Edit on GitHub

Expressions

Every AST node in SQLGlot is represented by a subclass of Expression.

This module contains the implementation of all supported Expression types. Additionally, it exposes a number of helper functions, which are mainly used to programmatically build SQL expressions, such as sqlglot.expressions.select.


   1"""
   2## Expressions
   3
   4Every AST node in SQLGlot is represented by a subclass of `Expression`.
   5
   6This module contains the implementation of all supported `Expression` types. Additionally,
   7it exposes a number of helper functions, which are mainly used to programmatically build
   8SQL expressions, such as `sqlglot.expressions.select`.
   9
  10----
  11"""
  12
  13from __future__ import annotations
  14
  15import datetime
  16import math
  17import numbers
  18import re
  19import typing as t
  20from collections import deque
  21from copy import deepcopy
  22from enum import auto
  23
  24from sqlglot._typing import E
  25from sqlglot.errors import ParseError
  26from sqlglot.helper import (
  27    AutoName,
  28    camel_to_snake_case,
  29    ensure_collection,
  30    ensure_list,
  31    seq_get,
  32    subclasses,
  33)
  34from sqlglot.tokens import Token
  35
  36if t.TYPE_CHECKING:
  37    from sqlglot.dialects.dialect import DialectType
  38
  39
  40class _Expression(type):
  41    def __new__(cls, clsname, bases, attrs):
  42        klass = super().__new__(cls, clsname, bases, attrs)
  43
  44        # When an Expression class is created, its key is automatically set to be
  45        # the lowercase version of the class' name.
  46        klass.key = clsname.lower()
  47
  48        # This is so that docstrings are not inherited in pdoc
  49        klass.__doc__ = klass.__doc__ or ""
  50
  51        return klass
  52
  53
  54class Expression(metaclass=_Expression):
  55    """
  56    The base class for all expressions in a syntax tree. Each Expression encapsulates any necessary
  57    context, such as its child expressions, their names (arg keys), and whether a given child expression
  58    is optional or not.
  59
  60    Attributes:
  61        key: a unique key for each class in the Expression hierarchy. This is useful for hashing
  62            and representing expressions as strings.
  63        arg_types: determines what arguments (child nodes) are supported by an expression. It
  64            maps arg keys to booleans that indicate whether the corresponding args are optional.
  65        parent: a reference to the parent expression (or None, in case of root expressions).
  66        arg_key: the arg key an expression is associated with, i.e. the name its parent expression
  67            uses to refer to it.
  68        comments: a list of comments that are associated with a given expression. This is used in
  69            order to preserve comments when transpiling SQL code.
  70        _type: the `sqlglot.expressions.DataType` type of an expression. This is inferred by the
  71            optimizer, in order to enable some transformations that require type information.
  72
  73    Example:
  74        >>> class Foo(Expression):
  75        ...     arg_types = {"this": True, "expression": False}
  76
  77        The above definition informs us that Foo is an Expression that requires an argument called
  78        "this" and may also optionally receive an argument called "expression".
  79
  80    Args:
  81        args: a mapping used for retrieving the arguments of an expression, given their arg keys.
  82    """
  83
  84    key = "expression"
  85    arg_types = {"this": True}
  86    __slots__ = ("args", "parent", "arg_key", "comments", "_type", "_meta", "_hash")
  87
  88    def __init__(self, **args: t.Any):
  89        self.args: t.Dict[str, t.Any] = args
  90        self.parent: t.Optional[Expression] = None
  91        self.arg_key: t.Optional[str] = None
  92        self.comments: t.Optional[t.List[str]] = None
  93        self._type: t.Optional[DataType] = None
  94        self._meta: t.Optional[t.Dict[str, t.Any]] = None
  95        self._hash: t.Optional[int] = None
  96
  97        for arg_key, value in self.args.items():
  98            self._set_parent(arg_key, value)
  99
 100    def __eq__(self, other) -> bool:
 101        return type(self) is type(other) and hash(self) == hash(other)
 102
 103    @property
 104    def hashable_args(self) -> t.Any:
 105        args = (self.args.get(k) for k in self.arg_types)
 106
 107        return tuple(
 108            (tuple(_norm_arg(a) for a in arg) if arg else None)
 109            if type(arg) is list
 110            else (_norm_arg(arg) if arg is not None and arg is not False else None)
 111            for arg in args
 112        )
 113
 114    def __hash__(self) -> int:
 115        if self._hash is not None:
 116            return self._hash
 117
 118        return hash((self.__class__, self.hashable_args))
 119
 120    @property
 121    def this(self):
 122        """
 123        Retrieves the argument with key "this".
 124        """
 125        return self.args.get("this")
 126
 127    @property
 128    def expression(self):
 129        """
 130        Retrieves the argument with key "expression".
 131        """
 132        return self.args.get("expression")
 133
 134    @property
 135    def expressions(self):
 136        """
 137        Retrieves the argument with key "expressions".
 138        """
 139        return self.args.get("expressions") or []
 140
 141    def text(self, key) -> str:
 142        """
 143        Returns a textual representation of the argument corresponding to "key". This can only be used
 144        for args that are strings or leaf Expression instances, such as identifiers and literals.
 145        """
 146        field = self.args.get(key)
 147        if isinstance(field, str):
 148            return field
 149        if isinstance(field, (Identifier, Literal, Var)):
 150            return field.this
 151        if isinstance(field, (Star, Null)):
 152            return field.name
 153        return ""
 154
 155    @property
 156    def is_string(self) -> bool:
 157        """
 158        Checks whether a Literal expression is a string.
 159        """
 160        return isinstance(self, Literal) and self.args["is_string"]
 161
 162    @property
 163    def is_number(self) -> bool:
 164        """
 165        Checks whether a Literal expression is a number.
 166        """
 167        return isinstance(self, Literal) and not self.args["is_string"]
 168
 169    @property
 170    def is_int(self) -> bool:
 171        """
 172        Checks whether a Literal expression is an integer.
 173        """
 174        if self.is_number:
 175            try:
 176                int(self.name)
 177                return True
 178            except ValueError:
 179                pass
 180        return False
 181
 182    @property
 183    def is_star(self) -> bool:
 184        """Checks whether an expression is a star."""
 185        return isinstance(self, Star) or (isinstance(self, Column) and isinstance(self.this, Star))
 186
 187    @property
 188    def alias(self) -> str:
 189        """
 190        Returns the alias of the expression, or an empty string if it's not aliased.
 191        """
 192        if isinstance(self.args.get("alias"), TableAlias):
 193            return self.args["alias"].name
 194        return self.text("alias")
 195
 196    @property
 197    def name(self) -> str:
 198        return self.text("this")
 199
 200    @property
 201    def alias_or_name(self) -> str:
 202        return self.alias or self.name
 203
 204    @property
 205    def output_name(self) -> str:
 206        """
 207        Name of the output column if this expression is a selection.
 208
 209        If the Expression has no output name, an empty string is returned.
 210
 211        Example:
 212            >>> from sqlglot import parse_one
 213            >>> parse_one("SELECT a").expressions[0].output_name
 214            'a'
 215            >>> parse_one("SELECT b AS c").expressions[0].output_name
 216            'c'
 217            >>> parse_one("SELECT 1 + 2").expressions[0].output_name
 218            ''
 219        """
 220        return ""
 221
 222    @property
 223    def type(self) -> t.Optional[DataType]:
 224        return self._type
 225
 226    @type.setter
 227    def type(self, dtype: t.Optional[DataType | DataType.Type | str]) -> None:
 228        if dtype and not isinstance(dtype, DataType):
 229            dtype = DataType.build(dtype)
 230        self._type = dtype  # type: ignore
 231
 232    @property
 233    def meta(self) -> t.Dict[str, t.Any]:
 234        if self._meta is None:
 235            self._meta = {}
 236        return self._meta
 237
 238    def __deepcopy__(self, memo):
 239        copy = self.__class__(**deepcopy(self.args))
 240        if self.comments is not None:
 241            copy.comments = deepcopy(self.comments)
 242
 243        if self._type is not None:
 244            copy._type = self._type.copy()
 245
 246        if self._meta is not None:
 247            copy._meta = deepcopy(self._meta)
 248
 249        return copy
 250
 251    def copy(self):
 252        """
 253        Returns a deep copy of the expression.
 254        """
 255        new = deepcopy(self)
 256        new.parent = self.parent
 257        return new
 258
 259    def add_comments(self, comments: t.Optional[t.List[str]]) -> None:
 260        if self.comments is None:
 261            self.comments = []
 262        if comments:
 263            self.comments.extend(comments)
 264
 265    def append(self, arg_key: str, value: t.Any) -> None:
 266        """
 267        Appends value to arg_key if it's a list or sets it as a new list.
 268
 269        Args:
 270            arg_key (str): name of the list expression arg
 271            value (Any): value to append to the list
 272        """
 273        if not isinstance(self.args.get(arg_key), list):
 274            self.args[arg_key] = []
 275        self.args[arg_key].append(value)
 276        self._set_parent(arg_key, value)
 277
 278    def set(self, arg_key: str, value: t.Any) -> None:
 279        """
 280        Sets `arg_key` to `value`.
 281
 282        Args:
 283            arg_key (str): name of the expression arg.
 284            value: value to set the arg to.
 285        """
 286        self.args[arg_key] = value
 287        self._set_parent(arg_key, value)
 288
 289    def _set_parent(self, arg_key: str, value: t.Any) -> None:
 290        if hasattr(value, "parent"):
 291            value.parent = self
 292            value.arg_key = arg_key
 293        elif type(value) is list:
 294            for v in value:
 295                if hasattr(v, "parent"):
 296                    v.parent = self
 297                    v.arg_key = arg_key
 298
 299    @property
 300    def depth(self) -> int:
 301        """
 302        Returns the depth of this tree.
 303        """
 304        if self.parent:
 305            return self.parent.depth + 1
 306        return 0
 307
 308    def iter_expressions(self) -> t.Iterator[t.Tuple[str, Expression]]:
 309        """Yields the key and expression for all arguments, exploding list args."""
 310        for k, vs in self.args.items():
 311            if type(vs) is list:
 312                for v in vs:
 313                    if hasattr(v, "parent"):
 314                        yield k, v
 315            else:
 316                if hasattr(vs, "parent"):
 317                    yield k, vs
 318
 319    def find(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Optional[E]:
 320        """
 321        Returns the first node in this tree which matches at least one of
 322        the specified types.
 323
 324        Args:
 325            expression_types: the expression type(s) to match.
 326            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
 327
 328        Returns:
 329            The node which matches the criteria or None if no such node was found.
 330        """
 331        return next(self.find_all(*expression_types, bfs=bfs), None)
 332
 333    def find_all(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Iterator[E]:
 334        """
 335        Returns a generator object which visits all nodes in this tree and only
 336        yields those that match at least one of the specified expression types.
 337
 338        Args:
 339            expression_types: the expression type(s) to match.
 340            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
 341
 342        Returns:
 343            The generator object.
 344        """
 345        for expression, *_ in self.walk(bfs=bfs):
 346            if isinstance(expression, expression_types):
 347                yield expression
 348
 349    def find_ancestor(self, *expression_types: t.Type[E]) -> t.Optional[E]:
 350        """
 351        Returns a nearest parent matching expression_types.
 352
 353        Args:
 354            expression_types: the expression type(s) to match.
 355
 356        Returns:
 357            The parent node.
 358        """
 359        ancestor = self.parent
 360        while ancestor and not isinstance(ancestor, expression_types):
 361            ancestor = ancestor.parent
 362        return t.cast(E, ancestor)
 363
 364    @property
 365    def parent_select(self) -> t.Optional[Select]:
 366        """
 367        Returns the parent select statement.
 368        """
 369        return self.find_ancestor(Select)
 370
 371    @property
 372    def same_parent(self) -> bool:
 373        """Returns if the parent is the same class as itself."""
 374        return type(self.parent) is self.__class__
 375
 376    def root(self) -> Expression:
 377        """
 378        Returns the root expression of this tree.
 379        """
 380        expression = self
 381        while expression.parent:
 382            expression = expression.parent
 383        return expression
 384
 385    def walk(self, bfs=True, prune=None):
 386        """
 387        Returns a generator object which visits all nodes in this tree.
 388
 389        Args:
 390            bfs (bool): if set to True the BFS traversal order will be applied,
 391                otherwise the DFS traversal will be used instead.
 392            prune ((node, parent, arg_key) -> bool): callable that returns True if
 393                the generator should stop traversing this branch of the tree.
 394
 395        Returns:
 396            the generator object.
 397        """
 398        if bfs:
 399            yield from self.bfs(prune=prune)
 400        else:
 401            yield from self.dfs(prune=prune)
 402
 403    def dfs(self, parent=None, key=None, prune=None):
 404        """
 405        Returns a generator object which visits all nodes in this tree in
 406        the DFS (Depth-first) order.
 407
 408        Returns:
 409            The generator object.
 410        """
 411        parent = parent or self.parent
 412        yield self, parent, key
 413        if prune and prune(self, parent, key):
 414            return
 415
 416        for k, v in self.iter_expressions():
 417            yield from v.dfs(self, k, prune)
 418
 419    def bfs(self, prune=None):
 420        """
 421        Returns a generator object which visits all nodes in this tree in
 422        the BFS (Breadth-first) order.
 423
 424        Returns:
 425            The generator object.
 426        """
 427        queue = deque([(self, self.parent, None)])
 428
 429        while queue:
 430            item, parent, key = queue.popleft()
 431
 432            yield item, parent, key
 433            if prune and prune(item, parent, key):
 434                continue
 435
 436            for k, v in item.iter_expressions():
 437                queue.append((v, item, k))
 438
 439    def unnest(self):
 440        """
 441        Returns the first non parenthesis child or self.
 442        """
 443        expression = self
 444        while type(expression) is Paren:
 445            expression = expression.this
 446        return expression
 447
 448    def unalias(self):
 449        """
 450        Returns the inner expression if this is an Alias.
 451        """
 452        if isinstance(self, Alias):
 453            return self.this
 454        return self
 455
 456    def unnest_operands(self):
 457        """
 458        Returns unnested operands as a tuple.
 459        """
 460        return tuple(arg.unnest() for _, arg in self.iter_expressions())
 461
 462    def flatten(self, unnest=True):
 463        """
 464        Returns a generator which yields child nodes who's parents are the same class.
 465
 466        A AND B AND C -> [A, B, C]
 467        """
 468        for node, _, _ in self.dfs(prune=lambda n, p, *_: p and not type(n) is self.__class__):
 469            if not type(node) is self.__class__:
 470                yield node.unnest() if unnest else node
 471
 472    def __str__(self) -> str:
 473        return self.sql()
 474
 475    def __repr__(self) -> str:
 476        return self._to_s()
 477
 478    def sql(self, dialect: DialectType = None, **opts) -> str:
 479        """
 480        Returns SQL string representation of this tree.
 481
 482        Args:
 483            dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
 484            opts: other `sqlglot.generator.Generator` options.
 485
 486        Returns:
 487            The SQL string.
 488        """
 489        from sqlglot.dialects import Dialect
 490
 491        return Dialect.get_or_raise(dialect)().generate(self, **opts)
 492
 493    def _to_s(self, hide_missing: bool = True, level: int = 0) -> str:
 494        indent = "" if not level else "\n"
 495        indent += "".join(["  "] * level)
 496        left = f"({self.key.upper()} "
 497
 498        args: t.Dict[str, t.Any] = {
 499            k: ", ".join(
 500                v._to_s(hide_missing=hide_missing, level=level + 1)
 501                if hasattr(v, "_to_s")
 502                else str(v)
 503                for v in ensure_list(vs)
 504                if v is not None
 505            )
 506            for k, vs in self.args.items()
 507        }
 508        args["comments"] = self.comments
 509        args["type"] = self.type
 510        args = {k: v for k, v in args.items() if v or not hide_missing}
 511
 512        right = ", ".join(f"{k}: {v}" for k, v in args.items())
 513        right += ")"
 514
 515        return indent + left + right
 516
 517    def transform(self, fun, *args, copy=True, **kwargs):
 518        """
 519        Recursively visits all tree nodes (excluding already transformed ones)
 520        and applies the given transformation function to each node.
 521
 522        Args:
 523            fun (function): a function which takes a node as an argument and returns a
 524                new transformed node or the same node without modifications. If the function
 525                returns None, then the corresponding node will be removed from the syntax tree.
 526            copy (bool): if set to True a new tree instance is constructed, otherwise the tree is
 527                modified in place.
 528
 529        Returns:
 530            The transformed tree.
 531        """
 532        node = self.copy() if copy else self
 533        new_node = fun(node, *args, **kwargs)
 534
 535        if new_node is None or not isinstance(new_node, Expression):
 536            return new_node
 537        if new_node is not node:
 538            new_node.parent = node.parent
 539            return new_node
 540
 541        replace_children(new_node, lambda child: child.transform(fun, *args, copy=False, **kwargs))
 542        return new_node
 543
 544    @t.overload
 545    def replace(self, expression: E) -> E:
 546        ...
 547
 548    @t.overload
 549    def replace(self, expression: None) -> None:
 550        ...
 551
 552    def replace(self, expression):
 553        """
 554        Swap out this expression with a new expression.
 555
 556        For example::
 557
 558            >>> tree = Select().select("x").from_("tbl")
 559            >>> tree.find(Column).replace(Column(this="y"))
 560            (COLUMN this: y)
 561            >>> tree.sql()
 562            'SELECT y FROM tbl'
 563
 564        Args:
 565            expression: new node
 566
 567        Returns:
 568            The new expression or expressions.
 569        """
 570        if not self.parent:
 571            return expression
 572
 573        parent = self.parent
 574        self.parent = None
 575
 576        replace_children(parent, lambda child: expression if child is self else child)
 577        return expression
 578
 579    def pop(self: E) -> E:
 580        """
 581        Remove this expression from its AST.
 582
 583        Returns:
 584            The popped expression.
 585        """
 586        self.replace(None)
 587        return self
 588
 589    def assert_is(self, type_: t.Type[E]) -> E:
 590        """
 591        Assert that this `Expression` is an instance of `type_`.
 592
 593        If it is NOT an instance of `type_`, this raises an assertion error.
 594        Otherwise, this returns this expression.
 595
 596        Examples:
 597            This is useful for type security in chained expressions:
 598
 599            >>> import sqlglot
 600            >>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
 601            'SELECT x, z FROM y'
 602        """
 603        assert isinstance(self, type_)
 604        return self
 605
 606    def error_messages(self, args: t.Optional[t.Sequence] = None) -> t.List[str]:
 607        """
 608        Checks if this expression is valid (e.g. all mandatory args are set).
 609
 610        Args:
 611            args: a sequence of values that were used to instantiate a Func expression. This is used
 612                to check that the provided arguments don't exceed the function argument limit.
 613
 614        Returns:
 615            A list of error messages for all possible errors that were found.
 616        """
 617        errors: t.List[str] = []
 618
 619        for k in self.args:
 620            if k not in self.arg_types:
 621                errors.append(f"Unexpected keyword: '{k}' for {self.__class__}")
 622        for k, mandatory in self.arg_types.items():
 623            v = self.args.get(k)
 624            if mandatory and (v is None or (isinstance(v, list) and not v)):
 625                errors.append(f"Required keyword: '{k}' missing for {self.__class__}")
 626
 627        if (
 628            args
 629            and isinstance(self, Func)
 630            and len(args) > len(self.arg_types)
 631            and not self.is_var_len_args
 632        ):
 633            errors.append(
 634                f"The number of provided arguments ({len(args)}) is greater than "
 635                f"the maximum number of supported arguments ({len(self.arg_types)})"
 636            )
 637
 638        return errors
 639
 640    def dump(self):
 641        """
 642        Dump this Expression to a JSON-serializable dict.
 643        """
 644        from sqlglot.serde import dump
 645
 646        return dump(self)
 647
 648    @classmethod
 649    def load(cls, obj):
 650        """
 651        Load a dict (as returned by `Expression.dump`) into an Expression instance.
 652        """
 653        from sqlglot.serde import load
 654
 655        return load(obj)
 656
 657
 658IntoType = t.Union[
 659    str,
 660    t.Type[Expression],
 661    t.Collection[t.Union[str, t.Type[Expression]]],
 662]
 663ExpOrStr = t.Union[str, Expression]
 664
 665
 666class Condition(Expression):
 667    def and_(
 668        self,
 669        *expressions: t.Optional[ExpOrStr],
 670        dialect: DialectType = None,
 671        copy: bool = True,
 672        **opts,
 673    ) -> Condition:
 674        """
 675        AND this condition with one or multiple expressions.
 676
 677        Example:
 678            >>> condition("x=1").and_("y=1").sql()
 679            'x = 1 AND y = 1'
 680
 681        Args:
 682            *expressions: the SQL code strings to parse.
 683                If an `Expression` instance is passed, it will be used as-is.
 684            dialect: the dialect used to parse the input expression.
 685            copy: whether or not to copy the involved expressions (only applies to Expressions).
 686            opts: other options to use to parse the input expressions.
 687
 688        Returns:
 689            The new And condition.
 690        """
 691        return and_(self, *expressions, dialect=dialect, copy=copy, **opts)
 692
 693    def or_(
 694        self,
 695        *expressions: t.Optional[ExpOrStr],
 696        dialect: DialectType = None,
 697        copy: bool = True,
 698        **opts,
 699    ) -> Condition:
 700        """
 701        OR this condition with one or multiple expressions.
 702
 703        Example:
 704            >>> condition("x=1").or_("y=1").sql()
 705            'x = 1 OR y = 1'
 706
 707        Args:
 708            *expressions: the SQL code strings to parse.
 709                If an `Expression` instance is passed, it will be used as-is.
 710            dialect: the dialect used to parse the input expression.
 711            copy: whether or not to copy the involved expressions (only applies to Expressions).
 712            opts: other options to use to parse the input expressions.
 713
 714        Returns:
 715            The new Or condition.
 716        """
 717        return or_(self, *expressions, dialect=dialect, copy=copy, **opts)
 718
 719    def not_(self, copy: bool = True):
 720        """
 721        Wrap this condition with NOT.
 722
 723        Example:
 724            >>> condition("x=1").not_().sql()
 725            'NOT x = 1'
 726
 727        Args:
 728            copy: whether or not to copy this object.
