
MuPDF Explored

Robin Watts

September 5, 2022

jamielemon
Sticky Note
One of my favorite docs!

Preface

This is the beginnings of a book on MuPDF. It is not yet complete, but offers
useful information as far as it goes. We offer it with the latest release of MuPDF
(see mupdf.com/downloads) in the hopes it will be useful. It documents the API
and design of MuPDF as of version 1.19.

Any feedback, corrections or suggestions are welcome. Please visit bugs.

ghostscript.com and open a bug with “MuPDF” as the product, and “Docu-
mentation” as the component.

We will endeavour to make new versions available from the Documentation
section of mupdf.com as they appear.

i

mupdf.com/downloads
bugs.ghostscript.com
bugs.ghostscript.com
mupdf.com

Acknowledgements

Many thanks are due to Tor Andersson for creating MuPDF, to everyone who
has contributed to it over the years, and to all my colleagues at Artifex Software
for providing an environment in which it could grow, and nursing it through
to maturity. Particular thanks are due to Sebastian Rasmussen for patiently
proof-reading the book through its many revisions, and suggesting numerous
improvements.

Finally, many thanks are due to Helen Rogers, for putting up with me.

ii

jamielemon
Highlight
:)

Contents

Preface i

Acknowledgements ii

1 Introduction 1
1.1 What is MuPDF? . 1
1.2 License . 1
1.3 Dependencies . 3

2 About this book 4

I The MuPDF C API 5

3 Quick Start 6
3.1 How to open a document and render some pages 6

4 Naming Conventions 7
4.1 Prefixes . 7
4.2 Naming . 7
4.3 Types . 9

5 The Context 10
5.1 Overview . 10
5.2 Creation . 11
5.3 Custom Allocators . 12
5.4 Multi-threading . 12
5.5 Cloning . 14
5.6 Destruction . 15
5.7 Tuning . 16
5.8 Summary . 18

6 Error handling 19
6.1 Overview . 19

iii

CONTENTS iv

6.1.1 Why is fz var necessary? 21
6.1.2 Example: How to protect local variables with fz var . . . 22

6.2 Throwing exceptions . 23
6.3 Handling exceptions . 24
6.4 Summary . 25

7 Memory Management and The Store 26
7.1 Overview . 26
7.2 Creating the Store . 27
7.3 Reacting to Out of Memory events 27

7.3.1 Implementation . 27

8 The Document interface 28
8.1 Overview . 28
8.2 Opening/Closing a document . 28
8.3 Handling password protected documents 29
8.4 Handling reflowable documents 30
8.5 Getting Pages from a document 32
8.6 Anatomy of a Page . 33
8.7 Color Considerations . 33
8.8 Rendering Pages . 34
8.9 Presentations . 36

8.9.1 Querying . 36
8.9.2 Helper functions . 37

9 The Device interface 38
9.1 Overview . 38
9.2 Device Methods . 39
9.3 Cookie . 39

9.3.1 Detecting errors . 40
9.3.2 Using the cookie with threads 40
9.3.3 Using the cookie to control partial rendering 41

9.4 Device Hints . 41
9.5 Inbuilt Devices . 42

9.5.1 BBox Device . 42
9.5.2 Draw Device . 43
9.5.3 Display List Device . 45
9.5.4 PDF Output Device . 45
9.5.5 Structured Text Device 46
9.5.6 SVG Output Device . 47
9.5.7 Test Device . 47
9.5.8 Trace Device . 49

10 Building Blocks 50
10.1 Overview . 50
10.2 Colorspaces . 50

CONTENTS v

10.2.1 Basic Colorspaces . 50
10.2.2 Indexed Colorspaces . 51
10.2.3 Separation and DeviceN Colorspaces 51
10.2.4 Further information . 51

10.3 Pixmaps . 51
10.3.1 Overview . 51
10.3.2 Premultiplied alpha . 53
10.3.3 Saving . 53

10.4 Bitmaps . 53
10.5 Halftones . 54
10.6 Images . 55
10.7 Buffers . 55
10.8 Transforms . 55
10.9 Paths . 61
10.10Text . 62
10.11Shadings . 64

11 Display Lists 65
11.1 Overview . 65
11.2 Creation . 65
11.3 Playback . 66
11.4 Reference counting . 67
11.5 Miscellaneous operations . 68

12 The Stream interface 70
12.1 Overview . 70
12.2 Creation . 70
12.3 Usage . 72

12.3.1 Reading bytes . 72
12.3.2 Reading objects . 74
12.3.3 Reading bits . 75
12.3.4 Reading whole streams . 76
12.3.5 Seeking . 77
12.3.6 Meta data . 78
12.3.7 Destruction . 79

13 The Output interface 80
13.1 Overview . 80
13.2 Creation . 80
13.3 Usage . 82

13.3.1 Writing bytes . 82
13.3.2 Writing objects . 82
13.3.3 Writing strings . 83
13.3.4 Seeking . 84

14 Rendered Output Formats 85

CONTENTS vi

14.1 Overview . 85
14.2 Band Writers . 86
14.3 PNM . 87
14.4 PAM . 87
14.5 PBM . 88
14.6 PKM . 88
14.7 PNG . 89
14.8 PSD . 89
14.9 PWG/CUPS . 90

14.9.1 Contone . 91
14.9.2 Mono . 93

14.10TGA . 94
14.11PCL . 94

14.11.1Color . 96
14.11.2Mono . 96

14.12Postscript . 97

15 The Document Writer interface 98
15.1 Usage . 98
15.2 Implementation . 100

16 Stories 103
16.1 Overview . 103

16.1.1 Styled Text . 104
16.1.2 Programmatic content . 104
16.1.3 Life cycle . 104

16.2 Creating a story . 105
16.3 Document manipulations . 106

16.3.1 Node contents . 106
16.3.2 Navigation . 107
16.3.3 Searching . 108
16.3.4 Modifying the structure 110
16.3.5 Cloning a node . 111
16.3.6 Deletion . 111
16.3.7 Node attributes . 112

16.4 Parsing warnings . 113
16.5 Placing the story . 114
16.6 Inspecting the placed story . 115
16.7 Drawing the placed story . 118
16.8 Resetting the story . 119
16.9 Dropping the story . 119
16.10Styling stories . 120

16.10.1Font selection and sizing 120
16.10.2Padding, Margins and Borders 120
16.10.3Line Height and Leading 120
16.10.4Page breaks . 121

CONTENTS vii

16.10.5Text colour . 121
16.10.6Visibility . 121
16.10.7White space . 121
16.10.8Text indent . 121
16.10.9Alignment . 121
16.10.10Overflow wrap . 122

17 Archives 123
17.1 Overview . 123
17.2 API . 123

17.2.1 Creating an archive . 123
17.2.2 Reference counting . 124
17.2.3 Checking if an archive entry exists 124
17.2.4 Opening an archive entry as a stream 124
17.2.5 Reading an archive entry as a buffer 125
17.2.6 Archive format . 125
17.2.7 Counting archive entries 125
17.2.8 Enumerating archive entries 126

17.3 Archive Types . 126
17.3.1 Overview . 126
17.3.2 Zip archives . 127
17.3.3 Tar archives . 129
17.3.4 ‘Virtual’ directory archives 130
17.3.5 ‘Virtual’ tree archives . 131
17.3.6 Multi archives . 132

18 Progressive Mode 134
18.1 Overview . 134
18.2 Implementation . 135

18.2.1 Progressive Streams . 135
18.2.2 Rough renderings . 136
18.2.3 Directed downloads . 136
18.2.4 Example implementation 138

19 Fonts 140
19.1 Overview . 140
19.2 Inbuilt Fonts . 141
19.3 Implementation . 141

20 Build configuration 142
20.1 Overview . 142
20.2 Configuration file . 142
20.3 Plotter selection . 143
20.4 Document handlers . 144
20.5 JPEG 2000 support . 144
20.6 Javascript . 145

CONTENTS viii

20.7 Fonts . 145

21 Annotations, Links and Interaction 147
21.1 Overview . 147
21.2 Fitz-level Links . 148
21.3 Fitz-level Annotations . 149
21.4 PDF-level Annotations and Widgets 149

21.4.1 How to operate at the PDF level 149
21.4.2 PDF Annotations . 150
21.4.3 Annotation Values vs Appearances 151
21.4.4 Updating annotations . 152

21.5 PDF Annotation operations . 152
21.5.1 PDF Widgets . 153
21.5.2 Events . 153
21.5.3 Event Callback . 156

II MuPDF Internals 157

22 The Image interface 158
22.1 Overview . 158
22.2 Standard Image Types . 160

22.2.1 Compressed . 160
22.2.2 Decoded . 162
22.2.3 Display List . 163

22.3 Creating Images . 163
22.4 Implementing an Image Type . 165
22.5 Image Caching . 168

23 The Document Handler interface 169
23.1 Overview . 169
23.2 Implementing a Document Handler 170

23.2.1 Recognize and Open . 170
23.2.2 Document Level Functions 171
23.2.3 Page Level Functions . 175

23.3 Standard Document Handlers . 178
23.3.1 PDF . 178
23.3.2 XPS . 178
23.3.3 EPUB . 179
23.3.4 HTML . 179
23.3.5 SVG . 179
23.3.6 Image . 179
23.3.7 CBZ . 179

24 Store Internals 180
24.1 Overview . 180

CONTENTS ix

24.2 Implementation . 180
24.3 Reference Counting . 181
24.4 Scavenging memory allocator . 182
24.5 Using the Store . 182

24.5.1 Overview . 182
24.5.2 Handling keys . 183
24.5.3 Hashing . 184
24.5.4 Key storable items . 185
24.5.5 Reap passes . 186

25 Device Internals 188
25.1 Line Art . 188
25.2 Text . 189
25.3 Images . 190
25.4 Shadings . 190
25.5 Clipping and Masking . 190
25.6 Groups and Transparency . 191
25.7 Tiling . 191
25.8 Render Flags . 192
25.9 Device Color Spaces . 193
25.10Layers . 193

26 Path Internals 195
26.1 Creation . 195
26.2 Reference counting . 198
26.3 Storage . 199
26.4 Transformation . 202
26.5 Bounding . 202
26.6 Stroking . 203
26.7 Walking . 206

27 Image Internals 208
27.1 Compressed Images . 209
27.2 Pixmap Images . 209

28 Text Internals 210
28.1 Creation . 210
28.2 Population . 211
28.3 Measurement . 212
28.4 Cloning . 213
28.5 Language . 213
28.6 Implementation . 214

29 Shading Internals 216
29.1 Creation . 217
29.2 Bounding . 218

CONTENTS x

29.3 Painting . 218
29.4 Decomposition . 219

30 Stream Internals 221

31 Output Internals 224

32 Colorspace Internals 226
32.1 Non ICC-based Colorspaces . 226
32.2 ICC-based colorspaces . 228
32.3 Calibrated Colorspaces . 228

33 Color Management 229
33.1 Overview . 229

34 Font provision within MuPDF 231
34.1 Tofu . 231
34.2 Supplied fonts . 232

34.2.1 Base 14 fonts . 232
34.2.2 Extra Latin font . 232
34.2.3 CJKV fonts . 232
34.2.4 Noto fonts . 232
34.2.5 Fallback fonts . 233

34.3 Customising the included fonts 233
34.3.1 MSVC builds . 234
34.3.2 Makefile builds . 234

III The MuPDF Interpreters 235

35 PDF Interpreter Details 236
35.1 Overview . 236
35.2 PDF Document . 236
35.3 PDF Objects . 237

35.3.1 Arrays . 238
35.4 PDF Operator Processors . 239

35.4.1 Run processor . 239
35.4.2 Filter processor . 240
35.4.3 Buffer processor . 241
35.4.4 Output processor . 242

35.5 Copying objects between PDF documents 242
35.5.1 The problem . 242
35.5.2 Grafting objects . 244
35.5.3 A further problem . 244
35.5.4 Graft maps . 245

36 XPS Interpreter Details 247

CONTENTS xi

36.1 Overview . 247

37 EPub/HTML Interpreter Details 248
37.1 CSS rules . 248
37.2 Shaped text . 249
37.3 Bidirectional text . 249

38 SVG Interpreter Details 250

IV Tools, Libraries, and Helper Routines 251

39 MuTool 252
39.1 Overview . 252
39.2 Clean . 253
39.3 Convert . 254
39.4 Create . 255
39.5 Draw . 256
39.6 Extract . 257
39.7 Info . 257
39.8 Merge . 258
39.9 Pages . 258
39.10Portfolio . 258
39.11Poster . 259
39.12Run . 259
39.13Show . 259

40 MuOfficeLib 261

41 Transitions 262

42 MuThreads 263

V Platform specifics and Language Bindings 264

43 Platform specifics 265
43.1 Overview . 265
43.2 C API . 266
43.3 C++ API . 266
43.4 Python . 268
43.5 Java . 268
43.6 Javascript . 269

A How to contribute to MuPDF 270
A.1 Licensing . 270

A.1.1 GNU AGPL . 270

CONTENTS xii

A.1.2 Artifex Commercial License 271
A.2 Copyright Assignment . 271
A.3 Coding Style . 271

Chapter 1

Introduction

1.1 What is MuPDF?

MuPDF is a portable C library for opening, manipulating and rendering doc-
uments in a variety of formats, including PDF, XPS, SVG, e-pub, and many
common image formats.

This core C library provides an API (known as the MuPDF API) that allows a
wide range of actions to be performed on those documents. The exact actions
available depend on the format of the document, but always includes rendering
of those files.

As well as this library, the MuPDF distribution includes various tools built
on top of this API. These tools include simple viewers, tools to manipulate
documents, to add, remove or resize pages, and to extract resources and other
information from the documents. These tools are deliberately kept as ‘thin’ as
possible. The heavy lifting is all performed by the core library, so as to be as
reusable as possible.

Often the first place that people will encounter MuPDF is as a Linux or Android
desktop viewer, but these are merely simple examples of applications built using
some of the features of the library.

Finally, the MuPDF distribution includes bindings to reflect the MuPDF C API
into other languages, such as C++, Python, Java and Javascript.

1.2 License

MuPDF is released under two licenses.

Firstly, it is available under the GNU Afferro General Purpose License (hence-
forth the GNU AGPL). This is a complex license worthy of careful study and

1

CHAPTER 1. INTRODUCTION 2

more words than we have space for here. Some key points, however are:

� You are free to use MuPDF within a piece of software written entirely
for your own use with no problems. The moment you pass that software
to any other person, or make it available to any other person as part of
a “Software as a service” installation, you must abide by the following
terms.

� If you link MuPDF into your own software, then the entirety of that soft-
ware must be licensed under the GNU AGPL (or a compatible license1).

� If you use MuPDF as part of a “Software as a service” installation, then
you must license the entirety of that installation under the GNU AGPL.

� Releasing a piece of software under the GNU AGPL requires you to be
prepared to give full source code to any user that receives a copy of the
software. No charge (other than nominal media costs) may be made for
this.

� You must ensure that all end users of that system have the ability to
update the software with an updated version of MuPDF. This includes
embedded systems.

� Using MuPDF under the GNU AGPL, you receive no warranty and no
support.

There are other terms too, and we strongly recommend that you read the license
in full and understand your obligations under it before developing code based
upon MuPDF.

If you find that you can abide by all the terms of the GNU AGPL, you can use
MuPDF in your own projects without any license fee.

These terms, however, are generally stringent enough that they are inappro-
priate for people producing commercial products - giving the source code to a
commercial product away is generally unacceptable, and the ‘relinking’ require-
ments of the GNU AGPL are too cumbersome for embedded users.

It is for this reason that Artifex (the developers of MuPDF) offer commercial
licenses. Contact sales@artifex.com for a quote tailored to your exact needs.

The Artifex commercial license removes all the onerous terms of the GNU
AGPL, including the need to license your entire app, to give away source, and
to ensure relinking capabilities.

If you find yourself unable to accept and comply with the terms of the GNU
AGPL, and unwilling to obtain a Commercial license from Artifex, you cannot
legally use MuPDF in any software that you distribute (or make available as
“Software as a service”).

1The question of whether a given open source license is compatible with the GNU AGPL is a
complex one - a good list can be found here: https://www.gnu.org/licenses/license-list.
en.html#GPLCompatibleLicenses

mailto:sales@artifex.com
https://www.gnu.org/licenses/license-list.en.html#GPLCompatibleLicenses
https://www.gnu.org/licenses/license-list.en.html#GPLCompatibleLicenses

CHAPTER 1. INTRODUCTION 3

1.3 Dependencies

The core MuPDF library makes use of various software libraries.

Freetype Renderer for various font types.

Harfbuzz OpenType Font shaper built upon Freetype, required for e-pub files.

JBig2dec Image decoder for JBIG2 images.

JpegLib Image decoder for JPEG images.

MuJS Javascript engine used for PDF files.

OpenJPEG Image decoder for JPEG2000 images.

ZLib Compression library.

LCMS2 ICC Color Management engine.

In addition, the MuPDF library can optionally make use of:

OpenSSL Encryption library, required for Digital Signatures support.

The MuPDF viewer for Linux and Windows can optionally make use of:

Curl An http fetcher used for displaying files as they download.

These libraries are packaged with MuPDF, either in the distribution archives
or as git submodules. From time to time, these libraries may include bug fixes
that have not been accepted back into the upstream repositories. We therefore
strongly recommend using the versions of the libraries that we ship, rather than
any other versions you may find on your system.

The exception to this is LCMS2. The version of LCMS2 included with MuPDF
has API changes to make it incompatible with vanilla LCMS2. As such it is not
merely a recommendation that you use the supplied version, but a requirement.
The reasons for this incompatibility are discussed in the documentation with
our version of the library.

Finally, the commercial version of MuPDF can optionally use different decoder
libraries:

Luratech JBIG2 Image decoder for JBIG2 images.

Luratech JPEG2000 Image decoder for JPEG 2000 images.

These libraries are generally better both in terms of memory and CPU use, but
are not available open source. As such they are made available to our customers
as part of the commercial release. These commercial customers are then free to
choose which library to use.

Chapter 2

About this book

This book is divided into 3 parts.

The first part describes the MuPDF C API, the concepts behind it, and how to
call it. If you wish to build an application from MuPDF, the information you
need should be here.

The second part describes some of the modules used to build MuPDF. If you
wish to extend MuPDF, perhaps to open new formats, or to offer new operations
on documents once open, this is the part to refer to.

The third part describes some details of the actual language interpreters. This
will primarily be of interest to people wanting to do low level operations on doc-
ument formats (in particular PDF), but might be of interest to authors of new
document format handlers to see how common problems have been addressed.

The fourth part describes some of the tools, libraries, and ‘helper’ routines pro-
vided with MuPDF. These helper routines are not strictly part of the MuPDF li-
brary, but can nonetheless be very useful when implementing applications based
on it.

Finally, we have a part dedicated to platform specifics and the different language
bindings available.

4

Part I

The MuPDF C API

5

Chapter 3

Quick Start

3.1 How to open a document and render some
pages

For a simple example of how to open a document and render some pages, see
docs/example.c.

The concepts you meet in this example are explained and expanded upon in the
following chapters. It may be useful to have this example to hand as you read
on, to give you concrete illustrations of the ideas discussed.

6

Chapter 4

Naming Conventions

The function and variable names within MuPDF have been carefully chosen to
follow standard conventions. By consistently using the same terms, we hope that
it will become easy to remember things like the reference counting behaviour of
functions, and minimise the need to look things up in the documentation.

We require any code submitted to MuPDF to follow the same conventions, and
would encourage people to follow the same style in their own code that interfaces
with MuPDF.

4.1 Prefixes

Historically, the graphics library upon which MuPDF relies was known as ‘fitz’.
Accordingly, all MuPDF’s API calls and most types start with ‘fz ’.

The exception to this is where we have APIs and types provided by particular
format handlers (e.g. PDF or XPS). These functions/types are prefixed with
the format handlers name, for example ‘pdf ’ or ‘xps ’.

All exported functions and types should be prefixed in this way to avoid the
possibility of clashing with symbols in calling applications. Internal functions
are not required to be prefixed, but we encourage it for clarity.

4.2 Naming

All functions are named according to one of the following schemes:

� verb noun

� verb noun with noun

� noun attribute

7

CHAPTER 4. NAMING CONVENTIONS 8

� set noun attribute

� noun from noun – convert from one type to another (avoid noun to noun)

The sole exceptions to this are where we have MuPDF specific functions that
emulate (or extend) ‘well known’ functions, where we parrot those functions.
For example ‘fz printf’ or ‘fz strdup’.

In addition, we avoid using ‘get’ in function names as this is generally redundant.
In contrast, however, we do use ‘set’ where required. Consider for instance
fz aa level (to retrieve the current anti-aliasing level), and fz set aa level

(to update it).

MuPDF makes extensive use of reference counting (see section 24.3 Reference
Counting for more details). We reserve various words to indicate that reference
counting is being used:

new Indicates that this call creates a new object and returns a reference to it.
For example, fz new pixmap.

find Indicates that this call locates an object from somewhere (typically ei-
ther from a cache, or from a set of standard objects), and returns a new
reference to it. For example, fz find color converter.

load Indicates that this call creates a new object and returns a reference to it.
This is akin to ‘new’, but carries the implication that the operation will
read some data and require some (possibly significant) amount of data
processing before the object is created. For example, fz load outline or
fz load jpeg.

open Indicates that this call will create a stream object, and return a reference
to it. For example, fz open document.

keep Indicates that this call will create a new reference to an existing referenced
object. For example, fz keep colorspace.

All of these calls return an object reference. It is the callers responsibility to
store this reference safely somewhere for the duration of the required lifespan of
the object, and to destroy that reference when the caller no longer requires it.

No function should return ownership of a reference without being named with
one of the reserved words above.

Once all the references to a given object are released, the system will remove
the object itself.

drop Indicates that this call will relinquish ownership of the object passed in.
For example, fz drop font.

Failure to drop references will result in memory leaks. Dropping references too
early may result in crashes due to objects being accessed after they have been
destroyed.

CHAPTER 4. NAMING CONVENTIONS 9

API functions to destroy objects that are not subject to reference counted can
be destroyed by calling functions using the words ‘drop’, ‘close’ or ‘free’.

In contrast to ‘find’ described above, we have one other reserved word regarding
searching:

lookup Indicates that the call will return a borrowed pointer (or a value). For
example, fz lookup pixmap converter.

When we have a structure already allocated, and we wish to initialise some or all
of its internal details, we use ‘init’. The matching pair to this should be named
’fin’. For example, fz cmm init profile is matched by fz cmm fin profile.

Some objects are created using functions using the verb ‘create’. Sometimes
these can be reference counted objects (e.g. ‘pdf create document’), in which
case they should be ‘drop’ped as usual. Non reference counted objects should
be ‘destroyed’ (e.g. fz destroy mutex.

4.3 Types

Various different integer types are used throughout MuPDF.

In general:

� int is assumed to be at least 32 bits.

� short is assumed to be exactly 16 bits.

� char is assumed to be exactly 8 bits.

� array sizes, string lengths, and allocations are measured using size t.
size t is 32bit in 32bit builds, and 64bit on all 64bit builds.

� buffers of data use unsigned chars (or uint8 t).

� Offsets within files/streams are represented using int64 t on all builds
for simplicity.

Previously MuPDF used a fz off t type for file offsets. This changed size
according to build type or FZ LARGEFILE being defined, but this has been aban-
doned due to potential pitfalls. Having the API change between builds according
to different symbol definitions is poor form as it can lead to unexpected crashes.

In addition, we use floats (and doubles internally, though we avoid these in the
API where possible). These are assumed to be IEEE compliant.

Chapter 5

The Context

5.1 Overview

The core MuPDF library is designed for simplicity, portability, and ease of
integration. For all these reasons, it has no global variables, has no thread
library dependencies, and has a well defined exception system to handle runtime
errors. Nonetheless, in order to be as useful as possible, clearly the library
must have some state and needs to be able to take advantage of multi-threaded
environments.

The solution to these seemingly conflicting requirements is the Context
(fz context).

Every caller to MuPDF should create a Context at the start of its use of the
library, and destroy it at the end. This Context (or one ‘cloned’ from it) will
then be passed in to every MuPDF API call.

Global State At its simplest, the Context contains global settings for the li-
brary. For instance, the default levels of anti-aliasing used by the text
and line art rendering routines are set in the Context, as is the default
style sheet for EPUB or FB2 files. In addition, the library stores its own
private information there too.

Error handling All error handling within MuPDF is done using the fz try/
fz catch constructs; see chapter 6 Error handling for more details.

These constructs can be nested, so rely on an exception stack maintained
within the context. As such it is vitally important that no two threads
use the same context at the same time. See section 5.4 Multi-threading
for more information.

Allocation When embedding MuPDF into a system it is often desirable to
control the allocators used. A set of allocator functions can be provided

10

CHAPTER 5. THE CONTEXT 11

to the Context at creation time, and all allocations will be performed
using these. See chapter 7 Memory Management and The Store for more
information.

The Store MuPDF uses a memory cache to aid performance, and to avoid
repeated decoding of resources from the file. The store is maintained using
the context, and shared between a context and its clones. See chapter 7
Memory Management and The Store for more information.

Multi-threading MuPDF does not rely on threading itself, but it can be used
in a multi-threaded environment to give significant performance improve-
ments. Any thread library can be used with MuPDF. A set of locking/
unlocking functions must be passed to the context at creation time, and
the library will use these to ensure it is thread safe. See section 5.4 Multi-
threading for more information.

5.2 Creation

To create a context, use fz new context:

/*

fz_new_context: Allocate context containing global state.

The global state contains an exception stack, resource store,

etc. Most functions in MuPDF take a context argument to be

able to reference the global state. See fz_drop_context for

freeing an allocated context.

alloc: Supply a custom memory allocator through a set of

function pointers. Set to NULL for the standard library

allocator. The context will keep the allocator pointer, so the

data it points to must not be modified or freed during the

lifetime of the context.

locks: Supply a set of locks and functions to lock/unlock

them, intended for multi-threaded applications. Set to NULL

when using MuPDF in a single-threaded applications. The

context will keep the locks pointer, so the data it points to

must not be modified or freed during the lifetime of the

context.

max_store: Maximum size in bytes of the resource store, before

it will start evicting cached resources such as fonts and

images. FZ_STORE_UNLIMITED can be used if a hard limit is not

desired. Use FZ_STORE_DEFAULT to get a reasonable size.

Does not throw exceptions, but may return NULL.

*/

CHAPTER 5. THE CONTEXT 12

fz_context *fz_new_context(const fz_alloc_context *alloc, const

fz_locks_context *locks, unsigned int max_store);

For example, a simple, single threaded program using the standard allocator
can just use:

fz_context *ctx = fz_new_context(NULL, NULL, FZ_STORE_UNLIMITED);

5.3 Custom Allocators

In some circumstances it can be desirable to force all allocations through a set of
‘custom’ allocators. These are defined as a fz alloc context structure whose
address is passed in to fz new context. This structure must exist for the life
time of the returned fz context (and any clones).

typedef struct

{

void *user;

void *(*malloc)(void *, size_t);

void *(*realloc)(void *, void *, size_t);

void (*free)(void *, void *);

} fz_alloc_context;

The malloc, realloc and free function pointers have essentially the same
semantics as the standard malloc, realloc and free standard functions, with
the exception that they take an additional initial argument - that of the user

value specified in the fz alloc context.

5.4 Multi-threading

MuPDF itself does not rely on a thread system, but it will make use of one if one
is present. This is crucial to ensure that MuPDF can be called from multiple
threads at once.

A typical example of this might be in a multi-core processor on a printer. We
can interpret the PDF file to a display list, and then render ‘bands’ from that
display list to send to the printer. By using multiple threads we can render
multiple bands at once, thus vastly improving processing times.

In this example, although each thread will be rendering different things, they
will probably share some information - for instance the same font is likely to be
used in multiple bands. Rather than have every thread render all the glyphs that
it needs from the font independently, it would be nice if they could collaborate
and share results.

We therefore arrange that data structures such as the font cache can be shared

CHAPTER 5. THE CONTEXT 13

between the different threads. This, however, brings dangers; what if two
threads try to write to the same data structure at once?

To save this being a problem, we rely on the user providing some locking func-
tions for us.

/*

Locking functions

MuPDF is kept deliberately free of any knowledge of particular

threading systems. As such, in order for safe multi-threaded

operation, we rely on callbacks to client provided functions.

A client is expected to provide FZ_LOCK_MAX number of mutexes,

and a function to lock/unlock each of them. These may be

recursive mutexes, but do not have to be.

If a client does not intend to use multiple threads, then it

may pass NULL instead of a lock structure.

In order to avoid deadlocks, we have one simple rule

internally as to how we use locks: We can never take lock n

when we already hold any lock i, where 0 <= i <= n. In order

to verify this, we have some debugging code, that can be

enabled by defining FITZ_DEBUG_LOCKING.

*/

typedef struct

{

void *user;

void (*lock)(void *user, int lock);

void (*unlock)(void *user, int lock);

} fz_locks_context;

enum {

...

FZ_LOCK_MAX

};

If MuPDF is to be used in a multi-threaded environment, then the user is
expected to define FZ LOCK MAX locks (currently 4, though this may change in
future), together with functions to lock and unlock them.

In pthreads, a lock might be implemented by pthread mutex t. In windows,
either Mutex or a CriticalSection might be used (the latter being more
lightweight).

These locks are not assumed to be recursive (though recursive locks will work
just fine).

CHAPTER 5. THE CONTEXT 14

To avoid deadlocks, MuPDF guarantees never to take lock n if that thread
already holds lock m (for n > m).

There are 3 simple rules to follow when using MuPDF in a multi-threaded
environment:

1. No simultaneous calls to MuPDF in different threads are allowed
to use the same context.

Most of time it is simplest just to use a different context for every thread;
just create a new context at the same time as you create the thread. See
section 5.5 Cloning for more information.

2. No simultaneous calls to MuPDF in different threads are allowed
to use the same document.

Only one thread can be accessing an document at a time. Once display
lists are created from that document, multiple threads can operate on
them safely.

The document can safely be used from several different threads as long as
there are safeguards in place to prevent the usages being simultaneous.

3. No simultaneous calls to MuPDF in different threads are allowed
to use the same device.

Calling a device simultaneously from different threads will cause it to get
confused and may crash. Calling a device from several different threads
is perfectly acceptable as long as there are safeguards in place to prevent
the calls being simultaneous.

5.5 Cloning

The context contains the exception stack for the fz try/fz catch constructs.
As such trying to use the same context from multiple threads at the same time
will lead to crashes.

The solution to this is to ‘clone’ the context. Each clone will share the same
underlying store (and will inherit the same settings, such as allocators, locks
etc), but will have its own exception stack. Other settings, such as anti-alias
levels, will be inherited from the original at the time of cloning, but can be
changed to be different if required.

For example, in a viewer application, we might want to have a background
process that runs through the file generating page thumbnails. In order for this
not to interfere with the foreground process, we would clone the context, and
use the cloned context in the thumbnailing thread. We might choose to disable
anti-aliasing for the thumbnailing thread to trade quality for speed.

CHAPTER 5. THE CONTEXT 15

Any images decoded for the thumbnailing thread would live on in the store
though, and would hence be available should the viewers normal render opera-
tions need them.

To clone a context, use fz clone context:

/*

fz_clone_context: Make a clone of an existing context.

This function is meant to be used in multi-threaded

applications where each thread requires its own context, yet

parts of the global state, for example caching, are shared.

ctx: Context obtained from fz_new_context to make a copy of.

ctx must have had locks and lock/functions setup when created.

The two contexts will share the memory allocator, resource

store, locks and lock/unlock functions. They will each have

their own exception stacks though.

Does not throw exception, but may return NULL.

*/

fz_context *fz_clone_context(fz_context *ctx);

For example:

fz_context *worker_ctx = fz_clone_context(ctx);

In order for cloned contexts to work safely, they rely on being able to
take locks around certain operations to make them atomic. Accordingly,
fz clone context will return NULL (to indicate failure) if the base context
did not have locking functions defined.

5.6 Destruction

Once you have finished with a fz context (either your original one, or a ‘cloned’
one) you can destroy it using fz drop context.

/*

fz_drop_context: Free a context and its global state.

The context and all of its global state is freed, and any

buffered warnings are flushed (see fz_flush_warnings). If NULL

is passed in nothing will happen.

Does not throw exceptions.

*/

void fz_drop_context(fz_context *ctx);

CHAPTER 5. THE CONTEXT 16

For example:

fz_drop_context(ctx);

5.7 Tuning

Some of MuPDF’s functionality relies on heuristics to make decisions. Rather
than hard code these decisions in the library code, the tuning context allows
callers to override the defaults with their own ‘tuned’ versions.

Currently, we have just 2 calls defined here, both to do with image handling,
but this may expand in future.

The first tuning function enables fine control over how much of an image MuPDF
should decode if it only requires a subarea:

/*

fz_tune_image_decode_fn: Given the width and height of an image,

the subsample factor, and the subarea of the image actually

required, the caller can decide whether to decode the whole image

or just a subarea.

arg: The caller supplied opaque argument.

w, h: The width/height of the complete image.

l2factor: The log2 factor for subsampling (i.e. image will be

decoded to (w>>l2factor, h>>l2factor)).

subarea: The actual subarea required for the current operation.

The tuning function is allowed to increase this in size if required.

*/

typedef void (fz_tune_image_decode_fn)(void *arg, int w, int h, int

l2factor, fz_irect *subarea);

The purpose of allowing larger areas to be decoded than are immediately re-
quired, is so that these larger areas can be placed into the cache. This may
mean that future requests can be satisfied from the cache rather than requiring
complete new decodes. An example of such a situation might be where MuPDF
is powering a viewer application, and a page is slowly panned onto screen re-
vealing more and more of an image. These tuning functions put control over
such decisions back into the hands of the application author.

Having defined a function of this type to implement the desired strategy, it can
be set into the context using:

/*

fz_tune_image_decode: Set the tuning function to use for

CHAPTER 5. THE CONTEXT 17

image decode.

image_decode: Function to use.

arg: Opaque argument to be passed to tuning function.

*/

void fz_tune_image_decode(fz_context *ctx, fz_tune_image_decode_fn

*image_decode, void *arg);

The second function allows fine control over the scaling used when images are
scaled:

/*

fz_tune_image_scale_fn: Given the source width and height of

image, together with the actual required width and height,

decide whether we should use mitchell scaling.

arg: The caller supplied opaque argument.

dst_w, dst_h: The actual width/height required on the target device.

src_w, src_h: The source width/height of the image.

Return 0 not to use the Mitchell scaler, 1 to use the Mitchell

scaler. All other values reserved.

*/

typedef int (fz_tune_image_scale_fn)(void *arg, int dst_w, int dst_h,

int src_w, int src_h);

Essentially this routine allows the application author to exercise control over
whether images are displayed with interpolation or not. Rather than simple lin-
ear interpolation, MuPDF uses the ‘Mitchell’ sampling function. This provides
subjectively better quality.

The default is to use the Mitchell scaler only when downscaling, to avoid details
‘dropping out’ of images, but by providing a tuning function, the application
author can choose to use it in more (or fewer) cases as desired.

Having defined a function of this type to implement the desired strategy, it can
be set into the context using:

/*

fz_tune_image_scale: Set the tuning function to use for

image scaling.

image_scale: Function to use.

arg: Opaque argument to be passed to tuning function.

*/

CHAPTER 5. THE CONTEXT 18

void fz_tune_image_scale(fz_context *ctx, fz_tune_image_scale_fn

*image_scale, void *arg);

5.8 Summary

The basic usage of Contexts is as follows:

1. Call fz new context to create a context. Pass in any custom allocators
required. If you wish to use MuPDF from multiple threads at the same
time, you must also pass in locking functions. Set the store size appropri-
ately.

2. Call fz clone context to clone the context as many times as you need;
typically once for each ‘worker’ thread.

3. Perform the operations required using MuPDF within fz try/fz catch

constructs.

4. Call fz drop context with each cloned context.

5. Call fz drop context with the original context.

Things to remember:

1. A fz context can only be used in 1 thread at a time.

2. A fz document can only be used in 1 thread at a time.

3. A fz device can only be used in 1 thread at a time.

4. A fz context shares the store with all the fz contexts cloned from it.

Chapter 6

Error handling

6.1 Overview

MuPDF handles all its errors using an exception system. This is superficially
similar to C++ exceptions, but (as MuPDF is written in C) it is implemented
using macros that wrap the setjmp/longjmp standard C functions.

It is probably best not to peek behind the curtain, and just to think of these
constructs as being extensions to the language. Indeed, we have worked very
hard to ensure that the complexities involved are minimised.

Unless otherwise specified, all MuPDF API functions can throw exceptions, and
should therefore be called within a fz try/fz always/fz catch construct.

Specific functions that never throw exceptions include all those named
fz keep ..., fz drop ... and fz free. This, coupled with the fact that
all such ‘destructor’ functions will silently accept a NULL argument, makes the
fz always block an excellent place to clean up resources used throughout pro-
cessing.

The general anatomy of such a construct is as follows:

fz_try(ctx)

{

/* Do stuff in here that might throw an exception.

* NEVER return from here. ’break’ can be used to

* continue execution (either in the always block or

* after the catch block). */

}

fz_always(ctx)

{

/* Anything in here will always be executed, regardless

* of whether the fz_try clause exited normally, or an

19

CHAPTER 6. ERROR HANDLING 20

* exception was thrown. Try to avoid calling functions

* that can themselves throw exceptions here, or the rest

* of the fz_always block will be skipped - this is rarely

* what is wanted! NEVER return from here. ’break’ can be

* used to continue execution in, or after the catch block

* as appropriate. */

}

fz_catch(ctx)

{

/* This block will execute if (and only if) anything in

* the fz_try block calls fz_throw. We should clean up

* anything we need to. If we are in a nested fz_try/

* fz/catch block, we can call fz_rethrow to propagate

* the error to the enclosing catch. Unless the exception

* is rethrown (or a fresh exception thrown), execution

* continues after this block. */

}

The fz always block is completely optional. The following is perfectly valid:

fz_try(ctx)

{

/* Do stuff here */

}

fz_catch(ctx)

{

/* Clean up from errors here */

}

In an ideal world, that would be all there is to it. Unfortunately, there are 2
wrinkles.

The first one, relatively simple, is that you must not return from within a fz try

block. To do so will corrupt the exception stack and cause problems and crashes.
To mitigate this, you can safely break out of the fz try, and execution will pass
into the fz always block (if there is one, or continue after the fz catch block
if not).

Similarly, you can break out of a fz always block, and execution will correctly
pass into or after the fz catch block as appropriate, but this is less useful in
practise.

The second one, is more convoluted. If you do not wish to understand the long
and complex reasons behind this, skip the following subsection, and just read
the corrected example that follows. As long as you follow the rules given in the
summary at the end, you will be fine.

CHAPTER 6. ERROR HANDLING 21

6.1.1 Why is fz var necessary?

As stated before fz try/fz catch are implemented using setjmp/longjmp, and
these can ‘lose’ changes to variables.

For example:

house_t *build_house(fz_context *ctx)

{

walls_t *w = NULL;

roof_t *r = NULL;

house_t *h = NULL;

fz_try(ctx)

{

w = make_walls();

r = make_roof();

h = combine(w, r); /* Note, NOT: return combine(w,r); */

}

fz_always(ctx)

{

drop_walls(w);

drop_roof(r);

}

fz_catch(ctx)

{

/* Handle the error somehow. If we are nested within another

* layer of fz_try/fz_catch, we can simply fz_rethrow. If

* not, handle it in a way appropriate for this application,

* perhaps by simply returning NULL. */

return NULL;

}

return h;

}

In the above code (as well as throughout MuPDF), we follow the convention
that destructors always accept NULL. This makes cleanup code much simpler.

Reading through this code, it is fairly obvious what will happen if everything
works correctly. First we’ll make some walls, w, and a roof, r. Then we combine
the walls and the roof, to get our house, h. As part of this process, the house
would take references to the walls and roof as required. Next we tidy up our
local references to the walls and the roof, and we return the completed house
to our caller.

It’s more interesting to consider what will happen if we have failures.

First let’s consider what happens if the make walls fails. This will fz throw an
exception, and control will jump immediately to the fz always. This will drop
w and r (both of which are still NULL). The fz catch can then handle the error,

CHAPTER 6. ERROR HANDLING 22

either by returning NULL, to indicate failure, or perhaps by fz rethrowing the
error to an enclosing fz try/fz catch construct. No problems there.

So what happens when the failure occurs in make roof? Let’s run through the
code again.

This time, make walls succeeds, and w is set to this new value. Then make roof

fails, fz throwing an exception, and control will jump immediately to the
fz always. This will then try to drop w (now a valid value) and r (which is still
NULL). The fz catch can then handle the error, either by returning NULL, to
indicate failure, or perhaps by fz rethrowing the error to an enclosing fz try/
fz catch construct. All sounds quite plausible.

Unfortunately, if you try it, on some systems you will find that you have a
memory leak (or worse). When drop walls is called, sometimes you will find
that w has ‘lost’ its value.

This is due to an obscure part of the C specification that states that any changes
to the values of local variables made between a setjmp and a longjmp can be
lost. (In fact, the C specification goes further than this, and says that such
variables become ‘undefined’).

In fz try/fz catch terms, this means that any local variables set within the
fz try block can be ‘lost’ when either fz always or fz catch are reached.

Fortunately, there is a fix for this, fz var. By calling fz var(w); before the
fz try we can ‘protect’ variable w from such unwanted behaviour.

It’s not really necessary to know how this works, but for those interested, a quick
explanation. The ‘loss’ of the value occurs because the compiler can postpone
writing the value back into the storage location for the variable (or can choose to
just hold it in a register). The call to fz var passes the address of the variable
out of scope; this forces the compiler not to hold it in a register. Further, the
compiler has no way of knowing whether any functions it calls might access
that location, so it needs to make sure that the variable value is written back on
every function call - such as longjmp. Hence the variable is magically protected,
and is guaranteed not to lose its value, whether an exception is thrown or not.

Calls to fz var are very low cost (but are not NOPs), so erring on the side of
caution and calling fz var on more than you need to will probably not hurt.

6.1.2 Example: How to protect local variables with fz var

A corrected version of the above example is therefore:

house_t *build_house(fz_context *ctx)

{

walls_t *w = NULL;

roof_t *r = NULL;

house_t *h = NULL;

CHAPTER 6. ERROR HANDLING 23

fz_var(w);

fz_var(r);

fz_try(ctx)

{

w = make_walls();

r = make_roof();

h = combine(w, r); /* Note, NOT: return combine(w,r); */

}

fz_always(ctx)

{

drop_walls(w);

drop_roof(r);

}

fz_catch(ctx)

{

/* Handle the error somehow. If we are nested within another

* layer of fz_try/fz_catch, we can simply fz_rethrow. If

* not, handle it in a way appropriate for this application,

* perhaps by simply returning NULL. */

return NULL;

}

return h;

}

Note the calls to fz var. These warn the compiler that it should take care not
to lose updates to w or r if an exception is thrown in the fz try. See Rule 5 in
section 6.4 Summary below.

6.2 Throwing exceptions

Most client code need never worry about anything more than catching excep-
tions thrown by the core. If you are implementing your own devices or extending
the core of MuPDF, then you will need to know how to generate (and pass on)
your own exceptions.

An exception is constructed and thrown from an integer code and a printf like
string:

enum

{

FZ_ERROR_NONE = 0,

FZ_ERROR_MEMORY = 1,

FZ_ERROR_GENERIC = 2,

FZ_ERROR_SYNTAX = 3,

FZ_ERROR_TRYLATER = 4,

FZ_ERROR_ABORT = 5,

CHAPTER 6. ERROR HANDLING 24

FZ_ERROR_COUNT

};

void fz_throw(fz_context *ctx, int errcode, const char *, ...);

In almost all cases, you should be using FZ ERROR GENERIC, for example:

fz_throw(ctx, FZ_ERROR_GENERIC, "Failed to open file ’%s’", filename);

FZ ERROR MEMORY is reserved for exceptions thrown due to a memory allocation
failing. This will rarely be thrown by application code; the typical generators
of such exceptions are fz malloc/fz calloc/fz realloc etc.

FZ ERROR SYNTAX is reserved for exceptions thrown during interpretation of doc-
ument files due to syntax errors. This enables the interpreter code to keep track
of how many syntax errors have been found in a file, and to abort interpretation
after a reasonable number have been passed.

FZ ERROR TRYLATER is reserved for exceptions thrown due to lack of data in
progressive mode (see chapter 18 Progressive Mode for more details). Catching
an error of this type can trigger different handling, whereby the operation is
retried when more data has arrived.

FZ ERROR ABORT is reserved for exceptions that should stop any ongoing oper-
ations; for instance, while looping over the annotations on a page to render
them, most exceptions are caught at the top level and ignored, ensuring that a
single broken annotation doesn’t cause subsequent annotations to be skipped.
FZ ERROR ABORT can be used to override this behaviour and cause the annotation
rendering process to end as swiftly as possible.

6.3 Handling exceptions

Once you have caught an exception, most code will simply tidy up any loose
resources (to prevent leaks), and rethrow the exception up to a higher layer
handler.

At the top level of the program, clearly this is not an option. The catch clause
needs to return the error using whatever process the calling program is using
for error handling.

Details of the message from the caught error can be read (from inside the
fz catch block) using:

const char *fz_caught_message(fz_context *ctx);

The error will remain readable in this way until the next use of fz try/fz catch

on that same context.

CHAPTER 6. ERROR HANDLING 25

Some code may choose to swallow the error and retry the same code again in a
different manner. To facilitate this, we can find out the type of error using:

int fz_caught(fz_context *ctx);

See section 6.2 Throwing exceptions for a list of the possible exception types.

For example, if an exception was thrown whilst attempting to render a page to
a full page bitmap, it is entirely possible that this might be due to running out
of memory. An application might reasonably decide to retry the render doing a
strip at a time.

If, however, the render failed because of a corrupt file we’d gain nothing by
retrying - hence the application should check the type of the exception to ensure
it was a FZ ERROR MEMORY before trying the alternative technique.

To simplify the job of deciding whether to pass on exceptions of a given type,
we have a convenience function that with rethrow just a particular type:

void fz_rethrow_if(fz_context *ctx, int errcode);

6.4 Summary

The basic exception handling rules are as follows:

1. All MuPDF functions except those that explicitly state otherwise, throw
exceptions on errors, and must therefore be called from within a fz try/
fz catch construct.

2. A fz try block must be paired with a fz catch block, and optionally a
fz always block can appear between them.

3. Never return from a fz try block.

4. A fz try block will terminate when control reaches the end of the block,
or when break is called.

5. Any local variable that is changed within a fz try block may lose its value
if an exception occurs, unless protected by fz var call.

6. The contents of the fz always block will always be executed (after the
fz try block and before the fz catch block, if appropriate).

7. If an exception is thrown during the fz try block, control will jump to
the fz always block (if there is one) and then continue to the fz catch

block.

Chapter 7

Memory Management and
The Store

7.1 Overview

While MuPDF is running, it holds various objects in memory, and passes them
between its various components. For instance, MuPDF might read a path defi-
nition in in the PDF interpreter, and pass it first into the display list and then
on into the renderer.

To avoid needless copying of data, a reference counting scheme is used. Each
significant object has a reference count, so that when one area of the code
retains a reference to something (perhaps the display list), the data need not
be copied wholesale. In the above example, the PDF interpreter might hold
one reference, and first the display list and then the renderer might take others.
Some references are held just for a short length of time, but others can persist
for a much longer period.

During the course of displaying files, MuPDF loads various resources into mem-
ory, such as fonts and images. By holding these resources in memory throughout
the processing of the file we can avoid reloading them each time they are re-
quired.

As the document is rendered, more memory is needed to hold rendered versions
of glyphs from the font, or decoded versions of images. By keeping these decoded
versions around in memory, we can avoid the need to re-decode them the next
time we need the same glyph, or the same image.

Keeping all this data around can end up using a large amount of memory, which
may be infeasible for some systems. Equally, not keeping any of it around will
result in a drastic performance drop.

26

CHAPTER 7. MEMORY MANAGEMENT AND THE STORE 27

The solution is to keep as much around as can conveniently fit in memory, but
not so much that we start to run out for other needs. MuPDF achieves this
using a mechanism known as “The Store”.

The Store is a mechanism for holding blocks of data likely to be reusable. When-
ever MuPDF needs such a block of data, it checks the Store to see if the data
is there already - if it is, it can be instantly reused. If not the code forms the
data itself (loading it, calculating it, or decoding it etc), and then puts it into
the Store.

The MuPDF allocation code is tied into the Store, so that if an allocation
ever fails, objects are evicted from the Store, and the allocation retried. This
‘scavenging’ of memory means that we can safely keep lots of cached data around
without ever worrying that it will cause us to run out of memory.

7.2 Creating the Store

The Store is created as part of the fz new context call, (see the Context chap-
ter) and is shared with any contexts obtained with fz clone context. The
‘store limit’ is specified as a byte size as part of this call. A special value of
FZ STORE UNLIMITED is used to indicate that no amount of memory is too much.

7.3 Reacting to Out of Memory events

As a last resort, applications using MuPDF can react to low memory events by
changing their strategy. For example, if we fail to render a band of data due to
an allocation failure, we might back off and try a smaller band size. Alterna-
tively, we might choose to dispense with the display list, and to reinterpret the
underlying file directly each time, trading speed for memory.

