Coverage for pygeodesy/etm.py: 97%
401 statements
« prev ^ index » next coverage.py v7.2.2, created at 2023-07-12 13:40 -0400
« prev ^ index » next coverage.py v7.2.2, created at 2023-07-12 13:40 -0400
2# -*- coding: utf-8 -*-
4u'''A pure Python version of I{Karney}'s C{Exact Transverse Mercator} (ETM) projection.
6Classes L{Etm}, L{ETMError} and L{ExactTransverseMercator}, transcoded from I{Karney}'s
7C++ class U{TransverseMercatorExact<https://GeographicLib.SourceForge.io/C++/doc/
8classGeographicLib_1_1TransverseMercatorExact.html>}, abbreviated as C{TMExact} below.
10Class L{ExactTransverseMercator} provides C{Exact Transverse Mercator} projections while
11instances of class L{Etm} represent ETM C{(easting, northing)} locations. See also
12I{Karney}'s utility U{TransverseMercatorProj<https://GeographicLib.SourceForge.io/C++/doc/
13TransverseMercatorProj.1.html>} and use C{"python[3] -m pygeodesy.etm ..."} to compared
14the results.
16Following is a copy of I{Karney}'s U{TransverseMercatorExact.hpp
17<https://GeographicLib.SourceForge.io/C++/doc/TransverseMercatorExact_8hpp_source.html>}
18file C{Header}.
20Copyright (C) U{Charles Karney<mailto:Charles@Karney.com>} (2008-2023) and licensed
21under the MIT/X11 License. For more information, see the U{GeographicLib<https://
22GeographicLib.SourceForge.io>} documentation.
24The method entails using the U{Thompson Transverse Mercator<https://WikiPedia.org/
25wiki/Transverse_Mercator_projection>} as an intermediate projection. The projections
26from the intermediate coordinates to C{phi, lam} and C{x, y} are given by elliptic
27functions. The inverse of these projections are found by Newton's method with a
28suitable starting guess.
30The relevant section of L.P. Lee's paper U{Conformal Projections Based On Jacobian
31Elliptic Functions<https://DOI.org/10.3138/X687-1574-4325-WM62>} in part V, pp
3267-101. The C++ implementation and notation closely follow Lee, with the following
33exceptions::
35 Lee here Description
37 x/a xi Northing (unit Earth)
39 y/a eta Easting (unit Earth)
41 s/a sigma xi + i * eta
43 y x Easting
45 x y Northing
47 k e Eccentricity
49 k^2 mu Elliptic function parameter
51 k'^2 mv Elliptic function complementary parameter
53 m k Scale
55 zeta zeta Complex longitude = Mercator = chi in paper
57 s sigma Complex GK = zeta in paper
59Minor alterations have been made in some of Lee's expressions in an attempt to
60control round-off. For example, C{atanh(sin(phi))} is replaced by C{asinh(tan(phi))}
61which maintains accuracy near C{phi = pi/2}. Such changes are noted in the code.
62'''
63# make sure int/int division yields float quotient, see .basics
64from __future__ import division as _; del _ # PYCHOK semicolon
66from pygeodesy.basics import map1, neg, neg_, _xinstanceof
67from pygeodesy.constants import EPS, EPS02, PI_2, PI_4, _K0_UTM, \
68 _1_EPS, isnear0, _0_0, _0_1, _0_5, \
69 _1_0, _2_0, _3_0, _4_0, _90_0, _180_0
70from pygeodesy.datums import _ellipsoidal_datum, _WGS84
71from pygeodesy.elliptic import _ALL_LAZY, Elliptic
72# from pygeodesy.errors import _incompatible # from .named
73from pygeodesy.fmath import cbrt, hypot, hypot1, hypot2
74from pygeodesy.fsums import Fsum, fsum1f_
75from pygeodesy.interns import NN, _COMMASPACE_, _DASH_, _near_, _SPACE_, \
76 _spherical_, _usage
77from pygeodesy.karney import _copyBit, _diff182, _fix90, _norm2, _norm180, \
78 _tand, _unsigned2
79# from pygeodesy.lazily import _ALL_LAZY # from .elliptic
80from pygeodesy.named import callername, _incompatible, _NamedBase
81from pygeodesy.namedTuples import Forward4Tuple, Reverse4Tuple
82from pygeodesy.props import deprecated_method, deprecated_property_RO, \
83 Property_RO, property_RO, _update_all, \
84 property_doc_
85from pygeodesy.streprs import Fmt, fstr, pairs, unstr
86from pygeodesy.units import Degrees, Scalar_
87from pygeodesy.utily import atand, atan2d, sincos2
88from pygeodesy.utm import _cmlon, _LLEB, _parseUTM5, _toBand, _toXtm8, \
89 _to7zBlldfn, Utm, UTMError
91from math import asinh, atan2, degrees, radians, sinh, sqrt
93__all__ = _ALL_LAZY.etm
94__version__ = '23.05.15'
96_OVERFLOW = _1_EPS**2 # about 2e+31
97_TAYTOL = pow(EPS, 0.6)
98_TAYTOL2 = _TAYTOL * _2_0
99_TOL_10 = EPS * _0_1
100_TRIPS = 21 # C++ 10
103def _overflow(x):
104 '''(INTERNAL) Like C{copysign0(OVERFLOW, B{x})}.
105 '''
106 return _copyBit(_OVERFLOW, x)
109class ETMError(UTMError):
110 '''Exact Transverse Mercator (ETM) parse, projection or other
111 L{Etm} issue or L{ExactTransverseMercator} conversion failure.
112 '''
113 pass
116class Etm(Utm):
117 '''Exact Transverse Mercator (ETM) coordinate, a sub-class of L{Utm},
118 a Universal Transverse Mercator (UTM) coordinate using the
119 L{ExactTransverseMercator} projection for highest accuracy.
121 @note: Conversion of (geodetic) lat- and longitudes to/from L{Etm}
122 coordinates is 3-4 times slower than to/from L{Utm}.
124 @see: Karney's U{Detailed Description<https://GeographicLib.SourceForge.io/
125 html/classGeographicLib_1_1TransverseMercatorExact.html#details>}.
126 '''
127 _Error = ETMError # see utm.UTMError
128 _exactTM = None
130 __init__ = Utm.__init__
131 '''New L{Etm} Exact Transverse Mercator coordinate, raising L{ETMError}s.
133 @see: L{Utm.__init__} for more information.