 729
 730        Returns:
 731            The new Not instance.
 732        """
 733        return not_(self, copy=copy)
 734
 735    def as_(
 736        self,
 737        alias: str | Identifier,
 738        quoted: t.Optional[bool] = None,
 739        dialect: DialectType = None,
 740        copy: bool = True,
 741        **opts,
 742    ) -> Alias:
 743        return alias_(self, alias, quoted=quoted, dialect=dialect, copy=copy, **opts)
 744
 745    def _binop(self, klass: t.Type[E], other: t.Any, reverse: bool = False) -> E:
 746        this = self.copy()
 747        other = convert(other, copy=True)
 748        if not isinstance(this, klass) and not isinstance(other, klass):
 749            this = _wrap(this, Binary)
 750            other = _wrap(other, Binary)
 751        if reverse:
 752            return klass(this=other, expression=this)
 753        return klass(this=this, expression=other)
 754
 755    def __getitem__(self, other: ExpOrStr | t.Tuple[ExpOrStr]):
 756        return Bracket(
 757            this=self.copy(), expressions=[convert(e, copy=True) for e in ensure_list(other)]
 758        )
 759
 760    def isin(
 761        self, *expressions: t.Any, query: t.Optional[ExpOrStr] = None, copy: bool = True, **opts
 762    ) -> In:
 763        return In(
 764            this=_maybe_copy(self, copy),
 765            expressions=[convert(e, copy=copy) for e in expressions],
 766            query=maybe_parse(query, copy=copy, **opts) if query else None,
 767        )
 768
 769    def between(self, low: t.Any, high: t.Any, copy: bool = True, **opts) -> Between:
 770        return Between(
 771            this=_maybe_copy(self, copy),
 772            low=convert(low, copy=copy, **opts),
 773            high=convert(high, copy=copy, **opts),
 774        )
 775
 776    def is_(self, other: ExpOrStr) -> Is:
 777        return self._binop(Is, other)
 778
 779    def like(self, other: ExpOrStr) -> Like:
 780        return self._binop(Like, other)
 781
 782    def ilike(self, other: ExpOrStr) -> ILike:
 783        return self._binop(ILike, other)
 784
 785    def eq(self, other: t.Any) -> EQ:
 786        return self._binop(EQ, other)
 787
 788    def neq(self, other: t.Any) -> NEQ:
 789        return self._binop(NEQ, other)
 790
 791    def rlike(self, other: ExpOrStr) -> RegexpLike:
 792        return self._binop(RegexpLike, other)
 793
 794    def __lt__(self, other: t.Any) -> LT:
 795        return self._binop(LT, other)
 796
 797    def __le__(self, other: t.Any) -> LTE:
 798        return self._binop(LTE, other)
 799
 800    def __gt__(self, other: t.Any) -> GT:
 801        return self._binop(GT, other)
 802
 803    def __ge__(self, other: t.Any) -> GTE:
 804        return self._binop(GTE, other)
 805
 806    def __add__(self, other: t.Any) -> Add:
 807        return self._binop(Add, other)
 808
 809    def __radd__(self, other: t.Any) -> Add:
 810        return self._binop(Add, other, reverse=True)
 811
 812    def __sub__(self, other: t.Any) -> Sub:
 813        return self._binop(Sub, other)
 814
 815    def __rsub__(self, other: t.Any) -> Sub:
 816        return self._binop(Sub, other, reverse=True)
 817
 818    def __mul__(self, other: t.Any) -> Mul:
 819        return self._binop(Mul, other)
 820
 821    def __rmul__(self, other: t.Any) -> Mul:
 822        return self._binop(Mul, other, reverse=True)
 823
 824    def __truediv__(self, other: t.Any) -> Div:
 825        return self._binop(Div, other)
 826
 827    def __rtruediv__(self, other: t.Any) -> Div:
 828        return self._binop(Div, other, reverse=True)
 829
 830    def __floordiv__(self, other: t.Any) -> IntDiv:
 831        return self._binop(IntDiv, other)
 832
 833    def __rfloordiv__(self, other: t.Any) -> IntDiv:
 834        return self._binop(IntDiv, other, reverse=True)
 835
 836    def __mod__(self, other: t.Any) -> Mod:
 837        return self._binop(Mod, other)
 838
 839    def __rmod__(self, other: t.Any) -> Mod:
 840        return self._binop(Mod, other, reverse=True)
 841
 842    def __pow__(self, other: t.Any) -> Pow:
 843        return self._binop(Pow, other)
 844
 845    def __rpow__(self, other: t.Any) -> Pow:
 846        return self._binop(Pow, other, reverse=True)
 847
 848    def __and__(self, other: t.Any) -> And:
 849        return self._binop(And, other)
 850
 851    def __rand__(self, other: t.Any) -> And:
 852        return self._binop(And, other, reverse=True)
 853
 854    def __or__(self, other: t.Any) -> Or:
 855        return self._binop(Or, other)
 856
 857    def __ror__(self, other: t.Any) -> Or:
 858        return self._binop(Or, other, reverse=True)
 859
 860    def __neg__(self) -> Neg:
 861        return Neg(this=_wrap(self.copy(), Binary))
 862
 863    def __invert__(self) -> Not:
 864        return not_(self.copy())
 865
 866
 867class Predicate(Condition):
 868    """Relationships like x = y, x > 1, x >= y."""
 869
 870
 871class DerivedTable(Expression):
 872    @property
 873    def alias_column_names(self) -> t.List[str]:
 874        table_alias = self.args.get("alias")
 875        if not table_alias:
 876            return []
 877        return [c.name for c in table_alias.args.get("columns") or []]
 878
 879    @property
 880    def selects(self):
 881        return self.this.selects if isinstance(self.this, Subqueryable) else []
 882
 883    @property
 884    def named_selects(self):
 885        return [select.output_name for select in self.selects]
 886
 887
 888class Unionable(Expression):
 889    def union(
 890        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
 891    ) -> Unionable:
 892        """
 893        Builds a UNION expression.
 894
 895        Example:
 896            >>> import sqlglot
 897            >>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
 898            'SELECT * FROM foo UNION SELECT * FROM bla'
 899
 900        Args:
 901            expression: the SQL code string.
 902                If an `Expression` instance is passed, it will be used as-is.
 903            distinct: set the DISTINCT flag if and only if this is true.
 904            dialect: the dialect used to parse the input expression.
 905            opts: other options to use to parse the input expressions.
 906
 907        Returns:
 908            The new Union expression.
 909        """
 910        return union(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
 911
 912    def intersect(
 913        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
 914    ) -> Unionable:
 915        """
 916        Builds an INTERSECT expression.
 917
 918        Example:
 919            >>> import sqlglot
 920            >>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
 921            'SELECT * FROM foo INTERSECT SELECT * FROM bla'
 922
 923        Args:
 924            expression: the SQL code string.
 925                If an `Expression` instance is passed, it will be used as-is.
 926            distinct: set the DISTINCT flag if and only if this is true.
 927            dialect: the dialect used to parse the input expression.
 928            opts: other options to use to parse the input expressions.
 929
 930        Returns:
 931            The new Intersect expression.
 932        """
 933        return intersect(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
 934
 935    def except_(
 936        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
 937    ) -> Unionable:
 938        """
 939        Builds an EXCEPT expression.
 940
 941        Example:
 942            >>> import sqlglot
 943            >>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
 944            'SELECT * FROM foo EXCEPT SELECT * FROM bla'
 945
 946        Args:
 947            expression: the SQL code string.
 948                If an `Expression` instance is passed, it will be used as-is.
 949            distinct: set the DISTINCT flag if and only if this is true.
 950            dialect: the dialect used to parse the input expression.
 951            opts: other options to use to parse the input expressions.
 952
 953        Returns:
 954            The new Except expression.
 955        """
 956        return except_(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
 957
 958
 959class UDTF(DerivedTable, Unionable):
 960    @property
 961    def selects(self):
 962        alias = self.args.get("alias")
 963        return alias.columns if alias else []
 964
 965
 966class Cache(Expression):
 967    arg_types = {
 968        "with": False,
 969        "this": True,
 970        "lazy": False,
 971        "options": False,
 972        "expression": False,
 973    }
 974
 975
 976class Uncache(Expression):
 977    arg_types = {"this": True, "exists": False}
 978
 979
 980class Create(Expression):
 981    arg_types = {
 982        "with": False,
 983        "this": True,
 984        "kind": True,
 985        "expression": False,
 986        "exists": False,
 987        "properties": False,
 988        "replace": False,
 989        "unique": False,
 990        "indexes": False,
 991        "no_schema_binding": False,
 992        "begin": False,
 993        "clone": False,
 994    }
 995
 996
 997# https://docs.snowflake.com/en/sql-reference/sql/create-clone
 998class Clone(Expression):
 999    arg_types = {
1000        "this": True,
1001        "when": False,
1002        "kind": False,
1003        "expression": False,
1004    }
1005
1006
1007class Describe(Expression):
1008    arg_types = {"this": True, "kind": False}
1009
1010
1011class Pragma(Expression):
1012    pass
1013
1014
1015class Set(Expression):
1016    arg_types = {"expressions": False}
1017
1018
1019class SetItem(Expression):
1020    arg_types = {
1021        "this": False,
1022        "expressions": False,
1023        "kind": False,
1024        "collate": False,  # MySQL SET NAMES statement
1025        "global": False,
1026    }
1027
1028
1029class Show(Expression):
1030    arg_types = {
1031        "this": True,
1032        "target": False,
1033        "offset": False,
1034        "limit": False,
1035        "like": False,
1036        "where": False,
1037        "db": False,
1038        "full": False,
1039        "mutex": False,
1040        "query": False,
1041        "channel": False,
1042        "global": False,
1043        "log": False,
1044        "position": False,
1045        "types": False,
1046    }
1047
1048
1049class UserDefinedFunction(Expression):
1050    arg_types = {"this": True, "expressions": False, "wrapped": False}
1051
1052
1053class CharacterSet(Expression):
1054    arg_types = {"this": True, "default": False}
1055
1056
1057class With(Expression):
1058    arg_types = {"expressions": True, "recursive": False}
1059
1060    @property
1061    def recursive(self) -> bool:
1062        return bool(self.args.get("recursive"))
1063
1064
1065class WithinGroup(Expression):
1066    arg_types = {"this": True, "expression": False}
1067
1068
1069class CTE(DerivedTable):
1070    arg_types = {"this": True, "alias": True}
1071
1072
1073class TableAlias(Expression):
1074    arg_types = {"this": False, "columns": False}
1075
1076    @property
1077    def columns(self):
1078        return self.args.get("columns") or []
1079
1080
1081class BitString(Condition):
1082    pass
1083
1084
1085class HexString(Condition):
1086    pass
1087
1088
1089class ByteString(Condition):
1090    pass
1091
1092
1093class RawString(Condition):
1094    pass
1095
1096
1097class Column(Condition):
1098    arg_types = {"this": True, "table": False, "db": False, "catalog": False, "join_mark": False}
1099
1100    @property
1101    def table(self) -> str:
1102        return self.text("table")
1103
1104    @property
1105    def db(self) -> str:
1106        return self.text("db")
1107
1108    @property
1109    def catalog(self) -> str:
1110        return self.text("catalog")
1111
1112    @property
1113    def output_name(self) -> str:
1114        return self.name
1115
1116    @property
1117    def parts(self) -> t.List[Identifier]:
1118        """Return the parts of a column in order catalog, db, table, name."""
1119        return [
1120            t.cast(Identifier, self.args[part])
1121            for part in ("catalog", "db", "table", "this")
1122            if self.args.get(part)
1123        ]
1124
1125    def to_dot(self) -> Dot:
1126        """Converts the column into a dot expression."""
1127        parts = self.parts
1128        parent = self.parent
1129
1130        while parent:
1131            if isinstance(parent, Dot):
1132                parts.append(parent.expression)
1133            parent = parent.parent
1134
1135        return Dot.build(parts)
1136
1137
1138class ColumnPosition(Expression):
1139    arg_types = {"this": False, "position": True}
1140
1141
1142class ColumnDef(Expression):
1143    arg_types = {
1144        "this": True,
1145        "kind": False,
1146        "constraints": False,
1147        "exists": False,
1148        "position": False,
1149    }
1150
1151    @property
1152    def constraints(self) -> t.List[ColumnConstraint]:
1153        return self.args.get("constraints") or []
1154
1155
1156class AlterColumn(Expression):
1157    arg_types = {
1158        "this": True,
1159        "dtype": False,
1160        "collate": False,
1161        "using": False,
1162        "default": False,
1163        "drop": False,
1164    }
1165
1166
1167class RenameTable(Expression):
1168    pass
1169
1170
1171class SetTag(Expression):
1172    arg_types = {"expressions": True, "unset": False}
1173
1174
1175class Comment(Expression):
1176    arg_types = {"this": True, "kind": True, "expression": True, "exists": False}
1177
1178
1179# https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/mergetree#mergetree-table-ttl
1180class MergeTreeTTLAction(Expression):
1181    arg_types = {
1182        "this": True,
1183        "delete": False,
1184        "recompress": False,
1185        "to_disk": False,
1186        "to_volume": False,
1187    }
1188
1189
1190# https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/mergetree#mergetree-table-ttl
1191class MergeTreeTTL(Expression):
1192    arg_types = {
1193        "expressions": True,
1194        "where": False,
1195        "group": False,
1196        "aggregates": False,
1197    }
1198
1199
1200class ColumnConstraint(Expression):
1201    arg_types = {"this": False, "kind": True}
1202
1203    @property
1204    def kind(self) -> ColumnConstraintKind:
1205        return self.args["kind"]
1206
1207
1208class ColumnConstraintKind(Expression):
1209    pass
1210
1211
1212class AutoIncrementColumnConstraint(ColumnConstraintKind):
1213    pass
1214
1215
1216class CaseSpecificColumnConstraint(ColumnConstraintKind):
1217    arg_types = {"not_": True}
1218
1219
1220class CharacterSetColumnConstraint(ColumnConstraintKind):
1221    arg_types = {"this": True}
1222
1223
1224class CheckColumnConstraint(ColumnConstraintKind):
1225    pass
1226
1227
1228class CollateColumnConstraint(ColumnConstraintKind):
1229    pass
1230
1231
1232class CommentColumnConstraint(ColumnConstraintKind):
1233    pass
1234
1235
1236class CompressColumnConstraint(ColumnConstraintKind):
1237    pass
1238
1239
1240class DateFormatColumnConstraint(ColumnConstraintKind):
1241    arg_types = {"this": True}
1242
1243
1244class DefaultColumnConstraint(ColumnConstraintKind):
1245    pass
1246
1247
1248class EncodeColumnConstraint(ColumnConstraintKind):
1249    pass
1250
1251
1252class GeneratedAsIdentityColumnConstraint(ColumnConstraintKind):
1253    # this: True -> ALWAYS, this: False -> BY DEFAULT
1254    arg_types = {
1255        "this": False,
1256        "expression": False,
1257        "on_null": False,
1258        "start": False,
1259        "increment": False,
1260        "minvalue": False,
1261        "maxvalue": False,
1262        "cycle": False,
1263    }
1264
1265
1266class InlineLengthColumnConstraint(ColumnConstraintKind):
1267    pass
1268
1269
1270class NotNullColumnConstraint(ColumnConstraintKind):
1271    arg_types = {"allow_null": False}
1272
1273
1274# https://dev.mysql.com/doc/refman/5.7/en/timestamp-initialization.html
1275class OnUpdateColumnConstraint(ColumnConstraintKind):
1276    pass
1277
1278
1279class PrimaryKeyColumnConstraint(ColumnConstraintKind):
1280    arg_types = {"desc": False}
1281
1282
1283class TitleColumnConstraint(ColumnConstraintKind):
1284    pass
1285
1286
1287class UniqueColumnConstraint(ColumnConstraintKind):
1288    arg_types = {"this": False}
1289
1290
1291class UppercaseColumnConstraint(ColumnConstraintKind):
1292    arg_types: t.Dict[str, t.Any] = {}
1293
1294
1295class PathColumnConstraint(ColumnConstraintKind):
1296    pass
1297
1298
1299class Constraint(Expression):
1300    arg_types = {"this": True, "expressions": True}
1301
1302
1303class Delete(Expression):
1304    arg_types = {"with": False, "this": False, "using": False, "where": False, "returning": False}
1305
1306    def delete(
1307        self,
1308        table: ExpOrStr,
1309        dialect: DialectType = None,
1310        copy: bool = True,
1311        **opts,
1312    ) -> Delete:
1313        """
1314        Create a DELETE expression or replace the table on an existing DELETE expression.
1315
1316        Example:
1317            >>> delete("tbl").sql()
1318            'DELETE FROM tbl'
1319
1320        Args:
1321            table: the table from which to delete.
1322            dialect: the dialect used to parse the input expression.
1323            copy: if `False`, modify this expression instance in-place.
1324            opts: other options to use to parse the input expressions.
1325
1326        Returns:
1327            Delete: the modified expression.
1328        """
1329        return _apply_builder(
1330            expression=table,
1331            instance=self,
1332            arg="this",
1333            dialect=dialect,
1334            into=Table,
1335            copy=copy,
1336            **opts,
1337        )
1338
1339    def where(
1340        self,
1341        *expressions: t.Optional[ExpOrStr],
1342        append: bool = True,
1343        dialect: DialectType = None,
1344        copy: bool = True,
1345        **opts,
1346    ) -> Delete:
1347        """
1348        Append to or set the WHERE expressions.
1349
1350        Example:
1351            >>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
1352            "DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
1353
1354        Args:
1355            *expressions: the SQL code strings to parse.
1356                If an `Expression` instance is passed, it will be used as-is.
1357                Multiple expressions are combined with an AND operator.
1358            append: if `True`, AND the new expressions to any existing expression.
1359                Otherwise, this resets the expression.
1360            dialect: the dialect used to parse the input expressions.
1361            copy: if `False`, modify this expression instance in-place.
1362            opts: other options to use to parse the input expressions.
1363
1364        Returns:
1365            Delete: the modified expression.
1366        """
1367        return _apply_conjunction_builder(
1368            *expressions,
1369            instance=self,
1370            arg="where",
1371            append=append,
1372            into=Where,
1373            dialect=dialect,
1374            copy=copy,
1375            **opts,
1376        )
1377
1378    def returning(
1379        self,
1380        expression: ExpOrStr,
1381        dialect: DialectType = None,
1382        copy: bool = True,
1383        **opts,
1384    ) -> Delete:
1385        """
1386        Set the RETURNING expression. Not supported by all dialects.
1387
1388        Example:
1389            >>> delete("tbl").returning("*", dialect="postgres").sql()
1390            'DELETE FROM tbl RETURNING *'
1391
1392        Args:
1393            expression: the SQL code strings to parse.
1394                If an `Expression` instance is passed, it will be used as-is.
1395            dialect: the dialect used to parse the input expressions.
1396            copy: if `False`, modify this expression instance in-place.
1397            opts: other options to use to parse the input expressions.
1398
1399        Returns:
1400            Delete: the modified expression.
1401        """
1402        return _apply_builder(
1403            expression=expression,
1404            instance=self,
1405            arg="returning",
1406            prefix="RETURNING",
1407            dialect=dialect,
1408            copy=copy,
1409            into=Returning,
1410            **opts,
1411        )
1412
1413
1414class Drop(Expression):
1415    arg_types = {
1416        "this": False,
1417        "kind": False,
1418        "exists": False,
1419        "temporary": False,
1420        "materialized": False,
1421        "cascade": False,
1422        "constraints": False,
1423        "purge": False,
1424    }
1425
1426
1427class Filter(Expression):
1428    arg_types = {"this": True, "expression": True}
1429
1430
1431class Check(Expression):
1432    pass
1433
1434
1435class Directory(Expression):
1436    # https://spark.apache.org/docs/3.0.0-preview/sql-ref-syntax-dml-insert-overwrite-directory-hive.html
1437    arg_types = {"this": True, "local": False, "row_format": False}
1438
1439
1440class ForeignKey(Expression):
1441    arg_types = {
1442        "expressions": True,
1443        "reference": False,
1444        "delete": False,
1445        "update": False,
1446    }
1447
1448
1449class PrimaryKey(Expression):
1450    arg_types = {"expressions": True, "options": False}
1451
1452
1453# https://www.postgresql.org/docs/9.1/sql-selectinto.html
1454# https://docs.aws.amazon.com/redshift/latest/dg/r_SELECT_INTO.html#r_SELECT_INTO-examples
1455class Into(Expression):
1456    arg_types = {"this": True, "temporary": False, "unlogged": False}
1457
1458
1459class From(Expression):
1460    @property
1461    def name(self) -> str:
1462        return self.this.name
1463
1464    @property
1465    def alias_or_name(self) -> str:
1466        return self.this.alias_or_name
1467
1468
1469class Having(Expression):
1470    pass
1471
1472
1473class Hint(Expression):
1474    arg_types = {"expressions": True}
1475
1476
1477class JoinHint(Expression):
1478    arg_types = {"this": True, "expressions": True}
1479
1480
1481class Identifier(Expression):
1482    arg_types = {"this": True, "quoted": False}
1483
1484    @property
1485    def quoted(self) -> bool:
1486        return bool(self.args.get("quoted"))
1487
1488    @property
1489    def hashable_args(self) -> t.Any:
1490        if self.quoted and any(char.isupper() for char in self.this):
1491            return (self.this, self.quoted)
1492        return self.this.lower()
1493
1494    @property
1495    def output_name(self) -> str:
1496        return self.name
1497
1498
1499class Index(Expression):
1500    arg_types = {
1501        "this": False,
1502        "table": False,
1503        "using": False,
1504        "where": False,
1505        "columns": False,
1506        "unique": False,
1507        "primary": False,
1508        "amp": False,  # teradata
1509        "partition_by": False,  # teradata
1510    }
1511
1512
1513class Insert(Expression):
1514    arg_types = {
1515        "with": False,
1516        "this": True,
1517        "expression": False,
1518        "conflict": False,
1519        "returning": False,
1520        "overwrite": False,
1521        "exists": False,
1522        "partition": False,
1523        "alternative": False,
1524    }
1525
1526    def with_(
1527        self,
1528        alias: ExpOrStr,
1529        as_: ExpOrStr,
1530        recursive: t.Optional[bool] = None,
1531        append: bool = True,
1532        dialect: DialectType = None,
1533        copy: bool = True,
1534        **opts,
1535    ) -> Insert:
1536        """
1537        Append to or set the common table expressions.
1538
1539        Example:
1540            >>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
1541            'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
1542
1543        Args:
1544            alias: the SQL code string to parse as the table name.
