindow bit is active if the position is inside a configured window around

16 of 155 IcePAP User Manual

the nominal position. The settling bit will be active after a movement until the error is smaller
than a configured value for a configured amount of time.

2.1.10. Trajectory generation and motion modes
The different motion modes, described in 2.2, are various ways of changing the current axis
position:
- Target position (point to point)
- Target velocity (jog)
- Homing
- Tracking (external indexer)
- Variable regulation (external feedback)

2.1.11. Status and diagnostics
Only intro here, detailed description in 2.4
- status register
- diagnostic commands
- data recording facility

2.1.12. I/O signals
- Info signals
Each driver has 3 digital outputs (InfoA, InfoB, InfoC) that can be configured to reflect different
information inside of the driver board. They can be set to high or low from an external
command. See INFOA command for all the available values.

- OutPos output signal

Besides the digital outputs, there is also a position output signal (OutPos) that can be used to
export any position source to other hardware. The possible signals presented at OutPos are
listed in the description of the OUTPOSSRC configuration parameter.

The driver can output its internally generated trajectory via the OutPos source signal available
in the 25pin front connector (check IcePAP Hardware Manual document) to an external
amplifier, what can be useful in situations where IcePAP drivers might not be able to steer the
targeted axis (because the motor type or power is outside of IcePAP specs).

- Sync/SyncAux signals
Each driver has the possibility to read or drive a pair of shared rack backplane position
signals equivalent to those of an encoder (Sync for the position, SyncAux for the auxiliar).
When set as output, the source of the Sync signal can be chosen from the same list used for
OutPos (see command SYNCPOS), and the source of the signal SyncAux can be chosen like
the info signals (see SYNCAUX command).

These backplane signals can be connected through the controller boards to SYNCRO
connector in the controller front pannels, and to the IN-OUT connectors, thus allowing to
share position information for synchronisation with the rest of the boards in the system, and
also with external devices.

2.1.13. Advanced functionality
(For a more detailed description of the following features, please refer to chapter 2.3)

- I/O multiplexer
A basic multiplexer system allows exchanging position signals and one auxiliary signal
between the different elements of an IcePAP system simplifying greatly the cabling in
advanced applications

IcePAP User Manual 17 of 155

- Electronic cam
The electronic cam generates a pulse every time that a selected position source (internal
indexer, or external encoders) reaches one position in a previously defined list of positions.
This pulse can be read trhough the local Motion Interface connector, or sent to other elements
of the IcePAP system using the multiplexer capabilities.
- Position control
The Control Encoder feature can be used in mechanical setups where a motor axis should
move coordinated with another independently moving part, and deviations between them
should be avoided.
- Parametric movements
An axis can be set to follow a user defined and loaded trajectory. This trajectory will depend
on an user-defined parameter, and movements will be defined by the target parameter value.

2.2. Moving motors

2.2.1. Basic movements

In the most usual case, the various IcePAP axes are operated as independent channels via
commands like MOVE (absolute), RMOVE (relative), JOG
The current status of the motion is reflected in the status register and can be retrieved with
the commands ?FSTATUS and ?STATUS
Limit switches operation: There are two limit switch signals in each driver, Limit+ and Limit-.
They can have only two states, active or inactive, and their polarity can be configured with the
parameters LPPOL and LMPOL to match their physical implementation (“Normal” polarity
corresponding+ to a dry contact normally closed, so that the signal is active when the switch
contact is open). If Limit+ is active, no movement of the axis will be allowed in the direction
that increases the axis position. If Limit- is active, no movement will be allowed in the direction
that decreases the axis position.

2.2.2. Homing and search sequences
Each driver has the possibility to latch all of its position sources at a specified event. This
capability is used in two built-in commands (see HOME and SEARCH commands) that start a
sequence that will search the position of an external reference signal, thus allowing finding an
absolute position of the axis.

Any IcePAP axis can be configured to look for a mechanical reference that can be used as
position origin of the axis. The usual source of the home signal (from the motor connector or
via the different encoder sources), its electric type (level, pulse, edge,…) and the speed of the
axis during the procedure can be stored as parameters. The different positions in the system
can be latched upon reference crossing and position can be reset to a fix value in an
automatic way too (see HOMESRC and any HOME* parameters for more details).

2.2.3. Tracking modes (external indexer)

[IN DEVELOPMENT]
In most of the cases a driver will be operated by using its internal indexer to generate the
motion trajectory, velocity profile, etc. It is possible however to bypass the internal indexer
and drive the motor using pulses coming from an external device such as another IcePAP
driver or a multiaxis controller. The actual indexer used by a particular driver can be changed
during operation by a user command but the default indexer that is used after power on or
after driver reset must be selected by the parameter INDEXER. As mentioned above in most
of the cases the default indexer will be set to INTERNAL.

18 of 155 IcePAP User Manual

2.2.4. Variable regulation (external feedback)

The position of the axis is regulated in order to cancel the error in an external arbitrary
variable with respect to a given setpoint. This type of movement is explicitly configured and
started during operation with the VCONFIG and VMOVE commands respectively, and not
during configuration phase. The current value of the external variable can be transmitted
either by mean of an unused encoder input or by a software command (see VVALUE
command).

2.2.5. Multiaxis and group movements

Multiaxis motion commands. It is possible to move several axes by using the system motion
commands MOVE, RMOVE, JOG, HOME, MOVEP and PMOVE. The multiaxis versions of
these commands first check that all the axes in the parameter list can be moved as instructed.
If there are invalid parameters or any of the movements cannot be started, the command fails
and returns an error. Only once the initial check is successful, all the axes start their
movements simultaneously.
The progress of the movement can then be followed by monitoring the status register of the
individual axes. It is possible however to read the status of a set of axes by using the
?FSTATUS system query.

Axis groups. Once a multiaxis movement is started, by default every axis is managed as
independent from the others. The motion of a given axis finishes either when the motion
sequence is completed, when the driver receives a stop command or if a limit switch, an
alarm or an error condition is found.
This default behaviour can be changed with two keyword flags in a multiaxis command:
GROUP and STRICT:
If the GROUP keyword is used, all the axes included in the same multilink command are not
only started simultaneously but are also internally linked as an active group. Whenever any of
the axes in an active group is stopped by an unexpected reason (a STOP or ABORT
command, a limit switch or any alarm condition), all the other axes in the group are forced to
stop immediately.
If the STRICT keyword is used, all the axes addressed in the command will stop whenever
one of the axis addressed in the command stops, even if it is a normal end of motion for that
axis.

Synchronisation:
All axis started through a multiaxis command will start moving synchronously (with a jitter of
less than 50µs). Each axis then relies on its internal clock for the trajectory generation, and
the maximum difference between driver clock frequencies is 30ppm. This means a difference
of 30ms in the end of a 1000s movement, which is acceptable in most applications.

2.2.6. Parametric motion

[IN DEVELOPMENT]

2.3. Advanced features

2.3.1. Motion synchronisation

Use of tracking modes. [TO BE DEVELOPED]

Synchronisation with external signals. [TO BE DEVELOPED]

Linked axes. This feature is to be used in the cases where several motors are used to drive a
single mechanical degree of freedom.

IcePAP User Manual 19 of 155

Each of the motors is connected to a different IcePAP driver in the same system. If all the
drivers are configured with the same string parameter LNKNAME, the master consider them
as a single axis and multiaxis commands can be sent to that name. An external client can
know if there are linked axes with the system command ?LINKED.

In linked axes, most of the normal board command for actions (movements, change of
velocity, acceleration, position, etc) are protected on individual linked axes and will not be
accepted. Instead, a multiaxis command must be issued, where the address of the axis is not
a number but the name in LNKNAME. The protection can be overridden for a single board
command with a DISPROT LINKED command (see command reference).

A consolidated status register can be queried to the master with the system ?STATUS
<lnkname> and ?FSTATUS <lnkname> commands.

In order to move a linked axis, all their individual drivers must have the same position, velocity
and acceleration time, otherwise the linked axes are considered not synchronised and
movement commands will not be accepted.

When one of the axes in a linked group hits a limit switch and stops, all the other axes are
stopped and realigned with the position of the first stopped axis, so the liked axes are still
synchronised and ready to move in the reverse direction.

General stop or abort commands, as well as any alarm condition in one linked driver will stop
all the linked group, and in those cases the position synchronisation will be lost.

The answer to the system command ?POS <lnkname> will be the mean of the positions of all
the axis linked under that name. If the linked group is synchronised, all the boards will be at
the same position, otherwise the board positions may differ. The individual axes positions can
always be queried with ?POS <axis1>...<axisn>.

2.3.2. Position control (control encoder)
The Control Encoder feature can be used in mechanical setups where a motor axis should
move coordinated with another independently moving part, and deviations between them
should be avoided. A physical encoder input can be configured with the function of Control
Encoder (see parameter CTRLENC). The driver then compares the position from the control
encoder with its measured position (or, if the measure encoder is used as control encoder,
the nominal axis position). If the difference is outside of a configured safe window (see
parameter CTRLERROR) a hardware alarm is raised and power to the motor is switched off.
The CTRLRST command sets the control encoder position value so that the above-
mentioned difference is zero, for alignment or initialisation purposes. The command
DISPROT CONTROL allows making one movement outside of the safe window, also for
alignment purposes. There is also a variant, DISPROT HARDCTRL, that allows movements
out of the safe window, but with a maximum displacement limited to CTRLERROR number of
steps.

2.3.3. I/O multiplexer

- OutPos output signal
Besides the digital outputs, there is also an position output signal (OutPos) that can be used
to export any position source to other hardware. The possible signals presented at OutPos
are listed in the description of the OUTPOSSRC configuration parameter.

- the driver can output its internally generated trajectory via the OutPos source signal
available in the 25pin front connector (check IcePAP Hardware Manual document) to
an external amplifier, what can be useful in situations where IcePAP drivers might not
be able to steer the targeted axis (because the motor type or power is outside of
IcePAP specs).

2.3.4. Electronic cam
[IN DEVELOPMENT]

20 of 155 IcePAP User Manual

2.4. Diagnostics

2.4.1. Status registers

The status of each IcePAP board is compiled in a 32 bit register that can be read by the
?FSTATUS, ?STATUS and ?VSTATUS queries.
The ?FSTATUS query returns the board status that is stored in the master controller and
therefore present the shortest response latency. It is the recommended query for intensive
polling applications.
The ?STATUS query returns the status register read directly from the individual board and
therefore guarantees the most updated values.
The ?VSTATUS query reports the board status information in a verbose form that is intended
for diagnostics and assistance to application programmers.

The status information consists of a number of status bits and fields that are summarised in
Table 1 and described below:

 PRESENCE: This field reports if the board is found to be physically present in the system, if
it is alive and communicates properly and, in the case of drivers in normal operation, whether
or not the board is in configuration mode. Note that the status of not present boards can be
obtained from the system by ?FSTATUS query.

 MODE: This field represents the current functional mode of the board. See the ?MODE
board query for more details.

 DISABLE: This field is set to a non zero value if the motor power is disabled. The power
can be enabled and disabled by the software POWER command or by the front panel
switches. It can also be permanently disabled if the axis is configured as not active, by one of
the external disable signals or if an alarm condition happens. In case of alarm conditions, the
STOPCODE field provides more details about the reason of the alarm. See 2.4.3 for more
information about alarm sources.

 INDEXER: This field indicates if the axis trajectories are generated by the internal indexer,
by an in-system indexer signal through the backplane or by and external indexer connected to
one of the input position signals InPos or EncIn. It also indicates if the internal indexer is set
to operate in linked mode.

 READY: This bit is set when the board is ready to accept new motion commands. It must be
checked before starting a new movement. If it is not set, the axis is still busy in an operation
such as a point to point movement, a settling phase or in a homing sequence.

 MOVING: This bit indicates that the axis is in motion. It must be used only for informative
purposes and not to decide when the motion is completed and when the axis is able to accept
new motion commands. Use the READY bit instead.

 SETTLING: In closed loop, this bit is set during the settling phase and is cleared once the
settling condition is met. See 2.1.9 and 3.1.4 for more details about closed loop operation.

 OUTOFWIN: This bit is set if the axis position is out of the target position window. See 2.1.9
for more details about closed loop operation.

 WARNING: This bit is set if a warning condition has been met. See 2.4.2 for more
information about possible source of warnings.

 STOPCODE: During movements, this field may vary following the deceleration phase or the
status of complex movement sequences. However when the movement is finished and the bit
READY is set, it indicates the condition that stopped the motion: the field is 0 if the last motion
command completed successfully with no interruption. If the movement was interrupted or not
even started, a value from 1 to 6 reports the reason. If the stopcode corresponds to a
configured stop condition (value 5), more information on the precise stop condition can be
queried to the axis with the ?STOPCODE and ?VSTOPCODE commands. If the power is

IcePAP User Manual 21 of 155

disabled because the board went into alarm state, a value from 8 to 15 indicates the specific
alarm condition. Note in this last case, the DISABLE field must also signal that an alarm
condition was met.

 LIMIT+, LIMIT-: These bits report the actual logic level of the Limit+ and Limit- signals
connected at the rear driver connectors.

 HSIGNAL: This bit reports the logic level of the homing reference signal. Note that the
homing reference signal is selected by the HOMESRC configuration parameter and it may be
different from the driver Home signal connected at the rear panel.

 VERSERR: This bit is set to if the version of the board firmware is not consistent with the
firmware version of the master controller.

 INFO: This field provides a progress monitor during the board programming procedures.

22 of 155 IcePAP User Manual

 DRIVER Status CONTROLLER Status

Bit # name value = description value = description

0-1 PRESENCE

 0 = driver not present
 1 = driver not responsive
 2 = driver in configuration mode
 3 = driver alive

 0 = controller not present
 1 = controller not responsive
 2 = n/a
 3 = controller alive

2-3 MODE
 0 = OPER 2 = TEST
 1 = PROG 3 = FAIL

 0 = OPER 2 = TEST
 1 = PROG 3 = FAIL

4-6 DISABLE

 0 = power enabled
 1 = axis configured as not active
 2 = alarm condition
 3 = remote rack disable input signal
 4 = local rack disable switch
 5 = remote axis disable input signal
 6 = local axis disable switch
 7 = software disable

 0 = power enabled
 1 = n/a
 2 = alarm condition
 3 = remote rack disable input signal
 4 = local rack disable switch
 5 = n/a
 6 = n/a
 7 = software disable

7-8 INDEXER

 0 = internal indexer
 1 = in-system indexer
 2 = external indexer
 3 = linked indexer

 0 = internal indexer
 1 = n/a
 2 = n/a (status of multiplexer?)
 3 = n/a

9 READY 1 = ready to move 1 = ready to move

10 MOVING 1 = axis moving 1 = virtual axis moving

11 SETTLING 1 = closed loop in settling phase n/a

12 OUTOFWIN 1 = axis out of settling window n/a

13 WARNING 1 = warning condition n/a

14-17 STOPCODE

 0 = end of movement
 1 = STOP
 2 = ABORT
 3 = LIMIT+ reached
 4 = LIMIT- reached
 5 = configured stop condition
 6 = axis disabled (no alarm condition)
 7 = n/a
 8 = internal failure
 9 = motor failure
10 = power overload
11 = driver overheating
12 = close loop error
13 = control encoder error
14 = n/a
15 = external alarm

 0 = end of movement
 1 = STOP
 2 = ABORT
 3 = n/a
 4 = n/a
 5 = n/a
 6 = n/a
 7 = n/a
 8 = internal failure
 9 = n/a
10 = n/a
11 = n/a
12 = n/a
13 = n/a
14 = n/a
15 = external alarm

18 LIMITPOS current logic value of the Limit+ signal n/a

19 LIMITNEG current logic value of the Limit- signal n/a

20 HSIGNAL current value of the homing ref. signal n/a

21 5VPOWER 1 = Aux power supply on n/a

22 VERSERR 1 = inconsistency in firmware versions 1 = inconsistency in firmware versions

23 POWERON 1 = Motor power on n/a

24-31 INFO

 In PROG mode, programming phase
 In OPER mode, PMUX config:
 bit30 - backplane sync POS
 bit31 - backplane sync AUX

 In PROG mode, programming phase
 In OPER mode: PMUX config:
 bit24 - system cable POS
 bit25 - system cable AUX
 bit26 - controller sync POS
 bit27 - controller sync AUX
 bit28 - external connector POS
 bit29 - external connector AUX
 bit30 - backplane sync POS
 bit31 - backplane sync AUX

Table 1. Driver and controller board status registers

IcePAP User Manual 23 of 155

2.4.2. Warnings
The ?WARNING command reports any warning condition in the system. See documentation
of ?WARNING query for the different possible warning sources.
2.4.3. Alarms
The ?ALARM command reports any alarm condition in the system. See documentation of
?ALARM query for the different possible alarm sources.

2.4.4. Data recording
Any driver or master in the system has up to 1Mbyte of onboard memory. Most of this
memory can be used for internal data storage (positions, currents) or other diagnostic
purposes.[IN DEVELOPMENT]

2.5. Firmware reprogramming
Firmware packages contain binaries for the embedded Linux in the MASTER boards, the
DSP and FPGA in controller boards and DSP and FPGA in driver boards.

A built-in command allows to program each of those binaries in each separate board, in all
controllers, all drivers or in the whole system. See PROG command for more details.

2.6. Usage tips

Refer to Section 5.1 for all the commands mentioned below.

 It is quite common to have a situation where one wants to change an incremental
encoder direction sign. This can be done easily by using the INV keyword in the
correspondent channel configuration. Moreover, the INV keyword can be also used to
change the polarity of the input signals.

2.7. Examples of driver configuration

The concept of axis turn is actually associated to a given number of electrical periods (pole
pairs) and can be generalised to linear or geared motors as explained in 2.1.2. On a standard
motor of 200 full steps (50 pole pairs), a resolution of 200 steps in 1 turn will imply
movements with ‘full step’ resolution. For the same case, a resolution of 400 steps in 1 turn
will imply movements with ‘half step’ resolution. For further microstepping, for example 16
microsteps per step, the values are 3200 (or 16x200) steps in 1 turn.

Let’s illustrate the different situations that might appear in a system with an example.
Attached to the second shaft of a 400 full step per revolution motor moving some mechanics
there’s an incremental encoder that generates 800 encoder steps (sometimes referred in
literature as encoder ‘counts’). The motor is connected to the first driver in a single crate
IcePAP system. The encoder is connected to the EncIn rear incremental position input.

The first step is to configure the number of pole pairs to 100, since this is the mechanical
parameter. The configuration of the resolution of the EncIn encoder source is also clear, 800
steps in 1 turn of the axis.

- If you want to move with ‘full step’ resolution, you will configure the axis resolution
(the same as the indexer) as 400 steps in 1 turn. When you move 1 step, you will see your
encoder readout changing 2 steps.

- If you want to move with ‘half step’ resolution, the axis resolution should be
configured as 800 steps in 1 turn. When you move your axis 1 step, you will see your encoder
readout changing 1 step.

24 of 155 IcePAP User Manual

- If you would want to move with a resolution in positioning of a quarter of step, the
axis resolution would be configured as 1600 steps in 1 turn. In order to see a change of 1 step
in the encoder readout you would need to move now your axis two steps.

Once explained the resolution at axis and encoder units, how their relationship is established
and how to configure it, it is interesting to add that IcePAP can supply the position of any
encoder in the axis units. There are two main commands to query position in IcePAP, ?POS
and ?ENC. ?ENC will always give the position of an encoder in the units of that encoder.
?POS will give the position of an encoder source as its equivalent in axis units. Back to the
previous example, and assuming that before the movement all positions were zero and that
you are using the internal indexer as axis position source, after the three movements listed
above we would get the following readouts from the ?POS and ?ENC commands:

- 1:?POS would return 1, 1:?ENC ENCIN would return 2, and 1:?POS ENCIN would
return 1 (if no steps were lost).

- 1:?POS would return 1, 1:?ENC ENCIN would return 1 and 1:?POS ENCIN would
return 1.

- 1:?POS would return 2, 1:?ENC ENCIN would return 1 and 1:?POS ENCIN would
return 2.

In the examples above, ?POS and ?POS ENCIN always return the same, and that’s the way
it should be in an ideal case, since both represent the angle turned by the shaft in the same
units. The difference is that ?POS shows the steps that we wanted to make and therefore the
steps that have been generated by the internal indexer and ?POS ENCIN shows the steps
read by the encoder in the units of the internal indexer (axis units). In a real world case,
friction could prevent the mechanical system to arrive to the final encoder mark what would
result in a different output value for both commands.