135 @example:
137 >>> import pygeodesy
138 >>> u = pygeodesy.Etm(31, 'N', 448251, 5411932)
139 '''
141 @property_doc_(''' the ETM projection (L{ExactTransverseMercator}).''')
142 def exactTM(self):
143 '''Get the ETM projection (L{ExactTransverseMercator}).
144 '''
145 if self._exactTM is None:
146 self.exactTM = self.datum.exactTM # ExactTransverseMercator(datum=self.datum)
147 return self._exactTM
149 @exactTM.setter # PYCHOK setter!
150 def exactTM(self, exactTM):
151 '''Set the ETM projection (L{ExactTransverseMercator}).
153 @raise ETMError: The B{C{exacTM}}'s datum incompatible
154 with this ETM coordinate's C{datum}.
155 '''
156 _xinstanceof(ExactTransverseMercator, exactTM=exactTM)
158 E = self.datum.ellipsoid
159 if E != exactTM.ellipsoid: # may be None
160 raise ETMError(repr(exactTM), txt=_incompatible(repr(E)))
161 self._exactTM = exactTM
162 self._scale0 = exactTM.k0
164 def parse(self, strETM, name=NN):
165 '''Parse a string to a similar L{Etm} instance.
167 @arg strETM: The ETM coordinate (C{str}),
168 see function L{parseETM5}.
169 @kwarg name: Optional instance name (C{str}),
170 overriding this name.
172 @return: The instance (L{Etm}).
174 @raise ETMError: Invalid B{C{strETM}}.
176 @see: Function L{pygeodesy.parseUPS5}, L{pygeodesy.parseUTM5}
177 and L{pygeodesy.parseUTMUPS5}.
178 '''
179 return parseETM5(strETM, datum=self.datum, Etm=self.classof,
180 name=name or self.name)
182 @deprecated_method
183 def parseETM(self, strETM): # PYCHOK no cover
184 '''DEPRECATED, use method L{Etm.parse}.
185 '''
186 return self.parse(strETM)
188 def toLatLon(self, LatLon=None, unfalse=True, **unused): # PYCHOK expected
189 '''Convert this ETM coordinate to an (ellipsoidal) geodetic point.
191 @kwarg LatLon: Optional, ellipsoidal class to return the geodetic
192 point (C{LatLon}) or C{None}.
193 @kwarg unfalse: Unfalse B{C{easting}} and B{C{northing}} if
194 C{falsed} (C{bool}).
196 @return: This ETM coordinate as (B{C{LatLon}}) or a
197 L{LatLonDatum5Tuple}C{(lat, lon, datum, gamma,
198 scale)} if B{C{LatLon}} is C{None}.
200 @raise ETMError: This ETM coordinate's C{exacTM} and this C{datum}
201 incompatible or no convergence transforming to
202 lat- and longitude.
204 @raise TypeError: Invalid or non-ellipsoidal B{C{LatLon}}.
206 @example:
208 >>> from pygeodesy import ellipsoidalVincenty as eV, Etm
209 >>> u = Etm(31, 'N', 448251.795, 5411932.678)
210 >>> ll = u.toLatLon(eV.LatLon) # 48°51′29.52″N, 002°17′40.20″E
211 '''
212 if not self._latlon or self._latlon._toLLEB_args != (unfalse, self.exactTM):
213 self._toLLEB(unfalse=unfalse)
214 return self._latlon5(LatLon)
216 def _toLLEB(self, unfalse=True, **unused): # PYCHOK signature
217 '''(INTERNAL) Compute (ellipsoidal) lat- and longitude.
218 '''
219 xTM, d = self.exactTM, self.datum
220 # double check that this and exactTM's ellipsoid match
221 if xTM._E != d.ellipsoid: # PYCHOK no cover
222 t = repr(d.ellipsoid)
223 raise ETMError(repr(xTM._E), txt=_incompatible(t))
225 e, n = self.eastingnorthing2(falsed=not unfalse)
226 lon0 = _cmlon(self.zone) if bool(unfalse) == self.falsed else None
227 lat, lon, g, k = xTM.reverse(e, n, lon0=lon0)
229 ll = _LLEB(lat, lon, datum=d, name=self.name) # utm._LLEB
230 ll._gamma = g
231 ll._scale = k
232 self._latlon5args(ll, _toBand, unfalse, xTM)
234 def toUtm(self): # PYCHOK signature
235 '''Copy this ETM to a UTM coordinate.
237 @return: The UTM coordinate (L{Utm}).
238 '''
239 return self._xcopy2(Utm)
242class ExactTransverseMercator(_NamedBase):
243 '''Pure Python version of Karney's C++ class U{TransverseMercatorExact
244 <https://GeographicLib.SourceForge.io/C++/doc/TransverseMercatorExact_8cpp_source.html>},
245 a numerically exact transverse Mercator projection, further referred to as C{TMExact}.
246 '''
247 _datum = None # Datum
248 _E = None # Ellipsoid
249 _extendp = False # use extended domain
250# _iteration = None # ._sigmaInv2 and ._zetaInv2
251 _k0 = _K0_UTM # central scale factor
252 _lon0 = _0_0 # central meridian
253 _mu = _0_0 # ._E.e2, 1st eccentricity squared
254 _mv = _1_0 # _1_0 - ._mu
255 _raiser = False # throw Error
256 _sigmaC = None # _sigmaInv04 case
257 _zetaC = None # _zetaInv04 case
259 def __init__(self, datum=_WGS84, lon0=0, k0=_K0_UTM, extendp=False, name=NN, raiser=False):
260 '''New L{ExactTransverseMercator} projection.
262 @kwarg datum: The I{non-spherical} datum or ellipsoid (L{Datum},
263 L{Ellipsoid}, L{Ellipsoid2} or L{a_f2Tuple}).
264 @kwarg lon0: Central meridian, default (C{degrees180}).
265 @kwarg k0: Central scale factor (C{float}).
266 @kwarg extendp: Use the I{extended} domain (C{bool}), I{standard} otherwise.
267 @kwarg name: Optional name for the projection (C{str}).
268 @kwarg raiser: If C{True}, throw an L{ETMError} for convergence failures (C{bool}).
270 @raise ETMError: Near-spherical B{C{datum}} or C{ellipsoid} or invalid B{C{lon0}}
271 or B{C{k0}}.