1545                If an `Expression` instance is passed, this is used as-is.
1546            as_: the SQL code string to parse as the table expression.
1547                If an `Expression` instance is passed, it will be used as-is.
1548            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
1549            append: if `True`, add to any existing expressions.
1550                Otherwise, this resets the expressions.
1551            dialect: the dialect used to parse the input expression.
1552            copy: if `False`, modify this expression instance in-place.
1553            opts: other options to use to parse the input expressions.
1554
1555        Returns:
1556            The modified expression.
1557        """
1558        return _apply_cte_builder(
1559            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
1560        )
1561
1562
1563class OnConflict(Expression):
1564    arg_types = {
1565        "duplicate": False,
1566        "expressions": False,
1567        "nothing": False,
1568        "key": False,
1569        "constraint": False,
1570    }
1571
1572
1573class Returning(Expression):
1574    arg_types = {"expressions": True}
1575
1576
1577# https://dev.mysql.com/doc/refman/8.0/en/charset-introducer.html
1578class Introducer(Expression):
1579    arg_types = {"this": True, "expression": True}
1580
1581
1582# national char, like n'utf8'
1583class National(Expression):
1584    pass
1585
1586
1587class LoadData(Expression):
1588    arg_types = {
1589        "this": True,
1590        "local": False,
1591        "overwrite": False,
1592        "inpath": True,
1593        "partition": False,
1594        "input_format": False,
1595        "serde": False,
1596    }
1597
1598
1599class Partition(Expression):
1600    arg_types = {"expressions": True}
1601
1602
1603class Fetch(Expression):
1604    arg_types = {
1605        "direction": False,
1606        "count": False,
1607        "percent": False,
1608        "with_ties": False,
1609    }
1610
1611
1612class Group(Expression):
1613    arg_types = {
1614        "expressions": False,
1615        "grouping_sets": False,
1616        "cube": False,
1617        "rollup": False,
1618        "totals": False,
1619    }
1620
1621
1622class Lambda(Expression):
1623    arg_types = {"this": True, "expressions": True}
1624
1625
1626class Limit(Expression):
1627    arg_types = {"this": False, "expression": True, "offset": False}
1628
1629
1630class Literal(Condition):
1631    arg_types = {"this": True, "is_string": True}
1632
1633    @property
1634    def hashable_args(self) -> t.Any:
1635        return (self.this, self.args.get("is_string"))
1636
1637    @classmethod
1638    def number(cls, number) -> Literal:
1639        return cls(this=str(number), is_string=False)
1640
1641    @classmethod
1642    def string(cls, string) -> Literal:
1643        return cls(this=str(string), is_string=True)
1644
1645    @property
1646    def output_name(self) -> str:
1647        return self.name
1648
1649
1650class Join(Expression):
1651    arg_types = {
1652        "this": True,
1653        "on": False,
1654        "side": False,
1655        "kind": False,
1656        "using": False,
1657        "method": False,
1658        "global": False,
1659        "hint": False,
1660    }
1661
1662    @property
1663    def method(self) -> str:
1664        return self.text("method").upper()
1665
1666    @property
1667    def kind(self) -> str:
1668        return self.text("kind").upper()
1669
1670    @property
1671    def side(self) -> str:
1672        return self.text("side").upper()
1673
1674    @property
1675    def hint(self) -> str:
1676        return self.text("hint").upper()
1677
1678    @property
1679    def alias_or_name(self) -> str:
1680        return self.this.alias_or_name
1681
1682    def on(
1683        self,
1684        *expressions: t.Optional[ExpOrStr],
1685        append: bool = True,
1686        dialect: DialectType = None,
1687        copy: bool = True,
1688        **opts,
1689    ) -> Join:
1690        """
1691        Append to or set the ON expressions.
1692
1693        Example:
1694            >>> import sqlglot
1695            >>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
1696            'JOIN x ON y = 1'
1697
1698        Args:
1699            *expressions: the SQL code strings to parse.
1700                If an `Expression` instance is passed, it will be used as-is.
1701                Multiple expressions are combined with an AND operator.
1702            append: if `True`, AND the new expressions to any existing expression.
1703                Otherwise, this resets the expression.
1704            dialect: the dialect used to parse the input expressions.
1705            copy: if `False`, modify this expression instance in-place.
1706            opts: other options to use to parse the input expressions.
1707
1708        Returns:
1709            The modified Join expression.
1710        """
1711        join = _apply_conjunction_builder(
1712            *expressions,
1713            instance=self,
1714            arg="on",
1715            append=append,
1716            dialect=dialect,
1717            copy=copy,
1718            **opts,
1719        )
1720
1721        if join.kind == "CROSS":
1722            join.set("kind", None)
1723
1724        return join
1725
1726    def using(
1727        self,
1728        *expressions: t.Optional[ExpOrStr],
1729        append: bool = True,
1730        dialect: DialectType = None,
1731        copy: bool = True,
1732        **opts,
1733    ) -> Join:
1734        """
1735        Append to or set the USING expressions.
1736
1737        Example:
1738            >>> import sqlglot
1739            >>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
1740            'JOIN x USING (foo, bla)'
1741
1742        Args:
1743            *expressions: the SQL code strings to parse.
1744                If an `Expression` instance is passed, it will be used as-is.
1745            append: if `True`, concatenate the new expressions to the existing "using" list.
1746                Otherwise, this resets the expression.
1747            dialect: the dialect used to parse the input expressions.
1748            copy: if `False`, modify this expression instance in-place.
1749            opts: other options to use to parse the input expressions.
1750
1751        Returns:
1752            The modified Join expression.
1753        """
1754        join = _apply_list_builder(
1755            *expressions,
1756            instance=self,
1757            arg="using",
1758            append=append,
1759            dialect=dialect,
1760            copy=copy,
1761            **opts,
1762        )
1763
1764        if join.kind == "CROSS":
1765            join.set("kind", None)
1766
1767        return join
1768
1769
1770class Lateral(UDTF):
1771    arg_types = {"this": True, "view": False, "outer": False, "alias": False}
1772
1773
1774class MatchRecognize(Expression):
1775    arg_types = {
1776        "partition_by": False,
1777        "order": False,
1778        "measures": False,
1779        "rows": False,
1780        "after": False,
1781        "pattern": False,
1782        "define": False,
1783        "alias": False,
1784    }
1785
1786
1787# Clickhouse FROM FINAL modifier
1788# https://clickhouse.com/docs/en/sql-reference/statements/select/from/#final-modifier
1789class Final(Expression):
1790    pass
1791
1792
1793class Offset(Expression):
1794    arg_types = {"this": False, "expression": True}
1795
1796
1797class Order(Expression):
1798    arg_types = {"this": False, "expressions": True}
1799
1800
1801# hive specific sorts
1802# https://cwiki.apache.org/confluence/display/Hive/LanguageManual+SortBy
1803class Cluster(Order):
1804    pass
1805
1806
1807class Distribute(Order):
1808    pass
1809
1810
1811class Sort(Order):
1812    pass
1813
1814
1815class Ordered(Expression):
1816    arg_types = {"this": True, "desc": True, "nulls_first": True}
1817
1818
1819class Property(Expression):
1820    arg_types = {"this": True, "value": True}
1821
1822
1823class AlgorithmProperty(Property):
1824    arg_types = {"this": True}
1825
1826
1827class AutoIncrementProperty(Property):
1828    arg_types = {"this": True}
1829
1830
1831class BlockCompressionProperty(Property):
1832    arg_types = {"autotemp": False, "always": False, "default": True, "manual": True, "never": True}
1833
1834
1835class CharacterSetProperty(Property):
1836    arg_types = {"this": True, "default": True}
1837
1838
1839class ChecksumProperty(Property):
1840    arg_types = {"on": False, "default": False}
1841
1842
1843class CollateProperty(Property):
1844    arg_types = {"this": True}
1845
1846
1847class DataBlocksizeProperty(Property):
1848    arg_types = {
1849        "size": False,
1850        "units": False,
1851        "minimum": False,
1852        "maximum": False,
1853        "default": False,
1854    }
1855
1856
1857class DefinerProperty(Property):
1858    arg_types = {"this": True}
1859
1860
1861class DistKeyProperty(Property):
1862    arg_types = {"this": True}
1863
1864
1865class DistStyleProperty(Property):
1866    arg_types = {"this": True}
1867
1868
1869class EngineProperty(Property):
1870    arg_types = {"this": True}
1871
1872
1873class ToTableProperty(Property):
1874    arg_types = {"this": True}
1875
1876
1877class ExecuteAsProperty(Property):
1878    arg_types = {"this": True}
1879
1880
1881class ExternalProperty(Property):
1882    arg_types = {"this": False}
1883
1884
1885class FallbackProperty(Property):
1886    arg_types = {"no": True, "protection": False}
1887
1888
1889class FileFormatProperty(Property):
1890    arg_types = {"this": True}
1891
1892
1893class FreespaceProperty(Property):
1894    arg_types = {"this": True, "percent": False}
1895
1896
1897class InputOutputFormat(Expression):
1898    arg_types = {"input_format": False, "output_format": False}
1899
1900
1901class IsolatedLoadingProperty(Property):
1902    arg_types = {
1903        "no": True,
1904        "concurrent": True,
1905        "for_all": True,
1906        "for_insert": True,
1907        "for_none": True,
1908    }
1909
1910
1911class JournalProperty(Property):
1912    arg_types = {
1913        "no": False,
1914        "dual": False,
1915        "before": False,
1916        "local": False,
1917        "after": False,
1918    }
1919
1920
1921class LanguageProperty(Property):
1922    arg_types = {"this": True}
1923
1924
1925class DictProperty(Property):
1926    arg_types = {"this": True, "kind": True, "settings": False}
1927
1928
1929class DictSubProperty(Property):
1930    pass
1931
1932
1933class DictRange(Property):
1934    arg_types = {"this": True, "min": True, "max": True}
1935
1936
1937# Clickhouse CREATE ... ON CLUSTER modifier
1938# https://clickhouse.com/docs/en/sql-reference/distributed-ddl
1939class OnCluster(Property):
1940    arg_types = {"this": True}
1941
1942
1943class LikeProperty(Property):
1944    arg_types = {"this": True, "expressions": False}
1945
1946
1947class LocationProperty(Property):
1948    arg_types = {"this": True}
1949
1950
1951class LockingProperty(Property):
1952    arg_types = {
1953        "this": False,
1954        "kind": True,
1955        "for_or_in": True,
1956        "lock_type": True,
1957        "override": False,
1958    }
1959
1960
1961class LogProperty(Property):
1962    arg_types = {"no": True}
1963
1964
1965class MaterializedProperty(Property):
1966    arg_types = {"this": False}
1967
1968
1969class MergeBlockRatioProperty(Property):
1970    arg_types = {"this": False, "no": False, "default": False, "percent": False}
1971
1972
1973class NoPrimaryIndexProperty(Property):
1974    arg_types = {}
1975
1976
1977class OnCommitProperty(Property):
1978    arg_type = {"delete": False}
1979
1980
1981class PartitionedByProperty(Property):
1982    arg_types = {"this": True}
1983
1984
1985class ReturnsProperty(Property):
1986    arg_types = {"this": True, "is_table": False, "table": False}
1987
1988
1989class RowFormatProperty(Property):
1990    arg_types = {"this": True}
1991
1992
1993class RowFormatDelimitedProperty(Property):
1994    # https://cwiki.apache.org/confluence/display/hive/languagemanual+dml
1995    arg_types = {
1996        "fields": False,
1997        "escaped": False,
1998        "collection_items": False,
1999        "map_keys": False,
2000        "lines": False,
2001        "null": False,
2002        "serde": False,
2003    }
2004
2005
2006class RowFormatSerdeProperty(Property):
2007    arg_types = {"this": True}
2008
2009
2010class SchemaCommentProperty(Property):
2011    arg_types = {"this": True}
2012
2013
2014class SerdeProperties(Property):
2015    arg_types = {"expressions": True}
2016
2017
2018class SetProperty(Property):
2019    arg_types = {"multi": True}
2020
2021
2022class SettingsProperty(Property):
2023    arg_types = {"expressions": True}
2024
2025
2026class SortKeyProperty(Property):
2027    arg_types = {"this": True, "compound": False}
2028
2029
2030class SqlSecurityProperty(Property):
2031    arg_types = {"definer": True}
2032
2033
2034class StabilityProperty(Property):
2035    arg_types = {"this": True}
2036
2037
2038class TemporaryProperty(Property):
2039    arg_types = {}
2040
2041
2042class TransientProperty(Property):
2043    arg_types = {"this": False}
2044
2045
2046class VolatileProperty(Property):
2047    arg_types = {"this": False}
2048
2049
2050class WithDataProperty(Property):
2051    arg_types = {"no": True, "statistics": False}
2052
2053
2054class WithJournalTableProperty(Property):
2055    arg_types = {"this": True}
2056
2057
2058class Properties(Expression):
2059    arg_types = {"expressions": True}
2060
2061    NAME_TO_PROPERTY = {
2062        "ALGORITHM": AlgorithmProperty,
2063        "AUTO_INCREMENT": AutoIncrementProperty,
2064        "CHARACTER SET": CharacterSetProperty,
2065        "COLLATE": CollateProperty,
2066        "COMMENT": SchemaCommentProperty,
2067        "DEFINER": DefinerProperty,
2068        "DISTKEY": DistKeyProperty,
2069        "DISTSTYLE": DistStyleProperty,
2070        "ENGINE": EngineProperty,
2071        "EXECUTE AS": ExecuteAsProperty,
2072        "FORMAT": FileFormatProperty,
2073        "LANGUAGE": LanguageProperty,
2074        "LOCATION": LocationProperty,
2075        "PARTITIONED_BY": PartitionedByProperty,
2076        "RETURNS": ReturnsProperty,
2077        "ROW_FORMAT": RowFormatProperty,
2078        "SORTKEY": SortKeyProperty,
2079    }
2080
2081    PROPERTY_TO_NAME = {v: k for k, v in NAME_TO_PROPERTY.items()}
2082
2083    # CREATE property locations
2084    # Form: schema specified
2085    #   create [POST_CREATE]
2086    #     table a [POST_NAME]
2087    #     (b int) [POST_SCHEMA]
2088    #     with ([POST_WITH])
2089    #     index (b) [POST_INDEX]
2090    #
2091    # Form: alias selection
2092    #   create [POST_CREATE]
2093    #     table a [POST_NAME]
2094    #     as [POST_ALIAS] (select * from b) [POST_EXPRESSION]
2095    #     index (c) [POST_INDEX]
2096    class Location(AutoName):
2097        POST_CREATE = auto()
2098        POST_NAME = auto()
2099        POST_SCHEMA = auto()
2100        POST_WITH = auto()
2101        POST_ALIAS = auto()
2102        POST_EXPRESSION = auto()
2103        POST_INDEX = auto()
2104        UNSUPPORTED = auto()
2105
2106    @classmethod
2107    def from_dict(cls, properties_dict: t.Dict) -> Properties:
2108        expressions = []
2109        for key, value in properties_dict.items():
2110            property_cls = cls.NAME_TO_PROPERTY.get(key.upper())
2111            if property_cls:
2112                expressions.append(property_cls(this=convert(value)))
2113            else:
2114                expressions.append(Property(this=Literal.string(key), value=convert(value)))
2115
2116        return cls(expressions=expressions)
2117
2118
2119class Qualify(Expression):
2120    pass
2121
2122
2123# https://www.ibm.com/docs/en/ias?topic=procedures-return-statement-in-sql
2124class Return(Expression):
2125    pass
2126
2127
2128class Reference(Expression):
2129    arg_types = {"this": True, "expressions": False, "options": False}
2130
2131
2132class Tuple(Expression):
2133    arg_types = {"expressions": False}
2134
2135    def isin(
2136        self, *expressions: t.Any, query: t.Optional[ExpOrStr] = None, copy: bool = True, **opts
2137    ) -> In:
2138        return In(
2139            this=_maybe_copy(self, copy),
2140            expressions=[convert(e, copy=copy) for e in expressions],
2141            query=maybe_parse(query, copy=copy, **opts) if query else None,
2142        )
2143
2144
2145class Subqueryable(Unionable):
2146    def subquery(self, alias: t.Optional[ExpOrStr] = None, copy: bool = True) -> Subquery:
2147        """
2148        Convert this expression to an aliased expression that can be used as a Subquery.
2149
2150        Example:
2151            >>> subquery = Select().select("x").from_("tbl").subquery()
2152            >>> Select().select("x").from_(subquery).sql()
2153            'SELECT x FROM (SELECT x FROM tbl)'
2154
2155        Args:
2156            alias (str | Identifier): an optional alias for the subquery
2157            copy (bool): if `False`, modify this expression instance in-place.
2158
2159        Returns:
2160            Alias: the subquery
2161        """
2162        instance = _maybe_copy(self, copy)
2163        if not isinstance(alias, Expression):
2164            alias = TableAlias(this=to_identifier(alias)) if alias else None
2165
2166        return Subquery(this=instance, alias=alias)
2167
2168    def limit(
2169        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2170    ) -> Select:
2171        raise NotImplementedError
2172
2173    @property
2174    def ctes(self):
2175        with_ = self.args.get("with")
2176        if not with_:
2177            return []
2178        return with_.expressions
2179
2180    @property
2181    def selects(self):
2182        raise NotImplementedError("Subqueryable objects must implement `selects`")
2183
2184    @property
2185    def named_selects(self):
2186        raise NotImplementedError("Subqueryable objects must implement `named_selects`")
2187
2188    def with_(
2189        self,
2190        alias: ExpOrStr,
2191        as_: ExpOrStr,
2192        recursive: t.Optional[bool] = None,
2193        append: bool = True,
2194        dialect: DialectType = None,
2195        copy: bool = True,
2196        **opts,
2197    ) -> Subqueryable:
2198        """
2199        Append to or set the common table expressions.
2200
2201        Example:
2202            >>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
2203            'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
2204
2205        Args:
2206            alias: the SQL code string to parse as the table name.
2207                If an `Expression` instance is passed, this is used as-is.
2208            as_: the SQL code string to parse as the table expression.
2209                If an `Expression` instance is passed, it will be used as-is.
2210            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
2211            append: if `True`, add to any existing expressions.
2212                Otherwise, this resets the expressions.
2213            dialect: the dialect used to parse the input expression.
2214            copy: if `False`, modify this expression instance in-place.
2215            opts: other options to use to parse the input expressions.
2216
2217        Returns:
2218            The modified expression.
2219        """
2220        return _apply_cte_builder(
2221            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
2222        )
2223
2224
2225QUERY_MODIFIERS = {
2226    "match": False,
2227    "laterals": False,
2228    "joins": False,
2229    "pivots": False,
2230    "where": False,
2231    "group": False,
2232    "having": False,
2233    "qualify": False,
2234    "windows": False,
2235    "distribute": False,
2236    "sort": False,
2237    "cluster": False,
2238    "order": False,
2239    "limit": False,
2240    "offset": False,
2241    "locks": False,
2242    "sample": False,
2243    "settings": False,
2244    "format": False,
2245}
2246
2247
2248class Table(Expression):
2249    arg_types = {
2250        "this": True,
2251        "alias": False,
2252        "db": False,
2253        "catalog": False,
2254        "laterals": False,
2255        "joins": False,
2256        "pivots": False,
2257        "hints": False,
2258        "system_time": False,
2259    }
2260
2261    @property
2262    def db(self) -> str:
2263        return self.text("db")
2264
2265    @property
2266    def catalog(self) -> str:
2267        return self.text("catalog")
2268
2269    @property
2270    def parts(self) -> t.List[Identifier]:
2271        """Return the parts of a table in order catalog, db, table."""
2272        return [
2273            t.cast(Identifier, self.args[part])
2274            for part in ("catalog", "db", "this")
2275            if self.args.get(part)
2276        ]
2277
2278
2279# See the TSQL "Querying data in a system-versioned temporal table" page
2280class SystemTime(Expression):
2281    arg_types = {
2282        "this": False,
2283        "expression": False,
2284        "kind": True,
2285    }
2286
2287
2288class Union(Subqueryable):
2289    arg_types = {
2290        "with": False,
2291        "this": True,
2292        "expression": True,
2293        "distinct": False,
2294        **QUERY_MODIFIERS,
2295    }
2296
2297    def limit(
2298        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2299    ) -> Select:
2300        """
2301        Set the LIMIT expression.
2302
2303        Example:
2304            >>> select("1").union(select("1")).limit(1).sql()
2305            'SELECT * FROM (SELECT 1 UNION SELECT 1) AS _l_0 LIMIT 1'
2306
2307        Args:
2308            expression: the SQL code string to parse.
2309                This can also be an integer.
2310                If a `Limit` instance is passed, this is used as-is.
2311                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2312            dialect: the dialect used to parse the input expression.
2313            copy: if `False`, modify this expression instance in-place.
2314            opts: other options to use to parse the input expressions.
2315
2316        Returns:
2317            The limited subqueryable.
2318        """
2319        return (
2320            select("*")
2321            .from_(self.subquery(alias="_l_0", copy=copy))
2322            .limit(expression, dialect=dialect, copy=False, **opts)
2323        )
2324
2325    def select(
2326        self,
2327        *expressions: t.Optional[ExpOrStr],
2328        append: bool = True,
2329        dialect: DialectType = None,
2330        copy: bool = True,
2331        **opts,
2332    ) -> Union:
2333        """Append to or set the SELECT of the union recursively.
2334
2335        Example:
2336            >>> from sqlglot import parse_one
2337            >>> parse_one("select a from x union select a from y union select a from z").select("b").sql()
2338            'SELECT a, b FROM x UNION SELECT a, b FROM y UNION SELECT a, b FROM z'
2339
2340        Args:
2341            *expressions: the SQL code strings to parse.