The use of ?POS and ?ENC commands and different resolution for each position source
might not result intuitive in the beginning. The need to be able to express the encoder steps in
the units of the axis comes from position closed loop operation. In that case, the target
position and the read position have to be compared in the same units. Inside IcePAP driver,
the comparison is done in axis units.

IcePAP User Manual 25 of 155

3. DRIVER CONFIGURATION

The configuration of an IcePAP driver is defined by the values of a set of parameters that are
stored in the non-volatile memory of the board. The complete list of configuration parameters
as well as their types or possible values is compiled in 3.2.

The configuration parameters can be changed with the CFG command, but only if the driver
has been previously switched into a special configuration mode with the CONFIG command.
The driver configuration cannot be modified from regular operation mode. Once some of the
configuration parameters have been changed, the CONFIG command can be used again to
validate the new configuration and switch the driver back to operation. If the new configuration
is not properly validated, all changes are lost when driver exits the configuration mode. See
the description of the CONFIG command for details.

The ?CFG query can be used at any time to read back the current values of the configuration
parameters.?CFGINFO is a utility query that allows to interrogate the driver about the type
and possible values of any configuration parameter.

3.1. Configuration parameters

3.1.1. Motor configuration

Motor type
The type of motor must be specified by setting the parameter MOTPHASES to the actual
number of electrical phases in the motor. This value must be one for DC motors and either
two or three for steppers and brushless devices. Motors with a higher number of electrical
phases, such as five-phase steppers, cannot be driven directly with the internal power
amplifier in IcePAP drivers. [ONLY 2-PHASE IMPLEMENTED SO FAR]

In the case of two or three phase motors, the parameter MOTPOLES must be set to the
number of electrical periods per axis turn. An axis turn, in IcePAP terminology, is the
reference mechanical displacement that is used to define the axis and encoder resolution. It
usually corresponds to a full rotation of the motor shaft, but for convenience it may be chosen
as a different mechanical displacement as it is discussed in 2.1.5. In any case and whatever
is the choice for an ‘axis turn’, it must correspond to the integer number of electrical periods
specified in MOTPOLES.

Power control

The MREGMODE parameter is used to select the operation mode of the internal PWM power
amplifier or the use of an external power drive. [ONLY CURRENT REGULATION
(STEPPERS) IMPLEMENTED SO FAR]
The motor supply voltage of the internal PWM amplifier can be selected with the NVOLT and
IVOLT parameters.

The nominal current value must be specified by the NCURR parameter. It is also possible to
specify a boost current increment BCURR during acceleration and deceleration periods, as
well as a reduced current ICURR when the motor is not moving (see 3.1.4 for the specific
case of ICURR when in closed loop).

The PID parameters of the current regulator can be set to predefined values with CURRGAIN
parameter or individually selected with MREGP, MREGI, MREGD.

At start up or system reset, the motor power is off by default. This behaviour can be changed
by setting the POWERON configuration flag to instruct the driver to go into the same power
state, on or off, that it had before the system was powered down or reset.

Motion direction and limit switches

26 of 155 IcePAP User Manual

The definition of the sense of motion of the axis is fully determined by assignment of the limit
switch control lines. When the axis moves in positive direction the mechanics must move
towards the Lim+ switch. There is no way of inverting that assignment in the IcePAP
configuration, but the actual direction of the motor can be reversed by changing the
MOTSENSE value.

3.1.2. I/O configuration

Physical encoders
The two incremental encoder inputs EncIn and InPos can be configured to operate in either
2-phase quadrature or pulse/direction counting mode by setting the EINMODE and INPMODE
parameters.

The absolute encoder inputs use a serial synchronous interface (SSI) that can be configured
with the parameters SSIDBITS, SSICODE, SSISTATUS, SSICLOCK and SSIDELAY. The
absolute values obtained from the encoder are always corrected by adding the fixed 32-bit
offset value loaded in ABSOFFSET. This value must be set to zero for no correction.

In most of the practical cases, the sign of the encoders must match the sense of motion of the
axis. If needed, the sign of the encoders can be inverted by mean of the parameters
EINSENSE, INPSENSE and ABSSENSE.

Position signal output
The signal OutPos can be configured to output any of the internal position signals by setting
the OUTPSRC parameter. The signal mode and pulse length if needed can be set with
OUTPMODE and OUTPULSE. The signal can be inverted with OUTPSENSE.

The source of the auxiliary line OutPosAux can be selected independently with the parameter
OUTPAUXSRC.

General purpose output signals
The signals InfoA, InfoB and InfoC can be used to output logic values related to the internal
state of the driver such as READY, MOVING or ALARM, or the level of input control signals
such as limit switches, Home signal or the encoder auxiliary inputs. Although this can be
changed during operation, the default initial signal sources of those general purpose outputs
can be selected with the INFASRC, INFBSRC and INFCSRC configuration parameters.

Polarity of I/O signals
The polarity of all the control and auxiliary input/output lines can be inverted by setting the
corresponding parameters. This includes the limit and home switches (LPPOL, LMPOL,
HOMEPOL), the encoder auxiliary/index lines (EINAUXPOL, INPAUXPOL, OUTPAUXPOL)
as well as the general purpose output signals (INFAPOL, INFBPOL, INFCPOL).

3.1.3. Axis configuration

Axis name lock
The name of the axis is a character string that is stored in the non-volatile memory and is only
used for identification purposes (see NAME command). The axis name is not a configuration
parameter and by default can be changed at any time during operation. It is however possible
to prevent changes of the axis name in operation mode by setting the NAMELOCK
configuration flag.

Axis and encoder resolution
The resolution of the axis is arbitrarily defined by specifying the total number of steps
ANSTEP that correspond to a given number ANTURN of axis turns. These two parameters

IcePAP User Manual 27 of 155

together with the ‘axis turn’ defined by value of MOTPOLES for a given motor, determine the
effective size of each axis step.
In most of the applications with rotary motors, MOTPOLES is set to make the ‘axis turn’
correspond to one turn of the motor shaft. In those cases it is usually a good practice to set
ANTURN to 1 and set ANSTEP to the desired number or steps per motor rotation. See 2.1.5
and 2.1.7 for a more elaborated discussion on position resolution in IcePAP and how to deal
with linear motors.

The actual resolution of the encoders connected to the driver must be declared with the
similar two parameter scheme: the total number of steps for a given number of axis turns. In
this way the pairs of parameters (EINSTEP, EINTURN), (INPNSTEP, INPNTURN) and
(ABSSTEP, ABSNTURN) allow to declare the step size of encoders connected to the
incremental inputs EncIn, InPos and the absolute encoder SSI interface respectively. It must
be noted that the number of turns always refers to the same ‘axis turn’ defined by
MOTPOLES and not to rotations of the encoder itself.

Functional encoders
As explained in 2.1.6, the assignment of physical encoders to specific functionalities is
achieved through the definition of functional encoders. The configuration parameters
TGTENC, SHFTENC and CTRLENC specify the physical encoders that should be used as
target, shaft and control encoders respectively.
The target and shaft encoders may participate to the measure of the position of the axis or
motor shaft and be part of the position closed loop. The control encoder, if configured, will
trigger an alarm if its difference with respect to the axis position exceeds a maximum value of
steps given by the parameter CTRLERROR.

Axis activation and protection level
The ACTIVE parameter can be set to request setting or clearing the internal axis activation
flag. This flag must always be set the first time an axis is configured.

The PROTLEVEL parameter is foreseen to implement additional levels of protection. [NOT
IMPLEMENTED]

External input functional signals
It is possible to include logic signals coming from external devices in the determination of the
logic state of the driver. The EXTBUSY parameter can be used to select an input signal that
will be used to prevent the axis to go into ready state. The signals selected by EXTALARM
and EXTWARNING contribute to the generation of alarm and warning conditions.
And in the case of using an external power amplifier, the EXTPOWER parameter selects the
input that will indicate the power state of the amplifier.

The default use of an external trajectory generator can be selected by the INDEXER
parameter.

3.1.4. Position control and motion

Axis position control
Although the velocity and acceleration time of the internal trajectory generator are usually set
and changed during operation, the DEFVEL and DEFACCT parameters allow to define
default values that are used at power on or after changes the motor configuration.

The POSUPDATE parameter can be used to instruct the driver to replace the axis position
with the measured position by the measured position at the end of each movement. See 2.1.8
for details.

28 of 155 IcePAP User Manual

The driver can be included in a group of linked axes by setting the LNKNAME parameter to
the name of group.

Homing configuration
The input signal used as mechanical reference during homing procedures can be selected
among a list of available inputs by the HOMESRC parameter. The logic of the homing signal
as well as various flags that specify the homing procedure are defined by HOMETYPE and
HOMEFLAGS. The final velocity of the axis during homing can be defined by the HOMEVEL
parameter.
The value in the HOMEPOS parameter contains a predefined position that may be used to
reset the axis position at the mechanical reference,

Position closed loop
An axis can be instructed to operate by default in closed loop mode by mean of the PCLOOP
parameter that also selects the functional encoder to be used for position feedback. The
position closed loop mode applies an integral correction algorithm with the time constant set
by PCLTAU. The settling and convergence criteria as well as the error conditions are
configured by the parameters PCLSETLW, PCLSETLT, PCLERROR and PCLMODE. It is
also possible to use the PCLDEADBD parameter to define a dead region around the target
position in which the feedback correction is disabled.

The parameters that modify the closed loop behaviour are:
PCLTAU: defines the time constant of the response. As the correction algorithm corresponds
to add a velocity proportional to the error between target and feedback device, it corresponds
to the time constant of a first order linear system.
STRTVEL: this is a limitation of the maximum velocity the regulation algorithm can add to the
target velocity for regulation purposes.
PCLDEADBD: defines the size in axis steps of the deadband: If the distance between the
feedback encoder value and the target position is smaller than the deadband value, there will
be no feedback correction. If the encoder value gets out of the deadband, the feedback
correction will start again.

Other parameters related to the closed loop are:
PCLERROR: Defines the maximum acceptable distance in axis steps between feedback
encoder value and target position. If this distance grows bigger that PCLERROR, the axis will
issue an alarm and will disable its power. The closed loop dynamical behaviour is not
modified by the value of PCLERROR as long as the feedback value is inside the acceptable
window.
PCLSETLT and PCLSETLW: This parameters only define how the axis reports its status
when in closed loop, but do not modify the dynamical behaviour of the closed loop.
PCLSETLW defines a window in axis steps around the target position. If the feedback device
value is outside of that window, the bit OUTOFWIN in the status register will be set.
PCLSETLT defines a time in seconds. When a movement starts, the bit SETTLING in the
status register is set. When the target movement is over, the SETTLING bit in the status
register will be cleared only when the axis will have been inside the settling window for a
continuous time longer than PCLSTLT.
If after a movement in closed loop operation the SETTLING bit is set for longer that 10 times
the value of PCLSETLT, the axis will

Effect of ICURR parameter on closed loop: When operating in closed loop, the driver keeps
the nominal current in the motor coils during a movement and the following settling time. Then
the current is set to the Idle current again. It is important in closed loop operated axes to
configure an Idle current value sufficient to move the mechanical axis so that any external
perturbation may be corrected by the feedback system.

IcePAP User Manual 29 of 155

30 of 155 IcePAP User Manual

3.2. Configuration reference

This section lists all the configuration parameters of a driver board.,

ACTIVE { NO | YES } Axis enable/disable flag

This parameter marks a driver board as active or not. A “non active” driver is disabled, cannot
be used to drive motors and rejects most of the power and motion related commands. The
ACTIVE parameter does not reflect necessarily the actual state of a driver board that can
become “not active” (functionally disabled) if it is moved to a different IcePAP system. See
2.1.4 and the ?ACTIVE query for more information.

PROTLEVEL <integer> Protection level

This value is not actually used by the IcePAP drivers. It is provided as a way to store locally
information about the level of protection that must be applied to the corresponding axis. This
value is available to be used by the application software.

NAMELOCK { NO | YES } Axis name lock

If this flag is set to NO, the use of the NAME command to change the name of the driver
board is not allowed.

POWERON { NO | YES } Auto power on

This flag instructs the driver board to switch on the motor power immediately after board
initialisation. The flag has effect only if the driver is active.

MOTPHASES { 1 | 2 | 3 } Number of electrical phases
MOTPOLES <integer> Number of pole pairs

Configure the number of electrical phases and pole pairs of the motor. In case of rotary
motors, the number of pole pairs corresponds to the number of electrical periods per motor
turn. For instance, this number is 50 for a standard 200 full steps per turn stepper motor.
In case of linear motors, the number of pole pairs corresponds to the number of electrical
periods for a certain given displacement distance. Such a distance is somehow arbitrary and
can be chosen according to the user convenience, but will be adopted as the effective “motor
revolution” for all internal calculations. All the configuration parameters that refer to motor
turns will actually apply to such a reference linear displacement.

MOTSENSE { NORMAL | INVERTED } Sense of motor movement

This value allows invert the definition of positive direction for motor movements. Note that the
limit switch signal Lim+ always blocks motion in the positive direction while Lim- blocks
negative movements.

MREGMODE { EXT | CURR | TORQUE} Motor regulation mode

This value selects the type of power regulation in the motor. In the current firmware version
only current regulation (CURR) is implemented. If this parameter is set to EXT, the board
disables its internal power driver and assumes that the motor power is applied by an external
driver module.

IcePAP User Manual 31 of 155

NVOLT <float> Nominal operation voltage (volts)
IVOLT <float> Idle operation voltage (volts)
NCURR <float> Nominal current (amps)
ICURR <integer> Idle current (%)
BCURR <integer> Boost current increment (%)

These parameters set the motor voltage and current values. During movements, the driving
voltage and phase current are set to NVOLT (in volts) and NCURR (in amps) respectively.
When the motor is stopped the voltage and current are set to IVOLT (in volts) and ICURR.
Note that ICURR is not specified in amps, but in a given percentage of the nominal current
NCURR.
It is possible to increase the phase current during acceleration and deceleration phases by
specifying a boost current increment BCURR greater than zero. BCURR is also specified in
percentage of NCURR and adds to the nominal current.

CURRGAIN { CUSTOM | LOW | MEDIUM | HIGH } Current regulation gain
MREGP <float> Proportional coefficient
MREGI <float> Integral coefficient
MREGD <float> Derivative coefficient

MREGP, MREGI and MREGD are the PID coefficients used for motor current regulation. If
CURRGAIN is set to CUSTOM, the PID values can be freely set. If CURRGAIN is set to
LOW, MEDIUM or HIGH, the PID values are forced to predefined values.

NRES <float> Nominal phase resistance

This parameter sets the value of the nominal electrical resistance of the motor phases in
ohms.
If NRES is different from zero the current regulators algorithm will use this value to improve
their operation

INDEXER { INTERNAL | InPos | EncIn } Default indexer source

Selects if the axis must be operated by using the internal trajectory generator or an external
signal applied to one of the encoder InPos or EncIn inputs.
The INDEXER parameter refers to the default value, if the axis is not linked (see LNKNAME),
the actual indexer source can be changed during operation (see INDEXER command).

LNKNAME <string> Name of the linked axes group

Selects the group name to be used if the axis is configured to operate in LINKED mode. All
the linked axes in the same IcePAP system sharing the same LNKNAME are configured to
operate co-ordinately as described in 0. Setting LNKNAME to a non empty string forces the
axis to operate in LINKED mode and the INDEXER parameter to INTERNAL. In the same
way if the INDEXER parameter is set to a value different from INTERNAL, then LNKNAME is
cleared.

SHFTENC { NONE | InPos | EncIn | AbsEnc} Shaft encoder
TGTENC { NONE | InPos | EncIn | AbsEnc} Target encoder
CTRLENC { NONE | InPos | EncIn | AbsEnc} Control encoder

Select which input position signals will be used as shaft encoder, target encoder and control
encoder. If any of these parameters is set to NONE the corresponding function is left
unassigned.

POSUPDATE { NORMAL | MEASURE } ….

32 of 155 IcePAP User Manual

Selects whether the axis position is updated to match the measured position during open loop
movements. If there is no functional encoder configured as TGTENC or SHFTENC, the
measured position matches the nominal axis position and the MEASURE mode has no effect.

ANTURN <integer> Axis reference number of turns
ANSTEP <integer> Axis reference number of units/steps

Defines the resolution of the axis by specifying the number of units/steps (ANSTEP) for a
given number of motor turns (ANTURN). This resolution can be selected independently of the
actual resolution of the various encoders connected to the driver board and is always the
position resolution used by the internal indexer.

DEFVEL <float> Default velocity (steps/sec)
DEFACCT <float> Default acceleration time (sec)

Configures the default values for velocity and acceleration time. The velocity value is
specified in axis units (or steps) per second. The acceleration time is specified in seconds.

STRTVEL <float> Maximum start velocity (steps/sec)

Configures the maximum starting velocity. This value, that is specified in axis units (or steps)
per second, is the maximum velocity that can be applied to the motor without acceleration
ramp. It is only used when the driver has to limit the motor slew rate as it is required in some
closed loop modes for instance.

CTRLERROR <integer> Maximum control encoder error (steps)

Configures the ...

PCLOOP { OFF | SHFTENC | TGTENC } Default closed loop mode
PCLTAU <float> Position closed loop time constant (sec)
PCLERROR <integer> Maximum closed loop error (steps)
PCLMODE { SIMPLECHK } Closed loop special flags
PCLDEADBD <integer> Minimum closed loop error (steps)
PCLSETLW <integer> Closed loop settling window (steps)
PCLSETLT <float> Closed loop settling time (sec)

The position closed loop default mode and encoder signal used is selected by the PCLOOP
parameter. The position closed loop is an integral correction algorithm that forces the selected
encoder value to follow the desired axis value with the regulation time constant set by
PCLTAU. The maximum acceptable follow error, defined as the difference between the axis
and encoder values, is the number of axis steps in PCLERROR. The difference between the
motor electrical phase and the encoder value is also checked to be less than PCLERROR,
unless the flag SIMPLECHK in parameter PCLMODE is set. If the follow error is less than
PCLDEADBD the correction algorithm does not take any action. If the error is less than
PCLSETLW, the driver status bit INWINDOW will be set. At the end of a movement the driver
status bit SETTLING will be set until the error remains less than PCLSETLW during the time
defined by PCLSETLT.

LPPOL { NORMAL | INVERTED } Polarity of the Lim+ signal
LMPOL { NORMAL | INVERTED } Polarity of the Lim- signal
HOMEPOL { NORMAL | INVERTED } Polarity of the Home signal

IcePAP User Manual 33 of 155

These parameters allow to invert the electrical polarity (logic value) of the limit switch signals
and the Home input. Note that LPPOL and LMPOL do not change the functional assignment
of the limit switches: Lim+ always blocks motion in the positive direction while Lim- blocks
always negative movements.

EINTURN <integer> EncIn reference number of turns
EINSTEP <integer> EncIn reference number of units/steps
INPNTURN <integer> InPos reference number of turns
INPNSTEP <integer> InPos reference number of units/steps
ABSNTURN <integer> AbsEnc reference number of turns
ABSNSTEP <integer> AbsEnc reference number of units/steps

Allow to define the resolution of the encoders connected to the physical encoder inputs:
EncIn, InPos and AbsEnc. The resolution is defined by specifying the number of encoder
units/steps (encoderNSTEP) for a given number of motor turns (encoderNTURN). These
values must match the resolution of the encoders in the actual mechanics.

EINMODE { QUAD | PULSE+ | PULSE- } EncIn input counting mode
INPMODE { QUAD | PULSE+ | PULSE- } InPos input counting mode

Select the input counting mode (quadrature counting or pulse/direction) for the incremental
encoder signals connected to the position inputs EncIn and InPos. In the case of
pulse/direction counting mode, it is possible to select if the incremental counting takes place
at the rise edge (PULSE+) or the falling edge (PULSE-) of the pulse signal.

EINSENSE { NORMAL | INVERTED } EncIn sense
INPSENSE { NORMAL | INVERTED } InPos sense

Allow to change the sign of the incremental encoder signals EncIn and InPos. Inverting the
sign of the incremental signal is equivalent to invert the sense of motion of the encoder.