273 @see: U{Constructor TransverseMercatorExact<https://GeographicLib.SourceForge.io/
274 html/classGeographicLib_1_1TransverseMercatorExact.html>} for more details,
275 especially on B{X{extendp}}.
277 @note: For all 255.5K U{TMcoords.dat<https://Zenodo.org/record/32470>} tests (with
278 C{0 <= lat <= 84} and C{0 <= lon}) the maximum error is C{5.2e-08 .forward}
279 (or 52 nano-meter) easting and northing and C{3.8e-13 .reverse} (or 0.38
280 pico-degrees) lat- and longitude (with Python 3.7.3+, 2.7.16+, PyPy6 3.5.3
281 and PyPy6 2.7.13, all in 64-bit on macOS 10.13.6 High Sierra C{x86_64} and
282 12.2 Monterey C{arm64} and C{"arm64_x86_64"}).
283 '''
284 if extendp:
285 self._extendp = True
286 if name:
287 self.name = name
288 if raiser:
289 self.raiser = True
291 self.datum = datum # invokes ._reset
292 self.k0 = k0
293 self.lon0 = lon0
295 @property_doc_(''' the datum (L{Datum}).''')
296 def datum(self):
297 '''Get the datum (L{Datum}) or C{None}.
298 '''
299 return self._datum
301 @datum.setter # PYCHOK setter!
302 def datum(self, datum):
303 '''Set the datum and ellipsoid (L{Datum}, L{Ellipsoid}, L{Ellipsoid2} or L{a_f2Tuple}).
305 @raise ETMError: Near-spherical B{C{datum}} or C{ellipsoid}.
306 '''
307 d = _ellipsoidal_datum(datum, name=self.name) # raiser=_datum_)
308 self._reset(d)
309 self._datum = d
311 @Property_RO
312 def _e(self):
313 '''(INTERNAL) Get and cache C{_e}.
314 '''
315 return self._E.e
317 @Property_RO
318 def _1_e_90(self): # PYCHOK no cover
319 '''(INTERNAL) Get and cache C{(1 - _e) * 90}.
320 '''
321 return (_1_0 - self._e) * _90_0
323 @property_RO
324 def ellipsoid(self):
325 '''Get the ellipsoid (L{Ellipsoid}).
326 '''
327 return self._E
329 @Property_RO
330 def _e_PI_2(self):
331 '''(INTERNAL) Get and cache C{_e * PI / 2}.
332 '''
333 return self._e * PI_2
335 @Property_RO
336 def _e_PI_4_(self):
337 '''(INTERNAL) Get and cache C{- _e * PI / 4}.
338 '''
339 return -self._e * PI_4
341 @Property_RO
342 def _1_e_PI_2(self):
343 '''(INTERNAL) Get and cache C{(1 - _e) * PI / 2}.
344 '''
345 return (_1_0 - self._e) * PI_2
347 @Property_RO
348 def _1_2e_PI_2(self):
349 '''(INTERNAL) Get and cache C{(1 - 2 * _e) * PI / 2}.
350 '''
351 return (_1_0 - self._e * _2_0) * PI_2
353 @property_RO
354 def equatoradius(self):
355 '''Get this C{ellipsoid}'s equatorial radius, semi-axis (C{meter}).
356 '''
357 return self._E.a
359 a = equatoradius
361 @Property_RO
362 def _e_TAYTOL(self):
363 '''(INTERNAL) Get and cache C{e * TAYTOL}.
364 '''
365 return self._e * _TAYTOL
367 @Property_RO
368 def _Eu(self):
369 '''(INTERNAL) Get and cache C{Elliptic(_mu)}.
370 '''
371 return Elliptic(self._mu)
373 @Property_RO
374 def _Eu_cE(self):
375 '''(INTERNAL) Get and cache C{_Eu.cE}.
376 '''
377 return self._Eu.cE
379 def _Eu_2cE_(self, xi):
380 '''(INTERNAL) Return C{_Eu.cE * 2 - B{xi}}.
381 '''
382 return self._Eu_cE * _2_0 - xi
384 @Property_RO
385 def _Eu_cE_4(self):
386 '''(INTERNAL) Get and cache C{_Eu.cE / 4}.
387 '''
388 return self._Eu_cE / _4_0
390 @Property_RO
391 def _Eu_cK(self):
392 '''(INTERNAL) Get and cache C{_Eu.cK}.
393 '''
394 return self._Eu.cK
396 @Property_RO
397 def _Eu_cK_cE(self):
398 '''(INTERNAL) Get and cache C{_Eu.cK / _Eu.cE}.
399 '''
400 return self._Eu_cK / self._Eu_cE
402 @Property_RO
403 def _Eu_2cK_PI(self):
404 '''(INTERNAL) Get and cache C{_Eu.cK * 2 / PI}.
405 '''
406 return self._Eu_cK / PI_2
408 @Property_RO
409 def _Ev(self):
410 '''(INTERNAL) Get and cache C{Elliptic(_mv)}.
411 '''
412 return Elliptic(self._mv)
414 @Property_RO
415 def _Ev_cK(self):
416 '''(INTERNAL) Get and cache C{_Ev.cK}.
417 '''
418 return self._Ev.cK
420 @Property_RO
421 def _Ev_cKE(self):
422 '''(INTERNAL) Get and cache C{_Ev.cKE}.
423 '''
424 return self._Ev.cKE
426 @Property_RO
427 def _Ev_3cKE_4(self):
428 '''(INTERNAL) Get and cache C{_Ev.cKE * 3 / 4}.
429 '''
430 return self._Ev_cKE * 0.75
432 @Property_RO
433 def _Ev_5cKE_4(self):
434 '''(INTERNAL) Get and cache C{_Ev.cKE * 5 / 4}.
435 '''
436 return self._Ev_cKE * 1.25
438 @Property_RO
439 def extendp(self):
440 '''Get the domain (C{bool}), I{extended} or I{standard}.
441 '''
442 return self._extendp
444 @property_RO
445 def flattening(self):
446 '''Get this C{ellipsoid}'s flattening (C{float}).
447 '''
448 return self._E.f
450 f = flattening
452 def forward(self, lat, lon, lon0=None, name=NN): # MCCABE 13
453 '''Forward projection, from geographic to transverse Mercator.
455 @arg lat: Latitude of point (C{degrees}).
456 @arg lon: Longitude of point (C{degrees}).
457 @kwarg lon0: Central meridian (C{degrees180}), overriding
458 the default if not C{None}.