2342                If an `Expression` instance is passed, it will be used as-is.
2343            append: if `True`, add to any existing expressions.
2344                Otherwise, this resets the expressions.
2345            dialect: the dialect used to parse the input expressions.
2346            copy: if `False`, modify this expression instance in-place.
2347            opts: other options to use to parse the input expressions.
2348
2349        Returns:
2350            Union: the modified expression.
2351        """
2352        this = self.copy() if copy else self
2353        this.this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
2354        this.expression.unnest().select(
2355            *expressions, append=append, dialect=dialect, copy=False, **opts
2356        )
2357        return this
2358
2359    @property
2360    def named_selects(self):
2361        return self.this.unnest().named_selects
2362
2363    @property
2364    def is_star(self) -> bool:
2365        return self.this.is_star or self.expression.is_star
2366
2367    @property
2368    def selects(self):
2369        return self.this.unnest().selects
2370
2371    @property
2372    def left(self):
2373        return self.this
2374
2375    @property
2376    def right(self):
2377        return self.expression
2378
2379
2380class Except(Union):
2381    pass
2382
2383
2384class Intersect(Union):
2385    pass
2386
2387
2388class Unnest(UDTF):
2389    arg_types = {
2390        "expressions": True,
2391        "ordinality": False,
2392        "alias": False,
2393        "offset": False,
2394    }
2395
2396
2397class Update(Expression):
2398    arg_types = {
2399        "with": False,
2400        "this": False,
2401        "expressions": True,
2402        "from": False,
2403        "where": False,
2404        "returning": False,
2405    }
2406
2407
2408class Values(UDTF):
2409    arg_types = {
2410        "expressions": True,
2411        "ordinality": False,
2412        "alias": False,
2413    }
2414
2415
2416class Var(Expression):
2417    pass
2418
2419
2420class Schema(Expression):
2421    arg_types = {"this": False, "expressions": False}
2422
2423
2424# https://dev.mysql.com/doc/refman/8.0/en/select.html
2425# https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/SELECT.html
2426class Lock(Expression):
2427    arg_types = {"update": True, "expressions": False, "wait": False}
2428
2429
2430class Select(Subqueryable):
2431    arg_types = {
2432        "with": False,
2433        "kind": False,
2434        "expressions": False,
2435        "hint": False,
2436        "distinct": False,
2437        "struct": False,  # https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax#return_query_results_as_a_value_table
2438        "value": False,
2439        "into": False,
2440        "from": False,
2441        **QUERY_MODIFIERS,
2442    }
2443
2444    def from_(
2445        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
2446    ) -> Select:
2447        """
2448        Set the FROM expression.
2449
2450        Example:
2451            >>> Select().from_("tbl").select("x").sql()
2452            'SELECT x FROM tbl'
2453
2454        Args:
2455            expression : the SQL code strings to parse.
2456                If a `From` instance is passed, this is used as-is.
2457                If another `Expression` instance is passed, it will be wrapped in a `From`.
2458            dialect: the dialect used to parse the input expression.
2459            copy: if `False`, modify this expression instance in-place.
2460            opts: other options to use to parse the input expressions.
2461
2462        Returns:
2463            The modified Select expression.
2464        """
2465        return _apply_builder(
2466            expression=expression,
2467            instance=self,
2468            arg="from",
2469            into=From,
2470            prefix="FROM",
2471            dialect=dialect,
2472            copy=copy,
2473            **opts,
2474        )
2475
2476    def group_by(
2477        self,
2478        *expressions: t.Optional[ExpOrStr],
2479        append: bool = True,
2480        dialect: DialectType = None,
2481        copy: bool = True,
2482        **opts,
2483    ) -> Select:
2484        """
2485        Set the GROUP BY expression.
2486
2487        Example:
2488            >>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
2489            'SELECT x, COUNT(1) FROM tbl GROUP BY x'
2490
2491        Args:
2492            *expressions: the SQL code strings to parse.
2493                If a `Group` instance is passed, this is used as-is.
2494                If another `Expression` instance is passed, it will be wrapped in a `Group`.
2495                If nothing is passed in then a group by is not applied to the expression
2496            append: if `True`, add to any existing expressions.
2497                Otherwise, this flattens all the `Group` expression into a single expression.
2498            dialect: the dialect used to parse the input expression.
2499            copy: if `False`, modify this expression instance in-place.
2500            opts: other options to use to parse the input expressions.
2501
2502        Returns:
2503            The modified Select expression.
2504        """
2505        if not expressions:
2506            return self if not copy else self.copy()
2507
2508        return _apply_child_list_builder(
2509            *expressions,
2510            instance=self,
2511            arg="group",
2512            append=append,
2513            copy=copy,
2514            prefix="GROUP BY",
2515            into=Group,
2516            dialect=dialect,
2517            **opts,
2518        )
2519
2520    def order_by(
2521        self,
2522        *expressions: t.Optional[ExpOrStr],
2523        append: bool = True,
2524        dialect: DialectType = None,
2525        copy: bool = True,
2526        **opts,
2527    ) -> Select:
2528        """
2529        Set the ORDER BY expression.
2530
2531        Example:
2532            >>> Select().from_("tbl").select("x").order_by("x DESC").sql()
2533            'SELECT x FROM tbl ORDER BY x DESC'
2534
2535        Args:
2536            *expressions: the SQL code strings to parse.
2537                If a `Group` instance is passed, this is used as-is.
2538                If another `Expression` instance is passed, it will be wrapped in a `Order`.
2539            append: if `True`, add to any existing expressions.
2540                Otherwise, this flattens all the `Order` expression into a single expression.
2541            dialect: the dialect used to parse the input expression.
2542            copy: if `False`, modify this expression instance in-place.
2543            opts: other options to use to parse the input expressions.
2544
2545        Returns:
2546            The modified Select expression.
2547        """
2548        return _apply_child_list_builder(
2549            *expressions,
2550            instance=self,
2551            arg="order",
2552            append=append,
2553            copy=copy,
2554            prefix="ORDER BY",
2555            into=Order,
2556            dialect=dialect,
2557            **opts,
2558        )
2559
2560    def sort_by(
2561        self,
2562        *expressions: t.Optional[ExpOrStr],
2563        append: bool = True,
2564        dialect: DialectType = None,
2565        copy: bool = True,
2566        **opts,
2567    ) -> Select:
2568        """
2569        Set the SORT BY expression.
2570
2571        Example:
2572            >>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
2573            'SELECT x FROM tbl SORT BY x DESC'
2574
2575        Args:
2576            *expressions: the SQL code strings to parse.
2577                If a `Group` instance is passed, this is used as-is.
2578                If another `Expression` instance is passed, it will be wrapped in a `SORT`.
2579            append: if `True`, add to any existing expressions.
2580                Otherwise, this flattens all the `Order` expression into a single expression.
2581            dialect: the dialect used to parse the input expression.
2582            copy: if `False`, modify this expression instance in-place.
2583            opts: other options to use to parse the input expressions.
2584
2585        Returns:
2586            The modified Select expression.
2587        """
2588        return _apply_child_list_builder(
2589            *expressions,
2590            instance=self,
2591            arg="sort",
2592            append=append,
2593            copy=copy,
2594            prefix="SORT BY",
2595            into=Sort,
2596            dialect=dialect,
2597            **opts,
2598        )
2599
2600    def cluster_by(
2601        self,
2602        *expressions: t.Optional[ExpOrStr],
2603        append: bool = True,
2604        dialect: DialectType = None,
2605        copy: bool = True,
2606        **opts,
2607    ) -> Select:
2608        """
2609        Set the CLUSTER BY expression.
2610
2611        Example:
2612            >>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
2613            'SELECT x FROM tbl CLUSTER BY x DESC'
2614
2615        Args:
2616            *expressions: the SQL code strings to parse.
2617                If a `Group` instance is passed, this is used as-is.
2618                If another `Expression` instance is passed, it will be wrapped in a `Cluster`.
2619            append: if `True`, add to any existing expressions.
2620                Otherwise, this flattens all the `Order` expression into a single expression.
2621            dialect: the dialect used to parse the input expression.
2622            copy: if `False`, modify this expression instance in-place.
2623            opts: other options to use to parse the input expressions.
2624
2625        Returns:
2626            The modified Select expression.
2627        """
2628        return _apply_child_list_builder(
2629            *expressions,
2630            instance=self,
2631            arg="cluster",
2632            append=append,
2633            copy=copy,
2634            prefix="CLUSTER BY",
2635            into=Cluster,
2636            dialect=dialect,
2637            **opts,
2638        )
2639
2640    def limit(
2641        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2642    ) -> Select:
2643        """
2644        Set the LIMIT expression.
2645
2646        Example:
2647            >>> Select().from_("tbl").select("x").limit(10).sql()
2648            'SELECT x FROM tbl LIMIT 10'
2649
2650        Args:
2651            expression: the SQL code string to parse.
2652                This can also be an integer.
2653                If a `Limit` instance is passed, this is used as-is.
2654                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2655            dialect: the dialect used to parse the input expression.
2656            copy: if `False`, modify this expression instance in-place.
2657            opts: other options to use to parse the input expressions.
2658
2659        Returns:
2660            Select: the modified expression.
2661        """
2662        return _apply_builder(
2663            expression=expression,
2664            instance=self,
2665            arg="limit",
2666            into=Limit,
2667            prefix="LIMIT",
2668            dialect=dialect,
2669            copy=copy,
2670            **opts,
2671        )
2672
2673    def offset(
2674        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2675    ) -> Select:
2676        """
2677        Set the OFFSET expression.
2678
2679        Example:
2680            >>> Select().from_("tbl").select("x").offset(10).sql()
2681            'SELECT x FROM tbl OFFSET 10'
2682
2683        Args:
2684            expression: the SQL code string to parse.
2685                This can also be an integer.
2686                If a `Offset` instance is passed, this is used as-is.
2687                If another `Expression` instance is passed, it will be wrapped in a `Offset`.
2688            dialect: the dialect used to parse the input expression.
2689            copy: if `False`, modify this expression instance in-place.
2690            opts: other options to use to parse the input expressions.
2691
2692        Returns:
2693            The modified Select expression.
2694        """
2695        return _apply_builder(
2696            expression=expression,
2697            instance=self,
2698            arg="offset",
2699            into=Offset,
2700            prefix="OFFSET",
2701            dialect=dialect,
2702            copy=copy,
2703            **opts,
2704        )
2705
2706    def select(
2707        self,
2708        *expressions: t.Optional[ExpOrStr],
2709        append: bool = True,
2710        dialect: DialectType = None,
2711        copy: bool = True,
2712        **opts,
2713    ) -> Select:
2714        """
2715        Append to or set the SELECT expressions.
2716
2717        Example:
2718            >>> Select().select("x", "y").sql()
2719            'SELECT x, y'
2720
2721        Args:
2722            *expressions: the SQL code strings to parse.
2723                If an `Expression` instance is passed, it will be used as-is.
2724            append: if `True`, add to any existing expressions.
2725                Otherwise, this resets the expressions.
2726            dialect: the dialect used to parse the input expressions.
2727            copy: if `False`, modify this expression instance in-place.
2728            opts: other options to use to parse the input expressions.
2729
2730        Returns:
2731            The modified Select expression.
2732        """
2733        return _apply_list_builder(
2734            *expressions,
2735            instance=self,
2736            arg="expressions",
2737            append=append,
2738            dialect=dialect,
2739            copy=copy,
2740            **opts,
2741        )
2742
2743    def lateral(
2744        self,
2745        *expressions: t.Optional[ExpOrStr],
2746        append: bool = True,
2747        dialect: DialectType = None,
2748        copy: bool = True,
2749        **opts,
2750    ) -> Select:
2751        """
2752        Append to or set the LATERAL expressions.
2753
2754        Example:
2755            >>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
2756            'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
2757
2758        Args:
2759            *expressions: the SQL code strings to parse.
2760                If an `Expression` instance is passed, it will be used as-is.
2761            append: if `True`, add to any existing expressions.
2762                Otherwise, this resets the expressions.
2763            dialect: the dialect used to parse the input expressions.
2764            copy: if `False`, modify this expression instance in-place.
2765            opts: other options to use to parse the input expressions.
2766
2767        Returns:
2768            The modified Select expression.
2769        """
2770        return _apply_list_builder(
2771            *expressions,
2772            instance=self,
2773            arg="laterals",
2774            append=append,
2775            into=Lateral,
2776            prefix="LATERAL VIEW",
2777            dialect=dialect,
2778            copy=copy,
2779            **opts,
2780        )
2781
2782    def join(
2783        self,
2784        expression: ExpOrStr,
2785        on: t.Optional[ExpOrStr] = None,
2786        using: t.Optional[ExpOrStr | t.List[ExpOrStr]] = None,
2787        append: bool = True,
2788        join_type: t.Optional[str] = None,
2789        join_alias: t.Optional[Identifier | str] = None,
2790        dialect: DialectType = None,
2791        copy: bool = True,
2792        **opts,
2793    ) -> Select:
2794        """
2795        Append to or set the JOIN expressions.
2796
2797        Example:
2798            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
2799            'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
2800
2801            >>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
2802            'SELECT 1 FROM a JOIN b USING (x, y, z)'
2803
2804            Use `join_type` to change the type of join:
2805
2806            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
2807            'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
2808
2809        Args:
2810            expression: the SQL code string to parse.
2811                If an `Expression` instance is passed, it will be used as-is.
2812            on: optionally specify the join "on" criteria as a SQL string.
2813                If an `Expression` instance is passed, it will be used as-is.
2814            using: optionally specify the join "using" criteria as a SQL string.
2815                If an `Expression` instance is passed, it will be used as-is.
2816            append: if `True`, add to any existing expressions.
2817                Otherwise, this resets the expressions.
2818            join_type: if set, alter the parsed join type.
2819            join_alias: an optional alias for the joined source.
2820            dialect: the dialect used to parse the input expressions.
2821            copy: if `False`, modify this expression instance in-place.
2822            opts: other options to use to parse the input expressions.
2823
2824        Returns:
2825            Select: the modified expression.
2826        """
2827        parse_args: t.Dict[str, t.Any] = {"dialect": dialect, **opts}
2828
2829        try:
2830            expression = maybe_parse(expression, into=Join, prefix="JOIN", **parse_args)
2831        except ParseError:
2832            expression = maybe_parse(expression, into=(Join, Expression), **parse_args)
2833
2834        join = expression if isinstance(expression, Join) else Join(this=expression)
2835
2836        if isinstance(join.this, Select):
2837            join.this.replace(join.this.subquery())
2838
2839        if join_type:
2840            method: t.Optional[Token]
2841            side: t.Optional[Token]
2842            kind: t.Optional[Token]
2843
2844            method, side, kind = maybe_parse(join_type, into="JOIN_TYPE", **parse_args)  # type: ignore
2845
2846            if method:
2847                join.set("method", method.text)
2848            if side:
2849                join.set("side", side.text)
2850            if kind:
2851                join.set("kind", kind.text)
2852
2853        if on:
2854            on = and_(*ensure_list(on), dialect=dialect, copy=copy, **opts)
2855            join.set("on", on)
2856
2857        if using:
2858            join = _apply_list_builder(
2859                *ensure_list(using),
2860                instance=join,
2861                arg="using",
2862                append=append,
2863                copy=copy,
2864                **opts,
2865            )
2866
2867        if join_alias:
2868            join.set("this", alias_(join.this, join_alias, table=True))
2869
2870        return _apply_list_builder(
2871            join,
2872            instance=self,
2873            arg="joins",
2874            append=append,
2875            copy=copy,
2876            **opts,
2877        )
2878
2879    def where(
2880        self,
2881        *expressions: t.Optional[ExpOrStr],
2882        append: bool = True,
2883        dialect: DialectType = None,
2884        copy: bool = True,
2885        **opts,
2886    ) -> Select:
2887        """
2888        Append to or set the WHERE expressions.
2889
2890        Example:
2891            >>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
2892            "SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
2893
2894        Args:
2895            *expressions: the SQL code strings to parse.
2896                If an `Expression` instance is passed, it will be used as-is.
2897                Multiple expressions are combined with an AND operator.
2898            append: if `True`, AND the new expressions to any existing expression.
2899                Otherwise, this resets the expression.
2900            dialect: the dialect used to parse the input expressions.
2901            copy: if `False`, modify this expression instance in-place.
2902            opts: other options to use to parse the input expressions.
2903
2904        Returns:
2905            Select: the modified expression.
2906        """
2907        return _apply_conjunction_builder(
2908            *expressions,
2909            instance=self,
2910            arg="where",
2911            append=append,
2912            into=Where,
2913            dialect=dialect,
2914            copy=copy,
2915            **opts,
2916        )
2917
2918    def having(
2919        self,
2920        *expressions: t.Optional[ExpOrStr],
2921        append: bool = True,
2922        dialect: DialectType = None,
2923        copy: bool = True,
2924        **opts,
2925    ) -> Select:
2926        """
2927        Append to or set the HAVING expressions.
2928
2929        Example:
2930            >>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
2931            'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
2932
2933        Args:
2934            *expressions: the SQL code strings to parse.
2935                If an `Expression` instance is passed, it will be used as-is.
2936                Multiple expressions are combined with an AND operator.
2937            append: if `True`, AND the new expressions to any existing expression.
2938                Otherwise, this resets the expression.
2939            dialect: the dialect used to parse the input expressions.
2940            copy: if `False`, modify this expression instance in-place.
2941            opts: other options to use to parse the input expressions.
2942
2943        Returns:
2944            The modified Select expression.
2945        """
2946        return _apply_conjunction_builder(
2947            *expressions,
2948            instance=self,
2949            arg="having",
2950            append=append,
2951            into=Having,
2952            dialect=dialect,
2953            copy=copy,
2954            **opts,
2955        )
2956
2957    def window(
2958        self,
2959        *expressions: t.Optional[ExpOrStr],
2960        append: bool = True,
2961        dialect: DialectType = None,
2962        copy: bool = True,
2963        **opts,
2964    ) -> Select:
2965        return _apply_list_builder(
2966            *expressions,
2967            instance=self,
2968            arg="windows",
2969            append=append,
2970            into=Window,
2971            dialect=dialect,
2972            copy=copy,
2973            **opts,
2974        )
2975
2976    def qualify(
2977        self,
2978        *expressions: t.Optional[ExpOrStr],
2979        append: bool = True,
2980        dialect: DialectType = None,
2981        copy: bool = True,
2982        **opts,
2983    ) -> Select:
2984        return _apply_conjunction_builder(
2985            *expressions,
2986            instance=self,
2987            arg="qualify",
2988            append=append,
2989            into=Qualify,
2990            dialect=dialect,
2991            copy=copy,
2992            **opts,
2993        )
2994
2995    def distinct(
2996        self, *ons: t.Optional[ExpOrStr], distinct: bool = True, copy: bool = True
2997    ) -> Select:
2998        """
2999        Set the OFFSET expression.
3000
3001        Example:
3002            >>> Select().from_("tbl").select("x").distinct().sql()
3003            'SELECT DISTINCT x FROM tbl'
3004
3005        Args:
3006            ons: the expressions to distinct on
3007            distinct: whether the Select should be distinct
3008            copy: if `False`, modify this expression instance in-place.
3009
3010        Returns:
3011            Select: the modified expression.
3012        """
3013        instance = _maybe_copy(self, copy)
3014        on = Tuple(expressions=[maybe_parse(on, copy=copy) for on in ons if on]) if ons else None
3015        instance.set("distinct", Distinct(on=on) if distinct else None)
3016        return instance
3017
3018    def ctas(
3019        self,
3020        table: ExpOrStr,
3021        properties: t.Optional[t.Dict] = None,
3022        dialect: DialectType = None,
3023        copy: bool = True,
3024        **opts,
3025    ) -> Create:
3026        """
3027        Convert this expression to a CREATE TABLE AS statement.
3028
3029        Example:
3030            >>> Select().select("*").from_("tbl").ctas("x").sql()
3031            'CREATE TABLE x AS SELECT * FROM tbl'
3032
3033        Args:
3034            table: the SQL code string to parse as the table name.
3035                If another `Expression` instance is passed, it will be used as-is.
3036            properties: an optional mapping of table properties
3037            dialect: the dialect used to parse the input table.
3038            copy: if `False`, modify this expression instance in-place.
3039            opts: other options to use to parse the input table.
3040
3041        Returns:
3042            The new Create expression.
3043        """
3044        instance = _maybe_copy(self, copy)
3045        table_expression = maybe_parse(
3046            table,
3047            into=Table,
3048            dialect=dialect,
3049            **opts,
3050        )
3051        properties_expression = None
3052        if properties:
3053            properties_expression = Properties.from_dict(properties)
3054
3055        return Create(
3056            this=table_expression,
3057            kind="table",
3058            expression=instance,
3059            properties=properties_expression,
3060        )
3061
3062    def lock(self, update: bool = True, copy: bool = True) -> Select:
3063        """
3064        Set the locking read mode for this expression.
3065
3066        Examples:
3067            >>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
3068            "SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
3069
3070            >>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
3071            "SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
3072
3073        Args:
3074            update: if `True`, the locking type will be `FOR UPDATE`, else it will be `FOR SHARE`.
3075            copy: if `False`, modify this expression instance in-place.
3076
3077        Returns:
3078            The modified expression.
3079        """
3080        inst = _maybe_copy(self, copy)
3081        inst.set("locks", [Lock(update=update)])
3082
3083        return inst
3084
3085    def hint(self, *hints: ExpOrStr, dialect: DialectType = None, copy: bool = True) -> Select:
3086        """
3087        Set hints for this expression.
3088
3089        Examples:
3090            >>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
3091            'SELECT /*+ BROADCAST(y) */ x FROM tbl'
3092
3093        Args:
3094            hints: The SQL code strings to parse as the hints.
3095                If an `Expression` instance is passed, it will be used as-is.
3096            dialect: The dialect used to parse the hints.
3097            copy: If `False`, modify this expression instance in-place.