EINAUXPOL { NORMAL | INVERTED } Polarity of the EncInAux signal
INPAUXPOL { NORMAL | INVERTED } Polarity of the InPosAux signal

These parameters allow to invert the electrical polarity (logic value) of the auxiliary signals
EncInAux and InPosAux.

ABSSENSE { NORMAL | INVERTED } AbsEnc sense
ABSOFSSET <integer> AbsEnc position offset

Allow to apply a sign inversion and an offset to the absolute encoder value read through the
SSI encoder interface.

SSIDBITS <integer> SSI data bits
SSICODE { BINARY | GRAY } SSI data coding
SSISTATUS { S | .S | ES | OS } SSI status/control bits
SSICLOCK { 125KHz | 250KHz | 500KHz | 1.25MHz |
 2.5MHz | 5MHz | 12.5MHz | 25MHz | OFF} SSI clock frequency
SSIDELAY { 0 | 5us | 10us | 20us | 30us |
 50us | 100us | 500us} SSI polling delay

Configuration parameters for the SSI interface.

HOMESRC { Lim+ | Lim- | Home | EncAux | InpAux} Homing signal
HOMETYPE { LEVEL | PULSE | MPULSE } Type of homing signal

34 of 155 IcePAP User Manual

The parameter HOMESRC selects the hardware signal to be used by the homing procedure.
The type of signal, i.e. how the homing signal indicates the reference mechanical position, is
configured by HOMETYPE. Possible values are LEVEL, if the signal logic level changes at
the reference position, PULSE if the signal is a short pulse at the reference position, or
MPULSE if the homing device produces multiple pulses with variable distances between
them. See for details

HOMEFLAGS [AUTODIR] [REVERSE] [SETPOS] [SLOW] [NEGEDGE]
 Homing flags

Configuration of the behaviour of the homing functionality.

HOMEPOS <integer> Reference homing position

Configuration of ...

HOMEVEL <float> Slow homing velocity (steps/sec)

Configuration of ...

OUTPSRC { AXIS | MOTOR | MEASURE | SHFTENC | TGTENC |
 InPos | EncIn | AbsEnc | Sync} OutPos source signal
OUTPMODE { QUAD | PULSE+ | PULSE- } OutPos output counting mode
OUTPPULSE { 50ns | 200ns | 2us | 20us} OutPos pulse width
OUTPSENSE { NORMAL | INVERTED } OutPos sense

Configuration of the OutPos position output signal.

OUTPAUXSRC {LOW | HIGH | Lim+ | Lim- | Home | eCAM |
 EncAux | InpAux | SyncAux"} OutPosAux source signal
OUTPAUXPOL { NORMAL | INVERTED } Polarity of the OutPosAux signal

Configuration of the OutPosAux auxiliary output signal.

INFASRC { LOW | HIGH | Lim+ | Lim- | Home | EncAux |
 InpAux | SyncAux | PWRCTRL | ENABLE | ALARM | READY |
 READY | MOVING | BOOST | STEADY | eCAM | BRAKE} InfoA source signal
INFBSRC { LOW | HIGH | Lim+ | Lim- | Home | EncAux |
 InpAux | SyncAux | PWRCTRL | ENABLE | ALARM | READY |
 READY | MOVING | BOOST | STEADY | eCAM | BRAKE } InfoB source signal
INFCSRC { LOW | HIGH | Lim+ | Lim- | Home | EncAux |
 InpAux | SyncAux | PWRCTRL | ENABLE | ALARM | READY |
 READY | MOVING | BOOST | STEADY | eCAM | BRAKE } InfoC source signal
INFAPOL { NORMAL | INVERTED } InfoA polarity
INFBPOL { NORMAL | INVERTED } InfoB polarity
INFCPOL { NORMAL | INVERTED } InfoC polarity

Default signal sources and polarities for the InfoA, InfoB and InfoC output signals. This default
configuration is effective at initialisation, but can be changed during operation by means of the
commands INFOA, INFOB and INFOC respectively. The available signal sources are
explained in the documentation of the INFOx commands.

IcePAP User Manual 35 of 155

EXTPOWER { NONE | LIMITS | Home | EncAux | InpAux | Disable } External power
EXTDISABLE { NONE | LIMITS | Home | EncAux | InpAux | Disable } External disable
EXTBUSY { NONE | LIMITS | Home | EncAux | InpAux | Disable } External busy
EXTALARM { NONE | LIMITS | Home | EncAux | InpAux | Disable } External alarm
EXTWARNING { NONE | LIMITS | Home | EncAux | InpAux | Disable } External warning
EXTPOWER { NONE | LIMITS | Home | EncAux | InpAux | Disable } External power
EXTHOLD { NONE | LIMITS | Home | EncAux | InpAux | Disable } External hold motion

Selects of the external functional input signals. If NONE is selected as input signal fro a given
function, the external function is disabled. If a signal selection is set to LIMITS, the external
function is activated when the two limit switches, Lim+ and Lim-, are active simultaneously.

EXTDISABLE can be used to prevent the driver board to switch on the motor power. By
default, EXTDISABLE is configured to be the Disable signal at the back motor connector.
EXTBUSY blocks the execution of motion commands by preventing the driver to go to
READY state. Once the motion is started, changes in the EXTBUSY command do not affect
the movement.
EXTPOWER is only effective when the IcePAP driver is configured to operate with external
power drivers, and informs whether or not the motor power is on.
EXTWARNING and EXTALARM can be used to generate warning and alarm conditions by
external signal sources.
EXTHOLD does not block the execution of a motion command, but stops any movement if
active. This way, delayed motion commands (see WAIT or AT signals) can be executed even
if the EXTHOLD signal is active when the command is issued.

36 of 155 IcePAP User Manual

4. COMMUNICATION PROTOCOL

4.1. Communication basics
This section covers the IcePAP communication protocol. The communication interface is
implemented at the system master board.

Communication is achieved by bi-directional byte streams. Normal command and response
messages are transferred as lines of printable ASCII characters. The only exception is the
transfer of binary data blocks, a special feature described in 4.5.
Commands messages sent to IcePAP must be formatted as sequences of printable
characters terminated by a “carriage return” (ASCII 0x0D). Any additional control character,
like “line feed” (ASCII 0x0A), is ignored.
Response messages produced by the device consist on lines terminated by a “carriage
return” + “line feed” character sequence (ASCII 0x0D 0x0A).

4.1.1. System commands
Commands that do not include and address prefix are system commands.and are processed
by the system master board. Example: ?SYSSTAT

4.1.2. Board commands
Commands addressed to specific boards. Both controller and drivers. They start with the
address of the board and executed by the particular board, i.e.: 1:?POS
It is possible to broadcast board commands to all the modules in an IcePAP system.

4.1.3. Local driver interface
Each driver board has an individual communication port for diagnostic purposes. It can also
be used for standalone operation.

4.2. Interfaces
The master boards integrate three communication ports: an Ethernet interface, a serial line
and an USB port. The characteristics of the different interfaces are the following:

Interface Type Parameters

Serial Line RS232 9600 bauds, no parity, 1 stop bit

Ethernet
100baseT-
FullDuplex

TCP sockets, port 5000

Universal Serial Bus USB 1.0 Not implemented in the current version

4.2.1. Active control clients
An IP mask can be defined to limitthe execution of commands to the icePAP system.
For every bit in the mask set to 1, the corresponding bit in the icePAP and the client IP
addresses must have the same value.
Any incoming command that is not a query queries from a client with an IP address out of the
defined mask will be rejected. All the query commands will be answered by the system
regardless of the IP mask configured.

By default the IP mask value is set to 0.0.0.0
This means that all commands from any IP address will be executed.

Examples and tips:
To limit the access to clients in the subnet where the icePAP system is, set the IP mask to the
value: 255.255.255.0

IcePAP User Manual 37 of 155

In order to change the IP mask to a less restrictive value, the corresponding IPMASK
command has to be issued from an address that is not masked. Be careful never to set the
mask to the value 255.255.255.255.

See IPMASK/?IPMASK in the command reference for information on how to change/read the
current IP mask of a system.

[TODO: Develop the IPMask concept here]

4.3. Syntax conventions

In the most usual case remote control is implemented by an application program running in a
host computer that sends commands and requests to IcePAP as sequences of ASCII
characters. The syntax rules are described below. See X for practical examples.

4.3.1. Commands and requests

 Command lines consist of a command keyword optionally followed by parameters.

- The number and type of parameters depend on the particular command.

 Command keywords are not case sensitive.

- The device converts internally all the characters to uppercase before any syntax
checking. (TO BE DISCUSSED)

- Parameters are also converted to uppercase unless they are enclosed between
double quotes (””, ASCII 0x22). (TO BE DISCUSSED)

 Commands may be optionally preceded by the acknowledge character.

- The acknowledge character is a hash symbol (#, ASCII 0x23) that must appear in the
command line immediately before the first character of the command keyword.

 Normal (non query) commands never produce response messages unless the
acknowledge character is used.

- Non query command keywords always start by an alphabetical character (A to Z).
Exceptions are binary transfer commands (see XX) that start by an asterisk character
(*, ASCII 0x2A).

- If the acknowledge character is used, the device produces the response string OK if

the command execution was successful.

- If the acknowledge character is used and the command does not executes

successfully, the device produces either the string ERROR or a string containing a

human readable error message. The behaviour depends on the current setting of the
echo mode (see 4.4).

 Requests are query commands that produce response messages from the device.

- Requests keywords always start by a question mark character (?, ASCII 0x3F).

- If the request is successful the content of the response message depends on the
particular request.

- If request fails the device produces either the string ERROR or a string containing a

human readable error message. The behaviour depends on the current setting of the
echo mode (see 4.4).

- The acknowledge character has no effect when used with requests.

 Response messages consist of one or more ASCII character lines.

38 of 155 IcePAP User Manual

- The way every line in a response message is terminated depends on the type of
communication port.

- A response message may contain either the output of a request, an

acknowledgement keyword (OK or ERROR) or a human readable error message.

- When a response message consists of more than one line, the first and last lines
contain a single dollar character ($, ASCII 0x3F).

4.3.2. Addressing

 Board commands must be sent to the specific controller or drivers boards by using an
addressing prefix. An addressing prefix consists of the board address in decimal format
followed by a colon character (:, ASCII 0x3A). No spaces are allowed between the last
address digit and the colon character.

 An addressing prefix consisting of only the colon character (:) with no address string is
interpreted as a broadcast command. In that case the command is forwarded to all the
boards in the system. Controller boards ignore broadcasts of driver-only commands as
well as driver boards ignore controller-only broadcasts. No queries or acknowledge
characters are allowed in broadcasts.

IcePAP User Manual 39 of 155

4.4. Terminal mode

When an IcePAP system is accessed through a serial port, two possible communication
modes are available that can be selected with the commands ECHO and NOECHO. The
differences between these two modes are described below. These commands can be issued
through other interfaces (i.e. Ethernet) but they only have effect on the serial port.

Echo mode (terminal mode)

This mode should be used when the IcePAP master board is connected to a dumb terminal.
In this case the user types commands on the keyboard and reads the answers and error
messages on the terminal screen without computer intervention. This mode is usually not
active by default and the user has to send the ECHO command every time the device is
powered on.

In echo mode all the characters sent to the device are echoed back to the terminal. The
device also sends human-readable messages to be printed on the terminal screen whenever
an error is detected in commands or requests.
Case conversion takes place before the characters are sent back to the terminal, therefore
characters are echoed back as uppercase even if they are typed and sent to the device as
lowercase. (TO BE DISCUSSED)
In echo mode the backspace character (ASCII 0x08) has the effect of deleting the last
character received by the device. In this way a minimum editing functionality is provided.

Noecho mode (host computer)

This is the default mode. In this case no characters are echoed and no error messages are
returned by non-query commands unless they are explicitly requested by the acknowledge
character. This mode is intended to be used when a program running in a host computer
communicates with the controller, sending commands and analysing the answers.

4.5. Binary transfer

Binary transfer is a special mode that extends the standard protocol allowing faster data
transfer. Binary blocks have a maximum size of 65535 data bytes (0xFFFF).

Binary transfer commands or requests are initiated by ASCII command lines that follow the
same rules than ordinary commands or requests (see 4.3.1). The only difference is that binary
transfer command lines must include an asterisk character (*, ASCII 0x2A) in the command or
request keyword. Non-query commands keywords must start by an asterisk character.
Request keywords must include the asterisk as the first character after the question mark.

Once IcePAP has received the ASCII command line, the data is transferred as a binary block.
In the case of non-query commands, the binary data block is sent from the host computer to
the device. In case of binary requests, the device sends the binary block to the host (serial
line) or puts it in its output buffer ready to be read by the host (GPIB).

If the device finds an error in a command line containing a binary request, instead of the

binary block, it produces the string ERROR.

The acknowledge character (#, ASCII 0x23) can be used in the same way that with non-
binary commands. If it is included in a non-query command line, the device produces an

acknowledgement keyword (ERROR or OK) to signal if the command line contained errors or

not. The acknowledge character has no effect in the case of binary requests.

Although binary transfer is initiated in the same way for both serial line and GPIB
communication, the format of the binary data blocks and the management of the end of
transfer condition are different in both cases.

40 of 155 IcePAP User Manual

4.5.1. Serial port binary blocks

In the case of transfer through a serial port, the binary block contains the binary data and 4
extra bytes. The structure of the block is the following:

byte Number content

0 0xFF (signature)

1 DataSize (MSB)

2 DataSize (LSB)

3 data byte (first)

… …

DataSize + 2 data byte (last)

DataSize + 3 Checksum

The first byte contains always the value 0xFF (255) and can be used the signature of the
block. The next two bytes contain the number of data bytes to transfer. The last byte contains
the check sum value that is used to verify data integrity.

The checksum value is calculated as the lower 8-bits of the sum of all the bytes in the binary
block with exception of the signature byte (and the checksum byte itself).

4.5.2. TCP binary blocks

In the case of transfer by Ethernet, the binary block does not contain any additional control or
protocol byte. Only the actual data bytes are transferred. The EOI line is asserted during the
transfer of the last data byte to signal the end of the transmission.

4.5.3. Binary vector structures

Some commands require lists of numeric values packaged as binary data blocks that are
named “binary vectors” and that follow the structure depicted in the following figure:

Metadata header

Data area

zero padding

A binary vector consists of a fixed size metadata header followed by a data area. When
necessary, the data area is extended by padding bytes required to guarantee that the total
size (data + padding) is a multiple of four bytes. The content of the bytes in the padding area
is not relevant although it is usually set to zero.

The data area contains N values that represent the data vector in absolute or incremental
mode. In absolute mode each of the N values corresponds to one element of the vector. In
incremental mode, each on the N values corresponds to the difference between the
corresponding vector element and the previous one. In incremental mode, the absolute value
of the first element of the vector is stored in the metadata header, and the first of the N values
is set to zero.

IcePAP User Manual 41 of 155

The N binary values that describe the vector are always of the same data type and size. They
are represented in little-endian order and stored one after the other in a data block with no
gaps between them. The available data types are summarised in the table below. The size of
the data block is therefore N times the size of each individual data value (1 to 8 bytes).

Data
Type

Name
Size in
bytes

Description C type

0 BYTE 1 Signed byte int8_t

1 WORD 2 Signed word int16_t

2 DWORD 4 Signed double word int32_t

3 LWORD 8 Signed long word int64_t

4 FLOAT 4 IEEE 754 binary32 float

5 DFLOAT 8 IEEE 754 binary64 double

8 UBYTE 1 Unsigned byte uint8_t

9 UWORD 2 Unsigned word uint16_t

10 UDWORD 4 Unsigned double word uint32_t

11 ULWORD 8 Unsigned long word uint64_t

The data block can be optionally compressed by mean of lossless algorithms, but by default
the data block is not compressed and the data area consists simply of the uncompressed
data block followed the number of padding bytes required to reach a total size that is multiple
of 4 bytes. If the data block is compressed, the structure of the similar and padding is always
applied after the compressed data block.

The structure of a binary data vector is shown in the following table:

First

 Data vector header

 Data value 0

 Data value 1

 Data value 2

 …

 Data value N-1

 zero padding

The structure of the data vector header must comply with the following declaration:

typedef struct {

 uint16_t signature; // signature must be VDAT_SIGNATURE (0xCAFE)

 uint8_t version; // version of the data vector format. Current: 0

 uint8_t data_offset; // data offset in dwords = 6 + user area size

 uint32_t vdat_size; // full vector size in dwords

 uint32_t n_values; // number of values in the column

 uint8_t datatype; // data type

 uint8_t compression; // compression algorithm: 0=uncompr. 1=lzapp

 uint16_t flags; // coding flags and board address

 extdfloat_t firstval; // first vector value if incremental

} vdatheader_t;

42 of 155 IcePAP User Manual

4.5.4. Parametric trajectories
The system version of the binary *PARDAT command command allows to send several
binary vectors corresponding the the different columns of a parametric table. In that case, the
binary block sent to the master board after the *PARDAT ASCII command is just a
concatenation of the vector blocks to be sent.
Each of the vector blocks has a flags field indicating the type of column (parameter, axis
position, or slope), whether the data is incremental or absolute, and the address of the board
that will use that vector. Vectors of type Parameter and Slope can have the special value
address unset (address = 0xFF) to indicate that the vector is to be sent to all the drivers.

Flag name Flag value

Parameter (P) 0x1000

Axis position (A) 0x2000

Slope (S) 0x4000

Incremental 0x8000

IcePAP User Manual 43 of 155

5. COMMAND SET

BOARD COMMANDS

Command Description Controller Driver Page

 ?ACTIVE Query activation status  47

 ?MODE Query board mode   91

 ?STATUS Query board status   128

 ?VSTATUS Query verbose board status   145

 ?STOPCODE Query board stop code   130

 ?VSTOPCODE Query verbose board stop code   147

 ?ALARM Query board alarm message   50

 ?WARNING Query board warnings   148

WTEMP ?WTEMP Set/query warning temperature   151

CONFIG ?CONFIG Manage configuration mode  59

CFG ?CFG Set/query configuration parameters  54

 ?CFGINFO Query configuration parameter info  56

CSWITCH ?CSWITCH Set/query limit switch configuration mode  60

 ?VER Query board version information   144

NAME ?NAME Set/query board name  95

 ?ID Query board identification   80

 ?POST Query power-on self-test results   110

POWER ?POWER Set/query motor power state  111

AUXPS ?AUXPS Set/query auxiliary power supply state  52

 ?MEAS Query measured value   89

POS ?POS Set/query axis position in axis units   108

ENC ?ENC Set/query axis position in encoder steps   68

 ?PARPOS Set/query axis position in parametric units   103

 ?HOMESTAT Query home search status  79

 ?HOMEPOS Query the found home position in axis units  78

 ?HOMEENC Query the found home position in encoder steps  77

VELOCITY ?VELOCITY Set/query programmed axis velocity   141

ACCTIME ?ACCTIME Set/query acceleration time   48

PCLOOP ?PCLOOP Set/query current position closed loop mode  105

ESYNC Synchronise internal position registers  71

CTRLRST Reset control position encoder  61

MOVE Start absolute movement   92

UMOVE Absolute updated movement   140

RMOVE Start relative movement   120

JOG ?JOG Set/query jog velocity   85

HOME Start home signal search sequence  76

MOVEL Start position list movement   93

PARVEL ?PARVEL Set/query parametric axis velocity   104

PARACCT ?PARACCT Set/query parametric acceleration time   99

MOVEP Start axis movement to parameter value   94

PMOVE Start parametric movement   106

TRACK Start position tracking mode   139

PTRACK Start parametric tracking mode   114

LTRACK Start list tracking mode   88

VMOVE ?VMOVE Set/query setpoint for variable regulation motion   145

VCONFIG ?VCONFIG Set/query variable regulation configuration   141

VVALUE ?VVALUE Set/query current value of external variable   148

CMOVE Start relative movement in configuration mode  58

CJOG Set jog velocity in configuration mode  57

AT Set trigger condition   51

WAIT Set waiting lapse   149

STOP Stop movement   129

44 of 155 IcePAP User Manual

ABORT Abort movement   46

DISPROT Request temporary protection disable  63

BOARD COMMANDS (cont.)