459 @kwarg name: Optional name (C{str}).
461 @return: L{Forward4Tuple}C{(easting, northing, gamma, scale)}.
463 @see: C{void TMExact::Forward(real lon0, real lat, real lon,
464 real &x, real &y,
465 real &gamma, real &k)}.
467 @raise ETMError: No convergence, thrown iff property
468 C{B{raiser}=True}.
469 '''
470 lat = _fix90(lat)
471 lon, _ = _diff182((self.lon0 if lon0 is None else lon0), lon)
472 if self.extendp:
473 backside = _lat = _lon = False
474 else: # enforce the parity
475 lat, _lat = _unsigned2(lat)
476 lon, _lon = _unsigned2(lon)
477 backside = lon > 90
478 if backside: # PYCHOK no cover
479 lon = _180_0 - lon
480 if lat == 0:
481 _lat = True
483 # u, v = coordinates for the Thompson TM, Lee 54
484 if lat == 90:
485 u = self._Eu_cK
486 v = self._iteration = self._zetaC = 0
487 elif lat == 0 and lon == self._1_e_90: # PYCHOK no cover
488 u = self._iteration = self._zetaC = 0
489 v = self._Ev_cK
490 else: # tau = tan(phi), taup = sinh(psi)
491 tau, lam = _tand(lat), radians(lon)
492 u, v = self._zetaInv2(self._E.es_taupf(tau), lam)
494 sncndn6 = self._sncndn6(u, v)
495 y, x, _ = self._sigma3(v, *sncndn6)
496 g, k = self._zetaScaled(sncndn6, ll=False) \
497 if lat != 90 else (lon, self.k0)
499 if backside:
500 y, g = self._Eu_2cE_(y), (_180_0 - g)
501 y *= self._k0_a
502 x *= self._k0_a
503 if _lat:
504 y, g = neg_(y, g)
505 if _lon:
506 x, g = neg_(x, g)
507 return Forward4Tuple(x, y, g, k, iteration=self._iteration,
508 name=name or self.name)
510 def _Inv03(self, psi, dlam, _3_mv_e): # (xi, deta, _3_mv)
511 '''(INTERNAL) Partial C{_zetaInv04} or C{_sigmaInv04}, Case 2
512 '''
513 # atan2(dlam-psi, psi+dlam) + 45d gives arg(zeta - zeta0) in
514 # range [-135, 225). Subtracting 180 (multiplier is negative)
515 # makes range [-315, 45). Multiplying by 1/3 (for cube root)
516 # gives range [-105, 15). In particular the range [-90, 180]
517 # in zeta space maps to [-90, 0] in w space as required.
518 a = atan2(dlam - psi, psi + dlam) / _3_0 - PI_4
519 s, c = sincos2(a)
520 h = hypot(psi, dlam)
521 r = cbrt(h * _3_mv_e)
522 u = r * c
523 v = r * s + self._Ev_cK
524 # Error using this guess is about 0.068 * rad^(5/3)
525 return u, v, h
527 @property_RO
528 def iteration(self):
529 '''Get the most recent C{ExactTransverseMercator.forward}
530 or C{ExactTransverseMercator.reverse} iteration number
531 (C{int}) or C{None} if not available/applicable.
532 '''
533 return self._iteration
535 @property_doc_(''' the central scale factor (C{float}).''')
536 def k0(self):
537 '''Get the central scale factor (C{float}), aka I{C{scale0}}.
538 '''
539 return self._k0 # aka scale0
541 @k0.setter # PYCHOK setter!
542 def k0(self, k0):
543 '''Set the central scale factor (C{float}), aka I{C{scale0}}.
545 @raise ETMError: Invalid B{C{k0}}.
546 '''
547 k0 = Scalar_(k0=k0, Error=ETMError, low=_TOL_10, high=_1_0)
548 if self._k0 != k0:
549 ExactTransverseMercator._k0_a._update(self) # redo ._k0_a
550 self._k0 = k0
552 @Property_RO
553 def _k0_a(self):
554 '''(INTERNAL) Get and cache C{k0 * equatoradius}.
555 '''
556 return self.k0 * self.equatoradius
558 @property_doc_(''' the central meridian (C{degrees180}).''')
559 def lon0(self):
560 '''Get the central meridian (C{degrees180}).
561 '''
562 return self._lon0
564 @lon0.setter # PYCHOK setter!
565 def lon0(self, lon0):
566 '''Set the central meridian (C{degrees180}).
568 @raise ETMError: Invalid B{C{lon0}}.
569 '''
570 self._lon0 = _norm180(Degrees(lon0=lon0, Error=ETMError))
572 @deprecated_property_RO
573 def majoradius(self): # PYCHOK no cover
574 '''DEPRECATED, use property C{equatoradius}.'''
575 return self.equatoradius
577 @Property_RO
578 def _1_mu_2(self):
579 '''(INTERNAL) Get and cache C{_mu / 2 + 1}.
580 '''
581 return _1_0 + self._mu * _0_5
583 @Property_RO
584 def _3_mv(self):
585 '''(INTERNAL) Get and cache C{3 / _mv}.
586 '''
587 return _3_0 / self._mv
589 @Property_RO
590 def _3_mv_e(self):
591 '''(INTERNAL) Get and cache C{3 / (_mv * _e)}.
592 '''
593 return _3_0 / (self._mv * self._e)
595 def _Newton2(self, taup, lam, u, v, C, *psi): # or (xi, eta, u, v)
596 '''(INTERNAL) Invert C{_zetaInv2} or C{_sigmaInv2} using Newton's method.
598 @return: 2-Tuple C{(u, v)}.
600 @raise ETMError: No convergence.