3098
3099        Returns:
3100            The modified expression.
3101        """
3102        inst = _maybe_copy(self, copy)
3103        inst.set(
3104            "hint", Hint(expressions=[maybe_parse(h, copy=copy, dialect=dialect) for h in hints])
3105        )
3106
3107        return inst
3108
3109    @property
3110    def named_selects(self) -> t.List[str]:
3111        return [e.output_name for e in self.expressions if e.alias_or_name]
3112
3113    @property
3114    def is_star(self) -> bool:
3115        return any(expression.is_star for expression in self.expressions)
3116
3117    @property
3118    def selects(self) -> t.List[Expression]:
3119        return self.expressions
3120
3121
3122class Subquery(DerivedTable, Unionable):
3123    arg_types = {
3124        "this": True,
3125        "alias": False,
3126        "with": False,
3127        **QUERY_MODIFIERS,
3128    }
3129
3130    def unnest(self):
3131        """
3132        Returns the first non subquery.
3133        """
3134        expression = self
3135        while isinstance(expression, Subquery):
3136            expression = expression.this
3137        return expression
3138
3139    @property
3140    def is_star(self) -> bool:
3141        return self.this.is_star
3142
3143    @property
3144    def output_name(self) -> str:
3145        return self.alias
3146
3147
3148class TableSample(Expression):
3149    arg_types = {
3150        "this": False,
3151        "method": False,
3152        "bucket_numerator": False,
3153        "bucket_denominator": False,
3154        "bucket_field": False,
3155        "percent": False,
3156        "rows": False,
3157        "size": False,
3158        "seed": False,
3159        "kind": False,
3160    }
3161
3162
3163class Tag(Expression):
3164    """Tags are used for generating arbitrary sql like SELECT <span>x</span>."""
3165
3166    arg_types = {
3167        "this": False,
3168        "prefix": False,
3169        "postfix": False,
3170    }
3171
3172
3173# Represents both the standard SQL PIVOT operator and DuckDB's "simplified" PIVOT syntax
3174# https://duckdb.org/docs/sql/statements/pivot
3175class Pivot(Expression):
3176    arg_types = {
3177        "this": False,
3178        "alias": False,
3179        "expressions": True,
3180        "field": False,
3181        "unpivot": False,
3182        "using": False,
3183        "group": False,
3184        "columns": False,
3185    }
3186
3187
3188class Window(Expression):
3189    arg_types = {
3190        "this": True,
3191        "partition_by": False,
3192        "order": False,
3193        "spec": False,
3194        "alias": False,
3195        "over": False,
3196        "first": False,
3197    }
3198
3199
3200class WindowSpec(Expression):
3201    arg_types = {
3202        "kind": False,
3203        "start": False,
3204        "start_side": False,
3205        "end": False,
3206        "end_side": False,
3207    }
3208
3209
3210class Where(Expression):
3211    pass
3212
3213
3214class Star(Expression):
3215    arg_types = {"except": False, "replace": False}
3216
3217    @property
3218    def name(self) -> str:
3219        return "*"
3220
3221    @property
3222    def output_name(self) -> str:
3223        return self.name
3224
3225
3226class Parameter(Expression):
3227    arg_types = {"this": True, "wrapped": False}
3228
3229
3230class SessionParameter(Expression):
3231    arg_types = {"this": True, "kind": False}
3232
3233
3234class Placeholder(Expression):
3235    arg_types = {"this": False, "kind": False}
3236
3237
3238class Null(Condition):
3239    arg_types: t.Dict[str, t.Any] = {}
3240
3241    @property
3242    def name(self) -> str:
3243        return "NULL"
3244
3245
3246class Boolean(Condition):
3247    pass
3248
3249
3250class DataTypeSize(Expression):
3251    arg_types = {"this": True, "expression": False}
3252
3253
3254class DataType(Expression):
3255    arg_types = {
3256        "this": True,
3257        "expressions": False,
3258        "nested": False,
3259        "values": False,
3260        "prefix": False,
3261    }
3262
3263    class Type(AutoName):
3264        ARRAY = auto()
3265        BIGDECIMAL = auto()
3266        BIGINT = auto()
3267        BIGSERIAL = auto()
3268        BINARY = auto()
3269        BIT = auto()
3270        BOOLEAN = auto()
3271        CHAR = auto()
3272        DATE = auto()
3273        DATETIME = auto()
3274        DATETIME64 = auto()
3275        INT4RANGE = auto()
3276        INT4MULTIRANGE = auto()
3277        INT8RANGE = auto()
3278        INT8MULTIRANGE = auto()
3279        NUMRANGE = auto()
3280        NUMMULTIRANGE = auto()
3281        TSRANGE = auto()
3282        TSMULTIRANGE = auto()
3283        TSTZRANGE = auto()
3284        TSTZMULTIRANGE = auto()
3285        DATERANGE = auto()
3286        DATEMULTIRANGE = auto()
3287        DECIMAL = auto()
3288        DOUBLE = auto()
3289        FLOAT = auto()
3290        GEOGRAPHY = auto()
3291        GEOMETRY = auto()
3292        HLLSKETCH = auto()
3293        HSTORE = auto()
3294        IMAGE = auto()
3295        INET = auto()
3296        INT = auto()
3297        INT128 = auto()
3298        INT256 = auto()
3299        INTERVAL = auto()
3300        JSON = auto()
3301        JSONB = auto()
3302        LONGBLOB = auto()
3303        LONGTEXT = auto()
3304        MAP = auto()
3305        MEDIUMBLOB = auto()
3306        MEDIUMTEXT = auto()
3307        MONEY = auto()
3308        NCHAR = auto()
3309        NULL = auto()
3310        NULLABLE = auto()
3311        NVARCHAR = auto()
3312        OBJECT = auto()
3313        ROWVERSION = auto()
3314        SERIAL = auto()
3315        SMALLINT = auto()
3316        SMALLMONEY = auto()
3317        SMALLSERIAL = auto()
3318        STRUCT = auto()
3319        SUPER = auto()
3320        TEXT = auto()
3321        TIME = auto()
3322        TIMESTAMP = auto()
3323        TIMESTAMPTZ = auto()
3324        TIMESTAMPLTZ = auto()
3325        TINYINT = auto()
3326        UBIGINT = auto()
3327        UINT = auto()
3328        USMALLINT = auto()
3329        UTINYINT = auto()
3330        UNKNOWN = auto()  # Sentinel value, useful for type annotation
3331        UINT128 = auto()
3332        UINT256 = auto()
3333        UNIQUEIDENTIFIER = auto()
3334        UUID = auto()
3335        VARBINARY = auto()
3336        VARCHAR = auto()
3337        VARIANT = auto()
3338        XML = auto()
3339
3340    TEXT_TYPES = {
3341        Type.CHAR,
3342        Type.NCHAR,
3343        Type.VARCHAR,
3344        Type.NVARCHAR,
3345        Type.TEXT,
3346    }
3347
3348    INTEGER_TYPES = {
3349        Type.INT,
3350        Type.TINYINT,
3351        Type.SMALLINT,
3352        Type.BIGINT,
3353        Type.INT128,
3354        Type.INT256,
3355    }
3356
3357    FLOAT_TYPES = {
3358        Type.FLOAT,
3359        Type.DOUBLE,
3360    }
3361
3362    NUMERIC_TYPES = {*INTEGER_TYPES, *FLOAT_TYPES}
3363
3364    TEMPORAL_TYPES = {
3365        Type.TIMESTAMP,
3366        Type.TIMESTAMPTZ,
3367        Type.TIMESTAMPLTZ,
3368        Type.DATE,
3369        Type.DATETIME,
3370        Type.DATETIME64,
3371    }
3372
3373    @classmethod
3374    def build(
3375        cls, dtype: str | DataType | DataType.Type, dialect: DialectType = None, **kwargs
3376    ) -> DataType:
3377        from sqlglot import parse_one
3378
3379        if isinstance(dtype, str):
3380            if dtype.upper() in cls.Type.__members__:
3381                data_type_exp: t.Optional[Expression] = DataType(this=DataType.Type[dtype.upper()])
3382            else:
3383                data_type_exp = parse_one(dtype, read=dialect, into=DataType)
3384
3385            if data_type_exp is None:
3386                raise ValueError(f"Unparsable data type value: {dtype}")
3387        elif isinstance(dtype, DataType.Type):
3388            data_type_exp = DataType(this=dtype)
3389        elif isinstance(dtype, DataType):
3390            return dtype
3391        else:
3392            raise ValueError(f"Invalid data type: {type(dtype)}. Expected str or DataType.Type")
3393
3394        return DataType(**{**data_type_exp.args, **kwargs})
3395
3396    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3397        return any(self.this == DataType.build(dtype).this for dtype in dtypes)
3398
3399
3400# https://www.postgresql.org/docs/15/datatype-pseudo.html
3401class PseudoType(Expression):
3402    pass
3403
3404
3405# WHERE x <OP> EXISTS|ALL|ANY|SOME(SELECT ...)
3406class SubqueryPredicate(Predicate):
3407    pass
3408
3409
3410class All(SubqueryPredicate):
3411    pass
3412
3413
3414class Any(SubqueryPredicate):
3415    pass
3416
3417
3418class Exists(SubqueryPredicate):
3419    pass
3420
3421
3422# Commands to interact with the databases or engines. For most of the command
3423# expressions we parse whatever comes after the command's name as a string.
3424class Command(Expression):
3425    arg_types = {"this": True, "expression": False}
3426
3427
3428class Transaction(Expression):
3429    arg_types = {"this": False, "modes": False}
3430
3431
3432class Commit(Expression):
3433    arg_types = {"chain": False}
3434
3435
3436class Rollback(Expression):
3437    arg_types = {"savepoint": False}
3438
3439
3440class AlterTable(Expression):
3441    arg_types = {"this": True, "actions": True, "exists": False}
3442
3443
3444class AddConstraint(Expression):
3445    arg_types = {"this": False, "expression": False, "enforced": False}
3446
3447
3448class DropPartition(Expression):
3449    arg_types = {"expressions": True, "exists": False}
3450
3451
3452# Binary expressions like (ADD a b)
3453class Binary(Condition):
3454    arg_types = {"this": True, "expression": True}
3455
3456    @property
3457    def left(self):
3458        return self.this
3459
3460    @property
3461    def right(self):
3462        return self.expression
3463
3464
3465class Add(Binary):
3466    pass
3467
3468
3469class Connector(Binary):
3470    pass
3471
3472
3473class And(Connector):
3474    pass
3475
3476
3477class Or(Connector):
3478    pass
3479
3480
3481class BitwiseAnd(Binary):
3482    pass
3483
3484
3485class BitwiseLeftShift(Binary):
3486    pass
3487
3488
3489class BitwiseOr(Binary):
3490    pass
3491
3492
3493class BitwiseRightShift(Binary):
3494    pass
3495
3496
3497class BitwiseXor(Binary):
3498    pass
3499
3500
3501class Div(Binary):
3502    pass
3503
3504
3505class Overlaps(Binary):
3506    pass
3507
3508
3509class Dot(Binary):
3510    @property
3511    def name(self) -> str:
3512        return self.expression.name
3513
3514    @classmethod
3515    def build(self, expressions: t.Sequence[Expression]) -> Dot:
3516        """Build a Dot object with a sequence of expressions."""
3517        if len(expressions) < 2:
3518            raise ValueError(f"Dot requires >= 2 expressions.")
3519
3520        a, b, *expressions = expressions
3521        dot = Dot(this=a, expression=b)
3522
3523        for expression in expressions:
3524            dot = Dot(this=dot, expression=expression)
3525
3526        return dot
3527
3528
3529class DPipe(Binary):
3530    pass
3531
3532
3533class SafeDPipe(DPipe):
3534    pass
3535
3536
3537class EQ(Binary, Predicate):
3538    pass
3539
3540
3541class NullSafeEQ(Binary, Predicate):
3542    pass
3543
3544
3545class NullSafeNEQ(Binary, Predicate):
3546    pass
3547
3548
3549class Distance(Binary):
3550    pass
3551
3552
3553class Escape(Binary):
3554    pass
3555
3556
3557class Glob(Binary, Predicate):
3558    pass
3559
3560
3561class GT(Binary, Predicate):
3562    pass
3563
3564
3565class GTE(Binary, Predicate):
3566    pass
3567
3568
3569class ILike(Binary, Predicate):
3570    pass
3571
3572
3573class ILikeAny(Binary, Predicate):
3574    pass
3575
3576
3577class IntDiv(Binary):
3578    pass
3579
3580
3581class Is(Binary, Predicate):
3582    pass
3583
3584
3585class Kwarg(Binary):
3586    """Kwarg in special functions like func(kwarg => y)."""
3587
3588
3589class Like(Binary, Predicate):
3590    pass
3591
3592
3593class LikeAny(Binary, Predicate):
3594    pass
3595
3596
3597class LT(Binary, Predicate):
3598    pass
3599
3600
3601class LTE(Binary, Predicate):
3602    pass
3603
3604
3605class Mod(Binary):
3606    pass
3607
3608
3609class Mul(Binary):
3610    pass
3611
3612
3613class NEQ(Binary, Predicate):
3614    pass
3615
3616
3617class SimilarTo(Binary, Predicate):
3618    pass
3619
3620
3621class Slice(Binary):
3622    arg_types = {"this": False, "expression": False}
3623
3624
3625class Sub(Binary):
3626    pass
3627
3628
3629class ArrayOverlaps(Binary):
3630    pass
3631
3632
3633# Unary Expressions
3634# (NOT a)
3635class Unary(Condition):
3636    pass
3637
3638
3639class BitwiseNot(Unary):
3640    pass
3641
3642
3643class Not(Unary):
3644    pass
3645
3646
3647class Paren(Unary):
3648    arg_types = {"this": True, "with": False}
3649
3650    @property
3651    def output_name(self) -> str:
3652        return self.this.name
3653
3654
3655class Neg(Unary):
3656    pass
3657
3658
3659class Alias(Expression):
3660    arg_types = {"this": True, "alias": False}
3661
3662    @property
3663    def output_name(self) -> str:
3664        return self.alias
3665
3666
3667class Aliases(Expression):
3668    arg_types = {"this": True, "expressions": True}
3669
3670    @property
3671    def aliases(self):
3672        return self.expressions
3673
3674
3675class AtTimeZone(Expression):
3676    arg_types = {"this": True, "zone": True}
3677
3678
3679class Between(Predicate):
3680    arg_types = {"this": True, "low": True, "high": True}
3681
3682
3683class Bracket(Condition):
3684    arg_types = {"this": True, "expressions": True}
3685
3686
3687class Distinct(Expression):
3688    arg_types = {"expressions": False, "on": False}
3689
3690
3691class In(Predicate):
3692    arg_types = {
3693        "this": True,
3694        "expressions": False,
3695        "query": False,
3696        "unnest": False,
3697        "field": False,
3698        "is_global": False,
3699    }
3700
3701
3702class TimeUnit(Expression):
3703    """Automatically converts unit arg into a var."""
3704
3705    arg_types = {"unit": False}
3706
3707    def __init__(self, **args):
3708        unit = args.get("unit")
3709        if isinstance(unit, (Column, Literal)):
3710            args["unit"] = Var(this=unit.name)
3711        elif isinstance(unit, Week):
3712            unit.set("this", Var(this=unit.this.name))
3713
3714        super().__init__(**args)
3715
3716
3717class Interval(TimeUnit):
3718    arg_types = {"this": False, "unit": False}
3719
3720    @property
3721    def unit(self) -> t.Optional[Var]:
3722        return self.args.get("unit")
3723
3724
3725class IgnoreNulls(Expression):
3726    pass
3727
3728
3729class RespectNulls(Expression):
3730    pass
3731
3732
3733# Functions
3734class Func(Condition):
3735    """
3736    The base class for all function expressions.
3737
3738    Attributes:
3739        is_var_len_args (bool): if set to True the last argument defined in arg_types will be
3740            treated as a variable length argument and the argument's value will be stored as a list.
3741        _sql_names (list): determines the SQL name (1st item in the list) and aliases (subsequent items)
3742            for this function expression. These values are used to map this node to a name during parsing
3743            as well as to provide the function's name during SQL string generation. By default the SQL
3744            name is set to the expression's class name transformed to snake case.
3745    """
3746
3747    is_var_len_args = False
3748
3749    @classmethod
3750    def from_arg_list(cls, args):
3751        if cls.is_var_len_args:
3752            all_arg_keys = list(cls.arg_types)
3753            # If this function supports variable length argument treat the last argument as such.