Command Description Controller Driver Page

 ?INDEXER Query indexer signal source  81

PARDAT ?PARDAT

*PARDAT
Load/clear/query parametric trajectory data   100

?PARVAL   103

LISTDAT ?LISTDAT

*LISTDAT
Load/query position list data   87

ECAM ?ECAM Set/query electronic cam mode   64

ECAMDAT ?ECAMDAT

*ECAMDAT
Load/query electronic cam data   65

INFOA ?INFOA Set/query InfoA signal source and polarity  82

INFOB ?INFOB Set/query InfoB signal source and polarity  82

INFOC ?INFOC Set/query InfoC signal source and polarity  82

OUTPOS ?OUTPOS Set/query source and sense of OutPos signal  98

OUTPAUX ?OUTPAUX Set/query source and polarity of OutPosAux output signal  97

SYNCPOS ?SYNCPOS Set/query sense and output source of Sync signal   134

SYNCRES ?SYNCRES Set/query resolution of Sync signal   136

SYNCAUX ?SYNCAUX Set/query polarity and output source of Sync Aux signal   133

 ?HELP Query list of available commands   75

 ?ERRMSG Query last command error message   70

 ?FERRMSG Query first error message   72

BLINK ?BLINK Set/query remaining blinking time   53

 ?TIME Query running time   138

DEBUG ?DEBUG Set/query debug level   62

ECHO Select echo mode  67

NOECHO Cancel echo mode  96

 ?MEMORY Query available memory   90

 ?ADDR Query board address   49

IcePAP User Manual 45 of 155

SYSTEM COMMANDS

Command Description Page

 MODE ?MODE Set/query system mode 91

 ?SYSSTAT Query system configuration 137

 ?STATUS Query multiple board status 128

 ?FSTATUS Query multiple board fast status 74

 ?LINKED Query linked axis groups 86

REPORT ?REPORT Set/query asynchronous report settings 116

 ?VER Query system firmware version information 144

 ?RID Query rack identification string 118

 ?RTEMP Query rack temperatures 123

*PROG

PROG ?PROG
Firmware programming 112

RFPROG Factory firmware programming 119

IPMASK ?IPMASK Set/query IP control mask 84

REBOOT System reboot 115

RESET System or rack reset 117

POWER ?POWER Set/querymultiple axis motor power state 111

POS ?POS Set/query multiple axis position in axis units 108

ENC ?ENC Set/query multiple axis position in encoder steps 68

 ?FPOS Fast query of multiple board positions 73

 ?HOMESTAT Query multiple axis home search status 79

 ?HOMEPOS Query the found multiple axis home position in axis units 78

 ?HOMEENC Query the found multiple axis home position in encoder steps 77

VELOCITY ?VELOCITY Set/query programmed multiple axis velocity 141

ACCTIME ?ACCTIME Set/query acceleration time 48

MOVE Start multiple axis absolute movement 92

RMOVE Start multiple axis relative movement 120

JOG ?JOG Set/query multiple axis jog velocities 85

HOME Start multiple axis home signal search sequence 76

MOVEP Start axis movement to parameter value 94

PMOVE Start parametric movement 106

AT Set trigger condition 51

WAIT Set waiting lapse 149

STOP Stop multiple axis movement 129

ABORT Abort movement 46

ESYNC Synchronise internal position registers for multiple axis 71

CTRLRST Reset control position encoder for multiple axis 61

DISPROT Request multiple axis temporary protection disable 63

 ?HELP Query list of available commands 75

 ?ERRMSG Query last command error message 70

ECHO Select serial line echo 67

NOECHO Cancel serial line echo 96

46 of 155 IcePAP User Manual

5.1. Command reference

ABORT

Abort movement

Syntax:

<board_addr>:ABORT (board command)

 or

ABORT [<axis1> [<axis2> … [<axisN>]…]] (system command)

Description:

The ABORT command aborts all movement in the specified axis.

When using the system command, if the command cannot be issued for a certain axis, all
the movements in the system will be aborted.

If one of the explicitly aborted axis belongs to a predefined group, all the members of that
group will be aborted.

Examples:

Command: 16:ABORT

Command: ABORT // abort all the axes in the system

Command: ABORT 30 33 42 // abort axes 30, 33 and 42

Command: #ABORT 30 33 42

Answer: ABORT ERROR All axes aborted. Axis 33: Board is not

present in the system

Command: #ABORT 30 rrt 42

Answer: ABORT ERROR All axes aborted. Wrong parameter(s)

IcePAP User Manual 47 of 155

?ACTIVE

Query activation status

Syntax:

<driver_addr>:?ACTIVE

Answer:

<driver_addr>:?ACTIVE { YES | NO }

Description:

Returns the current activation status of a driver board. A driver will be active if the internal
ACTIVE configuration parameter is set to YES and the board is not in PROG or TEST
mode. Otherwise the ?ACTIVE query will return NO.

When a driver board is not active, the motor power and the trajectory generation functions
are disabled. (to be checked)

The driver’s ACTIVE configuration parameter will be reset to the value NO at power on if:

- the address of the driver has changed, for instance if the board has been moved to a
different slot within the same system,

- the driver board finds itself plugged in a different IcePAP system, i.e. the master crate
AND the master controller are different than the previous ones

- there is a firmware or a command set mismatch between the driver and the master
controller board.

A standalone driver (with no master controller) can be activated through the front panel
serial line with the command SLACT.

Examples:

Command: 16:?ACTIVE

Answer: 16:?ACTIVE YES

48 of 155 IcePAP User Manual

ACCTIME / ?ACCTIME

Set/query acceleration time

Syntax:

<board_addr>:ACCTIME [<accTime>] (board command)

 or

ACCTIME [<axis1> <accTime1> … [<axisN> <accTimeN>]…] (system command)

Description:

Sets the acceleration time for the corresponding axis to the <accTime> values in
seconds. The actual acceleration for each axis is calculated internally based on the
current value of the axis velocity (see VELOCITY command).

The acceleration time is internally recalculated every time that the axis velocity changes
in order to keep the axis acceleration constant.

Syntax:

<board_addr>:?ACCTIME [{NOMINAL | STEPS | DEFAULT}] (board command)

 or

?ACCTIME [{ NOMINAL | STEPS | DEFAULT}] [<axis1> [<axis2> … [<axisN>]]]

 (system command)

Answer:

<board_addr>:?ACCTIME <accValue> (board answer)

 or

?ACCTIME <accValue1> <accValue2> … <accValueN> (system answer)

Description:

By default the query returns the current NOMINAL acceleration time of the specified axes
in seconds. If the STEPS keyword is issued, the query returns instead the acceleration
distances in axis steps. With the DEFAULT keyword, the query returns the default value
defined by the DEFACCT configuration parameter.

Examples:

Command: 16:?ACCTIME

Answer: 16:?ACCTIME 0.25

Command: 24:ACCTIME 0.1

Command: ?ACCTIME 16 24

Answer: ?ACCTIME 0.25 0.1

Command: ACCTIME 16 0.1 17 0.2

IcePAP User Manual 49 of 155

?ADDR

Query board address

Syntax:

<board_addr>:?ADDR

Answer:

<board_addr>:?ADDR <boardAddr>

Description:

The ?ADDR command returns the current board address. This command is only useful
when the board is accessed through the local serial line interface.

Examples:

Command: 16:?ADDR

Answer: ?ADDR 16 // useless information

 Access through the local serial line interface:

Command: ? ADDR

Answer: ?ADDR 16

50 of 155 IcePAP User Manual

?ALARM

Query board alarm message

Syntax:

<board_addr>:?ALARM

Answer:

<board_addr>:?ALARM { NO | <alarm_condition string> }

Description:

If the board is disabled by an alarm condition, this query returns a string describing such
condition. If not, the query returns the string NO.

Possible alarm conditions are:

Alarm Condition Description

Internal failure Power-on self test (POST) or motor supply failure

Motor failure Error detected in motor connection

Power overload Overcurrent or power overload

Driver overheating The temperature of the driver board exceeds maximum
value

Closed loop error The closed loop follow error exceeds the maximum value
(see PCLERROR configuration parameter)

Control encoder error The control encoder discrepancy exceeds the
CTRLERROR configuration parameter

External alarm The external alarm signal is active (see EXTALARM
configuration parameter)

Examples:

Command: 115:?ALARM

Answer: 115:?ALARM <alarm condition string>

Command: 115:#POWER ON

Answer: 115:POWER OK

Command: 115:?ALARM

Answer: 115:?ALARM NO

IcePAP User Manual 51 of 155

AT

Set trigger condition

Syntax:

<board_addr>:AT {HIGH | LOW | RISE | FALL} <trigg_signal> (board command)

 or

<board_addr>:AT TIME <time> (board command)

 or

AT {HIGH | LOW | RISE | FALL} <trigg_signal> (system command)

 or

AT TIME <time> (system command)

Description:

The AT command ...

Examples:

Command: 16:AT RISE InpAux ; 16:MOVE 10000

52 of 155 IcePAP User Manual

AUXPS / ?AUXPS

Set/query axis auxiliary power supply state

Syntax:

<driver_addr>:AUXPS [{ON | OFF}]

Description:

Switches on or off the auxiliary power supply in a driver board. When the auxiliary power
supply is switched off, the motor power is also switched off.

Syntax:

<driver_addr>:?AUXPS

Answer:

<driver_addr>:?AUXPS [{ON | OFF}]

Description:

Returns the state of the auxiliary power supply of the driver board.

Examples:

Command: 83:?AUXPS

Answer: 83:?AUXPS ON

Command: 83:AUXPS OFF

Command: 83:?AUXPS

Answer: 83:?AUXPS OFF

IcePAP User Manual 53 of 155

BLINK / ?BLINK

Set/query remaining blinking time

Syntax:

<board_addr>:BLINK <blinkTime>

Description:

If <blinkTime> is greater than zero, sets the board in blinking mode for a period given by
<blinkTime> in seconds. If <blinkTime> is zero, this command stops blinking mode.

Syntax:

<board_addr>:?BLINK

Answer:

<board_addr>:?BLINK <remBlinkTime>

Description:

Returns the remaining blinking time.

Examples:

Command: 83:BLINK 10

Command: 83:?BLINK

Answer: 83:?BLINK 8.4532

Command: 83:?BLINK

Answer: 83:?BLINK 6.5439

54 of 155 IcePAP User Manual

CFG / ?CFG

Set/query configuration parameters

Syntax:

<driver_addr>:CFG <configPar> <configVal>

 or

<driver_addr>:CFG { DEFAULT | EXPERT }

Description:

The CFG command allows to change the current values of the configuration parameters
of a driver board. The driver has to be previously switched into configuration mode (see
CONFIG command).

The configuration of driver boards as well as the list of available parameters is detailed in
chapter 2.

The command CFG DEFAULT instructs the driver board to revert all its configuration
parameters to the default values. The list of default values can be obtain from the driver
by means of the ?CFG DEFAULT query.

The command CFG EXPERT sets an internal flag that can be read back with the ?CFG
query. This flag has not any specific function in the IcePAP system but it is provided as an
facility to external configuration tools to confirm the validity of the current driver
configuration when the driver boards are moved among systems. As the expert flag is
cleared by any other CFG command, it must be set immediately before the configuration
is validated by the CONFIG command.

Syntax:

<driver_addr>:?CFG [<configPar> | DEFAULT | EXPERT]

Answer:

<driver_addr>:?CFG <configPar> <configVal>

 or

<driver_addr>:?CFG $

 <configPar1> <configVal1>

 <configPar2> <configVal2>

 …

 <configParN> <configValN>

 $

Description:

The ?CFG query returns the value <configVal> assigned to a particular configuration
parameter <configPar>. If no parameter is specified, the query returns a multiline answer
with the complete list of configuration parameters and their current values. If the
DEFAULT keyword is used, instead of the current values, the ?CFG query returns the
complete list of configuration parameters and their default values.

If the EXPERT keyword is used as a parameter name, the ?CFG query returns the value
of the internal expert flag set by the CFG EXPERT command and cleared by any other
CFG command. The value is returned as a YES/NO boolean value. Note however that
EXPERT is not a configuration parameter.

IcePAP User Manual 55 of 155

Examples:

Command: 15:CFG DEFAULT

Command: 15:?CFG NCURR

Answer: 15:?CFG NCURR 0.1

Command: 15:CFG NCURR 2.4

Command: 15:?CFG

Answer: 15:?CFG $

ACTIVE NO

PROTLEVEL 0

NAMELOCK NO

POWERON NO

MOTPHASES 2

MOTORSENSE NORMAL

MOTPOLES 50

MREGMODE CURR

...

NCURR 2.4

...

INFCSOURCE Home

INFCPOL NORMAL

$

Command: 23:?CFG EXPERT

Answer: 23:?CFG EXPERT NO

56 of 155 IcePAP User Manual

?CFGINFO

Query configuration parameter info

Syntax:

<driver_addr>:?CFGINFO [<configPar>]

Answer:

<driver_addr>:?CFGINFO <configPar> {INTEGER | FLOAT | STRING<n> | labelList }

 or

<driver_addr>:?CFGINFO $

 <configPar1> {INTEGER | FLOAT | STRING<n> | labelList1 }

 <configPar2> {INTEGER | FLOAT | STRING<n> | labelList2 }

 …

 <configParN> {INTEGER | FLOAT | STRING<n> | labelListN }

 $

Where labelList is a list of character strings separated by whitespaces and enclosed in curly
braces ({}). [FLAG LIST descriptionmissing]

Description:

The ?CFGINFO query returns the type of the configuration parameter <configPar>.
Possible types are numeric (INTEGER or FLOAT) or string. In the case of strings the
query may return either STRING<n> , where <n> is the maximum acceptable length of
the string, or the list of acceptable fixed string values.

If no parameter is specified, the query returns a multiline answer with the complete list of
type information for all the driver configuration parameters.

Examples:

Command: 7:?CFGINFO NCURR

Answer: 7:?CFGINFO FLOAT

Command: 103:?CFGINFO

Answer: 103:?CFGINFO $

ACTIVE {NO YES}

PROTLEVEL INTEGER

NAMELOCK {NO YES}

POWERON {NO YES}

MOTPHASES {1 2 3}

MOTORSENSE {NORMAL INVERTED}

...

INFCPOL {NORMAL INVERTED}

$

IcePAP User Manual 57 of 155

CJOG

Set jog velocity in configuration mode

Syntax:

<board_addr>:CJOG <signedVelocity>

Description:

Sets the specified axis or axes in jog mode at the given velocity in steps per second. This
command can only be executed when the driver is in configuration mode.

The sign of the velocity parameter selects the actual direction of the movement. If a
specified axis is already jogging at a certain speed, the speed will be ramped up or down
as needed to reach the new velocity value. The acceleration is fixed as the ratio of the
current values of axis velocity and acceleration time (see ?VELOCITY and ?ACCTIME
queries). A zero velocity value forces an axis to stop.

Examples:

Command: 5:CJOG 100

Command: 5:?JOG

Answer: 5:?JOG 100

Command: #5:CJOG 200

Answer: 5:CJOG OK

Command: #5:CJOG -200

Answer: 3:CJOG ERROR Cannot change jog direction

58 of 155 IcePAP User Manual

CMOVE

Start absolute movement in configuration mode

Syntax:

<driver_addr>:CMOVE <absolutePos>

Description:

Performs an absolute movement on the specified driver board. This command can only
be executed when the driver is in configuration mode.

Examples:

Command: 115:CMOVE -7000

Command: 115:?POS

Answer: 115:?POS -7000

IcePAP User Manual 59 of 155

CONFIG / ?CONFIG

Manage configuration mode

Syntax:

<driver_addr>:CONFIG [<confID>]

Description:

The CONFIG command allows to switch a driver board into configuration mode. A driver
board cannot be switched into configuration mode when the IcePAP system is in PROG
or TEST modes (see MODE command).

When a driver is in configuration mode, the driver configuration parameters can be
modified with the CFG command. Once the configuration has been modified, the CONFIG
command, issued with a non empty <confID> string as parameter, validates the current
configuration and stores it in the internal non volatile memory of the driver board. The
<confID> string is also stored in the driver and can be used to identify the particular set of
configuration parameters. The board also switches back to OPER mode.

If the driver is in configuration mode and the CONFIG command is issued with no
parameters, the driver goes back to OPER mode and the last valid configuration before
entering CONFIG mode is reloaded. In that case the most recent changes done during
configuration mode are lost.

Syntax:

<driver_addr>:?CONFIG

Answer:

<driver_addr>:?CONFIG <confID>

Description:

The ?CONFIG query returns the identifier of the last valid configuration parameter set.

Examples:

Command: 32:?CFG ACTIVE

Answer: 32:?CFG ACTIVE NO

Command: ?MODE

Answer: ?MODE OPER // System mode is OPER

Command: 32:CONFIG // Switch axis 32 into CONFIG mode

Command: 32:?MODE

Answer: 32:?MODE CONFIG

Command: 32:CFG ACTIVE YES // Change configuration parameter

Command: 32:CONFIG CONF001 // Validate driver configuration

Command: 32:?CFG ACTIVE

Answer: 32:?CFG YES

60 of 155 IcePAP User Manual

CSWITCH / ?CSWITCH

Set/query limit switch configuration mode

Syntax:

<board_addr>:CSWITCH { NORMAL | SMART | STICKY }

Description:

Sets the behaviour of the limit switches in configuration mode. In addition to the normal
mode, the limit switches can be set to operate in either SMART or STICKY mode. This
command as well as the special limit switch mode modes is only valid in configuration
mode. The STICKY and SMART modes are only intended to assist the user when testing
the electrical connection and operation of the physical limit switches and selecting the
direction of the motor. When the driver board is in operation mode, the limit switches
always operate in normal mode.

The STICKY mode forces any of the limit switches that has been activated once, to
remain active until the driver is switched to OPER mode or the CSWITCH command is
issued again.

The SMART switch mode forces any movement to stop as soon as any of the two limit
switches is activated. If the switch that was activated is not consistent with the direction of
motion, the value of the configuration parameter MOTSENSE is inverted and switch mode
returns to normal.

Syntax:

<board_addr>:?CSWITCH

Answer:

<board_addr>:?CSWITCH { NORMAL | SMART | STICKY }

Description:

Returns the current value of the limit switch configuration mode.

Examples:

Command: 15:?CSWITCH

Answer: 15:?CSWITCH NORMAL

Command: 15:CSWITCH SMART

Command: 15:?CSWITCH

Answer: 15:?CSWITCH SMART

IcePAP User Manual 61 of 155

CTRLRST

Reset control encoder value

Syntax:

CTRLRST <axis1> <axis2> … <axisN> (system command)

 or

<driver_addr>:CTRLRST (board command)

Description:

This command resets the current value of the control position register.

After the reset, the value of the control encoder register is equal to:

- The measure position register if the control encoder is different from the measure
encoder

- The axis position if the control encoder is the measure encoder

Examples:

Command: #11:CTRLRST

Answer: 11:CTRLRST OK

Command: CTRLRST 11 13 14

62 of 155 IcePAP User Manual

DEBUG / ?DEBUG

Set/query debug level

Syntax:

<board_addr>:DEBUG <debugLevel>

Description:

Sets the level of the debug facility to <debugLevel>. If the level is set to 0, the debug
facility is switched off.

The debug level is stored in the board non-volatile memory and it is maintained after
board reset.

Syntax:

<board_addr>:?DEBUG

Answer:

<board_addr>:?DEBUG <debugLevel>

Description:

Returns the current level of the debug facility.

Examples:

Command: 15:?DEBUG

Answer: 15:?DEBUG 0

Command: 15:DEBUG 2

Command: 15:?DEBUG

Answer: 15:?DEBUG 2

IcePAP User Manual 63 of 155

DISPROT

Request temporary protection disable

Syntax:

<driver_addr>: DISPROT {ALL | {[LINKED] [CONTROL] [HARDCTRL]} }

 (driver command)

 or

DISPROT {ALL | {[LINKED] [CONTROL] [HARDCTRL]}} <axis1> <axis2> … <axisN>

 (system command)

Description:

Request the specified boards to override the selected protections during the execution of
the following command. The possible protections to be overriden are selected by the
following keywords:

Keyword Protection disable

ALL
Disables all the protections, The ALL keyword is equivalent to issue

LINKED and CONTROL keywords simultaneously.

LINKED

Allows to issue individual commands to linked axes. In normal
operation, most movement and related commands can only be sent
to linked axes collectively, by addressing the linked group name.

CONTROL

Disables the action of the control encoder during the next
movement after the DISPROT command. The movement command
must follow the DISPROT command.