601 '''
602 sca1, tol2 = _1_0, _TOL_10
603 if psi: # _zetaInv2
604 sca1 = sca1 / hypot1(taup) # /= chokes PyChecker
605 tol2 = tol2 / max(psi[0], _1_0)**2
607 _zeta3 = self._zeta3
608 _zetaDwd2 = self._zetaDwd2
609 else: # _sigmaInv2
610 _zeta3 = self._sigma3
611 _zetaDwd2 = self._sigmaDwd2
613 d2, r = tol2, self.raiser
614 _U_2_ = Fsum(u).fsum2_
615 _V_2_ = Fsum(v).fsum2_
616 # min iterations 2, max 6 or 7, mean 3.9 or 4.0
617 for i in range(1, _TRIPS): # GEOGRAPHICLIB_PANIC
618 sncndn6 = self._sncndn6(u, v)
619 du, dv = _zetaDwd2(*sncndn6)
620 T, L, _ = _zeta3(v, *sncndn6)
621 T = (taup - T) * sca1
622 L -= lam
623 u, dU = _U_2_(T * du, L * dv)
624 v, dV = _V_2_(T * dv, -L * du)
625 if d2 < tol2:
626 r = False
627 break
628 d2 = hypot2(dU, dV)
630 self._iteration = i
631 if r: # PYCHOK no cover
632 i = callername(up=2, underOK=True)
633 t = unstr(i, taup, lam, u, v, C=C)
634 raise ETMError(Fmt.no_convergence(d2, tol2), txt=t)
635 return u, v
637 @property_doc_(''' raise an L{ETMError} for convergence failures (C{bool}).''')
638 def raiser(self):
639 '''Get the error setting (C{bool}).
640 '''
641 return self._raiser
643 @raiser.setter # PYCHOK setter!
644 def raiser(self, raiser):
645 '''Set the error setting (C{bool}), if C{True} throw an L{ETMError}
646 for convergence failures.
647 '''
648 self._raiser = bool(raiser)
650 def _reset(self, datum):
651 '''(INTERNAL) Set the ellipsoid and elliptic moduli.
653 @arg datum: Ellipsoidal datum (C{Datum}).
655 @raise ETMError: Near-spherical B{C{datum}} or C{ellipsoid}.
656 '''
657 E = datum.ellipsoid
658 mu = E.e2 # .eccentricity1st2
659 mv = E.e21 # _1_0 - mu
660 if isnear0(E.e) or isnear0(mu, eps0=EPS02) \
661 or isnear0(mv, eps0=EPS02): # or sqrt(mu) != E.e
662 raise ETMError(ellipsoid=E, txt=_near_(_spherical_))
664 if self._datum or self._E:
665 _i = ExactTransverseMercator.iteration._uname
666 _update_all(self, _i, '_sigmaC', '_zetaC') # _UNDER
668 self._E = E
669 self._mu = mu
670 self._mv = mv
672 def reverse(self, x, y, lon0=None, name=NN):
673 '''Reverse projection, from Transverse Mercator to geographic.
675 @arg x: Easting of point (C{meters}).
676 @arg y: Northing of point (C{meters}).
677 @kwarg lon0: Central meridian (C{degrees180}), overriding
678 the default if not C{None}.
679 @kwarg name: Optional name (C{str}).
681 @return: L{Reverse4Tuple}C{(lat, lon, gamma, scale)}.
683 @see: C{void TMExact::Reverse(real lon0, real x, real y,
684 real &lat, real &lon,
685 real &gamma, real &k)}
687 @raise ETMError: No convergence, thrown iff property
688 C{B{raiser}=True}.
689 '''
690 # undoes the steps in .forward.
691 xi = y / self._k0_a
692 eta = x / self._k0_a
693 if self.extendp:
694 backside = _lat = _lon = False
695 else: # enforce the parity
696 eta, _lon = _unsigned2(eta)
697 xi, _lat = _unsigned2(xi)
698 backside = xi > self._Eu_cE
699 if backside: # PYCHOK no cover
700 xi = self._Eu_2cE_(xi)
702 # u, v = coordinates for the Thompson TM, Lee 54
703 if xi or eta != self._Ev_cKE:
704 u, v = self._sigmaInv2(xi, eta)
705 else: # PYCHOK no cover
706 u = self._iteration = self._sigmaC = 0
707 v = self._Ev_cK
709 if v or u != self._Eu_cK:
710 g, k, lat, lon = self._zetaScaled(self._sncndn6(u, v))
711 else: # PYCHOK no cover
712 g, k, lat, lon = _0_0, self.k0, _90_0, _0_0
714 if backside: # PYCHOK no cover
715 lon, g = (_180_0 - lon), (_180_0 - g)
716 if _lat:
717 lat, g = neg_(lat, g)
718 if _lon:
719 lon, g = neg_(lon, g)
720 lon += self.lon0 if lon0 is None else _norm180(lon0)
721 return Reverse4Tuple(lat, _norm180(lon), g, k, # _norm180(lat)
722 iteration=self._iteration,
723 name=name or self.name)
725 def _scaled2(self, tau, d2, snu, cnu, dnu, snv, cnv, dnv):
726 '''(INTERNAL) C{scaled}.
728 @note: Argument B{C{d2}} is C{_mu * cnu**2 + _mv * cnv**2}
729 from C{._zeta3}.
731 @return: 2-Tuple C{(convergence, scale)}.
733 @see: C{void TMExact::Scale(real tau, real /*lam*/,
734 real snu, real cnu, real dnu,
735 real snv, real cnv, real dnv,
736 real &gamma, real &k)}.
737 '''
738 mu, mv = self._mu, self._mv
739 cnudnv = cnu * dnv
740 # Lee 55.12 -- negated for our sign convention. g gives
741 # the bearing (clockwise from true north) of grid north
742 g = atan2d(mv * cnv * snv * snu, cnudnv * dnu)
743 # Lee 55.13 with nu given by Lee 9.1 -- in sqrt change
744 # the numerator from (1 - snu^2 * dnv^2) to (_mv * snv^2
745 # + cnu^2 * dnv^2) to maintain accuracy near phi = 90
746 # and change the denomintor from (dnu^2 + dnv^2 - 1) to
747 # (_mu * cnu^2 + _mv * cnv^2) to maintain accuracy near
748 # phi = 0, lam = 90 * (1 - e). Similarly rewrite sqrt in
749 # 9.1 as _mv + _mu * c^2 instead of 1 - _mu * sin(phi)^2
750 if d2 > 0:
751 # originally: sec2 = 1 + tau**2 # sec(phi)^2
752 # d2 = (mu * cnu**2 + mv * cnv**2)
753 # q2 = (mv * snv**2 + cnudnv**2) / d2
754 # k = sqrt(mv + mu / sec2) * sqrt(sec2) * sqrt(q2)
755 # = sqrt(mv * sec2 + mu) * sqrt(q2)
756 # = sqrt(mv + mv * tau**2 + mu) * sqrt(q2)
757 k2 = fsum1f_(mu, mv, mv * tau**2)
758 q2 = (mv * snv**2 + cnudnv**2) / d2
759 k = (sqrt(k2) * sqrt(q2) * self.k0) if \
760 (k2 > 0 and q2 > 0) else _0_0
761 else:
762 k = _OVERFLOW
763 return g, k
765 def _sigma3(self, v, snu, cnu, dnu, snv, cnv, dnv):
766 '''(INTERNAL) C{sigma}.