To this end, all exceptions thrown due to allocation failures have the
FZ ERROR MEMORY type, enabling callers to easily distinguish them using
fz caught and to react accordingly.

7.3.1 Implementation

Further information on The Store can be found in chapter 24 Store Internals in
Part II.

Chapter 8

The Document interface

8.1 Overview

Although MuPDF handles multiple different file formats, it offers a unified API
for dealing with them. The fz document API allows all the common operations
to be performed on a document, hiding the implementation specifics away from
the caller.

Not all functions are available on all document types (for instance, JPEG files
do not support annotations), but the API returns sane values.

8.2 Opening/Closing a document

The simplest way to load a document is to load it from the local filing system:

/*

fz_open_document: Open a PDF, XPS or CBZ document.

Open a document file and read its basic structure so pages and

objects can be located. MuPDF will try to repair broken

documents (without actually changing the file contents).

The returned fz_document is used when calling most other

document related functions.

filename: a path to a file as it would be given to open(2).

*/

fz_document *fz_open_document(fz_context *ctx, const char *filename);

For embedded systems, or secure applications, the use of a local filing system
may be inappropriate, so an alternative is available whereby documents can be

28

CHAPTER 8. THE DOCUMENT INTERFACE 29

opened from a fz stream. See chapter 12 The Stream interface for more details
on fz streams.

/*

fz_open_document_with_stream: Open a PDF, XPS or CBZ document.

Open a document using the specified stream object rather than

opening a file on disk.

magic: a string used to detect document type; either a file name or

mime-type.

*/

fz_document *fz_open_document_with_stream(fz_context *ctx, const char

*magic, fz_stream *stream);

Almost any data source can be wrapped up as a fz stream; see chapter 12 The
Stream interface for more details.

In common with most other objects in MuPDF, fz documents are reference
counted:

/*

fz_keep_document: Keep a reference to an open document.

Does not throw exceptions.

*/

fz_document *fz_keep_document(fz_context *ctx, fz_document *doc);

/*

fz_drop_document: Release an open document.

The resource store in the context associated with fz_document

is emptied, and any allocations for the document are freed when

the last reference is dropped.

Does not throw exceptions.

*/

void fz_drop_document(fz_context *ctx, fz_document *doc);

Once the last reference to the document is dropped, all resources used by that
document will be released, including those in the Store.

8.3 Handling password protected documents

Some document types (such as PDF) can require passwords to allow the file to
be opened. After you have obtained a fz document, you should therefore check
whether it needs a password using fz needs password:

CHAPTER 8. THE DOCUMENT INTERFACE 30

/*

fz_needs_password: Check if a document is encrypted with a

non-blank password.

Does not throw exceptions.

*/

int fz_needs_password(fz_context *ctx, fz_document *doc);

If a password is required, you can supply one using fz authenticate password:

/*

fz_authenticate_password: Test if the given password can

decrypt the document.

password: The password string to be checked. Some document

specifications do not specify any particular text encoding, so

neither do we.

Returns 0 for failure to authenticate, non-zero for success.

For PDF documents, further information can be given by examining

the bits in the return code.

Bit 0 => No password required

Bit 1 => User password authenticated

Bit 2 => Owner password authenticated

Does not throw exceptions.

*/

int fz_authenticate_password(fz_context *ctx, fz_document *doc, const

char *password);

8.4 Handling reflowable documents

Some document types (such as EPUB) require the contents to be laid out before
they can be rendered. This is done by calling fz layout document:

/*

fz_layout_document: Layout reflowable document types.

w, h: Page size in points.

em: Default font size in points.

*/

void fz_layout_document(fz_context *ctx, fz_document *doc, float w,

float h, float em);

Any non-reflowable document types (such as PDF) will ignore this layout re-

CHAPTER 8. THE DOCUMENT INTERFACE 31

quest.

The results of the layout will depend both upon a target width and height,
a given font size, and the CSS styles in effect. MuPDF has an inbuilt set of
default CSS styles that will be used if a document does not provide its own. In
addition, the user can provide a final set that will override any rules found in
the default sets. In this way, the appearance of the rendered document can be
changed (perhaps by changing document colours or font styles/sizes).

Documents can be laid out multiple times to allow changes in these properties
to take effect.

MuPDF provides its own default CSS style sheet, but this can be overridden by
the user CSS style sheet in the context:

/*

fz_user_css: Get the user stylesheet source text.

*/

const char *fz_user_css(fz_context *ctx);

/*

fz_set_user_css: Set the user stylesheet source text for use with

HTML and EPUB.

*/

void fz_set_user_css(fz_context *ctx, const char *text);

The user CSS style sheet is supplied as a null terminated C string.

When the CSS or the screen size is changed, and the document relaid out,
content moves. In order for applications to be able to not lose the readers place,
MuPDF offers a mechanism for making a bookmark and then looking it up
again after the content has been laid out to a new position.

/*

Create a bookmark for the given page, which can be used to find the

same location after the document has been laid out with different

parameters.

*/

fz_bookmark fz_make_bookmark(fz_context *ctx, fz_document *doc, int

page);

/*

Find a bookmark and return its page number.

*/

int fz_lookup_bookmark(fz_context *ctx, fz_document *doc, fz_bookmark

mark);

CHAPTER 8. THE DOCUMENT INTERFACE 32

8.5 Getting Pages from a document

Once you have a laid out document, you presumably want to be able to do
something with it. The first thing to know is how many pages it contains. This
is achieved by calling fz count pages:

/*

fz_count_pages: Return the number of pages in document

May return 0 for documents with no pages.

*/

int fz_count_pages(fz_context *ctx, fz_document *doc);

For document types like images, they appear as a single page. If you forget to
lay out a reflowable document, this will trigger a layout for a default size and
return the required number of pages.

Once you know how many pages there are, you can fetch the fz page object for
each page required:

/*

fz_load_page: Load a page.

After fz_load_page is it possible to retrieve the size of the

page using fz_bound_page, or to render the page using

fz_run_page_*. Free the page by calling fz_drop_page.

number: page number, 0 is the first page of the document.

*/

fz_page *fz_load_page(fz_context *ctx, fz_document *doc, int number);

The pages of a document with n pages are numbered from 0 to n-1.

In common with most other object types, fz pages are reference counted:

/*

fz_keep_page: Keep a reference to a loaded page.

Does not throw exceptions.

*/

fz_page *fz_keep_page(fz_context *ctx, fz_page *page);

/*

fz_drop_page: Free a loaded page.

Does not throw exceptions.

*/

void fz_drop_page(fz_context *ctx, fz_page *page);

CHAPTER 8. THE DOCUMENT INTERFACE 33

Once the last reference to a page is dropped, the resources it consumes are all
released automatically.

8.6 Anatomy of a Page

In MuPDF terminology (largely borrowed from PDF) Pages consist of Page
Contents, Annotations, and Links.

Page Contents (or just Contents) are typically the ordinary printed matter that
you would get on a page; the text, illustrations, any headers or footers, and
maybe some printers marks.

Annotations are normally extra information that is overlaid on the top of these
page contents. Examples include freehand scribbles on the page, highlights/
underlines/strikeouts overlaid on the text, sticky notes etc. Annotations can be
included when the document is originally authored, but, frequently, are added
later by people as they read the document.

Annotations also serve as the key components that allow interactivity in PDF
documents.

More details can be found in chapter 21 Annotations, Links and Interaction.

8.7 Color Considerations

Some formats, notably PDF, contain significant extra information to enable a
high quality color managed workflow. The document interface (and the related
page interface) have some methods to enable this.

Documents can have a defined ‘output intent’ that governs the color space (and
profile) used for rendered output:

/*

Find the output intent colorspace if the document has defined one.

*/

fz_colorspace *fz_document_output_intent(fz_context *ctx, fz_document

*doc);

Callers will typically interrogate this before creating their output pixmaps if
they want to honour it.

Each page in PDF can be authored with specific spot colors (inks) in mind.
Details of these can be obtained from:

/*

fz_page_separations: Get the separations details for a page.

This will be NULL, unless the format specifically supports

separations (such as gproof, or PDF files). May be NULL even

so, if there are no separations on a page.

CHAPTER 8. THE DOCUMENT INTERFACE 34

Returns a reference that must be dropped.

*/

fz_separations *fz_page_separations(fz_context *ctx, fz_page *page);

The returned object will be NULL for all document formats that do not support
spot colors (at the time of writing, all but PDF). For PDF, the object will be
NULL for all pages that do not make use of separations.

More information about using these objects can be found in section 9.5.2 Ad-
vanced Rendering - Overprint and Spots.

8.8 Rendering Pages

To render a page, you first need to know how big it is. This can be discovered
by calling fz bound page, passing a fz rect in to be populated:

/*

fz_bound_page: Determine the size of a page at 72 dpi.

Does not throw exceptions.

*/

fz_rect *fz_bound_page(fz_context *ctx, fz_page *page, fz_rect *rect);

MuPDF operates on page contents (and annotations/widgets) by processing
them to a Device. There are various different devices in MuPDF (and you can
implement your own). See chapter 9 The Device interface for more information.
For now, just consider devices to be things that are called with each of the
graphical items on the page in turn.

The simplest way to process a page is to call fz run page:

/*

fz_run_page: Run a page through a device.

page: Page obtained from fz_load_page.

dev: Device obtained from fz_new_*_device.

transform: Transform to apply to page. May include for example

scaling and rotation, see fz_scale, fz_rotate and fz_concat.

Set to fz_identity if no transformation is desired.

cookie: Communication mechanism between caller and library

rendering the page. Intended for multi-threaded applications,

while single-threaded applications set cookie to NULL. The

caller may abort an ongoing rendering of a page. Cookie also

communicates progress information back to the caller. The

CHAPTER 8. THE DOCUMENT INTERFACE 35

fields inside cookie are continually updated while the page is

rendering.

*/

void fz_run_page(fz_context *ctx, fz_page *page, fz_device *dev, const

fz_matrix *transform, fz_cookie *cookie);

This will cause each graphical object from the page contents and annotations
to be transformed, and fed to the device.

For finer control, you may wish to run the page contents and the annotations
for a page separately:

/*

fz_run_page_contents: Run a page through a device. Just the main

page content, without the annotations, if any.

page: Page obtained from fz_load_page.

dev: Device obtained from fz_new_*_device.

transform: Transform to apply to page. May include for example

scaling and rotation, see fz_scale, fz_rotate and fz_concat.

Set to fz_identity if no transformation is desired.

cookie: Communication mechanism between caller and library

rendering the page. Intended for multi-threaded applications,

while single-threaded applications set cookie to NULL. The

caller may abort an ongoing rendering of a page. Cookie also

communicates progress information back to the caller. The

fields inside cookie are continually updated while the page is

rendering.

*/

void fz_run_page_contents(fz_context *ctx, fz_page *page, fz_device

*dev, const fz_matrix *transform, fz_cookie *cookie);

/*

fz_run_page_annots: Run the annotations on a page through a device.

*/

void fz_run_page_annots(fz_context *ctx, fz_page *page, fz_device *dev,

const fz_matrix *transform, fz_cookie *cookie);

These functions enable viewer applications to generate separate display lists for
page contents and annotations. This can be useful if annotations are frequently
changed, as it allows regeneration/redraw to happen on a per-annotation rather
than per-page level.

All of these functions (fz run page, fz run page contents,
fz run page annots) take a fz cookie pointer. The Cookie is a lightweight
way of controlling the processing of the page. For more details, see section 9.3

CHAPTER 8. THE DOCUMENT INTERFACE 36

Cookie. For most simple cases this can be NULL.

8.9 Presentations

Some file formats, such as PDF can be used as ‘presentations’, where pages
are displayed as a slideshows - a form of poor man’s PowerPoint if you will.
Essentially each page contains a record that says how long it should be displayed
for before transitioning to the next page with a given graphical effect.

The core MuPDF library is never responsible for actually presenting a page to
the user, so it is therefore not possible to expect it to cope with handling all the
work required by such transitions.

What it can do is to help in 2 particular areas. Firstly, it can provide some func-
tions to aid the caller in the task of querying the transitions required. Secondly,
it can help in providing some helper functions to generate bitmaps of various
stages of common transitions.

8.9.1 Querying

We define a structure type to hold the details of arbitrary transitions, together
with some opaque state:

enum {

FZ_TRANSITION_NONE = 0, /* aka ’R’ or ’REPLACE’ */

FZ_TRANSITION_SPLIT,

FZ_TRANSITION_BLINDS,

FZ_TRANSITION_BOX,

FZ_TRANSITION_WIPE,

FZ_TRANSITION_DISSOLVE,

FZ_TRANSITION_GLITTER,

FZ_TRANSITION_FLY,

FZ_TRANSITION_PUSH,

FZ_TRANSITION_COVER,

FZ_TRANSITION_UNCOVER,

FZ_TRANSITION_FADE

};

typedef struct fz_transition_s

{

int type;

float duration; /* Effect duration (seconds) */

/* Parameters controlling the effect */

int vertical; /* 0 or 1 */

int outwards; /* 0 or 1 */

int direction; /* Degrees */

/* Potentially more to come */

CHAPTER 8. THE DOCUMENT INTERFACE 37

/* State variables for use of the transition code */

int state0;

int state1;

} fz_transition;

Armed with such a structure, we can call a function to get it filled out:

/*

fz_page_presentation: Get the presentation details for a given page.

transition: A pointer to a transition struct to fill out.

duration: A pointer to a place to set the page duration in seconds.

Will be set to 0 if no transition is specified for the page.

Returns: a pointer to the transition structure, or NULL if there is

no

transition specified for the page.

*/

fz_transition *fz_page_presentation(fz_context *ctx, fz_page *page,

fz_transition *transition, float *duration);

This structure is defined to be sufficient to encapsulate the currently defined
PDF transition types; it may be extended in future if other formats require
more expressiveness.

Callers are free to directly implement their transitions using the information
herein, or else they can make use of a helper function.

8.9.2 Helper functions

Details of a helpful routine for displaying some of these transitions can be found
in chapter 41 Transitions.

Chapter 9

The Device interface

9.1 Overview

In many ways, the Device interface is the heart of MuPDF.

When any given document handler is told to run the page (fz run page) the ap-
propriate document interpreter serialises the page contents as a series of graph-
ical operations, and calls the device interface to perform these operations.

Many different implementations of the device interface exist within MuPDF.
The most obvious one is the Draw device. When this is called, it renders the
graphical objects in turn into a Pixmap.

Alternatively we have the Structured Text device that captures the text out-
put and forms it into an easily processable structure (for searching, or text
extraction).

Some devices, such as the SVG Output device, repackage the graphical objects
into a different format. The end product of these devices is a new document
with (as much as possible) the same overall appearance as the initial page.

Finally, devices such as the Display List device manage to be both implementers
of the interface, and callers of it. Callers can run page contents to the Display
List device just once, and then replay it quickly many times over to other devices;
ideal for rendering pages in bands, or repeatedly redrawing as a viewer pans and
zooms around a document.

By implementing new devices callers can tap the power of MuPDF in new and
interesting ways, perhaps to harness specific hardware facilities of a device.

38

CHAPTER 9. THE DEVICE INTERFACE 39

9.2 Device Methods

Every Device in MuPDF is an extension of the fz device structure. This
contains a series of function pointers to implement the handling of different
types of graphical object.

These function pointers are exposed to callers via convenience functions. These
convenience functions should always be used in preference to calling the func-
tion pointers direct, as they perform various behind the scenes housekeeping
functions. They also cope with the function pointers being NULL, as can permis-
sibly happen when a device is not interested in a particular class of graphical
object.

We will not describe these device functions here, but rather defer them to chap-
ter 25 Device Internals in Part 2. While it is perfectly permissible for callers to
call the device convenience functions themselves, the vast majority of applica-
tion authors will never do so, and will simply treat each fz device as a ‘black
box’ to be passed to the interpretation functions (see section 8.8 Rendering
Pages).

9.3 Cookie

The cookie is a lightweight mechanism for controlling and detecting the be-
haviour of a given interpretation call (i.e. fz run page, fz run page contents,
fz run annot, fz run display list etc).

To use the cookie, a caller should simply define:

fz_cookie *cookie = { 0 };

set any required fields, for example:

cookie.incomplete_ok = 1;

and then pass &cookie as the last parameter to the interpretation call, for
example:

fz_run_page(ctx, page, dev, transform, &cookie);

The contents and definition of fz cookie are even more subject to change than
other structures, so it is important to always initialise all the subfields to zero.
The safest way to do this is as given above. If new fields are added to the
structure, callers code should not need to change, and the default behaviour of
zero-valued new fields will always remain the same.

CHAPTER 9. THE DEVICE INTERFACE 40

9.3.1 Detecting errors

When displaying a page, if we hit an error, what should we do?

We could choose to stop interpretation entirely, but that would mean that a
relatively unimportant error (such as a missing or broken font) would prevent
us getting anything useful out of a page.

We could choose to ignore the errors and continue, but that would be a problem
for (say) a print run, where it would undesirable for us to print 1000 copies of
a document only to discover that it’s missing an image.

The strategy taken by MuPDF is to swallow errors during interpretation, but
keep a count of them in the errors field within the cookie. That way callers can
check that cookie.errors == 0 at the end to know whether a run completed
without incident.

9.3.2 Using the cookie with threads

Content interpretations can take a (relatively) long time. Once one has been
started, it can be useful a) to know how far through processing we are, and b)
to be able to abort processing should the results of a run no longer be required.

As a run progresses, 2 fields in the cookie are updated. Firstly, progress will
be set to a number that increases as progress is made. Think of this informally
as being the number of objects that have been processed so far. In some cases
(notably when processing a display list) we can know an upper bound for this
value, and this value will be given as progress max. In cases where no upper
bound is known, progress max will be set to -1. It is possible that the upper
bound may start as -1, and then change to a known value later.

These values are intended to enable user feedback to be given, and should not
be taken as guarantees of performance.

While running content, the interpreter periodically checks the abort field of the
cookie. If it is discovered to be non zero, the rest of the content is ignored.

If the caller decides that it does not need the results of a run once it has been
started (perhaps the user changes the page, or closes the file), then it should
therefore set the abort field of the cookie to 1.

No guarantees are made about how often the cookie is checked, nor about how
fast an interpreter will respond to the abort field once it is set. Setting the abort
flag will never hurt, and will frequently help, however. Once the flag has been
set to 1, it should never be reset to 0, as the results will be unpredictable.

Resources used by a run cannot be released until the end of a run, regardless of
the setting of abort. Callers still need to wait for the fz run page (or other)
call to complete before the page etc can be safely dropped.

CHAPTER 9. THE DEVICE INTERFACE 41

9.3.3 Using the cookie to control partial rendering

The cookie also has a role to play when working in Progressive Mode. The
incomplete ok and incomplete fields are used for this. See chapter 18 Pro-
gressive Mode for more details.

9.4 Device Hints

Device Hints are a mechanism that enables control over the behaviour of a
device, and to interpreters calling to that device. Informally they offer hints
about what a device is going to do and therefore what callers need to worry
about.

Device hints take the form of bits in an int that can be enabled (set) or disabled
(cleared). Callers can query these hints to customise their behaviour.

/*

fz_enable_device_hints : Enable hints in a device.

hints: mask of hints to enable.

*/

void fz_enable_device_hints(fz_context *ctx, fz_device *dev, int hints);

/*

fz_disable_device_hints : Disable hints in a device.

hints: mask of hints to disable.

*/

void fz_disable_device_hints(fz_context *ctx, fz_device *dev, int hints);

Some devices set the hints to non-zero default values.

For example, when running a text-extraction operation (as used to implement
text search), there is little point in handling images, or shadings. The text
extraction device therefore sets FZ IGNORE IMAGE and FZ IGNORE SHADE. The
interpretation functions (such as fz run page or fz run display list can then
not bother to prepare images for calling into the device, improving performance.

If, however, you wish to extract the page content to an html file, you might
want to include images in this output. So for this, you would disable the
FZ IGNORE IMAGE hint before running the extraction, and the text extraction
device would know to include them in its output structures.

The set of hints is subject to expansion in future, but is currently defined to be:

enum

{

/* Hints */

FZ_DONT_INTERPOLATE_IMAGES = 1,

CHAPTER 9. THE DEVICE INTERFACE 42

FZ_MAINTAIN_CONTAINER_STACK = 2,

FZ_NO_CACHE = 4,

};

FZ DONT INTERPOLATE IMAGES being enabled prevents the draw device perform-
ing interpolation. MuTool Draw uses this to inhibit interpolation when anti-
aliasing is disabled. Finer control over this can now be given using the Tuning
Context (see section 5.7 Tuning).

FZ MAINTAIN CONTAINER STACK being enabled helps devices by causing MuPDF
to maintain a stack of containers. This effectively moves some logic that would
have to be in several devices into a place where it can be easily reused. Currently
the only device that makes use of this is the SVG device, but it is hoped that
more will use it in future.

FZ NO CACHE being enabled tells the interpreter to try to avoid caching any
objects after the end of the content run. This can be used, for example, when
searching a PDF for a text string to avoid pulling all the images, shadings, fonts
etc and other resources for pages into memory at the expense of those that are
used on the current page.

9.5 Inbuilt Devices

MuPDF comes with a selection of devices built in, though this should not be
taken as a definitive list. It is expected that other devices will be written to
extend MuPDF - indeed some embeddings of MuPDF already include their own
devices.

9.5.1 BBox Device

The BBox device is a simple device that calculates the bbox of all the marking
operations1 on a page.

/*

fz_new_bbox_device: Create a device to compute the bounding

box of all marks on a page.

The returned bounding box will be the union of all bounding

boxes of all objects on a page.

*/

fz_device *fz_new_bbox_device(fz_context *ctx, fz_rect *rectp);

The fz rect passed to the fz new bbox device must obviously stay in scope
for the duration of the life of the device as it will be updated when the device
is closed with the bounding box for the contents.

1A marking operation is any graphical operation that causes a mark to appear on the page.

CHAPTER 9. THE DEVICE INTERFACE 43

9.5.2 Draw Device

The Draw device is the core renderer for MuPDF. Every draw device instance
is constructed with a destination Pixmap (see section 10.3 Pixmaps for more
details), and each graphical object passed to the device is rendered into that
pixmap.

/*

fz_new_draw_device: Create a device to draw on a pixmap.

dest: Target pixmap for the draw device. See fz_new_pixmap*

for how to obtain a pixmap. The pixmap is not cleared by the

draw device, see fz_clear_pixmap* for how to clear it prior to

calling fz_new_draw_device. Free the device by calling

fz_drop_device.

*/

fz_device *fz_new_draw_device(fz_context *ctx, fz_pixmap *dest);

Most of the time we render complete pixmaps, but a mechanism exists to allow
us to render a given bbox within a pixmap:

/*

fz_new_draw_device_with_bbox: Create a device to draw on a pixmap.

dest: Target pixmap for the draw device. See fz_new_pixmap*

for how to obtain a pixmap. The pixmap is not cleared by the

draw device, see fz_clear_pixmap* for how to clear it prior to

calling fz_new_draw_device. Free the device by calling

fz_drop_device.

clip: Bounding box to restrict any marking operations of the

draw device.

*/

fz_device *fz_new_draw_device_with_bbox(fz_context *ctx, fz_pixmap

*dest, const fz_irect *clip);

This can be useful for updating particular areas of a page (for instance when an
annotation has been edited or moved) without redrawing the whole thing.

During the course of rendering, the draw device may create new temporary
internal pixmaps to cope with transparency and grouping. This is invisible to
the caller, and can safely be considered an implementation detail, but should
be considered when estimating the memory use for a given rendering operation.
The exact number and size of internal pixmaps required depends on the exact
complexity and makeup of the graphical objects being displayed.

To limit memory use, a typical strategy is to render pages in bands; rather than
creating a single pixmap the size of the page and rendering that, create pixmaps
for ’slices’ across the page, and render them one at a time. The memory savings

CHAPTER 9. THE DEVICE INTERFACE 44

are not just seen in the cost of the basic pixmap, but also serve to limit the sizes
of the internal pixmaps used during rendering.

The cost for this is that the page contents do need to be run through repeatedly.
This can be achieved by reinterpreting directly from the file, but that can be
expensive. The next device provides a route to help with this.

Advanced Rendering - Overprint and Spots

Most formats define pages in terms of some fairly simple ‘well known’ col-
orspaces, like RGB and CMYK. Some formats (notably PDF) are much more
powerful, and allow pages to be constructed with a range of non-standard ‘spot’
inks.

When combined with advanced features such as overprinting, care needs to be
taken to ensure that the rendering is exactly as expected.

For example, if a PDF page is constructed to render a page using overprinting
it only makes strict sense to render this to a CMYK (or a CMYK + Spots)
pixmap. With (say) an RGB pixmap, CMYK colors would be mapped down to
RGB as they are plotted, losing the information required to correctly overprint
later graphical objects.

Nonetheless, while we might want to get a ‘true’ rendition of the page, we might
require it ultimately to appear as an RGB pixmap. As such what we really want
is to get a ‘simulation’ of how the overprint would work.

One way to work would be to call the draw device and request a CMYK + Spots
rendering, and then to require the caller to convert this to their desired target
colorspace manually. This is not in keeping with the general desire in MuPDF
to encapsulate functionality in a friendly way.

Therefore, the draw device examines the ‘separations’ field of the pixmap that
it is called with to decide how to render.

If there is no separations value supplied (i.e. it is NULL), then the draw device
assumes that no form of overprint (or overprint simulation) is required.

If there is a separations value, and there is at least one separation that is not
entirely disabled, then the draw device will draw internally to a CMYK + Spots
pixmap (where the spots are the non-disabled separations from the separations
value). This rendering can safely proceed with overprint processing enabled.

At the end of the render, the draw device will convert down from the CMYK +
Spots pixmap to the colorspace of the initial pixmap. Any spot colorants present
in the initial pixmap will be populated from the rendered one; any spots that
aren’t will be converted down to process colors.

Thus by creating the initial pixmap passed into the draw device using a sepa-
rations object with the colorants correctly set to be composite/spots/disabled
as required, overprint or overprint simulation can be controlled as required.

CHAPTER 9. THE DEVICE INTERFACE 45

9.5.3 Display List Device

The Display list device simply records all the calls made to it in a list. This
list can then be played back later, potentially multiple times and with different
transforms, to other devices.

/*

fz_new_list_device: Create a rendering device for a display list.

When the device is rendering a page it will populate the

display list with drawing commsnds (text, images, etc.). The

display list can later be reused to render a page many times

without having to re-interpret the page from the document file

for each rendering. Once the device is no longer needed, free

it with fz_drop_device.

list: A display list that the list device takes ownership of.

*/

fz_device *fz_new_list_device(fz_context *ctx, fz_display_list *list);

For more details of the uses of Display Lists, see chapter 11 Display Lists.

9.5.4 PDF Output Device

The PDF Output device is still a work in progress, as its handling of fonts is
incomplete. Nonetheless for certain classes of files it can be useful.

End users will probably prefer to use the document writer interface (see chap-
ter 15 The Document Writer interface) which wraps this class up, rather than
call it directly. Nonetheless this can be useful in specific circumstances when
generating particular sections of a PDF file (such as appearance streams for
annotations).

The PDF Output device takes the sequence of graphical operations it is called
with, and forms it back into a sequence of PDF operations, together with a set
of required resources. These can then be formed into a completely new PDF
page (or a PDF annotation) which can then be inserted into a document.

/*

pdf_page_write: Create a device that will record the

graphical operations given to it into a sequence of

pdf operations, together with a set of resources. This

sequence/set pair can then be used as the basis for

adding a page to the document (see pdf_add_page).

doc: The document for which these are intended.

mediabox: The bbox for the created page.

presources: Pointer to a place to put the created

CHAPTER 9. THE DEVICE INTERFACE 46

resources dictionary.

pcontents: Pointer to a place to put the created

contents buffer.

*/

fz_device *pdf_page_write(fz_context *ctx, pdf_document *doc, const

fz_rect *mediabox, pdf_obj **presources, fz_buffer **pcontents);

9.5.5 Structured Text Device

The Structured Text device is used to extract the text from a given graphical
stream, together with the position it inhabits on the output page. It can also
optionally include details of images and their positions within its output.

/*

fz_new_stext_device: Create a device to extract the text on a page.

Gather and sort the text on a page into spans of uniform style,

arranged into lines and blocks by reading order. The reading order

is determined by various heuristics, so may not be accurate.

sheet: The text sheet to which styles should be added. This can

either be a newly created (empty) text sheet, or one containing

styles from a previous text device. The same sheet cannot be used

in multiple threads simultaneously.

page: The text page to which content should be added. This will

usually be a newly created (empty) text page, but it can be one

containing data already (for example when merging multiple pages, or

watermarking).

*/

fz_device *fz_new_stext_device(fz_context *ctx, fz_stext_sheet *sheet,

fz_stext_page *page);

This can be used as the basis for searching (including highlighting the text as
matches are found), for exporting text files (or text and image based files such
as HTML), or even to do more complex page analysis (such as spotting what
regions of the page are text, what are graphics etc).

An (initially empty) fz stext sheet should be created using
fz new stext sheet, and an empty fz stext page created using
fz new stext page. These are used in the call to fz new stext device.
After the contents have been run to that device, the sheet will be populated
with the common styles used by the page, and the page will be populated with
details of the text extracted and its position.

CHAPTER 9. THE DEVICE INTERFACE 47

9.5.6 SVG Output Device

The SVG output device is used to generate SVG pages from arbitrary input.

End users will probably prefer to use the document writer interface (see chap-
ter 15 The Document Writer interface) which wraps this class up, rather than
call it directly.

/*

fz_new_svg_device: Create a device that outputs (single page)

SVG files to the given output stream.

output: The output stream to send the constructed SVG page

to.

page_width, page_height: The page dimensions to use (in

points).

*/

fz_device *fz_new_svg_device(fz_context *ctx, fz_output *out, float

page_width, float page_height);

The device currently generates SVG 1.1 compliant files. SVG Fonts are NOT
used due to poor client support. Instead glyphs are sent as reusable sym-
bols. Shadings are sent as rasterised images. JPEGs will be passed through
unchanged, and all other images will be converted to PNG.

9.5.7 Test Device

The Test device, as its name suggests, tests a given set of page contents for
which features are used. Currently this is restricted to testing for whether the
graphical objects used are greyscale or colour. Testing for additional features
may be added in future.

/*

fz_new_test_device: Create a device to test for features.

Currently only tests for the presence of non-grayscale colors.

is_color: Possible values returned:

0: Definitely greyscale

1: Probably color (all colors were grey, but there

were images or shadings in a non grey colorspace).

2: Definitely color

threshold: The difference from grayscale that will be tolerated.

Typical values to use are either 0 (be exact) and 0.02 (allow an

imperceptible amount of slop).

options: A set of bitfield options, from the FZ_TEST_OPT set.

CHAPTER 9. THE DEVICE INTERFACE 48

passthrough: A device to pass all calls through to, or NULL.

If set, then the test device can both test and pass through to

an underlying device (like, say, the display list device). This

means that a display list can be created and at the end we’ll

know if its color or not.

In the absence of a passthrough device, the device will throw

an exception to stop page interpretation when color is found.

*/

fz_device *fz_new_test_device(fz_context *ctx, int *is_color, float

threshold, int options, fz_device *passthrough);

The expected purpose of the colour detecting functionality is to allow applica-
tions (e.g. printers) to easily detect if a given page requires the use of colour
inks, or whether a greyscale rendering will suffice.

This device can either be used by itself, or in the form of a pass-through device.

Standalone use

In the simplest form, the device can be created standalone, by passing
passthrough as NULL.

As each subsequent device call is made, the device will test the graphic object
passed to it to see if it is within the given threshold of being a neutral colour.
If it is, then the device continues. If not, then it sets the int pointed to by
is color to be non zero.

For graphical objects such as paths or text, this is an easy evaluation that takes
almost no time. For Images or Shadings however, it is slightly trickier. An
image may be defined in a colour space capable of non-neutral colours (perhaps
RGB or CMYK) and yet the image itself may only use neutral colours within
that space. To properly establish whether colours are required or not, requires
much more CPU intensive processing.

Accordingly, the device will, by default, just look at the colour space. The value
of is color returned at the end may be examined to establish the confidence
level of the test. 0 means “definitely greyscale”, 1 means “probably colour” (i.e.
“an image or shading was seen that potentially contains non neutral colours”),
and 2 means “definitely colour”.

If the caller wishes to spend the CPU cycles to get a definite answer, options
can be set to FZ TEXT OPT IMAGES | FZ TEXT OPT SHADINGS and images and
shadings will be exhaustively checked.

As an optimisation, given how much faster is is to check non-images and shad-
ings, it can be worth running the device once without the options set, and then
only running it again with them set if required.

CHAPTER 9. THE DEVICE INTERFACE 49

If the device is run with passthrough as NULL, then as soon as it encounters
a “definite” non-neutral colour, it will throw a FZ ABORT error. This can save a
considerable amount of time, as it avoids the interpreter needing to run through
an entire page when observation of one of the very first graphical operations is
enough to know that colour is being used.

Passthrough use

As discussed above, the envisaged use case for this device is to detect whether
page contents require colour or not to allow printers to decide whether to ras-
terise for colour inks or a faster/cheaper greyscale pass.

Such printers will normally be operating in banded mode, which requires (or
at least greatly benefits from) the use of a display list. By using the device in
passthrough mode, the testing can be performed at the same time as the list
is built.

Simply create the display list device as you would normally, and pass it into
fz new test device as passthrough. Then run the page contents through
the returned test device. The test device will pass each call through to the
underlying list device and so the display list be built as normal.

When run in this mode, the device can no longer use the ‘early-exit’ optimisation
of throwing a FZ ABORT error.

9.5.8 Trace Device

The Trace device is a simple debugging device that allows an XML-like repre-
sentation of the device calls made to be output.

/*

fz_new_trace_device: Create a device to print a debug trace of all

device calls.

*/

fz_device *fz_new_trace_device(fz_context *ctx, fz_output *out);

This is a useful tool to visualise the contents of display lists.

Chapter 10

Building Blocks

10.1 Overview

MuPDF uses many constructs and concepts that, while not deserving of chapters
in their own rights, do deserve mention.

10.2 Colorspaces

In order to represent a given color for a graphical object, we need both the color
component values and details of the colorspace that the color is specified in.
Color values are defined simply as floats (normally between 0 and 1 inclusive),
and colorspaces are defined using the fz colorspace structure.

As with many other such structures in MuPDF, these are reference counted
objects (see section 24.3 Reference Counting).

10.2.1 Basic Colorspaces

MuPDF contains a set of inbuilt colorspaces that cover most simple require-
ments. These are the ‘device’ colorspaces:

/*

fz_device_gray: Get colorspace representing device specific gray.

*/

fz_colorspace *fz_device_gray(fz_context *ctx);

/*

fz_device_rgb: Get colorspace representing device specific rgb.

*/

fz_colorspace *fz_device_rgb(fz_context *ctx);

50

CHAPTER 10. BUILDING BLOCKS 51

/*

fz_device_bgr: Get colorspace representing device specific bgr.

*/

fz_colorspace *fz_device_bgr(fz_context *ctx);

/*

fz_device_cmyk: Get colorspace representing device specific CMYK.

*/

fz_colorspace *fz_device_cmyk(fz_context *ctx);

/*

fz_device_lab: Get colorspace representing device specific LAB.

*/

fz_colorspace *fz_device_lab(fz_context *ctx);

10.2.2 Indexed Colorspaces

MuPDF allows for indexed colorspaces - those where a palette is used to select
color values from a (normally) larger colorspace.

These are created using the fz new indexed colorspace call:

fz_colorspace *fz_new_indexed_colorspace(fz_context *ctx, fz_colorspace

*base, int high, unsigned char *lookup);

10.2.3 Separation and DeviceN Colorspaces

MuPDF Colorspaces are extensible, so specific document handlers can imple-
ment their own new spaces. A good example of this is how PDF implements
Separation and DeviceN colorspaces.

These are special spaces which represent arbitrary sets of 1 or more colorants.
These can either be mapped down to ‘equivalent’ colors in a more standard
space, or (depending on the capabilities of the underlying device) processed in
their raw form.

10.2.4 Further information

Further information on Colorspaces can be found within chapter 32 Colorspace
Internals.

10.3 Pixmaps

10.3.1 Overview

The fz pixmap structure is used to represent a 2 dimensional array of contone
pixels. This is used throughout MuPDF, as the target of rendering from the

CHAPTER 10. BUILDING BLOCKS 52

draw device, as internal buffers during processing, and during image decoding.

A pixmap can have an arbitrary number of colour components, together with an
optional alpha plane. Every component sample is represented by an unsigned
char.

Pixmaps contain a set of n values per pixel, where n = c+s+a. c is the number
of color components in the colorspace of a pixmap (or 0, if the colorspace is
NULL). s is the number of spot colors in a pixmap (frequently 0). a is 0 if there
is no alpha plane, and 1 otherwise.

The initial c entries are referred to as the ‘process’ color components. These can
be either additive or subtractive dependent on the colorspace of the pixmap.
Additive spaces (such as Gray, or RGB) have value 0 as dark, 255 as light.
Subtractive spaces (such as CMYK) have value 0 as light (no ink), 255 as dark
(full ink).

The next s entries are the spot colors represented by a pixmap. These are always
in subtractive form.

The final entry (if a = 1) is the alpha value. This is 0 for completely transparent,
255 for completely opaque.

The data within a pixmap is always stored packed in ‘chunky’ format. For
instance, an RGB pixmap would have data in the form: RGBRGBRGBRGB...

Alpha data is always sent as the last byte in the set corresponding to a pixel.
An RGB pixmap with an alpha plane would be therefore have data of the form:
RGBARGBARGBA...

A CMYK pixmap with spots for Orange and Green would have data of the
form: CMYKOGCMYKOGCMYKOG...

To allow greater flexibility in the layout of the underlying memory blocks used
by pixmaps, they have a ‘stride’ field. This gives the number of bytes difference
from the address of the start of the representation of a pixel to the address of
the start of the representation of the same pixel on the scanline below.

Normally you’d expect stride to be the same as width multiplied by the number
of components in the image (including alpha), but for some cases (notably when
we have pixmaps that represent a sub-rectangle of larger pixmaps) these can be
much larger.

Pixmaps can frequently map onto operating system specific bitmap represen-
tations, but these sometimes require each scanline to be word aligned - again
the provision of stride allows for this. Bottom up bitmaps can be implemented
using a negative stride.

CHAPTER 10. BUILDING BLOCKS 53

10.3.2 Premultiplied alpha

By convention MuPDF holds pixmaps in ‘premultipled alpha’ form. This means
that when an alpha plane is present, the values for the process and spot colors
are stored scaled by the alpha value.

So for a pixel with R=G=B=1, with solid alpha, we’d have values of 255, but
with an alpha value of 0.5 we’d have values of 127 stored.

This format is used because it simplifies many of the plotting and compositing
operations used within MuPDF.

10.3.3 Saving

For information on saving pixmaps, see chapter 14 Rendered Output Formats.

10.4 Bitmaps

The fz bitmap structure is used to represent a 2 dimensional array of
monochrome pixels. They are the 1 bit per component equivalent of the
fz pixmap structure.

The core rendering engine of MuPDF does not currently make use of
fz bitmaps, but rather they are used as a step along the way for outputting
rendered information.

Functions exist within MuPDF to create fz bitmaps from fz pixmaps by
halftoning. See section 10.5 Halftones.

/*

fz_new_bitmap_from_pixmap: Make a bitmap from a pixmap and a

halftone.

pix: The pixmap to generate from. Currently must be a single color

component + alpha (where the alpha is assumed to be solid).

ht: The halftone to use. NULL implies the default halftone.

Returns the resultant bitmap. Throws exceptions in the case of

failure to allocate.

*/

fz_bitmap *fz_new_bitmap_from_pixmap(fz_context *ctx, fz_pixmap *pix,

fz_halftone *ht);

fz_bitmap *fz_new_bitmap_from_pixmap_band(fz_context *ctx, fz_pixmap

*pix, fz_halftone *ht, int band_start, int bandheight);

Both functions work by applying a fz halftone to the contone values to make
the bitmap. The latter function is a more general version of the former, that

CHAPTER 10. BUILDING BLOCKS 54

allows for correct operation when rendering in bands - namely that the correct
offset into the halftone table is used.

The data for each Bitmap is packed into bytes most significant bit first. Multiple
components are packed into the same byte, so a CMYK pixmap converted to a
bitmap would have 2 pixels worth of data in the first byte, CMYKCMYK, with
the first pixel in the highest nibble.

The usual reference counting behaviour applies to fz bitmaps, with
fz keep bitmap and fz drop bitmap claiming and releasing references respec-
tively.

10.5 Halftones

The fz halftone structure represents a set of tiles, one per component, each of a
potentially different size. Each of these tiles is a 2-dimensional array of threshold
values (actually implemented as a single component fz pixmap). During the
halftoning (bitmap creation) process, if the contone value is smaller than the
threshold value, then it remains unset in the output. If it is larger or equal then
it is set in the output.

For convenience, a NULL pointer can be used to signify the default halftone. The
default halftone can also be fetched by using:

/*

fz_default_halftone: Create a ’default’ halftone structure

for the given number of components.

num_comps: The number of components to use.

Returns a simple default halftone. The default halftone uses

the same halftone tile for each plane, which may not be ideal

for all purposes.

*/

fz_halftone *fz_default_halftone(fz_context *ctx, int num_comps);

The creation of halftones is a specialised field upon which much research has
been done. The mechanisms in MuPDF are designed to allow people the freedom
to create and tune the halftones for their particular application.

The usual reference counting behaviour applies to fz halftones, with
fz keep halftone and fz drop halftone claiming and releasing references re-
spectively.

CHAPTER 10. BUILDING BLOCKS 55

10.6 Images

The fz image structure is used to represent a generic Image object in MuPDF.
It can be viewed as an encapsulation from which both a rendering of an image
(as a fz pixmap) and (often) the original source data can be retrieved.

Further discussion of fz images is deferred to chapter 27 Image Internals in
Part 2. While it is perfectly permissible for a caller to create images, in most
cases they will treat them as ‘black boxes’ to just be passed around.

10.7 Buffers

The fz buffer structure is used to represent arbitrary buffers of data. Es-
sentially they are a representation for arbitrary blocks of bytes (in whatever
encoding required), with simple functions for extending, concatenating, and
writing in byte, char, utf8 and bitwise fashion.

Both the internals and API level functions of MuPDF use fz buffers exten-
sively.

The usual reference counting behaviour applies to fz buffers, with
fz keep buffer and fz drop buffer claiming and releasing references respec-
tively.

10.8 Transforms

The fz matrix structure is used to represent 2 dimensional matrices used for
transforming points, shapes and other geometry.

The six fields of the fz matrix structure correspond to a matrix of the form: a b 0
c d 0
e f 1


Such transformation matrices can be used to represent a wide range of different
operations, including translations, rotations, scales, sheers, and any combination
thereof.

Typically, a matrix will be created for a specific purpose, such as a scale, or a
translation. For this reason, we have dedicated construction calls.

/*

fz_scale: Create a scaling matrix.

The returned matrix is of the form [sx 0 0 sy 0 0].

m: Pointer to the matrix to populate

CHAPTER 10. BUILDING BLOCKS 56

sx, sy: Scaling factors along the X- and Y-axes. A scaling

factor of 1.0 will not cause any scaling along the relevant

axis.

Returns m.

Does not throw exceptions.

*/

fz_matrix *fz_scale(fz_matrix *m, float sx, float sy);

/*

fz_shear: Create a shearing matrix.

The returned matrix is of the form [1 sy sx 1 0 0].

m: pointer to place to store returned matrix

sx, sy: Shearing factors. A shearing factor of 0.0 will not

cause any shearing along the relevant axis.

Returns m.

Does not throw exceptions.

*/

fz_matrix *fz_shear(fz_matrix *m, float sx, float sy);

/*

fz_rotate: Create a rotation matrix.

The returned matrix is of the form

[cos(deg) sin(deg) -sin(deg) cos(deg) 0 0].

m: Pointer to place to store matrix

degrees: Degrees of counter clockwise rotation. Values less

than zero and greater than 360 are handled as expected.

Returns m.

Does not throw exceptions.

*/

fz_matrix *fz_rotate(fz_matrix *m, float degrees);

/*

fz_translate: Create a translation matrix.

The returned matrix is of the form [1 0 0 1 tx ty].

m: A place to store the created matrix.

CHAPTER 10. BUILDING BLOCKS 57

tx, ty: Translation distances along the X- and Y-axes. A

translation of 0 will not cause any translation along the

relevant axis.

Returns m.

Does not throw exceptions.

*/

fz_matrix *fz_translate(fz_matrix *m, float tx, float ty);

Mathematically, points are transformed by multiplying them (extended to 3
elements long). For example (x’,y’), the point given by mapping (x,y) through
such a matrix is calculated as follows:

(
x′ y′ 1

)
=

(
x y 1

) a b 0
c d 0
e f 1


There are various functions in MuPDF to perform such transformations:

/*

fz_transform_point: Apply a transformation to a point.

transform: Transformation matrix to apply. See fz_concat,

fz_scale, fz_rotate and fz_translate for how to create a

matrix.

point: Pointer to point to update.

Returns transform (unchanged).

Does not throw exceptions.

*/

fz_point *fz_transform_point(fz_point *restrict point, const fz_matrix

*restrict transform);

fz_point *fz_transform_point_xy(fz_point *restrict point, const

fz_matrix *restrict transform, float x, float y);

Rectangles can be transformed using the following function, which allows for the
fact that the image of a rectangle may ‘flip’ the rectangle (i.e. that a minimum
coordinate may end up as a maximum one after translation, and vice versa):

/*

fz_transform_rect: Apply a transform to a rectangle.

After the four corner points of the axis-aligned rectangle

have been transformed it may not longer be axis-aligned. So a

CHAPTER 10. BUILDING BLOCKS 58

new axis-aligned rectangle is created covering at least the

area of the transformed rectangle.

transform: Transformation matrix to apply. See fz_concat,

fz_scale and fz_rotate for how to create a matrix.

rect: Rectangle to be transformed. The two special cases

fz_empty_rect and fz_infinite_rect, may be used but are

returned unchanged as expected.

Does not throw exceptions.

*/

fz_rect *fz_transform_rect(fz_rect *restrict rect, const fz_matrix

*restrict transform);

Also, it can be useful to transform a point, ignoring the translation components
of a transformation, so we have a convenience function for this:

/*

fz_transform_vector: Apply a transformation to a vector.

transform: Transformation matrix to apply. See fz_concat,

fz_scale and fz_rotate for how to create a matrix. Any

translation will be ignored.

vector: Pointer to vector to update.

Does not throw exceptions.

*/

fz_point *fz_transform_vector(fz_point *restrict vector, const fz_matrix

*restrict transform);

Transformations can be combined by multiplying their representative matrices
together. Transforming a point by applying matrix A then matrix B, will give
identical results to transforming the point by AB.

MuPDF provides an API for combining matrices in this way:

/*

fz_concat: Multiply two matrices.

The order of the two matrices are important since matrix

multiplication is not commutative.

Returns result.

Does not throw exceptions.

*/

fz_matrix *fz_concat(fz_matrix *result, const fz_matrix *left, const

CHAPTER 10. BUILDING BLOCKS 59

fz_matrix *right);

Alternatively, operations can be specifically applied to existing matrices. Be-
cause of the non-commutative nature of matrix operations, it matters whether
the new operation is applied before or after the existing matrix.

For example, if you have a matrix that performs a rotation, and you wish
to combine that with a translation, you must decide whether you want the
translation to occur before the rotation (‘pre’) or afterwards (‘post’).

MuPDF has various API functions for such operations:

/*

fz_pre_scale: Scale a matrix by premultiplication.

m: Pointer to the matrix to scale

sx, sy: Scaling factors along the X- and Y-axes. A scaling

factor of 1.0 will not cause any scaling along the relevant

axis.

Returns m (updated).

Does not throw exceptions.

*/

fz_matrix *fz_pre_scale(fz_matrix *m, float sx, float sy);

/*

fz_post_scale: Scale a matrix by postmultiplication.

m: Pointer to the matrix to scale

sx, sy: Scaling factors along the X- and Y-axes. A scaling

factor of 1.0 will not cause any scaling along the relevant

axis.

Returns m (updated).

Does not throw exceptions.

*/

fz_matrix *fz_post_scale(fz_matrix *m, float sx, float sy);

/*

fz_pre_shear: Premultiply a matrix with a shearing matrix.

The shearing matrix is of the form [1 sy sx 1 0 0].

m: pointer to matrix to premultiply

sx, sy: Shearing factors. A shearing factor of 0.0 will not

CHAPTER 10. BUILDING BLOCKS 60

cause any shearing along the relevant axis.

Returns m (updated).

Does not throw exceptions.

*/

fz_matrix *fz_pre_shear(fz_matrix *m, float sx, float sy);

/*

fz_pre_rotate: Rotate a transformation by premultiplying.

The premultiplied matrix is of the form

[cos(deg) sin(deg) -sin(deg) cos(deg) 0 0].

m: Pointer to matrix to premultiply.

degrees: Degrees of counter clockwise rotation. Values less

than zero and greater than 360 are handled as expected.