3754            non_var_len_arg_keys = all_arg_keys[:-1] if cls.is_var_len_args else all_arg_keys
3755            num_non_var = len(non_var_len_arg_keys)
3756
3757            args_dict = {arg_key: arg for arg, arg_key in zip(args, non_var_len_arg_keys)}
3758            args_dict[all_arg_keys[-1]] = args[num_non_var:]
3759        else:
3760            args_dict = {arg_key: arg for arg, arg_key in zip(args, cls.arg_types)}
3761
3762        return cls(**args_dict)
3763
3764    @classmethod
3765    def sql_names(cls):
3766        if cls is Func:
3767            raise NotImplementedError(
3768                "SQL name is only supported by concrete function implementations"
3769            )
3770        if "_sql_names" not in cls.__dict__:
3771            cls._sql_names = [camel_to_snake_case(cls.__name__)]
3772        return cls._sql_names
3773
3774    @classmethod
3775    def sql_name(cls):
3776        return cls.sql_names()[0]
3777
3778    @classmethod
3779    def default_parser_mappings(cls):
3780        return {name: cls.from_arg_list for name in cls.sql_names()}
3781
3782
3783class AggFunc(Func):
3784    pass
3785
3786
3787class ParameterizedAgg(AggFunc):
3788    arg_types = {"this": True, "expressions": True, "params": True}
3789
3790
3791class Abs(Func):
3792    pass
3793
3794
3795class Anonymous(Func):
3796    arg_types = {"this": True, "expressions": False}
3797    is_var_len_args = True
3798
3799
3800# https://docs.snowflake.com/en/sql-reference/functions/hll
3801# https://docs.aws.amazon.com/redshift/latest/dg/r_HLL_function.html
3802class Hll(AggFunc):
3803    arg_types = {"this": True, "expressions": False}
3804    is_var_len_args = True
3805
3806
3807class ApproxDistinct(AggFunc):
3808    arg_types = {"this": True, "accuracy": False}
3809    _sql_names = ["APPROX_DISTINCT", "APPROX_COUNT_DISTINCT"]
3810
3811
3812class Array(Func):
3813    arg_types = {"expressions": False}
3814    is_var_len_args = True
3815
3816
3817# https://docs.snowflake.com/en/sql-reference/functions/to_char
3818class ToChar(Func):
3819    arg_types = {"this": True, "format": False}
3820
3821
3822class GenerateSeries(Func):
3823    arg_types = {"start": True, "end": True, "step": False}
3824
3825
3826class ArrayAgg(AggFunc):
3827    pass
3828
3829
3830class ArrayAll(Func):
3831    arg_types = {"this": True, "expression": True}
3832
3833
3834class ArrayAny(Func):
3835    arg_types = {"this": True, "expression": True}
3836
3837
3838class ArrayConcat(Func):
3839    arg_types = {"this": True, "expressions": False}
3840    is_var_len_args = True
3841
3842
3843class ArrayContains(Binary, Func):
3844    pass
3845
3846
3847class ArrayContained(Binary):
3848    pass
3849
3850
3851class ArrayFilter(Func):
3852    arg_types = {"this": True, "expression": True}
3853    _sql_names = ["FILTER", "ARRAY_FILTER"]
3854
3855
3856class ArrayJoin(Func):
3857    arg_types = {"this": True, "expression": True, "null": False}
3858
3859
3860class ArraySize(Func):
3861    arg_types = {"this": True, "expression": False}
3862
3863
3864class ArraySort(Func):
3865    arg_types = {"this": True, "expression": False}
3866
3867
3868class ArraySum(Func):
3869    pass
3870
3871
3872class ArrayUnionAgg(AggFunc):
3873    pass
3874
3875
3876class Avg(AggFunc):
3877    pass
3878
3879
3880class AnyValue(AggFunc):
3881    pass
3882
3883
3884class Case(Func):
3885    arg_types = {"this": False, "ifs": True, "default": False}
3886
3887    def when(self, condition: ExpOrStr, then: ExpOrStr, copy: bool = True, **opts) -> Case:
3888        instance = _maybe_copy(self, copy)
3889        instance.append(
3890            "ifs",
3891            If(
3892                this=maybe_parse(condition, copy=copy, **opts),
3893                true=maybe_parse(then, copy=copy, **opts),
3894            ),
3895        )
3896        return instance
3897
3898    def else_(self, condition: ExpOrStr, copy: bool = True, **opts) -> Case:
3899        instance = _maybe_copy(self, copy)
3900        instance.set("default", maybe_parse(condition, copy=copy, **opts))
3901        return instance
3902
3903
3904class Cast(Func):
3905    arg_types = {"this": True, "to": True}
3906
3907    @property
3908    def name(self) -> str:
3909        return self.this.name
3910
3911    @property
3912    def to(self) -> DataType:
3913        return self.args["to"]
3914
3915    @property
3916    def output_name(self) -> str:
3917        return self.name
3918
3919    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3920        return self.to.is_type(*dtypes)
3921
3922
3923class CastToStrType(Func):
3924    arg_types = {"this": True, "expression": True}
3925
3926
3927class Collate(Binary):
3928    pass
3929
3930
3931class TryCast(Cast):
3932    pass
3933
3934
3935class Ceil(Func):
3936    arg_types = {"this": True, "decimals": False}
3937    _sql_names = ["CEIL", "CEILING"]
3938
3939
3940class Coalesce(Func):
3941    arg_types = {"this": True, "expressions": False}
3942    is_var_len_args = True
3943    _sql_names = ["COALESCE", "IFNULL", "NVL"]
3944
3945
3946class Concat(Func):
3947    arg_types = {"expressions": True}
3948    is_var_len_args = True
3949
3950
3951class SafeConcat(Concat):
3952    pass
3953
3954
3955class ConcatWs(Concat):
3956    _sql_names = ["CONCAT_WS"]
3957
3958
3959class Count(AggFunc):
3960    arg_types = {"this": False, "expressions": False}
3961    is_var_len_args = True
3962
3963
3964class CountIf(AggFunc):
3965    pass
3966
3967
3968class CurrentDate(Func):
3969    arg_types = {"this": False}
3970
3971
3972class CurrentDatetime(Func):
3973    arg_types = {"this": False}
3974
3975
3976class CurrentTime(Func):
3977    arg_types = {"this": False}
3978
3979
3980class CurrentTimestamp(Func):
3981    arg_types = {"this": False}
3982
3983
3984class CurrentUser(Func):
3985    arg_types = {"this": False}
3986
3987
3988class DateAdd(Func, TimeUnit):
3989    arg_types = {"this": True, "expression": True, "unit": False}
3990
3991
3992class DateSub(Func, TimeUnit):
3993    arg_types = {"this": True, "expression": True, "unit": False}
3994
3995
3996class DateDiff(Func, TimeUnit):
3997    _sql_names = ["DATEDIFF", "DATE_DIFF"]
3998    arg_types = {"this": True, "expression": True, "unit": False}
3999
4000
4001class DateTrunc(Func):
4002    arg_types = {"unit": True, "this": True, "zone": False}
4003
4004
4005class DatetimeAdd(Func, TimeUnit):
4006    arg_types = {"this": True, "expression": True, "unit": False}
4007
4008
4009class DatetimeSub(Func, TimeUnit):
4010    arg_types = {"this": True, "expression": True, "unit": False}
4011
4012
4013class DatetimeDiff(Func, TimeUnit):
4014    arg_types = {"this": True, "expression": True, "unit": False}
4015
4016
4017class DatetimeTrunc(Func, TimeUnit):
4018    arg_types = {"this": True, "unit": True, "zone": False}
4019
4020
4021class DayOfWeek(Func):
4022    _sql_names = ["DAY_OF_WEEK", "DAYOFWEEK"]
4023
4024
4025class DayOfMonth(Func):
4026    _sql_names = ["DAY_OF_MONTH", "DAYOFMONTH"]
4027
4028
4029class DayOfYear(Func):
4030    _sql_names = ["DAY_OF_YEAR", "DAYOFYEAR"]
4031
4032
4033class WeekOfYear(Func):
4034    _sql_names = ["WEEK_OF_YEAR", "WEEKOFYEAR"]
4035
4036
4037class LastDateOfMonth(Func):
4038    pass
4039
4040
4041class Extract(Func):
4042    arg_types = {"this": True, "expression": True}
4043
4044
4045class TimestampAdd(Func, TimeUnit):
4046    arg_types = {"this": True, "expression": True, "unit": False}
4047
4048
4049class TimestampSub(Func, TimeUnit):
4050    arg_types = {"this": True, "expression": True, "unit": False}
4051
4052
4053class TimestampDiff(Func, TimeUnit):
4054    arg_types = {"this": True, "expression": True, "unit": False}
4055
4056
4057class TimestampTrunc(Func, TimeUnit):
4058    arg_types = {"this": True, "unit": True, "zone": False}
4059
4060
4061class TimeAdd(Func, TimeUnit):
4062    arg_types = {"this": True, "expression": True, "unit": False}
4063
4064
4065class TimeSub(Func, TimeUnit):
4066    arg_types = {"this": True, "expression": True, "unit": False}
4067
4068
4069class TimeDiff(Func, TimeUnit):
4070    arg_types = {"this": True, "expression": True, "unit": False}
4071
4072
4073class TimeTrunc(Func, TimeUnit):
4074    arg_types = {"this": True, "unit": True, "zone": False}
4075
4076
4077class DateFromParts(Func):
4078    _sql_names = ["DATEFROMPARTS"]
4079    arg_types = {"year": True, "month": True, "day": True}
4080
4081
4082class DateStrToDate(Func):
4083    pass
4084
4085
4086class DateToDateStr(Func):
4087    pass
4088
4089
4090class DateToDi(Func):
4091    pass
4092
4093
4094class Day(Func):
4095    pass
4096
4097
4098class Decode(Func):
4099    arg_types = {"this": True, "charset": True, "replace": False}
4100
4101
4102class DiToDate(Func):
4103    pass
4104
4105
4106class Encode(Func):
4107    arg_types = {"this": True, "charset": True}
4108
4109
4110class Exp(Func):
4111    pass
4112
4113
4114class Explode(Func):
4115    pass
4116
4117
4118class Floor(Func):
4119    arg_types = {"this": True, "decimals": False}
4120
4121
4122class FromBase64(Func):
4123    pass
4124
4125
4126class ToBase64(Func):
4127    pass
4128
4129
4130class Greatest(Func):
4131    arg_types = {"this": True, "expressions": False}
4132    is_var_len_args = True
4133
4134
4135class GroupConcat(Func):
4136    arg_types = {"this": True, "separator": False}
4137
4138
4139class Hex(Func):
4140    pass
4141
4142
4143class If(Func):
4144    arg_types = {"this": True, "true": True, "false": False}
4145
4146
4147class Initcap(Func):
4148    arg_types = {"this": True, "expression": False}
4149
4150
4151class JSONKeyValue(Expression):
4152    arg_types = {"this": True, "expression": True}
4153
4154
4155class JSONObject(Func):
4156    arg_types = {
4157        "expressions": False,
4158        "null_handling": False,
4159        "unique_keys": False,
4160        "return_type": False,
4161        "format_json": False,
4162        "encoding": False,
4163    }
4164
4165
4166class OpenJSONColumnDef(Expression):
4167    arg_types = {"this": True, "kind": True, "path": False, "as_json": False}
4168
4169
4170class OpenJSON(Func):
4171    arg_types = {"this": True, "path": False, "expressions": False}
4172
4173
4174class JSONBContains(Binary):
4175    _sql_names = ["JSONB_CONTAINS"]
4176
4177
4178class JSONExtract(Binary, Func):
4179    _sql_names = ["JSON_EXTRACT"]
4180
4181
4182class JSONExtractScalar(JSONExtract):
4183    _sql_names = ["JSON_EXTRACT_SCALAR"]
4184
4185
4186class JSONBExtract(JSONExtract):
4187    _sql_names = ["JSONB_EXTRACT"]
4188
4189
4190class JSONBExtractScalar(JSONExtract):
4191    _sql_names = ["JSONB_EXTRACT_SCALAR"]
4192
4193
4194class JSONFormat(Func):
4195    arg_types = {"this": False, "options": False}
4196    _sql_names = ["JSON_FORMAT"]
4197
4198
4199class Least(Func):
4200    arg_types = {"expressions": False}
4201    is_var_len_args = True
4202
4203
4204class Left(Func):
4205    arg_types = {"this": True, "expression": True}
4206
4207
4208class Right(Func):
4209    arg_types = {"this": True, "expression": True}
4210
4211
4212class Length(Func):
4213    _sql_names = ["LENGTH", "LEN"]
4214
4215
4216class Levenshtein(Func):
4217    arg_types = {
4218        "this": True,
4219        "expression": False,
4220        "ins_cost": False,
4221        "del_cost": False,
4222        "sub_cost": False,
4223    }
4224
4225
4226class Ln(Func):
4227    pass
4228
4229
4230class Log(Func):
4231    arg_types = {"this": True, "expression": False}
4232
4233
4234class Log2(Func):
4235    pass
4236
4237
4238class Log10(Func):
4239    pass
4240
4241
4242class LogicalOr(AggFunc):
4243    _sql_names = ["LOGICAL_OR", "BOOL_OR", "BOOLOR_AGG"]
4244
4245
4246class LogicalAnd(AggFunc):
4247    _sql_names = ["LOGICAL_AND", "BOOL_AND", "BOOLAND_AGG"]
4248
4249
4250class Lower(Func):
4251    _sql_names = ["LOWER", "LCASE"]
4252
4253
4254class Map(Func):
4255    arg_types = {"keys": False, "values": False}
4256
4257
4258class StarMap(Func):
4259    pass
4260
4261
4262class VarMap(Func):
4263    arg_types = {"keys": True, "values": True}
4264    is_var_len_args = True
4265
4266    @property
4267    def keys(self) -> t.List[Expression]:
4268        return self.args["keys"].expressions
4269
4270    @property
4271    def values(self) -> t.List[Expression]:
4272        return self.args["values"].expressions
4273
4274
4275# https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
4276class MatchAgainst(Func):
4277    arg_types = {"this": True, "expressions": True, "modifier": False}
4278
4279
4280class Max(AggFunc):
4281    arg_types = {"this": True, "expressions": False}
4282    is_var_len_args = True
4283
4284
4285class MD5(Func):
4286    _sql_names = ["MD5"]
4287
4288
4289class Min(AggFunc):
4290    arg_types = {"this": True, "expressions": False}
4291    is_var_len_args = True
4292
4293
4294class Month(Func):
4295    pass
4296
4297
4298class Nvl2(Func):
4299    arg_types = {"this": True, "true": True, "false": False}
4300
4301
4302class Posexplode(Func):
4303    pass
4304
4305
4306class Pow(Binary, Func):
4307    _sql_names = ["POWER", "POW"]
4308
4309
4310class PercentileCont(AggFunc):
4311    arg_types = {"this": True, "expression": False}
4312
4313
4314class PercentileDisc(AggFunc):
4315    arg_types = {"this": True, "expression": False}
4316
4317
4318class Quantile(AggFunc):
4319    arg_types = {"this": True, "quantile": True}
4320
4321
4322class ApproxQuantile(Quantile):
4323    arg_types = {"this": True, "quantile": True, "accuracy": False, "weight": False}
4324
4325
4326class RangeN(Func):
4327    arg_types = {"this": True, "expressions": True, "each": False}
4328
4329
4330class ReadCSV(Func):
4331    _sql_names = ["READ_CSV"]
4332    is_var_len_args = True
4333    arg_types = {"this": True, "expressions": False}
4334
4335
4336class Reduce(Func):
4337    arg_types = {"this": True, "initial": True, "merge": True, "finish": False}
4338
4339
4340class RegexpExtract(Func):
4341    arg_types = {
4342        "this": True,
4343        "expression": True,
4344        "position": False,
4345        "occurrence": False,
4346        "group": False,
4347    }
4348
4349
4350class RegexpLike(Func):
4351    arg_types = {"this": True, "expression": True, "flag": False}
4352
4353
4354class RegexpILike(Func):
4355    arg_types = {"this": True, "expression": True, "flag": False}
4356
4357
4358# https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.functions.split.html
4359# limit is the number of times a pattern is applied
4360class RegexpSplit(Func):
4361    arg_types = {"this": True, "expression": True, "limit": False}
4362
4363
4364class Repeat(Func):
4365    arg_types = {"this": True, "times": True}
4366
4367
4368class Round(Func):
4369    arg_types = {"this": True, "decimals": False}
4370
4371
4372class RowNumber(Func):
4373    arg_types: t.Dict[str, t.Any] = {}
4374
4375
4376class SafeDivide(Func):
4377    arg_types = {"this": True, "expression": True}
4378
4379
4380class SetAgg(AggFunc):
4381    pass
4382
4383
4384class SHA(Func):
4385    _sql_names = ["SHA", "SHA1"]
4386
4387
4388class SHA2(Func):
4389    _sql_names = ["SHA2"]
4390    arg_types = {"this": True, "length": False}
4391
4392
4393class SortArray(Func):
4394    arg_types = {"this": True, "asc": False}
4395
4396
4397class Split(Func):
4398    arg_types = {"this": True, "expression": True, "limit": False}
4399
4400
4401# Start may be omitted in the case of postgres
4402# https://www.postgresql.org/docs/9.1/functions-string.html @ Table 9-6
4403class Substring(Func):
4404    arg_types = {"this": True, "start": False, "length": False}
4405
4406
4407class StandardHash(Func):
4408    arg_types = {"this": True, "expression": False}
4409
4410
4411class StrPosition(Func):
4412    arg_types = {
4413        "this": True,
4414        "substr": True,
4415        "position": False,
4416        "instance": False,
4417    }
4418
4419
4420class StrToDate(Func):
4421    arg_types = {"this": True, "format": True}
4422
4423
4424class StrToTime(Func):
4425    arg_types = {"this": True, "format": True}
4426
4427
4428# Spark allows unix_timestamp()
4429# https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.sql.functions.unix_timestamp.html
4430class StrToUnix(Func):
4431    arg_types = {"this": False, "format": False}
4432
4433
4434class NumberToStr(Func):
4435    arg_types = {"this": True, "format": True}
4436
4437
4438class FromBase(Func):
4439    arg_types = {"this": True, "expression": True}
4440
4441
4442class Struct(Func):
4443    arg_types = {"expressions": True}
4444    is_var_len_args = True
4445
4446
4447class StructExtract(Func):
4448    arg_types = {"this": True, "expression": True}
4449
4450
4451class Sum(AggFunc):
4452    pass
4453
4454
4455class Sqrt(Func):
4456    pass
4457
4458
4459class Stddev(AggFunc):
4460    pass
4461
4462
4463class StddevPop(AggFunc):
4464    pass
4465
4466
4467class StddevSamp(AggFunc):
4468    pass
4469
4470
4471class TimeToStr(Func):
4472    arg_types = {"this": True, "format": True}
4473
4474
4475class TimeToTimeStr(Func):
4476    pass
4477
4478
4479class TimeToUnix(Func):
4480    pass
4481
4482
4483class TimeStrToDate(Func):
4484    pass
4485
4486
4487class TimeStrToTime(Func):
4488    pass
4489
4490
4491class TimeStrToUnix(Func):
4492    pass
4493
4494
4495class Trim(Func):
4496    arg_types = {
4497        "this": True,
4498        "expression": False,
4499        "position": False,
4500        "collation": False,
4501    }
4502
4503
4504class TsOrDsAdd(Func, TimeUnit):
4505    arg_types = {"this": True, "expression": True, "unit": False}
4506
4507
4508class TsOrDsToDateStr(Func):
4509    pass
4510
4511
4512class TsOrDsToDate(Func):
4513    arg_types = {"this": True, "format": False}
4514
4515
4516class TsOrDiToDi(Func):
4517    pass
4518
4519
4520class Unhex(Func):
4521    pass
4522
4523
4524class UnixToStr(Func):
4525    arg_types = {"this": True, "format": False}
4526
4527
4528# https://prestodb.io/docs/current/functions/datetime.html
4529# presto has weird zone/hours/minutes
4530class UnixToTime(Func):
4531    arg_types = {"this": True, "scale": False, "zone": False, "hours": False, "minutes": False}
4532
4533    SECONDS = Literal.string("seconds")
4534    MILLIS = Literal.string("millis")
4535    MICROS = Literal.string("micros")
4536
4537
4538class UnixToTimeStr(Func):
4539    pass
4540
4541
4542class Upper(Func):
4543    _sql_names = ["UPPER", "UCASE"]
4544
4545
4546class Variance(AggFunc):
4547    _sql_names = ["VARIANCE", "VARIANCE_SAMP", "VAR_SAMP"]
4548
4549
4550class VariancePop(AggFunc):
4551    _sql_names = ["VARIANCE_POP", "VAR_POP"]
4552
4553
4554class Week(Func):
4555    arg_types = {"this": True, "mode": False}
4556
4557
4558class XMLTable(Func):
4559    arg_types = {"this": True, "passing": False, "columns": False, "by_ref": False}
4560
4561
4562class Year(Func):
4563    pass
4564
4565
4566class Use(Expression):
4567    arg_types = {"this": True, "kind": False}
4568
4569
4570class Merge(Expression):
4571    arg_types = {"this": True, "using": True, "on": True, "expressions": True}
4572
4573
4574class When(Func):
4575    arg_types = {"matched": True, "source": False, "condition": False, "then": True}
4576
4577
4578# https://docs.oracle.com/javadb/10.8.3.0/ref/rrefsqljnextvaluefor.html
4579# https://learn.microsoft.com/en-us/sql/t-sql/functions/next-value-for-transact-sql?view=sql-server-ver16
4580class NextValueFor(Func):
4581    arg_types = {"this": True, "order": False}
4582
4583
4584def _norm_arg(arg):
4585    return arg.lower() if type(arg) is str else arg
4586
4587
4588ALL_FUNCTIONS = subclasses(__name__, Func, (AggFunc, Anonymous, Func))
4589
4590
4591# Helpers
4592@t.overload
4593def maybe_parse(
4594    sql_or_expression: ExpOrStr,
4595    *,
4596    into: t.Type[E],
4597    dialect: DialectType = None,
4598    prefix: t.Optional[str] = None,
4599    copy: bool = False,
4600    **opts,
4601) -> E:
4602    ...
4603
4604
4605@t.overload
4606def maybe_parse(
4607    sql_or_expression: str | E,
4608    *,
4609    into: t.Optional[IntoType] = None,
4610    dialect: DialectType = None,
4611    prefix: t.Optional[str] = None,
4612    copy: bool = False,
4613    **opts,
4614) -> E:
4615    ...
4616
4617
4618def maybe_parse(
4619    sql_or_expression: ExpOrStr,
4620    *,
4621    into: t.Optional[IntoType] = None,
4622    dialect: DialectType = None,
4623    prefix: t.Optional[str] = None,
4624    copy: bool = False,
4625    **opts,
4626) -> Expression:
4627    """Gracefully handle a possible string or expression.
4628
4629    Example:
4630        >>> maybe_parse("1")
4631        (LITERAL this: 1, is_string: False)
4632        >>> maybe_parse(to_identifier("x"))
4633        (IDENTIFIER this: x, quoted: False)
4634
4635    Args:
4636        sql_or_expression: the SQL code string or an expression
4637        into: the SQLGlot Expression to parse into
4638        dialect: the dialect used to parse the input expressions (in the case that an
4639            input expression is a SQL string).
4640        prefix: a string to prefix the sql with before it gets parsed
4641            (automatically includes a space)
4642        copy: whether or not to copy the expression.
4643        **opts: other options to use to parse the input expressions (again, in the case
4644            that an input expression is a SQL string).
4645
4646    Returns:
4647        Expression: the parsed or given expression.
4648    """
4649    if isinstance(sql_or_expression, Expression):
4650        if copy:
4651            return sql_or_expression.copy()
4652        return sql_or_expression
4653
4654    if sql_or_expression is None:
4655        raise ParseError(f"SQL cannot be None")
4656
4657    import sqlglot
4658
4659    sql = str(sql_or_expression)
4660    if prefix:
4661        sql = f"{prefix} {sql}"
4662
4663    return sqlglot.parse_one(sql, read=dialect, into=into, **opts)
4664
4665
4666def _maybe_copy(instance: E, copy: bool = True) -> E:
4667    return instance.copy() if copy else instance
4668
4669
4670def _is_wrong_expression(expression, into):
4671    return isinstance(expression, Expression) and not isinstance(expression, into)
4672
4673
4674def _apply_builder(
4675    expression,
4676    instance,
4677    arg,
4678    copy=True,
4679    prefix=None,
4680    into=None,
4681    dialect=None,
4682    **opts,
4683):
4684    if _is_wrong_expression(expression, into):
4685        expression = into(this=expression)
4686    instance = _maybe_copy(instance, copy)
4687    expression = maybe_parse(
4688        sql_or_expression=expression,
4689        prefix=prefix,
4690        into=into,
4691        dialect=dialect,
4692        **opts,
4693    )
4694    instance.set(arg, expression)
4695    return instance
4696
4697
4698def _apply_child_list_builder(
4699    *expressions,
4700    instance,
4701    arg,
4702    append=True,
4703    copy=True,
4704    prefix=None,
4705    into=None,
4706    dialect=None,
4707    properties=None,
4708    **opts,
4709):
4710    instance = _maybe_copy(instance, copy)
4711    parsed = []
4712    for expression in expressions:
4713        if expression is not None:
4714            if _is_wrong_expression(expression, into):
4715                expression = into(expressions=[expression])
4716
4717            expression = maybe_parse(
4718                expression,
4719                into=into,
4720                dialect=dialect,
4721                prefix=prefix,
4722                **opts,
4723            )
4724            parsed.extend(expression.expressions)
4725
4726    existing = instance.args.get(arg)
4727    if append and existing:
4728        parsed = existing.expressions + parsed
4729
4730    child = into(expressions=parsed)
4731    for k, v in (properties or {}).items():
4732        child.set(k, v)
4733    instance.set(arg, child)
4734
4735    return instance
4736
4737
4738def _apply_list_builder(
4739    *expressions,
4740    instance,
4741    arg,
4742    append=True,
4743    copy=True,
4744    prefix=None,
4745    into=None,
4746    dialect=None,
4747    **opts,
4748):
4749    inst = _maybe_copy(instance, copy)
4750
4751    expressions = [
4752        maybe_parse(
4753            sql_or_expression=expression,
4754            into=into,
4755            prefix=prefix,
4756            dialect=dialect,
4757            **opts,
4758        )
4759        for expression in expressions
4760        if expression is not None
4761    ]
4762
4763    existing_expressions = inst.args.get(arg)
4764    if append and existing_expressions:
4765        expressions = existing_expressions + expressions
4766
4767    inst.set(arg, expressions)
4768    return inst
4769
4770
4771def _apply_conjunction_builder(
4772    *expressions,
4773    instance,
4774    arg,
4775    into=None,
4776    append=True,
4777    copy=True,
4778    dialect=None,
4779    **opts,
4780):
4781    expressions = [exp for exp in expressions if exp is not None and exp != ""]
4782    if not expressions:
4783        return instance
4784
4785    inst = _maybe_copy(instance, copy)
4786
4787    existing = inst.args.get(arg)
4788    if append and existing is not None:
4789        expressions = [existing.this if into else existing] + list(expressions)
4790
4791    node = and_(*expressions, dialect=dialect, copy=copy, **opts)
4792
4793    inst.set(arg, into(this=node) if into else node)
4794    return inst
4795
4796
4797def _apply_cte_builder(
4798    instance: E,
4799    alias: ExpOrStr,
4800    as_: ExpOrStr,
4801    recursive: t.Optional[bool] = None,
4802    append: bool = True,
4803    dialect: DialectType = None,
4804    copy: bool = True,
4805    **opts,
4806) -> E:
4807    alias_expression = maybe_parse(alias, dialect=dialect, into=TableAlias, **opts)
4808    as_expression = maybe_parse(as_, dialect=dialect, **opts)
4809    cte = CTE(this=as_expression, alias=alias_expression)
4810    return _apply_child_list_builder(
4811        cte,
4812        instance=instance,
4813        arg="with",
4814        append=append,
4815        copy=copy,
4816        into=With,
4817        properties={"recursive": recursive or False},
4818    )
4819
4820
4821def _combine(
4822    expressions: t.Sequence[t.Optional[ExpOrStr]],
4823    operator: t.Type[Connector],
4824    dialect: DialectType = None,
4825    copy: bool = True,
4826    **opts,
4827) -> Expression:
4828    conditions = [
4829        condition(expression, dialect=dialect, copy=copy, **opts)
4830        for expression in expressions
4831        if expression is not None
4832    ]
4833
4834    this, *rest = conditions
4835    if rest:
4836        this = _wrap(this, Connector)
4837    for expression in rest:
4838        this = operator(this=this, expression=_wrap(expression, Connector))
4839
4840    return this
4841
4842
4843def _wrap(expression: E, kind: t.Type[Expression]) -> E | Paren:
4844    return Paren(this=expression) if isinstance(expression, kind) else expression
4845
4846
4847def union(
4848    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
4849) -> Union:
4850    """
4851    Initializes a syntax tree from one UNION expression.
4852
4853    Example:
4854        >>> union("SELECT * FROM foo", "SELECT * FROM bla").sql()
4855        'SELECT * FROM foo UNION SELECT * FROM bla'
4856
4857    Args:
4858        left: the SQL code string corresponding to the left-hand side.