768 @return: 3-Tuple C{(xi, eta, d2)}.
770 @see: C{void TMExact::sigma(real /*u*/, real snu, real cnu, real dnu,
771 real v, real snv, real cnv, real dnv,
772 real &xi, real &eta)}.
774 @raise ETMError: No convergence.
775 '''
776 mu = self._mu * cnu
777 mv = self._mv * cnv
778 # Lee 55.4 writing
779 # dnu^2 + dnv^2 - 1 = _mu * cnu^2 + _mv * cnv^2
780 d2 = cnu * mu + cnv * mv
781 mu *= snu * dnu
782 mv *= snv * dnv
783 if d2 > 0: # /= chokes PyChecker
784 mu = mu / d2
785 mv = mv / d2
786 else:
787 mu, mv = map1(_overflow, mu, mv)
788 xi = self._Eu.fE(snu, cnu, dnu) - mu
789 v -= self._Ev.fE(snv, cnv, dnv) - mv
790 return xi, v, d2
792 def _sigmaDwd2(self, snu, cnu, dnu, snv, cnv, dnv):
793 '''(INTERNAL) C{sigmaDwd}.
795 @return: 2-Tuple C{(du, dv)}.
797 @see: C{void TMExact::dwdsigma(real /*u*/, real snu, real cnu, real dnu,
798 real /*v*/, real snv, real cnv, real dnv,
799 real &du, real &dv)}.
800 '''
801 snuv = snu * snv
802 # Reciprocal of 55.9: dw / ds = dn(w)^2/_mv,
803 # expanding complex dn(w) using A+S 16.21.4
804 d = self._mv * (cnv**2 + self._mu * snuv**2)**2
805 r = cnv * dnu * dnv
806 i = cnu * snuv * self._mu
807 du = (r**2 - i**2) / d
808 dv = neg(_2_0 * i * r / d)
809 return du, dv
811 def _sigmaInv2(self, xi, eta):
812 '''(INTERNAL) Invert C{sigma} using Newton's method.
814 @return: 2-Tuple C{(u, v)}.
816 @see: C{void TMExact::sigmainv(real xi, real eta,
817 real &u, real &v)}.
819 @raise ETMError: No convergence.
820 '''
821 u, v, t, self._sigmaC = self._sigmaInv04(xi, eta)
822 if not t:
823 u, v = self._Newton2(xi, eta, u, v, self._sigmaC)
824 return u, v
826 def _sigmaInv04(self, xi, eta):
827 '''(INTERNAL) Starting point for C{sigmaInv}.
829 @return: 4-Tuple C{(u, v, trip, Case)}.
831 @see: C{bool TMExact::sigmainv0(real xi, real eta,
832 real &u, real &v)}.
833 '''
834 t = False
835 d = eta - self._Ev_cKE
836 if eta > self._Ev_5cKE_4 or (xi < d and xi < -self._Eu_cE_4):
837 # sigma as a simple pole at
838 # w = w0 = Eu.K() + i * Ev.K()
839 # and sigma is approximated by
840 # sigma = (Eu.E() + i * Ev.KE()) + 1 / (w - w0)
841 u, v = _norm2(xi - self._Eu_cE, -d)
842 u += self._Eu_cK
843 v += self._Ev_cK
844 C = 1
846 elif (eta > self._Ev_3cKE_4 and xi < self._Eu_cE_4) or d > 0:
847 # At w = w0 = i * Ev.K(), we have
848 # sigma = sigma0 = i * Ev.KE()
849 # sigma' = sigma'' = 0
850 # including the next term in the Taylor series gives:
851 # sigma = sigma0 - _mv / 3 * (w - w0)^3
852 # When inverting this, we map arg(w - w0) = [-pi/2, -pi/6]
853 # to arg(sigma - sigma0) = [-pi/2, pi/2] mapping arg =
854 # [-pi/2, -pi/6] to [-pi/2, pi/2]
855 u, v, h = self._Inv03(xi, d, self._3_mv)
856 t = h < _TAYTOL2
857 C = 2
859 else: # use w = sigma * Eu.K/Eu.E (correct in limit _e -> 0)
860 u = v = self._Eu_cK_cE
861 u *= xi
862 v *= eta
863 C = 3
865 return u, v, t, C
867 def _sncndn6(self, u, v):
868 '''(INTERNAL) Get 6-tuple C{(snu, cnu, dnu, snv, cnv, dnv)}.
869 '''
870 # snu, cnu, dnu = self._Eu.sncndn(u)
871 # snv, cnv, dnv = self._Ev.sncndn(v)
872 return self._Eu.sncndn(u) + self._Ev.sncndn(v)
874 def toStr(self, joined=_COMMASPACE_, **kwds): # PYCHOK signature
875 '''Return a C{str} representation.
877 @kwarg joined: Separator to join the attribute strings
878 (C{str} or C{None} or C{NN} for non-joined).
879 @kwarg kwds: Optional, overriding keyword arguments.
880 '''
881 d = dict(datum=self.datum.name, lon0=self.lon0,
882 k0=self.k0, extendp=self.extendp)
883 if self.name:
884 d.update(name=self.name)
885 t = pairs(d, **kwds)
886 return joined.join(t) if joined else t
888 def _zeta3(self, unused, snu, cnu, dnu, snv, cnv, dnv): # _sigma3 signature
889 '''(INTERNAL) C{zeta}.
891 @return: 3-Tuple C{(taup, lambda, d2)}.