Returns m (updated).

Does not throw exceptions.

*/

fz_matrix *fz_pre_rotate(fz_matrix *m, float degrees);

/*

fz_pre_translate: Translate a matrix by premultiplication.

m: The matrix to translate

tx, ty: Translation distances along the X- and Y-axes. A

translation of 0 will not cause any translation along the

relevant axis.

Returns m.

Does not throw exceptions.

*/

fz_matrix *fz_pre_translate(fz_matrix *m, float tx, float ty);

Finally, sometimes it is useful to find the matrix that would represent the reverse
of a given transformation. This can be achieved by ‘inverting’ the matrix.
This is not possible in all cases, but can be achieved for most ‘well-behaved’
transformations.

/*

fz_invert_matrix: Create an inverse matrix.

inverse: Place to store inverse matrix.

CHAPTER 10. BUILDING BLOCKS 61

matrix: Matrix to invert. A degenerate matrix, where the

determinant is equal to zero, can not be inverted and the

original matrix is returned instead.

Returns inverse.

Does not throw exceptions.

*/

fz_matrix *fz_invert_matrix(fz_matrix *inverse, const fz_matrix *matrix);

/*

fz_try_invert_matrix: Attempt to create an inverse matrix.

inverse: Place to store inverse matrix.

matrix: Matrix to invert. A degenerate matrix, where the

determinant is equal to zero, can not be inverted.

Returns 1 if matrix is degenerate (singular), or 0 otherwise.

Does not throw exceptions.

*/

int fz_try_invert_matrix(fz_matrix *inverse, const fz_matrix *matrix);

10.9 Paths

Postscript (or equivalently PDF) style paths are represented using the fz path

structure. A postscript path consists of a sequence of instructions describing
the movement of a ‘pen’ around a given path.

The first instruction is always a ‘move’ to a specified location. Subsequent
instructions move the pen position onwards to new positions on the page, ei-
ther via straight lines, or via curves described by given control points. Such
instructions can either be made with the pen up or down.

Once created paths can then be rendered by MuPDF either by being filled, or
by being stroked. The path itself has no knowledge of how it will be used - the
details of the fill or the stroke attributes are supplied externally to this structure.
A description of the exact rules used for filling and stroking are beyond the scope
of this document. For more information see “The PDF Reference Manual” or
“The Postscript Language Reference Manual”.

Further discussion of paths is postponed to Part 2 in chapter 26 Path Internals.
While is is entirely permissible for application callers to want to create their
own paths (for passing to device functions) it’s far more typical for callers to
simply treat them as ‘black boxes’ to be passed around.

CHAPTER 10. BUILDING BLOCKS 62

10.10 Text

MuPDFs central text type is a fz text structure. The exact definition of this
structure has evolved considerably in the past to accommodate the needs of dif-
ferent input formats, and it is possible this will continue in future. Accordingly
we have hidden the implementation behind an interface.

Nonetheless, it is worthwhile mentioning some of the design goals that have
influenced the development of this area of the code.

As fz text objects are the only text objects passed across the device interface,
they need to encode several layers of information. For simple rendering devices,
they need to be expressive enough to allow us to exactly render the exact speci-
fied glyphs. For text output devices, they need to be expressive enough to allow
the unicode values to be extracted.

Ideally, given any input format we would like to be able to extract any output
format from it (including the same format) with no loss of data. This means
that our fz text objects need to be expressive enough to represent the super-set
of functionality of all input formats out there, even if we do not currently make
use of all the information.

While the idea of a single representation being enough to encapsulate each glyph
from the text on the page in turn is attractive, this is not the case. Indeed, it’s
not even possible to trivially define the order in which glyphs will be sent!

It would be nice to think that text would be held in the source file in the order
in which it should be displayed on the page, but this is frequently not the case.

The ‘logical order’ of text can be thought of as being the order in which text
would be read out loud, if you were reading from the page. In many cases (such
as for EPUB files), this is the order in which the information is stored within
the file itself. Sadly, for other formats this is not always the case.

PDF files in particular have no particular defined ordering in which text is sent -
as each glyph is individually positioned on the page, files can (and do) send them
in any order they feel like. While most PDF files containing European languages
will tend to send text in the expected logical ordering, there is no guarantee that
this will always be the case. This likelihood gets even more remote as we start
to deal with right-to-left text, top-to-bottom text, far eastern scripts, or texts
in multiple different scripts or languages.

The classic case where logical order may differ noticeably from rendered order,
is for ‘bidirectional’ text1. Even if the internal document representation is in
logical order, the order in which the text will actually be displayed can be quite
different. Consider, for instance, some source text in Hebrew. If the individual
glyphs are A,B,C,D etc, then the right-to-left nature of Hebrew means that
these will be displayed in the order ‘DCBA’ on the page.

1Text which has a mixture of left-to-right and right-to-left blocks

CHAPTER 10. BUILDING BLOCKS 63

If, however, we have conventional western (arabic) numerals on the page,
interspersed within the Hebrew text, this is still written left-to-right. So
A,B,C,D,1,2,3,4,E,F,G would appear as ‘GFE12DCBA’.

The algorithm dealing with such strings is fairly complex, and so further dis-
cussion of this for the interested reader is best redirected to the ‘Unicode Bidi-
rectional Algorithm’ as defined in Technical Report 9 at http://unicode.org/
reports/tr9.

The final dose of complexity comes from scripts that require ‘shaping’. While
simple western scripts (broadly) have a direct relationship between the character
sent (e.g. the letter ’A’) and the shape used to represent it on the page (e.g.
the glyph ’A’), this does not hold true for all scripts.

The simplest example for this is that of a ligature. A piece of source text might
contain the letter ‘f’ followed by the letter ‘i’ (perhaps in the word ‘file’). When
typeset onto a page, rather than displaying the glyphs individual, a combined
glyph is generally used, ‘fi’.

This concept of their being a ‘transformation’ step from the input text to the
output rendered form is extended massively when dealing with non-western
scripts. For Arabic and Indic scripts in particular (and Eastern scripts in gen-
eral), groups of characters are frequently combined together to give increasingly
complex glyphs. This process is referred to as shaping, and it is generally applied
after the bidirectional algorithm has been run.

Different source formats cope with this in different ways. The text strings within
a PDF file have already had the layout and shaping process applied - they are
literally a list of positioned glyphs to be displayed on the page. Each glyph is
identified by a ‘glyph-id’ - a simple index of the glyph within a font, with no
meaning other than that. The unicode values for the original text are frequently
not there at all (and when they are they require specific work to derive).

Other formats, such as EPUB, take the opposite approach, by specifying the
Unicode values directly, and leaving the displaying application (i.e. MuPDF)
to do the conversion to glyphs (including the ‘shaping’ operation).

To cope with these different input requirements, and to allow us to translate
one format into another, we require fz text objects to encapsulate both forms
of data at the same time.

Accordingly, our fz text object represents a block of text, including font style
and position, together with both unicode and glyph data (subject to the avail-
ability of the information in the original file). Where possible we try to provide
this information in logical order, though no guarantee can be made of this.

If more information is required, then details of the current implementation are
included in chapter 28 Text Internals in Part 2, otherwise just use it as a simple
black box.

http://unicode.org/reports/tr9
http://unicode.org/reports/tr9

CHAPTER 10. BUILDING BLOCKS 64

10.11 Shadings

One of the most powerful graphical effects within PDF and other input formats
is that of Shadings. Our central type representing shadings, fz shade is all that
we have to pass details of shadings across the fz device interface.

Consequently, we need fz shade to be expressive enough to cope with shadings
from all possible sources, and yet we would like to avoid having to reproduce
the shade handling code in all devices.

Accordingly, fz shade is defined to be expressive enough to encapsulate all
the different shading representations found in PDF with the data essentially
unchanged. PDF is currently the super-set of shadings found in other formats.
If this changes, fz shade will be extended as required.

Further discussion is deferred to chapter 29 Shading Internals in Part 2, as it
would be unusable (though not inconceivable) for applications authors to want
to author their own shadings.

Chapter 11

Display Lists

11.1 Overview

While MuPDF is engineered to be as fast as possible at interpreting page con-
tents, there is inevitably some overhead in converting from the documents native
format to the stream of graphical operations (calls over the fz device interface).

If you are planning to redraw the same page several times (perhaps because you
are panning and zooming around a page in a viewer), then it can be advanta-
geous to use a display List.

A display list is simply a way of packaging up a stream of graphical operations
so that they can be efficiently played back, possibly with different transforms
or clip rectangles.

Display lists are optimised to use as little memory as possible, but clearly are
(typically) a greater user of memory than just reinterpreting the file. The big
advantage of display lists, other than their speed, is that they can safely be
played back without touching the underlying file. This means they can be used
in other threads without having to worry about contention.

Display lists are implemented within using MuPDF using the fz display list

type.

11.2 Creation

An empty display list can be created by the fz new display list call.

/*

fz_new_display_list: Create an empty display list.

A display list contains drawing commands (text, images, etc.).

65

CHAPTER 11. DISPLAY LISTS 66

Use fz_new_list_device for populating the list.

mediabox: Bounds of the page (in points) represented by the display

list.

*/

fz_display_list *fz_new_display_list(fz_context *ctx, const fz_rect

*mediabox);

Once created it can be populated by creating a display list device instance that
writes to it.

/*

fz_new_list_device: Create a rendering device for a display list.

When the device is rendering a page it will populate the

display list with drawing commands (text, images, etc.). The

display list can later be reused to render a page many times

without having to re-interpret the page from the document file

for each rendering. Once the device is no longer needed, free

it with fz_drop_device.

list: A display list that the list device takes ownership of.

*/

fz_device *fz_new_list_device(fz_context *ctx, fz_display_list *list);

Once you have created such a display list device, any calls made to that device
(such as by calling fz run page or similar) will be recorded into the display list.

When you have finished writing to the display list (remembering to
call fz close device), you dispose of the device as normal (by calling
fz drop device). This leaves you holding the sole reference to the display
list itself.

Writing to a display list is not thread safe. That is to say, do not attempt to
write to a display list from more than one thread at a time. Similarly, do not
attempt to read from display lists while write operations are ongoing.

11.3 Playback

To playback from a list, just call fz run display list.

/*

fz_run_display_list: (Re)-run a display list through a device.

list: A display list, created by fz_new_display_list and

populated with objects from a page by running fz_run_page on a

device obtained from fz_new_list_device.

CHAPTER 11. DISPLAY LISTS 67

dev: Device obtained from fz_new_*_device.

ctm: Transform to apply to display list contents. May include

for example scaling and rotation, see fz_scale, fz_rotate and

fz_concat. Set to fz_identity if no transformation is desired.

area: Only the part of the contents of the display list

visible within this area will be considered when the list is

run through the device. This does not imply for tile objects

contained in the display list.

cookie: Communication mechanism between caller and library

running the page. Intended for multi-threaded applications,

while single-threaded applications set cookie to NULL. The

caller may abort an ongoing page run. Cookie also communicates

progress information back to the caller. The fields inside

cookie are continually updated while the page is being run.

*/

void fz_run_display_list(fz_context *ctx, fz_display_list *list,

fz_device *dev, const fz_matrix *ctm, const fz_rect *area,

fz_cookie *cookie);

11.4 Reference counting

In common with most other objects in MuPDF, fz display lists are reference
counted. This means that once you have finished with a reference to a display
list, it can safely be disposed of by calling fz drop display list.

/*

fz_drop_display_list: Drop a reference to a display list, freeing it

if the reference count reaches zero.

Does not throw exceptions.

*/

void fz_drop_display_list(fz_context *ctx, fz_display_list *list);

Should you wish to keep a new reference to a display list, you can generate one
using fz keep display list.

/*

fz_keep_display_list: Keep a reference to a display list.

Does not throw exceptions.

*/

fz_display_list *fz_keep_display_list(fz_context *ctx, fz_display_list

*list);

CHAPTER 11. DISPLAY LISTS 68

In general, it is rare for you to want to make a new reference to a display list
until write operations on one have finished. It is good form to avoid this.

11.5 Miscellaneous operations

There are a few other operations that can be performed efficiently on a display
list. Firstly, one can request the bounds of a list.

/*

fz_bound_display_list: Return the bounding box of the page recorded

in a display list.

*/

fz_rect *fz_bound_display_list(fz_context *ctx, fz_display_list *list,

fz_rect *bounds);

Note that this is the bounding box of the page that was written to the display
list, not the bounding box of the contents of the list; the latter will typically
(but not always) be smaller than the former due to page borders etc.

Secondly, one can create a new fz image from a display list. This is useful
for creating scalable content to embed in other document types; for instance
MuPDF makes use of this to turn SVG files embedded within EPUB files (for
illustrations and cover pages etc) into convenient objects for adding into the
flow of text.

/*

Create a new image from a display list.

w, h: The conceptual width/height of the image.

transform: The matrix that needs to be applied to the given

list to make it render to the unit square.

list: The display list.

*/

fz_image *fz_new_image_from_display_list(fz_context *ctx, float w, float

h, fz_display_list *list);

Finally, it is possible to very quickly check if a given display list is empty or not.

/*

Check for a display list being empty

list: The list to check.

Returns true if empty, false otherwise.

*/

CHAPTER 11. DISPLAY LISTS 69

int fz_display_list_is_empty(fz_context *ctx, const fz_display_list

*list);

Chapter 12

The Stream interface

12.1 Overview

MuPDF is designed to run in a variety of different environments. As such,
this means input can come from many different sources. On desktop computers
input may come as files on backing store. For web served files, input may be
streamed over a network. For systems with DRM embedded, the data may need
to be decoded on the fly.

Similarly, data can be encapsulated within different formats in different ways,
with multiple layers of encoding.

Accordingly, MuPDF abstracts the idea of an ‘input stream’ to a reusable class,
fz stream. Many implementations of fz streams are given by default in the
core library, but the abstract nature of this class allows callers to provide im-
plementations of their own to seamlessly extend the systems capabilities as
required.

12.2 Creation

The exact mechanism for creating a stream depends upon the source for that
particular stream, but typically it will involve a call to a creation function, such
as fz open file.

/*

fz_open_file: Open the named file and wrap it in a stream.

filename: Path to a file. On non-Windows machines the filename should

be exactly as it would be passed to fopen(2). On Windows machines,

the path should be UTF-8 encoded so that non-ASCII characters can be

represented. Other platforms do the encoding as standard anyway (and

70

CHAPTER 12. THE STREAM INTERFACE 71

in most cases, particularly for MacOS and Linux, the encoding they

use is UTF-8 anyway).

*/

fz_stream *fz_open_file(fz_context *ctx, const char *filename);

Alternative functions exist to allow creating streams from C level FILE pointers:

/*

fz_open_file: Wrap an open file descriptor in a stream.

file: An open file descriptor supporting bidirectional

seeking. The stream will take ownership of the file

descriptor, so it may not be modified or closed after the call

to fz_open_file_ptr. When the stream is closed it will also close

the file descriptor.

*/

fz_stream *fz_open_file_ptr(fz_context *ctx, FILE *file);

from direct memory blocks:

/*

fz_open_memory: Open a block of memory as a stream.

data: Pointer to start of data block. Ownership of the data block is

NOT passed in.

len: Number of bytes in data block.

Returns pointer to newly created stream. May throw exceptions on

failure to allocate.

*/

fz_stream *fz_open_memory(fz_context *ctx, unsigned char *data, size_t

len);

and from fz buffers:

/*

fz_open_buffer: Open a buffer as a stream.

buf: The buffer to open. Ownership of the buffer is NOT passed in

(this function takes its own reference).

Returns pointer to newly created stream. May throw exceptions on

failure to allocate.

*/

fz_stream *fz_open_buffer(fz_context *ctx, fz_buffer *buf);

There are too many other options for creating streams to list them all here, but
their use should be self evident from the header file definitions. Once created,

CHAPTER 12. THE STREAM INTERFACE 72

all streams can be used in the same ways.

12.3 Usage

12.3.1 Reading bytes

The simplest way to read bytes from a stream is to call fz read byte to read
the next byte from a file. Akin to the standard fgetc, this returns -1 for end
of data, or the next byte available.

/*

fz_read_byte: Read the next byte from a stream.

stm: The stream t read from.

Returns -1 for end of stream, or the next byte. May

throw exceptions.

*/

int fz_read_byte(fz_context *ctx, fz_stream *stm);

To read more than 1 byte at a time, there are two different options.

Firstly, and most efficiently, bytes can be read directly from the streams under-
lying buffer. For a given fz stream *stm, the current position in the stream is
pointed to by stm->rp. Bytes can simply be read out, and the pointer incre-
mented by the number read.

To do this, you must first know how many bytes there are available to be read
out. This is achieved by calling fz available. If there are no bytes already
decoded and awaiting reading, this call will trigger a refill of the underlying
buffer, which may take noticeable time.

/*

fz_available: Ask how many bytes are available immediately from

a given stream.

stm: The stream to read from.

max: A hint for the underlying stream; the maximum number of

bytes that we are sure we will want to read. If you do not know

this number, give 1.

Returns the number of bytes immediately available between the

read and write pointers. This number is guaranteed only to be 0

if we have hit EOF. The number of bytes returned here need have

no relation to max (could be larger, could be smaller).

*/

size_t fz_available(fz_context *ctx, fz_stream *stm, size_t max);

CHAPTER 12. THE STREAM INTERFACE 73

To avoid needless work, a ‘max’ value can be supplied as a hint, telling any
buffer refill operation that is triggered how many bytes are actually required.
Specifying a max value does not guarantee you anything about the number of
bytes actually made available.

Some callers may find this awkward - the need to potentially repeatedly call
until you get enough bytes to fill a buffer of the required length may be tedious.
Therefore as an alternative, we provide a simpler call, fz read.

Designed to be similar to the standard fread call, this attempts to read as
many bytes as possible into a supplied data block, returning the actual number
of bytes successfully read.

/*

fz_read: Read from a stream into a given data block.

stm: The stream to read from.

data: The data block to read into.

len: The length of the data block (in bytes).

Returns the number of bytes read. May throw exceptions.

*/

size_t fz_read(fz_context *ctx, fz_stream *stm, unsigned char *data,

size_t len);

Typically the only reason that fz read will not return the requested number of
bytes is if we hit the end of the stream. This implies that calls to fz read will
block until such data is ready. For streams based on ‘fast’ sources like files or
memory, this is an unimportant distinction.

For streams based on (say) an http download, this might result in significant
delays, and an unacceptable user experience. To alleviate this problem we have
a mechanism whereby such streams can signal a temporary end of data by
throwing the FZ ERROR TRYLATER error. See chapter 18 Progressive Mode for
more details.

To facilitate reading without blocking (or using buffers larger than required),
fz available can be called to find out the number of bytes that can safely be
requested.

If data within a stream is not required, it can be skipped over using fz skip:

/*

fz_skip: Read from a stream discarding data.

stm: The stream to read from.

len: The number of bytes to read.

CHAPTER 12. THE STREAM INTERFACE 74

Returns the number of bytes read. May throw exceptions.

*/

size_t fz_skip(fz_context *ctx, fz_stream *stm, size_t len);

As a special case, after a single byte is read, it can be pushed back into the
stream, using fz unread byte:

/*

fz_unread_byte: Unread the single last byte successfully

read from a stream. Do not call this without having

successfully read a byte.

*/

void fz_unread_byte(fz_context *ctx FZ_UNUSED, fz_stream *stm);

The act of reading a byte, and then, if successful pushing it back again is
encapsulated in a convenience function, fz peek byte:

/*

fz_peek_byte: Peek at the next byte in a stream.

stm: The stream to peek at.

Returns -1 for EOF, or the next byte that will be read.

*/

int fz_peek_byte(fz_context *ctx, fz_stream *stm);

12.3.2 Reading objects

Often, when parsing different document formats, it can be useful to read specific
objects from streams, so convenience functions exist for this too. Firstly, integers
of different size and endianness are catered for:

/*

fz_read_[u]int(16|24|32|64)(_le)?

Read a 16/32/64 bit signed/unsigned integer from stream,

in big or little-endian byte orders.

Throws an exception if EOF is encountered.

*/

uint16_t fz_read_uint16(fz_context *ctx, fz_stream *stm);

uint32_t fz_read_uint24(fz_context *ctx, fz_stream *stm);

uint32_t fz_read_uint32(fz_context *ctx, fz_stream *stm);

uint64_t fz_read_uint64(fz_context *ctx, fz_stream *stm);

uint16_t fz_read_uint16_le(fz_context *ctx, fz_stream *stm);

uint32_t fz_read_uint24_le(fz_context *ctx, fz_stream *stm);

CHAPTER 12. THE STREAM INTERFACE 75

uint32_t fz_read_uint32_le(fz_context *ctx, fz_stream *stm);

uint64_t fz_read_uint64_le(fz_context *ctx, fz_stream *stm);

int16_t fz_read_int16(fz_context *ctx, fz_stream *stm);

int32_t fz_read_int32(fz_context *ctx, fz_stream *stm);

int64_t fz_read_int64(fz_context *ctx, fz_stream *stm);

int16_t fz_read_int16_le(fz_context *ctx, fz_stream *stm);

int32_t fz_read_int32_le(fz_context *ctx, fz_stream *stm);

int64_t fz_read_int64_le(fz_context *ctx, fz_stream *stm);

We have functions to read both C style strings, and newline/return terminated
lines:

/*

fz_read_string: Read a null terminated string from the stream into

a buffer of a given length. The buffer will be null terminated.

Throws on failure (including the failure to fit the entire string

including the terminator into the buffer).

*/

void fz_read_string(fz_context *ctx, fz_stream *stm, char *buffer, int

len);

/*

fz_read_line: Read a line from stream into the buffer until either a

terminating newline or EOF, which it replaces with a null byte

(’\0’).

Returns buf on success, and NULL when end of file occurs while no

characters

have been read.

*/

char *fz_read_line(fz_context *ctx, fz_stream *stm, char *buf, size_t

max);

12.3.3 Reading bits

Streams (or sections of streams) can be treated as a string of bits, packed either
most significant or least significant bits first.

To read from an msb packed stream, use fz read bits:

/*

fz_read_bits: Read the next n bits from a stream (assumed to

be packed most significant bit first).

stm: The stream to read from.

n: The number of bits to read, between 1 and 8*sizeof(int)

CHAPTER 12. THE STREAM INTERFACE 76

inclusive.

Returns (unsigned int)-1 for EOF, or the required number of bits.

*/

unsigned int fz_read_bits(fz_context *ctx, fz_stream *stm, int n);

Conversely, to read from a lsb packed stream, use fz read rbits:

/*

fz_read_rbits: Read the next n bits from a stream (assumed to

be packed least significant bit first).

stm: The stream to read from.

n: The number of bits to read, between 1 and 8*sizeof(int)

inclusive.

Returns (unsigned int)-1 for EOF, or the required number of bits.

*/

unsigned int fz_read_rbits(fz_context *ctx, fz_stream *stm, int n);

;

Whichever of these is used, reading n bits will return the results in the lowest
n bits of the returned value.

After reading bits using these functions, if a return to reading bytewise (or
objectwise) is required, then fz sync bits must be called.

/*

fz_sync_bits: Called after reading bits to tell the stream

that we are about to return to reading bytewise. Resyncs

the stream to whole byte boundaries.

*/

void fz_sync_bits(fz_context *ctx FZ_UNUSED, fz_stream *stm);

This function skips as many bits as as required to align with a byte boundary.

12.3.4 Reading whole streams

As a convenience function, MuPDF provides a mechanism for reading the entire
contents of a stream into a fz buffer.

/*

fz_read_all: Read all of a stream into a buffer.

stm: The stream to read from

initial: Suggested initial size for the buffer.

CHAPTER 12. THE STREAM INTERFACE 77

Returns a buffer created from reading from the stream. May throw

exceptions on failure to allocate.

*/

fz_buffer *fz_read_all(fz_context *ctx, fz_stream *stm, size_t initial);

This will throw an error (and hence not return any data) if an error is encoun-
tered during the decode of the stream. Sometimes it can be preferable to ‘do
the best we can’ and tolerate problematic data. For such cases, we provide
fz read best:

/*

fz_read_best: Attempt to read a stream into a buffer. If truncated

is NULL behaves as fz_read_all, otherwise does not throw exceptions

in the case of failure, but instead sets a truncated flag.

stm: The stream to read from.

initial: Suggested initial size for the buffer.

truncated: Flag to store success/failure indication in.

Returns a buffer created from reading from the stream.

*/

fz_buffer *fz_read_best(fz_context *ctx, fz_stream *stm, size_t initial,

int *truncated);

12.3.5 Seeking

Most stream operations simply advance the stream pointer as the stream is read.
The current stream position can always be obtained using fz tell (deliberately
similar to the standard ftell call):

/*

fz_tell: return the current reading position within a stream

*/

int64_t fz_tell(fz_context *ctx, fz_stream *stm);

Some streams allow you to seek within them, that is, to change the current
stream pointer to a given offset. To do this, use fz seek (deliberately similar
to fseek):

/*

fz_seek: Seek within a stream.

stm: The stream to seek within.

offset: The offset to seek to.

CHAPTER 12. THE STREAM INTERFACE 78

whence: From where the offset is measured (see fseek).

*/

void fz_seek(fz_context *ctx, fz_stream *stm, int64_t offset, int

whence);

In the event that a stream does not support seeking, an error will be thrown.

As fz seek and fz tell work at byte granularity, care should be exercised
when reading streams bitwise. Always fz sync bits before expecting fz tell

to give you a value that you can safely fz seek back to.

12.3.6 Meta data

Occasionally, it can be useful to interrogate the properties of a stream, for
example the length of the stream, or whether it is coming from a progressive
source (see chapter 18 Progressive Mode).

While not implemented currently, perhaps in future a particular stream user
might want to interrogate information about the Mimetype of the stream, or its
compression ratios.

To allow this, we have an extensible system to request Meta operations on a
stream. The fz stream meta function allows such calls to be made, with a
reason code to identify the required operation, and pointer and size parameters
to identify data to be passed:

/*

fz_stream_meta: Perform a meta call on a stream (typically to

request meta information about a stream).

stm: The stream to query.

key: The meta request identifier.

size: Meta request specific parameter - typically the size of

the data block pointed to by ptr.

ptr: Meta request specific parameter - typically a pointer to

a block of data to be filled in.

Returns -1 if this stream does not support this meta operation,

or a meta operation specific return value.

*/

int fz_stream_meta(fz_context *ctx, fz_stream *stm, int key, int size,

void *ptr);

CHAPTER 12. THE STREAM INTERFACE 79

12.3.7 Destruction

In common with most other MuPDF objects, fz streams are reference counted.

As such additional references can be taken using fz keep stream and they can
be destroyed using fz drop stream.

Note that care must be taken not to use fz stream objects simultaneously in
more than one thread. Not only does the act of reading in one thread upset
the point at which the next read will happen in another thread, no protection
is provided to make operations atomic - thus the internal data can become
corrupted and cause crashes.

Chapter 13

The Output interface

13.1 Overview

In the same way as fz streams abstracts input streams, MuPDF uses a reusable
class, fz output, to abstract output streams.

13.2 Creation

The exact function to call to create an output stream depends on the specific
stream required, but they generally follow a similar format. Some common
examples are:

/*

fz_new_output_with_file: Open an output stream that writes to a

FILE *.

file: The file to write to.

close: non-zero if we should close the file when the fz_output

is closed.

*/

fz_output *fz_new_output_with_file_ptr(fz_context *ctx, FILE *file, int

close);

/*

fz_new_output_with_path: Open an output stream that writes to a

given path.

filename: The filename to write to (specified in UTF-8).

append: non-zero if we should append to the file, rather than

80

CHAPTER 13. THE OUTPUT INTERFACE 81

overwriting it.

*/

fz_output *fz_new_output_with_path(fz_context *, const char *filename,

int append);

/*

fz_new_output_with_buffer: Open an output stream that appends

to a buffer.

buf: The buffer to append to.

*/

fz_output *fz_new_output_with_buffer(fz_context *ctx, fz_buffer *buf);

One of the most common use cases is to get an output stream that goes to stdout
or stderr, and we provide convenience functions for exactly this. In addition we
allow the streams for stdout and stderr to be replaced by other fz outputs,
thus allowing redirection to be changed simply for any of our existing tools:

/*

fz_stdout: The standard out output stream. By default

this stream writes to stdout. This may be overridden

using fz_set_stdout.

*/

fz_output *fz_stdout(fz_context *ctx);

/*

fz_stderr: The standard error output stream. By default

this stream writes to stderr. This may be overridden

using fz_set_stderr.

*/

fz_output *fz_stderr(fz_context *ctx);

/*

fz_set_stdout: Replace default standard output stream

with a given stream.

out: The new stream to use.

*/

void fz_set_stdout(fz_context *ctx, fz_output *out);

/*

fz_set_stderr: Replace default standard error stream

with a given stream.

err: The new stream to use.

*/

void fz_set_stderr(fz_context *ctx, fz_output *err);

CHAPTER 13. THE OUTPUT INTERFACE 82

13.3 Usage

13.3.1 Writing bytes

Single bytes can be written to fz output streams using fz write byte:

/*

fz_write_byte: Write a single byte.

out: stream to write to.

x: value to write

*/

void fz_write_byte(fz_context *ctx, fz_output *out, unsigned char x);

Blocks of bytes can be written to fz output streams using fz write:

/*

fz_write: Write data to output. Designed to parallel

fwrite.

out: Output stream to write to.

data: Pointer to data to write.

size: Length of data to write.

*/

void fz_write(fz_context *ctx, fz_output *out, const void *data, size_t

size);

13.3.2 Writing objects

We have convenience functions for outputting 16 and 32bit integers in both big
and little endian forms:

/*

fz_write_int32_be: Write a big-endian 32-bit binary integer.

*/

void fz_write_int32_be(fz_context *ctx, fz_output *out, int x);

/*

fz_write_int32_le: Write a little-endian 32-bit binary integer.

*/

void fz_write_int32_le(fz_context *ctx, fz_output *out, int x);

/*

fz_write_int16_be: Write a big-endian 16-bit binary integer.

*/

void fz_write_int16_be(fz_context *ctx, fz_output *out, int x);

CHAPTER 13. THE OUTPUT INTERFACE 83

/*

fz_write_int16_le: Write a little-endian 16-bit binary integer.

*/

void fz_write_int16_le(fz_context *ctx, fz_output *out, int x);

And a function for outputting utf-8 encoded unicode characters:

/*

fz_write_rune: Write a UTF-8 encoded unicode character.

*/

void fz_write_rune(fz_context *ctx, fz_output *out, int rune);

13.3.3 Writing strings

To output printable strings, we have the simple fputc, fputs and fputrune

equivalents:

/*

fz_putc: fputc equivalent for output streams.

*/

#define fz_putc(C,O,B) fz_write_byte(C, O, B)

/*

fz_puts: fputs equivalent for output streams.

*/

#define fz_puts(C,O,S) fz_write(C, O, (S), strlen(S))

/*

fz_putrune: fputrune equivalent for output streams.

*/

#define fz_putrune(C,O,R) fz_write_rune(C, O, R)

We also provide a family of enhanced output functions, patterned after fprintf:

/*

fz_vsnprintf: Our customised vsnprintf routine.

Takes %c, %d, %o, %s, %u, %x, as usual.

Modifiers are not supported except for zero-padding

ints (e.g. %02d, %03o, %04x, etc).

%f and %g both output in "as short as possible hopefully lossless

non-exponent" form, see fz_ftoa for specifics.

%C outputs a utf8 encoded int.

%M outputs a fz_matrix*.

%R outputs a fz_rect*.

%P outputs a fz_point*.

%q and %(output escaped strings in C/PDF syntax.

%ll{d,u,x} indicates that the values are 64bit.

CHAPTER 13. THE OUTPUT INTERFACE 84

%z{d,u,x} indicates that the value is a size_t.

*/

size_t fz_vsnprintf(char *buffer, size_t space, const char *fmt, va_list

args);

/*

fz_snprintf: The non va_list equivalent of fz_vsnprintf.

*/

size_t fz_snprintf(char *buffer, size_t space, const char *fmt, ...);

/*

fz_printf: fprintf equivalent for output streams. See fz_snprintf.

*/

void fz_printf(fz_context *ctx, fz_output *out, const char *fmt, ...);

/*

fz_vprintf: vfprintf equivalent for output streams. See fz_vsnprintf.

*/

void fz_vprintf(fz_context *ctx, fz_output *out, const char *fmt,

va_list ap);

13.3.4 Seeking

As with fz streams, fz outputs normally move linearly, but in special cases,
can be seekable.

/*

fz_seek_output: Seek to the specified file position. See fseek

for arguments.

Throw an error on unseekable outputs.

*/

void fz_seek_output(fz_context *ctx, fz_output *out, fz_off_t off, int

whence);

Unlike fz streams, which support fz tell in all cases, fz outputs can only
fz tell output if they are seekable:

/*

fz_tell_output: Return the current file position. Throw an error

on unseekable outputs.

*/

fz_off_t fz_tell_output(fz_context *ctx, fz_output *out);

Chapter 14

Rendered Output Formats

14.1 Overview

MuPDFs built in renderer (see subsection 9.5.2 Draw Device) produces in-
memory arrays of contone values for areas of document pages. The MuPDF
library includes routines to be able to output these areas to a number of differ-
ent output formats.

Typically these devices all follow a similar pattern, enabling either full page or
banded rendering to be performed according to the requirements of the partic-
ular application.

For a given format XXX, there tend to be 3 functions defined:

void fz_save_pixmap_as_XXX(fz_context *ctx, fz_pixmap *pixmap, char

*filename);

void fz_write_pixmap_as_XXX(fz_context *ctx, fz_output *out, fz_pixmap

*pixmap);

fz_band_writer *fz_new_XXX_band_writer(fz_context *ctx, fz_output *out);

The first function outputs a pixmap to a utf-8 encoded filename as a XXX for-
matted file. If the pixmap is not in a suitable colorspace/alpha configuration,
then an exception will be thrown.

The second function does the same thing, but to a given fz output rather than
to a named file. The use of a fz output allows for writing to memory buffers,
or even potentially to encrypt or compress further as the write progresses.

The third function returns a fz band writer to do the same thing.

85

CHAPTER 14. RENDERED OUTPUT FORMATS 86

14.2 Band Writers

The purpose of the fz band writer mechanism is to allow banded render-
ing; rather than having to allocate a pixmap large enough to hold the entire
page at once, we instead render bands across the page and feed those to the
fz band writer which assembles them into a properly formed XXX format out-
put stream.

Typically a band writer is created using a call such as fz new png band writer:

/*

fz_new_png_band_writer: Obtain a fz_band_writer instance

for producing PNG output.

*/

fz_band_writer *fz_new_png_band_writer(fz_context *ctx, fz_output *out);

The page output starts by calling fz write header. This both configures the
band writer for the type of data that is being sent, and triggers the output of
the file header:

/*

fz_write_header: Cause a band writer to write the header for

a banded image with the given properties/dimensions etc. This

also configures the bandwriter for the format of the data to be

passed in future calls.

w, h: Width and Height of the entire page.

n: Number of components (including spots and alphas).

alpha: Number of alpha components.

xres, yres: X and Y resolutions in dpi.

pagenum: Page number

cs: Colorspace (NULL for bitmaps)

seps: Separation details (or NULL).

Throws exception if incompatible data format.

*/

void fz_write_header(fz_context *ctx, fz_band_writer *writer, int w, int

h, int n, int alpha, int xres, int yres, int pagenum, const

fz_colorspace *cs, fz_separations *seps);

This has the effect of setting the size and format of the data for the complete
image. The caller then proceeds to render the page in horizontal strips from the
top to the bottom, and pass them in to fz write band:

CHAPTER 14. RENDERED OUTPUT FORMATS 87

/*

fz_write_band: Cause a band writer to write the next band

of data for an image.

stride: The byte offset from the first byte of the data

for a pixel to the first byte of the data for the same pixel

on the row below.

band_height: The number of lines in this band.

samples: Pointer to first byte of the data.

*/

void fz_write_band(fz_context *ctx, fz_band_writer *writer, int stride,

int band_height, const unsigned char *samples);

The band writer keeps track of how much data has been written, and when an
entire page has been sent, it writes out any image trailer required.

For formats that can accommodate multiple pages, a new call to
fz write header will start the process again. Otherwise (or after the final
image), the band writer can be neatly discarded by calling:

void fz_drop_band_writer(fz_context *ctx, fz_band_writer *writer);

14.3 PNM

The simplest output format supported is that of PNM. The pixmap can be
greyscale, or RGB, with or without alpha (though the alpha plane is always
ignored on writing).

/*

fz_save_pixmap_as_pnm: Save a pixmap as a PNM image file.

*/

void fz_save_pixmap_as_pnm(fz_context *ctx, fz_pixmap *pixmap, char

*filename);

void fz_write_pixmap_as_pnm(fz_context *ctx, fz_output *out, fz_pixmap

*pixmap);

fz_band_writer *fz_new_pnm_band_writer(fz_context *ctx, fz_output *out);

14.4 PAM

Related to PNM we have PAM. The pixmap formats here can be greyscale, RGB
or CMYK, with or without alpha (and the alpha plane is written to the file).

CHAPTER 14. RENDERED OUTPUT FORMATS 88

The TUPLTYPE in the image header reflects the color and alpha configuration,
though not all readers support all variants.

/*

fz_save_pixmap_as_pam: Save a pixmap as a PAM image file.

*/

void fz_save_pixmap_as_pam(fz_context *ctx, fz_pixmap *pixmap, char

*filename);

void fz_write_pixmap_as_pam(fz_context *ctx, fz_output *out, fz_pixmap

*pixmap);

fz_band_writer *fz_new_pam_band_writer(fz_context *ctx, fz_output *out);

14.5 PBM

Bitmaps suitable for output to the PBM format are generated by drawing to
greyscale contone (with no alpha), and then halftoning down to monochrome.

/*

fz_save_bitmap_as_pbm: Save a bitmap as a PBM image file.

*/

void fz_save_bitmap_as_pbm(fz_context *ctx, fz_bitmap *bitmap, char

*filename);

void fz_write_bitmap_as_pbm(fz_context *ctx, fz_output *out, fz_bitmap

*bitmap);

fz_band_writer *fz_new_pbm_band_writer(fz_context *ctx, fz_output *out);

14.6 PKM

Bitmaps suitable for output to the PKM format are generated by drawing to
CMYK contone (with no alpha), and then halftoning down to give 1bpc cmyk.

/*

fz_save_bitmap_as_pkm: Save a 4bpp cmyk bitmap as a PAM image file.

*/

void fz_save_bitmap_as_pkm(fz_context *ctx, fz_bitmap *bitmap, char

*filename);

void fz_write_bitmap_as_pkm(fz_context *ctx, fz_output *out, fz_bitmap

*bitmap);

fz_band_writer *fz_new_pkm_band_writer(fz_context *ctx, fz_output *out);

CHAPTER 14. RENDERED OUTPUT FORMATS 89

14.7 PNG

The PNG format will accept either greyscale or RGB pixmaps, with or with-
out alpha. As a special case, alpha only pixmaps are accepted and written as
greyscale.

/*

fz_save_pixmap_as_png: Save a pixmap as a PNG image file.

*/

void fz_save_pixmap_as_png(fz_context *ctx, fz_pixmap *pixmap, const

char *filename);

/*

Write a pixmap to an output stream in PNG format.

*/

void fz_write_pixmap_as_png(fz_context *ctx, fz_output *out, const

fz_pixmap *pixmap);

/*

fz_new_png_band_writer: Obtain a fz_band_writer instance

for producing PNG output.

*/

fz_band_writer *fz_new_png_band_writer(fz_context *ctx, fz_output *out);

Because PNG is such a useful and widely used format, we have another cou-
ple of functions. These take either a fz image or a fz pixmap and produce a
fz buffer containing a PNG encoded version. This is very useful when con-
verting between document formats as we can frequently use a PNG version of
an image as a replacement for other image formats that may not be supported.

/*

Create a new buffer containing the image/pixmap in PNG format.

*/

fz_buffer *fz_new_buffer_from_image_as_png(fz_context *ctx, fz_image

*image);

fz_buffer *fz_new_buffer_from_pixmap_as_png(fz_context *ctx, fz_pixmap

*pixmap);

14.8 PSD

The PSD format is used by photoshop. It is especially useful as it allows the
inclusion of large numbers of spot colors, together with their ‘equivalent color’
information. This means it is the format of choice for outputting color correct
renders with spot colors and correct overprint processing. PSD files can be
written with grayscale, RGB or CMYK pixmaps, plus optional spots, with or
without alpha.

CHAPTER 14. RENDERED OUTPUT FORMATS 90

/*

fz_save_pixmap_as_psd: Save a pixmap as a PSD image file.

*/

void fz_save_pixmap_as_psd(fz_context *ctx, fz_pixmap *pixmap, const

char *filename);

/*

Write a pixmap to an output stream in PSD format.

*/

void fz_write_pixmap_as_psd(fz_context *ctx, fz_output *out, const

fz_pixmap *pixmap);

/*

fz_new_psd_band_writer: Obtain a fz_band_writer instance

for producing PSD output.

*/

fz_band_writer *fz_new_psd_band_writer(fz_context *ctx, fz_output *out);

14.9 PWG/CUPS

The PWG format is intended to encapsulate output for printers. As such there
are many values that can be set in the headers. To allow for this, we expose
these fields as an options structure that can be fed into the output functions.

typedef struct fz_pwg_options_s fz_pwg_options;

struct fz_pwg_options_s

{

/* These are not interpreted as CStrings by the writing code, but

* are rather copied directly out. */

char media_class[64];

char media_color[64];

char media_type[64];

char output_type[64];

unsigned int advance_distance;

int advance_media;

int collate;

int cut_media;

int duplex;

int insert_sheet;

int jog;

int leading_edge;

int manual_feed;

unsigned int media_position;

unsigned int media_weight;

int mirror_print;

int negative_print;

CHAPTER 14. RENDERED OUTPUT FORMATS 91

unsigned int num_copies;

int orientation;

int output_face_up;

unsigned int PageSize[2];

int separations;

int tray_switch;

int tumble;

int media_type_num;

int compression;

unsigned int row_count;

unsigned int row_feed;

unsigned int row_step;

/* These are not interpreted as CStrings by the writing code, but

* are rather copied directly out. */

char rendering_intent[64];

char page_size_name[64];

};

No documentation for these fields is given here - for more information see the
PWG specification.

There are 2 sets of output functions available for PWG, those that take
fz pixmaps (for contone output) and those that take fz bitmaps (for halftoned
output).

PWG files are structured as a header (to identify the format), followed by a
stream of pages (images). Those functions that save (or write) a complete file
include the file header as part of their output. If the option is used to append
to a file, then the header is not added, as we presume we are appending new
page information to the end of an existing file.

In circumstances when the header is not output automatically (such as when
using the band writer) the header output must be triggered manually, by calling:

/*

Output the file header to a pwg stream, ready for pages to follow it.

*/

void fz_write_pwg_file_header(fz_context *ctx, fz_output *out);

14.9.1 Contone

The PWG writer can accept pixmaps in greyscale, RGB and CMYK format,
with no alpha planes.

PWG files can be saved to a file using:

/*

CHAPTER 14. RENDERED OUTPUT FORMATS 92

fz_save_pixmap_as_pwg: Save a pixmap as a pwg

filename: The filename to save as (including extension).

append: If non-zero, then append a new page to existing file.

pwg: NULL, or a pointer to an options structure (initialised to zero

before being filled in, for future expansion).

*/

void fz_save_pixmap_as_pwg(fz_context *ctx, fz_pixmap *pixmap, char

*filename, int append, const fz_pwg_options *pwg);

The file header will only be sent in the case where we are not appending to an
existing file.

Alternatively, pages may be sent to an output stream. Two functions exist to
do this. The first always sends a complete PWG file (including header):

/*

Output a pixmap to an output stream as a pwg raster.

*/

void fz_write_pixmap_as_pwg(fz_context *ctx, fz_output *out, const

fz_pixmap *pixmap, const fz_pwg_options *pwg);

The second sends just the page data, and is therefore suitable for sending the
second or subsequent pages in a file. Alternatively, the header can be sent
manually, and then this function can be used for all the pages in a file.

/*

Output a page to a pwg stream to follow a header, or other pages.

*/

void fz_write_pixmap_as_pwg_page(fz_context *ctx, fz_output *out, const

fz_pixmap *pixmap, const fz_pwg_options *pwg);

Finally, a standard band writer can be used:

/*

fz_new_pwg_band_writer: Generate a new band writer for

contone PWG format images.

*/

fz_band_writer *fz_new_pwg_band_writer(fz_context *ctx, fz_output *out,

const fz_pwg_options *pwg);

In all cases, a NULL value can be sent for the fz pwg options field, in which
case default values will be used.

CHAPTER 14. RENDERED OUTPUT FORMATS 93

14.9.2 Mono

The monochrome version of the PWG writer parallels the contone one. It can
accept monochrome bitmaps only.

PWG files can be saved to a file using:

/*

fz_save_bitmap_as_pwg: Save a bitmap as a pwg

filename: The filename to save as (including extension).

append: If non-zero, then append a new page to existing file.

pwg: NULL, or a pointer to an options structure (initialised to zero

before being filled in, for future expansion).

*/

void fz_save_bitmap_as_pwg(fz_context *ctx, fz_bitmap *bitmap, char

*filename, int append, const fz_pwg_options *pwg);

The file header will only be sent in the case where we are not appending to an
existing file.

Alternatively, pages may be sent to an output stream. Two functions exist to
do this. The first always sends a complete PWG file (including header):

/*

Output a bitmap to an output stream as a pwg raster.

*/

void fz_write_bitmap_as_pwg(fz_context *ctx, fz_output *out, const

fz_bitmap *bitmap, const fz_pwg_options *pwg);

The second sends just the page data, and is therefore suitable for sending the
second or subsequent pages in a file. Alternatively, the header can be sent
manually, and then this function can be used for all the pages in a file.

/*

Output a bitmap page to a pwg stream to follow a header, or other

pages.

*/

void fz_write_bitmap_as_pwg_page(fz_context *ctx, fz_output *out, const

fz_bitmap *bitmap, const fz_pwg_options *pwg);

Finally, a standard band writer can be used:

/*

fz_new_mono_pwg_band_writer: Generate a new band writer for

PWG format images.

*/

CHAPTER 14. RENDERED OUTPUT FORMATS 94

fz_band_writer *fz_new_mono_pwg_band_writer(fz_context *ctx, fz_output

*out, const fz_pwg_options *pwg);

In all cases, a NULL value can be sent for the fz pwg options field, in which
case default values will be used.

14.10 TGA

The TGA writer can accept pixmaps in greyscale, RGB and BGR formats, with
and without alpha.

/*

fz_save_pixmap_as_tga: Save a pixmap as a TGA image file.

Can accept RGB, BGR or Grayscale pixmaps, with or without

alpha.

*/

void fz_save_pixmap_as_tga(fz_context *ctx, fz_pixmap *pixmap, const

char *filename);

/*

Write a pixmap to an output stream in TGA format.

Can accept RGB, BGR or Grayscale pixmaps, with or without

alpha.

*/

void fz_write_pixmap_as_tga(fz_context *ctx, fz_output *out, fz_pixmap

*pixmap);

/*

fz_new_tga_band_writer: Generate a new band writer for TGA

format images. Note that image must be generated vertically

flipped for use with this writer!

Can accept RGB, BGR or Grayscale pixmaps, with or without

alpha.

is_bgr: True, if the image is generated in bgr format.

*/

fz_band_writer *fz_new_tga_band_writer(fz_context *ctx, fz_output *out,

int is_bgr);

14.11 PCL

PCL is not a standard image format, rather it is a page description language for
printers. Unfortunately, the exact implementation of PCL varies from printer
to printer, so it can be necessary to tweak the output according to the exact
intended destination.

CHAPTER 14. RENDERED OUTPUT FORMATS 95

Accordingly, we have a pcl options structure to allow this to happen. To use
this, you simply define a pcl options structure on the stack:

pcl_options options = { 0 };

Next you populate those options. Typically this is done by requesting a preset
from our current defined set.

/*

fz_pcl_preset: Retrieve a set of fz_pcl_options suitable for a given

preset.

opts: pointer to options structure to populate.

preset: Preset to fetch. Currently defined presets include:

ljet4 HP DeskJet

dj500 HP DeskJet 500

fs600 Kyocera FS-600

lj HP LaserJet, HP LaserJet Plus

lj2 HP LaserJet IIp, HP LaserJet IId

lj3 HP LaserJet III

lj3d HP LaserJet IIId

lj4 HP LaserJet 4

lj4pl HP LaserJet 4 PL

lj4d HP LaserJet 4d

lp2563b HP 2563B line printer

oce9050 Oce 9050 Line printer

Throws exception on unknown preset.

*/

void fz_pcl_preset(fz_context *ctx, fz_pcl_options *opts, const char

*preset);

These options can then be tweaked further using fz pcl option:

/*

fz_pcl_option: Set a given PCL option to a given value in the

supplied options structure.

opts: The option structure to modify,

option: The option to change.

val: The value that the option should be set to. Acceptable ranges of

values depend on the option in question.

Throws an exception on attempt to set an unknown option, or an

illegal value.