HARDCTRL

Disables the action of the control encoder during the next
movement AND limits the maximum movement to a maximum
number of steps defined by configuration parameter CTRLERROR.
The movement command must follow the DISPROT command.

The HARDCTRL flag causes to override the control encoder protection, but adds a new

protection. Thus, when the flag ALL is used, the HARDCTRL flag will not be set internally.

Examples:

Command: 15:DISPROT LINKED

Command: DISPROT CONTROL LINKED 23 24 25

64 of 155 IcePAP User Manual

ECAM / ?ECAM

Set/query electronic cam mode

Syntax:

< board_addr>: ECAM [{ OFF | ON | PULSE | LOW | HIGH }]

Description:

The ECAM command ...

ON is the default action.

Syntax:

<board_addr>:?ECAM

Answer:

<board_addr>:?ECAM { OFF | ON } { PULSE | LOW | HIGH } <curr_level>

Description:

Returns the ON/OFF activation state of the electronic cam, the configuration mode as
PULSE or level (LOW or HIGH) and the current logic level of the eCAM signal (LOW or
HIGH).

Examples:

Command: 15:?ECAM

Answer: 15:?ECAM OFF PULSE LOW

Command: 15:ECAMDAT 1000 41000 100

Command: 15:?ECAMDAT

Answer: 15:?ECAMDAT AXIS 1000 41000 100

Command: 15:ECAM ON

Command: 15:?ECAM

Answer: 15:?ECAM ON PULSE LOW

IcePAP User Manual 65 of 155

ECAMDAT / *ECAMDAT / ?ECAMDAT

Load/query electronic cam data

Syntax:

<board_addr>: *ECAMDAT [ecam_source] {DWORD | FLOAT | DFLOAT}

<board_addr>: ECAMDAT [ecam_source] <first> <last> <nPoints>

<board_addr>: ECAMDAT CLEAR

Description:

The ECAMDAT command ...

The *ECAMDAT binary command ...

ecam_source Position value

PARAM Value of the position parameter

AXIS Current nominal axis position

MEASURE Value of the axis position measurement

SHFTENC  Value of the functional “shaft” encoder

TGTENC  Value of the functional “target” encoder

CTRLENC  Value of the functional “control” encoder

ENCIN  Position of the encoder connected at the rear connector

INPOS  Position of the encoder connected at the front panel connector

ABSENC  Position of the encoder connected at the rear SSI interface

MOTOR  Electrical phase of the motor

  Only valid for driver boards

Syntax:

<board_addr>:?ECAMDAT [<n_values> [<idx_offset>]]

Answer:

<board_addr>:?ECAMDAT ecam_source <first> <last> <nPoints>

 or

<driver_addr>:?ECAMDAT $

 << eCAM data dump >>

 $

Description:

With no parameters, the ?ECAMDAT query returns the ...

For debugging purposes, the query can be issued with a number of values <n_values> as
parameter, and an optional index offset <idx_offset>. In that case ?ECAMDAT returns a
list of values.

66 of 155 IcePAP User Manual

Examples:

Command: 15:?ECAM

Answer: 15:?ECAM OFF PULSE LOW

Command: 15:ECAMDAT 1000 41000 100

Command: 15:?ECAMDAT

Answer: 15:?ECAMDAT AXIS 1000 41000 100

Command: 15:ECAM ON

Command: 15:?ECAM

Answer: 15:?ECAM ON PULSE LOW

IcePAP User Manual 67 of 155

ECHO

Set echo mode

Syntax:

ECHO (system command)

 or

<board_addr>:ECHO (board command)

Description:

Switches the echo mode on. Useful when accessing boards through the serial line.

Example:

Command: ECHO

Command: 92:ECHO

68 of 155 IcePAP User Manual

ENC / ?ENC

Set/query axis position in encoder steps

Syntax:

<board_addr>:ENC [pos_sel] <posVal> (board command)

 or

ENC [pos_sel] <axis1> <posVal1> … <axisN> <posValN> (system command)

Description:

Loads the position registers in the specified boards with the <posVal> values. The
specific register is selected by the optional parameter pos_sel, that must be one of the
following values:

pos_sel Position register

AXIS Points to the axis nominal position

MEASURE Points to the register used for position measurement

SHFTENC  Points to the register configured as SHFTENC

TGTENC  Points to the register configured as TGTENC

CTRLENC  Points to the register configured as CTRLENC

ENCIN  ENCIN register

INPOS  INPOS register

ABSENC  ABSENC register

MOTOR  MOTOR register

SYNC Backplane SYNC input register (to be confirmed)

  Only valid for driver boards

If pos_sel is not specified, the value is loaded in the axis position register

Syntax:

<board_addr>:?ENC [pos_sel] (board query)

 or

?ENC [pos_sel] <axis1> <axis2> … <axisN> (system query)

Answer:

<board_addr>:?ENC <posVal> (board answer)

 or

?ENC <posVal1> <posVal2> … <posValN> (system answer)

Description:

Returns the current signal source used as axis indexer.

Examples:

IcePAP User Manual 69 of 155

Command: 115:ENC AXIS 500

Command: 115:ENC MEASURE -3000

Command: 115:?ENC

Answer: 115:?ENC 500

Command: ?ENC MEASURE 5 115

Answer: ?ENC 13467895 -3000

70 of 155 IcePAP User Manual

?ERRMSG

Query last command error message

Syntax:

?ERRMSG (system or local board query)

Answer:

?ERRMSG [<errorMessage>] (system or local board answer)

Description:

If the previous command produced an error, the ?ERRMSG query returns the error
message as an ASCII string. If the previous command was successful, the ?ERRMSG
query returns an empty string.

This command will retrieve the last error, regardless whether the previous command was
a system command or a board command.

The system does not accept it as board command if it is not issued through the serial line.

Example:

Command: ?VER

Answer: ?VER 1.00

Command: ?ERRMSG

Answer: ?ERRMSG

Command: 15:VELOCITY 0

Command: 15:?ERRMSG

Answer: 15:?ERRMSG Out of range value

IcePAP User Manual 71 of 155

ESYNC

Synchronise internal position registers

Syntax:

ESYNC <axis1> <axis2> … <axisN> (system command)

 or

<driver_addr>:ESYNC (board command)

Description:

This command forces the value in all the position registers that are linked to the axis to be
synchronised with the measure position register.

[TODO: needs further explanation]

Examples:

Command: 11:?POS

Answer: 11:?POS 1364

Command: 11:?POS TGTENC

Answer: 11:?POS 1232

Command: #11:ESYNC

Answer: 11:ESYNC OK

Command: 11:?POS

Answer: 11:?POS 1364

Command: 11:?POS TGTENC

Answer: 11:?POS 1364

72 of 155 IcePAP User Manual

?FERRMSG

Query first error message

Syntax:

<board_addr>:?FERRMSG

Answer:

<board_addr>:?FERRMSG [command <errorMessage>]

Description:

Returns the message for the first command error that was produced since the last time
the ?FERRMSG query was issued. The query returns the command that produced the
error and the error message an as ASCII string.

[TODO: Explain difference: system errors, board errors].

Example:

Command: ?VER

Answer: ?VER 1.00

Command: ?FERRMSG

Answer: ?FERRMSG

Command: 15:VELOCITY 0

Command: 15:?FERRMSG

Answer: 15:?FERRMSG Out of range value

IcePAP User Manual 73 of 155

?FPOS

Fast query of multiple board positions

Syntax:

?FPOS [AXIS | MEASURE] <axis1> <axis2> … <axisN>

Answer:

?FPOS <posVal1> <posVal2> … <posValN>

Description:

Returns the positions for the specified axes. The AXIS keyword is the default value, and it
used to return the nominal positions of the specified axes. The MEASURE keyword must
be used to return the measured position values.

?FPOS is a system query that is managed exclusively by the master system controller.
?FPOS returns values stored in the system controller that are updated asynchronously
and regularly by the drivers.

The ?FPOS query is intended to be used for frequent polling from the control host, as it is
faster as it presents less latency than ?POS, and it does not load the internal
communication bus.

Examples:

Command: ?FPOS 25

Answer: ?FPOS 5366703

Command: ?FPOS MEASURE 17 18 19

Answer: ?FPOS 13467895 0 -3000

74 of 155 IcePAP User Manual

?FSTATUS

Fast query of multiple board status

Syntax:

?FSTATUS <axis1> <axis2> … <axisN>

Answer:

?FSTATUS <statusReg1> <statusReg2> … <statusRegN>

Description:

Returns the value of the current status of the selected boards as 32-bit values in C-like
hexadecimal notation.

?FSTATUS is a system query that is managed exclusively by the master system
controller. ?FSTATUS returns values stored in the system controller that are updated
every time that any bit in the status word of a board changes.

The ?FSTATUS query is intended to be used for frequent polling from the control host, as
it is faster as it presents less latency than ?STATUS, and it does not load the internal
communication bus.

Example:

Command: ?FSTATUS 80 83 85

Answer: ?FSTATUS 0x00000003 0x00000003 0x00000003

IcePAP User Manual 75 of 155

?HELP

Query list of available commands

Syntax:

<board_addr>:?HELP (board command)

 or

?HELP (system command)

Description:

Returns the list of available commands and queries. The list differs between system,
controller and driver commands.

Examples:

Command: 16:?HELP

Answer: $

 RESET

 ?HDWVER

 ?STATE

 ?RETCODE

 CLEAR

 ?LIST

 RUN

 $

76 of 155 IcePAP User Manual

HOME

Start home signal search sequence

Syntax:

<driver_addr>:HOME {+1 | 0 | -1} (driver command)

 or

HOME [GROUP] [STRICT] <axis1> {+1 | 0 | -1} … <axisN> {+1 | 0 | -1} (system command)

Description:

Starts a home search sequence in the direction specified by the direction parameter.
Positive and negative directions are selected by the values +1 and -1 respectively.

The HOME command will start a homing sequence only if the source for the homing
reference signal has been previously selected by setting the HOMESRC configuration
parameter to a value different from NONE. Otherwise the HOME command produces an
error.

The direction parameter can be set to 0 for a given axis only if the AUTODIR flag is set in
the HOMEFLAGS configuration parameter for that axis. In that case the search direction
of the homing sequence is determined from the logic value of the homing reference signal
as it is described in 2.2.2. If the direction parameter is set to 0 for a given axis but the
AUTODIR flag is not set, the HOME command produces an error.

Examples:

Command: 16:?HOMESTAT

Answer: 16:?HOMESTAT NOTFOUND 0

Command: 16:HOME +1

Command: 16:?HOMESTAT

Answer: 16:?HOMESTAT MOVING +1

Command: 16:?HOMESTAT

Answer: 16:?HOMESTAT MOVING -1

Command: 16:?HOMESTAT

Answer: 16:?HOMESTAT FOUND -1

IcePAP User Manual 77 of 155

?HOMEENC

Query the found home position in encoder steps

Syntax:

<board_addr>:?HOMEENC [pos_sel] (driver command)

 or

?HOMEENC [pos_sel] <axis1> … <axisN> (system command)

Description:

Query the position registers latched when the configured homing signal event arrived.
The answer is a number of encoder steps.

If no homing latch event happened after the last home search, an error is issued

The specific register is selected by the optional parameter pos_sel, that must be one of
the following values:

pos_sel Position register

AXIS

MEASURE

POSERR

SHFTENC 

TGTENC 

ENCIN 

INPOS 

ABSENC 

MOTOR 

  Only valid for driver boards

If pos_sel is not specified, the value returned is axis position at homing latch event.

Examples:

Command: 16:?HOMEPOS

Answer: 16:?HOMEPOS ERROR Last home search was not

successful

Command: 16:HOME +1

Command: 16:?HOMESTAT

Answer: 16:?HOMESTAT FOUND -1

Command: 16:?HOMEENC

Answer: 16:?HOMEENC 12345

Command: 16:?HOMEENC TGTENC

Answer: 16:?HOMEENC 12350

78 of 155 IcePAP User Manual

?HOMEPOS

Query the found home position in axis units

Syntax:

<board_addr>:?HOMEPOS [pos_sel] (driver command)

 or

?HOMEPOS [pos_sel] <axis1> … <axisN> (system command)

Description:

Query the position registers latched when the configured homing signal event arrived.
The answer is a number of steps in axis units.

If no homing latch event happened after the last home search, an error is issued

The specific register is selected by the optional parameter pos_sel, that must be one of
the following values:

pos_sel Position register

AXIS

MEASURE

POSERR

SHFTENC 

TGTENC 

ENCIN 

INPOS 

ABSENC 

MOTOR 

  Only valid for driver boards

If pos_sel is not specified, the value returned is axis position at homing latch event.

Examples:

Command: 16:?HOMEPOS

Answer: 16:?HOMEPOS ERROR Last home search was not

successful

Command: 16:HOME +1

Command: 16:?HOMESTAT

Answer: 16:?HOMESTAT FOUND -1

Command: 16:?HOMEPOS

Answer: 16:?HOMEPOS 12345

Command: 16:?HOMEPOS TGTENC

Answer: 16:?HOMEPOS 12350

IcePAP User Manual 79 of 155

?HOMESTAT

Query home search status

Syntax:

<driver_addr>:?HOMESTAT (driver command)

 or

?HOMESTAT <axis1> … <axisN> (system command)

Answer:

<driver _addr>:?HOMESTAT {MOVING | FOUND | NOTFOUND} {+1| 0 |-1}(driver answer)

 or

?HOMESTAT hStatus1 hDirection1 … hStatusN hDirectionN (system answer)

 where home_status is one of MOVING, FOUND or NOTFOUND

 and home_dir is one of +1, 0 or -1

Description:

Query information about the ongoing or previous home search sequence. If the homing
sequence is in progress, ?HOMESTAT returns MOVING as hStatus keyword. If the
sequence is finished, the query returns either FOUND or NOTFOUND depending on
whether the home search succeeded or not.

The numeric value hDirection after the hStatus keyword, represents the direction of
motion, -1 or +1, either during the search sequence or when the search is successfully
completed. If the homing sequence fails, the returned hDirection value is 0.

Examples:

Command: 16:?HOMESTAT

Answer: 16:?HOMESTAT NOTFOUND 0

Command: 16:HOME +

Command: 16:?HOMESTAT

Answer: 16:?HOMESTAT MOVING +1

80 of 155 IcePAP User Manual

?ID

Query board identification

Syntax:

<board_addr>:?ID [{ HW | SN }]

Answer:

<board_addr>:?ID { <hwIDstring> | <serialNumber> }

Description:

The ?ID query returns either the hardware identification string or the serial number as
default the HW is return.

Examples:

Command: 16:?ID

Answer: ?ID xxxx.xxxx.xxxx

Command: 31:?ID SN

Answer: ?ID 0034-44587

IcePAP User Manual 81 of 155

INDEXER / ?INDEXER

Select/query indexer signal source

Syntax:

<driver_addr>:INDEXER [{ INTERNAL | SYNC | INPOS | ENCIN }]

Description:

Selects the signal source used for the axis indexer.

If no value is specified, the indexer source is set to the default value defined by the
configuration parameters (see CFG INDEXER).

Available signal sources:

Source Indexer signal

INTERNAL Internally generated indexer is used

SYNC Sync signal distributed through the rack backplane

INPOS InPos signal at the front panel connector (Axis Interface)

ENCIN EncIn signal at the rear panel

Syntax:

<driver_addr>:?INDEXER

Answer:

<driver_addr>:INDEXER { INTERNAL | SYNC | INPOS | ENCIN | LINKED }

Description:

Returns the current signal source used as axis indexer. If the driver is ser to use the
internal indexer in linked mode, the query returns the keyword LINKED.

Examples:

Command: 34:?CFG INDEXER

Answer: 34:?CFG INDEXER INTERNAL // the default is INTERNAL

Command: 34:INDEXER SYNC // change the indexer source

Command: 34:?INDEXER

Answer: 34:?INDEXER SYNC

Command: 34:INDEXER // set the default value back

Command: 34:?INDEXER

Answer: 34:?INDEXER INTERNAL

82 of 155 IcePAP User Manual

INFOA / ?INFOA
INFOB / ?INFOB
INFOC / ?INFOC

Set/query info signal source and polarity

Syntax:

<driver_addr>:INFOx [signal_source [{NORMAL | INVERTED}]]

 where INFOx is one of INFOA, INFOB or INFOC.

Description:

Configures the Info lines to output the signal signal_source with the selected polarity. If
the polarity is not specified it is set to NORMAL.

If signal_source is not explicitly specified, the signal is configured to the default value
defined in the driver configuration parameters.

The possible values of signal_source are summarised in the table:

Source Signal, control line or status value

LOW low logic level

HIGH high logic level

LIM+ limit- signal

LIM- limit+ signal

HOME home signal

ENCAUX EncAux signal

INPAUX InPosAux signal

SYNCAUX SyncAux signal

PWRCTRL power control to switch on/off external power drivers

ENABLE current power status

ALARM alarm condition

READY axis ready

WAITING axis waiting to trigger motion

MOVING axis moving

BOOST axis in acceleration phase

STEADY axis moving at constant velocity

ECAM electronic cam output. See ECAM command

BRAKE External brake release: set if waiting OR Moving

.MAIN
internal signals (only for diagnostic)

.ISR

Syntax:

<driver_addr>:?INFOx

 where ?INFOx is one of ?INFOA, ?INFOB or ?INFOC

Answer:

<driver_addr>:INFOx signal_source {NORMAL | INVERTED}

IcePAP User Manual 83 of 155

 where signal_source is one of the possible values presented above.

Description:

Returns the configuration of the corresponding Info output signal.

Examples:

Command: 12:INFOB READY

Command: ?12:INFOB

Answer: ?12:INFOB READY NORMAL

84 of 155 IcePAP User Manual

IPMASK / ?IPMASK

Set/query IP control mask

Syntax:

IPMASK <IPmask>

Description:

Sets the IP address control mask used to identify active network control clients.

If the masked client IP address matches the masked IcePAP IP address, the client is
authorised to send both commands and queries to the system. Otherwise only queries
are authorised.

A bit set to 1 in IPmask means that this bit is checked, and must be the same in the IP
addresses of both the client and the IcePAP system.

The default IP control mask is 0.0.0.0 (commands accepted from any IP address) as
described in 4.2.1.

Syntax:

?IPMASK

Answer:

?IPMASK <IPmask>

Description:

Returns the current IP control mask.

Examples:

Command: ?IPMASK

Answer: ?IPMASK 255.255.255.0

Command: #IPMASK 255.255.0.0

Answer: IPMASK OK

IcePAP User Manual 85 of 155

JOG / ?JOG

Set/query jog velocity

Syntax:

<board_addr>:JOG <signedVelocity> (board command)

 or

JOG [GROUP] [STRICT] <axis1> <signedVel1> … <axisN> <signedVelN> (system

command)

Description:

Sets the specified axis or axes in jog mode at the given velocity in steps per second. The
sign of the velocity parameter selects the actual direction of the movement. If a specified
axis is already jogging at a certain speed, the speed will be ramped up or down as
needed to reach the new velocity value. The acceleration is fixed as the ratio of the
current values of axis velocity and acceleration time (see ?VELOCITY and ?ACCTIME
queries). A zero velocity value forces an axis to stop.

If the GROUP keyword is used with the JOG system command, the set of axes is
managed as a group by the system controller as described in 2.2.2.

Syntax:

<board_addr>:?JOG (board query)

 or

?JOG <axis1> <axis2> … <axisN> (system query)

Answer:

<board_addr>:?JOG < signedVelocity > (board answer)

 or

?JOG < signedVel1> < signedVel2> … < signedVelN> (system answer)

Description:

Returns the current jog velocities of the specified axes in steps per second. If an axis is
not in jog mod, a zero velocity value is returned.

Examples:

Command: #5:JOG 200

Answer: 5:JOG OK

Command: #5:JOG -200

Answer: 3:JOG ERROR Cannot change jog direction

Command: JOG 5 200 23 100

86 of 155 IcePAP User Manual

?LINKED

Query linked axis groups

Syntax:

?LINKED

Answer:

?LINKED $

<lnkName1> <axis1> <axis2> … <axisN>

 …

<lnkNameN> <axisX> <axisY> … <axisZ>

$

Description:

Returns the current list of groups of linked drivers. Each group is returned in a separate
line starting by the name of the group and followed by the corresponding list of axes.