893 @see: C{void TMExact::zeta(real /*u*/, real snu, real cnu, real dnu,
894 real /*v*/, real snv, real cnv, real dnv,
895 real &taup, real &lam)}
896 '''
897 e, cnu2, mv = self._e, cnu**2, self._mv
898 # Overflow value like atan(overflow) = pi/2
899 t1 = t2 = _overflow(snu)
900 # Lee 54.17 but write
901 # atanh(snu * dnv) = asinh(snu * dnv / sqrt(cnu^2 + _mv * snu^2 * snv^2))
902 # atanh(_e * snu / dnv) = asinh(_e * snu / sqrt(_mu * cnu^2 + _mv * cnv^2))
903 d1 = cnu2 + mv * (snu * snv)**2
904 if d1 > EPS02: # _EPSmin
905 t1 = snu * dnv / sqrt(d1)
906 else:
907 d1 = 0
908 d2 = self._mu * cnu2 + mv * cnv**2
909 if d2 > EPS02: # _EPSmin
910 t2 = sinh(e * asinh(e * snu / sqrt(d2)))
911 else:
912 d2 = 0
913 # psi = asinh(t1) - asinh(t2)
914 # taup = sinh(psi)
915 taup = t1 * hypot1(t2) - t2 * hypot1(t1)
916 lam = (atan2(dnu * snv, cnu * cnv) -
917 atan2(cnu * snv * e, dnu * cnv) * e) if d1 and d2 else _0_0
918 return taup, lam, d2
920 def _zetaDwd2(self, snu, cnu, dnu, snv, cnv, dnv):
921 '''(INTERNAL) C{zetaDwd}.
923 @return: 2-Tuple C{(du, dv)}.
925 @see: C{void TMExact::dwdzeta(real /*u*/, real snu, real cnu, real dnu,
926 real /*v*/, real snv, real cnv, real dnv,
927 real &du, real &dv)}.
928 '''
929 cnu2 = cnu**2 * self._mu
930 cnv2 = cnv**2
931 dnuv = dnu * dnv
932 dnuv2 = dnuv**2
933 snuv = snu * snv
934 snuv2 = snuv**2 * self._mu
935 # Lee 54.21 but write (see A+S 16.21.4)
936 # (1 - dnu^2 * snv^2) = (cnv^2 + _mu * snu^2 * snv^2)
937 d = self._mv * (cnv2 + snuv2)**2 # max(d, EPS02)?
938 du = cnu * dnuv * (cnv2 - snuv2) / d
939 dv = cnv * snuv * (cnu2 + dnuv2) / d
940 return du, neg(dv)
942 def _zetaInv2(self, taup, lam):
943 '''(INTERNAL) Invert C{zeta} using Newton's method.
945 @return: 2-Tuple C{(u, v)}.
947 @see: C{void TMExact::zetainv(real taup, real lam,
948 real &u, real &v)}.
950 @raise ETMError: No convergence.
951 '''
952 psi = asinh(taup)
953 u, v, t, self._zetaC = self._zetaInv04(psi, lam)
954 if not t:
955 u, v = self._Newton2(taup, lam, u, v, self._zetaC, psi)
956 return u, v
958 def _zetaInv04(self, psi, lam):
959 '''(INTERNAL) Starting point for C{zetaInv}.
961 @return: 4-Tuple C{(u, v, trip, Case)}.
963 @see: C{bool TMExact::zetainv0(real psi, real lam, # radians
964 real &u, real &v)}.
965 '''
966 if lam > self._1_2e_PI_2:
967 d = lam - self._1_e_PI_2
968 if psi < d and psi < self._e_PI_4_: # PYCHOK no cover
969 # N.B. this branch is normally *not* taken because psi < 0
970 # is converted psi > 0 by .forward. There's a log singularity
971 # at w = w0 = Eu.K() + i * Ev.K(), corresponding to the south
972 # pole, where we have, approximately
973 # psi = _e + i * pi/2 - _e * atanh(cos(i * (w - w0)/(1 + _mu/2)))
974 # Inverting this gives:
975 e = self._e # eccentricity
976 s, c = sincos2((PI_2 - lam) / e)
977 h, r = sinh(_1_0 - psi / e), self._1_mu_2
978 u = self._Eu_cK - r * asinh(s / hypot(c, h))
979 v = self._Ev_cK - r * atan2(c, h)
980 return u, v, False, 1
982 elif psi < self._e_PI_2:
983 # At w = w0 = i * Ev.K(), we have
984 # zeta = zeta0 = i * (1 - _e) * pi/2
985 # zeta' = zeta'' = 0
986 # including the next term in the Taylor series gives:
987 # zeta = zeta0 - (_mv * _e) / 3 * (w - w0)^3
988 # When inverting this, we map arg(w - w0) = [-90, 0]
989 # to arg(zeta - zeta0) = [-90, 180]
990 u, v, h = self._Inv03(psi, d, self._3_mv_e)
991 return u, v, (h < self._e_TAYTOL), 2
993 # Use spherical TM, Lee 12.6 -- writing C{atanh(sin(lam) /
994 # cosh(psi)) = asinh(sin(lam) / hypot(cos(lam), sinh(psi)))}.
995 # This takes care of the log singularity at C{zeta = Eu.K()},
996 # corresponding to the north pole.
997 s, c = sincos2(lam)
998 h, r = sinh(psi), self._Eu_2cK_PI
999 # But scale to put 90, 0 on the right place
1000 u = r * atan2(h, c)
1001 v = r * asinh(s / hypot(h, c))
1002 return u, v, False, 3
1004 def _zetaScaled(self, sncndn6, ll=True):
1005 '''(INTERNAL) Recompute (T, L) from (u, v) to improve accuracy of Scale.
1007 @arg sncndn6: 6-Tuple C{(snu, cnu, dnu, snv, cnv, dnv)}.
1009 @return: 2-Tuple C{(g, k)} if not C{B{ll}} else
1010 4-tuple C{(g, k, lat, lon)}.
1011 '''
1012 t, lam, d2 = self._zeta3(None, *sncndn6)
1013 tau = self._E.es_tauf(t)
1014 g_k = self._scaled2(tau, d2, *sncndn6)
1015 if ll:
1016 g_k += atand(tau), degrees(lam)
1017 return g_k # or (g, k, lat, lon)
1020def parseETM5(strUTM, datum=_WGS84, Etm=Etm, falsed=True, name=NN):
1021 '''Parse a string representing a UTM coordinate, consisting
1022 of C{"zone[band] hemisphere easting northing"}.
1024 @arg strUTM: A UTM coordinate (C{str}).
1025 @kwarg datum: Optional datum to use (L{Datum}, L{Ellipsoid},
1026 L{Ellipsoid2} or L{a_f2Tuple}).
1027 @kwarg Etm: Optional class to return the UTM coordinate
1028 (L{Etm}) or C{None}.
1029 @kwarg falsed: Both easting and northing are C{falsed} (C{bool}).
1030 @kwarg name: Optional B{C{Etm}} name (C{str}).