CHAPTER 14. RENDERED OUTPUT FORMATS 96

Currently defined options/values are as follows:

spacing,0 No vertical spacing capability

spacing,1 PCL 3 spacing (<ESC>*p+<n>Y)

spacing,2 PCL 4 spacing (<ESC>*b<n>Y)

spacing,3 PCL 5 spacing (<ESC>*b<n>Y and clear seed

row)

mode2,0 or 1 Disable/Enable mode 2 graphics compression

mode3,0 or 1 Disable/Enable mode 3 graphics compression

mode3,0 or 1 Disable/Enable mode 3 graphics compression

eog_reset,0 or 1 End of graphics (<ESC>*rB) resets all

parameters

has_duplex,0 or 1 Duplex supported (<ESC>&l<duplex>S)

has_papersize,0 or 1 Papersize setting supported

(<ESC>&l<sizecode>A)

has_copies,0 or 1 Number of copies supported

(<ESC>&l<copies>X)

is_ljet4pjl,0 or 1 Disable/Enable HP 4PJL model-specific output

is_oce9050,0 or 1 Disable/Enable Oce 9050 model-specific

output

*/

void fz_pcl_option(fz_context *ctx, fz_pcl_options *opts, const char

*option, int val);

14.11.1 Color

Color PCL output can be generated from RGB pixmaps with alpha (though the
alpha is ignored) using:

void fz_save_pixmap_as_pcl(fz_context *ctx, fz_pixmap *pixmap, char

*filename, int append, const fz_pcl_options *pcl);

void fz_write_pixmap_as_pcl(fz_context *ctx, fz_output *out, const

fz_pixmap *pixmap, const fz_pcl_options *pcl);

fz_band_writer *fz_new_color_pcl_band_writer(fz_context *ctx, fz_output

*out, const fz_pcl_options *options);

This is 24bpp RGB output, relying on the printers ability to dither. Blank lines
are skipped, repeated lines are coded efficiently, and other lines are coded using
deltas. Nonetheless file sizes can still be large with this output method.

14.11.2 Mono

Monochrome PCL output can be generated from monochrome bitmaps. These
are generated by rendering to greyscale (no alpha) pixmaps and dithering down.
The functions in question are:

CHAPTER 14. RENDERED OUTPUT FORMATS 97

fz_band_writer *fz_new_mono_pcl_band_writer(fz_context *ctx, fz_output

*out, const fz_pcl_options *options);

void fz_write_bitmap_as_pcl(fz_context *ctx, fz_output *out, const

fz_bitmap *bitmap, const fz_pcl_options *pcl);

void fz_save_bitmap_as_pcl(fz_context *ctx, fz_bitmap *bitmap, char

*filename, int append, const fz_pcl_options *pcl);

14.12 Postscript

Postscript output is currently done as image output rather than high-level ob-
jects.

Pixmaps suitable for PS image output are greyscale, RGB or CMYK with no
alpha.

void fz_write_pixmap_as_ps(fz_context *ctx, fz_output *out, const

fz_pixmap *pixmap);

void fz_save_pixmap_as_ps(fz_context *ctx, fz_pixmap *pixmap, char

*filename, int append);

fz_band_writer *fz_new_ps_band_writer(fz_context *ctx, fz_output *out);

Postscript requires file level headers and trailers, over and above that produced
by the band writer itself. These can be generated using the following functions:

void fz_write_ps_file_header(fz_context *ctx, fz_output *out);

void fz_write_ps_file_trailer(fz_context *ctx, fz_output *out, int

pages);

These are not generated by the band writer itself to allow a single output stream
to be generated containing many pages, but a single file header and trailer.

Chapter 15

The Document Writer
interface

15.1 Usage

As well as opening existing documents, MuPDF contains functions to allow the
easy creation of new documents. The most general form of this functionality
takes the form of the fz document writer interface.

A document writer is obtained by calling a generation function. The most
general purpose one is:

/*

fz_new_document_writer: Create a new fz_document_writer, for a

file of the given type.

path: The document name to write (or NULL for default)

format: Which format to write (currently cbz, pdf, pam, pbm,

pgm, pkm, png, ppm, pnm, svg, tga)

options: NULL, or pointer to comma separated string to control

file generation.

*/

fz_document_writer *fz_new_document_writer(fz_context *ctx, const char

*path, const char *format, const char *options);

Alternatively, direct calls to generate specific document writers can be used,
such as:

fz_document_writer *fz_new_cbz_writer(fz_context *ctx, const char *path,

const char *options);

98

CHAPTER 15. THE DOCUMENT WRITER INTERFACE 99

fz_document_writer *fz_new_pdf_writer(fz_context *ctx, const char *path,

const char *options);

fz_document_writer *fz_new_svg_writer(fz_context *ctx, const char *path,

const char *options);

fz_document_writer *fz_new_png_pixmap_writer(fz_context *ctx, const char

*path, const char *options);

fz_document_writer *fz_new_tga_pixmap_writer(fz_context *ctx, const char

*path, const char *options);

fz_document_writer *fz_new_pam_pixmap_writer(fz_context *ctx, const char

*path, const char *options);

fz_document_writer *fz_new_pnm_pixmap_writer(fz_context *ctx, const char

*path, const char *options);

fz_document_writer *fz_new_pgm_pixmap_writer(fz_context *ctx, const char

*path, const char *options);

fz_document_writer *fz_new_ppm_pixmap_writer(fz_context *ctx, const char

*path, const char *options);

fz_document_writer *fz_new_pbm_pixmap_writer(fz_context *ctx, const char

*path, const char *options);

fz_document_writer *fz_new_pkm_pixmap_writer(fz_context *ctx, const char

*path, const char *options);

Once a fz document writer has been created, pages can be written to the
document one at a time. The process is started by calling fz begin page:

/*

fz_begin_page: Called to start the process of writing a page to

a document.

mediabox: page size rectangle in points.

Returns a fz_device to write page contents to.

*/

fz_device *fz_begin_page(fz_context *ctx, fz_document_writer *wri, const

fz_rect *mediabox);

This function returns a fz device pointer that should be used to write the
page contents to. This can be done by making a sequence of normal device calls
(see chapter 9 The Device interface) to paint the page with its content. One
of the most common ways of doing this is by calling fz run page contents on
another open document. This therefore offers a quick mechanism for converting
documents from one format to another.

Once the page contents have all been written, the page is finalized by calling
fz end page:

/*

fz_end_page: Called to end the process of writing a page to a

document.

*/

CHAPTER 15. THE DOCUMENT WRITER INTERFACE 100

void fz_end_page(fz_context *ctx, fz_document_writer *wri);

At this point, many formats will allow more pages to be written, simply by
repeating the fz begin page, output, fz end page loop.

When all the pages have been written, the produced document can be finalized
by calling fz close document writer:

/*

fz_close_document_writer: Called to end the process of writing

pages to a document.

This writes any file level trailers required. After this

completes successfully the file is up to date and complete.

*/

void fz_close_document_writer(fz_context *ctx, fz_document_writer *wri);

Finally, the document writer itself can be freed in the usual fashion by calling
fz drop document writer:

/*

fz_drop_document_writer: Called to discard a fz_document_writer.

This may be called at any time during the process to release all

the resources owned by the writer.

Calling drop without having previously called drop may leave

the file in an inconsistent state.

*/

void fz_drop_document_writer(fz_context *ctx, fz_document_writer *wri);

15.2 Implementation

Support for a new type of document writer requires a new structure, derived
from fz document writer:

typedef struct

{

fz_document_writer_begin_page_fn *begin_page;

fz_document_writer_end_page_fn *end_page;

fz_document_writer_close_writer_fn *close_writer;

fz_document_writer_drop_writer_fn *drop_writer;

fz_device *dev;

} fz_document_writer;

For instance:

typedef struct

{

CHAPTER 15. THE DOCUMENT WRITER INTERFACE 101

fz_document_writer super;

<foo specific fields>

} foo_document_writer;

A generator function should be defined to return such an instance, perhaps:

fz_document_writer *fz_new_foo_document_writer(fz_context *ctx, const

char *path, <foo specific params>) {

foo_document_writer *foo = fz_new_derived_document_writer(ctx,

foo_document_writer, foo_begin_page, foo_end_page, foo_close,

foo_drop);

<initialise foo specific fields>

return &foo->super;

}

This uses a friendly macro that allocates a structure of the required size, ini-
tialises the function pointers as required, and zeroes the extra values in the
structure.

/*

fz_new_document_writer_of_size: Internal function to allocate a

block for a derived document_writer structure, with the base

structure’s function pointers populated correctly, and the extra

space zero initialised.

*/

fz_document_writer *fz_new_document_writer_of_size(fz_context *ctx,

size_t size, fz_document_writer_begin_page_fn *begin_page,

fz_document_writer_end_page_fn *end_page,

fz_document_writer_close_writer_fn *close,

fz_document_writer_drop_writer_fn *drop);

#define fz_new_derived_document_writer(CTX,TYPE,

BEGIN_PAGE,END_PAGE,CLOSE,DROP)\

((TYPE *)Memento_label(\

fz_new_document_writer_of_size(CTX,sizeof(TYPE),\

BEGIN_PAGE,END_PAGE,\

CLOSE,DROP),#TYPE))

The actual work for the document writer is done in the functions that are
passed to fz new derived document writer. In the example above these were
foo begin page, foo end page, foo close, and foo drop. These have the fol-
lowing 4 types respectively.

/*

fz_document_writer_begin_page_fn: Function type to start

the process of writing a page to a document.

CHAPTER 15. THE DOCUMENT WRITER INTERFACE 102

mediabox: page size rectangle in points.

Returns a fz_device to write page contents to.

*/

typedef fz_device *(fz_document_writer_begin_page_fn)(fz_context *ctx,

fz_document_writer *wri, const fz_rect *mediabox);

/*

fz_document_writer_end_page_fn: Function type to end the

process of writing a page to a document.

dev: The device created by the begin_page function.

*/

typedef void (fz_document_writer_end_page_fn)(fz_context *ctx,

fz_document_writer *wri, fz_device *dev);

/*

fz_document_writer_close_writer_fn: Function type to end

the process of writing pages to a document.

This writes any file level trailers required. After this

completes successfully the file is up to date and complete.

*/

typedef void (fz_document_writer_close_writer_fn)(fz_context *ctx,

fz_document_writer *wri);

/*

fz_document_writer_drop_writer_fn: Function type to discard

an fz_document_writer. This may be called at any time during

the process to release all the resources owned by the writer.

Calling drop without having previously called close may leave

the file in an inconsistent state.

*/

typedef void (fz_document_writer_drop_writer_fn)(fz_context *ctx,

fz_document_writer *wri);

Once defined, if this is intended to be a generally useful document writer, it
should probably be hooked into fz new document writer, where it can be se-
lected by appropriate format and options strings.

Chapter 16

Stories

16.1 Overview

Stories provide a way to easily layout styled content for use with devices, such
as those offered by Document Writers (see chapter 15 The Document Writer
interface).

The concept of a story comes from desktop publishing, which in turn (I believe)
gets it from newspapers. If you consider a traditional newspaper layout, it will
consist of various news articles (stories) that are laid out into multiple columns,
possibly across multiple pages.

Accordingly, MuPDF uses a story to represent a flow of text with styling in-
formation. The user of the story can then supply a sequence of rectangles into
which the story will be laid out, and the positioned text can then be drawn to
an output device. This keeps the concept of the text itself (the story) to be
separated from the areas into which the text should be flowed (the layout).

Anyone who has ever tried to put together such a document will spot a problem
here; you can’t know how exactly how much space is going to be required for
a given story without trying to lay it out, and thus you can’t be sure your
proposed layout is perfect without having tried it at least once.

Accordingly, MuPDF allows stories to be positioned multiple times with differ-
ent layouts, and will feed back information about how much of each rectangle
has been used so the caller can refine the layout and try again.

If this all sounds complex, don’t worry. It’s really quite simple, and many
applications will never need to worry about much of it.

103

CHAPTER 16. STORIES 104

16.1.1 Styled Text

So, stories are to be created from styled text. Clearly we’ll want to allow for
common constructs such as as headings, paragraphs and lists, and we’ll want to
have ways to specify styles like fonts, colours, text alignment and spacing.

Rather than reinventing the wheel and coming up with our own custom lan-
guage to specify styled text, MuPDF uses HTML. It has the benefit of being
well understood, well documented, and well-provided with a range of tutorials.
Almost every programmer will have a least a rudimentary understanding of the
basics of HTML.

The HTML engine in MuPDF is very simple; basically HTML4 with CSS2.
Javascript is not supported, nor is absolute positioning of content. Table support
is present, but rudimentary at the current time. Think of HTML as being simple
styled content, and you won’t go far wrong.

Consequently, stories are created from a block of HTML with an optional block
of CSS.

16.1.2 Programmatic content

Another common use case for stories is where content is generated by a pro-
gram; perhaps pulling information from a database and laying it out for human
reading.

As an example, consider that we are generating a receipt for a list of purchases.
The story content might be a list with an item for each of the things purchased.

The caller could construct an HTML document textually, but this can be time
consuming, awkward and error prone. In the world of the web, such document
manipulations would generally be done using the HTML DOM.

Accordingly, once a story has been created, the user can retrieve a pointer to a
DOM-like view on the document. This allows sections of the document to be
searched for, cloned, edited, rewritten, and otherwise manipulated.

This DOM-like view persists until the first layout call (or until the warnings are
retrieved for the document), at which point the story content is fixed.

16.1.3 Life cycle

The typical life cycle for a story is as follows:

1. Create a story.

2. Optionally: Get the DOM pointer for that story and manipulate the doc-
ument content with it.

3. Optionally: Get the warnings associated with parsing the story.

CHAPTER 16. STORIES 105

4. Place the story into a rectangle. This returns the bounds of the content
that fitted, and whether there is more that didn’t fit.

5. If the fit wasn’t good enough, the caller can repeat step 4 multiple times
until they are happy.

6. Draw the laid out chunk of story to the output device (which can be
NULL).

7. If stage 4 said there was more content still to be fitted, then the caller
can jump back to stage 4 to lay out the rest of the story, automatically
continuing where the previous attempt to place the story left off.

8. At any point during this process, the caller can reset the story and jump
back to stage 3 to start placing the story from the start again. This
allows ’dry runs’ to take place with a dummy (null) output device where
the number/size/positions of rectangles can be tweaked until the caller is
happy with the result.

9. Finally, the story is dropped.

16.2 Creating a story

A story is represented as usual by a fz story structure:

typedef struct fz_story_s fz_story;

These are created from a buffer containing utf-8 encoded HTML, an optional
C-string containing any CSS styling required, and the default ’em’ size to use
for the text.

/*

Create a text story using styled html.

*/

fz_story *fz_new_story(fz_context *ctx, fz_buffer *buf, const char

*user_css, float em, fz_archive *archive);

Passing a NULL buffer will be treated as an empty document. This may be
useful for creating empty stories that can be added to using the DOM.

The user css string allows extra CSS definitions to be supplied over and above
the default CSS built into MuPDF. Again, NULL can be used to indicate the
empty string.

See section 16.10 Styling stories for notes on recommended styles to use.

The archive pointer is used as a source for loading data for any images and fonts
that may be referenced in the document. For simple HTML documents that
use only inbuilt fonts and no images (or images that use data: URLs) then this
can be NULL.

CHAPTER 16. STORIES 106

See chapter 17 Archives for more details.

If a non-NULL pointer is passed in, the caller retains its reference, and hence
must still call fz drop archive. This can happen at any point after calling
fz new story() as a reference to the archive will be taken to ensure the under-
lying story is not freed until the story has finished with it.

16.3 Document manipulations

Once created, the HTML can be programmatically manipulated using a DOM.
The first step is to get a fz xml pointer to the top node of the document:

/*

Get a borrowed reference to the DOM document pointer for this

story. Do not destroy this reference, it will be destroyed

on the first call to fz_place_story or fz_story_warnings.

*/

fz_xml *fz_story_document(fz_context *ctx, fz_story *story);

16.3.1 Node contents

Every node in the DOM can either be a tagged node, or a text node. Only
tagged nodes can have attributes (see subsection 16.3.7 Node attributes) and
children.

To find out which, call:

/**

Return tag of XML node. Return NULL for text nodes.

*/

char *fz_xml_tag(fz_xml *item);

This returns a pointer to borrowed memory - do not free it.

If that returns NULL then it is a text node. The textual content for a node can
be retrieved using:

/**

Return the text content of an XML node.

Return NULL if the node is a tag.

*/

char *fz_xml_text(fz_xml *item);

Again the pointer returned is to borrowed memory - do not free it.

CHAPTER 16. STORIES 107

16.3.2 Navigation

Armed with that document pointer, we can navigate around the xml nodes that
make up the structure of the document. The most basic operations are:

/**

Return a borrowed reference to the first child of a node,

or NULL if there isn’t one.

*/

fz_xml *fz_dom_first_child(fz_context *ctx, fz_xml *elt);

/**

Return a borrowed reference to the parent of a node,

or NULL if there isn’t one.

*/

fz_xml *fz_dom_parent(fz_context *ctx, fz_xml *elt);

/**

Return a borrowed reference to the next sibling of a node,

or NULL if there isn’t one.

*/

fz_xml *fz_dom_next(fz_context *ctx, fz_xml *elt);

/**

Return a borrowed reference to the previous sibling of a node,

or NULL if there isn’t one.

*/

fz_xml *fz_dom_previous(fz_context *ctx, fz_xml *elt);

Each of these will return NULL if there is no such node. Note that the pointers
returned from each of these are borrowed references, so should not be dropped.
Their lifespan is the same as that of the original document pointer (i.e. they are
guaranteed to exist only until the warnings are retrieved, or the first placement
operation is attempted).

Note that only tagged nodes have children; attempting to ask for the first child
of a text node will always return NULL.

If you intend to walk the xml tree using these, it is generally best to start at
a known position. The most useful node (other than the top level document
pointer itself) is the node that represents the BODY tag from the HTML. This
can be retrieved using:

/**

Return a borrowed reference for the ’body’ element of

the given DOM.

*/

fz_xml *fz_dom_body(fz_context *ctx, fz_xml *dom);

CHAPTER 16. STORIES 108

16.3.3 Searching

While manually walking the tree may be acceptable for many applications, as
documents grow in complexity this can be a time consuming business. Accord-
ingly, we can also traverse the tree by searching for matching nodes. There are
various sets of functions for such searches depending on exactly where you want
to search.

The first, and simplest set of functions allow you to search the siblings of a node
looking for specific tags:

/**

Search the siblings of XML nodes starting with item looking for

the first with the given tag.

Return NULL if none found.

*/

fz_xml *fz_xml_find(fz_xml *item, const char *tag);

Once you have found such a tag, the following call can be used to find second
(and subsequent) matches:

/**

Search the siblings of XML nodes starting with the first sibling

of item looking for the first with the given tag.

Return NULL if none found.

*/

fz_xml *fz_xml_find_next(fz_xml *item, const char *tag);

The final function in this set is a convenience wrapper for starting the search
from the first child of a node.

/**

Search the siblings of XML nodes starting with the first child

of item looking for the first with the given tag.

Return NULL if none found.

*/

fz_xml *fz_xml_find_down(fz_xml *item, const char *tag);

The next set of search functions perform the same 3 tasks as the above ones, but
with the ability to search for nodes with matching attributes. If tag is NULL
then all nodes will be considered, otherwise the search will be restricted to only
nodes with matching tags.

/**

Search the siblings of XML nodes starting with item looking for

the first with the given tag (or any tag if tag is NULL), and

CHAPTER 16. STORIES 109

with a matching attribute.

Return NULL if none found.

*/

fz_xml *fz_xml_find_match(fz_xml *item, const char *tag, const char

*att, const char *match);

/**

Search the siblings of XML nodes starting with the first sibling

of item looking for the first with the given tag (or any tag if tag

is NULL), and with a matching attribute.

Return NULL if none found.

*/

fz_xml *fz_xml_find_next_match(fz_xml *item, const char *tag, const char

*att, const char *match);

/**

Search the siblings of XML nodes starting with the first child

of item looking for the first with the given tag (or any tag if

tag is NULL), and with a matching attribute.

Return NULL if none found.

*/

fz_xml *fz_xml_find_down_match(fz_xml *item, const char *tag, const char

*att, const char *match);

Both of those sets of functions search fairly restricted areas of a document.
The final set is much more broad ranging, allowing the whole document to be
searched for matches at all levels.

/**

Perform a depth first search from item, returning the first

child that matches the given tag (or any tag if tag is NULL),

with the given attribute (if att is non NULL), that matches

match (if match is non NULL).

*/

fz_xml *fz_xml_find_dfs(fz_xml *item, const char *tag, const char *att,

const char *match);

/**

Perform a depth first search onwards from item, returning the first

child that matches the given tag (or any tag if tag is NULL),

with the given attribute (if att is non NULL), that matches

match (if match is non NULL).

*/

fz_xml *fz_xml_find_next_dfs(fz_xml *item, const char *tag, const char

*att, const char *match);

CHAPTER 16. STORIES 110

This is the Swiss Army Knife of search functions. Firstly, either all tags to
be searched, or just specific ones, based upon the value of tag. Secondly, the
results can be limited to nodes that have a given attribute based upon the value
of att. Finally, in the event that a node has the requested attribute, we can
choose to limit the results to only those nodes where the attribute value matches
match.

These functions follow a depth first traversal of the tree, meaning that the chil-
dren of a node will be considered before the nodes successor siblings. Also, in the
event that a match is not found in any of the initial nodes children, or siblings,
the search will contine with its ancestor nodes (and their siblings/children) too.

The simple way to understand this is to think that if you call fz xml find dfs

on the root node of a document, and then call fz xml find next dfs repeatedly
on all matches until it returns NULL you will have checked the entire document
for matches.

16.3.4 Modifying the structure

Nodes within the XML tree can either be nodes with a tag, or simple text nodes.
These, respectively, are created by using the following functions:

/**

Create an element of a given tag type for the given DOM.

The element is not linked into the DOM yet.

*/

fz_xml *fz_dom_create_element(fz_context *ctx, fz_xml *dom, const char

*tag);

/**

Create a text node for the given DOM.

The element is not linked into the DOM yet.

*/

fz_xml *fz_dom_create_text_node(fz_context *ctx, fz_xml *dom, const char

*text);

The result of both of these is a pointer to a new node that is not yet linked into
the DOM. Such nodes will not have any effect on the document until they are
inserted using one of the following self-explanatory functions:

/**

Insert an element as the last child of a parent, unlinking the

child from its current position if required.

*/

void fz_dom_append_child(fz_context *ctx, fz_xml *parent, fz_xml *child);

/**

CHAPTER 16. STORIES 111

Insert an element (new_elt), before another element (node),

unlinking the new_elt from its current position if required.

*/

void fz_dom_insert_before(fz_context *ctx, fz_xml *node, fz_xml

*new_elt);

/**

Insert an element (new_elt), after another element (node),

unlinking the new_elt from its current position if required.

*/

void fz_dom_insert_after(fz_context *ctx, fz_xml *node, fz_xml *new_elt);

It is worth noting that every node in the DOM can appear just once in the DOM.
This means that if you navigate through the document to find a node, node1,
say, and you then use one of these insertion functions to put node1 somewhere
else within the document, it (and all its children) will implicitly be unlinked
from its old position first.

16.3.5 Cloning a node

Sometimes it can be very useful to be able to copy a node and all its children.
The following function allows exactly this:

/**

Clone an element (and its children).

A borrowed reference to the clone is returned. The clone is not

yet linked into the DOM.

*/

fz_xml *fz_dom_clone(fz_context *ctx, fz_xml *elt);

For instance, a document might be created with a ’template’ entry in it. This
could be found using fz xml find dfs, and then that template could be cloned.
This returns a complete subtree rooted at the cloned node, initially disjoint from
the document itself.

More ’find’ operations can be carried out within this tree, where different nodes
can be located and rewritten to convert the clone of the template to being a
fully fleshed-out instance.

Then this tree can be inserted into the document as a whole.

An example of constructing a document and filling it out using templates can
be seen in docs/examples/storytest.c

16.3.6 Deletion

Finally, nodes can be removed from the document using:

CHAPTER 16. STORIES 112

/**

Remove an element from the DOM. The element can be added back

elsewhere

if required.

No reference counting changes for the element.

*/

void fz_dom_remove(fz_context *ctx, fz_xml *elt);

The node is not actually deleted (i.e. it remains valid) and can be reinserted.
The storage used for the node will be retrieved when the XML tree as a whole
is removed on the first call to either fz story warnings or fz place story.

To continue the example from the previous subsection, a typical use of this
might be to delete the template node from the document after we have cloned
it enough times.

16.3.7 Node attributes

Every (non-text) XML node can have a set of attributes. Each attribute is a
key/value pair, with both key and values being strings. Each key is guaranteed
to be unique for that given node.

If you are looking for a particular attribute you can query it directly, using:

/**

Retrieve the value of a given attribute from a given element.

Returns a borrowed pointer to the value or NULL if not found.

*/

const char *fz_dom_attribute(fz_context *ctx, fz_xml *elt, const char

*att);

Alternatively, if you want to know all the attributes that a given node has, you
can enumerate them by repeatedly calling:

/**

Enumerate through the attributes of an element.

Call with i=0,1,2,3... to enumerate attributes.

On return *att and the return value will be NULL if there are not

that many attributes to read. Otherwise, *att will be filled in

with a borrowed pointer to the attribute name, and the return

value will be a borrowed pointer to the value.

*/

const char *fz_dom_get_attribute(fz_context *ctx, fz_xml *elt, int i,

const char **att);

CHAPTER 16. STORIES 113

It is worth noting that attributes are not ordered in any particular way.

An attribute can be added (or changed) for a node using:

/**

Add an attribute to an element.

Ownership of att and value remain with the caller.

*/

void fz_dom_add_attribute(fz_context *ctx, fz_xml *elt, const char *att,

const char *value);

And finally, an attribute can be removed from a node using:

/**

Remove an attribute from an element.

*/

void fz_dom_remove_attribute(fz_context *ctx, fz_xml *elt, const char

*att);

16.4 Parsing warnings

As a convenience, we provide a way to retrieve a string full of any warnings that
might be given as we parse the HTML and CSS. This is entirely optional.

/*

Retrieve the warnings given from parsing this story.

If there are warnings, this will be returned as a NULL terminated

C string. If there are no warnings, this will return NULL.

These warnings will not be complete until AFTER any DOM manipulations

have been completed.

This function does not need to be called, but once it has been

the DOM is no longer accessible, and any fz_xml pointer

retrieved from fz_story_docment is no longer valid.

*/

const char *fz_story_warnings(fz_context *ctx, fz_story *story);

Because the document manipulation stage can change the CSS embedded within
the document (in terms of inline styles), we can only retrieve the warnings after
such manipulation is complete.

If the function returns NULL, then no warnings were generated.

If your program is taking user supplied HTML/CSS, then displaying these warn-
ings would seem sensible given MuPDFs limitations in terms of features sup-

CHAPTER 16. STORIES 114

ported. In common with HTML consumers the world over, the fact that no
warnings are given should not be taken as a guarantee that the HTML will not
have problems!

16.5 Placing the story

As well as the textual content, stories notionally contain a ’current point’. This
is the position within the story where the next placement attempt will start
from. When first created this current point is set to the start of the story.

Callers should then figure out the first rectangle into which the story should be
placed, and pass that into the following:

/*

Place (or continue placing) a story into the supplied rectangle

’where’, updating ’filled’ with the actual area that was used.

Returns zero if all the content fitted, non-zero if there is

more to fit.

Note, that filled may not be returned as a strict subset of

where, due to padding/margins at the bottom of pages, and

non-wrapping content extending to the right.

Subsequent calls will attempt to place the same section of story

again and again, until the placed story is drawn using fz_draw_story,

whereupon subsequent calls to fz_place_story will attempt to place

the unused remainder of the story.

After this function is called, the DOM is no longer accessible,

and any fz_xml pointer retrieved from fz_story_document is no

longer valid.

*/

int fz_place_story(fz_context *ctx, fz_story *story, fz_rect where,

fz_rect *filled);

The return value tells you whether there is ’more’ still to lay out, and the
rectangle returned within filled tells you how much space was actually used.

Generally the filled rectangle should be a subset of the rectangle passed in, but
this may not always be the case. Callers may want to place a clip box around
the draw call if this is a problem.

After consulting the filled box, the caller can choose to retry with different boxes
by just calling the function again (as many times as required). Each placement
attempt will place the same content again (starting at the current point).

When the caller is happy, they simply continue to next stage.

CHAPTER 16. STORIES 115

16.6 Inspecting the placed story

In some cases, the caller may wish to inspect the positions at which different
elements have been laid out.

The classic example of this would be where a large story is being laid out over
multiple pages - perhaps the complete text of a book. In order to generate
a table of contents for the book, the caller would like to know whereabouts
chapters, sections and subsections start. Clearly this cannot be know until the
story has been placed.

Accordingly, we offer a function to enumerate the positions of different elements
placed in the last call to fz place story:

/*

Enumerate the positions for key blocks in the story.

This will cause the supplied function to be called with details of

each

element in the story that is either a header, or has an id.

*/

void fz_story_positions(fz_context *ctx, fz_story *story,

fz_story_position_callback *cb, void *arg);

This function takes a callback function as a parameter, and calls that for every
’interesting’ element placed by the most recent call to fz place story. An
element is currently deemed to be interesting if it is either a heading, or has an
id attribute. This definition may be extended to other elements in future.

The callback is provided both with the argument passed to fz story positions

and with the pointer to a structure filled with information:

typedef struct

{

/* The overall depth of this element in the box structure.

* This can be used to compare the relative depths of different

* elements, but shouldn’t be relied upon not to change between

* different versions of MuPDF. */

int depth;

/* The heading level of this element. 0 if not a header, or 1-6 for

h1-h6. */

int heading;

/* The id for this element. */

const char *id;

/* The rectangle for this element. */

fz_rect rect;

CHAPTER 16. STORIES 116

/* The immediate text for this element. */

const char *text;

/* This indicates whether this opens and/or closes this element.

*

* As we traverse the tree we do a depth first search. In order for

* the caller of fz_story_positions to know whether a given element

* is inside another element, we therefore announce ’start’ and

’stop’

* for each element. For instance, with:

*

* <div id="part1">

* <h1>Chapter 1</h1>...

* <h1>Chapter 2</h1>...

* ...

* </div>

* <div id="part2">

* <h1>Chapter 10</h1>...

* <h1>Chapter 11</h1>...

* ...

* </div>

*

* We would announce:

* + id=’part1’ (open)

* + header=1 "Chapter 1" (open/close)

* + header=1 "Chapter 2" (open/close)

* ...

* + id=’part1’ (close)

* + id=’part2’ (open)

* + header=1 "Chapter 10" (open/close)

* + header=1 "Chapter 11" (open/close)

* ...

* + id=’part2’ (close)

*

* If bit 0 is set, then this ’opens’ the element.

* If bit 1 is set, then this ’closes’ the element.

*/

int open_close;

/* A count of the number of rectangles that the layout code has

split the

* story into so far. After the first layout, this will be 1. If a

* layout is repeated, this number is not incremented. */

int rectangle_num;

} fz_story_element_position;

typedef void (fz_story_position_callback)(fz_context *ctx, void *arg,

const fz_story_element_position *);

CHAPTER 16. STORIES 117

The different entries in the fz story element position are worthy of discus-
sion.

depth is a simple numerical count of the number of layers down the heirarchy
this element is. The exact meaning of this may change in future, dependent as
it is on the way that the HTML parser behaves, but it should suffice in simple
comparisons to spot whether elements are at the same level or not.

If an element is a heading (from a h1..h6 tag) then heading will be set to the
appropriate value (1 to 6), otherwise it will be zero.

If an element has an id attribute then id will be a pointer to a null terminated
string with the id in it. If not, it will be NULL. Ownership of this string remains
with MuPDF - do not free it, or rely on it being valid beyond the life of the
callback.

The element bounds are given in rect.

If an element immediately contains any text, this will be collated into a string
and a pointer returned to it in text. Again, ownership of this string remains
with MuPDF - do not free it, or rely on it being valid beyond the life of the
callback.

The open close field is perhaps less immediately obvious, and is best explained
with the help of an example.

The laid out structure is a heirarchical one, with elements that may encapsulate
other elements. Consider the layout created by the following HTML fragment.

<div id="part1">

<h1>Chapter 1</h1>

...

<h1>Chapter 2</h1>

...

</div>

<div id="part2">

<h1>Chapter 6</h1>

...

<h1>Chapter 7</h1>

...

</div>

The headings for Chapter 1 and 2 are contained within the div with
id="part1", so to indicate this nesting we perform the callbacks as follows:

� id=”part1” open close=1

� header=1 text=”Chapter 1” open close=1

� header=1 text=”Chapter 1” open close=2

� header=1 text=”Chapter 2” open close=1

CHAPTER 16. STORIES 118

� header=1 text=”Chapter 2” open close=2

� ...

� id=”part1” open close=2

� id=”part2” open close=1

� header=1 text=”Chapter 6” open close=1

� header=1 text=”Chapter 6” open close=2

� header=1 text=”Chapter 7” open close=1

� header=1 text=”Chapter 7” open close=2

� ...

� id=”part2” open close=2

The best way to understand this is to consider the nodes of the tree in the order
in which they would be visited during a depth first traversal. When a node is
visited and found to be ’interesting’, we send a callback for it, with bit 0 of
open close set. This indicates that this node is ’opening’.

We then continue to traverse all its children, performing the callbacks for them as
required. Before we pass onto our next sibling (or our parent, as appropriate),
we perform another callback, this time with bit 1 of open close set. This
indicates that the node is ’closing’.

Thus any callbacks that happen between the ’opening’ of a node and the ’closing’
of it are known to be nested within it.

Note that in future, MuPDF may make callbacks with both bits 0 and 1 set at
the same time (to indicate that a node has no children).

Similarly, future versions of MuPDF may define more bits within open close,
so care should be taken to test bitwise, rather than just for the value as a
whole. Finally, such future versions of MuPDF may make calls on a node that
are neither opens or closes, so callers should cope with neither bit 0 or 1 being
set.

The caller is free to make as many calls to fz story positions as they want
to (including none!). Once finished they can either return to the placing stage
(perhaps to modify the placement rectangle based upon information gathered
from the callbacks), or they can proceed to draw the placed content.

16.7 Drawing the placed story

After having successfully placed (some of) the story into a rectangle, the next
stage is to draw that content out. This is done by calling:

CHAPTER 16. STORIES 119

/*

Draw the placed story to the given device.

This moves the point at which subsequent calls to fz_place_story

will restart placing to the end of what has just been output.

*/

void fz_draw_story(fz_context *ctx, fz_html_story *story, fz_device

*dev, fz_matrix ctm);

If this is just a dry run to evaluate the complete layout, dev can be passed as
NULL to avoid any drawing actually being done.

This call moves the story’s current point to be the furthest point within the
story that was successfully placed.

Typically a caller would consult the ’more’ value returned from the
fz place story call at this point. If non-zero (more content remains to be
placed), the caller would return to call fz place story again.

Eventually, when all the story has been placed and drawn, they simply continue
to the next stage.

16.8 Resetting the story

Some callers may wish to do a complete ’dry-run’ of the placement/drawing
process, perhaps using a NULL device to swallow the output. If so, then at this
point (or indeed at any point during the placement/drawing process), they can
reset the current point to the start of the document by simply calling:

/*

Reset the position within the story at which the next layout call

will continue to the start of the story.

*/

void fz_reset_story(fz_context *ctx, fz_story *story);

Once this is called the placement/drawing process can be restarted anew.

16.9 Dropping the story

Once a caller is finished with a story, it should be dropped in the usual way:

/*

Drop the story.

*/

void fz_drop_story(fz_context *ctx, fz_story *story);

CHAPTER 16. STORIES 120

16.10 Styling stories

The PDF engine in MuPDF supports styling both with inline styles, and with
cascading style sheets. It should be noted that our CSS only supports CSS2
selectors, not the enhanced selectors available in CSS3.

Similarly, our styling engine does not support every style defined in the specifi-
cation. Historically we have been focussed on supporting styles commonly used
for ebooks, so some of the more esoteric styles remain unimplemented for now.

It is therefore probably worth us saying a few words about what styling we do
recommend for use with stories.

16.10.1 Font selection and sizing

Styles can be used to select from the different fonts built into MuPDF. For
instance:

will select whichever sans-serif font MuPDF has been built with (typically a
Nimbus Sans variant).

The question of what fonts are available to you will depend upon how MuPDF
is built; see chapter 34 Font provision within MuPDF for more details.

Any font built in to MuPDF can be selected by name here. Alternatively, fonts
can be loaded using the font-face style. For example:

@font-face {

font-family: myFontName;

font-style: italic;

font-weight: bold;

font-variant: small-caps;

src: url(path/to/my/font.ttf)

}

MuPDF understands bold and bolder weights, (all others are held to be
normal). Similarly it understands italic and oblique styles. The only sup-
ported variant is small-caps.

16.10.2 Padding, Margins and Borders

Margins, Padding and Borders are supported, for positive numbers only.

16.10.3 Line Height and Leading

The standard line-height style is supported. This sets the minimum line
height between lines, but HTML layout allows for larger heights to be used if

CHAPTER 16. STORIES 121

required.

To allow for cases where this automatic expansion is not desirable, MuPDF
provides an extra style, -mupdf-leading. This sets the exact height to be used
for line to line spacing, and therefore matches the concept of leading used within
the PDF specification.

16.10.4 Page breaks

MuPDF supports page-break-before and page-break-after styles on HTML
elements. It recognises many values as specified in the CSS documentation but
these are not all acted upon. auto and avoid currently have no effect. Because
fz place story has no idea what page we are laying out for, the behaviour
of left and right should be considered undefined, currently. The only really
useful options is always which will cause the laid out content to break until the
next rectangle passed to fz place story.

16.10.5 Text colour

MuPDF supports both color and background-color properties, as you’d ex-
pect.

16.10.6 Visibility

MuPDF recognises visibility values of visible, hidden and collapse, but
simply treats anything other than visible as hidden.

16.10.7 White space

MuPDF recognises and acts on white-space values of normal, pre, nowrap,
pre-wrap and pre-line.

16.10.8 Text indent

MuPDF recognises the text-indent property and indents the first line of each
paragraph by it. The correct behaviour of negative values should not be relied
on.

16.10.9 Alignment

MuPDF support text-align values of left, right, center and justify.

Similarly it supports vertical-align values of baseline, sub, super, top,
bottom, text-top, and text-bottom. Currently text-top behaves identically
to top and text-bottom behaves identically to bottom.

CHAPTER 16. STORIES 122

16.10.10 Overflow wrap

MuPDF supports overflow-wrap operation for normal and break-wordmodes.
Other values are treated as normal.

Chapter 17

Archives

17.1 Overview

Some document types, such as XPS, ebooks or CBZ, consist of a container that
groups multiple different files together. Other document types, such as HTML,
contain all the basic document information in a single file, but can refer to
externally supplied resources (such as fonts or image data).

MuPDF offers the fz archive type as an abstraction to cope with both these
cases.

An fz archive is a source from which files can be read (either as streams or as
raw data). Currently fz archives are read-only.

17.2 API

17.2.1 Creating an archive

The exact mechanism for creating an archive will vary according to archive type.
See section 17.3 Archive Types for the currently defined archive types and how
to create them.

A typical example would be to open an archive pointer to the current directory:

archive = fz_open_directory(ctx, ".");

Actions on this archive will permit files within (or reachable below) the current
directory to be accessed.

123

CHAPTER 17. ARCHIVES 124

17.2.2 Reference counting

Creating an archive will return a pointer with a single reference taken. Addi-
tional references to archives can be taken and released in the usual fashion:

/**

Drop a reference to an archive.

When the last reference is dropped, this closes and releases

any memory or filehandles associated with the archive.

*/

void fz_drop_archive(fz_context *ctx, fz_archive *arch);

/**

Keep a reference to an archive.

*/

fz_archive *

fz_keep_archive(fz_context *ctx, fz_archive *arch);

When the final reference to an archive is released the storage associated with
the archive will be released, and the pointer invalidated.

17.2.3 Checking if an archive entry exists

All archives support checking if a given named entry exists:

/**

Check if entry by given name exists.

If named entry does not exist 0 will be returned, if it does

exist 1 is returned.

name: Entry name to look for, this must be an exact match to

the entry name in the archive.

*/

int fz_has_archive_entry(fz_context *ctx, fz_archive *arch, const char

*name);

17.2.4 Opening an archive entry as a stream

All archives support opening a given named entry as a stream:

/**

Opens an archive entry as a stream.

name: Entry name to look for, this must be an exact match to

the entry name in the archive.

Throws an exception if a matching entry cannot be found.

CHAPTER 17. ARCHIVES 125

*/

fz_stream *fz_open_archive_entry(fz_context *ctx, fz_archive *arch,

const char *name);

17.2.5 Reading an archive entry as a buffer

All archives support reading the contents of a given named entry as a buffer:

/**

Reads all bytes in an archive entry

into a buffer.

name: Entry name to look for, this must be an exact match to

the entry name in the archive.

Throws an exception if a matching entry cannot be found.

*/

fz_buffer *fz_read_archive_entry(fz_context *ctx, fz_archive *arch,

const char *name);

17.2.6 Archive format

In some cases, such as opening a directory for reading, the format of the archive
opened is known by construction. In other cases, such as when opening an
archive file on disk, the format can vary according to data within the archive
itself.

A printable string representing the format of the archive can be retrieved using:

/**

Return a pointer to a string describing the format of the

archive.

The lifetime of the string is unspecified (in current

implementations the string will persist until the archive

is closed, but this is not guaranteed).

*/

const char *fz_archive_format(fz_context *ctx, fz_archive *arch);

This is primarily of use for debugging purposes. In the case of multi archives,
this will report ”multi” rather than the format of any of the subarchives.

17.2.7 Counting archive entries

Some archives, such as .zip and .tar files, allow the number of entries within the
archive to be counted:

/**

CHAPTER 17. ARCHIVES 126

Number of entries in archive.

Will always return a value >= 0.

May throw an exception if this type of archive cannot count the

entries (such as a directory).

*/

int fz_count_archive_entries(fz_context *ctx, fz_archive *arch);

Others, such as virtual archives pointing at directories will throw an exception.
This is primarily of use for debugging purposes.

17.2.8 Enumerating archive entries

Some archives, such as .zip and .tar files, allow the entries within the archive to
be be enumerated:

/**

Get listed name of entry position idx.

idx: Must be a value >= 0 < return value from

fz_count_archive_entries. If not in range NULL will be

returned.

May throw an exception if this type of archive cannot list the

entries (such as a directory).

*/

const char *fz_list_archive_entry(fz_context *ctx, fz_archive *arch, int

idx);

Others, such as virtual archives pointing at directories, or multi archives, will
throw an exception. This is primarily of use for debugging purposes.

17.3 Archive Types

17.3.1 Overview

A variety of different archive implementations exist within MuPDF, and callers
can even implement their own.

Some archive types are ’virtual’, in that they represent a collection of files where
the collection, at least, and sometimes the files themselves, are not represented
in permanent storage. These types can only be created using type specific APIs
documented below.

Other archive types are based upon a traditional archive file, and the content
type can be detected automatically. These can be opened by using the generic
functions:

CHAPTER 17. ARCHIVES 127

/**

Open a zip or tar archive

Open a file and identify its archive type based on the archive

signature contained inside.

filename: a path to a file as it would be given to open(2).

*/

fz_archive *fz_open_archive(fz_context *ctx, const char *filename);

/**

Open zip or tar archive stream.

Open an archive using a seekable stream object rather than

opening a file or directory on disk.

*/

fz_archive *fz_open_archive_with_stream(fz_context *ctx, fz_stream

*file);

Currently, only zip and tar archives are supported, but this may be extended in
future.

17.3.2 Zip archives

As well as being accessible using the generic functions above, zip archives can
be detected and opened using zip-specific API functions.

/**

Detect if stream object is a zip archive.

Assumes that the stream object is seekable.

*/

int fz_is_zip_archive(fz_context *ctx, fz_stream *file);

/**

Open a zip archive file.

An exception is throw if the file is not a zip archive as

indicated by the presence of a zip signature.

filename: a path to a zip archive file as it would be given to

open(2).

*/

fz_archive *fz_open_zip_archive(fz_context *ctx, const char *path);

/**

Open a zip archive stream.

Open an archive using a seekable stream object rather than

CHAPTER 17. ARCHIVES 128

opening a file or directory on disk.

An exception is throw if the stream is not a zip archive as

indicated by the presence of a zip signature.

*/

fz_archive *fz_open_zip_archive_with_stream(fz_context *ctx, fz_stream

*file);

Zip writer

While, as stated, archive support is currently read-only, we do have an API to
allow zip files to be created.

This is achieved by a fz zip writer:

/**

fz_zip_writer offers methods for creating and writing zip files.

It can be seen as the reverse of the fz_archive zip

implementation.

*/

typedef struct fz_zip_writer fz_zip_writer;

/**

Create a new zip writer that writes to a given file.

Open an archive using a seekable stream object rather than

opening a file or directory on disk.

*/

fz_zip_writer *fz_new_zip_writer(fz_context *ctx, const char *filename);

/**

Create a new zip writer that writes to a given output stream.

Ownership of out passes in immediately upon calling this function.

The caller should never drop the fz_output, even if this function

throws

an exception.

*/

fz_zip_writer *fz_new_zip_writer_with_output(fz_context *ctx, fz_output

*out);

Once a fz zip writer has been created, individual entries can then be output:

/**

Given a buffer of data, (optionally) compress it, and add it to

the zip file with the given name.

*/

void fz_write_zip_entry(fz_context *ctx, fz_zip_writer *zip, const char

CHAPTER 17. ARCHIVES 129

*name, fz_buffer *buf, int compress);

When all the entries have been written, the zip file should be closed:

/**

Close the zip file for writing.

This flushes any pending data to the file. This can throw

exceptions.

*/

void fz_close_zip_writer(fz_context *ctx, fz_zip_writer *zip);

And finally, the reference to the writer should be dropped:

/**

Drop the reference to the zipfile.

In common with other ’drop’ methods, this will never throw an

exception.

*/

void fz_drop_zip_writer(fz_context *ctx, fz_zip_writer *zip);

The zip writer can be dropped at any point during usage to cleanly free up
the resources, but unless it has been properly closed first the data within the
written zipfile may be truncated.

As can be seen from the API, the zip file writer is independent to that of archives.
Once a zip file has been fully written, it can then be opened and read using the
archive mechanism, but neither the writer not the archive mechanisms can be
used to modify an existing zipfile.

Should such functionality be desired, the best we can offer is to create a writer
to a new zip file, open an archive view on an existing zip file, and then to copy
entries across, whereupon new entries can be added.

17.3.3 Tar archives

As well as being accessible using the generic functions above, tar archives can
be detected and opened using tar-specific API functions.

/**

Detect if stream object is a tar achieve.

Assumes that the stream object is seekable.

*/

int fz_is_tar_archive(fz_context *ctx, fz_stream *file);

/**

Open a tar archive file.

CHAPTER 17. ARCHIVES 130

An exception is throw if the file is not a tar archive as

indicated by the presence of a tar signature.

filename: a path to a tar archive file as it would be given to

open(2).

*/

fz_archive *fz_open_tar_archive(fz_context *ctx, const char *filename);

/**

Open a tar archive stream.

Open an archive using a seekable stream object rather than

opening a file or directory on disk.

An exception is throw if the stream is not a tar archive as

indicated by the presence of a tar signature.

*/

fz_archive *fz_open_tar_archive_with_stream(fz_context *ctx, fz_stream

*file);

17.3.4 ‘Virtual’ directory archives

In some cases, it can be useful to make whole directories on the local filing
system appear as ‘virtual’ archives.

/**

Open a directory as if it was an archive.

A special case where a directory is opened as if it was an

archive.

Note that for directories it is not possible to retrieve the

number of entries or list the entries. It is however possible

to check if the archive has a particular entry.

path: a path to a directory as it would be given to opendir(3).

*/

fz_archive *fz_open_directory(fz_context *ctx, const char *path);

Care should be taken by callers of this function to consider the security impli-
cations of allowing read-only access to the local filing system. In many cases
this will not be a problem, but in others (perhaps where a MuPDF-based app
might run user submitted scripts on a server), there are potential data-leakage
implications.

To mitigate against such issues, all ‘paths’ passed to fz archive functions are

CHAPTER 17. ARCHIVES 131

‘cleaned’ to avoid such constructs as ‘.’, ‘..’, and absolute paths (paths beginning
with ‘/’).

17.3.5 ‘Virtual’ tree archives

On occasion, it can be useful to construct a virtual archive of entries that exist
in memory. One such example of this would be to make image or font resources
available for an Story (see chapter 16 Stories).

For this, we provide the tree archive, so called because it is built upon the
fz tree structure.

A tree archive can be created using:

/**

Create an archive that holds named buffers.

tree can either be a preformed tree with fz_buffers as values,

or it can be NULL for an empty tree.

*/

fz_archive *fz_new_tree_archive(fz_context *ctx, fz_tree *tree);

The tree can either be a pointer to an existing fz tree where the values for
each node within the tree are fz buffer references, or it can be NULL to create
an initially empty archive.

Whichever option is taken, new entries can be added to the archive by either
passing in fz buffer pointers:

/**

Add a named buffer to an existing tree archive.