4859            If an `Expression` instance is passed, it will be used as-is.
4860        right: the SQL code string corresponding to the right-hand side.
4861            If an `Expression` instance is passed, it will be used as-is.
4862        distinct: set the DISTINCT flag if and only if this is true.
4863        dialect: the dialect used to parse the input expression.
4864        opts: other options to use to parse the input expressions.
4865
4866    Returns:
4867        The new Union instance.
4868    """
4869    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
4870    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
4871
4872    return Union(this=left, expression=right, distinct=distinct)
4873
4874
4875def intersect(
4876    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
4877) -> Intersect:
4878    """
4879    Initializes a syntax tree from one INTERSECT expression.
4880
4881    Example:
4882        >>> intersect("SELECT * FROM foo", "SELECT * FROM bla").sql()
4883        'SELECT * FROM foo INTERSECT SELECT * FROM bla'
4884
4885    Args:
4886        left: the SQL code string corresponding to the left-hand side.
4887            If an `Expression` instance is passed, it will be used as-is.
4888        right: the SQL code string corresponding to the right-hand side.
4889            If an `Expression` instance is passed, it will be used as-is.
4890        distinct: set the DISTINCT flag if and only if this is true.
4891        dialect: the dialect used to parse the input expression.
4892        opts: other options to use to parse the input expressions.
4893
4894    Returns:
4895        The new Intersect instance.
4896    """
4897    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
4898    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
4899
4900    return Intersect(this=left, expression=right, distinct=distinct)
4901
4902
4903def except_(
4904    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
4905) -> Except:
4906    """
4907    Initializes a syntax tree from one EXCEPT expression.
4908
4909    Example:
4910        >>> except_("SELECT * FROM foo", "SELECT * FROM bla").sql()
4911        'SELECT * FROM foo EXCEPT SELECT * FROM bla'
4912
4913    Args:
4914        left: the SQL code string corresponding to the left-hand side.
4915            If an `Expression` instance is passed, it will be used as-is.
4916        right: the SQL code string corresponding to the right-hand side.
4917            If an `Expression` instance is passed, it will be used as-is.
4918        distinct: set the DISTINCT flag if and only if this is true.
4919        dialect: the dialect used to parse the input expression.
4920        opts: other options to use to parse the input expressions.
4921
4922    Returns:
4923        The new Except instance.
4924    """
4925    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
4926    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
4927
4928    return Except(this=left, expression=right, distinct=distinct)
4929
4930
4931def select(*expressions: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
4932    """
4933    Initializes a syntax tree from one or multiple SELECT expressions.
4934
4935    Example:
4936        >>> select("col1", "col2").from_("tbl").sql()
4937        'SELECT col1, col2 FROM tbl'
4938
4939    Args:
4940        *expressions: the SQL code string to parse as the expressions of a
4941            SELECT statement. If an Expression instance is passed, this is used as-is.
4942        dialect: the dialect used to parse the input expressions (in the case that an
4943            input expression is a SQL string).
4944        **opts: other options to use to parse the input expressions (again, in the case
4945            that an input expression is a SQL string).
4946
4947    Returns:
4948        Select: the syntax tree for the SELECT statement.
4949    """
4950    return Select().select(*expressions, dialect=dialect, **opts)
4951
4952
4953def from_(expression: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
4954    """
4955    Initializes a syntax tree from a FROM expression.
4956
4957    Example:
4958        >>> from_("tbl").select("col1", "col2").sql()
4959        'SELECT col1, col2 FROM tbl'
4960
4961    Args:
4962        *expression: the SQL code string to parse as the FROM expressions of a
4963            SELECT statement. If an Expression instance is passed, this is used as-is.
4964        dialect: the dialect used to parse the input expression (in the case that the
4965            input expression is a SQL string).
4966        **opts: other options to use to parse the input expressions (again, in the case
4967            that the input expression is a SQL string).
4968
4969    Returns:
4970        Select: the syntax tree for the SELECT statement.
4971    """
4972    return Select().from_(expression, dialect=dialect, **opts)
4973
4974
4975def update(
4976    table: str | Table,
4977    properties: dict,
4978    where: t.Optional[ExpOrStr] = None,
4979    from_: t.Optional[ExpOrStr] = None,
4980    dialect: DialectType = None,
4981    **opts,
4982) -> Update:
4983    """
4984    Creates an update statement.
4985
4986    Example:
4987        >>> update("my_table", {"x": 1, "y": "2", "z": None}, from_="baz", where="id > 1").sql()
4988        "UPDATE my_table SET x = 1, y = '2', z = NULL FROM baz WHERE id > 1"
4989
4990    Args:
4991        *properties: dictionary of properties to set which are
4992            auto converted to sql objects eg None -> NULL
4993        where: sql conditional parsed into a WHERE statement
4994        from_: sql statement parsed into a FROM statement
4995        dialect: the dialect used to parse the input expressions.
4996        **opts: other options to use to parse the input expressions.
4997
4998    Returns:
4999        Update: the syntax tree for the UPDATE statement.
5000    """
5001    update_expr = Update(this=maybe_parse(table, into=Table, dialect=dialect))
5002    update_expr.set(
5003        "expressions",
5004        [
5005            EQ(this=maybe_parse(k, dialect=dialect, **opts), expression=convert(v))
5006            for k, v in properties.items()
5007        ],
5008    )
5009    if from_:
5010        update_expr.set(
5011            "from",
5012            maybe_parse(from_, into=From, dialect=dialect, prefix="FROM", **opts),
5013        )
5014    if isinstance(where, Condition):
5015        where = Where(this=where)
5016    if where:
5017        update_expr.set(
5018            "where",
5019            maybe_parse(where, into=Where, dialect=dialect, prefix="WHERE", **opts),
5020        )
5021    return update_expr
5022
5023
5024def delete(
5025    table: ExpOrStr,
5026    where: t.Optional[ExpOrStr] = None,
5027    returning: t.Optional[ExpOrStr] = None,
5028    dialect: DialectType = None,
5029    **opts,
5030) -> Delete:
5031    """
5032    Builds a delete statement.
5033
5034    Example:
5035        >>> delete("my_table", where="id > 1").sql()
5036        'DELETE FROM my_table WHERE id > 1'
5037
5038    Args:
5039        where: sql conditional parsed into a WHERE statement
5040        returning: sql conditional parsed into a RETURNING statement
5041        dialect: the dialect used to parse the input expressions.
5042        **opts: other options to use to parse the input expressions.
5043
5044    Returns:
5045        Delete: the syntax tree for the DELETE statement.
5046    """
5047    delete_expr = Delete().delete(table, dialect=dialect, copy=False, **opts)
5048    if where:
5049        delete_expr = delete_expr.where(where, dialect=dialect, copy=False, **opts)
5050    if returning:
5051        delete_expr = delete_expr.returning(returning, dialect=dialect, copy=False, **opts)
5052    return delete_expr
5053
5054
5055def insert(
5056    expression: ExpOrStr,
5057    into: ExpOrStr,
5058    columns: t.Optional[t.Sequence[ExpOrStr]] = None,
5059    overwrite: t.Optional[bool] = None,
5060    dialect: DialectType = None,
5061    copy: bool = True,
5062    **opts,
5063) -> Insert:
5064    """
5065    Builds an INSERT statement.
5066
5067    Example:
5068        >>> insert("VALUES (1, 2, 3)", "tbl").sql()
5069        'INSERT INTO tbl VALUES (1, 2, 3)'
5070
5071    Args:
5072        expression: the sql string or expression of the INSERT statement
5073        into: the tbl to insert data to.
5074        columns: optionally the table's column names.
5075        overwrite: whether to INSERT OVERWRITE or not.
5076        dialect: the dialect used to parse the input expressions.
5077        copy: whether or not to copy the expression.
5078        **opts: other options to use to parse the input expressions.
5079
5080    Returns:
5081        Insert: the syntax tree for the INSERT statement.
5082    """
5083    expr = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
5084    this: Table | Schema = maybe_parse(into, into=Table, dialect=dialect, copy=copy, **opts)
5085
5086    if columns:
5087        this = _apply_list_builder(
5088            *columns,
5089            instance=Schema(this=this),
5090            arg="expressions",
5091            into=Identifier,
5092            copy=False,
5093            dialect=dialect,
5094            **opts,
5095        )
5096
5097    return Insert(this=this, expression=expr, overwrite=overwrite)
5098
5099
5100def condition(
5101    expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
5102) -> Condition:
5103    """
5104    Initialize a logical condition expression.
5105
5106    Example:
5107        >>> condition("x=1").sql()
5108        'x = 1'
5109
5110        This is helpful for composing larger logical syntax trees:
5111        >>> where = condition("x=1")
5112        >>> where = where.and_("y=1")
5113        >>> Select().from_("tbl").select("*").where(where).sql()
5114        'SELECT * FROM tbl WHERE x = 1 AND y = 1'
5115
5116    Args:
5117        *expression: the SQL code string to parse.
5118            If an Expression instance is passed, this is used as-is.
5119        dialect: the dialect used to parse the input expression (in the case that the
5120            input expression is a SQL string).
5121        copy: Whether or not to copy `expression` (only applies to expressions).
5122        **opts: other options to use to parse the input expressions (again, in the case
5123            that the input expression is a SQL string).
5124
5125    Returns:
5126        The new Condition instance
5127    """
5128    return maybe_parse(
5129        expression,
5130        into=Condition,
5131        dialect=dialect,
5132        copy=copy,
5133        **opts,
5134    )
5135
5136
5137def and_(
5138    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
5139) -> Condition:
5140    """
5141    Combine multiple conditions with an AND logical operator.
5142
5143    Example:
5144        >>> and_("x=1", and_("y=1", "z=1")).sql()
5145        'x = 1 AND (y = 1 AND z = 1)'
5146
5147    Args:
5148        *expressions: the SQL code strings to parse.
5149            If an Expression instance is passed, this is used as-is.
5150        dialect: the dialect used to parse the input expression.
5151        copy: whether or not to copy `expressions` (only applies to Expressions).
5152        **opts: other options to use to parse the input expressions.
5153
5154    Returns:
5155        And: the new condition
5156    """
5157    return t.cast(Condition, _combine(expressions, And, dialect, copy=copy, **opts))
5158
5159
5160def or_(
5161    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
5162) -> Condition:
5163    """
5164    Combine multiple conditions with an OR logical operator.
5165
5166    Example:
5167        >>> or_("x=1", or_("y=1", "z=1")).sql()
5168        'x = 1 OR (y = 1 OR z = 1)'
5169
5170    Args:
5171        *expressions: the SQL code strings to parse.
5172            If an Expression instance is passed, this is used as-is.
5173        dialect: the dialect used to parse the input expression.
5174        copy: whether or not to copy `expressions` (only applies to Expressions).
5175        **opts: other options to use to parse the input expressions.
5176
5177    Returns:
5178        Or: the new condition
5179    """
5180    return t.cast(Condition, _combine(expressions, Or, dialect, copy=copy, **opts))
5181
5182
5183def not_(expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts) -> Not:
5184    """
5185    Wrap a condition with a NOT operator.
5186
5187    Example:
5188        >>> not_("this_suit='black'").sql()
5189        "NOT this_suit = 'black'"
5190
5191    Args:
5192        expression: the SQL code string to parse.
5193            If an Expression instance is passed, this is used as-is.
5194        dialect: the dialect used to parse the input expression.
5195        copy: whether to copy the expression or not.
5196        **opts: other options to use to parse the input expressions.
5197
5198    Returns:
5199        The new condition.
5200    """
5201    this = condition(
5202        expression,
5203        dialect=dialect,
5204        copy=copy,
5205        **opts,
5206    )
5207    return Not(this=_wrap(this, Connector))
5208
5209
5210def paren(expression: ExpOrStr, copy: bool = True) -> Paren:
5211    """
5212    Wrap an expression in parentheses.
5213
5214    Example:
5215        >>> paren("5 + 3").sql()
5216        '(5 + 3)'
5217
5218    Args:
5219        expression: the SQL code string to parse.
5220            If an Expression instance is passed, this is used as-is.
5221        copy: whether to copy the expression or not.
5222
5223    Returns:
5224        The wrapped expression.
5225    """
5226    return Paren(this=maybe_parse(expression, copy=copy))
5227
5228
5229SAFE_IDENTIFIER_RE = re.compile(r"^[_a-zA-Z][\w]*$")
5230
5231
5232@t.overload
5233def to_identifier(name: None, quoted: t.Optional[bool] = None, copy: bool = True) -> None:
5234    ...
5235
5236
5237@t.overload
5238def to_identifier(
5239    name: str | Identifier, quoted: t.Optional[bool] = None, copy: bool = True
5240) -> Identifier:
5241    ...
5242
5243
5244def to_identifier(name, quoted=None, copy=True):
5245    """Builds an identifier.
5246
5247    Args:
5248        name: The name to turn into an identifier.
5249        quoted: Whether or not force quote the identifier.
5250        copy: Whether or not to copy a passed in Identefier node.
5251
5252    Returns:
5253        The identifier ast node.
5254    """
5255
5256    if name is None:
5257        return None
5258
5259    if isinstance(name, Identifier):
5260        identifier = _maybe_copy(name, copy)
5261    elif isinstance(name, str):
5262        identifier = Identifier(
5263            this=name,
5264            quoted=not SAFE_IDENTIFIER_RE.match(name) if quoted is None else quoted,
5265        )
5266    else:
5267        raise ValueError(f"Name needs to be a string or an Identifier, got: {name.__class__}")
5268    return identifier
5269
5270
5271INTERVAL_STRING_RE = re.compile(r"\s*([0-9]+)\s*([a-zA-Z]+)\s*")
5272
5273
5274def to_interval(interval: str | Literal) -> Interval:
5275    """Builds an interval expression from a string like '1 day' or '5 months'."""
5276    if isinstance(interval, Literal):
5277        if not interval.is_string:
5278            raise ValueError("Invalid interval string.")
5279
5280        interval = interval.this
5281
5282    interval_parts = INTERVAL_STRING_RE.match(interval)  # type: ignore
5283
5284    if not interval_parts:
5285        raise ValueError("Invalid interval string.")
5286
5287    return Interval(
5288        this=Literal.string(interval_parts.group(1)),
5289        unit=Var(this=interval_parts.group(2)),
5290    )
5291
5292
5293@t.overload
5294def to_table(sql_path: str | Table, **kwargs) -> Table:
5295    ...
5296
5297
5298@t.overload
5299def to_table(sql_path: None, **kwargs) -> None:
5300    ...
5301
5302
5303def to_table(
5304    sql_path: t.Optional[str | Table], dialect: DialectType = None, **kwargs
5305) -> t.Optional[Table]:
5306    """
5307    Create a table expression from a `[catalog].[schema].[table]` sql path. Catalog and schema are optional.
5308    If a table is passed in then that table is returned.
5309
5310    Args:
5311        sql_path: a `[catalog].[schema].[table]` string.
5312        dialect: the source dialect according to which the table name will be parsed.
5313        kwargs: the kwargs to instantiate the resulting `Table` expression with.
5314
5315    Returns:
5316        A table expression.
5317    """
5318    if sql_path is None or isinstance(sql_path, Table):
5319        return sql_path
5320    if not isinstance(sql_path, str):
5321        raise ValueError(f"Invalid type provided for a table: {type(sql_path)}")
5322
5323    table = maybe_parse(sql_path, into=Table, dialect=dialect)
5324    if table:
5325        for k, v in kwargs.items():
5326            table.set(k, v)
5327
5328    return table
5329
5330
5331def to_column(sql_path: str | Column, **kwargs) -> Column:
5332    """
5333    Create a column from a `[table].[column]` sql path. Schema is optional.
5334
5335    If a column is passed in then that column is returned.
5336
5337    Args:
5338        sql_path: `[table].[column]` string
5339    Returns:
5340        Table: A column expression
5341    """
5342    if sql_path is None or isinstance(sql_path, Column):
5343        return sql_path
5344    if not isinstance(sql_path, str):
5345        raise ValueError(f"Invalid type provided for column: {type(sql_path)}")
5346    return column(*reversed(sql_path.split(".")), **kwargs)  # type: ignore
5347
5348
5349def alias_(
5350    expression: ExpOrStr,
5351    alias: str | Identifier,
5352    table: bool | t.Sequence[str | Identifier] = False,
5353    quoted: t.Optional[bool] = None,
5354    dialect: DialectType = None,
5355    copy: bool = True,
5356    **opts,
5357):
5358    """Create an Alias expression.
5359
5360    Example:
5361        >>> alias_('foo', 'bar').sql()
5362        'foo AS bar'
5363
5364        >>> alias_('(select 1, 2)', 'bar', table=['a', 'b']).sql()
5365        '(SELECT 1, 2) AS bar(a, b)'
5366
5367    Args:
5368        expression: the SQL code strings to parse.
5369            If an Expression instance is passed, this is used as-is.
5370        alias: the alias name to use. If the name has
5371            special characters it is quoted.
5372        table: Whether or not to create a table alias, can also be a list of columns.
5373        quoted: whether or not to quote the alias
5374        dialect: the dialect used to parse the input expression.
5375        copy: Whether or not to copy the expression.
5376        **opts: other options to use to parse the input expressions.
5377
5378    Returns:
5379        Alias: the aliased expression
5380    """
5381    exp = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
5382    alias = to_identifier(alias, quoted=quoted)
5383
5384    if table:
5385        table_alias = TableAlias(this=alias)
5386        exp.set("alias", table_alias)
5387
5388        if not isinstance(table, bool):
5389            for column in table:
5390                table_alias.append("columns", to_identifier(column, quoted=quoted))
5391
5392        return exp
5393
5394    # We don't set the "alias" arg for Window expressions, because that would add an IDENTIFIER node in
5395    # the AST, representing a "named_window" [1] construct (eg. bigquery). What we want is an ALIAS node
5396    # for the complete Window expression.
5397    #
5398    # [1]: https://cloud.google.com/bigquery/docs/reference/standard-sql/window-function-calls
5399
5400    if "alias" in exp.arg_types and not isinstance(exp, Window):
5401        exp.set("alias", alias)
5402        return exp
5403    return Alias(this=exp, alias=alias)
5404
5405
5406def subquery(
5407    expression: ExpOrStr,
5408    alias: t.Optional[Identifier | str] = None,
5409    dialect: DialectType = None,
5410    **opts,
5411) -> Select:
5412    """
5413    Build a subquery expression.
5414
5415    Example:
5416        >>> subquery('select x from tbl', 'bar').select('x').sql()
5417        'SELECT x FROM (SELECT x FROM tbl) AS bar'
5418
5419    Args:
5420        expression: the SQL code strings to parse.
5421            If an Expression instance is passed, this is used as-is.
5422        alias: the alias name to use.
5423        dialect: the dialect used to parse the input expression.
5424        **opts: other options to use to parse the input expressions.
5425
5426    Returns:
5427        A new Select instance with the subquery expression included.
5428    """
5429
5430    expression = maybe_parse(expression, dialect=dialect, **opts).subquery(alias)
5431    return Select().from_(expression, dialect=dialect, **opts)
5432
5433
5434def column(
5435    col: str | Identifier,
5436    table: t.Optional[str | Identifier] = None,
5437    db: t.Optional[str | Identifier] = None,
5438    catalog: t.Optional[str | Identifier] = None,
5439    quoted: t.Optional[bool] = None,
5440) -> Column:
5441    """
5442    Build a Column.
5443
5444    Args:
5445        col: Column name.
5446        table: Table name.
5447        db: Database name.
5448        catalog: Catalog name.
5449        quoted: Whether to force quotes on the column's identifiers.
5450
5451    Returns:
5452        The new Column instance.
5453    """
5454    return Column(
5455        this=to_identifier(col, quoted=quoted),
5456        table=to_identifier(table, quoted=quoted),
5457        db=to_identifier(db, quoted=quoted),
5458        catalog=to_identifier(catalog, quoted=quoted),
5459    )
5460
5461
5462def cast(expression: ExpOrStr, to: str | DataType | DataType.Type, **opts) -> Cast:
5463    """Cast an expression to a data type.
5464
5465    Example:
5466        >>> cast('x + 1', 'int').sql()
5467        'CAST(x + 1 AS INT)'
5468
5469    Args:
5470        expression: The expression to cast.
5471        to: The datatype to cast to.
5472
5473    Returns:
5474        The new Cast instance.
5475    """
5476    expression = maybe_parse(expression, **opts)
5477    return Cast(this=expression, to=DataType.build(to, **opts))
5478
5479
5480def table_(
5481    table: Identifier | str,
5482    db: t.Optional[Identifier | str] = None,
5483    catalog: t.Optional[Identifier | str] = None,
5484    quoted: t.Optional[bool] = None,
5485    alias: t.Optional[Identifier | str] = None,
5486) -> Table:
5487    """Build a Table.
5488
5489    Args:
5490        table: Table name.
5491        db: Database name.
5492        catalog: Catalog name.
5493        quote: Whether to force quotes on the table's identifiers.