See X.X.X and the configuration parameter LNKNAME for additional information on linked
axes.

Examples:

Command: ?LINKED

Answer: ?LINKED $

tripod1 27 28 29

detarm 111 112

$

IcePAP User Manual 87 of 155

LISTDAT / *LISTDAT / ?LISTDAT

Load/query position list data

Syntax:

<board_addr>: *LISTDAT [{CYCLIC | NOCYCLIC}] {DWORD | FLOAT | DFLOAT}

<board_addr>: LISTDAT [{CYCLIC | NOCYCLIC}] <posMin> <posMax> <nPositions>

<board_addr>: LISTDAT CLEAR

Description:

The LISTDAT command ...

The *LISTDAT binary command ...

Syntax:

<board_addr>:?LISTDAT [<n_values> [<idx_offset>]]

Answer:

<board_addr>:?LISTDAT <nValues> {CYCLIC | NOCYCLIC}

 or

<driver_addr>:?LISTDAT $

 << listDAT data dump >>

 $

Description:

With no parameters, the ?LISTDAT query returns the ...

For debugging purposes, the query can be issued with a number of values <n_values> as
parameter, and an optional index offset <idx_offset>. In that case ?LISTDAT returns a list
of values.

Examples:

Command: 15:LISTDAT 1000 41000 100

Command: 15:?LISTDAT

Answer: 15:?LISTDAT 100 NOCYCLIC

88 of 155 IcePAP User Manual

LTRACK

Start list tracking mode

Syntax:

<board_addr>:LTRACK [<track_signal>] [{CYCLIC | NOCYCLIC}] [TRIGGER]

 or

< board_addr>:?LTRACK $

Description:

Activates the ….

track_signal Input position signal

SYNC Internal SYNC signal

ENCIN ENCIN signal

INPOS INPOS signal

ABSENC ABSENC signal

Examples:

IcePAP User Manual 89 of 155

?MEAS

Query measured value

Syntax:

<board_addr>:?MEAS { VCC | VM | I | IA | IB | IC | T | RT}

Answer:

<board_addr>:?MEAS <measuredValue>

Description:

Returns a measured value for the specified axes. The different measured values and their
meaning is compiled in the following table:

magnitude description units applies to:

VCC Main power supply voltage volts only drivers

VM Motor voltage volts only drivers

I Motor current amps only drivers

IA Phase A current amps only drivers

IB Phase B current amps only drivers

IC Phase C current amps only drivers

R Motor resistance ohms only drivers

RA Phase A resistance ohms only drivers

RB Phase B resistance ohms only drivers

RC Phase C resistance ohms only drivers

T Board temperature ° C controllers and drivers

RT Power supply temperature ° C only controllers

Examples:

Command: 15:?MEAS VCC

Answer: 15:?MEAS 80.1

Command: 15:?MEAS T

Answer: 15:?MEAS 24

90 of 155 IcePAP User Manual

?MEMORY

Query available memory

Syntax:

<board_addr>:?MEMORY

Answer:

<board_addr>:?MEMORY <totalMemory> <freeMemory> <maxFreeBlock>

Description:

Returns the amount of total user memory <totalMemory>, unused memory <freeMemory>
and the size of biggest available memory block <maxFreeBlock>. All the three quantities
are returned in bytes.

Examples:

Command: 15:?MEMORY

Answer: 15:?MEMORY ??? ??? ???

IcePAP User Manual 91 of 155

MODE / ?MODE

Set/query board or system mode

Syntax:

MODE { OPER | PROG | TEST } (system command)

Description:

Changes the mode of the IcePAP system to operation (OPER), firmware reprogramming
(PROG) or factory test (TEST) modes.

In normal operation, the system must be always set in mode OPER.

Syntax:

?MODE (system query)

 or

<board_addr>:?MODE (board query)

Answer:

?MODE { OPER | PROG | TEST } (system answer)

 or

<board_addr>:?MODE { CONFIG | OPER | PROG | TEST | FAIL } (board answer)

Description:

Returns the current mode of the system or the specific mode of one of the boards
(controllers or drivers). In normal conditions, all the boards should return the same mode
than the system.

If a particular driver is switched into configuration mode (see CONFIG command), the
returned mode is CONFIG for that driver (note that CONFIG is not a system mode
selectable by the MODE command).

If a non recoverable internal hardware error happens in a particular board, that board
switches FAIL mode.

Examples:

Command: ?MODE

Answer: ?MODE OPER

Command: 25:?MODE

Answer: 25:?MODE OPER

Command: 25:CONFIG

Command: 25:?MODE

Answer: 25:?MODE CONFIG

Command: ?MODE

Answer: ?MODE OPER

92 of 155 IcePAP User Manual

MOVE

Start absolute movement

Syntax:

<board_addr>:MOVE <absolutePos> (board command)

 or

MOVE [GROUP] [STRICT] <axis1> <absPos1> … <axisN> <absPosN> (system

command)

Description:

Moves the specified axis or axes towards the absolute target positions specified as
parameters. Axes can only be moved with this command if any previous movement is
finished and the axis is in READY state. See the UMOVE command to update the target
position of an axis currently in motion.

If the GROUP keyword is used with the MOVE system command, the set of axes is
managed as a group by the system controller as described in 2.2.2.

Examples:

Command: 115:MOVE 4000

Command: MOVE 115 4000

Command: MOVE 31 250000 32 -29888 33 250000

IcePAP User Manual 93 of 155

MOVEL

Start position list movement

Syntax:

<board_addr>:MOVEL <listPos>

Description:

Performs an ….

Examples:

94 of 155 IcePAP User Manual

MOVEP

Start axis movement to parameter value

Syntax:

<board_addr>:MOVEP <paramVal> (board command)

 or

MOVEP <paramVal> [GROUP] [STRICT] <axis1> < axis2> … <axisN> (system command)

Description:

Moves the specified axis or axes towards the …

.

Examples:

Command: 115:MOVEP 3.456

Command: MOVEP 3.456 115

IcePAP User Manual 95 of 155

NAME / ?NAME

Set/query board name

Syntax:

<driver_addr>:NAME <driverName>

Description:

Sets the internal axis name to the ASCII string <driverName>. This name is only used for
identification purposes and user convenience. The name is stored in the non-volatile
memory and is only used for identification purposes. Changing the axis name is not
allowed if the NAMELOCK configuration flag is set.

The maximum length is 20 characters. [TODO: CHECK]

If the name is locked (configuration parameter NAMELOCK = YES), this command will
not have any effect.

Syntax:

<driver_addr>:?NAME

Answer:

<driver_addr>:?NAME <driverName>

Description:

Returns the board name string.

Examples:

Command: #11:NAME phi

Answer: 11:NAME OK

Command: 12:?NAME

Answer: 12:?NAME th

Command: #12:NAME tth

Answer: 12:NAME ERROR The name of this board is locked

96 of 155 IcePAP User Manual

NOECHO

Cancel echo mode

Syntax:

NOECHO (system command)

 or

<board_addr>:NOECHO (board command)

Description:

Switches the echo mode off. See the ECHO command for more details. Only applies for
serial line communication.

Example:

Command: NOECHO

Command: 2:NOECHO

IcePAP User Manual 97 of 155

OUTPAUX / ?OUTPAUX

Set/query internal sync output line source and polarity

<board_addr>:OUTPAUX [signal_source [{NORMAL | INVERTED}]]

Description:

Sets the front panel OutPosAux line to output the signal signal_source with the selected
polarity. If either signal_source or the polarity is not specified, the previous value is not
modified.

Possible values of signal_source are the same that are available for InfoA, InfoB and
InfoC signals (see INFOx commands).

Syntax:

<board_addr>:?OUTPAUX

Answer:

<board_addr>:?OUTPAUX signal_source {NORMAL | INVERTED}

Description:

Returns the current source and polarity of OutPosAux output signal.

Examples:

Command: 23:OUTPAUX READY

Command: 23:?OUTPAUX

Answer: 23:?OUTPAUX READY NORMAL

Command: 23:OUTPAUX INVERTED

Command: 23:?OUTPAUX

Answer: 23:?OUTPAUX READY INVERTED

98 of 155 IcePAP User Manual

OUTPOS / ?OUTPOS

Set/query source and polarity of the OutPos position signal

<driver_addr>:OUTPOS [pos_sel [{NORMAL | INVERTED}]]

Description:

Sets the front panel OutPos signal to output the increments of the board position signal
selected by pos_sel. The sense can be optionally inverted with the keyword INVERTED.
If either pos_sel or the sense is not specified, the previous value is maintained.

The possible values of pos_sel are summarised in the table:

pos_sel Position signal

AXIS Axis nominal position

MOTOR Axis electrical phase (MOTOR internal variable)

MEASURE Signal used as axis measurement

SYNC Internal SYNC signal

SHFTENC Signal configured as SHFTENC

TGTENC Signal configured as TGTENC

CTRLENC Signal configured as CTRLENC

ENCIN ENCIN signal

INPOS INPOS signal

ABSENC ABSENC signal

Syntax:

< driver_addr>:?OUTPOS

Answer:

< driver_addr>:?OUTPOS pos_sel {NORMAL | INVERTED}]

Description:

Returns the position signal currently connected to the OutPos output and its sense.

Examples:

Command: 6:OUTPOS AXIS

Command: 6:?OUTPOS

Answer: 6:?OUTPOS AXIS NORMAL

IcePAP User Manual 99 of 155

PARACCT / ?PARACCT

Set/query parametric acceleration time

Syntax:

<board_addr>:PARACCT [<pAccTime>] (board command)

 or

PARACCT [<pAccTime>] <axis1> … <axisN> (system command)

Description:

Sets the parametric acceleration time for the corresponding axes to <pAccTime> in
seconds. The actual acceleration for each axis is calculated internally based on the
current value of the axis parametric velocity (see PARVEL command).

The acceleration time is internally recalculated every time that the axis parametric velocity
changes.

Syntax:

<board_addr>:?PARACCT [{NOMINAL | PARAM | DEFAULT}] (board command)

 or

?PARACCT [{NOMINAL | PARAM | DEFAULT}] [<axis1> [<axis2> … [<axisN>]]]

 (system command)

Answer:

<board_addr>:?PARACCT <accValue> (board answer)

 or

?PARACCT <accValue1> <accValue2> … <accValueN> (system answer)

Description:

By default the query returns the current NOMINAL parametric acceleration time of the
specified axes in seconds. If the PARAM keyword is issued, the query returns instead the
acceleration distances in parameter units. With the DEFAULT keyword, the query returns
the default acceleration time defined by the DEFACCT configuration parameter.

Examples:

Command: 16:?PARACCT

Answer: 16:?PARACCT 0.25

Command: 24:PARACCT 0.1

Command: ?PARACCT 16 24

Answer: ?PARACCT 0.25 0.1

Command: PARACCT 16 0.1 17 0.2

100 of 155 IcePAP User Manual

PARDAT / *PARDAT / ?PARDAT

Load/clear/query parametric trajectory data

Syntax:

<board_addr>: *PARDAT [pardat_options] [<pMin> <pMax> <nPoints>]

<board_addr>: PARDAT [pardat_options] <pMin> <pMax> <nPoints>

<board_addr>: PARDAT {LINEAR | SPLINE}

<board_addr>: PARDAT CLEAR (board commands)

 or

*PARDAT [pardat_options] [<pMin> <pMax> <nPoints>] (system command)

Description:

The PARDAT command is used to load parametric tables into a driver.

The *PARDAT binary command expects a binary block composed of one or more binary
vector blocks as defined in sections 4-5-3 and 4.5.4

pardat_options Parametric mode option

LINEAR Linear axis position interpolation

SPLINE Spline axis position interpolation

CYCLIC Cyclic parametric trajectory

Syntax:

<board_addr>:?PARDAT NPTS

 or

<board_addr>:?PARDAT

 or

<board_addr>:?PARDAT [RAW] <fist_row> [<n_rows>]

Answer:

<board_addr>:?PARDAT <nPoints>

 or

<board_addr>:?PARDAT <pardat_options> <pMin> <pMax> <nPoints>

 or

<board_addr>:?PARDAT $

 << parametric trajectory data dump >>

 $

Description:

...

IcePAP User Manual 101 of 155

Examples:

Command: 15:?PARDAT

Answer: 15:?PARDAT …

102 of 155 IcePAP User Manual

?PARVAL

Query parametric trajectory value

Syntax:

<board_addr>:?PARVAL <paramVal>

Answer:

<board_addr>:?PARVAL <axis_value>

Description:

Moves the specified axis or axes towards the …

.

Examples:

Command: 73:?PARVAL 3.456

Answer: 73:?PARVAL 0

IcePAP User Manual 103 of 155

?PARPOS

Query axis position in parametric units

Syntax:

<board_addr>:?PARPOS

Answer:

<board_addr>:?PARPOS <param_value>

Description:

If parametric mode is active, the query returns the current parametric value. Otherwise an
error is returned,

.

Examples:

Command: 73:?PARPOS

Answer: 73:?PARPOS 6.28

104 of 155 IcePAP User Manual

PARVEL / ?PARVEL

Set/query parametric axis velocity

Syntax:

<board_addr>:PARVEL [<pVelocity>] (board command)

 or

PARVEL <pVelocity> <axis1> … <axisN> (system command)

Description:

Sets the parametric velocity for the corresponding axes to <pvelocity> in parameter units
per second. The actual acceleration for each axis is maintained to the previous value, and
the parametric acceleration time is internally recalculated (see ?PARACCT query).

If no value is specified, the parametric velocity is recalculated to match the normal axis
velocity at the steepest (maximum slope) of the programmed parametric trajectory. If no
parametric trajectory has been loaded, the parametric velocity is set to zero.

Syntax:

<board_addr>:?PARVEL [{NOMINAL | MIN | MAX | CURRENT}] (board command)

 or

?PARVEL [{NOMINAL | MIN | MAX | CURRENT}] <axis1> … <axisN> (system command)

Answer:

<board_addr>:?PARVEL <velocity> (board answer)

 or

?PARVEL <velocity1> <velocity2> … <velocity1> (system answer)

Description:

By default the query returns the NOMINAL parametric velocity in parameter units per
second. If the MIN or MAX keywords are issued, the query returns the minimum or
maximum acceptable values. With the CURRENT keyword, the query returns the actual
parametric velocity at the query time that varies during acceleration and deceleration
phases.

Examples:

IcePAP User Manual 105 of 155

PCLOOP / ?PCLOOP

Set/query current position closed loop mode

Syntax:

<driver_addr>:PCLOOP {ON | OFF}

Description:

Activates/deactivates the position closed loop.

In order to activate the position closed loop, a target encoder must be configured
(configuration parameter TGTENC must be different from NONE), and the difference
between the position values in tgtenc and indexer must be inside the range +/-
PCLERROR(see configuration parameters

Syntax:

<driver_addr>:?PCLOOP

Answer:

<driver_addr>:?PCLOOP {ON | OFF}

Description:

Returns the current position closed loop mode.

Examples:

Command: 15:PCLOOP ON

Command: 15:?PCLOOP

Answer: 15:?PCLOOP ON

106 of 155 IcePAP User Manual

PMOVE

Start parametric movement

Syntax:

<board_addr>:PMOVE <paramVal> (board command)

 or

PMOVE <paramVal> [GROUP] [STRICT] <axis1> < axis2> … <axisN> (system command)

Description:

Moves the specified axis or axes towards the …

.

Examples:

Command: 115:PMOVE 3.456

Command: PMOVE 3.456 115

IcePAP User Manual 107 of 155

PMUX / ?PMUX

Position signal multiplexer configuration

Syntax:

PMUX [HARD] [POS] [AUX] <source> [<dest>]

 or

PMUX REMOVE [POS] [AUX] [<dest>]

Description:

Defines a rule to manage the system position signal multiplexer. The specific register is
selected by the optional parameter pos_sel, that must be one of the following values:

pmux_node Node

xxx or Bxxx Board xxx

Rnn Backplane of rack nn

Cnn Controller board of rack nn

Enn External connector of rack nn

If …

Syntax:

?PMUX { POS | AUX } <dest>

 or

?PMUX [POS] [AUX]

Answer:

?PMUX …

Description:

Returns the current signal source used as axis indexer.

Examples:

Command: PMUX HARD E0

Command: ?PMUX

Answer: ?PMUX $

135

108 of 155 IcePAP User Manual

POS / ?POS

Set/query axis position in axis units

Syntax:

<board_addr>:POS [pos_sel] <posVal> (board command)

 or

POS [pos_sel] <axis1> <posVal1> … <axisN> <posValN> (system command)

Description:

Loads the position registers in the specified boards with the <posVal> values. The
specific register is selected by the optional parameter pos_sel, that must be one of the
following values:

pos_sel Position register

AXIS Points to the axis nominal position

MEASURE Points to the register used for position measurement

SHFTENC  Points to the register configured as SHFTENC

TGTENC  Points to the register configured as TGTENC

CTRLENC  Points to the register configured as CTRLENC

ENCIN  ENCIN register

INPOS  INPOS register

ABSENC  ABSENC register

MOTOR  MOTOR register

SYNC Backplane SYNC input register (to be confirmed)

  Only valid for driver boards

If position is not specified, the value is loaded as axis position

Syntax:

<board_addr>:?POS [pos_sel] (board query)

 or

?POS [pos_sel] <axis1> <axis2> … <axisN> (system query)

Answer:

<board_addr>:?POS <posVal> (board answer)

 or

?POS <posVal1> <posVal2> … <posValN> (system answer)

Description:

Returns the current signal source used as axis indexer.

IcePAP User Manual 109 of 155

Examples:

Command: 115:POS AXIS 500

Command: 115:POS MEASURE -3000

Command: 115:?POS

Answer: 115:?POS 500

Command: ?POS MEASURE 5 115

Answer: ?POS 13467895 -3000

110 of 155 IcePAP User Manual

?POST

Query power-on self-test results

Syntax:

<board_addr>:?POST

Answer:

<board_addr>:?POST <testresultMask>

Description:

Returns the result of the power-on self tests as an binary mask <testresultMask>. A bit
set to one in the mask indicates that a particular test has failed. If no tests failed during
the power-on sequence, this query returns zero.

The meaning of the individual bits in <testresultMask> is summarised in the following
table:

bit subsystem under test applies to:

0x01 external RAM controllers and drivers

0x02 non volatile FRAM controllers and drivers

0x04 internal 1-wire bus controllers and drivers

0x08 ADC only drivers

0x10 FPGA controllers and drivers

0x20 external 1-wire bus only controllers

0x40 CANbus only controllers

Examples:

Command: 115:?POST

Answer: 115:?POST 0

IcePAP User Manual 111 of 155

POWER / ?POWER

Set/query motor power state

Syntax:

<driver_addr>:POWER [{ON | OFF}] (board command)

 or

POWER [{ON | OFF}] <axis1> … <axisN> (system command)

Description:

Switches on or off the motor power in a driver board.

Syntax:

<driver_addr>:?POWER (board query)

 or

?POWER <axis1> <axis2> … <axisN> (system query)

Answer:

<driver_addr>:?POWER {ON | OFF} (board answer)

 or

?POWER {ON | OFF}1 {ON | OFF}2 … {ON | OFF}N (system answer)

Description:

Returns the power state of the specified driver boards.

Examples:

Command: 115:POWER OFF

Answer: 115:POWER OFF

112 of 155 IcePAP User Manual

*PROG / PROG / ?PROG

Firmware programming

Syntax:

*PROG {NONE | <bAddr> | DRIVERS | CONTROLLERS | ALL} [FORCE] [NOSAVE]

PROG { <bAddr> | DRIVERS | CONTROLLERS | ALL} [FORCE]

Description:

The *PROG command reprograms the components of the IcePAP system by using
firmware code that is transferred as a binary data block (see xxx). By default this firmware
code is automatically stored in the non volatile FLASH memory of the system master
board. To avoid this storing, the NOSAVE flag must be set.

A mandatory parameter specifies the components to program, that can be either the
components in the board with address <bAddr>, in all the driver boards (DRIVERS), in all
controller boards (CONTROLLERS) or in both (ALL). If the parameter is set to NONE, no
components are programmed, but the *PROG command can be use to store the firmware
code in the system except if the NOSAVE flag is used.

If one of the components in the system is already programmed with the same version of
firmware, the programming operation for that specific component is skipped. This
behaviour changes if the FORCE flag is used. In that case the components in the
selected boards are always reprogrammed regardless of their current firmware version.