The tree will take a new reference to the buffer. Ownership

is not transferred.

*/

void fz_tree_archive_add_buffer(fz_context *ctx, fz_archive *arch, const

char *name, fz_buffer *buf);

or by passing blocks of data in directly:

/**

Add a named block of data to an existing tree archive.

The data will be copied into a buffer, and so the caller

may free it as soon as this returns.

*/

void fz_tree_archive_add_data(fz_context *ctx, fz_archive *arch, const

char *name, const void *data, size_t size);

CHAPTER 17. ARCHIVES 132

Using fz buffers is more desirable to passing in raw data, as this avoids the
need to make a new copy the data as fz buffers have a better defined lifespan.

17.3.6 Multi archives

The final type of archive, is that of a multi archive. This allows multiple existing
archives to be joined together to appear as one.

As an example of why this might be useful, consider using stories (see chapter 16
Stories) to create multiple documents - perhaps daily reports of some kind. Each
document might want to share the same fonts, but might have different image
data associated with it.

Whenever the program runs, we’d create the image(s) for the report in memory,
where the font data (constant between runs) might be held on disc as a zip file.
We can use a tree archive (see subsection 17.3.5 ‘Virtual’ tree archives) to hold
the images, but we need some way to join both the contents of the tree archive
and the zip file.

This can be achieved using a multi-archive.

/**

Create a new multi archive (initially empty).

*/

fz_archive *fz_new_multi_archive(fz_context *ctx);

This call creates an initially empty archive. We can then ‘mount’ existing
archives into it:

/**

Add an archive to the set of archives handled by a multi

archive.

If path is NULL, then the archive contents will appear at the

top level, otherwise, the archives contents will appear prefixed

by path.

*/

void fz_mount_multi_archive(fz_context *ctx, fz_archive *arch_,

fz_archive *sub, const char *path);

In our example above, we might first mount the zip file containing the font data,
and then make another call to mount the tree archive containing the image data.

When called with non-NULL paths, this is very similar to the idea of mounting
filing systems on unix. For instance, mounting the zip file at ‘resources’, would
mean that every entry of the zip file (e.g. ‘Courier’, ‘Helvetica/Bold’ etc) would
appear to users of the multi archive prefixed by ‘resources’ (e.g. ‘resources/-
Courier’, ‘resources/Helvetica/Bold’ etc).

CHAPTER 17. ARCHIVES 133

When called with a NULL path, the contents of the mounted archive will appear
without a prefix.

If two archives contain entries with the same filename (including any prefix)
then the later entry will be the one found in the multi-archive. That is to say,
entries in later archives override conflicting entries in earlier ones.

Chapter 18

Progressive Mode

18.1 Overview

When used in the normal way, MuPDF requires the entirety of a file to be
present before it can be opened. For some applications, this can be a significant
restriction - for instance, when downloading a PDF file over a slow internet link,
being able to view just the first page or two may be enough to know whether it
is the correct file or not.

Normal PDF files require the end of the file to be present before file reading can
begin, as this is where the ‘trailer’ lives (effectively the index for the entire file).
In an effort to allow early display of the first page, Adobe (the originators of the
PDF format) introduced the concept of a ‘linearized’ PDF file. This is a PDF
file that, while constructed in accordance with the original specification, also
has some extra information contained within the file to allow fast access to the
first page. This information is known as the ‘hint stream’. In addition, extra
constraints are placed upon the ordering of data within the file in an effort to
ensure that the first page will download quickly.

Unfortunately, Linearized PDF files are far from a panacea. The specification
is overly-complex, unclear and consequently poorly supported in both readers
and writers of the format. Even when implemented correctly, it is of limited use
for pages other than the first one.

MuPDF therefore attempts to solve the problem using a combination of mecha-
nisms, known together as “progressive mode”. When run in this mode, MuPDF
can not only take advantage of the linearization information (if present) in a
file, but is also capable of directing the actual download mechanism used by a
file. By controlling the order in which sections of a file are fetched, any page
required can be viewed before the whole fetch is complete.

For optimum performance a file should be both linearized and be available over

134

CHAPTER 18. PROGRESSIVE MODE 135

a byte-range supporting link, but benefits can still be had with either one of
these alone.

Coupled with the ability to render pages ignoring (and detecting) errors, this
means that ‘rough renderings’ of pages can be given even before all the content
(such as images and fonts) for a page have been downloaded.

18.2 Implementation

MuPDF has made various extensions to its mechanisms for handling progressive
loading. They rely on some special properties built into a type of fz stream

known as a ‘progressive’ stream.

18.2.1 Progressive Streams

At its lowest level MuPDF reads file data from a fz stream, us-
ing the fz open document with stream call. The alternative entrypoint
fz open document is implemented by calling this.

The PDF interpreter uses the fz lookup metadata call to check for its stream
being progressive or not. Any non-progressive stream will be read as normal,
with the system assuming that the entire file is present immediately.

If it is found to be progressive, another fz lookup metadata call is made to
find out what the length of the stream will be once the entire file is fetched. An
HTTP fetcher can know this by consulting the Content-Length header before
any data has been fetched.

With this information MuPDF can decide whether a file is linearized or not.
(Technically, knowing the length enables us to check with the length value given
in a linearized object - if these differ, the assumption is that an incremental save
has taken place, thus the file is no longer linearized.)

Other than supporting the required metadata responses, the key thing that
marks a stream as being progressive, is that it will not block when attempting
to read data it does not have. Instead, it will throw a FZ ERROR TRYLATER error.
This particular error code will be interpreted by the caller as an indication that
it should retry the parsing of the current objects at a later time.

When a MuPDF call is made on a progressive stream, such as
fz open document with stream, or fz load page, the caller should be pre-
pared to handle a FZ ERROR TRYLATER error as meaning that more data is re-
quired before it can continue. No indication is directly given as to exactly how
much more data is required, but as the caller will be implementing the progres-
sive fz stream that it has passed into MuPDF to start with, it can reasonably
be expected to figure out an estimate for itself.

With these mechanisms in place, a caller can repeatedly try to render each page
in turn until it gets a successful result.

CHAPTER 18. PROGRESSIVE MODE 136

18.2.2 Rough renderings

Once a page has been loaded, if its contents are to be ‘run’ as normal (using e.g.
fz run page) any error (such as failing to read a font, or an image, or even a
content stream belonging to the page) will result in a rendering that aborts with
a FZ ERROR TRYLATER error. The caller can catch this and display a placeholder
instead.

If each pages data was entirely self-contained and sent in sequence this would
perhaps be acceptable, with each page appearing one after the other. Unfortu-
nately, the linearization procedure as laid down by Adobe does NOT do this:
objects shared between multiple pages (other than the first) are not sent with
the pages themselves, but rather AFTER all the pages have been sent.

This means that a document that has a title page, then contents that share a
font used on pages 2 onwards, will not be able to correctly display page 2 until
after the font has arrived in the file, which will not be until all the page data
has been sent.

To mitigate against this, MuPDF provides a way whereby callers can indicate
that they are prepared to accept an ‘incomplete’ rendering of the file (perhaps
with missing images, or with substitute fonts).

Callers prepared to tolerate such renderings should set the ‘incomplete ok’ flag
in the cookie, then call fz run page etc as normal. If a FZ ERROR TRYLATER error
is thrown at any point during the page rendering, the error will be swallowed,
the ‘incomplete’ field in the cookie will become non-zero and rendering will
continue. When control returns to the caller the caller can check the value of the
‘incomplete’ field and know that the rendering it received is not authoritative.

18.2.3 Directed downloads

If the caller has control over the fetch of the file (be it http or some other
protocol), then it is possible to use byte range requests to fetch the document
‘out of order’. This enables non-linearized files to be progressively displayed
as they download, and fetches complete renderings of pages earlier than would
otherwise be the case. This process requires no changes within MuPDF itself,
but rather in the way the progressive stream learns from the attempts MuPDF
makes to fetch data.

Consider for example, an attempt to fetch a hypothetical file from a server.

� The initial http request for the document is sent with a “Range:” header
to pull down the first (say) 4k of the file.

� As soon as we get the header in from this initial request, we can respond
to meta stream operations to give the length, and whether byte requests
are accepted.

CHAPTER 18. PROGRESSIVE MODE 137

– If the header indicates that byte ranges are acceptable the stream
proceeds to go into a loop fetching chunks of the file at a time (not
necessarily in-order). Otherwise the server will ignore the Range:
header, and just serve the whole file.

– If the header indicates a content-length, the stream returns that.

� MuPDF can then decide how to proceed based upon these flags and
whether the file is linearized or not. (If the file contains a linearized
object, and the content length matches, then the file is considered to be
linear, otherwise it is not).

If the file is linear:

– We proceed to read objects out of the file as it downloads. This will
provide us the first page and all its resources. It will also enable us
to read the hint streams (if present).

– Once we have read the hint streams, we unpack (and sanity check)
them to give us a map of where in the file each object is predicted
to live, and which objects are required for each page. If any of these
values are out of range, we treat the file as if there were no hint
streams.

– If we have hints, any attempt to load a subsequent page will cause
MuPDF to attempt to read exactly the objects required. This will
cause a sequence of seeks in the fz stream followed by reads. If
the stream does not have the data to satisfy that request yet, the
stream code should remember the location that was fetched (and
fetch that block in the background so that future retries will succeed)
and should raise a FZ ERROR TRYLATER error.

[Typically therefore when we jump to a page in a linear file on a byte
request capable link, we will quickly see a rough rendering, which
will improve fairly fast as images and fonts arrive.]

– Regardless of whether we have hints or byte requests, on every
fz load page call MuPDF will attempt to process more of the stream
(that is assumed to be being downloaded in the background). As lin-
earized files are guaranteed to have pages in order, pages will grad-
ually become available. In the absence of byte requests and hints
however, we have no way of getting resources early, so the renderings
for these pages will remain incomplete until much more of the file
has arrived.

[Typically therefore when we jump to a page in a linear file on a non
byte request capable link, we will see a rough rendering for that page
as soon as data arrives for it (which will typically take much longer
than would be the case with byte range capable downloads), and that

CHAPTER 18. PROGRESSIVE MODE 138

will improve much more slowly as images and fonts may not appear
until almost the whole file has arrived.]

– When the whole file has arrived, then we will attempt to read the
outlines for the file.

For a non-linearized PDF on a byte request capable stream:

– MuPDF will immediately seek to the end of the file to attempt to
read the trailer. This will fail with a FZ ERROR TRYLATER due to the
data not being here yet, but the stream code should remember that
this data is required and it should be prioritized in the background
fetch process.

– Repeated attempts to open the stream should eventually succeed
therefore. As MuPDF jumps through the file trying to read first the
xrefs, then the page tree objects, then the page contents themselves
etc, the background fetching process will be driven by the attempts
to read the file in the foreground.

[Typically therefore the opening of a non-linearized file will be slower than
a linearized one, as the xrefs/page trees for a non-linear file can be 20%+
of the file data. Once past this initial point however, pages and data can
be pulled from the file almost as fast as with a linearized file.]

For a non-linearized PDF on a non-byte request capable stream:

– MuPDF will immediately seek to the end of the file to attempt to
read the trailer. This will fail with a FZ ERROR TRYLATER due to the
data not being here yet. Subsequent retries will continue to fail until
the whole file has arrived, whereupon the whole file will be instantly
available.

[This is the worst case situation - nothing at all can be displayed until the
entire file has downloaded.]

18.2.4 Example implementation

An example implementation of a fetcher process can be found in curl-stream.c.
This implements a fz stream using the popular ‘curl’ http fetching library.

The structure of this process broadly behaves as follows:

� We consider the file as an (initially empty) buffer which we are filling
by making requests. In order to ensure that we make maximum use of
our download link, we ensure that whenever one request finishes, we im-
mediately launch another. Further, to avoid the overheads for the re-
quest/response headers being too large, we may want to divide the file
into ‘chunks’, perhaps 4 or 32k in size.

CHAPTER 18. PROGRESSIVE MODE 139

� We have a receiver thread that sits there in a loop requesting chunks to fill
this buffer. In the absence of any other impetus the receiver should request
the next chunk of data from the file that it does not yet have, following the
last fill point. Initially we start the fill point at the beginning of the file,
but this will move around based on the requests made of the progressive
stream.

� Whenever MuPDF attempts to read from the stream, we check to see if
we have data for this area of the file already. If we do, we can return it. If
not, we remember this as the next ‘fill point’ for our receiver process and
throw a FZ ERROR TRYLATER error.

� The caller process is responsible for implementing the fetcher, hence it can
know when more data has arrived. This can trigger retries of renderings
intelligently, thus avoiding retrying renders when the incoming data is
stalled.

Chapter 19

Fonts

19.1 Overview

Fonts are represented in MuPDF by the abstract fz font type. This reference
counted structure, encapsulates the basic information about a font, specifically:

Glyph list Each font consists of a list of glyphs.

Glyph data How to draw each glyph. In traditional fonts this information is
known as the ‘Outline data’ (or ‘Outlines’), but some font types (such as
Type 3 fonts from PDF) can encapsulate other data, such as images and
colors too.

Unicode map Most (but not all) fonts contain information that enables glyphs
to be mapped to/from the Unicode code points they represent. Without
such information, it can be impossible to meaningfully extract text infor-
mation from a document (such as for cut and paste).

Font BBox All fonts include information for a bounding box that covers all the
glyphs within a font. Sadly this can frequently be inaccurate or incorrect,
so should be treated with distrust.

Glyph advances All fonts contain simple Glyph advance information - how far
to move the text cursor after having drawn a given glyph. This information
ensures that successive characters are properly spaced w.r.t. each other.

Kerning data Most fonts contain simple kerning data; this allows for the glyph
advance between any 2 glyphs to be adjusted based upon particular glyph
values. The classic example of kerning is noting that the spacing between
A and the left hand edge of its following letter is typically different between
AV and AN.

Shape data Some fonts allow for the automatic ‘shaping’ of glyph sequences.

140

CHAPTER 19. FONTS 141

The trivial example of this in western fonts is that the letters ‘f’ and ‘i’ can
be combined into a single ligature glyph ‘fi’. For many non Latin scripts
(especially Indic and south east Asian scripts), this procedure happens to a
far greater extent. This can be as simple as the incorporation of diacritical
marks, or as complex as the complete rearrangement or replacement of
glyph sequences to give different appearances on the final rendered page.
This process is know as ‘font shaping’ and the data required to perform
this is font specific, and is optionally encapsulated within fonts themselves.

The fz font does not include information about the particular size that a font
is used at on the page, nor the basic colour used to render a font. It is therefore
typical to see fz fonts passed around the system paired with both a size (and/or
transformation matrix), a colorspace, and color definition.

MuPDF uses Freetype to handle most of its font rendering. For Type 3 PDF
fonts, it renders them itself. Font shaping is done using the HarfBuzz library.

19.2 Inbuilt Fonts

The exact set of fonts built in to any version of MuPDF is configurable (See
chapter 20 Build configuration).

For PDF, we build in a basic set of fonts licensed from URW. Originally the PDF
specification suggested that 14 standard fonts should be available on all readers,
and that any other fonts should be embedded within files. This recommendation
has since been updated to suggest that all fonts (or at least the required subset
thereof) are embedded in all files. Nonetheless it is still common to find many
PDF files that ask for fonts that are not embedded.

In order to cope with the widest range of scripts possible, MuPDF is supplied
with (and can optionally include) a selection of the ‘Noto’ fonts from Google.

If this would take too much space on your target system, an alternative is to
use the supplied DroidSansFallback font (also from Google) which is a good
trade-off between size and coverage.

MuPDF does not, by default, make use of fonts present on the underly-
ing system (for instance, on Windows, MuPDF will not look for fonts in
C:/Windows/). Should you wish to implement this kind of ‘system font’
loading, however, MuPDF does provide hooks for this to be done. The
fz install load system font funcs call takes a set of function pointers that
can be used for this purpose.

19.3 Implementation

The implementation details of fz fonts are still in flux, so it would be inappro-
priate to document them in any more detail at the moment.

Chapter 20

Build configuration

20.1 Overview

By default, MuPDF builds almost the most capable version of itself that it can.
This can result in larger library sizes than are actually required for any given
application. Some care has been taken in the design of MuPDF to try to allow
linkers to intelligently drop sections of the code that are not actually required,
but nonetheless it can still be worthwhile tuning builds.

20.2 Configuration file

To simply the task of tuning builds, all the configuration options have been
gathered into a single header file, include/mupdf/fitz/config.h.

This file is in two halves; the top half consists of a sequence of pairs of comments,
and commented out #defines, the second half consists of #ifdef logic to make
sense of the #define values set.

The configuration options available at build time are therefore described by the
pairs in the first half of the file.

Each one of these pairs has first a comment that describes what the follow-
ing configuration options do, and then commented out #defines that sets the
configuration options to their defaults.

If an integrator wants to change a build option from the default, they have
two options. Firstly, and most simply, they can edit the first half of the file
to set the required #defines by uncommenting the relevant line and editing it.
Alternatively, they can arrange for these values to be predefined by the compiler,
normally by editing the CFLAGS defined in the Makefile. This latter method has

142

CHAPTER 20. BUILD CONFIGURATION 143

the advantage of not requiring any edits to the source itself, and of allowing
different configurations to be built from the same source tree.

The second half of the file should never need to be edited.

20.3 Plotter selection

The first section of the file deals with the plotters that are to be built into
MuPDF.

/*

Enable the following for spot (and hence overprint/overprint

simulation) capable rendering. This forces FZ_PLOTTERS_N on.

*/

#define FZ_ENABLE_SPOT_RENDERING

If this is enabled (i.e. if spot rendering capabilities are required) then all the
plotters in the following section are implictly enabled. For people that do not
need spot rendering (i.e. anyone dealing with on screen display where overprint
simulation is not required) can turn this off, and further configure the next
options:

/*

Choose which plotters we need.

By default we build the greyscale, RGB and CMYK plotters in,

but omit the arbitrary plotters. To avoid building

plotters in that aren’t needed, define the unwanted

FZ_PLOTTERS_... define to 0.

*/

/* #define FZ_PLOTTERS_G 1 */

/* #define FZ_PLOTTERS_RGB 1 */

/* #define FZ_PLOTTERS_CMYK 1 */

/* #define FZ_PLOTTERS_N 0 */

The plotter selection built into MuPDF will determine which formats can be
rendered too. If, for instance, you are using MuPDF to target a greyscale only
device (say, an e-ink screen for a greyscale ebook reader) then there is no need
to ever render in color, and the RGB and CMYK options can be disabled.

Similarly, if you know you are targeting screen display, then the greyscale and
CMYK plotters can be omitted.

The N plotters are generic plotters capable of coping with any color depth, but
are not as optimised for rendering to G, RGB or CMYK as the specific sets of
plotters for those depths. You may find that you can trade some speed for space
by enabling the N plotters and disabling the other plotters.

If you wish to render to colorspaces other than G, RGB or CMYK, you must

CHAPTER 20. BUILD CONFIGURATION 144

enable the N plotters.

At least 1 plotter family must be defined in any build. If all the plotters are
specifically disabled, then the N plotters will be enabled.

20.4 Document handlers

Support for the different document types supported by MuPDF is given by a set
of document handlers (see chapter 23 The Document Handler interface). Each
handler type can be enabled or disabled as required:

/*

Choose which document handlers to include.

By default all but GPRF are enabled. To avoid building unwanted

ones, define FZ_ENABLE_... to 0.

*/

/* #define FZ_ENABLE_PDF 1 */

/* #define FZ_ENABLE_XPS 1 */

/* #define FZ_ENABLE_SVG 1 */

/* #define FZ_ENABLE_CBZ 1 */

/* #define FZ_ENABLE_IMG 1 */

/* #define FZ_ENABLE_TIFF 1 */

/* #define FZ_ENABLE_HTML 1 */

/* #define FZ_ENABLE_EPUB 1 */

/* #define FZ_ENABLE_GPRF 1 */

For instance to omit support for HTML, we would define FZ ENABLE HTML to
be 0. Note that some document handlers share substantial parts of their code
with other ones; for example the HTML and EPUB document ages share a large
amount of code, so disabling just one of them will not make much difference to
the overall code size.

20.5 JPEG 2000 support

Some security minded applications choose to disable JPEG2000 decoding. While
MuPDF ships with the latest version of the JPEG2000 decoder we use, with all
known security patches applied, it is possible to disable this entirely if required.

/*

Choose whether to enable JPEG2000 decoding.

By default, it is enabled, but due to frequent security

issues with the third party libraries we support disabling

it with this flag.

*/

/* #define FZ_ENABLE_JPX 1 */

Note that if this is disabled, MuPDF will no longer be able to decode all PDF

CHAPTER 20. BUILD CONFIGURATION 145

files. If you are authoring your own PDF files (or you know that they do not
make use of JPEG2000, then disabling this will have no effect).

20.6 Javascript

PDF files can make use of Javascript for form data validation. If such interactive
features are not required then the inclusion of an (albeit tiny) javascript engine
serves no purpose. Accordingly, it can be disabled by setting FZ ENABLE JS to
0.

/*

Choose whether to enable JavaScript.

By default JavaScript is enabled both for mutool and PDF

interactivity.

*/

/* #define FZ_ENABLE_JS 1 */

20.7 Fonts

By far the largest impact on MuPDFs size is given by choosing which fonts to
include. Accordingly, there are a range of different options:

/*

Choose which fonts to include.

By default we include the base 14 PDF fonts,

DroidSansFallback from Android for CJK, and

Charis SIL from SIL for epub/html.

Enable the following defines to AVOID including

unwanted fonts.

*/

/* To avoid all noto fonts except CJK, enable: */

/* #define TOFU */

/* To skip the CJK font, enable: (this implicitly enables TOFU_CJK_EXT

and TOFU_CJK_LANG) */

/* #define TOFU_CJK */

/* To skip CJK Extension A, enable: (this implicitly enables

TOFU_CJK_LANG) */

/* #define TOFU_CJK_EXT */

/* To skip CJK language specific fonts, enable: */

/* #define TOFU_CJK_LANG */

/* To skip the Emoji font, enable: */

/* #define TOFU_EMOJI */

CHAPTER 20. BUILD CONFIGURATION 146

/* To skip the ancient/historic scripts, enable: */

/* #define TOFU_HISTORIC */

/* To skip the symbol font, enable: */

/* #define TOFU_SYMBOL */

/* To skip the SIL fonts, enable: */

/* #define TOFU_SIL */

/* To skip the Base14 fonts, enable: */

/* #define TOFU_BASE14 */

/* (You probably really don’t want to do that except for measurement

purposes!) */

If documents require a font that is not present, systems will try to ‘fallback’
to alternative ones. When this is not always successful (or indeed possible)
unknown glyphs are often rendered as empty boxes, known informally in the
typographic world as ‘Tofu’.

By default MuPDF includes all the fonts it knows about. The configuration op-
tions are therefore a matter of choosing which scripts should instead be rendered
as tofu.

Accordingly, to drop support for rendering emoji characters, you’d define
TOFU EMOJI.

The largest set of fonts are those for the wide range of worldwide scripts given
by the Google Noto fonts. These can be omitted by defining TOFU.

See chapter 34 Font provision within MuPDF for more details.

Chapter 21

Annotations, Links and
Interaction

21.1 Overview

Different document formats offer different levels of interactivity. Some formats
(such as images) are simple static content that (other than being panned and
zoomed) offers no interaction at all. Others (such as ebooks) offer interaction in
that they might have internal links to allow fast navigation from a ”Contents”
page to the chapters concerned. PDF takes interaction to a completely differ-
ent level by offering a rich mechanism for annotations, including a complete
JavaScript engine to allow arbitrarily complex calculations and interactions to
be built in to each document.

Accordingly, the fitz APIs allow access to both inter- and intra-document links
using an fz link abstraction. However the links are defined in the underlying
document they will be exposed through this same abstraction.

As described earlier in 8.6, annotations are conceptually extra information over-
laid on the basic page content.

The simplest examples are of content to be overlaid on the document at specific
locations. For instance, an Ink annotation allows a user defined path to be
displayed - typically used for freehand signatures, or scrawled freehand drawings.
Stamp annotations allow preset text strings to be displayed in the form of a
’rubber stamp’ (such as ’Approved’).

More complex examples include the ’sticky note’, where an icon is displayed on
the document that when clicked reveals some textual notes.

PDF Forms are implemented with each field being an annotation, capable of
having their values edited by the user, including being processed by embedded

147

CHAPTER 21. ANNOTATIONS, LINKS AND INTERACTION 148

JavaScript to format and validate responses.

Finally, buttons can trigger JavaScript that modifies other annotations pro-
grammatically, enabling arbitrarily complex interactions to be constructed. A
simple document used to demonstrate this implements a pocket calculator that
performs a range of arithmetic functions. Another might be a loan calculator,
where the last page of a document describing the loans available from a bank
would let people choose the loan amount, repayment frequency, loan term etc,
and see how their payments would change.

21.2 Fitz-level Links

Links describe ‘active’ regions on the page; if the user ‘clicks’ within such a
region typically the viewer should respond. Some links move to other places in
the document, others launch external clients such as mail or web sites.

The links on a page can be read by calling fz load links:

/*

fz_load_links: Load the list of links for a page.

Returns a linked list of all the links on the page, each with

its clickable region and link destination. Each link is

reference counted so drop and free the list of links by

calling fz_drop_link on the pointer return from fz_load_links.

page: Page obtained from fz_load_page.

*/

fz_link *fz_load_links(fz_context *ctx, fz_page *page);

This returns a linked list of fz link structures. link->next gives the next one
in the chain.

Links are reference counted, and fz load links returns ownership of a reference
to the caller. The caller must eventually fz drop link it to avoid a leak.

/**

Increment the reference count for a link. The same pointer is

returned.

Never throws exceptions.

*/

fz_link *fz_keep_link(fz_context *ctx, fz_link *link);

/**

Decrement the reference count for a link. When the reference

count reaches zero, the link is destroyed.

When a link is freed, the reference for any linked link (next)

CHAPTER 21. ANNOTATIONS, LINKS AND INTERACTION 149

is dropped too, thus an entire linked list of fz_link’s can be

freed by just dropping the head.

*/

void fz_drop_link(fz_context *ctx, fz_link *link);

Currently the API requires users to access the bounds for the link to be accessed
within the fz link structure as rect (in untransformed document coordinates),
and the destination of the link as uri. This may change with the addition of
an API for accessing these fields in future.

A convenience function is given to determine if a link is an external one.

/**

Query whether a link is external to a document (determined by

uri containing a ’:’, intended to match with ’://’ which

separates the scheme from the scheme specific parts in URIs).

*/

int fz_is_external_link(fz_context *ctx, const char *uri);

21.3 Fitz-level Annotations

In the MuPDF universe, the rendered version of a page contains the page con-
tents, overlaid by content from the annotations.

Accordingly, as seen in 8.8, the fitz layer allows page contents and annotations
to be drawn separately using fz run page contents and fz run page annots.

This is currently the sole access provided to annotations using the fitz layer;
to exert finer control, a caller will need to use the PDF level API.

21.4 PDF-level Annotations and Widgets

21.4.1 How to operate at the PDF level

In order to operate on a document at the PDF level, we require a pdf document

pointer. Such a pointer can be obtained from a the fz document pointer, by
using the pdf specifics call.

pdf_document *pdf_specifics(fz_context *ctx, fz_document *doc};

If pdf specifics is called on a non-PDF file, it will return NULL, so callers
can safely check that a given document can be operated on.

Note that pdf specifics does not return a new reference to the docu-
ment; if one is required, callers should pdf keep document as usual and
pdf drop document it later.

CHAPTER 21. ANNOTATIONS, LINKS AND INTERACTION 150

21.4.2 PDF Annotations

Each annotation is attached to a specific area of a page. The annotations
on a page are found by enumerating them one at a time, by first calling
pdf first annot, and then pdf next annot:

/*

pdf_first_annot: Return a pointer to the first annotation on a page.

Does not throw exceptions.

*/

pdf_annot *pdf_first_annot(fz_context *ctx, fz_page *page);

/*

fz_next_annot: Return a pointer to the next annotation on a page.

Does not throw exceptions.

*/

pdf_annot *pdf_next_annot(fz_context *ctx, pdf_annot *annot);

When either of these returns NULL, you have reached the end of the list.

Annotations are reference counted and can be kept and dropped as usual.
It’s important to realise that the references returned by pdf first annot and
pdf next annot are ’borrowed’. That is to say, the ownership of the reference
does not pass back to the caller, and therefore does not need to be dropped.
If the caller wants to keep hold of such a reference for any period of time, it
should ’keep’ the reference and then ’drop’ it later when it has finished with it.

/*

pdf_keep_annot: Take a new reference to an annotation.

*/

pdf_annot *pdf_keep_annot(fz_context *ctx, pdf_annot *annot);

/*

pdf_drop_annot: Drop a reference to an annotation. If the

reference count reaches zero, annot will be destroyed.

*/

void pdf_drop_annot(fz_context *ctx, pdf_annot *annot);

They can also be bounded, by passing a rectangle to pdf bound annot:

/*

pdf_bound_annot: Return the bounding rectangle of the annotation.

Does not throw exceptions.

*/

fz_rect *pdf_bound_annot(fz_context *ctx, pdf_annot *annot, fz_rect

*rect);

CHAPTER 21. ANNOTATIONS, LINKS AND INTERACTION 151

On return, the rectangle is populated with the bounding box of the annotation.

Every annotation has a type, which can be retrieved using:

/*

Return the type of an annotation.

*/

enum pdf_annot_type pdf_annot_type(fz_context *ctx, pdf_annot *annot);

If the type returned is PDF ANNOT WIDGET, then it is a particular subtype of
annotation, known as a widget. Widgets allow a wider range of operations to
be performed on them, described in 21.5.1.

21.4.3 Annotation Values vs Appearances

In general Annotations have both a ’value’ and an ’appearance’. These are
related, but different.

As an example, consider a text annotation. The value of the annotation will
be the text contained in the annotation, coupled with some styling parameters
(perhaps the color to be used for the text). The appearance will be the actual
appearance of that text once laid out with those styles and displayed on the
page.

Similarly, an Ink (or ’freehand’) annotation might have a value that is the list
of points that should be stroked, together with the color of the path, and the
line caps to use. The appearance will be the actual stream of PDF operators
that are used to draw that path with those styles.

In other cases, multiple appearances may be given to an annotation, and the
one used will be selected by the value. In such cases, there are no styles do
not apply, as the appearances are not recreated to take account of them. For
instance, a CheckBox widget will have ’On’ and ’Off’ states, and the PDF viewer
will select between them according to the value.

Very often PDF generators will create an annotation with both value and ap-
pearance set within the file. Naive PDF viewers can then just ignore the value
and display the appearance. Sometimes, however, PDF files are generated with
just the value being set. Accordingly, PDF viewers must ’synthesise’ an appear-
ance from the value in order to have something to display.

Similarly, if an annotation’s value is edited, unless we are in the position of just
choosing between multiple existing appearances, we’ll need to ’resynthesise’ the
appearance. For example, changing the value of a CheckBox widget will not
require resynthesising an appearance, but changing the value of a text field will.

To add to the complexity, changing the value of one field can cause other fields
to change too (consider setting a radio button that unsets the other buttons
grouped with it). This can even cause changes across multiple pages! Accord-

CHAPTER 21. ANNOTATIONS, LINKS AND INTERACTION 152

ingly a mechanism is needed for clients to ask MuPDF what annotations have
changed since they were last rendered.

21.4.4 Updating annotations

Whenever a call is made to change the value of a field (or to pass an ’event’
in, see 21.5.2), the caller needs to check with the document as to which fields
have been updated. Changing one value can potentially change many other field
in the document, possibly on many pages. This can happen by an annotation
being ’grouped’ with others, or even by document level JavaScript ’recalculating’
values anywhere in the document.

The caller thus needs to check for every annotation on every open page whether
it needs to be ’updated’ or not.

This can be done wholesale, by calling pdf update page for each open page. If
this returns true, then the page needs to be redrawn.

If the caller wishes to do finer-grained redraws, it can walk over the an-
notations on a page using pdf first annot and pdf last annot, calling
pdf update annot as it goes. This call will return true for every annotation
that requires redrawing (which can be done using pdf run annot). Care must
be taken to ensure that redraws work properly though, as annotations can over-
lap, and not all of them may be flagged as having been changed.

The updating of annotations on pages that are open (i.e. to which handles are
held) but not visible can be deferred until the page is displayed again.

21.5 PDF Annotation operations

MuPDF provides an extensive API for manipulating annotations within a doc-
ument. Most obviously, they can be created:

/*

create a new annotation of the specified type on the

specified page. Populate it with sensible defaults per the type.

Returns a reference that the caller must drop when finished with it.

*/

pdf_annot *pdf_create_annot(fz_context *ctx, pdf_page *page, enum

pdf_annot_type type);

and destroyed:

/*

Delete an annotation from the page.

This unlinks the annotation from the page structure and drops

the pages reference to it. Any reference held by the caller

CHAPTER 21. ANNOTATIONS, LINKS AND INTERACTION 153

will not be dropped automatically, so this can safely be used

on a borrowed reference.

*/

void pdf_delete_annot(fz_context *ctx, pdf_page *page, pdf_annot *annot);

The exact operations available to work on an annotation depend upon its type,
and can be found in include/mupdf/pdf/annot.h. Which operations can be
called on which annotation depends largely upon its type, which can be found
using:

/*

Return the type of an annotation.

*/

enum pdf_annot_type pdf_annot_type(fz_context *ctx, pdf_annot *annot);

In general, callers can check for the existence of certain parameters using calls
of the form pdf annot has XXX, fetch them using pdf annot XXX, and set them
using pdf annot set XXX.

21.5.1 PDF Widgets

PDF encapsulates a whole range of interactivity into annotations of subtype
Widget. These Widgets are used particularly for form elements and digital
signatures. As such they have a richer set of operations that can be done on
them.

As well as the annotation operations from include/mupdf/pdf/annot.h

there are more operations that can performed, as listed in
include/mupdf/pdf/form.h.

Widgets can be identified by an annotation having type PDF ANNOT WIDGET. The
exact type of widget can then be established by calling:

/*

Return the type of a widget.

*/

enum pdf_widget_type pdf_widget_type(fz_context *ctx, pdf_annot *annot);

21.5.2 Events

PDF offers interactivity that goes far beyond that of simple static pages; by
using JavaScript embedded in the document that triggers according to the inputs
of the user viewing it, it can make documents appear very responsive.

Accordingly, viewers need to tell MuPDF when certain things happen. These
are termed ’Events’.

First off, we have document level events:

CHAPTER 21. ANNOTATIONS, LINKS AND INTERACTION 154

void pdf_document_event_will_close(fz_context *ctx, pdf_document *doc);

void pdf_document_event_will_save(fz_context *ctx, pdf_document *doc);

void pdf_document_event_did_save(fz_context *ctx, pdf_document *doc);

void pdf_document_event_will_print(fz_context *ctx, pdf_document *doc);

void pdf_document_event_did_print(fz_context *ctx, pdf_document *doc);

The viewer should call these at the appropriate times. These actions cannot
’succeed’ or ’fail’, but they can put up appropriate alert boxes via a registered
event callback (see 21.5.3).

There are events at the page level too:

void pdf_page_event_open(fz_context *ctx, pdf_page *page);

void pdf_page_event_close(fz_context *ctx, pdf_page *page);

These should be called when the page is opened and closed, respectively.

There are events at the annotation level too. The first set are related to the
page:

void pdf_annot_event_page_open(fz_context *ctx, pdf_annot *annot);

void pdf_annot_event_page_close(fz_context *ctx, pdf_annot *annot);

void pdf_annot_event_page_visible(fz_context *ctx, pdf_annot *annot);

void pdf_annot_event_page_invisible(fz_context *ctx, pdf_annot *annot);

These should be called when the page containing the annotation is opened, close,
becomes visible, and becomes invisible respectively.

Next, there are a set of annotation level events to do with the users interaction
with a document:

void pdf_annot_event_enter(fz_context *ctx, pdf_annot *annot);

void pdf_annot_event_exit(fz_context *ctx, pdf_annot *annot);

void pdf_annot_event_down(fz_context *ctx, pdf_annot *annot);

void pdf_annot_event_up(fz_context *ctx, pdf_annot *annot);

void pdf_annot_event_focus(fz_context *ctx, pdf_annot *annot);

void pdf_annot_event_blur(fz_context *ctx, pdf_annot *annot);

These are based upon the concept of a user interface with a pointing device
(such as a traditional desktop interface equipped with a mouse). These should
be called when the mouse enters and exits the annotation, when the mouse
button goes down or up on the annotation, and when the annotation gains or
loses focus.

Finally, there are events to do with actively editing text fields. In order to
provide inline editing, we have events that enable keystrokes to be validated
and formatted as they are edited.

As editing begins in a field, we should call a keystroke event as characters arrive:

CHAPTER 21. ANNOTATIONS, LINKS AND INTERACTION 155

typedef struct

{

const char *value;

const char *change;

int selStart, selEnd;

int willCommit;

char *newChange;

char *newValue;

} pdf_keystroke_event;

int pdf_field_event_keystroke(fz_context *ctx, pdf_document *doc,

pdf_obj *field, pdf_keystroke_event *evt);

The handling here is somewhat involved, and is defined (poorly) by Adobe in
their “JavaScript for Acrobat API Reference” document.

On each call, value contains the current value of the field, and change contains
the propose new character(s) to be added. selStart and selEnd describe the
region of value that is currently selected. In the case of no selection selStart

and selEnd should both be set to the caret position within value. Where the
selection is completely undefined selStart and selEnd should both be set to
-1. It is believed that Adobe intends this to mean “the whole of change”.

The proposal therefore is that we would like to insert change between selStart

and selEnd within value to get a new value.

Initially this call is made with willCommit set to 0, and the call made.

The JavaScript (if there is any) will run, and the routine will return 0 or 1.

If 0, then the proposed change is rejected, and the keystroke should be ignored.

If 1, then the JavaScript has deemed that the change can go ahead, using the
updated selStart and selEnd, and the updated values of value and change

returned in newValue and newChange.

The caller should form this updated value, and present it to the user in whatever
form it is doing the editing. Future keystrokes go through the same process until
the user indicates that editing is complete (perhaps by clicking an ’OK’ button
or pressing RETURN).

At this point the proposed ‘final version’ of the is presented to the event again,
this time with value being the string, change being the empty string, selStart
and selEnd both being -1, and willCommit being 1.

The JavaScript will again assess the proposed string (with possibly more strin-
gent tests), and will return 0 or 1.

If it returns 0 then the string is not acceptable. If it returns 1, then the (possibly
updated) version of the string in newValue should be used.

CHAPTER 21. ANNOTATIONS, LINKS AND INTERACTION 156

21.5.3 Event Callback

As part of executing the JavaScript within a document, the JavaScript engine
within MuPDF can need to call out to the environment for help. This is achieved
by the user of MuPDF registering an ‘Event Callback’.

Such a callback is registered using:

void pdf_set_doc_event_callback(fz_context *ctx, pdf_document *doc,

pdf_doc_event_cb *event_cb, pdf_free_doc_event_data_cb

*free_event_data_cb, void *data);

The user of MuPDF should call this to provide a suitable event cb handler
function that will be called to handle a range of events. The opaque data value
will be passed in each time, and will be freed on closedown of the library by a
call to free event data cb.

The callback event encapsulates a range of scenarios:

enum

{

PDF_DOCUMENT_EVENT_ALERT,

PDF_DOCUMENT_EVENT_PRINT,

PDF_DOCUMENT_EVENT_LAUNCH_URL,

PDF_DOCUMENT_EVENT_MAIL_DOC,

PDF_DOCUMENT_EVENT_SUBMIT,

PDF_DOCUMENT_EVENT_EXEC_MENU_ITEM,

};

It is envisaged that the callback handler will check the type field of the supplied
pdf doc event structure, and behave accordingly.

For each event type there is a function to get the event specific data. For
instance, for alert events, it would be:

/*

access the details of an alert event

The returned pointer and all the data referred to by the

structure are owned by mupdf and need not be freed by the

caller.

*/

pdf_alert_event *pdf_access_alert_event(fz_context *ctx, pdf_doc_event

*evt);

Note that the execution will be stalled until this function returns, and there is
currently no way to return which button of an alert was pressed. This is a flaw,
but is not easy to fix. As such alerts are useful mainly for showing errors ’after
the fact’.

For details of other events see include/mupdf/pdf/event.h.

Part II

MuPDF Internals

157

Chapter 22

The Image interface

22.1 Overview

Images are ubiquitous in document formats, and come in a huge variety of
formats, ranging from full colour to monochrome, compressed to uncompressed,
large to small. The ability to efficiently represent and decode 2d arrays of pixels
is vital.

MuPDF represents images using an abstract type, fz image. This takes the
form of a base class, upon which different implementations can be built. All
fz images are reference counted, using the standard fz keep and fz drop con-
ventions:

/*

fz_drop_image: Drop a reference to an image.

image: The image to drop a reference to.

*/

void fz_drop_image(fz_context *ctx, fz_image *image);

/*

fz_keep_image: Increment the reference count of an image.

image: The image to take a reference to.

Returns a pointer to the image.

*/

fz_image *fz_keep_image(fz_context *ctx, fz_image *image);

The key operation required is to be able to request a decoded version of a
subarea of that image (yielding a fz pixmap), suitable for rendering at a given
size:

158

CHAPTER 22. THE IMAGE INTERFACE 159

/*

fz_get_pixmap_from_image: Called to get a handle to a pixmap from an

image.

image: The image to retrieve a pixmap from.

subarea: The subarea of the image that we actually care about (or

NULL

to indicate the whole image).

trans: Optional, unless subarea is given. If given, then on entry

this is

the transform that will be applied to the complete image. It should

be

updated on exit to the transform to apply to the given subarea of the

image. This is used to calculate the desired width/height for

subsampling.

w: If non-NULL, a pointer to an int to be updated on exit to the

width (in pixels) that the scaled output will cover.

h: If non-NULL, a pointer to an int to be updated on exit to the

height (in pixels) that the scaled output will cover.

Returns a non NULL pixmap pointer. May throw exceptions.

*/

fz_pixmap *fz_get_pixmap_from_image(fz_context *ctx, fz_image *image,

const fz_irect *subarea, fz_matrix *trans, int *w, int *h);

Frequently this will involve decoding the image from its source data, so should
be considered a potentially expensive call, both in terms of CPU time, and
memory usage.

To minimise the impact of such decodes, fz images make use of the Store (see
chapter 7 Memory Management and The Store) to cache decoded versions in.
This means that (subject to enough memory being available) repeated calls to
get a fz pixmap from the same fz image (with the same parameters) will return
the same fz pixmap each time, with no further decode being required.

The usual reference counting behaviour applies to fz images, with
fz keep image and fz drop image claiming and releasing references respec-
tively.

Depending on the size at which a fz image is to be used, it may not be worth
decoding it at full resolution; instead, decoding it at a smaller size can save
memory (and frequently time). In addition, subsequent rendering operations
can often be faster due to having to handle fewer pixels for no quality loss in
the final output.

To facilitate this, fz images will subsample images as appropriate. Subsampling

CHAPTER 22. THE IMAGE INTERFACE 160

involves an image being decoded to a size an integer power of 2 smaller than
their native size. For instance, if an image has a native size of 400x300, and is to
be rendered to a final size of 40x30, fz get pixmap from image may subsample
the returned image by up to 8 in each direction, resulting in a 50x37 image.

Subsequent operations (such as smooth scaling and rendering) will proceed much
faster due to fewer pixels being involved, and around one sixteenth of the mem-
ory will be required.

Many images have a resolution encoded within them. This may or may not be
honoured in the way they are positioned on the page, and it will certainly not
be honoured when zooming is taken into account, but for some operations it is
useful to be able to request it.

/*

fz_image_resolution: Request the natural resolution

of an image.

xres, yres: Pointers to ints to be updated with the

natural resolution of an image (or a sensible default

if not encoded).

*/

void fz_image_resolution(fz_image *image, int *xres, int *yres);

If no resolution is specified within the image, sensible defaults are returned.

A key ability of fz images is that they are automatically cached in the fz store

when decoded - repeated requests for pixmaps from the same image will (not
necessarily) require the image to be decoded again and again.

22.2 Standard Image Types

22.2.1 Compressed

The most common type of fz image is fz compressed image - that is, an image
based upon a fz buffer of data in a standard compressed format, such as JPEG,
PNG, TIFF, and others.

With such images, the data is held in a fz compressed buffer:

typedef struct fz_compressed_buffer_s

{

fz_compression_params params;

fz_buffer *buffer;

} fz_compressed_buffer;

The data is held in the buffer field, and the details of the compression used are
given in the params field, of type fz compression params:

CHAPTER 22. THE IMAGE INTERFACE 161

struct fz_compression_params_s

{

int type;

union {

struct {

int color_transform; /* Use -1 for unset */

} jpeg;

struct {

int smask_in_data;

} jpx;

struct {

int columns;

int rows;

int k;

int end_of_line;

int encoded_byte_align;

int end_of_block;

int black_is_1;

int damaged_rows_before_error;

} fax;

struct

{

int columns;

int colors;

int predictor;

int bpc;

}

flate;

struct

{

int columns;

int colors;

int predictor;

int bpc;

int early_change;

} lzw;

} u;

};

The choice of which of the union clauses is used is made by the type field:

enum

{

FZ_IMAGE_UNKNOWN = 0,

/* Uncompressed samples */

FZ_IMAGE_RAW,

/* Compressed samples */

CHAPTER 22. THE IMAGE INTERFACE 162

FZ_IMAGE_FAX,

FZ_IMAGE_FLATE,

FZ_IMAGE_LZW,

FZ_IMAGE_RLD,

/* Full image formats */

FZ_IMAGE_BMP,

FZ_IMAGE_GIF,

FZ_IMAGE_JPEG,

FZ_IMAGE_JPX,

FZ_IMAGE_JXR,

FZ_IMAGE_PNG,

FZ_IMAGE_PNM,

FZ_IMAGE_TIFF,

};

To determine if a fz image is a compressed image, call:

/*

fz_compressed_image_buffer: Retrieve the underlying compressed

data for an image.

Returns a pointer to the underlying data buffer for an image,

or NULL if this image is not based upon a compressed data

buffer.

This is not a reference counted structure, so no reference is

returned. Lifespan is limited to that of the image itself.

*/

fz_compressed_buffer *fz_compressed_image_buffer(fz_context *ctx,

fz_image *image);

The easiest way to tell if an image is a compressed image is to request its
underlying buffer. If it returns NULL, you know it is not this sort of image.

22.2.2 Decoded

The next most common type of image is based upon a decoded fz pixmap.
These are generally only used if the pixmap takes less storage than the com-
pressed data would.

/*

fz_pixmap_image_tile: Retried the underlying fz_pixmap

for an image.

Returns a pointer to the underlying fz_pixmap for an image,

or NULL if this image is not based upon an fz_pixmap.

No reference is returned. Lifespan is limited to that of

CHAPTER 22. THE IMAGE INTERFACE 163

the image itself. If required, use fz_keep_pixmap to take

a reference to keep it longer.

*/

fz_pixmap *fz_pixmap_image_tile(fz_context *ctx, fz_pixmap_image *cimg);

The easiest way to tell if an image is a decoded image is to request its underlying
tile. If it returns NULL, you know it is not this sort of image.

22.2.3 Display List

The final standard sort of image in MuPDF (though more types may of course
be added in future) is that based upon a display list.

We use this to easily embed one file format within another. For example, EPUB
files frequently contain SVG images for title pages. We open the SVG image as
a separate document, run it to a display list, and close the document. We can
then create an image from the display list, and use this in the HTML flow of
the EPUB document.

These images maintain the properties of the original (vector-based) document
in that they remain scalable even after conversion to an image.

22.3 Creating Images

To create an image from a standard type, simply call the appropriate function.
For example, if you have a fz buffer with the source data:

/*

fz_new_image_from_buffer: Create a new image from a

buffer of data, inferring its type from the format

of the data.

*/

fz_image *fz_new_image_from_buffer(fz_context *ctx, fz_buffer *buffer);

If the data is in a file, use:

/*

fz_image_from_file: Create a new image from the contents

of a file, inferring its type from the format of the

data.

*/

fz_image *fz_new_image_from_file(fz_context *ctx, const char *path);

This loads the data into memory, and calls fz new image from buffer inter-
nally.

If the data cannot be recognised from its header, and more information is re-
quired, then the data can be formed in a fz compressed buffer, and an image

CHAPTER 22. THE IMAGE INTERFACE 164

created with:

/*

fz_new_image_from_compressed_buffer: Create an image based on

the data in the supplied compressed buffer.

w,h: Width and height of the created image.

bpc: Bits per component.

colorspace: The colorspace (determines the number of components,

and any color conversions required while decoding).

xres, yres: The X and Y resolutions respectively.

interpolate: 1 if interpolation should be used when decoding

this image, 0 otherwise.

imagemask: 1 if this is an imagemask (i.e. transparent), 0

otherwise.

decode: NULL, or a pointer to to a decode array. The default

decode array is [0 1] (repeated n times, for n color components).

colorkey: NULL, or a pointer to a colorkey array. The default

colorkey array is [0 255] (repeatd n times, for n color

components).

buffer: Buffer of compressed data and compression parameters.