1032 @return: The UTM coordinate (B{C{Etm}}) or if B{C{Etm}} is
1033 C{None}, a L{UtmUps5Tuple}C{(zone, hemipole, easting,
1034 northing, band)}. The C{hemipole} is the hemisphere
1035 C{'N'|'S'}.
1037 @raise ETMError: Invalid B{C{strUTM}}.
1039 @raise TypeError: Invalid or near-spherical B{C{datum}}.
1041 @example:
1043 >>> u = parseETM5('31 N 448251 5411932')
1044 >>> u.toRepr() # [Z:31, H:N, E:448251, N:5411932]
1045 >>> u = parseETM5('31 N 448251.8 5411932.7')
1046 >>> u.toStr() # 31 N 448252 5411933
1047 '''
1048 r = _parseUTM5(strUTM, datum, Etm, falsed, Error=ETMError, name=name)
1049 return r
1052def toEtm8(latlon, lon=None, datum=None, Etm=Etm, falsed=True,
1053 name=NN, strict=True,
1054 zone=None, **cmoff):
1055 '''Convert a lat-/longitude point to an ETM coordinate.
1057 @arg latlon: Latitude (C{degrees}) or an (ellipsoidal)
1058 geodetic C{LatLon} point.
1059 @kwarg lon: Optional longitude (C{degrees}) or C{None}.
1060 @kwarg datum: Optional datum for this ETM coordinate,
1061 overriding B{C{latlon}}'s datum (L{Datum},
1062 L{Ellipsoid}, L{Ellipsoid2} or L{a_f2Tuple}).
1063 @kwarg Etm: Optional class to return the ETM coordinate
1064 (L{Etm}) or C{None}.
1065 @kwarg falsed: False both easting and northing (C{bool}).
1066 @kwarg name: Optional B{C{Utm}} name (C{str}).
1067 @kwarg strict: Restrict B{C{lat}} to UTM ranges (C{bool}).
1068 @kwarg zone: Optional UTM zone to enforce (C{int} or C{str}).
1069 @kwarg cmoff: DEPRECATED, use B{C{falsed}}. Offset longitude
1070 from the zone's central meridian (C{bool}).
1072 @return: The ETM coordinate (B{C{Etm}}) or a
1073 L{UtmUps8Tuple}C{(zone, hemipole, easting, northing,
1074 band, datum, gamma, scale)} if B{C{Etm}} is C{None}
1075 or not B{C{falsed}}. The C{hemipole} is theC{'N'|'S'}
1076 hemisphere.
1078 @raise ETMError: No convergence transforming to ETM east-
1079 and northing.
1081 @raise ETMError: Invalid B{C{zone}} or near-spherical or
1082 incompatible B{C{datum}} or C{ellipsoid}.
1084 @raise RangeError: If B{C{lat}} outside the valid UTM bands or
1085 if B{C{lat}} or B{C{lon}} outside the valid
1086 range and L{pygeodesy.rangerrors} set to C{True}.
1088 @raise TypeError: Invalid or near-spherical B{C{datum}} or
1089 B{C{latlon}} not ellipsoidal.
1091 @raise ValueError: The B{C{lon}} value is missing or B{C{latlon}}
1092 is invalid.
1093 '''
1094 z, B, lat, lon, d, f, name = _to7zBlldfn(latlon, lon, datum,
1095 falsed, name, zone,
1096 strict, ETMError, **cmoff)
1097 lon0 = _cmlon(z) if f else None
1098 x, y, g, k = d.exactTM.forward(lat, lon, lon0=lon0)
1100 return _toXtm8(Etm, z, lat, x, y, B, d, g, k, f,
1101 name, latlon, d.exactTM, Error=ETMError)
1104if __name__ == '__main__': # MCCABE 13
1106 from pygeodesy.lazily import _ALL_MODS as _MODS, printf
1107 from sys import argv, exit as _exit
1109 # mimick some of I{Karney}'s utility C{TransverseMercatorProj}
1110 _f = _r = _s = _t = False
1111 _as = argv[1:]
1112 while _as and _as[0].startswith(_DASH_):
1113 _a = _as.pop(0)
1114 if len(_a) < 2:
1115 _exit('%s: option %r invalid' % (_usage(*argv), _a))
1116 elif '-forward'.startswith(_a):
1117 _f, _r = True, False
1118 elif '-reverse'.startswith(_a):
1119 _f, _r = False, True
1120 elif '-series'.startswith(_a):
1121 _s, _t = True, False
1122 elif _a == '-t':
1123 _s, _t = False, True
1124 elif '-help'.startswith(_a):
1125 _exit(_usage(argv[0], '[-s | -t]',
1126 '[-f[orward] <lat> <lon>',
1127 '| -r[everse] <easting> <northing>',
1128 '| <lat> <lon>]',
1129 '| -h[elp]'))
1130 else:
1131 _exit('%s: option %r not supported' % (_usage(*argv), _a))
1132 if len(_as) > 1:
1133 f2 = map1(float, *_as[:2])
1134 else:
1135 _exit('%s ...: incomplete' % (_usage(*argv),))
1137 if _s:
1138 tm = _MODS.ktm.KTransverseMercator()
1139 else:
1140 tm = ExactTransverseMercator(extendp=_t)
1142 if _f:
1143 t = tm.forward(*f2)
1144 elif _r:
1145 t = tm.reverse(*f2)
1146 else:
1147 t = tm.forward(*f2)
1148 printf(fstr(t, sep=_SPACE_))
1149 t = tm.reverse(t.easting, t.northing)
1150 printf(fstr(t, sep=_SPACE_))
1152# **) MIT License
1153#
1154# Copyright (C) 2016-2023 -- mrJean1 at Gmail -- All Rights Reserved.
1155#
1156# Permission is hereby granted, free of charge, to any person obtaining a
1157# copy of this software and associated documentation files (the "Software"),
1158# to deal in the Software without restriction, including without limitation
1159# the rights to use, copy, modify, merge, publish, distribute, sublicense,
1160# and/or sell copies of the Software, and to permit persons to whom the
1161# Software is furnished to do so, subject to the following conditions:
1162#
1163# The above copyright notice and this permission notice shall be included
1164# in all copies or substantial portions of the Software.
1165#
1166# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
1167# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
1168# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
1169# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
1170# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
1171# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
1172# OTHER DEALINGS IN THE SOFTWARE.