In the case of reprogramming certain internal components, a REBOOT action may be
needed to reload those new components into memory. The REBOOT is not automatically
started after the PROG command. Instead, any non query command will produce an
explicit error until a REBOOT command is issued by the user or the client program. Only
the query commands will not generate such an error and will be properly executed.

The *PROG command initiates the internal programming procedure and completes
successfully if it started successfully. The actual progress and the final success of the
programming operation can be monitored by means of the ?PROG query.

The PROG command works in the same way than *PROG but uses the firmware code
that was previously stored in the internal non volatile FLASH memory of the system
master board by a previous *PROG command.

Syntax:

?PROG

Answer:

?PROG [{OFF | ACTIVE <progress> | DONE | ERROR}]

Description:

Returns the state of firmware programming operations.

Examples:

IcePAP User Manual 113 of 155

Command: ?PROG

Answer: ?PROG ACTIVE 49.0

Command: ?PROG

Answer: ?PROG DONE

114 of 155 IcePAP User Manual

PTRACK

Start parametric tracking mode

Syntax:

<board_addr>:PTRACK <track_signal> [{SIMPLE | SMART | FULL}]

Description:

Activates the ….

track_signal Input position signal

SYNC Internal SYNC signal

ENCIN ENCIN signal

INPOS INPOS signal

ABSENC ABSENC signal

Examples:

IcePAP User Manual 115 of 155

REBOOT

System reboot

Syntax:

REBOOT

 Description:

Reboots the communication processor in the master controller. Any communication,
either through serial line or TCP socket, will be interrupted.

Examples:

116 of 155 IcePAP User Manual

REPORT / ?REPORT

Set/query asynchronous report settings

Syntax:

REPORT { ON | OFF } [<firstRack> <lastRack> []]

Description:

The REPORT command allows to activate (ON) or deactivate (OFF) the asynchronous
reporting feature on the current communication port. When asynchronous reporting is
active in a particular port (RS232 serial line or TCP socket), the IcePAP master controller
sends binary data blocks containing status and position information through that port to
the listening device, usually the host computer. The binary blocks contain status and
position information as the values returned by the ?FSTATUS and ?FPOS queries.

The data blocks contain the status as well as the axis and indexer positions for all the
boards in the selected racks. The data block is sent whenever the data in the system
master board changes or after a time interval of <maxPeriod> seconds.

The block includes data from all the boards in the racks from <firstRack> to <lastRack>
that must be numbers from 0 to 15.

The format of the binary blocks is the following:

 [TODO: explain block format and structure]

Syntax:

?REPORT

Answer:

?REPORT { ON | OFF } <firstRack> <lastRack> <maxPeriod>

Description:

Returns the status and range of the asynchronous status reporting feature.

Examples:

IcePAP User Manual 117 of 155

RESET

System or rack reset

Syntax:

RESET [<rackNumber>]

 Description:

Resets the given rack or the whole system if no parameter is added.

Examples:

Command: RESET

Command: RESET 8

118 of 155 IcePAP User Manual

?RID

Query rack hardware identification string

Syntax:

?RID [<rackNumber1> <rackNumber2> ... <rackNumberN>]

Answer:

?RID <hwIDstring1> <hwIDstring2> ... <hwIDstringN>

Description:

The ?RID query returns the hardware identification strings of the racks specified by the
list of rack numbers. If the query is issued with no parameters, it returns the identification
strings of the rack 0 (the one hosting the system master controller).

Examples:

Command: ?RID 0

Answer: ?RID XXXX.XXXX.XXXX

Command: ?RID

Answer: ?RID XXXX.XXXX.XXXX //rack 0 ID string

Command: ?RID 5 6

Answer: ?RID YYYY.YYYY.YYYY ZZZZ.ZZZZ.ZZZZ

IcePAP User Manual 119 of 155

RFPROG

Factory firmware programming

Syntax:

RFPROG [<rackNumber1> <rackNumber2> ... <rackNumberN>]

Description:

The RFPROG command is intended to reload the firmware in IcePAP driver boards that
are not responsive or that have never been programmed (i.e after manufacturing). It
cannot be used to reload firmware in controller boards and should not be used in normal
operation instead of the PROG command.

RFPROG initiates the programming procedure of all the driver boards in the racks
specified in the command line. If the command is issued with no parameters, it initiates
the programming of the drivers boards in all the racks present in the system.

The system uses the firmware code that was stored in the non volatile FLASH memory of
the system master board by a previous *PROG command.

The progress of the programming procedure can be followed by means of the ?PROG
query.

Examples:

Command: MODE PROG

Command: *PROG NONE

 [firmware as binary data block]

Command: RFPROG

(wait some time)

Command: ?PROG

Answer: ?PROG ACTIVE 37%

(wait for full reprogramming)

Command: ?PROG

Answer: ?PROG DONE

120 of 155 IcePAP User Manual

RMOVE

Start relative movement

Syntax:

<board_addr>:RMOVE <relativePos> (board command)

 or

RMOVE [GROUP] [STRICT] <axis1> <relativePos1> … <axisN> <relativePosN>(system

command)

Description:

Performs a relative movement on the specified axis or axes.

If the GROUP keyword is used with the RMOVE system command, the set of axes is
managed as a group by the system controller as described in 2.2.2.

Examples:

Command: 115:?POS

Answer: 115:?POS 5000

Command: 115:RMOVE -7000

Command: 115:?POS

Answer: 115:?POS -2000

Command: RMOVE 115 -7000

Command: RMOVE 31 250000 32 -29888 33 250000

IcePAP User Manual 121 of 155

RDISPOL / ?RDISPOL

Set/query Rack Disable Polarity

Syntax:

<board_addr>:RDISPOL {NORMAL | INVERTED | SYSDEFAULT}

 (controller board command)

 or

RDISPOL {NORMAL | INVERTED | SYSDEFAULT} [FORCE] (system command)

Description:

Sets the polarity of the remote disable signal of a rack.

The board command is useful to set a specific polarity for the addressed rack. In that
case, the target rack will not use the system default polarity.

If SYSDEFAULT is used, the crate will use whatever polarity is defined as system default
polarity.

The system RDISPOL command sets the system default remote rack disable polarity to
the value specified by the first parameter.

If the first parameter is SYSDEFAULT, the current system default polarity in the master
will be used.

If the flag FORCE is used, all the crates will be forced to use the system default polarity.

Syntax:

<board_addr>:?RDISPOL (controller board query)

 or

?RDISPOL (system query)

Answer:

<board_addr>:?RDISPOL {NORMAL | INVERTED | SYSDEFAULT}

 (controller board answer)

 or

?RDISPOL {NORMAL | INVERTED} (system answer)

Description:

Returns the polarity selection for the remote rack disable signal.

Examples:

Command: 50:RDISPOL SYSDEFAULT

Command: 50:?RDISPOL

122 of 155 IcePAP User Manual

Answer: 50:?RDISPOL SYSDEFAULT

Command: 50:RDISPOL INVERTED

Command: 50:?RDISPOL

Answer: 50:?RDISPOL INVERTED

Command: RDISPOL NORMAL FORCE

Command: ?RDISPOL

Answer: RDISPOL NORMAL

Command: 50:?RDISPOL

Answer: 50:?RDISPOL SYSDEFAULT

IcePAP User Manual 123 of 155

?RTEMP

Query rack temperatures

Syntax:

?RTEMP [<rackNumber1> <rackNumber2> ... <rackNumberN>]

Answer:

?RTEMP <rackTemp1> <rackTemp2> ... <rackTempN>

Description:

The ?RTEMP query returns the temperature of the main power supply of the racks
specified by the list of rack numbers. If the query is issued with no parameters, it returns
the temperatures of the rack with lowest number (the one hosting the system master
controller).

Examples:

Command: ?RTEMP 0

Answer: ?RTEMP 35

Command: ?RTEMP

Answer: ?RTEMP 35

Command: ?RTEMP 0 2 5

Answer: ?RTEMP 35 32 31

124 of 155 IcePAP User Manual

SRCH

Start signal search sequence

Syntax:

<driver_addr>:SRCH <signal> [<edgetype> <srchdir>] (driver command)

With:

<signal> = {Lim- | Lim+ | Home | EncAux | InpAux}

<edgetype> = {POSEDGE | NEGEDGE}

<srchdir> = {+1 | -1}

Description:

Starts a signal search sequence.

The <signal> parameter is mandatory.

<edgetype> and <srchdir> parameters are ignored if the <signal> parameter is either
lim- or lim+, otherwhise these parameters have to be specified.

The search is done in the direction specified by <srchdir>. Positive and negative
directions are selected by the values +1 and -1 respectively.

<edgetype> corresponds to the transition of the signal that defines the reference to
search, posedge being a transition from inactive to active.

If the <signal> parameter is lim- or lim+, the direction and edge type will be selected
automatically in order to start the search towards the specified limit switch position.

Examples:

Command: 16:?SRCHSTAT

Answer: 16:?SRCHSTAT NOTFOUND 0

Command: 16:SRCH HOME POSEDGE +1

Command: 16:?SRCHSTAT

Answer: 16:?SRCHSTAT MOVING +1

Command: 16:?SRCHSTAT

Answer: 16:?SRCHSTAT FOUND +1

[. . .]

Command: 16:SRCH LIM-

[. . .]

Command: 16:?SRCHSTAT

Answer: 16:?SRCHSTAT FOUND -1

IcePAP User Manual 125 of 155

?SRCHENC

Query the found signal search position in encoder steps

Syntax:

<board_addr>:?SRCHENC [pos_sel] (driver command)

Description:

Query the position registers latched when the signal event arrived during a signal search
command. The answer is a number of encoder steps, the resolution being the one
configured for the selected encoder.

If no signal search latch event happened after the last search, an error is issued

The specific register is selected by the optional parameter pos_sel, that must be one of
the following values:

pos_sel Position register

AXIS

MEASURE

POSERR

SHFTENC 

TGTENC 

ENCIN 

INPOS 

ABSENC 

MOTOR 

  Only valid for driver boards

If pos_sel is not specified, the value returned is axis position at signal latch event.

Examples:

Command: 16:?SRCHPOS

Answer: 16:?SRCHPOS ERROR Last home search was not

successful

Command: 16:SRCH LIM+

Command: 16:?SRCHSTAT

Answer: 16:?SRCHSTAT FOUND +1

Command: 16:?SRCHENC

Answer: 16:?SRCHENC 12345

Command: 16:?SRCHENC TGTENC

Answer: 16:?SRCHENC 24700

126 of 155 IcePAP User Manual

?SRCHPOS

Query the found home position in axis units

Syntax:

<board_addr>:?SRCHPOS [pos_sel] (driver command)

Description:

Query the position registers latched latched when the signal event arrived during a signal
search command.

The answer is a number of steps in axis units.

If no signal search latch event happened after the last search, an error is issued

The specific register is selected by the optional parameter pos_sel, that must be one of
the following values:

pos_sel Position register

AXIS

MEASURE

POSERR

SHFTENC 

TGTENC 

ENCIN 

INPOS 

ABSENC 

MOTOR 

  Only valid for driver boards

If pos_sel is not specified, the value returned is axis position at signal latch event.

Examples:

Command: 16:?SRCHPOS

Answer: 16:?SRCHPOS ERROR Last home search was not

successful

Command: 16:SRCH LIM1

Command: 16:?SRCHSTAT

Answer: 16:?SRCHSTAT FOUND +1

Command: 16:?SRCHPOS

Answer: 16:?SRCHPOS 12345

Command: 16:?SRCHPOS TGTENC

Answer: 16:?SRCHPOS 12350

IcePAP User Manual 127 of 155

?SRCHSTAT

Query signal search status

Syntax:

<driver_addr>:?SRCHSTAT (driver command)

Answer:

<driver _addr>:?HOMESTAT {MOVING | FOUND | NOTFOUND} {+1| 0 |-1}(driver answer)

Description:

Query information about the ongoing or previous signal search sequence. If the
sequence is in progress, ?HOMESTAT returns MOVING as hStatus keyword. If the
sequence is finished, the query returns either FOUND or NOTFOUND depending on
whether the home search succeeded or not.

The numeric value hDirection after the hStatus keyword, represents the direction of
motion, -1 or +1, either during the search sequence or when the search is successfully
completed. If the homing sequence fails, the returned hDirection value is 0.

Examples:

Command: 16:?SRCHSTAT

Answer: 16:?SRCHSTAT NOTFOUND 0

Command: 16:SRCH LIM+

Command: 16:?SRCHSTAT

Answer: 16:?SRCHSTAT MOVING +1

Command: 16:?SRCHSTAT

Answer: 16:?SRCHSTAT FOUND +1

128 of 155 IcePAP User Manual

?STATUS

Query board status

Syntax:

<board_addr>:?STATUS (board query)

 or

?STATUS <axis1> <axis2> … <axisN> (system query)

Answer:

<board_addr>:?STATUS <statusReg> (board answer)

 or

?STATUS <statusReg1> <statusReg2> … <statusRegN> (system answer)

Description:

Returns the current status words of the specified boards as 32-bit values in C-like
hexadecimal notation.

The system query ?STATUS can be used to return the status of any number of boards in
the system. In that case the status value is sampled simultaneously in all the boards.

Note that in the cases of very frequent status polling, the ?FSTATUS query may be
preferred to ?STATUS as ?FSTATUS returns values stored in the system controller and
therefore suffers from shorter execution latency. ?STATUS on the other hand returns the
status information stored in the boards and therefore guarantees more up to date values.

Example:

Command: 53:?STATUS

Answer: 53:?STATUS 0x00000003

Command: ?STATUS 80 83 85

Answer: ?STATUS 0x002c0403 0x00200403 0x00000403

IcePAP User Manual 129 of 155

STOP

Stop movement

Syntax:

<board_addr>:STOP (board command)

 or

STOP [<axis1> <axis2> … <axisN>] (system command)

Description:

The STOP command finalises the movement in the given axes with a normal deceleration
ramp.

If any of the axis is included in one of the currently active axis groups (see 2.2.2), all the
other axes of the corresponding group are also stopped.

For security reasons, if the STOP system command fails or any error happens, all the
boards in the system are instructed to stop their movements.

Examples:

Command: 10:STOP

Command: STOP // stop all movements

Command: #STOP 30 33 42

Answer: STOP ERROR All axes stopped, cause in axis 33:

Board is not present in the system

Command: #STOP 30 rrt 42

Answer: STOP ERROR All axes stopped, cause: Wrong

parameter(s)

130 of 155 IcePAP User Manual

?STOPCODE

Query board stop code

Syntax:

<board_addr>:?STOPCODE (board query)

Answer:

<board_addr>:?STOPCODE <stopcode> (board answer)

Description:

Returns the stop code corresponding to the last motion as a 16-bit value in C-like
hexadecimal notation.

This command is especially useful if the stopcode field in the status register (as returned
by the ?STATUS command) has the value 5 (= configured stop condition). In that case,
the four upper bits of stopcode represent the different possible configured stop conditions.
For values in the stopcode field of the status register different than 5, the ?STOPCODE
command does not add any information.

stopcode meaning

0x0000 End of movement

0x0001 STOP

0x0002 ABORT

0x0003 limit+ reached

0x0004 Limit- reached

0x0006 axis disabled (no alarm condition)

0x0015 closed loop settling error

0x0025 External hold signal active

Example:

Command: 53:?STOPCODE

Answer: 53:?STOPCODE 0x0025

IcePAP User Manual 131 of 155

132 of 155 IcePAP User Manual

IcePAP User Manual 133 of 155

SYNCAUX / ?SYNCAUX

Set/query the polarity and output source of the internal sync line

<board_addr>:SYNCAUX [signal_source [{NORMAL | INVERTED}]]

Description:

Selects the polarity of the internal SyncAux line and associates it to the signal
signal_source. If either signal_source or the polarity is not specified, the previous value is
not modified. When SyncAux is configured as and output (see PMUX command), the
board is set to drive the line with the value of signal_source and the specified polarity.
When SyncAux is configured as an input, the specified polarity is applied to the logic
value present in the line.

Possible values of signal_source are the same that are available for INFOA, INFOB and
INFOC signals (see INFOx commands).

The SyncAux line can be used to distribute information or synchronisation signals across
the IcePAP system by programming the system signal multiplexer (see PMUX command).

Syntax:

<board_addr>:?SYNCAUX

Answer:

<board_addr>:?SYNCAUX signal_source {NORMAL | INVERTED}

Description:

Returns the current value of the signal source and polarity of internal SyncAux output.

Examples:

Command: 23:SYNCAUX READY

Command: 23:?SYNCAUX

Answer: 23:?SYNCAUX READY NORMAL

Command: 23:SYNCAUX INVERTED

Command: 23:?SYNCAUX

Answer: 23:?SYNCAUX READY INVERTED

134 of 155 IcePAP User Manual

SYNCPOS / ?SYNCPOS

Set/query the sense and output source of the internal sync position signal

<board_addr>:SYNCPOS [pos_sel [{NORMAL | INVERTED}]]

Description:

Associates the internal Sync signal to the position signal selected by pos_sel. When Sync
is configured as a position output (see PMUX command), the board is set to send pos_sel
through the Sync lines. If Sync is configured as an input, the default resolution of the
position input is the current resolution of the pos_sel signal, although such a value can be
changed by the SYNCRES command.

Regardless of whether Sync is set as input or output, the sense can be optionally inverted
with the keyword INVERTED.

If either pos_sel or the sense is not specified in a SYNCPOS command, the previous
value is maintained.

The possible values of pos_sel are summarised in the table:

pos_sel Position signal

AXIS Axis nominal position

MOTOR Axis electrical phase (MOTOR internal variable)

MEASURE Signal used as axis measurement

SHFTENC  Signal configured as SHFTENC

TGTENC  Signal configured as TGTENC

CTRLENC  Signal configured as CTRLENC

ENCIN  ENCIN signal

INPOS  INPOS signal

ABSENC  ABSENC signal

  Only valid for driver boards

The Sync output signal can be used to distribute position information across the IcePAP
system by programming the system signal multiplexer (see PMUX command).

Syntax:

<board_addr>:?SYNCPOS

Answer:

<board_addr>:?SYNCPOS pos_sel {NORMAL | INVERTED}]

Description:

Returns the position signal and sense currently connected to the internal Sync output.

Examples:

IcePAP User Manual 135 of 155

Command: 6:SYNCPOS TGTENC

Command: 6:?SYNCPOS

Answer: 6:?SYNCPOS TGTENC NORMAL

136 of 155 IcePAP User Manual

SYNCRES / ?SYNCRES

Set/query resolution of the internal sync line

<board_addr>:SYNCRES DEFAULT

 or

<board_addr>:SYNCRES <n_steps> [<n_turns>]

Description:

Sets the resolution of the internal Sync position signal.

Syntax:

<board_addr>:?SYNCRES

Answer:

<board_addr>:SYNCRES DEFAULT

 or

<board_addr>:?SYNCRES <n_steps> <n_turns>

Description:

Returns the current resolution of the internal Sync position signal.

Examples:

Command: 23:SYNCRES 4000

Command: 23:?SYNCRES

Answer: 23:?SYNCRES 1 4000

IcePAP User Manual 137 of 155

?SYSSTAT

Query system configuration

Syntax:

?SYSSTAT [<rackNumber>]

Answer:

?SYSSTAT <rackPresenceMask>

 or

?SYSSTAT <driverPresenceMask> <driverAliveMask>

Description:

By default, with no parameter, the SYSSTAT query returns a 16 bit mask that represents
the list of racks present in the system. Every bit in the <rackPresenceMask> mask
indicates if the corresponding rack (0 to 15) has been found in the system.

If the SYSSTAT command is issued with a valid rack number (0 to 15) as parameter, it
returns two 8 bit values that indicates the drivers found in the rack and which of them are
responsive. Every bit of each mask correspond to one of the drivers (1 to 8) within the
rack. The bits in <driverPresenceMask> that are set to 1, indicate which driver boards are
plugged in the rack. The bits in <driverAliveMask> indicates which drivers are responsive
and communicate with the system master board.

In normal conditions <driverPresenceMask> and <driverAliveMask> are identical.