Ownership of this reference is passed in.

mask: NULL, or another image to use as a mask for this one.

Supplying a masked image as a mask to another image is

illegal!

*/

fz_image *fz_new_image_from_compressed_buffer(fz_context *ctx, int w,

int h, int bpc, fz_colorspace *colorspace, int xres, int yres, int

interpolate, int imagemask, float *decode, int *colorkey,

fz_compressed_buffer *buffer, fz_image *mask);

Finally, if we have a decoded fz pixmap, we can form a new image from it:

/*

fz_new_image_from_pixmap: Create an image from the given

pixmap.

pixmap: The pixmap to base the image upon. A new reference

to this is taken.

mask: NULL, or another image to use as a mask for this one.

CHAPTER 22. THE IMAGE INTERFACE 165

A new reference is taken to this image. Supplying a masked

image as a mask to another image is illegal!

*/

fz_image *fz_new_image_from_pixmap(fz_context *ctx, fz_pixmap *pixmap,

fz_image *mask);

22.4 Implementing an Image Type

Should it be necessary, support for new types of image can be implemented
fairly simply, by defining a structure derived from a fz image. Perhaps:

typedef struct

{

fz_image super;

<foo specific fields>

} foo_image;

Then we’d define a new image creation function, fz new image from foo, of the
form:

fz_image *fz_new_image_from_foo(fz_context *ctx, <foo specific

parameters>) {

foo_image *foo = fz_new_image(ctx, ..., foo_image, foo_get,

foo_size, foo_drop);

if (!foo)

return NULL;

<initialise foo specific fields from foo specific parameters>

return &foo->super;

}

The key call here is the call to fz new image. This is a macro which wraps a
call to fz new image of size:

/*

fz_new_image_of_size: Internal function to make a new fz_image

structure for a derived class.

w,h: Width and height of the created image.

bpc: Bits per component.

colorspace: The colorspace (determines the number of components,

and any color conversions required while decoding).

xres, yres: The X and Y resolutions respectively.

CHAPTER 22. THE IMAGE INTERFACE 166

interpolate: 1 if interpolation should be used when decoding

this image, 0 otherwise.

imagemask: 1 if this is an imagemask (i.e. transparent), 0

otherwise.

decode: NULL, or a pointer to to a decode array. The default

decode array is [0 1] (repeated n times, for n color components).

colorkey: NULL, or a pointer to a colorkey array. The default

colorkey array is [0 255] (repeatd n times, for n color

components).

mask: NULL, or another image to use as a mask for this one.

A new reference is taken to this image. Supplying a masked

image as a mask to another image is illegal!

size: The size of the required allocated structure (the size of

the derived structure).

get: The function to be called to obtain a decoded pixmap.

get_size: The function to be called to return the storage size

used by this image.

drop: The function to be called to dispose of this image once

the last reference is dropped.

Returns a pointer to an allocated structure of the required size,

with the first sizeof(fz_image) bytes initialised as appropriate

given the supplied parameters, and the other bytes set to zero.

*/

fz_image *fz_new_image_of_size(fz_context *ctx, int w, int h, int bpc,

fz_colorspace *colorspace, int xres, int yres, int interpolate, int

imagemask, float *decode, int *colorkey, fz_image *mask, int size,

fz_image_get_pixmap_fn *get, fz_image_get_size_fn *get_size,

fz_drop_image_fn *drop);

#define fz_new_image(CTX,W,H,B,CS,X,Y,I,IM,D,C,M,T,G,S,Z) \

((T*)Memento_label(fz_new_image_of_size(CTX,W,H,B,CS,X,Y,I,IM,\

D,C,M,sizeof(T),G,S,Z),#T))

The macro takes identical parameters to the function other than passing the
structure type in place of the structure type saved, and performing a typecast
to simplify the typical enclosing code.

Both function and macro take pointers to 3 functions that need to be defined
for the new format. Firstly, foo get is of the following type:

CHAPTER 22. THE IMAGE INTERFACE 167

/*

fz_get_pixmap_fn: Function type to get a decoded pixmap

for an image.

im: The image to decode.

subarea: NULL, or the subarea of the image required. Expressed

in terms of a rectangle in the original width/height of the

image. If non NULL, this should be updated by the function to

the actual subarea decoded - which must include the requested

area!

w, h: The actual width and height that the whole image would

need to be decoded to.

l2factor: On entry, the log 2 subsample factor required. If

possible the decode process can take care of (all or some) of

this subsampling, and must then update the value so the caller

knows what remains to be done.

Returns a reference to a decoded pixmap that satisfies the

requirements of the request.

*/

typedef fz_pixmap *(fz_image_get_pixmap_fn)(fz_context *ctx,

fz_image *im,

fz_irect *subarea,

int w, int h,

int *l2factor);

Secondly, foo get size will be of type:

/*

fz_image_get_size_fn: Function type to get the given storage

size for an image.

Returns the size in bytes used for a given image.

*/

typedef size_t (fz_image_get_size_fn)(fz_context *, fz_image *);

Finally, foo drop will be of type:

/*

fz_drop_image_fn: Function type to destroy an images data

when it’s reference count reaches zero.

*/

typedef void (fz_drop_image_fn)(fz_context *ctx, fz_image *image);

The actual deallocation of the fz image block and its associated resources will
be done on return from this function. The fz drop image fn is responsible

CHAPTER 22. THE IMAGE INTERFACE 168

just for deallocating its implementation specific resources (i.e. the contents of
foo image rather than fz image).

22.5 Image Caching

While caching of decoded images happens automatically within MuPDF, it is
perhaps worth saying a small amount about it.

Whenever a decoded image is requested, MuPDF searches in the store (see
chapter 7 Memory Management and The Store) to see if a suitable pixmap
exists there already. If one is found, the store remembers that is has been
reused, and returned immediately - no decoding is done.

If no suitable pixmap is found, MuPDF calculates how large the image would
be on a rendered page. By comparing this size to the native size of the image,
it calculates a log 2 subsampling factor to use. That is, it attempts to avoid
decoding the image at full size, when one 1/2 (or 1/4 etc) of the width/height
would do.

A log 2 subsampling is used because a) some compression formats such as JPEG
can achieve this as part of their decompression run, and b) it is easy to rapidly
shrink decompressed pixmaps in this way.

The decoded and subsampled image is then placed into the store so that it will
(hopefully) be found the next time a decode of the image is requested.

Chapter 23

The Document Handler
interface

23.1 Overview

MuPDF is written as an extensible framework for handling different document
types. Each different document format provides a fz document handler struc-
ture that provides the required callbacks to recognise and open files of its sup-
ported type. For example:

extern fz_document_handler pdf_document_handler;

extern fz_document_handler xps_document_handler;

extern fz_document_handler svg_document_handler;

...

At startup, the calling program must register the required document han-
dlers. It can either register them each individually, by repeatedly calling
fz register document handler:

/*

fz_register_document_handler: Register a handler

for a document type.

handler: The handler to register.

*/

void fz_register_document_handler(fz_context *ctx, const

fz_document_handler *handler);

For example:

fz_register_document_handler(ctx, &pdf_document_handler);

169

CHAPTER 23. THE DOCUMENT HANDLER INTERFACE 170

fz_register_document_handler(ctx, &xps_document_handler);

fz_register_document_handler(ctx, &svg_document_handler);

...

or, it can use a convenience function to register all the standard handlers enabled
in a given build:

/*

fz_register_document_handler: Register handlers

for all the standard document types supported in

this build.

*/

void fz_register_document_handlers(fz_context *ctx);

23.2 Implementing a Document Handler

23.2.1 Recognize and Open

To implement a new document handler, a new fz document handler structure
is required. There are 3 components to such a structure, all function pointers:

typedef struct fz_document_handler_s

{

fz_document_recognize_fn *recognize;

fz_document_open_fn *open;

fz_document_open_with_stream_fn *open_with_stream;

} fz_document_handler;

The first is a function to recognize a document from a magic string, typically a
mimetype or a filename:

/*

fz_document_recognize_fn: Recognize a document type from

a magic string.

magic: string to recognise - typically a filename or mime

type.

Returns a number between 0 (not recognized) and 100

(fully recognized) based on how certain the recognizer

is that this is of the required type.

*/

typedef int (fz_document_recognize_fn)(fz_context *ctx, const char

*magic);

The second is a function to open a document from a filename:

CHAPTER 23. THE DOCUMENT HANDLER INTERFACE 171

/*

fz_document_open_fn: Function type to open a document from a

file.

filename: file to open

Pointer to opened document. Throws exception in case of error.

*/

typedef fz_document *(fz_document_open_fn)(fz_context *ctx, const char

*filename);

This function can permissibly be NULL, as it can be synthesized automatically
from the third entry, a function to open a document from a stream:

/*

fz_document_open_with_stream_fn: Function type to open a

document from a file.

stream: fz_stream to read document data from. Must be

seekable for formats that require it.

Pointer to opened document. Throws exception in case of error.

*/

typedef fz_document *(fz_document_open_with_stream_fn)(fz_context *ctx,

fz_stream *stream);

To create a fz document use the fz new document macro. For a document of
type foo, typically a foo document structure would be defined as below:

typedef struct

{

fz_document super;

<foo specific fields>

} foo_document;

This would then be created using a call to fz new document, such as:

foo_document *foo = fz_new_document(ctx, foo_document);

This returns an empty document structure with super populated with default
values, and the foo specific fields initialized to 0. The document handler then
needs to fill in the document level functions.

23.2.2 Document Level Functions

The fz document structure contains a list of functions used to implement the
document level calls:

CHAPTER 23. THE DOCUMENT HANDLER INTERFACE 172

typedef struct fz_document_s

{

int refs;

fz_document_drop_fn *drop_document;

fz_document_needs_password_fn *needs_password;

fz_document_authenticate_password_fn *authenticate_password;

fz_document_has_permission_fn *has_permission;

fz_document_load_outline_fn *load_outline;

fz_document_layout_fn *layout;

fz_document_make_bookmark_fn *make_bookmark;

fz_document_lookup_bookmark_fn *lookup_bookmark;

fz_document_resolve_link_fn *resolve_link;

fz_document_count_pages_fn *count_pages;

fz_document_load_page_fn *load_page;

fz_document_lookup_metadata_fn *lookup_metadata;

int did_layout;

int is_reflowable;

} fz_document;

Implementations must fill in the drop document field, with a pointer to a func-
tion called to free any resources help by the document when the reference count
drops to 0. In the unlikely event that your implementation has no resources,
this field can be left NULL.

/*

fz_document_drop_fn: Called when the reference count for

the fz_document drops to 0. The implementation should

release any resources held by the document. The actual

document pointer will be freed by the caller.

*/

typedef void (fz_document_drop_fn)(fz_context *ctx, fz_document *doc);

If your document handler is capable of handling password protected documents,
then you must fill in the needs password field with a pointer to a function called
to enquire whether a given document needs a password:

/*

fz_document_needs_password_fn: Type for a function to be

called to enquire whether the document needs a password

or not. See fz_needs_password for more information.

*/

typedef int (fz_document_needs_password_fn)(fz_context *ctx, fz_document

*doc);

If your document handler is capable of handling password protected documents,
then you must fill in the authenticate password field with a pointer to a
function called to attempt to authenticate a password:

CHAPTER 23. THE DOCUMENT HANDLER INTERFACE 173

/*

fz_document_authenticate_password_fn: Type for a function to be

called to attempt to authenticate a password. See

fz_authenticate_password for more information.

*/

typedef int (fz_document_authenticate_password_fn)(fz_context *ctx,

fz_document *doc, const char *password);

Certain document types encode permissions within them to say what users are
allowed to do with them (printing, extracting etc). If your document handler’s
format has this concept, then you must fill in the has permission field with a
pointer to a function called to attempt to query such permissions:

/*

fz_document_has_permission_fn: Type for a function to be

called to see if a document grants a certain permission. See

fz_document_has_permission for more information.

*/

typedef int (fz_document_has_permission_fn)(fz_context *ctx, fz_document

*doc, fz_permission permission);

Certain document types can optionally include outline (table of contents) infor-
mation within them. If your document handler’s format has this concept, then
you must fill in the load outline field with a pointer to a function called to
attempt to load such information if it is there:

/*

fz_document_load_outline_fn: Type for a function to be called to

load the outlines for a document. See fz_document_load_outline

for more information.

*/

typedef fz_outline *(fz_document_load_outline_fn)(fz_context *ctx,

fz_document *doc);

If your document format requires a layout pass before it can be viewed, then
you must fill in the layout field with a pointer to a function called to perform
such a layout:

/*

fz_document_layout_fn: Type for a function to be called to lay

out a document. See fz_layout_document for more information.

*/

typedef void (fz_document_layout_fn)(fz_context *ctx, fz_document *doc,

float w, float h, float em);

If your document requires a layout pass, you should provide functions to both
make and resolve bookmarks to enable reader positions to be kept over layout
changes. Accordingly the make bookmark and lookup bookmark fields should

CHAPTER 23. THE DOCUMENT HANDLER INTERFACE 174

be filled out:

/*

fz_document_make_bookmark_fn: Type for a function to make

a bookmark. See fz_make_bookmark for more information.

*/

typedef fz_bookmark (fz_document_make_bookmark_fn)(fz_context *ctx,

fz_document *doc, int page);

/*

fz_document_lookup_bookmark_fn: Type for a function to lookup

a bookmark. See fz_lookup_bookmark for more information.

*/

typedef int (fz_document_lookup_bookmark_fn)(fz_context *ctx,

fz_document *doc, fz_bookmark mark);

Some document formats can encode internal links that point to another page
in the document. If your document supports this concept, then you must fill in
the resolve link field with a pointer to a function called to resolve a textual
link to a page number, and location on that page:

/*

fz_document_resolve_link_fn: Type for a function to be called to

resolve an internal link to a page number. See fz_resolve_link

for more information.

*/

typedef int (fz_document_resolve_link_fn)(fz_context *ctx, fz_document

*doc, const char *uri, float *xp, float *yp);

All document formats must fill in the count pages field with a pointer to a
function called to return the number of pages in a document:

/*

fz_document_count_pages_fn: Type for a function to be called to

count the number of pages in a document. See fz_count_pages for

more information.

*/

typedef int (fz_document_count_pages_fn)(fz_context *ctx, fz_document

*doc);

Different document formats encode different types of metadata. We therefore
have an extensible function to allow such data to be queried. If your document
handler wishes to support this, then the lookup metadata field must be filled
in with a pointer to a function to perform such lookups:

/*

fz_document_lookup_metadata_fn: Type for a function to query

a documents metadata. See fz_lookup_metadata for more

information.

CHAPTER 23. THE DOCUMENT HANDLER INTERFACE 175

*/

typedef int (fz_document_lookup_metadata_fn)(fz_context *ctx,

fz_document *doc, const char *key, char *buf, int size);

All document formats must fill in the load page field with a pointer to a function
called to return a reference to a fz page structure:

/*

fz_document_load_page_fn: Type for a function to load a given

page from a document. See fz_load_page for more information.

*/

typedef fz_page *(fz_document_load_page_fn)(fz_context *ctx, fz_document

*doc, int number);

To create a fz page use the fz new page macro. For a document of type foo,
typically a foo page structure would be defined as below:

typedef struct

{

fz_page super;

<foo specific fields>

} foo_page;

This would then be created using a call to fz new page, such as:

foo_page *foo = fz_new_page(ctx, foo_page);

This returns an empty document structure with super populated with default
values, and the foo specific fields initialized to 0. The document handler imple-
mentation then needs to fill in the page level functions.

23.2.3 Page Level Functions

The fz page structure contains a list of functions used to implement the page
level calls:

typedef struct fz_page_s

{

int refs;

fz_page_drop_page_fn *drop_page;

fz_page_bound_page_fn *bound_page;

fz_page_run_page_contents_fn *run_page_contents;

fz_page_load_links_fn *load_links;

fz_page_first_annot_fn *first_annot;

fz_page_page_presentation_fn *page_presentation;

fz_page_control_separation_fn *control_separation;

fz_page_separation_disabled_fn *separation_disabled;

fz_page_count_separations_fn *count_separations;

CHAPTER 23. THE DOCUMENT HANDLER INTERFACE 176

fz_page_get_separation_fn *get_separation;

} fz_page;

The fz page (and hence derived foo page) structures are reference counted.
The refs field is used to keep the reference count in. All the reference counting
is handled by the core library, and all that is required of the implementation is
that it should supply a drop page function that will be called when the reference
count reaches zero. This is of type:

/*

fz_page_drop_page_fn: Type for a function to release all the

resources held by a page. Called automatically when the

reference count for that page reaches zero.

*/

typedef void (fz_page_drop_page_fn)(fz_context *ctx, fz_page *page);

Implementations must fill in the bound page field with the address of a function
to return the pages bounding box, of type:

/*

fz_page_bound_page_fn: Type for a function to return the

bounding box of a page. See fz_bound_page for more

information.

*/

typedef fz_rect *(fz_page_bound_page_fn)(fz_context *ctx, fz_page *page,

fz_rect *);

Implementations must fill in the run page contents field with the address of a
function to interpret the contents of a page, of type:

/*

fz_page_run_page_contents_fn: Type for a function to run the

contents of a page. See fz_run_page_contents for more

information.

*/

typedef void (fz_page_run_page_contents_fn)(fz_context *ctx, fz_page

*page, fz_device *dev, const fz_matrix *transform, fz_cookie

*cookie);

If a document format supports internal or external hyperlinks, then its imple-
mentation must fill in the load links field with the address of a function to
load the links from a page, of type:

/*

fz_page_load_links_fn: Type for a function to load the links

from a page. See fz_load_links for more information.

*/

typedef fz_link *(fz_page_load_links_fn)(fz_context *ctx, fz_page *page);

CHAPTER 23. THE DOCUMENT HANDLER INTERFACE 177

If a document format supports annotations, then its implementation must fill
in the first annot field with the address of a function to load the annotations
from a page, of type:

/*

fz_page_first_annot_fn: Type for a function to load the

annotations from a page. See fz_first_annot for more

information.

*/

typedef fz_annot *(fz_page_first_annot_fn)(fz_context *ctx, fz_page

*page);

Some document formats can encode information that specifies how pages should
be presented to the user as a slideshow - how long they should be displayed, and
which transition to use when moving to the next page etc. In implementations of
document handlers for such formats, they should fill in the page presentation

field with the address of a function to obtain this information, of type:

/*

fz_page_page_presentation_fn: Type for a function to

obtain the details of how this page should be presented when

in presentation mode. See fz_page_presentation for more

information.

*/

typedef fz_transition *(fz_page_page_presentation_fn)(fz_context *ctx,

fz_page *page, fz_transition *transition, float *duration);

Some document formats can encapsulate multiple color separations. In or-
der to allow proofing of such formats, MuPDF allows such separations to be
enumerated and enabled/disabled. In document handlers for such document
formats, the control separation, separation disabled, count separations

and get separation fields should be filled in with functions of the following
types respectively:

/*

fz_page_control_separation: Type for a function to enable/

disable separations on a page. See fz_control_separation for

more information.

*/

typedef void (fz_page_control_separation_fn)(fz_context *ctx, fz_page

*page, int separation, int disable);

/*

fz_page_separation_disabled_fn: Type for a function to detect

whether a given separation is enabled or disabled on a page.

See fz_separation_disabled for more information.

*/

typedef int (fz_page_separation_disabled_fn)(fz_context *ctx, fz_page

CHAPTER 23. THE DOCUMENT HANDLER INTERFACE 178

*page, int separation);

/*

fz_page_count_separations_fn: Type for a function to count

the number of separations on a page. See fz_count_separations

for more information.

*/

typedef int (fz_page_count_separations_fn)(fz_context *ctx, fz_page

*page);

/*

fz_page_get_separation_fn: Type for a function to retrieve

details of a separation on a page. See fz_get_separation

for more information.

*/

typedef const char *(fz_page_get_separation_fn)(fz_context *ctx, fz_page

*page, int separation, uint32_t *rgb, uint32_t *cmyk);

23.3 Standard Document Handlers

MuPDF contains a range of document handlers for different formats. Which
of these are built/enabled by default depends on configuration options in the
include/mupdf/fitz/config.h file. See chapter 20 Build configuration for
more information.

23.3.1 PDF

Support for PDF (Portable Document Format) is provided by
pdf document handler. All current versions at the time of writing (i.e
up to and including PDF 2.0) are supported.

MuPDF contains functionality to allow deeper access to the contents and struc-
ture of a PDF file than is exposed through the standard fz prefixed functions,
by using pdf prefixed functions.

The library provides a pdf specifics function to safely promote a fz document

pointer to a pdf document pointer. This will return NULL if the document is
not a PDF, indicating that the pdf functions cannot be used.

23.3.2 XPS

Support for XPS (Open XML Paper Specification) is provided by
xps document handler. All current versions at the time of writing are sup-
ported.

CHAPTER 23. THE DOCUMENT HANDLER INTERFACE 179

23.3.3 EPUB

Support for EPUB v2 is provided by epub document handler. Tables are not
currently supported, but is planned. Support for v3 is not planned.

The same document handler supports the FB2 (Fiction Book 2) electronic book
format.

23.3.4 HTML

Support for basic HTML + simple CSS is provided by
htdoc document handler. Tables are not currently supported, but is
planned.

23.3.5 SVG

Support for SVG (Scalable Vector Graphics) is provided by
svg document handler. Support is incomplete, but sufficient for many
files.

23.3.6 Image

Support for a range of common image types (including PNG, JPEG, TIFF,
JPEG2000, BMP and GIF) is provided by image document handler.

23.3.7 CBZ

Support for CBZ (Comic Book Archive) format is provided by
cbz document handler. This supports files in .zip or .tar format.

Chapter 24

Store Internals

24.1 Overview

In chapter 7 Memory Management and The Store we introduced the concept
of the Store, and its use in getting the most out of the available memory of
a system. Here we explain the implementation, so document handler authors
(and application programmers) can make use of the same mechanism.

24.2 Implementation

These keep and drop calls for simple objects are generally implemented by using
one of a set of standard functions. There are a range of these, depending on
the expected size of the reference counts, and all handle the locking required to
ensure thread safety:

void *fz_keep_imp(fz_context *ctx, void *p, int *refs);

void *fz_keep_imp8(fz_context *ctx, void *p, int8_t *refs);

void *fz_keep_imp16(fz_context *ctx, void *p, int16_t *refs);

int fz_drop_imp(fz_context *ctx, void *p, int *refs);

int fz_drop_imp8(fz_context *ctx, void *p, int8_t *refs);

int fz_drop_imp16(fz_context *ctx, void *p, int16_t *refs);

As an example, a fz path structure is defined as:

typedef struct {

int8_t refs;

} fz_path;

and thus appropriate keep and drop functions can be defined simply:

fz_path *fz_keep_path(fz_context *ctx, fz_path *path)

180

CHAPTER 24. STORE INTERNALS 181

{

return fz_keep_imp8(ctx, &path->refs);

}

void fz_drop_path(fz_context *ctx, fz_path *path)

{

if (!fz_drop_imp8(ctx, &path->refs))

return;

/* code to free the contents of the path structure */

...

}

More complex variations of these functions are available to cope with ‘storable’
objects, and still more complex versions to cope with ‘key storable’ objects -
these are explained in the following sections.

However they are implemented, these objects all look basically the same to most
users - they can simply be ‘kept’ and ‘dropped’ as required.

24.3 Reference Counting

As mentioned above, most MuPDF objects are reference counted. This means
that on creation (typically with a fz new ... call), they have a reference count
of 1. Think of these object pointers as ‘handles’.

In the event that a fz new ... call fails (perhaps due to running out of mem-
ory), then it will tidy up any partially constructed object(s) before throwing an
exception.

If a ‘copy’ of the object is required, a new handle can be generated using the
appropriate fz keep ... call. This is a very low cost operation that just
involves incrementing the reference count, so no physical copying of the data is
involved. Accordingly it is vital that objects that have multiple handles do not
have their contents altered.

Once a reference is finished with, it should be disposed of using the appropriate
fz drop ... call. This is true regardless of whether the handle was created by
a fz new ... or a fz keep ... call. This drops the reference count by 1.

Once the reference count hits 0, the storage used by the object is freed.

It is a matter of design that no fz drop ... (or fz free) call ever throws an
exception. Furthermore, all such ‘destructor’ calls must accept a NULL pointer
(and do nothing). This vastly simplifies error handling in most cases.

As an implementation detail, certain objects within MuPDF are allocated stat-
ically and have a reference count of -1. Any negative values are unaffected by
reference counting operations, and will never be freed. Nonetheless, these should
be treated exactly as normal objects and kept/dropped as usual.

CHAPTER 24. STORE INTERNALS 182

It is up to the developer to choose which size of storage to use for the reference
count, remembering that the MuPDF counting routines do not detect overflow.
If someone takes more than 127 references to an object built upon an int8 t,
for example, the reference counting routines will believe that it is a static object,
and it will never be freed.

24.4 Scavenging memory allocator

All allocations within MuPDF (and its sub-libraries) call fz malloc and family.
These functions ultimately call down to the custom allocator functions passed
into the fz new context call (or to malloc and family if no custom allocators
were supplied). (See chapter 5 The Context for details).

If a call to the underlying custom allocator fails, MuPDF will automatically seek
to evict the least recently used objects from the store that are not currently being
used, and then will retry the allocation. This can happen several times, with
more and more objects being freed between each attempt.

Allocation failures are therefore only fatal to MuPDF if there are no remaining
objects to be freed in the store.

This ‘just in time’ scavenging of memory means that the store limit can safely
be set to a high level (or to be unlimited), and MuPDF will still operate within
safe bounds.

24.5 Using the Store

24.5.1 Overview

Every “storable piece of information” in MuPDF is held in a data structure that
begins with a fz storable structure. Rather than repeatedly say “a storable
piece of information”, we shall henceforth just say “a fz storable”.

MuPDF uses reference counting for most of its data structures (see section 24.3
Reference Counting), and fz storables are no exception.

The objects in the Store are held in a chain according to when they were last
used. Whenever an object is ‘used’, it is moved to the head of the chain.
Whenever we need to evict an object from the Store to make room, we therefore
discard objects from the tail of the chain. In this way frequently used objects
are kept around, while rarely used ones are discarded in preference.

Whenever MuPDF needs to use a fz storable, it first checks to see if there is
one in the Store already. It does this by forming a unique ‘key’ and scanning
the Store for an object of a given type, with that key. If the object exists within
the Store, the fact that the object has been used is noted (i.e. it is moved to
the front of the usage chain), a reference is taken, and returned to the caller.

CHAPTER 24. STORE INTERNALS 183

If no reference is returned, the code creates its own version of the fz storable.
It calculates its size, and puts it into the Store, together with the same key as
before. The Store takes a reference to the object, links it into its data structure,
and updates its running total of the size of all the objects within it.

If placing a new object into the Store would take it over the limit, it runs through
and looks for the least recently used objects to evict to bring the limit down.
In order for an object to be considered for eviction, their refcount must be 1.
We know that the Store is holding 1 reference to the object - if anything else is,
then removing it from the Store won’t actually save us any memory.

Regardless of whether the Store can be reduced to a suitable size, the object is
always placed into the store. This ensures that the Store’s figure for “amount
of memory used by fz storable’s” remains correct (thus ensuring that should
objects become evictable, the store size will fall correctly). It also does no
harm, because clearly we have managed to allocate enough memory to form the
fz storable in the first place.

Regardless of whether a caller finds the object in the Store, or has to store it
itself, it then proceeds identically. It uses the object for whatever purpose it
needed it, and then calls the appropriate fz drop function to lose its reference.
The object will live on in the Store until it needs to be evicted to make room.

When the fz context (or, more accurately, the last of a set of cloned contexts)
is finally destroyed, the Store is destroyed too. This results in every object
in the Store being released. Unless something has gone wrong with reference
counting, this will result in all our objects being freed.

24.5.2 Handling keys

As discussed above, the Store is basically a set of key/value pairs. While the
values are always fz storables, the keys can be of many different types, due
to coming from many disparate parts of the system.

Accordingly, we need a mechanism to allow us to safely know what ‘type’ a
given key is, and to compare 2 keys of identical type.

We solve this, by using a fz store type structure:

typedef struct fz_store_type_s

{

int (*make_hash_key)(fz_context *ctx, fz_store_hash *, void *);

void *(*keep_key)(fz_context *,void *);

void (*drop_key)(fz_context *,void *);

int (*cmp_key)(fz_context *ctx, void *, void *);

void (*print)(fz_context *ctx, fz_output *out, void *);

int (*needs_reap)(fz_context *ctx, void *);

} fz_store_type;

CHAPTER 24. STORE INTERNALS 184

We will have just one instance of this for each type - normally a static const
structure defined in the code. Whenever we insert (or lookup) something in the
store, we pass the address of that ‘types’ structure.

We only compare items if they have the same type pointer, and any comparison
is done using the cmp key function pointer therein. In common with normal C
idioms, 0 means match, non zero means different.

The keep key and drop key entries are used to implement reference counting of
keys. Keys can be an amalgam of several reference counted objects, so a single
call to the keep or drop functions provided here will take or release references
for all these objects in one operation.

The print function is purely for debugging purposes as part of calls to
fz print store - it should generate a human readable summary of the key
to the given fz output stream.

The make hash key and needs reap functions are explained in the following
subsections.

24.5.3 Hashing

In order to ensure the Store performs well, we must ensure that certain processes
run efficiently - notably searching for an existing entry, insertion and deletion.

Accordingly, the Store is implemented based on a hash table. For every ‘key’,
we need to be able to form a hash, but this process is complicated slightly by
the fact that every different fz storable has a different type for the key.

We solve this by having the make hash key member of the fz store type struc-
ture convert whatever its key data is into a common structure:

typedef struct fz_store_hash_s

{

fz_store_drop_fn *drop;

union

{

struct

{

const void *ptr;

int i;

} pi; /* 8 or 12 bytes */

struct

{

const void *ptr;

int i;

fz_irect r;

} pir; /* 24 or 28 bytes */

struct

{

int id;

CHAPTER 24. STORE INTERNALS 185

float m[4];

} im; /* 20 bytes */

struct

{

unsigned char src_md5[16];

unsigned char dst_md5[16];

unsigned int ri:2;

unsigned int bp:1;

unsigned int bpp16:1;

unsigned int proof:1;

unsigned int src_extras:5;

unsigned int dst_extras:5;

unsigned int copy_spots:1;

} link; /* 36 bytes */

} u;

} fz_store_hash; /* 40 or 44 bytes */

The caller will always arrange for this structure to be zero filled on entry to
the make hash key call. On exit, it should have been updated with the key
details. Implementers may extend the union found in this structure as required,
though ideally the size of the overall structure should be minimised to avoid
unnecessary work.

Once the Store has formed a fz store hash it can then generate the required
hash for the hash table as required.

24.5.4 Key storable items

Some objects can be used both as values within the Store, and as a component of
keys within the Store. We refer to these objects as ‘key storable’ objects. In this
case, we need to take additional care to ensure that we do not end up keeping
an item within the store purely because its value is referred to by another key
in the store.

An example of this are fz images in PDF files. Each fz image is placed into
the Store to enable it to be easily reused. When the image is rendered, a pixmap
is generated from the image, and the pixmap is placed into the Store so it can be
reused on subsequent renders. The image forms part of the key for the pixmap.

When we close the pdf document (and any associated pages/display lists etc),
we drop the images from the Store. This may leave us in the position of the
images having non-zero reference counts purely because they are used as part
of the keys for the pixmaps.

The pixmaps can never be found by a search of the Store, because to find
them, we’d have to search for them using the appropriate fz image. They are
therefore, to all intents and purposes ‘dead’, and just taking up useless space.

We therefore use special reference counting functions to implement these

CHAPTER 24. STORE INTERNALS 186

fz key storable items, fz keep key storable and fz drop key storable

rather than the more usual fz keep storable and fz drop storable.

The sole difference is that these enable us to store the number of references
to these items that are used in keys. This is achieved by callers taking
and dropping references for use in keys with fz keep key storable key and
fz drop key storable key.

This means that key storable items need to provide two sets of keep and drop
functions, one for ‘normal’ callers, and one for use during key handling. For
example:

fz_image *fz_keep_image(fz_context *ctx, fz_image *image);

void fz_drop_image(fz_context *ctx, fz_image *image);

fz_image *fz_keep_image_store_key(fz_context *ctx, fz_image *image);

void fz_drop_image_store_key(fz_context *ctx, fz_image *image);

The purpose of this extra work is to allow us to spot when we may need to
check the Store for ‘dead’ entries - those that can never be found by searching
the Store.

24.5.5 Reap passes

When the number of references to a key storable object equals the number of
references to an object from keys in the Store, we know that we can remove all
the items which have that object as part of the key. This is done by running a
pass over the store, ‘reaping’ those items.

If a key does not consist of any storable objects, then the needs reap entry in its
fz store type can safely be left as NULL. If it does, however, it must provide
an implementation to check whether a reap pass is required. Essentially this
needs to check if any of its constituent fz key storable objects need reaping,
which can be done by a call to:

int fz_key_storable_needs_reaping(fz_context *ctx, const fz_key_storable

*ks);

Reap passes are slower than we would like as they touch every item in the
store. We therefore provide a way to ‘batch’ such reap passes together, us-
ing fz defer reap start and fz defer reap end to bracket a region in which
many may be triggered.

The need for a reap is detected as part of normal operations in the core code,
and such passes are then triggered automatically as required. The user need
never (and indeed cannot) trigger such passes manually. The user can, however,
exercise some control over when such operations take place.

CHAPTER 24. STORE INTERNALS 187

If an application is about to perform an operation that may drop many ob-
jects (say dropping a collection of cached display lists), then it should call
fz defer reap start beforehand, and match that with a fz defer reap end

afterwards. Any reap passes triggered by the dropping of objects within the
display lists would be deferred until the end - resulting in at most one pass
rather than potentially many.

Chapter 25

Device Internals

In chapter 9 The Device interface, we introduced the central concept of a
fz device, and described the normal ones found in a standard MuPDF build.
We skipped over the actual implementation details of how to call, or implement
such devices. We rectify that here.

As mentioned before, although each device offers a set of function pointers,
we prefer people not to call these directly, but rather to call some convenience
functions that map down onto these. This protects us against API changes in
future, and copes automatically with NULL pointers (in the case when a device
doesn’t care about a particular type of call).

We describe these convenience functions here; implementers of devices can triv-
ially extrapolate the behaviour of the function pointers from these descriptions.
For example, the fz fill path function described here is implemented by the
fill path function pointer in the fz device that takes the identical arguments
and has the same return conditions.

25.1 Line Art

Line Art is handled by the device functions to plot paths. See chapter 26 Path
Internals for more information.

void fz_fill_path(fz_context *ctx, fz_device *dev, const fz_path *path,

int even_odd, const fz_matrix *ctm, fz_colorspace *colorspace,

const float *color, float alpha, const fz_color_params

*color_params);

void fz_stroke_path(fz_context *ctx, fz_device *dev, const fz_path

*path, const fz_stroke_state *stroke, const fz_matrix *ctm,

fz_colorspace *colorspace, const float *color, float alpha, const

fz_color_params *color_params);

188

CHAPTER 25. DEVICE INTERNALS 189

void fz_clip_path(fz_context *ctx, fz_device *dev, const fz_path *path,

int even_odd, const fz_matrix *ctm, const fz_rect *scissor);

void fz_clip_stroke_path(fz_context *ctx, fz_device *dev, const fz_path

*path, const fz_stroke_state *stroke, const fz_matrix *ctm, const

fz_rect *scissor);

25.2 Text

Text is handled by the device functions to plot text. See chapter 28 Text
Internals for more information.

void fz_fill_text(fz_context *ctx, fz_device *dev, const fz_text *text,

const fz_matrix *ctm, fz_colorspace *colorspace, const float

*color, float alpha, const fz_color_params *color_params);

void fz_stroke_text(fz_context *ctx, fz_device *dev, const fz_text

*text, const fz_stroke_state *stroke, const fz_matrix *ctm,

fz_colorspace *colorspace, const float *color, float alpha, const

fz_color_params *color_params);

void fz_clip_text(fz_context *ctx, fz_device *dev, const fz_text *text,

const fz_matrix *ctm, const fz_rect *scissor);

void fz_clip_stroke_text(fz_context *ctx, fz_device *dev, const fz_text

*text, const fz_stroke_state *stroke, const fz_matrix *ctm, const

fz_rect *scissor);

void fz_ignore_text(fz_context *ctx, fz_device *dev, const fz_text

*text, const fz_matrix *ctm);

The fz clip text and fz clip stroke text functions are used to start a clip.
Subsequent operations will be clipped through the areas delimited by these,
until a fz pop clip is seen. See section 25.5 Clipping and Masking for more
details.

Sometimes formats (such as PDF) can send text that has no rendered appear-
ance. We refer to this as ‘ignored’ text. This serves a variety of purposes, the
most usual of which is to allow text to be copy/paste out of a document when
the actual appearance of that text is given in the form of an image or line art.

For example, a product logo may be rendered using vector graphics, which would
ordinarily not have any textual meaning. By including some ignored text, then
a user can copy the content out as text, or a text-to-speech engine can correctly
enunciate the page contents.

An alternative common example would be where a document has been scanned,
and then the text within it has been run through an OCR (Optical Character
Recognition) process. The OCR engine would typically include its results as
ignored text. The final document would look identical to the scans, but would
copy/paste as expected.

CHAPTER 25. DEVICE INTERNALS 190

25.3 Images

Images are handled by the device functions to plot images. See chapter 27 Image
Internals for more information.

void fz_fill_image(fz_context *ctx, fz_device *dev, fz_image *image,

const fz_matrix *ctm, float alpha, const fz_color_params

*color_params);

void fz_fill_image_mask(fz_context *ctx, fz_device *dev, fz_image

*image, const fz_matrix *ctm, fz_colorspace *colorspace, const

float *color, float alpha, const fz_color_params *color_params);

void fz_clip_image_mask(fz_context *ctx, fz_device *dev, fz_image

*image, const fz_matrix *ctm, const fz_rect *scissor);

The fz clip image mask function is used to start a clip. Subsequent operations
will be clipped through the area delimited by this, until a fz pop clip is seen.
See section 25.5 Clipping and Masking for more details.

25.4 Shadings

Shaded areas (such as radial, linear and mesh based shadings) are rendered by
filling a (normally) clipped region with a shade. This is achieved by calling
fz fill shade. See chapter 29 Shading Internals for more details.

void fz_fill_shade(fz_context *ctx, fz_device *dev, fz_shade *shade,

const fz_matrix *ctm, float alpha, const fz_color_params

*color_params);

25.5 Clipping and Masking

Graphical objects can be restricted to a given area using Clipping. The area
to clip to can be specified as paths, text, or images as explained in section 25.1
Line Art, section 25.2 Text, and section 25.3 Images.

Each call to such a function starts a clipping group, which will be terminated
by calling:

void fz_pop_clip(fz_context *ctx, fz_device *dev);

Clipping groups can be nested, allowing complex graphical effects.

A related concept to clipping, is that of masking. Whereas clipping regions
are simple on or off things, where content is chopped off at hard edges, mask-
ing allows for regions that allow just some proportion of the content to show
through.

CHAPTER 25. DEVICE INTERNALS 191

Masking operations take place in 2 stages; first the mask itself is defined, then
the content to be masked.

Stage 1 begins by calling fz begin mask to start a mask definition group. Any
series of graphical operations can now be sent to the device which will combine
together to create the mask.

Stage 1 is terminated and Stage 2 begins by calling fz end mask. This converts
the mask definition into a ‘soft clip’. Any series of graphical operations can now
be sent to the device which will combine together to create the mask contents.

The whole process is then completed by calling fz pop clip. This renders the
mask contents through the soft clip, giving the final results.

void fz_begin_mask(fz_context *ctx, fz_device *dev, const fz_rect *area,

int luminosity, fz_colorspace *colorspace, const float *bc, const

fz_color_params *color_params);

void fz_end_mask(fz_context *ctx, fz_device *dev);

25.6 Groups and Transparency

Some document formats (such as PDF) offer a rich transparency model that
allows graphical objects to be ’Grouped’ together and imposed upon the page
as if they have a given opacity, using a variety of different blend modes.

MuPDF implements this by using the fz begin group and fz end group calls.

void fz_begin_group(fz_context *ctx, fz_device *dev, const fz_rect

*area, int isolated, int knockout, int blendmode, float alpha);

void fz_end_group(fz_context *ctx, fz_device *dev);

The exact details of PDF transparency are too complex to explain here; for a
full explanation see The PDF Reference Manual.

25.7 Tiling

Many document formats allow for content to be tiled repeatedly. Frequently
this is used to implement patterns for filling other graphical operations.

MuPDF implements this by allowing a group of content to be defined that is
then tiled repeatedly across an area.

The content definition begins by calling fz begin tile id, giving the area of
the page to be filled (area), the area of a single tile (view), the x and y steps
between repeats of the tile (xstep and ystep), the transformation to take all of
these measurements out of pattern space to device space (ctm) and an integer
id.

CHAPTER 25. DEVICE INTERNALS 192

The purpose of id is to allow for efficient caching of rendered tiles. If id is
0, then no caching is performed. If it is non-zero, then it assumed to uniquely
identify this tile. The tile can be safely placed into the Store (see chapter 7
Memory Management and The Store) and future uses of this tile can short
circuit the tile definition/rendering phase.

If a tile is found in the store, then fz begin tile id will return non-zero and
the caller can proceed directly to the call to fz end tile.

Any graphical operations sent to the device will be taken as part of the tile
content, until fz end tile is called, whereupon these graphical operations will
be imposed upon the output.

For the convenience of the caller, if no id is available (and hence no caching is
possible), the fz begin tile variant can be used instead.

The id is set by the caller - i.e. the interpreter for the document format in use.
Care should be taken by the caller to make these unique.

void fz_begin_tile(fz_context *ctx, fz_device *dev, const fz_rect *area,

const fz_rect *view, float xstep, float ystep, const fz_matrix

*ctm);

int fz_begin_tile_id(fz_context *ctx, fz_device *dev, const fz_rect

*area, const fz_rect *view, float xstep, float ystep, const

fz_matrix *ctm, int id);

void fz_end_tile(fz_context *ctx, fz_device *dev);

25.8 Render Flags

Every device has a set of render flags (a simple int, in which bits can be set or
cleared).

These flags tend to have meanings specific to individual devices. In an ideal
world they would not be required, but having this mechanism here can provide
noticeable quality improvements.

void fz_render_flags(fz_context *ctx, fz_device *dev, int set, int

clear);

The function basically does:

flags = (flags | set) & ~clear;

That is to say, the bits given in set are set, and then the bits given in clear

are cleared.

The current only documented use of this is for the GProof device to request the
Draw device to grid fit its tiled images.

CHAPTER 25. DEVICE INTERNALS 193

The reason for using Render Flags rather than Device Hints (see section 9.4
Device Hints) is that Render Flags can be carried forward though display lists.

25.9 Device Color Spaces

Some pages redefine the basic default colorspaces (for color manage-
ment purposes). This is handled at the device level using the
fz set default colorspaces call:

void fz_set_default_colorspaces(fz_context *ctx, fz_device *dev,

fz_default_colorspaces *default_cs);

The device typically takes a reference to the default cs object and refers to it
as required.

25.10 Layers

Some file formats (such as PDF) have the concept of ‘tagged content’. Graphical
objects within the page stream can be tagged with information regarding how
they correspond to each other on the page.

PDF files are rarely authored directly, but are typically ‘distilled’ from docu-
ments created in other programs (such as illustrator or similar packages). These
other programs frequently have the concept of ‘layers’, and this layer information
is generally carried over into the created PDF file using this tagging mechanism.

In fact, layers are such a ubiquitous source of tag information, that the PDF
processing community (and some applications) frequently refers to such infor-
mation as ‘layer’ information, even though this is an abuse of the terminology.
MuPDF follows this convention.

Other interpreters may use layer information to explicitly encode genuine layers
of course!

There is no render-time special treatment of layered content, so content is simply
composited blindly onto the same output image. Indeed, layers do not necessar-
ily even nest nicely with other content, and can cross groups etc in unpredictable
ways.

As a document is interpreted, when a layer (or a tag) start or end is found, the
device is signalled using the following calls:

void (*begin_layer)(fz_context *, fz_device *, const char *layer_name);

void (*end_layer)(fz_context *, fz_device *);

Not all content on a given layer may necessarily be sent at once - there may be
several start/end pairs with the same tag.

CHAPTER 25. DEVICE INTERNALS 194

As an example, consider a newspaper laid out in a desktop processor. Multiple
‘stories’ on the same page may be laid out each in multiple columns of content.
The PDF file produced from this may tag each column with an identifier for the
story from which it came, and the stories may be interleaved with one another.

By collating only the content tagged with a given identifier (layer name), indi-
vidual stories may be able to be extracted from a PDF page.

The use of tagged content will vary from application to application, following
convention, but no hard and fast rules.

Chapter 26

Path Internals

Paths are reference counted objects, with the implicit understanding that once
more than one reference exists to a path, it will no longer be modified.

26.1 Creation

A reference to a new empty path can be created using fz new path:

/*

fz_new_path: Create an empty path, and return

a reference to it.

Throws exception on failure to allocate.

*/

fz_path *fz_new_path(fz_context *ctx);

Once a path exists, commands can be added to it. The first command must
always be a ‘move’.

/*

fz_moveto: Append a ’moveto’ command to a path.

path: The path to modify.

x, y: The coordinate to move to.

Throws exceptions on failure to allocate.

*/

void fz_moveto(fz_context *ctx, fz_path *path, float x, float y);

Once we have moved to a point, subsequent commands can be added, such as

195

CHAPTER 26. PATH INTERNALS 196

lines, quads (quadratic beziers) and curves (cubic beziers).

/*

fz_lineto: Append a ’lineto’ command to a path.

path: The path to modify.

x, y: The coordinate to line to.

Throws exceptions on failure to allocate.

*/

void fz_lineto(fz_context *ctx, fz_path *path, float x, float y);

/*

fz_quadto: Append a ’quadto’ command to a path. (For a

quadratic bezier).

path: The path to modify.

x0, y0: The control coordinates for the quadratic curve.

x1, y1: The end coordinates for the quadratic curve.

Throws exceptions on failure to allocate.

*/

void fz_quadto(fz_context *ctx, fz_path *path, float x0, float y0, float

x1, float y1);

/*

fz_curveto: Append a ’curveto’ command to a path. (For a

cubic bezier).

path: The path to modify.

x0, y0: The coordinates of the first control point for the

curve.

x1, y1: The coordinates of the second control point for the

curve.

x2, y2: The end coordinates for the curve.

Throws exceptions on failure to allocate.

*/

void fz_curveto(fz_context *ctx, fz_path *path, float x0, float y0,

float x1, float y1, float x2, float y2);

In addition, we have 2 functions for adding curves (cubic beziers) where one
of the control points is coincident with the neighbouring endpoints. These

CHAPTER 26. PATH INTERNALS 197

functions mirror the usage in PDF, but offer no benefits other than convenience
as such curves are detected automatically as part of an fz curveto call.

/*

fz_curvetov: Append a ’curvetov’ command to a path. (For a

cubic bezier with the first control coordinate equal to

the start point).

path: The path to modify.

x1, y1: The coordinates of the second control point for the

curve.

x2, y2: The end coordinates for the curve.

Throws exceptions on failure to allocate.

*/

void fz_curvetov(fz_context *ctx, fz_path *path, float x1, float y1,

float x2, float y2);

/*

fz_curvetoy: Append a ’curvetoy’ command to a path. (For a

cubic bezier with the second control coordinate equal to

the end point).

path: The path to modify.

x0, y0: The coordinates of the first control point for the

curve.

x2, y2: The end coordinates for the curve (and the second

control coordinate).

Throws exceptions on failure to allocate.

*/

void fz_curvetoy(fz_context *ctx, fz_path *path, float x0, float y0,

float x2, float y2);

At any point after the initial move, we can close the path using fz closepath:

/*

fz_closepath: Close the current subpath.

path: The path to modify.

Throws exceptions on failure to allocate, and illegal

path closes.

*/

void fz_closepath(fz_context *ctx, fz_path *path);

CHAPTER 26. PATH INTERNALS 198

After a path has been closed, the only acceptable next command is a move. A
path need not be closed before a second or subsequent move is sent.

For details of exactly what each of these path segment types means, see “The
PDF Reference Manual” or “The Postscript Language Reference Manual”.

Finally, we have one additional path construction function, fz rectto. This
appends a rectangle to the current path. This rectangle is equivalent to a move,
3 lines and a closepath, and so is the one exception to the rule that paths must
begin with a move (as one is implicit within the rectangle command).

/*

fz_rectto: Append a ’rectto’ command to a path.

The rectangle is equivalent to:

moveto x0 y0

lineto x1 y0

lineto x1 y1

lineto x0 y1

closepath

path: The path to modify.

x0, y0: First corner of the rectangle.

x1, y1: Second corner of the rectangle.

Throws exceptions on failure to allocate.

*/

void fz_rectto(fz_context *ctx, fz_path *path, float x0, float y0, float

x1, float y1);

Finally, during path construction, the coordinate at which the notional path
cursor has reached can be read using the fz currentpoint function.

/*

fz_currentpoint: Return the current point that a path has

reached or (0,0) if empty.

path: path to return the current point of.

*/

fz_point fz_currentpoint(fz_context *ctx, fz_path *path);

26.2 Reference counting

As stated before, fz paths are reference counted objects. Once one has been
created, references can be created/destroyed using the standard keep/drop con-
ventions:

CHAPTER 26. PATH INTERNALS 199

/*

fz_keep_path: Take an additional reference to

a path.

No modifications should be carried out on a path

to which more than one reference is held, as

this can cause race conditions.

Never throws exceptions.

*/

fz_path *fz_keep_path(fz_context *ctx, const fz_path *path);

/*

fz_drop_path: Drop a reference to a path,

destroying the path if it is the last

reference.

Never throws exceptions.

*/

void fz_drop_path(fz_context *ctx, const fz_path *path);

A path with more than one reference is considered to be ‘frozen’ or ‘immutable’.
It is not safe to modify such a path, as the other holder of a reference to it may
not expect it to be being changed. That is to say that modification operations
on paths are not atomic between threads.

If you have a path that you wish to be able to modify, simply call fz clone path

to obtain a reference to a copy of the path that is safe to modify:

/*

fz_clone_path: Clone the data for a path.

This is used in preference to fz_keep_path when a whole

new copy of a path is required, rather than just a shared

pointer. This probably indicates that the path is about to

be modified.

path: path to clone.

Throws exceptions on failure to allocate.

*/

fz_path *fz_clone_path(fz_context *ctx, fz_path *path);

26.3 Storage

Because Paths are such a crucial part of MuPDF, and are used so widely in
document content, we take particular care to allow them to be expressed and
accessed efficiently.

CHAPTER 26. PATH INTERNALS 200

This means that at path construction time, we spot simple cases where we can
optimise the path representation. For example, a move immediately following
a move can cause the first move to be dropped. Similarly, a curve with both
control points coincident with the endpoints can be expressed as a line.

This means that if you read a path out after construction (see section 26.7
Walking) you cannot rely on the exact representation being the same.

In addition, after constructing a path, there are some simple things that can be
done to minimise the memory used.

As paths are constructed, the data buffers within them grow. For efficiency,
these grow with some slack in them, so at the end of construction there can be
a non-trivial amount of space wasted.

If you intend to simply use the path, and then discard it, this does not matter.
If instead you intend to keep the path around for a while, it may be worth
calling fz trim path to shrink the storage buffers as much as possible.

/*

fz_trim_path: Minimise the internal storage

used by a path.

As paths are constructed, the internal buffers

grow. To avoid repeated reallocations they

grow with some spare space. Once a path has

been fully constructed, this call allows the

excess space to be trimmed.

Never throws exceptions.

*/

void fz_trim_path(fz_context *ctx, fz_path *path);

MuPDF automatically calls this function when fz keep path is called for the
first time as having more than one reference to a path is considered a good
indication of it being kept around for a while.

For cases where large numbers of paths are kept around for a long period of
time, for example in a fz display list (see chapter 11 Display Lists), it can
be advantageous to ‘pack’ paths to further minimise the space they use.

To pack a path, first call fz packed path size to obtain the number of bytes
required to pack a path:

/*

fz_packed_path_size: Return the number of

bytes required to pack a path.

Never throws exceptions.

*/

int fz_packed_path_size(const fz_path *path);

CHAPTER 26. PATH INTERNALS 201

Then, call fz pack path with some (suitably aligned) memory of the appropri-
ate size to actually pack the path:

/*

fz_pack_path: Pack a path into the given block.

To minimise the size of paths, this function allows them to be

packed into a buffer with other information.

pack: Pointer to a block of data to pack the path into. Should

be aligned by the caller to the same alignment as required for

an fz_path pointer.

max: The number of bytes available in the block.

If max < sizeof(fz_path) then an exception will

be thrown. If max >= the value returned by

fz_packed_path_size, then this call will never

fail, except in low memory situations with large

paths.

path: The path to pack.

Paths can be ’unpacked’, ’flat’, or ’open’. Standard paths, as

created are ’unpacked’. Paths that will pack into less than max

bytes will be packed as ’flat’, unless they are too large (where

large indicates that they exceed some private implementation

defined limits, currently including having more than 256

256 coordinates or commands).

Large paths are ’open’ packed as a header into the given block,

plus pointers to other data blocks. Paths can be used

interchangably regardless of how they are packed.

Returns the number of bytes within the block used. Callers can

access the packed path data by casting the value of pack on

entry to be an fz_path *.

Throws exceptions on failure to allocate, or if

max < sizeof(fz_path).

*/

int fz_pack_path(fz_context *ctx, uint8_t *pack, int max, const fz_path

*path);

After a successful call to fz pack path, the pointer to the block of memory can
be cast to an fz path * and used as normal.

All the path routines recognise packed paths and will use them interchangeably.
Packed paths may not be modified once created, however.

CHAPTER 26. PATH INTERNALS 202

26.4 Transformation

Once a path has been constructed, a common operation is to apply a trans-
formation to it. This is equivalent to transforming every point in the existing
path. A path can be transformed using fz transform path.

/*

fz_transform_path: Transform a path by a given

matrix.

path: The path to modify (must not be a packed path).

transform: The transform to apply.

Throws exceptions if the path is packed, or on failure

to allocate.

*/

void fz_transform_path(fz_context *ctx, fz_path *path, const fz_matrix

*transform);

This counts as modifying a path of course, so ensure that you are the only
reference holder, or fz clone path it first.

26.5 Bounding

Sometimes it can be desirable to know the area covered by a path. The
fz bound path function enables exactly this, both for filled and stroked path.
For details of the fz stroke state structure, see section 26.6 Stroking.

/*

fz_bound_path: Return a bounding rectangle for a path.

path: The path to bound.

stroke: If NULL, the bounding rectangle given is for

the filled path. If non-NULL the bounding rectangle

given is for the path stroked with the given attributes.

ctm: The matrix to apply to the path during stroking.

r: Pointer to a fz_rect which will be used to hold

the result.

*/

fz_rect *fz_bound_path(fz_context *ctx, const fz_path *path, const

fz_stroke_state *stroke, const fz_matrix *ctm, fz_rect *r);

CHAPTER 26. PATH INTERNALS 203

26.6 Stroking

Where filling a path simply requires details of the fill to be used, stroking a
path requires far more information; varying the thickness of the line, or the
dash pattern, or linecaps/joins used can can radically alter its appearance. The
details of these stroke attributes are passed in a fz stroke state structure.

Stroke states are created and managed with reference counting using the func-
tions described below, but unlike other structures, the definition of the structure
itself is public. Callers are expected to alter the different fields in the struc-
ture themselves. The sole exception to this is the refs field, that should only
be altered using the usual fz keep stroke state and fz drop stroke state

mechanisms.

typedef struct fz_stroke_state_s fz_stroke_state;

typedef enum fz_linecap_e

{

FZ_LINECAP_BUTT = 0,

FZ_LINECAP_ROUND = 1,

FZ_LINECAP_SQUARE = 2,

FZ_LINECAP_TRIANGLE = 3

} fz_linecap;

typedef enum fz_linejoin_e

{

FZ_LINEJOIN_MITER = 0,

FZ_LINEJOIN_ROUND = 1,

FZ_LINEJOIN_BEVEL = 2,

FZ_LINEJOIN_MITER_XPS = 3

} fz_linejoin;

struct fz_stroke_state_s

{

int refs;

fz_linecap start_cap, dash_cap, end_cap;

fz_linejoin linejoin;

float linewidth;

float miterlimit;

float dash_phase;

int dash_len;

float dash_list[32];

};

It is hoped that the meaning of the individual fields within a fz stroke state

structure are self evident to anyone working in this field. If you are unfamil-
iar with any of the concepts here, see “The PDF Reference Manual” or “The
Postscript Language Reference Manual” for more details.

CHAPTER 26. PATH INTERNALS 204

Most simply a reference to a stroke state structure can be obtained by calling
fz new stroke state:

/*

fz_new_stroke_state: Create a new (empty) stroke state

structure (with no dash data) and return a reference to it.

Throws exception on failure to allocate.

*/

fz_stroke_state *fz_new_stroke_state(fz_context *ctx);

For stroke states that include dash information, call:

/*

fz_new_stroke_state_with_dash_len: Create a new (empty)

stroke state structure, with room for dash data of the

given length, and return a reference to it.

len: The number of dash elements to allow room for.

Throws exception on failure to allocate.

*/

fz_stroke_state *fz_new_stroke_state_with_dash_len(fz_context *ctx, int

len);

Once obtained, references can be kept or dropped in the usual fashion:

/*

fz_keep_stroke_state: Take an additional reference to

a stroke state structure.

No modifications should be carried out on a stroke

state to which more than one reference is held, as

this can cause race conditions.

Never throws exceptions.

*/

fz_stroke_state *fz_keep_stroke_state(fz_context *ctx, const

fz_stroke_state *stroke);

/*

fz_drop_stroke_state: Drop a reference to a stroke

state structure, destroying the structure if it is

the last reference.

Never throws exceptions.

*/

void fz_drop_stroke_state(fz_context *ctx, const fz_stroke_state

*stroke);

CHAPTER 26. PATH INTERNALS 205

Once more than one reference is held to a stroke state, it should be considered
‘frozen’ or ‘immutable’ as other reference holders may be confused by changes to
it. Accordingly, we provide functions to ensure that we are holding a reference
to an ‘unshared’ stroke state:

/*

fz_unshare_stroke_state: Given a reference to a

(possibly) shared stroke_state structure, return

a reference to an equivalent stroke_state structure

that is guaranteed to be unshared (i.e. one that can

safely be modified).

shared: The reference to a (possibly) shared structure

to unshare. Ownership of this reference is passed in

to this function, even in the case of exceptions being

thrown.

Exceptions may be thrown in the event of failure to

allocate if required.

*/

fz_stroke_state *fz_unshare_stroke_state(fz_context *ctx,

fz_stroke_state *shared);

/*

fz_unshare_stroke_state_with_dash_len: Given a reference to a

(possibly) shared stroke_state structure, return a reference

to a stroke_state structure (with room for a given amount of

dash data) that is guaranteed to be unshared (i.e. one that

can safely be modified).

shared: The reference to a (possibly) shared structure

to unshare. Ownership of this reference is passed in

to this function, even in the case of exceptions being

thrown.

Exceptions may be thrown in the event of failure to

allocate if required.

*/

fz_stroke_state *fz_unshare_stroke_state_with_dash_len(fz_context *ctx,

fz_stroke_state *shared, int len);

Finally, we have a simple function to clone a stroke state and return a new
reference to it:

/*

fz_clone_stroke_state: Create an identical stroke_state

structure and return a reference to it.

stroke: The stroke state reference to clone.

CHAPTER 26. PATH INTERNALS 206

Exceptions may be thrown in the event of a failure to

allocate.

*/

fz_stroke_state *fz_clone_stroke_state(fz_context *ctx, fz_stroke_state

*stroke);

26.7 Walking

Given a path, it can be useful to be able to read it out again. MuPDF uses
this internally in a output devices such as the PDF or SVG devices (see subsec-
tion 9.5.4 PDF Output Device or subsection 9.5.6 SVG Output Device) to con-
vert paths to a new representation, and in the draw device (see subsection 9.5.2
Draw Device) for rendering.

To isolate callers from the implementation specifics of paths, MuPDF offers a
mechanism to ‘walk’ a fz path, getting a callback for each command in the
path.

typedef struct

{

/* Compulsory ones */

void (*moveto)(fz_context *ctx, void *arg, float x, float y);

void (*lineto)(fz_context *ctx, void *arg, float x, float y);

void (*curveto)(fz_context *ctx, void *arg, float x1, float y1,

float x2, float y2, float x3, float y3);

void (*closepath)(fz_context *ctx, void *arg);

/* Optional ones */

void (*quadto)(fz_context *ctx, void *arg, float x1, float y1, float

x2, float y2);

void (*curvetov)(fz_context *ctx, void *arg, float x2, float y2,

float x3, float y3);

void (*curvetoy)(fz_context *ctx, void *arg, float x1, float y1,

float x3, float y3);

void (*rectto)(fz_context *ctx, void *arg, float x1, float y1, float

x2, float y2);

} fz_path_walker;

/*

fz_walk_path: Walk the segments of a path, calling the

appropriate callback function from a given set for each

segment of the path.

path: The path to walk.

walker: The set of callback functions to use. The first

4 callback pointers in the set must be non-NULL. The

subsequent ones can either be supplied, or can be left

CHAPTER 26. PATH INTERNALS 207

as NULL, in which case the top 4 functions will be

called as appropriate to simulate them.

arg: An opaque argument passed in to each callback.

Exceptions will only be thrown if the underlying callback

functions throw them.

*/

void fz_walk_path(fz_context *ctx, const fz_path *path, const

fz_path_walker *walker, void *arg);

This function is called by giving a pointer to a structure containing callback
functions, one for each type of path segment type. The function will walk the
path structure and call the appropriate function pointer for each segment of the
path in turn.

Callers of this function should not rely on getting exactly the same sequence of
path segments out as was used to construct the path; the internal representation
may have been optimised to an equivalent form on construction, and this will
be reflected in the callbacks received. The path passed back will however be
entirely identical (modulo possible infinitesimal rounding issues).

For example, MuPDF is capable of spotting that a cubic or quadratic bezier
is actually a line; in such cases it may represent it as a line internally, saving
memory and processing power.

Not all path consumers can cope with the full range of segment types that
MuPDF natively supports, so some of the callback entries may be left blank
(i.e. set to NULL). Rather than calling such an entry, MuPDF will decompose
the path segment into one of the more basic types.

For example, if a path contains a quadratic segment and the quadto callback
entry is NULL, MuPDF will automatically decompose it to a bezier segment
and call the curveto entry instead.

Chapter 27

Image Internals

The primary use of a fz image is to allow a rendered pixmap to be retrieved.
This is done by calling:

/*

fz_get_pixmap_from_image: Called to get a handle to a pixmap from

an image.

image: The image to retrieve a pixmap from.

subarea: The subarea of the image that we actually care about (or

NULL to indicate the whole image).

trans: Optional, unless subarea is given. If given, then on entry

this is the transform that will be applied to the complete image.

It should be updated on exit to the transform to apply to the given

subarea of the image. This is used to calculate the desired

width/height for subsampling.

w: If non-NULL, a pointer to an int to be updated on exit to the

width (in pixels) that the scaled output will cover.

h: If non-NULL, a pointer to an int to be updated on exit to the

height (in pixels) that the scaled output will cover.

Returns a non NULL pixmap pointer. May throw exceptions.

*/

fz_pixmap *fz_get_pixmap_from_image(fz_context *ctx, fz_image *image,

const fz_irect *subarea, fz_matrix *trans, int *w, int *h);

Frequently this will involve decoding the image from its source data, so should
be considered a potentially expensive call, both in terms of CPU time, and

208

CHAPTER 27. IMAGE INTERNALS 209

memory usage.

To minimise the impact of such decodes, fz images make use of the Store (see
chapter 7 Memory Management and The Store) to cache decoded versions in.
This means that (subject to enough memory being available) repeated calls to
get a fz pixmap from the same fz image (with the same parameters) will return
the same fz pixmap each time, with no further decode being required.

The usual reference counting behaviour applies to fz images, with
fz keep image and fz drop image claiming and releasing references respec-
tively.

Depending on the size at which a fz image is to be used, it may not be worth
decoding it at full resolution; instead, decoding it at a smaller size can save
memory (and frequently time). In addition, subsequent rendering operations
can often be faster due to having to handle fewer pixels for no quality loss in
the final output.

To facilitate this, fz images will subsample images as appropriate. Subsampling
involves an image being decoded to a size an integer power of 2 smaller than
their native size. For instance, if an image has a native size of 400x300, and is to
be rendered to a final size of 40x30, fz get pixmap from image may subsample
the returned image by up to 8 in each direction, resulting in a 50x37 image.

Subsequent operations (such as smooth scaling and rendering) will proceed much
faster due to fewer pixels being involved, and around one sixteenth of the mem-
ory will be required.

Various different implementations of fz image exist within MuPDF.

27.1 Compressed Images

The fz compressed image structure is a specialisation of fz image, that holds
the source data for an image in a fz compressed buffer. This is the usual
form for images created from PDF and XPS files.

The data for a compressed image can be retrieved by calling:

fz_compressed_buffer *fz_compressed_image_buffer(fz_context *ctx,

fz_image *image);

If the supplied fz image is not a fz compressed image then it will return NULL.

27.2 Pixmap Images

The fz pixmap image structure is a specialisation of fz image, that has a
fz pixmap as its source data. This exists to allow fz pixmaps from other sources
to be easily fed into the MuPDF rendering engine.

Chapter 28

Text Internals

As described in Part 1 (section 10.10 Text), the central text object in MuPDF is
fz text. It represents blocks of bidirectional text, carrying (potentially) both
details of the underlying unicode characters, and the specific glyphs to be used
to render them.

typedef struct fz_text_s fz_text;

Text objects are reference counted, with the implicit understanding that once
more than one reference exists to an object, it will no longer be modified.

28.1 Creation

Empty fz text objects can be created using the fz new text call:

/*

fz_new_text: Create a new empty fz_text object.

Throws exception on failure to allocate.

*/

fz_text *fz_new_text(fz_context *ctx);

Additional references can be taken/released in the usual manner:

/*

fz_keep_text: Add a reference to an fz_text.

text: text object to keep a reference to.

Return the same text pointer.

*/

210

CHAPTER 28. TEXT INTERNALS 211

fz_text *fz_keep_text(fz_context *ctx, const fz_text *text);

/*

fz_drop_text: Drop a reference to the object, freeing

if if is the last one.

text: Object to drop the reference to.

*/

void fz_drop_text(fz_context *ctx, const fz_text *text);

28.2 Population

Once created, characters can be added to the fz text object either singly:

/*

fz_show_glyph: Add a glyph/unicode value to a text object.

text: Text object to add to.

font: The font the glyph should be added in.

trm: The transform to use for the glyph.

glyph: The glyph id to add.

unicode: The unicode character for the glyph.

wmode: 1 for vertical mode, 0 for horizontal.

bidi_level: The bidirectional level for this glyph.

markup_dir: The direction of the text as specified in the

markup.

language: The language in use (if known, 0 otherwise)

(e.g. FZ_LANG_zh_Hans).

Throws exception on failure to allocate.

*/

void fz_show_glyph(fz_context *ctx, fz_text *text, fz_font *font, const

fz_matrix *trm, int glyph, int unicode, int wmode, int bidi_level,

fz_bidi_direction markup_dir, fz_text_language language);

or a (unicode) string at a time:

/*

fz_show_string: Add a UTF8 string to a text object.

CHAPTER 28. TEXT INTERNALS 212

text: Text object to add to.

font: The font the string should be added in.

trm: The transform to use. Will be updated according

to the advance of the string on exit.

s: The utf-8 string to add.

wmode: 1 for vertical mode, 0 for horizontal.

bidi_level: The bidirectional level for this glyph.

markup_dir: The direction of the text as specified in the

markup.

language: The language in use (if known, 0 otherwise)

(e.g. FZ_LANG_zh_Hans).

Throws exception on failure to allocate.

*/

void fz_show_string(fz_context *ctx, fz_text *text, fz_font *font,

fz_matrix *trm, const char *s, int wmode, int bidi_level,

fz_bidi_direction markup_dir, fz_text_language language);

28.3 Measurement

Once a fz text object has been created we can measure the area it will cover
on the page:

/*

fz_bound_text: Find the bounds of a given text object.

text: The text object to find the bounds of.

stroke: Pointer to the stroke attributes (for stroked

text), or NULL (for filled text).

ctm: The matrix in use.

r: pointer to storage for the bounds.

Returns a pointer to r, which is updated to contain the

bounding box for the text object.

*/

fz_rect *fz_bound_text(fz_context *ctx, const fz_text *text, const

fz_stroke_state *stroke, const fz_matrix *ctm, fz_rect *r);

CHAPTER 28. TEXT INTERNALS 213

28.4 Cloning

As stated before, fz text objects are referenced counted. Changes or manip-
ulations cannot safely be carried out on an object which might be shared with
someone else, so we provide a mechanism to clone an object. Once cloned an
object is guaranteed to be safe to modify.

/*

fz_clone_text: Clone a text object.

text: The text object to clone.

Throws an exception on allocation failure.

*/

fz_text *fz_clone_text(fz_context *ctx, const fz_text *text);

28.5 Language

Some formats include a declaration of which language is being used for a given
piece of text. This can be used to influence aspects of the text layout, includ-
ing the exact choice of glyphs used in a given font. While we make relatively
little use of this at present, we try to preserve the information as part of our
philosophy of not losing any information unnecessarily.

Accordingly, we use ISO 639 language specification strings, for example:

typedef enum fz_text_language_e

{

FZ_LANG_UNSET = 0,

FZ_LANG_ur = FZ_LANG_TAG2(’u’,’r’),

FZ_LANG_urd = FZ_LANG_TAG3(’u’,’r’,’d’),

FZ_LANG_ko = FZ_LANG_TAG2(’k’,’o’),

FZ_LANG_ja = FZ_LANG_TAG2(’j’,’a’),

FZ_LANG_zh = FZ_LANG_TAG2(’z’,’h’),

FZ_LANG_zh_Hans = FZ_LANG_TAG3(’z’,’h’,’s’),

FZ_LANG_zh_Hant = FZ_LANG_TAG3(’z’,’h’,’t’),

} fz_text_language;

To save space we pack these into 15 bits. Accordingly, we provide a way to
pack/unpack these to/from the more normal string representations:

/*

Convert ISO 639 (639-{1,2,3,5}) language specification

strings losslessly to a 15 bit fz_text_language code.

No validation is carried out. Obviously invalid (out

of spec) codes will be mapped to FZ_LANG_UNSET, but

well-formed (but undefined) codes will be blithely

CHAPTER 28. TEXT INTERNALS 214

accepted.

*/

fz_text_language fz_text_language_from_string(const char *str);

/*

Recover ISO 639 (639-{1,2,3,5}) language specification

strings losslessly from a 15 bit fz_text_language code.

No validation is carried out. See note above.

*/

char *fz_string_from_text_language(char str[8], fz_text_language lang);

28.6 Implementation

A fz text structure represents a block of text. At the lowest level the con-
stituents of a block are fz text items.

typedef struct fz_text_item_s fz_text_item;

struct fz_text_item_s

{

float x, y;

int gid; /* -1 for one gid to many ucs mappings */

int ucs; /* -1 for one ucs to many gid mappings */

};

The items can be thought of as the individual ‘characters’ that make up the
display, together with their position. Where possible, we attempt to give both
the glyph id (gid) and the unicode value (ucs) for the character, but there are
various cases where a 1-1 mapping is not possible.

Some unicode characters can result in a string of glyphs. The glyph ids will be
sent in a series of fz text items, in which the first ucs value will be the source
unicode character, and subsequent ones will be -1.

Some sequences of unicode characters can result in a single glyph. Again, a
sequence of fz text items will be sent listing the unicode values, but all but
the first item will have the gid value set to -1.

In more complex cases, sequences of unicode characters can be transformed into
a sequence of glyphs, with no direct correspondence between the source text
and the output characters. In this case as many fz text items as are required
are used, with either the gid or ucs values padded out by -1s as necessary.

Different input formats offer the text in different forms. With PDF, the data
within the file is (typically) in the form of glyph ids, and mechanisms are op-
tionally provided to infer unicode values from them. Glyphs are sent in any

CHAPTER 28. TEXT INTERNALS 215

order, and absolutely positioned on the page.

With XPS the input can be either in the form of unicode or glyph ids, and
directionality information is encoded in the file. This means that the logical
ordering of the glyphs is well defined.

Some formats, such as EPUB and HTML, send unicode text with even less
positioning information, and rely on the interpreter to perform layout. Part
of this process involves inferring directional information from the source text,
and then using shaping mechanisms embedded within the font to do complex
conversions to give the final positioned glyph sequences.

In all such cases MuPDF will preserve the logical ordering of the unicode entries,
at the cost of drawing glyphs non-monotonically onto the page.

Sequences of fz text items that share the same characteristics are gathered
together into fz text spans:

struct fz_text_span_s

{

fz_font *font;

fz_matrix trm;

unsigned wmode : 1; /* 0 horizontal, 1 vertical */

unsigned bidi_level : 7; /* The bidirectional level of text */

unsigned markup_dir : 2; /* The direction of text as marked in the

original document */

unsigned language : 15; /* The language as marked in the original

document */

int len, cap;

fz_text_item *items;

fz_text_span *next;

};

Sequences of these spans are then gathered up into a linked list rooted in a
fz text.

struct fz_text_s

{

int refs;

fz_text_span *head, *tail;

};

Chapter 29

Shading Internals

As described in section 10.11 Shadings, fz shade is an encapsulation of the
information required to define a PDF shading. This is essentially a superset of
all the shading types provided by our supported document handlers. If we ever
meet a format that requires features not provided in PDF, then fz shade will
be extended to cope.

typedef struct fz_shade_s

{

fz_storable storable;

fz_rect bbox; /* can be fz_infinite_rect */

fz_colorspace *colorspace;

fz_matrix matrix; /* matrix from pattern dict */

int use_background; /* background color for fills but not ’sh’ */

float background[FZ_MAX_COLORS];

int use_function;

float function[256][FZ_MAX_COLORS + 1];

int type; /* function, linear, radial, mesh */

union

{

struct

{

int extend[2];

float coords[2][3]; /* (x,y,r) twice */

} l_or_r;

struct

{

int vprow;

int bpflag;

216

CHAPTER 29. SHADING INTERNALS 217

int bpcoord;

int bpcomp;

float x0, x1;

float y0, y1;

float c0[FZ_MAX_COLORS];

float c1[FZ_MAX_COLORS];

} m;

struct[]

{

fz_matrix matrix;

int xdivs;

int ydivs;

float domain[2][2];

float *fn_vals;

} f;

} u;

fz_compressed_buffer *buffer;

} fz_shade;

29.1 Creation

Currently, there is no defined API for creating a shading due to the public nature
of the structure. Just call fz malloc struct(ctx, fz shade) and initialise the
fields accordingly.

We may look to add convenience functions in the future, as this is likely to be
desirable for the JNI (and other) bindings.

Shading objects are reference counted, with the implicit understanding that once
more than one reference exists to a fz shade, it will no longer be modified.

Additional references can be taken and dropped as usual:

/*

fz_keep_shade: Add a reference to an fz_shade.

shade: The reference to keep.

Returns shade.

*/

fz_shade *fz_keep_shade(fz_context *ctx, fz_shade *shade);

/*

fz_drop_shade: Drop a reference to an fz_shade.

shade: The reference to drop. If this is the last

reference, shade will be destroyed.

*/

CHAPTER 29. SHADING INTERNALS 218

void fz_drop_shade(fz_context *ctx, fz_shade *shade);

We also provide a function to process a given shading, by calling:

29.2 Bounding

Once created, we can ask for the bounds of a given shade under a given trans-
formation. This can sometimes be infinite.

/*

fz_bound_shade: Bound a given shading.

shade: The shade to bound.

ctm: The transform to apply to the shade before bounding.

r: Pointer to storage to put the bounds in.

Returns r, updated to contain the bounds for the shading.

*/

fz_rect *fz_bound_shade(fz_context *ctx, fz_shade *shade, const

fz_matrix *ctm, fz_rect *r);

29.3 Painting

For devices that require shadings as rasterised objects, we provide a function to
paint a shading to a fz pixmap:

/*

fz_paint_shade: Render a shade to a given pixmap.

shade: The shade to paint.

ctm: The transform to apply.

dest: The pixmap to render into.

bbox: Pointer to a bounding box to limit the rendering

of the shade.

*/

void fz_paint_shade(fz_context *ctx, fz_shade *shade, const fz_matrix

*ctm, fz_pixmap *dest, const fz_irect *bbox);

This is currently used by the draw and SVG devices.

CHAPTER 29. SHADING INTERNALS 219

29.4 Decomposition

For devices that wish to get access to a higher level representation of a shading,
but do not wish to access the internals of a shading directly, we provide a
function to decompose a shading to a mesh.

This is called with functions to ‘prepare’ and ‘fill’ vertices respectively. The
mesh is decomposed to triangles internally, each vertex is ‘prepared’ and each
triangle ‘filled’ in turn.

The ordering of these calls is not guaranteed, other than the fact that a vertex
will always be prepared before it is used as part of a triangle to be filled.

typedef struct fz_vertex_s fz_vertex;

struct fz_vertex_s

{

fz_point p;

float c[FZ_MAX_COLORS];

};

/*

fz_shade_prepare_fn: Callback function type for use with

fz_process_shade.

arg: Opaque pointer from fz_process_shade caller.

v: Pointer to a fz_vertex structure to populate.

c: Pointer to an array of floats to use to populate v.

*/

typedef void (fz_shade_prepare_fn)(fz_context *ctx, void *arg, fz_vertex

*v, const float *c);

/*

fz_shade_process_fn: Callback function type for use with

fz_process_shade.

arg: Opaque pointer from fz_process_shade caller.

av, bv, cv: Pointers to a fz_vertex structure describing

the corner locations and colors of a triangle to be

filled.

*/

typedef void (fz_shade_process_fn)(fz_context *ctx, void *arg, fz_vertex

*av, fz_vertex *bv, fz_vertex *cv);

/*

fz_process_shade: Process a shade, using supplied callback

functions. This decomposes the shading to a mesh (even ones

CHAPTER 29. SHADING INTERNALS 220

that are not natively meshes, such as linear or radial

shadings), and processes triangles from those meshes.

shade: The shade to process.

ctm: The transform to use

prepare: Callback function to ’prepare’ each vertex.

This function is passed an array of floats, and populates

an fz_vertex structure.

process: This function is passed 3 pointers to vertex

structures, and actually performs the processing (typically

filling the area between the vertexes).

process_arg: An opaque argument passed through from caller

to callback functions.

*/

void fz_process_shade(fz_context *ctx, fz_shade *shade, const fz_matrix

*ctm,

fz_shade_prepare_fn *prepare, fz_shade_process_fn *process,

void *process_arg);

This function is used internally as part of fz paint shade, but is intended to
also allow extraction of arbitrary shading data.

Chapter 30

Stream Internals

The concepts embodied by a fz stream object, and details of how to use them
were given in chapter 12 The Stream interface. The above, relatively rich, set
of functions are implemented on a fairly simple basic structure.

To implement your own fz stream, simply define a creation function, of the
form:

fz_stream *fz_new_stream_foo(fz_context *ctx, <more parameters here>)

{

fz_stream *stm;

foo_state *state;

state = <create structure to hold foo specific stream state>

stm = fz_new_stream(ctx, state, foo_next, foo_close);

<set stm->seek if required>

<set stm->meta if required>

return stm;

}

Note that some fz try/fz catch-ery may be required as part of the setup for
state.

The hard work for this function is done using fz new stream, and two ‘foo’
specific functions, foo next and foo close. First let’s look at fz new stream:

/*

fz_new_stream: Create a new stream object with the given

internal state and function pointers.

state: Internal state (opaque to everything but implementation).

next: Should provide the next set of bytes (up to max) of stream

221

CHAPTER 30. STREAM INTERNALS 222

data. Return the number of bytes read, or EOF when there is no

more data.

close: Should clean up and free the internal state. May not

throw exceptions.

*/

fz_stream *fz_new_stream(fz_context *ctx, void *state, fz_stream_next_fn

*next, fz_stream_close_fn *close);

This creates the main fz stream structure, populates it with the given pointers
(state, foo next and foo close) and sets the internal buffer pointers up to
indicate an empty buffer.

As soon as anyone tries to read from the buffer (or to find out how many bytes
are available), the MuPDF stream functions will cause foo next to be called.
This is a function of the following type:

/*

fz_stream_next_fn: A function type for use when implementing

fz_streams. The supplied function of this type is called

whenever data is required, and the current buffer is empty.

stm: The stream to operate on.

max: a hint as to the maximum number of bytes that the caller

needs to be ready immediately. Can safely be ignored.

Returns -1 if there is no more data in the stream. Otherwise,

the function should find its internal state using stm->state,

refill its buffer, update stm->rp and stm->wp to point to the

start and end of the new data respectively, and then

"return *stm->rp++".

*/

typedef int (fz_stream_next_fn)(fz_context *ctx, fz_stream *stm, size_t

max);

When the stream is closed, the foo close function will be called. This should
be a function of type fz stream close fn:

/*

fz_stream_close_fn: A function type for use when implementing

fz_streams. The supplied function of this type is called

when the stream is closed, to release the stream specific

state information.

state: The stream state to release.

*/

In our example, if the state was created by a simple fz malloc struct(ctx,

CHAPTER 30. STREAM INTERNALS 223

foo state) then foo close might be as simple as a fz free(ctx, state). If
the internal state of the stream is more complex then the destructor will be
similarly more complex.

These three functions (creation, next and close) are all that is required to define
a stream.

Optionally, you can also define a seek and/or a meta function, using functions
of the following types:

/*

fz_stream_seek_fn: A function type for use when implementing

fz_streams. The supplied function of this type is called when

fz_seek is requested, and the arguments are as defined for

fz_seek.

The stream can find its private state in stm->state.

*/

typedef void (fz_stream_seek_fn)(fz_context *ctx, fz_stream *stm,

fz_off_t offset, int whence);

/*

fz_stream_meta_fn: A function type for use when implementing

fz_streams. The supplied function of this type is called when

fz_meta is requested, and the arguments are as defined for

fz_meta.

The stream can find its private state in stm->state.

*/

typedef int (fz_stream_meta_fn)(fz_context *ctx, fz_stream *stm, int

key, int size, void *ptr);

Chapter 31

Output Internals

The concepts embodied by a fz output object, and details of how to use them
were given in chapter 13 The Output interface. The above, relatively rich, set
of functions are implemented on a fairly simple basic structure.

To implement your own fz output, simply define a creation function of the
form:

fz_output *fz_new_output_foo(fz_context *ctx, <more parameters here>)

{

fz_output *out = fz_new_output(ctx, <state>, foo_write, foo_close);

<optionally set out->seek = foo_seek>

<optionally set out->tell = foo_tell>

return out;

}

This has parallels with the implementation of fz streams, but is not quite
identical.

If state needs no destruction, then we can use NULL in place of foo close.
Otherwise foo close should be a function of type:

/*

fz_output_close_fn: A function type for use when implementing

fz_outputs. The supplied function of this type is called

when the output stream is closed, to release the stream specific

state information.

state: The output stream state to release.

*/

typedef void (fz_output_close_fn)(fz_context *ctx, void *state);

This can be as simple as doing fz free(ctx, state), or (depending on the

224

CHAPTER 31. OUTPUT INTERNALS 225

complexity of the state structure) can require more involved operations to clean
up.Many fz output implementations rely on close being called to ensure the
output is correctly flushed, and no data lost.

The most important function and the only non-optional one is foo write. This
is a function of type:

/*

fz_output_write_fn: A function type for use when implementing

fz_outputs. The supplied function of this type is called

whenever data is written to the output.

state: The state for the output stream.

data: a pointer to a buffer of data to write.

n: The number of bytes of data to write.

*/

typedef void (fz_output_write_fn)(fz_context *ctx, void *state, const

void *data, size_t n);

Optionally we can choose to have our output stream support fz seek output

and fz tell output. To do that we must implement foo seek and foo tell

respectively, and assign them out->seek and out->tell during creation.

/*

fz_output_seek_fn: A function type for use when implementing

fz_outputs. The supplied function of this type is called when

fz_seek_output is requested.

state: The output stream state to seek within.

offset, whence: as defined for fs_seek_output.

*/

typedef void (fz_output_seek_fn)(fz_context *ctx, void *state, fz_off_t

offset, int whence);

/*

fz_output_tell_fn: A function type for use when implementing

fz_outputs. The supplied function of this type is called when

fz_tell_output is requested.

state: The output stream state to report on.

Returns the offset within the output stream.

*/

typedef size_t (fz_output_tell_fn)(fz_context *ctx, void *state);

Chapter 32

Colorspace Internals

In section 10.2 Colorspaces, we were introduced to the basic Colorspaces avail-
able within MuPDF. Here we describe how they work internally, and how new
colorspaces can be implemented by document handler authors.

Colorspaces are complicated slightly by the need to cope with both ICC-enabled
and ICC-disabled workflows.

32.1 Non ICC-based Colorspaces

The first and most basic colorspace creation method is for creating a non-ICC
based colorspace, by calling:

fz_colorspace *fz_new_colorspace(

fz_context *ctx,

const char *name,

enum fz_colorspace_type type,

int flags,

int n,

fz_colorspace_convert_fn *to_ccs,

fz_colorspace_convert_fn *from_ccs,

fz_colorspace_base_fn *base,

fz_colorspace_clamp_fn *clamp,

fz_colorspace_destruct_fn *destruct,

void *data,

size_t size);

The name parameter is a pointer to a (short) ASCII string describing the col-
orspace, and n is the number of colorants in the space.

The type of the colorspace should be chosen as one of the following types (which
should be consistent with the value of n chosen):

226

CHAPTER 32. COLORSPACE INTERNALS 227

enum fz_colorspace_type

{

FZ_COLORSPACE_NONE,

FZ_COLORSPACE_GRAY,

FZ_COLORSPACE_RGB,

FZ_COLORSPACE_BGR,

FZ_COLORSPACE_CMYK,

FZ_COLORSPACE_LAB,

FZ_COLORSPACE_INDEXED,

FZ_COLORSPACE_SEPARATION,

};

The flags value for is the logical or of a selection of values from the following
enum:

enum

{

FZ_COLORSPACE_IS_DEVICE = 1,

FZ_COLORSPACE_IS_ICC = 2,

FZ_COLORSPACE_IS_CAL = 4,

FZ_COLORSPACE_LAST_PUBLIC_FLAG = 4,

};

MuPDF uses some extra bits internally, so unknown bits should be considered
private.

If the colorspace requires any private data (perhaps a palette for an indexed
space), then an opaque pointer can be passed as data. A function to destroy
this data when the colorspace reference count reaches zero should be passed as
destruct.

Colorspaces are placed into the Store, so some measure of the size of their data
is required - the size in bytes of the colorspaces extra data should be passed as
size.

If this colorspace is based on another one then a function to return a borrowed
reference to the underlying space should be supplied as base. For instance,
an indexed space with an RGB palette would pass a function that returns
fz device rgb.

This leaves the 3 functions that do the heavy lifting.

The to ccs parameter should be a function that takes n colorant values in the
colorspace, and returns them as RGB values.

The from ccs parameter should be a function that takes RGB colorant values,
and returns them as n colorant values in the colorspace.

Finally, the clamp field should be a function that takes n colorant values in the
colorspace, and clamps them into the appropriate range.

CHAPTER 32. COLORSPACE INTERNALS 228

32.2 ICC-based colorspaces

If you have an ICC profile for your colorspace, then you can call one of these
functions:

fz_colorspace *fz_new_icc_colorspace(

fz_context *ctx,

const char *name,

int num,

fz_buffer *buf);

fz_colorspace *fz_new_icc_colorspace_from_file(

fz_context *ctx,

const char *name,

const char *path);

fz_colorspace *fz_new_icc_colorspace_from_stream(

fz_context *ctx,

const char *name,

fz_stream *in);

They all load the ICC profile from the specified source, and create the ICC
based fz colorspace.

Unfortunately, in non-ICC based workflows, ICC profiles can’t be loaded. This
means that document handlers have to be prepared to ‘fall back’ to a non-ICC
based approximation. This has to be done at the document handler level; for
example the PDF agent calls fz get cmm engine, and if it returns NULL, drops
back to the alternate specified space.

32.3 Calibrated Colorspaces

One final route to create colorspaces exists, that of creating them from given
calibration settings. This builds upon the ICC workflow, so again, should only
be used in the ICC-workflow case.

fz_colorspace *fz_new_cal_colorspace(

fz_context *ctx,

const char *name,

float *wp,

float *bp,

float *gamma,

float *matrix);

Chapter 33

Color Management

33.1 Overview

MuPDF can optionally make use of a color management engine to offer a fully
color managed workflow.

Its use of the engine is encapsulated within the fz cmm engine structure. Cur-
rently we provide an implementation of this structure using a modified version
of LCMS2 (known as LCMS2MT), but systems with other CMM engines in
already can use those instead by reimplementing the functions therein.

By default, on start-up, MuPDF has no color management engine enabled. This
keeps the library size down (and performance up!) for people who do not wish
to use it.

The relevant functions are:

/*

fz_set_cmm_engine: Set the color management engine to

be used. This should only ever be called on the "base"

context before cloning it, and before opening any files.

Attempting to change the engine in use once a file has

been opened, or to use different color management engine

for the same file in different threads will lead to

undefined behaviour, including crashing.

Using different ICC engines for different files using

different sets of fz_contexts should theoretically be

possible.

*/

void fz_set_cmm_engine(fz_context *ctx, const fz_cmm_engine *engine);

229

CHAPTER 33. COLOR MANAGEMENT 230

/*

Currently we only provide a single color management

engine, based on a (modified) LCMS2.

An unmodified LCMS2 should work too, but only when restricted

to a single thread.

*/

extern fz_cmm_engine fz_cmm_engine_lcms;

Thus to enable the color managed workflow using LCMS, call:

fz_set_cmm_engine(ctx, &fz_cmm_engine_lcms);

It is best to do this immediately after creating the base context.

It is possible to switch between ICC and non-ICC workflows in the same in-
stance of MuPDF (and even to use the two simultaneously). It is, however, not
generally possible to swap a given context once operations on that context have
started. This is because any outstanding fz colorspaces (such as those found
within the store) will still refer to the wrong color management implementation!

Chapter 34

Font provision within
MuPDF

Which fonts are built into MuPDF is a vexed question that will very much
depend upon exactly where you got your MuPDF library, and what options
were used to build it. While MuPDF is supplied from the authors with a wide
range of fonts, the decision about which of these should be built in is left to
the builder. This allows the size of the resultant library to be tuned; there is
a trade-off to be made between the number of fonts included (and hence the
language/script coverage) and the size of the shipped binary.

34.1 Tofu

In many typographical applications, if a given glyph cannot be located for dis-
play (perhaps because the required font is not on a system), it may be rendered
as a empty box. Such boxes are known informally as Tofu.

MuPDF tends not to display such boxes, but the notion of Tofu corresponding
to “glyphs not existing” is carried over.

Specifically, while MuPDF is supplied with a large number of fonts, giving
the best possible coverage for scripts/languages from across the world, we allow
builders of MuPDF to customise the resultant library by omitting (or “Tofuing”)
particular sets of fonts.

This is done by building the library with a range of different predefines to the
C compiler, all beginning TOFU .

231

CHAPTER 34. FONT PROVISION WITHIN MUPDF 232

34.2 Supplied fonts

Broadly the fonts supplied fall into the following categories:

34.2.1 Base 14 fonts

The PDF standard requires all viewers to provide 14 ’standard’ fonts (or
metric-compatible clones thereof); Courier, Courier-Oblique, Courier-Bold,
Courier-BoldOblique, Helvetica, Helvetica-Oblique, Helvetica-Bold, Helvetica-
BoldOblique, Times-Roman, Times-Italic, Times-Bold, Times-BoldItalic, Sym-
bol and ZapfDingbats. Accordingly, MuPDF is supplied with equivalent font
families (Nimbus Mono, Nimbus Sans, Nimbus Roman, Standard Symbols, and
Dingbats) for these fonts that answer to the standard names.

It is extremely unlikely that any builder of a general purpose MuPDF library
will choose to leave these fonts out of a distribution, as many PDF files rely
(quite reasonably) on them being available.

Nonetheless, if a builder is in control of the exact set of files that will be read
by MuPDF (perhaps for a system where content is tightly controlled, and made
to specific standards with all the fonts embedded) it is possible for MuPDF to
be built and used without any fonts embedded.

This can be achieved by building with TOFU BASE14. We only recommend this
for experienced users who are in control of the content to be displayed.

34.2.2 Extra Latin font

Charis SIL is supplied and is used as our default for ebook reading.

This font can be omitted from builds by building with TOFU SIL.

34.2.3 CJKV fonts

Support for Chinese, Japanese, Korean and Vietnamese scripts (CJKV or CJK
for short) is given by default by the “Source Han Serif Regular” font collection.
This has 4 subfonts embedded within a single TrueType collection.

This collection can be omitted from builds by building with TOFJ CJK,
TOFU CJK EXT or TOFU CJK LANG.

34.2.4 Noto fonts

Google has produced a range of fonts that offer exceptional coverage for script-
s/languages worldwide. The idea of these fonts is that with them, you should
see “no tofu”. Accordingly, these are know as the “noto” fonts.

MuPDF provides a huge number of these, too many to list here. These provide
great coverage, at the expense of a significant size taken in the built library.

CHAPTER 34. FONT PROVISION WITHIN MUPDF 233

Many builders choose to eliminate these, by building with TOFU NOTO defined.

34.2.5 Fallback fonts

Noto Serif is supplied as a“fallback” font. It provides reasonable coverage for
non-Latin, non-CJKV glyphs, so is useful as a “last resort” for content that
needs glyphs that fall outside of the ”base 14” fonts.

This font can be omitted from builds by building with TOFU NOTO.

Additionally, if built with TOFU CJK LANG, MuPDF includes the DroidSansFall-
backFull font. This provides decent coverage for glyphs used in CJK languages,
and will be used as a font of last resort given that Source Han Serif Regular is
not included.

If MuPDF is built with TOFU CJK EXT, then MuPDF will include DroidSansFall-
back (a smaller version of DroidSansFallbackFull) instead. This provides worse
coverage for CJK glyphs, but for a smaller size.

Finally, if MuPDF is built with TOFU CJK then even DroidSansFallback will be
omitted, leaving a system that cannot render any CJK glyphs at all, unless the
font in question is embedded within the source PDF file.

34.3 Customising the included fonts

The easiest way to customise the set of fonts included within a build of MuPDF
is to use the TOFU ... build predefines described above. This allows fonts to
omitted from the build.

Further customisation (both adding and subtracting fonts) is possible with some
more work, but this requires some source code alteration.

The source/fitz/font-table.h file lists the fonts that are to be made available
to MuPDF. Remove a line from this file, and that font will not be available in
the built library.

The ordering of fonts within font-table.h is important; it is searched in a linear
fashion, and the first match for any given query found. This means, for example,
that fonts intended to provide support for a specific language with a given script
should be listed before fonts that offer support for any language with that script.

To add new fonts, they must first be added to this file, and then the build
scripts must be updated to include the font itself. Note that many fonts appear
multiple times in the table, either providing different scripts/languages, or to
allow each font to respond to multiple different names.

Updating the build scripts for new fonts depends on the platform you are build-
ing for.

CHAPTER 34. FONT PROVISION WITHIN MUPDF 234

34.3.1 MSVC builds

The MSVC solution mupdf.sln contains a libresources project. The fonts to
be included in the build are included as sources here. Simply add new fonts to
this project, and they should be included automatically on the next build.

Note that the symbol under which the font appears in the build depends upon
the path to the font name, so it is best to follow the pattern provided by the
existing fonts; resources/fonts/<foundry name>/.<suffix>.

34.3.2 Makefile builds

The Makefile contains a section that sets the FONT BIN macro to a list of files
found from files within resources/fonts using wildcards. Either put the new
fonts to be included into this directory, or extend FONT BIN to include the source
for your font.

Note that the name under which the font appears in the build depends upon
the path to the font name, so it is best to follow the pattern provided by the
existing fonts; resources/fonts/<foundry name>/.<suffix>.

Part III

The MuPDF Interpreters

235

Chapter 35

PDF Interpreter Details

35.1 Overview

The PDF document handler is built upon a large corpus of code within MuPDF
that deals specifically with the objects, structures and operators found within
a document. This code is collectively known as the PDF interpreter.

While it is perfectly possible to use MuPDF to open documents and render
pages from a PDF file without understanding anything at all about the PDF
interpreter, there are many situations where deeper access to the interpreter can
be advantageous.

For example, in order for PDF documents to have their pages rearranged, or files
embedded/extracted from them, simple access to the underlying PDF document
structure is required.

In fact, the access given to a PDF document structure is such that almost any
operation can be coded for.

35.2 PDF Document

The first step in dealing with a PDF document is to get a handle to it. This
is done by opening it as normal using fz open document to get a fz document

pointer. To ‘promote’ this to a pdf document, we use the pdf specifics call:

/*

pdf_specifics: down-cast a fz_document to a pdf_document.

Returns NULL if underlying document is not PDF

*/

pdf_document *pdf_specifics(fz_context *ctx, fz_document *doc);

236

CHAPTER 35. PDF INTERPRETER DETAILS 237

If pdf specifics returns non-NULL, then you know that you are indeed dealing
with a PDF format document.

Having a pdf document pointer allows a series of new APIs to be called (see
include/mupdf/pdf/document.h).

In terms of handling a PDF file via its constituent objects, one of the most
useful is:

pdf_obj *pdf_trailer(fz_context *ctx, pdf_document *doc);

This obtains a pointer to a representation of the trailer dictionary object.

35.3 PDF Objects

PDF files are made up of a series of objects. These objects can be in many dif-
ferent types, including dictionaries, streams, numbers, booleans, names, strings
etc. For full details, see ‘The PDF Reference Manual’.