Example:

Command: ?SYSSTAT

Answer: 0x004F

Command: ?SYSSTAT 8

Answer: 0x13 0x13

138 of 155 IcePAP User Manual

?TIME

Query the board running time

Syntax:

<board_addr>:?TIME [DAYS | HOURS | MINUTES | SECONDS]

Answer:

<board_addr>:?TIME time_string

Description:

Returns the time elapsed since the board processor start execution or was reset. The
time is return as an ASCII string.

The default option is DAYS.

Examples:

Command: 115:?TIME SECONDS

Answer: 115:?TIME 5844674s

Command: 115:?TIME HOURS

Answer: 115:?TIME 1623h 31min 14s

Command: 115:?TIME

Answer: 115:?TIME 67d 15h 31min 14s

Command: 115:?TIME SECONDS

Answer: 115:?TIME 1294s

Command: 115:?TIME

Answer: 115:?TIME 0d 0h 21min 34s

IcePAP User Manual 139 of 155

TRACK

Start position tracking mode

Syntax:

<board_addr>:TRACK <track_input> [{SIMPLE | SMART | FULL}]

Description:

The addressed driver will start a movement which tracks the evolution of a physical input.

The driver will keep the READY status bit low, like for any other kind of movement, even if
no pulses are received on the tracked input. The tracking movement will end with a STOP
command, or if any stop condition is met (alarm, limit switch...).

Three modes are possible:

SIMPLE: (default mode). For each pulse received, the mechanical angle will be modified
to do one step following a trapezoidal trajectory with VELOCITY and ACCTIME
parameters (similar to updated movement, see command UMOVE). A long ACCTIME will
allow smooth movements, but will add a certain delay.

FULL: each time a pulse is received, the electrical angle is incremented instantaneously
of the amount corresponding to one step. No delays, but movements are done step by
step

 ….

track_signal Input position signal

SYNC Internal SYNC signal

ENCIN ENCIN signal

INPOS INPOS signal

ABSENC ABSENC signal

Examples:

140 of 155 IcePAP User Manual

UMOVE

Absolute updated movement

Syntax:

<board_addr>:UMOVE <absolutePos>

Description:

Performs an absolute movement on the specified axis. This command is similar to MOVE
but it can be executed even if the motor has not finished the previous movement
command and is still in motion state.

Examples:

IcePAP User Manual 141 of 155

VCONFIG / ?VCONFIG

Set/query variable regulation configuration

Syntax: (board command)

<board_addr>:VCONFIG SOURCE { SOFT | ABSENC | ENCIN | INPOS }

 or

<board_addr>:VCONFIG {GAIN | TAU | DEADBAND } <par_value>

 or

<board_addr>:VCONFIG { MINPOS | MAXPOS } { NONE | <soft_limit> }

 or

<board_addr>:VCONFIG { AUTOSTOP | DBHYST } { ON | OFF }

Description:

Configures the regulation on an external variable.

The SOURCE defines from which physical input is receiving the external variable. If
SOFT is used as source, it is the responsibility of the client to update the external variable
value regularly with the VVALUE command.

GAIN: is the theoretical (and linearised) rate of change of the external variable respect to
the axis steps. Gain units: external variable units/step.

TAU: is a the time constant, the regulation is expected to behave as a linear first order
system. Tau units: second.

DEADBAND: A deadband around the target value of the external variable where the
regulation is not active. Deadband units: the same as the external variable.

MINPOS/MAXPOS: the regulation will be active as long as the axis position is inside the
window defined by this two positions, if they are set.

AUTOSTOP: The regulation movement will be stopped as soon as the position reaches
any of the limits defined with MINPOS or MAXPOS

DBHYST: if ON, the regulation will move the motor until the target is reached once, even
if there is a deadband window.

All these values except the SOURCE can be set during a VMOVE, but their new value will
not be taken into account until the next VMOVE.

Syntax: (board command)

<board_addr>:?VCONFIG [{ SOURCE | GAIN | TAU | DEADBAND | DBHYST }]

 or

<board_addr>:?VCONFIG [{ MINPOS | MAXPOS | AUTOSTOP }]

Answer:

<board_addr>:?VCONFIG <par_value> (board answer)

 or

<board_addr>:?VCONFIG $ (board answer)

 SOURCE <var_source>

142 of 155 IcePAP User Manual

 GAIN <gain_factor>

 …

 DBHYST { ON | OFF }

 $

Description:

Returns the...

Examples:

IcePAP User Manual 143 of 155

VELOCITY / ?VELOCITY

Set/query programmed axis velocity

Syntax:

<board_addr>:VELOCITY [<velocity>] (board command)

 or

VELOCITY <axis1> <velocity1> … <axisN> <velocityN> (system command)

Description:

Sets the velocity for the corresponding axis to the <velocity> values in steps per second.
The actual acceleration for each axis is maintained to the previous value, and the
acceleration time is internally recalculated (see ?ACCTIME query).

If no value is specified, the velocity is set to the default value.

Syntax:

<board_addr>:?VELOCITY [{NOMINAL | MIN | MAX | DEFAULT | CURRENT}]

 (board command)

 or

?VELOCITY [{NOMINAL | MIN | MAX | DEFAULT | CURRENT}] <axis1> … <axisN>

 (system command)

Answer:

<board_addr>:?VELOCITY <velocity> (board answer)

 or

?VELOCITY <velocity1> <velocity2> … <velocity1> (system answer)

Description:

By default the query returns the NOMINAL velocity in steps per second. If the MIN or
MAX keywords are issued, the query returns the minimum or maximum acceptable
values. With the DEFAULT keyword, the query returns the default time defined by the
DEFVEL configuration parameter. With the CURRENT keyword, the query returns the
actual velocity at the query time that varies during acceleration and deceleration phases.

Examples:

144 of 155 IcePAP User Manual

?VER

Query firmware version information

Syntax:

?VER [<verModule>] (system command)

 or

<board_addr>:?VER [<verModule>] (board command)

Answer:

?VER <verModule> <verNumber> (system answer)

 or

<board_addr>:?VER <verModule> <verNumber> (board answer)

Description:

Returns the version number XX.YY of the firmware.

module

SYSTEM all cases

CONTROLLER all cases

DRIVER all cases

DSP controllers and drivers

FPGA controllers and drivers

PCB controllers and drivers

IO drivers

INFO all cases

The ?VER INFO query returns a multiline answer with the version numbers of all the
modules.

Example:

Command: ?VER

Answer: ...

IcePAP User Manual 145 of 155

VMOVE / ?VMOVE

Set/query setpoint for variable regulation motion

Syntax:

<board_addr>:VMOVE <setpoint> (board command)

Description:

Sets the setpoint and starts variable regulation motion. If the axis is already in that motion
mode, only the setpoint value is updated.

Syntax:

<board_addr>:?VMOVE [{SETPOINT | VALUE | ERROR}] (board command)

Answer:

<board_addr>:?VMOVE {<setpoint> | <var_value> | <var_error>} (board answer)

Description:

Returns the setpoint for variable regulation motion if variable regulation motion is active. If
not, the query returns an error.

Examples:

146 of 155 IcePAP User Manual

?VSTATUS

Query verbose board status

Syntax:

<board_addr>:?VSTATUS

Answer:

<board_addr>:?VSTATUS <statusReg>

Description:

Returns the board status as as multiline verbose answer. The status information is the
same returned by ?STATUS and ?FSTATUS, but the various status bits and fields are
presented and identified separately.

The purpose of ?VSTATUS is to be used to assist application debugging and it is not
intended to be used in normal operation.

Example:

Command: 12:?STATUS

Answer: 12:?STATUS 0x00000003

Command: 12:?VSTATUS

Answer: 12:?VSTATUS $

0x00000000

 1 – 1: Board is present in the system

 2 – 1: Board is alive

 C – 2: Board mode is OPER

 7. – 2: Motor power is ON

 18. – 2: Indexer source is INTERNAL

 2.. – 1: Board is READY

 4.. – 0: Motor is not moving

[...]

 ...4.... – 0: Limit+ signal is not active

 ...8.... – 0: Limit- signal is not active

 ..1..... – 0: Home signal is not LOW

 ..2..... – 1: Aux 5V power supply is ON

 ..4..... – 0: Firmware versions are consistent

 FF...... – 0: Info value is 0

$

IcePAP User Manual 147 of 155

?VSTOPCODE

Query verbose board stop code

Syntax:

<board_addr>:?VSTOPCODE (board query)

Answer:

<board_addr>:?VSTOPCODE <stopcode_message> (board answer)

Description:

Returns a message corresponding to the last motion’s stop code.

This command is especially useful if the stopcode field in the status register (as returned
by the ?STATUS command) has the value 5 (= configured stop condition). In that case,
the four upper bits of stopcode represent the different possible configured stop conditions.
For values in the stopcode field of the status register different than 5, the ?STOPCODE
command does not add any information.

stopcode message

0x0000 No abnormal stop condition

0x0001 Last motion stopped by a STOP command

0x0002 Last motion stopped by an ABORT command or condition

0x0003 Last motion stopped when the LIMIT+ was reached

0x0004 Last motion stopped when the LIMIT- was reached

0x0006 Last motion stopped because the axis power was DISABLED

0x0015 Last motion stopped after a closed loop settling error condition

0x0025 Last motion stopped by an external hold motion signal

Example:

Command: 53:?STOPCODE

Answer: 53:?STOPCODE 0x0025

Command: 53:?VSTOPCODE

Answer: 53:?VSTOPCODE Last motion stopped by an external hold motion

signal

148 of 155 IcePAP User Manual

VVALUE / ?VVALUE

Set/query current values for external variable regulation

Syntax:

<board_addr>:VVALUE [<soft_value>] (board command)

Description:

Sets the value of the external variable used for variable regulation motion when the axis is
configured to use a software variable (see VCONFIG SOURCE SOFT command).

Syntax:

<board_addr>:?VVALUE [{VALUE | SETPOINT | ERROR}] (board command)

Answer:

<board_addr>:?VVALUE <current_value> (board answer)

Description:

Returns the current value of the external variable used for variable regulation motion. This
query can be used regardless the axis is configured to use a input encoder signal or a
software variable.

By default the query returns the current value of the regulation variable. With the
SETPOINT parameter, the query returns the target value set by the VMOVE command. If
the ERROR parameter is set, the returned value is the difference between the current and
the target values.

The ?VVALUE query returns the current values regardless whether or not the variable
regulation mode is active.

Examples:

IcePAP User Manual 149 of 155

WAIT

Set waiting lapse

Syntax:

<board_addr>:WAIT <delta_time> (board command)

 or

WAIT <delta_time> (system command)

Description:

The WAIT command ...

Examples:

Command: 16:AT LOW SyncAux; 16:WAIT 0.5; 16:MOVE -100

150 of 155 IcePAP User Manual

?WARNING

Query board warnings

Syntax:

<board_addr>:?WARNING

Answer:

<board_addr>:?WARNING NONE

 or

<controller_addr>:?WARNING [<temperatureWarning>]

 or

<driver_addr>:?WARNING $

 [<temperatureWarning>]

 [<ssiWarning>]

 [<externalWarning>]

 $

Description:

Returns a list of strings describing warning conditions that happened since the last
?WARNING query was received by the board. If no warning conditions happened, the
query returns no strings.

The warning strings and conditions are cleared immediately after the query is executed.

Examples:

Command: 115:?WARNING

Answer: 115:?WARNING $

blah, blah

$

Command: 115:?WARNING

Answer: 115:?WARNING NONE

IcePAP User Manual 151 of 155

WTEMP / ?WTEMP

Set/query warning temperature

Syntax:

<board_addr>:WTEMP <warningTemp>

Description:

Sets the temperature threshold used by the board to generate warning conditions to the
value <warningTemp> in degrees Celsius.

Syntax:

<board_addr>:?WTEMP

Answer:

<board_addr>:?WTEMP <warningTemp>

Description:

Returns the warning temperature threshold in degrees Celsius.

Examples:

Command: 11:?WTEMP

Answer: 11:?WTEMP 40

Command: 12:WTEMP 35.5

152 of 155 IcePAP User Manual

5.2. IcePAP command quick reference

BOARD COMMANDS

BOARD CONFIGURATION and IDENTIFICATION

<board_addr>:?ACTIVE

 Query activation status

<board_addr>:?MODE

 Query board mode

<board_addr>:?STATUS

 Query board status

<board_addr>:?VSTATUS

 Query verbose board status

<board_addr>:?ALARM

 Query board alarm message

<board_addr>:?WARNING

 Query board warnings

<board_addr>:WTEMP <warningTemp>

<board_addr>:?WTEMP

 Set/query warning temperature

<driver_addr>:CONFIG [<confID>]

<driver_addr>:?CONFIG

 Manage configuration mode

<driver_addr>:CFG <configPar> <configVal>

<driver_addr>:CFG {DEFAULT | EXPERT}

<driver_addr>:?CFG {[<configPar>] | EXPERT}

 Set/query configuration parameters

<driver_addr>:?CFGINFO [<configPar>]

 Query configuration parameter info

<board_addr>:?VER [<verModule>]

 Query board version information

<board_addr>:NAME <boardName>

<board_addr>:?NAME

 Set/query board name

<board_addr>:?ID [{HW | SN}]

 Query board identification

<board_addr>:?POST

 Query power-on self-test results

POWER AND MOTION CONTROL

<driver_addr>:POWER [{ON | OFF}]

<driver_addr>:?POWER

 Set/query motor power state

<driver_addr>:AUXPS [{ON | OFF}]

<driver_addr>:?AUXPS

 Set/query auxiliary power supply state

<board_addr>:?MEAS {VCC | VM | IM | IA | IB | IC | T | RT}

 Query measured value

<board_addr>:POS [pos_sel] <posVal>

<board_addr>:?POS [pos_sel]

 Set/query axis position in axis units

<board_addr>:ENC [pos_sel] <posVal>

<board_addr>:?ENC [pos_sel]

 Set/query axis position in encoder steps

<driver_addr>:?HOMESTAT

 Query home search status

<driver_addr>:?HOMEPOS [pos_sel]

 Query the found home position in axis units

<driver_addr>:?HOMEENC [pos_sel]

 Query the found home position in encoder steps

<board_addr>:VELOCITY [<velocity>]

<board_addr>:?VELOCITY

 Set/query programmed axis velocity

<board_addr>:ACCTIME [<accTime>]

<board_addr>:?ACCTIME

 Set/query acceleration time

<driver_addr>:PCLOOP {ON | OFF}

<driver_addr>:?PCLOOP

 Set/query current position closed loop mode

IcePAP User Manual 153 of 155

<driver_addr>:ESYNC

 Synchronise internal position registers

<driver_addr>:CTRLRST

 Reset control encoder value

<board_addr>:RMOVE <absolutePos>

 Start relative movement

<board_addr>:JOG <signedVelocity>

<board_addr>:?JOG

 Set/query jog velocity
<driver_addr>:HOME [{+1|0|-1}]

 Start home signal search sequence

<driver_addr>:CMOVE <absolutePos>

 Start relative movement in configuration mode

<driver_addr>:CJOG <signedVelocity>

 Set jog velocity in configuration mode

<board_addr>:STOP

 Stop movement

<board_addr>:ABORT

 Abort movement

<driver_addr>:DISPROT {ALL | {[LINKED] [CONTROL] [HARDCTRL]}}

 Request temporary protection disable

INPUT/OUTPUT

<driver_addr>:INDEXER [{INTERNAL | SYNC | INPOS | ENCIN}]

<driver_addr>:?INDEXER

 Set/query indexer signal source

<driver_addr>:INFOA [signal_source [{NORMAL | INVERTED}]]

<driver_addr>:INFOB [signal_source [{NORMAL | INVERTED}]]

<driver_addr>:INFOC [signal_source [{NORMAL | INVERTED}]]

<driver_addr>:?INFOA

<driver_addr>:?INFOB

<driver_addr>:?INFOC

 Set/query Info signal source and polarity

COMMUNICATION and ERROR MANAGEMENT

<board_addr>:?HELP

 Query list of available board commands

<board_addr>:?ERRMSG

 Local query of last command error message

<board_addr>:?FERRMSG

 Query first error message

<board_addr>:BLINK <blinkTime>

<board_addr>:?BLINK

 Set/query remaining blinking time

<board_addr>:?TIME <time_units>

 Query running time

<board_addr>:DEBUG <debugLevel>

<board_addr>:?DEBUG

 Set/query debug level

<board_addr>:ECHO

 Select echo mode

<board_addr>:NOECHO

 Cancel echo mode

<board_addr>:?MEMORY

 Query available memory

<board_addr>:?ADDR

 Query board address

154 of 155 IcePAP User Manual

SYSTEM COMMANDS

SYSTEM CONFIGURATION and IDENTIFICATION

MODE {OPER | PROG | TEST}

?MODE

 Set/query system mode

?SYSSTAT [<rackNumber>]

 Query system configuration

?STATUS <axis1> <axis2> … <axisN>

 Query multiple board status

?FSTATUS [<axis1> <axis2> … <axisN>]

 Fast query of multiple board status

?LINKED

 Query linked axis groups

REPORT {ON | OFF} [<firstRack> <lastRack> [<maxPeriod>]]

?REPORT

 Set/query asynchronous report settings

?VER [<verModule>]

 Query system firmware version information

?RID [<rackNumber1> <rackNumber2> … <rackNumberN>]

 Query rack identification string

?RTEMP [<rackNumber1> <rackNumber2> … <rackNumberN>]

 Query rack temperatures

*PROG {NONE | <bAddr> | DRIVERS | CONTROLLERS | ALL} [FORCE] [NOSAVE]

PROG {<bAddr> | DRIVERS | CONTROLLERS | ALL} [FORCE]

?PROG

 Firmware programming

RFPROG [<rackNumber1> <rackNumber2> … <rackNumberN>]

 Factory firmware programming

IPMASK <IPmask>

?IPMASK

 Set/query the IP active control mask

REBOOT

 System reboot
RESET [<rackNumber>]

 System or rack reset

MOTION CONTROL

POWER [{ON | OFF}] <axis1> <axis2> … <axisN>

?POWER <axis1> <axis2> … <axisN>

 Set/query multiple axis motor power state

POS [pos_sel] <axis1> <posVal1> … <axisN> <posValN>

?POS [pos_sel] <axis1> <axis2> … <axisN>

 Set/query multiple axis position in axis units

ENC [pos_sel] <axis1> <posVal1> … <axisN> <posValN>

?ENC [pos_sel] <axis1> <axis2> … <axisN>

 Set/query multiple axis position in encoder steps

?FPOS [AXIS | MEASURE] <axis1> <axis2> … <axisN>

 Fast query of multiple board positions

?HOMESTAT <axis1> … <axisN>

 Query multiple axis home search status
?HOMEPOS [pos_sel] <axis1> … <axisN>

 Query the found multiple axis home position in axis units

?HOMEENC [pos_sel] <axis1> … <axisN>

 Query the found multiple axis home position in encoder steps

?VELOCITY <axis1> <velocityN> … <axisN> <velocityN>

?VELOCITY <axis1> <axis2> … <axisN>

 Set/query programmed multiple axis velocity

ACCTIME <axis1> <accTime1> … <axisN> <accTimeN>

?ACCTIME <axis1> <axis2> … <axisN>

 Set/query acceleration time

MOVE [GROUP] <axis1> <absolutePos1> … <axisN> <absolutePosN>

 Start multiple axis absolute movement

RMOVE [GROUP] <axis1> <absolutePos1> … <axisN> <absolutePosN>

 Start multiple axis relative movement

JOG [GROUP] <axis1> <signedVel1> … <axisN> <signedVelN>

?JOG <axis1> <axis2> … <axisN>

 Set/query multiple axis jog velocities

HOME [GROUP] <axis1> {+1|0|-1} … <axisN> {+1|0|-1}

 Start multiple axis home signal search sequence

IcePAP User Manual 155 of 155

STOP [<axis1> <axis2> … <axisN>]

 Stop multiple axis movement

ABORT [<axis1> <axis2> … <axisN>]

 Abort movement

ESYNC [<axis1> <axis2> … <axisN>]

 Synchronise internal position registers

CTRLRST [<axis1> <axis2> … <axisN>]

 Reset control encoder values

DISPROT {ALL | {[LINKED] [CONTROL] [HARDCTRL]}} <axis1> <axis2> … <axisN>

 Request multiple axis temporary protection disable

COMMUNICATION and ERROR MANAGEMENT

?HELP Query list of available commands

?ERRMSG Query last command error message

ECHO Select serial line echo

NOECHO Cancel serial line echo