MuPDF represents all of these as a pdf obj pointer. Such pointers are reference
counted in the usual way:

pdf_obj *pdf_keep_obj(fz_context *ctx, pdf_obj *obj);

void pdf_drop_obj(fz_context *ctx, pdf_obj *obj);

Given such a pointer, the actual type of the object can be obtained using:

int pdf_is_null(fz_context *ctx, pdf_obj *obj);

int pdf_is_bool(fz_context *ctx, pdf_obj *obj);

int pdf_is_int(fz_context *ctx, pdf_obj *obj);

int pdf_is_real(fz_context *ctx, pdf_obj *obj);

int pdf_is_number(fz_context *ctx, pdf_obj *obj);

int pdf_is_name(fz_context *ctx, pdf_obj *obj);

int pdf_is_string(fz_context *ctx, pdf_obj *obj);

int pdf_is_array(fz_context *ctx, pdf_obj *obj);

int pdf_is_dict(fz_context *ctx, pdf_obj *obj);

int pdf_is_indirect(fz_context *ctx, pdf_obj *obj);

int pdf_is_stream(fz_context *ctx, pdf_obj *obj);

These all return non-zero if the object is of the tested type, and zero otherwise.

To extract the data from a PDF object, you can use one of the following func-
tions:

/* safe, silent failure, no error reporting on type mismatches */

int pdf_to_bool(fz_context *ctx, pdf_obj *obj);

int pdf_to_int(fz_context *ctx, pdf_obj *obj);

fz_off_t pdf_to_offset(fz_context *ctx, pdf_obj *obj);

float pdf_to_real(fz_context *ctx, pdf_obj *obj);

CHAPTER 35. PDF INTERPRETER DETAILS 238

char *pdf_to_name(fz_context *ctx, pdf_obj *obj);

char *pdf_to_str_buf(fz_context *ctx, pdf_obj *obj);

int pdf_to_str_len(fz_context *ctx, pdf_obj *obj);

It is, in fact, safe to call any of these functions on any pdf obj pointer. If the
object is not of the expected type, a ‘safe’ default will be returned.

35.3.1 Arrays

Array objects consist of lists of other objects, each of which can potentially be
of a different type. Accordingly, we have a function to enquire how long a list
we have:

int pdf_array_len(fz_context *ctx, pdf_obj *array);

Armed with this knowledge we can then fetch any object we want from within
the array.

pdf_obj *pdf_array_get(fz_context *ctx, pdf_obj *array, int i);

Ideally i should be between 0 and length-1 (though the function will just return
NULL if an out of range element is requested).

Note that the pdf obj reference returned by this function is merely borrowed.
That is to say, if you wish to keep the object pointer around for more than the
immediate lifespan of the call, you should manually call pdf keep obj to keep
it, and later pdf drop obj to dispose of it.

An object can be inserted into an array at a given index, using:

void pdf_array_insert(fz_context *ctx, pdf_obj *array, pdf_obj *obj, int

index);

Any objects after this point are shuffled up the array. Alternatively an object
can be put into an array at a given point, overwriting any object that is there
already:

void pdf_array_put(fz_context *ctx, pdf_obj *array, int i, pdf_obj *obj);

If the array needs to be extended it will be, and any intervening objects will be
created as ‘null’. Alternatively objects can be appended to an array using:

void pdf_array_push(fz_context *ctx, pdf_obj *array, pdf_obj *obj);

In all these cases, the array will take new references to the object passed in -
that is, after the call, both the array and the caller will hold references to the
object. In cases where the object to be inserted is a ‘borrowed’ reference, this
is ideal.

CHAPTER 35. PDF INTERPRETER DETAILS 239

In other cases, where the ownership of the object reference should be passed
down into the array, we have alternative formulations of those functions:

void pdf_array_insert_drop(fz_context *ctx, pdf_obj *array, pdf_obj

*obj, int index);

void pdf_array_put_drop(fz_context *ctx, pdf_obj *array, int i, pdf_obj

*obj);

void pdf_array_push_drop(fz_context *ctx, pdf_obj *array, pdf_obj *obj);

These functions are so named because they are equivalent to first insert-
ing/putting/pushing the object, and then dropping it, with the nice side ef-
fect that any errors encountered during the push still result in the object being
correctly dropped, often saving the caller from having to wrap the call in a
fz try/fz catch clause.

35.4 PDF Operator Processors

Graphical content within a PDF file is given as streams of PDF “operators”.
These operators describe marking operations on a conceptual page. In order to
display a PDF file the interpreter needs to run through these operators process-
ing each in turn.

In addition, certain manipulations of PDF operations (like redaction, sanitisa-
tion and appending, for example) are best done by operating directly on these
operators streams. The alternative scheme, of first converting the operators to
graphical objects, then resynthesising an operator stream from that leads to
problems with round trip conversions, and the potential loss of structure.

For this reason, the PDF interpreter within MuPDF is structured around an
extensible class of pdf processors. A pdf processor is a set of functions, one
for each operator. The interpreter runs through the operators and handles them
by calling the appropriate functions.

By changing the pdf processor in use, we can therefore change what the effect
of interpreting the page is.

MuPDF contains three different pdf processor implementations, though the
system is deliberately open ended, and more can be supplied by any user of the
library. Some can even be chained together in powerful ways.

35.4.1 Run processor

The first, and most commonly used processor is the pdf run processor. This
processor has the effect of interpreting the incoming operators and turning them
into device calls (i.e. graphical objects rendered on a page).

When using the standard fz run page (and similar) function(s) this is the
pdf processor that is used automatically. It can still be useful to create these

CHAPTER 35. PDF INTERPRETER DETAILS 240

manually, especially when coupling them with a pdf filter processor (or
similar).

Such processors can be created using:

/*

pdf_new_run_processor: Create a new "run" processor. This maps

from PDF operators to fz_device level calls.

dev: The device to which the resulting device calls are to be

sent.

ctm: The initial transformation matrix to use.

usage: A NULL terminated string that describes the ’usage’ of

this interpretation. Typically ’View’, though ’Print’ is also

defined within the PDF reference manual, and others are possible.

gstate: The initial graphics state.

nested: The nested depth of this interpreter. This should be

0 for an initial call, and will be incremented in nested calls

due to Type 3 fonts.

*/

pdf_processor *pdf_new_run_processor(fz_context *ctx, fz_device *dev,

const fz_matrix *ctm, const char *usage, pdf_gstate *gstate, int

nested);

The component parts of this processor are generally functions named
pdf run ..., and frequently call back into the main pdf interpreter (to han-
dle nested content streams as found in XObjects etc).

35.4.2 Filter processor

The pdf filter processor is an example of a processor that allows chaining.
PDF operators are fed into the processor, which then ‘filters’ them and passes
them out to another processor.

/*

pdf_new_filter_processor: Create a filter processor. This

filters the PDF operators it is fed, and passes them down

(with some changes) to the child filter.

The changes made by the filter are:

* No operations are allowed to change the top level gstate.

Additional q/Q operators are inserted to prevent this.

* Repeated/unnecessary colour operators are removed (so,

CHAPTER 35. PDF INTERPRETER DETAILS 241

for example, "0 0 0 rg 0 1 rg 0.5 g" would be sanitised to

"0.5 g")

The intention of these changes is to provide a simpler,

but equivalent stream, repairing problems with mismatched

operators, maintaining structure (such as BMC, EMC calls)

and leaving the graphics state in an known (default) state

so that subsequent operations (such as synthesising new

operators to be appended to the stream) are easier.

The net graphical effect of the filtered operator stream

should be identical to the incoming operator stream.

chain: The child processor to which the filtered operators

will be fed.

old_res: The incoming resource dictionary.

new_res: An (initially empty) resource dictionary that will

be populated by copying entries from the old dictionary to

the new one as they are used. At the end therefore, this

contains exactly those resource objects actually required.

*/

pdf_processor *pdf_new_filter_processor(fz_context *ctx, pdf_processor

*chain, pdf_obj *old_res, pdf_obj *new_res);

Similar filtering processors could be written for other tasks, such as discarding
all the text from a page, changing all occurrences of a particular font for another,
or converting all the objects on a page to a given colorspace.

The component parts of this processor are generally functions named
pdf filter

35.4.3 Buffer processor

The fz buffer processor is designed to produce a fz buffer from an
input stream of operators. This is frequently found coupled with a
fz filter processor, to gather up the filtered version of the operator stream
ready for reinsertion into the document.

/*

pdf_new_buffer_processor: Create a buffer processor. This

collects the incoming PDF operator stream into an fz_buffer.

buffer: The (possibly empty) buffer to which operators will be

appended.

ahxencode: If 0, then image streams will be send as binary,

CHAPTER 35. PDF INTERPRETER DETAILS 242

otherwise they will be asciihexencoded.

*/

pdf_processor *pdf_new_buffer_processor(fz_context *ctx, fz_buffer

*buffer, int ahxencode);

This is built using a fz output processor.

35.4.4 Output processor

The fz output processor is designed to produce an output stream from
an input stream of operators. This is frequently found coupled with a
fz filter processor, to gather up the filtered version of the operator stream
ready for reinsertion into the document.

/*

pdf_new_output_processor: Create an output processor. This

sends the incoming PDF operator stream to an fz_output stream.

out: The output stream to which operators will be sent.

ahxencode: If 0, then image streams will be send as binary,

otherwise they will be asciihexencoded.

*/

pdf_processor *pdf_new_output_processor(fz_context *ctx, fz_output *out,

int ahxencode);

The component parts of this processor are generally functions named
pdf out

35.5 Copying objects between PDF documents

PDF objects vary in complexity from simple values (booleans, integers, floats,
names, etc) to more complex entities (arrays, dictionaries, streams, indirect ref-
erences etc). While the simplest object types are independent of any particular
document, the more complex types are implicitly bound to the document in
which they appear.

Most of the time this is all taken care of automatically by the MuPDF core,
but special care must be taken when trying to copy objects from one PDF file
to another.

35.5.1 The problem

To illustrate this, imagine that you have 2 PDF documents open, docA and
docB. Imagine that we want to lookup an object from docA, and insert into
docB. A naive code fragment to do this might be:

CHAPTER 35. PDF INTERPRETER DETAILS 243

pdf_dict_putp_drop(ctx,

pdf_trailer(ctx, docB),

"Root/Example",

pdf_dict_getp(ctx,

pdf_trailer(ctx, docA),

"Root/Example"));

This may actually work in limited cases, such as:

1 0 obj

<<

/Type /Catalog

/Pages 3 0 R

/Metadata 9 0 R

/Example true

>>

endobj

...

trailer

<<

/Root 1 0 R

>>

The value of Root/Example is read as true, which can safely be written into
another file.

This can easily fall down though, as can be seen in more complex cases:

2 0 obj

/Complex

endobj

1 0 obj

<<

/Type /Catalog

/Pages 3 0 R

/Metadata 9 0 R

/Example [(More) 2 0 R]

>>

endobj

...

trailer

<<

/Root 1 0 R

>>

In this case the value of Root/Example is read as an array of 2 elements; the
first element being the string ”More”, and the second being a reference to object
2 in the file.

CHAPTER 35. PDF INTERPRETER DETAILS 244

If this was to be written directly into the new file, we’d still have an array of
2 elements, with the first element being the string ”More”. The second would
refer to whatever object 2 in the new file happens to be.

The solution to this requires us to walk the directed (possibly cyclic) graph of
child objects within the object to be copied from one file to another, and to
‘deep copy’ the contents.

We refer to this process as ‘grafting’ objects from one tree into another.

35.5.2 Grafting objects

To move a single object to a new tree, use pdf graft object:

/*

pdf_graft_object: Return a deep copied object equivalent to the

supplied object, suitable for use within the given document.

dst: The document in which the returned object is to be used.

obj: The object deep copy.

Note: If grafting multiple objects, you should use a pdf_graft_map

to avoid potential duplication of target objects.

*/

pdf_obj *pdf_graft_object(fz_context *ctx, pdf_document *dst, pdf_obj

*obj);

This takes an object in one document, and returns an equivalent object that
can safely be written into document dst. Any indirect references within the
original object will have been copied across as new objects within dst as a side
effect of this call.

The ‘safe’ version of the code given above would therefore be:

pdf_dict_putp_drop(ctx,

pdf_trailer(ctx, docB),

"Root/Example",

pdf_graft_object(ctx, docB,

pdf_dict_getp(ctx,

pdf_trailer(ctx, docA,

"Root/Example"));

35.5.3 A further problem

Even this is not perfect. Consider the example:

2 0 obj

/Complex

CHAPTER 35. PDF INTERPRETER DETAILS 245

endobj

1 0 obj

<<

/Type /Catalog

/Pages 3 0 R

/Metadata 9 0 R

/Example [(More) 2 0 R]

/Example2 [(Even more) 2 0 R]

>>

endobj

...

trailer

<<

/Root 1 0 R

>>

Suppose we want to copy both Root/Example and Root/Example2 between files.
If we read the first of these, and write it, it will cause object 2 to be copied to
the new file (as a new object, 99 say). When we read the second one, and write
that, it will cause object 2 to be copied into the second file again (as object 100
perhaps).

In the example above, with the object consisting of a single name this duplication
may not matter, but when you consider that objects might be dictionaries with
lots of contents, or even streams with many megabytes of data attached, the
problem becomes clear.

The solution to this is to use a pdf graft map.

35.5.4 Graft maps

A pdf graft map is a mapping from one pdf document to another that ensures
objects in the source document are only ever copied into the target document
at most once.

/*

pdf_new_graft_map: Prepare a graft map object to allow objects

to be deep copied from one document to the given one, avoiding

problems with duplicated child objects.

dst: The document to copy objects to.

Note: all the source objects must come from the same document.

*/

pdf_graft_map *pdf_new_graft_map(fz_context *ctx, pdf_document *dst);

/*

pdf_drop_graft_map: Drop a graft map.

*/

CHAPTER 35. PDF INTERPRETER DETAILS 246

void pdf_drop_graft_map(fz_context *ctx, pdf_graft_map *map);

/*

pdf_graft_mapped_object: Return a deep copied object equivalent

to the supplied object, suitable for use within the target

document of the map.

map: A map targeted at the document in which the returned

object is to be used.

obj: The object deep copy.

Note: Copying multiple objects via the same graft map ensures

that any shared child are not duplicated more than once.

*/

pdf_obj *pdf_graft_mapped_object(fz_context *ctx, pdf_graft_map *map,

pdf_obj *obj);

A ‘safe’ version of the example given earlier that copies both Root/Example and
Root/Example2 would therefore be:

pdf_graft_map *map = pdf_new_graft_map(ctx, docB);

pdf_dict_putp_drop(ctx,

pdf_trailer(ctx, docB),

"Root/Example",

pdf_graft_mapped_object(

ctx, map,

pdf_dict_getp(ctx,

pdf_trailer(ctx, docA,

"Root/Example"));

pdf_dict_putp_drop(ctx,

pdf_trailer(ctx, docB),

"Root/Example2",

pdf_graft_mapped_object(

ctx, map,

pdf_dict_getp(ctx,

pdf_trailer(ctx, docA,

"Root/Example2"));

pdf_drop_graft_map(ctx, map);

Chapter 36

XPS Interpreter Details

36.1 Overview

The XPS document handler differs from the PDF document handler in that its
sole interface is that exposed through the fz document class.

XPS files are zip format archives with a specific layout of files. As well as opening
xps (and .oxps) files (archives) directly, MuPDF will also open unpacked files by
pointing fz open document at the “rels/.rels” file in the unpacked directory
tree.

247

Chapter 37

EPub/HTML Interpreter
Details

The EPUB and HTML document handlers are based upon the same layout code.
With the exception of a few global configuration settings, their sole interfaces
are those exposed through the fz document class.

37.1 CSS rules

The layout follows simple CSS rules. On opening both EPUB and HTML doc-
uments CSS rules are read from a series of locations in defined order.

Firstly, an inbuilt set of CSS (see html default css) is read for all files with
the exception of those identified as FictionBook 2 format which have their own
special case rules (see fb2 default css).

Next, the CSS rules from the document itself are read. If you would rather
avoid this, it can be suppressed using:

/*

fz_set_use_document_css: Toggle whether to respect document styles

in HTML and EPUB.

*/

void fz_set_use_document_css(fz_context *ctx, int use);

Finally a set of ‘user’ CSS is read. This defaults to empty, but can be supplied
using:

/*

fz_set_user_css: Set the user stylesheet source text for use with

HTML and EPUB.

248

CHAPTER 37. EPUB/HTML INTERPRETER DETAILS 249

*/

void fz_set_user_css(fz_context *ctx, const char *text);

Thus the user CSS is the last to be read and can potentially override all the
settings made by the defaults and document CSS.

37.2 Shaped text

The text read from the document is held as Unicode, and displayed using the
built in fonts. By default these are the Google Noto fonts, which are in Open-
Type format. One of the features of OpenType fonts is the ability to offer
excellent typographical output for a wide range of scripts due to the inbuilt
automated tables to control font shaping.

Font shaping allows a font to choose a different set of output glyphs (with highly
customised positioning) based on the context within which an input Unicode
character (or series of characters) are used.

Some languages use this to add diacritical marks (in particular Vietnamese).
Others (such as Arabic) may use it to ensure that characters join smoothly. Still
others (such as Indic languages) completely change the appearance of groups of
input characters by combining them into single shapes that represent multiple
characters at once.

The complex rules that control this are encoded as tables within the OpenType
format fonts. The interpretation and application of these tables/rules is handled
for us using the HarfBuzz library.

37.3 Bidirectional text

While Western languages are written left to right, others are written (broadly)
right to left. Even in right to left languages, specific regions of text (such
as numbers) are written left to right. The behaviour of ‘enclosing’ operators
brackets adds additional complexity.

The rules governing exactly how layout should proceed when faced with a com-
bination of left to right and right to left text are complex to say the least, but
fortunately an algorithm has been published by the Unicode consortium to spec-
ify exactly how layout should proceed in any given circumstance (as ‘Technical
Recommendation 9’).

MuPDF contains an implementation of this algorithm derived from the example
code provided with this recommendation.

Chapter 38

SVG Interpreter Details

The SVG interpreter offers very little API other than that exposed through the
fz document interface.

The sole extras are defined to facilitate the use of SVGs as illustrations within
EPUB files.

/*

Parse an SVG document into a display-list.

*/

fz_display_list *fz_new_display_list_from_svg(fz_context *ctx, fz_buffer

*buf, float *w, float *h);

/*

Create a scalable image from an SVG document.

*/

fz_image *fz_new_image_from_svg(fz_context *ctx, fz_buffer *buf);

These enable the HTML agent to easily create a fz image out of an SVG. This
fz image has the property that it remains scalable, and hence will not appear
pixellated if the document is reflowed to different dimensions.

250

Part IV

Tools, Libraries, and Helper
Routines

251

Chapter 39

MuTool

39.1 Overview

Mutool is a collection of useful command line utilities rolled into a single exe-
cutable.

As explained earlier MuPDF is a C library that encapsulates all the smarts
required to open/render/manipulate document files of a range of a formats.
This means that most utilities using it are reduced to very thin shells that just
call down to the library.

When you consider the additional factor of the size of the resources built into
MuPDF (fonts, CMAPs etc), this means it makes a lot of sense to build a single
executable with multiple utilities sharing a single copy of the library.

If you run mutool at the command line with no arguments, a list of the possible
options will be displayed:

$ mutool

usage: mutool <command> [options]

clean -- rewrite pdf file

convert -- convert document

create -- create pdf document

draw -- convert document

extract -- extract font and image resources

info -- show information about pdf resources

merge -- merge pages from multiple pdf sources into a new pdf

pages -- show information about pdf pages

portfolio -- manipulate PDF portfolios

poster -- split large page into many tiles

run -- run javascript

show -- show internal pdf objects

252

CHAPTER 39. MUTOOL 253

39.2 Clean

The clean utility will produce a cleaned version of an input PDF. It can apply a
range of different options, a full list of which can be obtained by running mutool
clean with no options:

$ mutool clean

usage: mutool clean [options] input.pdf [output.pdf] [pages]

-p - password

-g garbage collect unused objects

-gg in addition to -g compact xref table

-ggg in addition to -gg merge duplicate objects

-gggg in addition to -ggg check streams for duplication

-l linearize PDF

-a ascii hex encode binary streams

-d decompress streams

-z deflate uncompressed streams

-f compress font streams

-i compress image streams

-s clean content streams

pages comma separated list of page numbers and ranges

The arguments here are fairly self explanatory, and usage is best explained with
a few examples.

Firstly, and most simply, clean can be used to try to repair broken files. Many
PDF files found in the wild are broken - sometimes because of having been cor-
rupted, either by transmission/archiving problems, but a disappointing amount
by just having been created by bad PDF writing software. Running a clean pass
will attempt to repair the files:

mutool clean in.pdf out.pdf

Individual pages (or page ranges) can be extracted from a PDF. For example:

mutool clean -gggg in.pdf out.pdf 1-10,12

That will extract the pages 1 to 10, and page 12 of in.pdf and output it into
a new out.pdf. The -gggg options ensure that unused objects will be dropped
from the PDF.

An 8 page PDF might be rearranged into booklet form using:

mutool clean -gggg in.pdf out.pdf 8,1,7,2,6,3,5,4

Finally, a more exotic, but very common example; if someone reports a problem
seen on page 4 of a given PDF, the following command will extract that page,
and expand the content streams, without decompressing the images or the fonts:

CHAPTER 39. MUTOOL 254

mutool clean -difgggg in.pdf out.pdf 4

If this file still exhibits the same problem, it is generally far easier to debug
through it than the original one was.

39.3 Convert

The convert utility performs a similar task to the draw utility, using a different
internal mechanism (the document writer interface). Which is better for any
given task is often a matter of taste.

$ mutool convert

mutool convert version 1.11

Usage: mutool convert [options] file [pages]

-p - password

-A - number of bits of antialiasing (0 to 8)

-W - page width for EPUB layout

-H - page height for EPUB layout

-S - font size for EPUB layout

-U - file name of user stylesheet for EPUB layout

-X disable document styles for EPUB layout

-o - output file name (%d for page number)

-F - output format (default inferred from output file name)

png, pnm, pgm, ppm, pam, tga, pbm, pkm,

pdf, svg, cbz

-O - comma separated list of options for output format

pages comma separated list of page ranges (N=last page)

Common raster format output options:

rotate=N: rotate rendered pages N degrees counterclockwise

resolution=N: set both X and Y resolution in pixels per inch

x-resolution=N: X resolution of rendered pages in pixels per inch

y-resolution=N: Y resolution of rendered pages in pixels per inch

width=N: render pages to fit N pixels wide (ignore resolution

option)

height=N: render pages to fit N pixels tall (ignore resolution

option)

colorspace=(gray|rgb|cmyk): render using specified colorspace

alpha: render pages with alpha channel and transparent background

Structured text output options:

preserve-ligatures: do not expand all ligatures into constituent

characters

preserve-whitespace: do not convert all whitespace characters

into spaces

CHAPTER 39. MUTOOL 255

PDF output options:

decompress: decompress all streams (except compress-fonts/images)

compress: compress all streams

compress-fonts: compress embedded fonts

compress-images: compress images

ascii: ASCII hex encode binary streams

pretty: pretty-print objects with indentation

linearize: optimize for web browsers

sanitize: clean up graphics commands in content streams

garbage: garbage collect unused objects

or garbage=compact: ... and compact cross reference table

or garbage=deduplicate: ... and remove duplicate objects

SVG output options:

text=text: Emit text as <text> elements (inaccurate fonts).

text=path: Emit text as <path> elements (accurate fonts).

no-reuse-images: Do not reuse images using <symbol> definitions.

39.4 Create

The create tool allows PDFs to generated from simple text files full of pdf
operator streams plus formatted comments.

$ mutool create

usage: mutool create [-o output.pdf] [-O options] page.txt [page2.txt

...]

-o - name of PDF file to create

-O - comma separated list of output options

page.txt content stream with annotations for creating resources

Content stream special commands:

%%MediaBox LLX LLY URX URY

%%Rotate Angle

%%Font Name Filename (or base 14 font name)

%%Image Name Filename

PDF output options:

decompress: decompress all streams (except compress-fonts/images)

compress: compress all streams

compress-fonts: compress embedded fonts

compress-images: compress images

ascii: ASCII hex encode binary streams

pretty: pretty-print objects with indentation

linearize: optimize for web browsers

sanitize: clean up graphics commands in content streams

garbage: garbage collect unused objects

or garbage=compact: ... and compact cross reference table

CHAPTER 39. MUTOOL 256

or garbage=deduplicate: ... and remove duplicate objects

39.5 Draw

The draw utility is the most commonly used tool, capable of converting/render-
ing documents to a range of bitmap and vector formats. It performs a similar
task to the convert utility, using a different set of internal mechanisms. Which
is better for any given task is often a matter of taste.

$ mutool draw

mudraw version 1.11

Usage: mudraw [options] file [pages]

-p - password

-o - output file name (%d for page number)

-F - output format (default inferred from output file name)

raster: png, tga, pnm, pam, pbm, pkm, pwg, pcl, ps

vector: svg, pdf, trace

text: txt, html, stext

-s - show extra information:

m - show memory use

t - show timings

f - show page features

5 - show md5 checksum of rendered image

-R - rotate clockwise (default: 0 degrees)

-r - resolution in dpi (default: 72)

-w - width (in pixels) (maximum width if -r is specified)

-h - height (in pixels) (maximum height if -r is specified)

-f - fit width and/or height exactly; ignore original aspect

ratio

-B - maximum band_height (pgm, ppm, pam, png output only)

-W - page width for EPUB layout

-H - page height for EPUB layout

-S - font size for EPUB layout

-U - file name of user stylesheet for EPUB layout

-X disable document styles for EPUB layout

-c - colorspace (mono, gray, grayalpha, rgb, rgba, cmyk,

cmykalpha)

-G - apply gamma correction

-I invert colors

-A - number of bits of antialiasing (0 to 8)

-A -/- number of bits of antialiasing (0 to 8) (graphics, text)

-l - minimum stroked line width (in pixels)

CHAPTER 39. MUTOOL 257

-D disable use of display list

-i ignore errors

-L low memory mode (avoid caching, clear objects after each

page)

-P parallel interpretation/rendering

-N disable ICC workflow ("N"o color management)

-O Control spot rendering

0 = No spot rendering

1 = Overprint simulation

2 = Full spot rendering

-y l List the layer configs to stderr

-y - Select layer config (by number)

-y -{,-}* Select layer config (by number), and toggle the

listed entries

pages comma separated list of page numbers and ranges

39.6 Extract

The extract utility extracts objects from PDF files. This can be used to extract
resources such as fonts, ICC profiles, images etc.

$ mutool extract

usage: mutool extract [options] file.pdf [object numbers]

-p password

-r convert images to rgb

Run without any object numbers listed, it will extract all the resources it can
find within the file to your local filesystem. It is best to run this in a clean
directory!

Alternatively specific resources can be extracted by specifying the PDF object
numbers. These can be obtained by using the info utility.

39.7 Info

The info utility displays various different sets of information on the contents
of a PDF file.

$ mutool info

usage: mutool info [options] file.pdf [pages]

-p - password for decryption

-F list fonts

-I list images

-M list dimensions

-P list patterns

CHAPTER 39. MUTOOL 258

-S list shadings

-X list form and postscript xobjects

pages comma separated list of page numbers and ranges

39.8 Merge

The merge utility allows a new output PDF to be created by combining pages
(or ranges of pages) from a set of input pdfs.

$ mutool merge

usage: mutool merge [-o output.pdf] [-O options] input.pdf [pages]

[input2.pdf] [pages2] ...

-o - name of PDF file to create

-O - comma separated list of output options

input.pdf name of input file from which to copy pages

pages comma separated list of page numbers and ranges

PDF output options:

decompress: decompress all streams (except compress-fonts/images)

compress: compress all streams

compress-fonts: compress embedded fonts

compress-images: compress images

ascii: ASCII hex encode binary streams

pretty: pretty-print objects with indentation

linearize: optimize for web browsers

sanitize: clean up graphics commands in content streams

garbage: garbage collect unused objects

or garbage=compact: ... and compact cross reference table

or garbage=deduplicate: ... and remove duplicate objects

39.9 Pages

The pages utility displays information on the different pages (such as Media-
Boxes, CropBoxes etc) of a PDF file.

$ mutool pages

usage: mutool pages [options] file.pdf [pages]

-p - password for decryption

pages comma separated list of page numbers and ranges

39.10 Portfolio

The portfolio utility is used to create or manipulate PDF portfolios.

$ mutool portfolio

CHAPTER 39. MUTOOL 259

usage: mutool portfolio [options] portfolio.pdf [actions]

Options are:

-p - password

-o - output (defaults to input file)

-O - PDF output options (see mutool create)

Actions are:

t display a table listing the contents of the portfolio

x N <file>

extract Nth entry to <file>

a <file> <name>

add contents of <file> as an entry named <name>

For safety, only use ASCII characters in entry names for now.

39.11 Poster

The poster utility is used to subdivide pages within a PDF so that they can
be printed to a small format printer and then pasted together to form a poster.

$ mutool poster

usage: mutool poster [options] input.pdf [output.pdf]

-p - password

-x x decimation factor

-y y decimation factor

39.12 Run

Unlike the other utilities, invoking run with no arguments will not get you a list
of arguments, but will instead start an interpreter waiting for your input. This
interpreter expects to be fed Javascript commands to be executed using MuJS.

The PDF bindings present within the Javascript environment allow many pow-
erful operations to be scripted on PDF and other files.

39.13 Show

The show command will display various sections of the PDF file in printable
format. This will primarily be of use to people working with the internals of
PDF files, but the outline option provides a way to get the outlines (a.k.a.
bookmarks) from a PDF file at the command line.

$ mutool show

CHAPTER 39. MUTOOL 260

usage: mutool show [options] file.pdf [grep] [xref] [trailer] [pagetree]

[outline] [object numbers]

-p - password

-o - output file

-b print streams as binary data

-e print encoded streams (don’t decode)

Chapter 40

MuOfficeLib

The MuPDF API is designed to be a set of interlocking pieces that can be assem-
bled together in many different ways to offer a powerful range of functionality.
The cost of this versatility is that a certain amount of assembly is required.

For those people who would prefer a more encapsulated solution, we have a
helper library, MuOfficeLib, that handles much of the

261

Chapter 41

Transitions

For a basic description of how to query a document for the specified presentation
details, see section 8.9 Presentations. Given these details, the caller is still
responsible for displaying (animating) the transition.

To help with this task, MuPDF provides a helper function that generate the
required frame of the transition into the supplied target pixmap from supplied
rendered pixmaps of the start/end of the transition:

/*

fz_generate_transition: Generate a frame of a transition.

tpix: Target pixmap

opix: Old pixmap

npix: New pixmap

time: Position within the transition (0 to 256)

trans: Transition details

Returns 1 if successfully generated a frame.

*/

int fz_generate_transition(fz_context *ctx, fz_pixmap *tpix, fz_pixmap

*opix, fz_pixmap *npix, int time, fz_transition *trans);

This helper function is largely independent of the rest of MuPDF, and will be
dropped from the library at link time if it is not used.

It is still the callers responsibility to drive this, to display the updated pixmaps,
and to generate the time field as appropriate from the actual real clock values.

262

Chapter 42

MuThreads

In order to implement tools such as MuTool, and helpers such as mu-office-lib,
we needed a simple cross platform threading library. MuThreads is that library.

It is a very simple interface layer that gives a consistent implementation of Mu-
texes, Semaphores and Threads that builds both on pthreads and on Windows
threads. More platforms may be added in the future.

The interface is described in a single header, ‘mupdf/helpers/mu-threads.h’,
and should be self-evident.

263

Part V

Platform specifics and
Language Bindings

264

Chapter 43

Platform specifics

43.1 Overview

MuPDF is designed to compile and run on almost any platform that supports a
standard C runtime library. In general, we try to restrict our use of C features
later than C89, and to rely only on Posix standard APIs.

Our primary development platforms are Linux (various versions, 32 and 64bit
using both Clang and GCC compilers) and Windows (32 and 64bit, using MSVC
2019).

The choice of MSVC 2019 was forced upon us by the Tesseract library that
we use for OCR requiring a later version of C++ than is supported by earlier
versions of Visual C. Executables can be produced by this version of Visual
Studio that run on every Windows version from XP (Service Pack 3) up to the
latest (Windows 10 20H2, at the time of writing). If Tesseract functionality is
not required, then it should be fairly simple to fall back to earlier versions of VS
(certainly back to VS2010, and even back to VS2005 at the cost of a different
solution format).

Windows is not Posix compliant, but in the cases where a Posix API is required
and not available, we provide windows specific code, often by implementing an
equivalent API using Windows platform calls.

We do not currently actively use MacOS for developing MuPDF, though we
have in the past. MuPDF compiles and runs fine on MacOS, and we intend
to keep it so. There is no MacOS specific code in the MuPDF codebase; the
MuPDF viewer for MacOS is just the standard linux X11 one.

Aside from the native C API, MuPDF has language bindings for C++, Python,
Java and JavaScript.

265

CHAPTER 43. PLATFORM SPECIFICS 266

43.2 C API

On all platforms, MuPDF builds a C library that offers the standard C level API
as defined within this book. MuPDF is written in C and thus this C API is the
basis for all the other language bindings described here. All new functionality
will be exposed in the C API first. Other language bindings (as described in
later sections) are built on top of the C API, sometimes by custom, hand-written
code, sometimes by automated tools.

By default we build a static library. Dynamic libraries can be built, but we do
not guarantee ABI compatibility between releases, so we do not provide this on
all platforms by default.

The standard Unix makefile requires GNU Make, and detects the presence of
the third party libraries within the thirdparty directory. If present, these are
used in preference to any system libraries.

The standard Visual Studio Solution requires Visual Studio 2019, and relies
upon the presence of the third party libraries as above. No facility is offered as
standard for using system libraries, but this should not be hard for an experi-
enced user of Visual Studio to customize.

Our libraries frequently contain bug fixes to the standard ones, and we attempt
to pass such fixes upstream to the main package maintainers. Given that all our
regression and quality control testing happens with the versions that we supply,
we prefer people to use our versions, and will frequently ask for bug reports to
be reproduced using such a build before investing too much time in trying to
solve them.

43.3 C++ API

We offer an object-oriented reflection of the standard C API into C++. While
C++ programs can certainly call the C API directly, we offer the C++ bindings
not just because they offer an environment that experienced C++ codes may
find more familiar, but also because they can hide some of the complexities
involved.

This book does not go into detail on the C++ API, but in general, it is derived
fairly simply (conceptually at least) from the C level one. To best illustrate the
differences between the C and C++ APIs, let us consider an example. In C, we
would load a page by calling:

fz_page *page = fz_load_page(ctx, doc, page_num);

The C++ equivalent would be:

mupdf::Page page = doc.load_page(page_num);

CHAPTER 43. PLATFORM SPECIFICS 267

This simple example highlights some important differences.

Firstly, where (almost) every C level call takes an fz context argument as the
first parameter, this is handled for users automatically at the C++ level.

Secondly, where C API functions operate on a particular object (in this example,
a page), this will typically be passed as the second parameter (after the context).
In the C++ translation, these objects are instances of classes, and functions
become methods on these classes. That is to say that while the C API is
not explicitly object-oriented (as the language does not natively support that
concept) the generated C++ API is.

Next, where the C version would need to be wrapped in a fz try/fz catch

construct to handle any exceptions thrown, the C++ version only needs to
handle standard C++ exceptions. This can reduce code as the C++ program
may already be handling such exceptions.

Finally, by passing objects by value, the C++ version handles reference counting
automatically. Where programmers using the C version are required to track
references manually using calls like fz keep page and fz drop page, C++ pro-
grammers never need to call these as this is taken care of behind the scenes.

This C++ API is generated using a script that uses the Clang/llvm parser to
analyse the C API so it is largely automatic. Often, changes/additions to the
C API will convert seamlessly to C++ with no additional changes. For more
complex cases, some tweaking of the scripts may be required. This automatic
conversion happens based upon the API exposed in the public C headers; by
default any new functions or types defined there will be reflected into the C++.

A few other conveniences arise with the C++ wrappers. Where appropriate
generated classes have support for iteration - for instance, the contents of an
StextPage can be navigated using familiar C++ operations:

void show_stext(mupdf::StextPage &page)

{

for (mupdf::StextPage::iterator it_page: page)

{

mupdf::StextBlock block = *it_page;

for (mupdf::StextBlock::iterator it_block: block)

{

mupdf::StextLine line = *it_block;

for (mupdf::StextLine::iterator it_line: line)

{

mupdf::StextChar c = *it_line;

fz_stext_char *c = stextchar.m_internal;

std::cout << "StextChar("

<< "c=" << c->c

<< " color=" << c->color

<< " origin=" << c->origin

<< " quad=" << c->quad

CHAPTER 43. PLATFORM SPECIFICS 268

<< " size=" << c->size

<< " font_name=" << c->font->name

<< "\n";

}

}

}

}

This example also serves to illustrate another convenience; simple classes (‘POD’
classes in C++ parlance) are given a to stringmethod and an << operator that
converts them to a printable form. This enables structures to quickly be printed
as seen with the origin and quad fields above.

43.4 Python

There are 2 sets of Python bindings for MuPDF.

The first set is an independent open source project called PyMuPDF (https://
pypi.org/project/PyMuPDF/). This was developed independently of MuPDF,
but support and commercial licensing options are now available through Artifex
if required. This is a mature set of code with some helpful extensions to MuPDF
itself over and above a raw reflection of the C API. We will say no more about
this set of bindings here.

The second set of bindings are newer, and developed directly by the MuPDF
developers themselves. They consist of a reflection of the C API (actually, a
reflection of the C++ API, which is itself a reflection of the C API) into Python.

For the technically inclined, these bindings are generated programmatically from
the C++ API using SWIG (http://swig.org). The C++ mupdf namespace is
reflected into a Python module called mupdf.

Thus, any changes to the C API that survive the conversion into the C++ API
should make it into the Python API automatically.

As a demonstration both of the power of the Python bindings and a test of them
(and indirectly the C++ ones on which they are based) we have converted the
draw subtool from mutool to python as scripts/mutool draw.py.

43.5 Java

Like the C++ and Python bindings, the Java bindings are an object-oriented
reflection of the C API.

In contrast to the C++ and Python bindings, the Java bindings offered in
MuPDF are not generated automatically, and use hand-written code. This
means that additions and modifications to the C level API will require corre-
sponding additions and modifications to the Java code.

https://pypi.org/project/PyMuPDF/
https://pypi.org/project/PyMuPDF/
http://swig.org

CHAPTER 43. PLATFORM SPECIFICS 269

The Java class definitions can be seen in:

platform/java/src/com/artifex/mupdf/fitz

These lean heavily on ’native’ methods. The implementations for these methods
are found in platform/java/mupdf native.c, and use the JNI interface to
marry up native functions and data with their Java equivalents.

This Java code is designed to work both on desktop Java, and on Android
devices. When built for Android devices, it offers additional classes to give easy
access to Android fonts and images, and for rendering into Android bitmaps.

43.6 Javascript

PDF files can contain Javascript fragments to perform a variety of tasks includ-
ing validation of form input data. To accommodate this, MuPDF has its own
Javascript engine, ‘mujs’.

The run subtool of mutool can be used to execute Javascript using this engine.
While running such scripts, the engine provides a Javascript reflection of the C
API (actually, more correctly a reflection of the object-oriented version of the
API as found in C++).

This enables the scripting of very powerful tasks, including opening, manipulat-
ing, rendering and resaving files. Some examples of such scripts can be found
in docs/examples.

Appendix A

How to contribute to
MuPDF

MuPDF is open source; as such it’s very easy for anyone to get a copy of the
source and modify it. In order to contribute any such changes or fixes back
to the main version, Artifex asks for a Copyright Assignment. In order to
understand why this is required, we need to first understand the licenses under
which MuPDF is made available.

A.1 Licensing

MuPDF is released under 2 licenses. To use MuPDF you have to pick a license
and obey all its terms. If you cannot abide by all the terms of a license, then
you cannot use that license. If you can’t agree with at least one license, you
can’t use MuPDF at all.

A.1.1 GNU AGPL

Firstly, MuPDF is released under the GNU AGPL; with this you are free to
copy the code, modify it, and incorporate it into your own works as you see fit.
While these works are purely for you alone there are no limits on what you can
do, but once you share your modifications with anyone else (either in source or
binary forms, or by making them available as part of a ‘service’), this counts
as distribution. In order to distribute anything derived from MuPDF you must
obey the terms of the GNU AGPL.

The ‘viral’ nature of the GNU AGPL is such that this means your entire appli-
cation that uses MuPDF must be distributed under the GNU AGPL, not just
the portion that interfaces with MuPDF. One of the most obvious consequences
of this is that you have to make all the source code for your application and

270

APPENDIX A. HOW TO CONTRIBUTE TO MUPDF 271

all the libraries that it relies on available. For many developers, they simply
cannot agree to this, which rules out the GNU AGPL for them.

A.1.2 Artifex Commercial License

For such cases, there is a second licensing option, a commercial license from
Artifex. This is not a free license, but it does free you from the constraints of
the GNU AGPL. In particular your application can remain closed source.

The money raised from such commercial licenses has funded the development of
MuPDF since its inception. Without commercial licenses, MuPDF would not
be as well developed and capable as it is today.

A.2 Copyright Assignment

The reason Artifex is able to license MuPDF in this way is because it owns
all the copyright in the MuPDF code. The vast majority of development work
on MuPDF has been directly paid for by Artifex. The rest of it is in smaller
patches and fixes that have had their Copyright assigned to Artifex.

If Artifex were to take on a patch without owning the Copyright, it would no
longer be able to license MuPDF commercially, which would mean that it could
no longer fund development.

Accordingly, in order for any (non-trivial) patch to be accepted into the main
MuPDF source tree, Artifex asks the author of that patch to sign a Copyright
Assignment letter giving over their copyright to Artifex.

Artifex runs a Bug Bounty programme, whereby interested developers who
tackle nominated problems can earn cash payments for their fixes.

A.3 Coding Style

Any submissions to MuPDF should try to match the existing coding style.
While following the coding style does not guarantee inclusion, not following it
will severely harm the chances of getting a patch accepted.

Details of the coding style can be found in docs/coding-style.html.

While it’s true that developers can always tweak a patch before they accept it (to
make it follow whitespace, layout, naming, and other conventions), submitting
a patch that requires such interventions is stacking the deck against it.

MuPDF is at pains to work everywhere. Submitting a patch that only works in
specific circumstances (such as only working on Linux) is a sure-fire way to get
rejected.

Similarly, pulling in new dependencies (be it new libraries or new functions that
aren’t supported in all platforms) will make a patch unlikely to succeed.

APPENDIX A. HOW TO CONTRIBUTE TO MUPDF 272

MuPDF has a very consistent layout and whitespace style; patches that don’t
follow the pattern will need to be refactored before they can be accepted.

	Preface
	Acknowledgements
	Introduction
	What is MuPDF?
	License
	Dependencies

	About this book
	I The MuPDF C API
	Quick Start
	How to open a document and render some pages

	Naming Conventions
	Prefixes
	Naming
	Types

	The Context
	Overview
	Creation
	Custom Allocators
	Multi-threading
	Cloning
	Destruction
	Tuning
	Summary

	Error handling
	Overview
	Why is fz_var necessary?
	Example: How to protect local variables with fz_var

	Throwing exceptions
	Handling exceptions
	Summary

	Memory Management and The Store
	Overview
	Creating the Store
	Reacting to Out of Memory events
	Implementation

	The Document interface
	Overview
	Opening/Closing a document
	Handling password protected documents
	Handling reflowable documents
	Getting Pages from a document
	Anatomy of a Page
	Color Considerations
	Rendering Pages
	Presentations
	Querying
	Helper functions

	The Device interface
	Overview
	Device Methods
	Cookie
	Detecting errors
	Using the cookie with threads
	Using the cookie to control partial rendering

	Device Hints
	Inbuilt Devices
	BBox Device
	Draw Device
	Display List Device
	PDF Output Device
	Structured Text Device
	SVG Output Device
	Test Device
	Trace Device

	Building Blocks
	Overview
	Colorspaces
	Basic Colorspaces
	Indexed Colorspaces
	Separation and DeviceN Colorspaces
	Further information

	Pixmaps
	Overview
	Premultiplied alpha
	Saving

	Bitmaps
	Halftones
	Images
	Buffers
	Transforms
	Paths
	Text
	Shadings

	Display Lists
	Overview
	Creation
	Playback
	Reference counting
	Miscellaneous operations

	The Stream interface
	Overview
	Creation
	Usage
	Reading bytes
	Reading objects
	Reading bits
	Reading whole streams
	Seeking
	Meta data
	Destruction

	The Output interface
	Overview
	Creation
	Usage
	Writing bytes
	Writing objects
	Writing strings
	Seeking

	Rendered Output Formats
	Overview
	Band Writers
	PNM
	PAM
	PBM
	PKM
	PNG
	PSD
	PWG/CUPS
	Contone
	Mono

	TGA
	PCL
	Color
	Mono

	Postscript

	The Document Writer interface
	Usage
	Implementation

	Stories
	Overview
	Styled Text
	Programmatic content
	Life cycle

	Creating a story
	Document manipulations
	Node contents
	Navigation
	Searching
	Modifying the structure
	Cloning a node
	Deletion
	Node attributes

	Parsing warnings
	Placing the story
	Inspecting the placed story
	Drawing the placed story
	Resetting the story
	Dropping the story
	Styling stories
	Font selection and sizing
	Padding, Margins and Borders
	Line Height and Leading
	Page breaks
	Text colour
	Visibility
	White space
	Text indent
	Alignment
	Overflow wrap

	Archives
	Overview
	API
	Creating an archive
	Reference counting
	Checking if an archive entry exists
	Opening an archive entry as a stream
	Reading an archive entry as a buffer
	Archive format
	Counting archive entries
	Enumerating archive entries

	Archive Types
	Overview
	Zip archives
	Tar archives
	`Virtual' directory archives
	`Virtual' tree archives
	Multi archives

	Progressive Mode
	Overview
	Implementation
	Progressive Streams
	Rough renderings
	Directed downloads
	Example implementation

	Fonts
	Overview
	Inbuilt Fonts
	Implementation

	Build configuration
	Overview
	Configuration file
	Plotter selection
	Document handlers
	JPEG 2000 support
	Javascript
	Fonts

	Annotations, Links and Interaction
	Overview
	Fitz-level Links
	Fitz-level Annotations
	PDF-level Annotations and Widgets
	How to operate at the PDF level
	PDF Annotations
	Annotation Values vs Appearances
	Updating annotations

	PDF Annotation operations
	PDF Widgets
	Events
	Event Callback

	II MuPDF Internals
	The Image interface
	Overview
	Standard Image Types
	Compressed
	Decoded
	Display List

	Creating Images
	Implementing an Image Type
	Image Caching

	The Document Handler interface
	Overview
	Implementing a Document Handler
	Recognize and Open
	Document Level Functions
	Page Level Functions

	Standard Document Handlers
	PDF
	XPS
	EPUB
	HTML
	SVG
	Image
	CBZ

	Store Internals
	Overview
	Implementation
	Reference Counting
	Scavenging memory allocator
	Using the Store
	Overview
	Handling keys
	Hashing
	Key storable items
	Reap passes

	Device Internals
	Line Art
	Text
	Images
	Shadings
	Clipping and Masking
	Groups and Transparency
	Tiling
	Render Flags
	Device Color Spaces
	Layers

	Path Internals
	Creation
	Reference counting
	Storage
	Transformation
	Bounding
	Stroking
	Walking

	Image Internals
	Compressed Images
	Pixmap Images

	Text Internals
	Creation
	Population
	Measurement
	Cloning
	Language
	Implementation

	Shading Internals
	Creation
	Bounding
	Painting
	Decomposition

	Stream Internals
	Output Internals
	Colorspace Internals
	Non ICC-based Colorspaces
	ICC-based colorspaces
	Calibrated Colorspaces

	Color Management
	Overview

	Font provision within MuPDF
	Tofu
	Supplied fonts
	Base 14 fonts
	Extra Latin font
	CJKV fonts
	Noto fonts
	Fallback fonts

	Customising the included fonts
	MSVC builds
	Makefile builds

	III The MuPDF Interpreters
	PDF Interpreter Details
	Overview
	PDF Document
	PDF Objects
	Arrays

	PDF Operator Processors
	Run processor
	Filter processor
	Buffer processor
	Output processor

	Copying objects between PDF documents
	The problem
	Grafting objects
	A further problem
	Graft maps

	XPS Interpreter Details
	Overview

	EPub/HTML Interpreter Details
	CSS rules
	Shaped text
	Bidirectional text

	SVG Interpreter Details

	IV Tools, Libraries, and Helper Routines
	MuTool
	Overview
	Clean
	Convert
	Create
	Draw
	Extract
	Info
	Merge
	Pages
	Portfolio
	Poster
	Run
	Show

	MuOfficeLib
	Transitions
	MuThreads

	V Platform specifics and Language Bindings
	Platform specifics
	Overview
	C API
	C++ API
	Python
	Java
	Javascript

	How to contribute to MuPDF
	Licensing
	GNU AGPL
	Artifex Commercial License

	Copyright Assignment
	Coding Style