5494        alias: Table's alias.
5495
5496    Returns:
5497        The new Table instance.
5498    """
5499    return Table(
5500        this=to_identifier(table, quoted=quoted),
5501        db=to_identifier(db, quoted=quoted),
5502        catalog=to_identifier(catalog, quoted=quoted),
5503        alias=TableAlias(this=to_identifier(alias)) if alias else None,
5504    )
5505
5506
5507def values(
5508    values: t.Iterable[t.Tuple[t.Any, ...]],
5509    alias: t.Optional[str] = None,
5510    columns: t.Optional[t.Iterable[str] | t.Dict[str, DataType]] = None,
5511) -> Values:
5512    """Build VALUES statement.
5513
5514    Example:
5515        >>> values([(1, '2')]).sql()
5516        "VALUES (1, '2')"
5517
5518    Args:
5519        values: values statements that will be converted to SQL
5520        alias: optional alias
5521        columns: Optional list of ordered column names or ordered dictionary of column names to types.
5522         If either are provided then an alias is also required.
5523
5524    Returns:
5525        Values: the Values expression object
5526    """
5527    if columns and not alias:
5528        raise ValueError("Alias is required when providing columns")
5529
5530    return Values(
5531        expressions=[convert(tup) for tup in values],
5532        alias=(
5533            TableAlias(this=to_identifier(alias), columns=[to_identifier(x) for x in columns])
5534            if columns
5535            else (TableAlias(this=to_identifier(alias)) if alias else None)
5536        ),
5537    )
5538
5539
5540def var(name: t.Optional[ExpOrStr]) -> Var:
5541    """Build a SQL variable.
5542
5543    Example:
5544        >>> repr(var('x'))
5545        '(VAR this: x)'
5546
5547        >>> repr(var(column('x', table='y')))
5548        '(VAR this: x)'
5549
5550    Args:
5551        name: The name of the var or an expression who's name will become the var.
5552
5553    Returns:
5554        The new variable node.
5555    """
5556    if not name:
5557        raise ValueError("Cannot convert empty name into var.")
5558
5559    if isinstance(name, Expression):
5560        name = name.name
5561    return Var(this=name)
5562
5563
5564def rename_table(old_name: str | Table, new_name: str | Table) -> AlterTable:
5565    """Build ALTER TABLE... RENAME... expression
5566
5567    Args:
5568        old_name: The old name of the table
5569        new_name: The new name of the table
5570
5571    Returns:
5572        Alter table expression
5573    """
5574    old_table = to_table(old_name)
5575    new_table = to_table(new_name)
5576    return AlterTable(
5577        this=old_table,
5578        actions=[
5579            RenameTable(this=new_table),
5580        ],
5581    )
5582
5583
5584def convert(value: t.Any, copy: bool = False) -> Expression:
5585    """Convert a python value into an expression object.
5586
5587    Raises an error if a conversion is not possible.
5588
5589    Args:
5590        value: A python object.
5591        copy: Whether or not to copy `value` (only applies to Expressions and collections).
5592
5593    Returns:
5594        Expression: the equivalent expression object.
5595    """
5596    if isinstance(value, Expression):
5597        return _maybe_copy(value, copy)
5598    if isinstance(value, str):
5599        return Literal.string(value)
5600    if isinstance(value, bool):
5601        return Boolean(this=value)
5602    if value is None or (isinstance(value, float) and math.isnan(value)):
5603        return NULL
5604    if isinstance(value, numbers.Number):
5605        return Literal.number(value)
5606    if isinstance(value, datetime.datetime):
5607        datetime_literal = Literal.string(
5608            (value if value.tzinfo else value.replace(tzinfo=datetime.timezone.utc)).isoformat()
5609        )
5610        return TimeStrToTime(this=datetime_literal)
5611    if isinstance(value, datetime.date):
5612        date_literal = Literal.string(value.strftime("%Y-%m-%d"))
5613        return DateStrToDate(this=date_literal)
5614    if isinstance(value, tuple):
5615        return Tuple(expressions=[convert(v, copy=copy) for v in value])
5616    if isinstance(value, list):
5617        return Array(expressions=[convert(v, copy=copy) for v in value])
5618    if isinstance(value, dict):
5619        return Map(
5620            keys=[convert(k, copy=copy) for k in value],
5621            values=[convert(v, copy=copy) for v in value.values()],
5622        )
5623    raise ValueError(f"Cannot convert {value}")
5624
5625
5626def replace_children(expression: Expression, fun: t.Callable, *args, **kwargs) -> None:
5627    """
5628    Replace children of an expression with the result of a lambda fun(child) -> exp.
5629    """
5630    for k, v in expression.args.items():
5631        is_list_arg = type(v) is list
5632
5633        child_nodes = v if is_list_arg else [v]
5634        new_child_nodes = []
5635
5636        for cn in child_nodes:
5637            if isinstance(cn, Expression):
5638                for child_node in ensure_collection(fun(cn, *args, **kwargs)):
5639                    new_child_nodes.append(child_node)
5640                    child_node.parent = expression
5641                    child_node.arg_key = k
5642            else:
5643                new_child_nodes.append(cn)
5644
5645        expression.args[k] = new_child_nodes if is_list_arg else seq_get(new_child_nodes, 0)
5646
5647
5648def column_table_names(expression: Expression) -> t.List[str]:
5649    """
5650    Return all table names referenced through columns in an expression.
5651
5652    Example:
5653        >>> import sqlglot
5654        >>> column_table_names(sqlglot.parse_one("a.b AND c.d AND c.e"))
5655        ['c', 'a']
5656
5657    Args:
5658        expression: expression to find table names.
5659
5660    Returns:
5661        A list of unique names.
5662    """
5663    return list(dict.fromkeys(column.table for column in expression.find_all(Column)))
5664
5665
5666def table_name(table: Table | str) -> str:
5667    """Get the full name of a table as a string.
5668
5669    Args:
5670        table: table expression node or string.
5671
5672    Examples:
5673        >>> from sqlglot import exp, parse_one
5674        >>> table_name(parse_one("select * from a.b.c").find(exp.Table))
5675        'a.b.c'
5676
5677    Returns:
5678        The table name.
5679    """
5680
5681    table = maybe_parse(table, into=Table)
5682
5683    if not table:
5684        raise ValueError(f"Cannot parse {table}")
5685
5686    return ".".join(part for part in (table.text("catalog"), table.text("db"), table.name) if part)
5687
5688
5689def replace_tables(expression: E, mapping: t.Dict[str, str], copy: bool = True) -> E:
5690    """Replace all tables in expression according to the mapping.
5691
5692    Args:
5693        expression: expression node to be transformed and replaced.
5694        mapping: mapping of table names.
5695        copy: whether or not to copy the expression.
5696
5697    Examples:
5698        >>> from sqlglot import exp, parse_one
5699        >>> replace_tables(parse_one("select * from a.b"), {"a.b": "c"}).sql()
5700        'SELECT * FROM c'
5701
5702    Returns:
5703        The mapped expression.
5704    """
5705
5706    def _replace_tables(node: Expression) -> Expression:
5707        if isinstance(node, Table):
5708            new_name = mapping.get(table_name(node))
5709            if new_name:
5710                return to_table(
5711                    new_name,
5712                    **{k: v for k, v in node.args.items() if k not in ("this", "db", "catalog")},
5713                )
5714        return node
5715
5716    return expression.transform(_replace_tables, copy=copy)
5717
5718
5719def replace_placeholders(expression: Expression, *args, **kwargs) -> Expression:
5720    """Replace placeholders in an expression.
5721
5722    Args:
5723        expression: expression node to be transformed and replaced.
5724        args: positional names that will substitute unnamed placeholders in the given order.
5725        kwargs: keyword arguments that will substitute named placeholders.
5726
5727    Examples:
5728        >>> from sqlglot import exp, parse_one
5729        >>> replace_placeholders(
5730        ...     parse_one("select * from :tbl where ? = ?"),
5731        ...     exp.to_identifier("str_col"), "b", tbl=exp.to_identifier("foo")
5732        ... ).sql()
5733        "SELECT * FROM foo WHERE str_col = 'b'"
5734
5735    Returns:
5736        The mapped expression.
5737    """
5738
5739    def _replace_placeholders(node: Expression, args, **kwargs) -> Expression:
5740        if isinstance(node, Placeholder):
5741            if node.name:
5742                new_name = kwargs.get(node.name)
5743                if new_name:
5744                    return convert(new_name)
5745            else:
5746                try:
5747                    return convert(next(args))
5748                except StopIteration:
5749                    pass
5750        return node
5751
5752    return expression.transform(_replace_placeholders, iter(args), **kwargs)
5753
5754
5755def expand(
5756    expression: Expression, sources: t.Dict[str, Subqueryable], copy: bool = True
5757) -> Expression:
5758    """Transforms an expression by expanding all referenced sources into subqueries.
5759
5760    Examples:
5761        >>> from sqlglot import parse_one
5762        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y")}).sql()
5763        'SELECT * FROM (SELECT * FROM y) AS z /* source: x */'
5764
5765        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y"), "y": parse_one("select * from z")}).sql()
5766        'SELECT * FROM (SELECT * FROM (SELECT * FROM z) AS y /* source: y */) AS z /* source: x */'
5767
5768    Args:
5769        expression: The expression to expand.
5770        sources: A dictionary of name to Subqueryables.
5771        copy: Whether or not to copy the expression during transformation. Defaults to True.
5772
5773    Returns:
5774        The transformed expression.
5775    """
5776
5777    def _expand(node: Expression):
5778        if isinstance(node, Table):
5779            name = table_name(node)
5780            source = sources.get(name)
5781            if source:
5782                subquery = source.subquery(node.alias or name)
5783                subquery.comments = [f"source: {name}"]
5784                return subquery.transform(_expand, copy=False)
5785        return node
5786
5787    return expression.transform(_expand, copy=copy)
5788
5789
5790def func(name: str, *args, dialect: DialectType = None, **kwargs) -> Func:
5791    """
5792    Returns a Func expression.
5793
5794    Examples:
5795        >>> func("abs", 5).sql()
5796        'ABS(5)'
5797
5798        >>> func("cast", this=5, to=DataType.build("DOUBLE")).sql()
5799        'CAST(5 AS DOUBLE)'
5800
5801    Args:
5802        name: the name of the function to build.
5803        args: the args used to instantiate the function of interest.
5804        dialect: the source dialect.
5805        kwargs: the kwargs used to instantiate the function of interest.
5806
5807    Note:
5808        The arguments `args` and `kwargs` are mutually exclusive.
5809
5810    Returns:
5811        An instance of the function of interest, or an anonymous function, if `name` doesn't
5812        correspond to an existing `sqlglot.expressions.Func` class.
5813    """
5814    if args and kwargs:
5815        raise ValueError("Can't use both args and kwargs to instantiate a function.")
5816
5817    from sqlglot.dialects.dialect import Dialect
5818
5819    converted: t.List[Expression] = [maybe_parse(arg, dialect=dialect) for arg in args]
5820    kwargs = {key: maybe_parse(value, dialect=dialect) for key, value in kwargs.items()}
5821
5822    parser = Dialect.get_or_raise(dialect)().parser()
5823    from_args_list = parser.FUNCTIONS.get(name.upper())
5824
5825    if from_args_list:
5826        function = from_args_list(converted) if converted else from_args_list.__self__(**kwargs)  # type: ignore
5827    else:
5828        kwargs = kwargs or {"expressions": converted}
5829        function = Anonymous(this=name, **kwargs)
5830
5831    for error_message in function.error_messages(converted):
5832        raise ValueError(error_message)
5833
5834    return function
5835
5836
5837def true() -> Boolean:
5838    """
5839    Returns a true Boolean expression.
5840    """
5841    return Boolean(this=True)
5842
5843
5844def false() -> Boolean:
5845    """
5846    Returns a false Boolean expression.
5847    """
5848    return Boolean(this=False)
5849
5850
5851def null() -> Null:
5852    """
5853    Returns a Null expression.
5854    """
5855    return Null()
5856
5857
5858# TODO: deprecate this
5859TRUE = Boolean(this=True)
5860FALSE = Boolean(this=False)
5861NULL = Null()
class Expression:
 55class Expression(metaclass=_Expression):
 56    """
 57    The base class for all expressions in a syntax tree. Each Expression encapsulates any necessary
 58    context, such as its child expressions, their names (arg keys), and whether a given child expression
 59    is optional or not.
 60
 61    Attributes:
 62        key: a unique key for each class in the Expression hierarchy. This is useful for hashing
 63            and representing expressions as strings.
 64        arg_types: determines what arguments (child nodes) are supported by an expression. It
 65            maps arg keys to booleans that indicate whether the corresponding args are optional.
 66        parent: a reference to the parent expression (or None, in case of root expressions).
 67        arg_key: the arg key an expression is associated with, i.e. the name its parent expression
 68            uses to refer to it.
 69        comments: a list of comments that are associated with a given expression. This is used in
 70            order to preserve comments when transpiling SQL code.
 71        _type: the `sqlglot.expressions.DataType` type of an expression. This is inferred by the
 72            optimizer, in order to enable some transformations that require type information.
 73
 74    Example:
 75        >>> class Foo(Expression):
 76        ...     arg_types = {"this": True, "expression": False}
 77
 78        The above definition informs us that Foo is an Expression that requires an argument called
 79        "this" and may also optionally receive an argument called "expression".
 80
 81    Args:
 82        args: a mapping used for retrieving the arguments of an expression, given their arg keys.
 83    """
 84
 85    key = "expression"
 86    arg_types = {"this": True}
 87    __slots__ = ("args", "parent", "arg_key", "comments", "_type", "_meta", "_hash")
 88
 89    def __init__(self, **args: t.Any):
 90        self.args: t.Dict[str, t.Any] = args
 91        self.parent: t.Optional[Expression] = None
 92        self.arg_key: t.Optional[str] = None
 93        self.comments: t.Optional[t.List[str]] = None
 94        self._type: t.Optional[DataType] = None
 95        self._meta: t.Optional[t.Dict[str, t.Any]] = None
 96        self._hash: t.Optional[int] = None
 97
 98        for arg_key, value in self.args.items():
 99            self._set_parent(arg_key, value)
100
101    def __eq__(self, other) -> bool:
102        return type(self) is type(other) and hash(self) == hash(other)
103
104    @property
105    def hashable_args(self) -> t.Any:
106        args = (self.args.get(k) for k in self.arg_types)
107
108        return tuple(
109            (tuple(_norm_arg(a) for a in arg) if arg else None)
110            if type(arg) is list
111            else (_norm_arg(arg) if arg is not None and arg is not False else None)
112            for arg in args
113        )
114
115    def __hash__(self) -> int:
116        if self._hash is not None:
117            return self._hash
118
119        return hash((self.__class__, self.hashable_args))
120
121    @property
122    def this(self):
123        """
124        Retrieves the argument with key "this".
125        """
126        return self.args.get("this")
127
128    @property
129    def expression(self):
130        """
131        Retrieves the argument with key "expression".
132        """
133        return self.args.get("expression")
134
135    @property
136    def expressions(self):
137        """
138        Retrieves the argument with key "expressions".
139        """
140        return self.args.get("expressions") or []
141
142    def text(self, key) -> str:
143        """
144        Returns a textual representation of the argument corresponding to "key". This can only be used
145        for args that are strings or leaf Expression instances, such as identifiers and literals.
146        """
147        field = self.args.get(key)
148        if isinstance(field, str):
149            return field
150        if isinstance(field, (Identifier, Literal, Var)):
151            return field.this
152        if isinstance(field, (Star, Null)):
153            return field.name
154        return ""
155
156    @property
157    def is_string(self) -> bool:
158        """
159        Checks whether a Literal expression is a string.
160        """
161        return isinstance(self, Literal) and self.args["is_string"]
162
163    @property
164    def is_number(self) -> bool:
165        """
166        Checks whether a Literal expression is a number.
167        """
168        return isinstance(self, Literal) and not self.args["is_string"]
169
170    @property
171    def is_int(self) -> bool:
172        """
173        Checks whether a Literal expression is an integer.
174        """
175        if self.is_number:
176            try:
177                int(self.name)
178                return True
179            except ValueError:
180                pass
181        return False
182
183    @property
184    def is_star(self) -> bool:
185        """Checks whether an expression is a star."""
186        return isinstance(self, Star) or (isinstance(self, Column) and isinstance(self.this, Star))
187
188    @property
189    def alias(self) -> str:
190        """
191        Returns the alias of the expression, or an empty string if it's not aliased.
192        """
193        if isinstance(self.args.get("alias"), TableAlias):
194            return self.args["alias"].name
195        return self.text("alias")
196
197    @property
198    def name(self) -> str:
199        return self.text("this")
200
201    @property
202    def alias_or_name(self) -> str:
203        return self.alias or self.name
204
205    @property
206    def output_name(self) -> str:
207        """
208        Name of the output column if this expression is a selection.
209
210        If the Expression has no output name, an empty string is returned.
211
212        Example:
213            >>> from sqlglot import parse_one
214            >>> parse_one("SELECT a").expressions[0].output_name
215            'a'
216            >>> parse_one("SELECT b AS c").expressions[0].output_name
217            'c'
218            >>> parse_one("SELECT 1 + 2").expressions[0].output_name
219            ''
220        """
221        return ""
222
223    @property
224    def type(self) -> t.Optional[DataType]:
225        return self._type
226
227    @type.setter
228    def type(self, dtype: t.Optional[DataType | DataType.Type | str]) -> None:
229        if dtype and not isinstance(dtype, DataType):
230            dtype = DataType.build(dtype)
231        self._type = dtype  # type: ignore
232
233    @property
234    def meta(self) -> t.Dict[str, t.Any]:
235        if self._meta is None:
236            self._meta = {}
237        return self._meta
238
239    def __deepcopy__(self, memo):
240        copy = self.__class__(**deepcopy(self.args))
241        if self.comments is not None:
242            copy.comments = deepcopy(self.comments)
243
244        if self._type is not None:
245            copy._type = self._type.copy()
246
247        if self._meta is not None:
248            copy._meta = deepcopy(self._meta)
249
250        return copy
251
252    def copy(self):
253        """
254        Returns a deep copy of the expression.
255        """
256        new = deepcopy(self)
257        new.parent = self.parent
258        return new
259
260    def add_comments(self, comments: t.Optional[t.List[str]]) -> None:
261        if self.comments is None:
262            self.comments = []
263        if comments:
264            self.comments.extend(comments)
265
266    def append(self, arg_key: str, value: t.Any) -> None:
267        """
268        Appends value to arg_key if it's a list or sets it as a new list.
269
270        Args:
271            arg_key (str): name of the list expression arg
272            value (Any): value to append to the list
273        """
274        if not isinstance(self.args.get(arg_key), list):
275            self.args[arg_key] = []
276        self.args[arg_key].append(value)
277        self._set_parent(arg_key, value)
278
279    def set(self, arg_key: str, value: t.Any) -> None:
280        """
281        Sets `arg_key` to `value`.
282
283        Args:
284            arg_key (str): name of the expression arg.
285            value: value to set the arg to.
286        """
287        self.args[arg_key] = value
288        self._set_parent(arg_key, value)
289
290    def _set_parent(self, arg_key: str, value: t.Any) -> None:
291        if hasattr(value, "parent"):
292            value.parent = self
293            value.arg_key = arg_key
294        elif type(value) is list:
295            for v in value:
296                if hasattr(v, "parent"):
297                    v.parent = self
298                    v.arg_key = arg_key
299
300    @property
301    def depth(self) -> int:
302        """
303        Returns the depth of this tree.
304        """
305        if self.parent:
306            return self.parent.depth + 1
307        return 0
308
309    def iter_expressions(self) -> t.Iterator[t.Tuple[str, Expression]]:
310        """Yields the key and expression for all arguments, exploding list args."""
311        for k, vs in self.args.items():
312            if type(vs) is list:
313                for v in vs:
314                    if hasattr(v, "parent"):
315                        yield k, v
316            else:
317                if hasattr(vs, "parent"):
318                    yield k, vs
319
320    def find(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Optional[E]:
321        """
322        Returns the first node in this tree which matches at least one of
323        the specified types.
324
325        Args:
326            expression_types: the expression type(s) to match.
327            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
328
329        Returns:
330            The node which matches the criteria or None if no such node was found.
331        """
332        return next(self.find_all(*expression_types, bfs=bfs), None)
333
334    def find_all(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Iterator[E]:
335        """
336        Returns a generator object which visits all nodes in this tree and only
337        yields those that match at least one of the specified expression types.
338
339        Args:
340            expression_types: the expression type(s) to match.
341            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
342
343        Returns:
344            The generator object.
345        """
346        for expression, *_ in self.walk(bfs=bfs):
347            if isinstance(expression, expression_types):
348                yield expression
349
350    def find_ancestor(self, *expression_types: t.Type[E]) -> t.Optional[E]:
351        """
352        Returns a nearest parent matching expression_types.
353
354        Args:
355            expression_types: the expression type(s) to match.
356
357        Returns:
358            The parent node.
359        """
360        ancestor = self.parent
361        while ancestor and not isinstance(ancestor, expression_types):
362            ancestor = ancestor.parent
363        return t.cast(E, ancestor)
364
365    @property
366    def parent_select(self) -> t.Optional[Select]:
367        """
368        Returns the parent select statement.
369        """
370        return self.find_ancestor(Select)
371
372    @property
373    def same_parent(self) -> bool:
374        """Returns if the parent is the same class as itself."""
375        return type(self.parent) is self.__class__
376
377    def root(self) -> Expression:
378        """
379        Returns the root expression of this tree.
380        """
381        expression = self
382        while expression.parent:
383            expression = expression.parent
384        return expression
385
386    def walk(self, bfs=True, prune=None):
387        """
388        Returns a generator object which visits all nodes in this tree.
389
390        Args:
391            bfs (bool): if set to True the BFS traversal order will be applied,
392                otherwise the DFS traversal will be used instead.
393            prune ((node, parent, arg_key) -> bool): callable that returns True if
394                the generator should stop traversing this branch of the tree.
395
396        Returns:
397            the generator object.
398        """
399        if bfs:
400            yield from self.bfs(prune=prune)
401        else:
402            yield from self.dfs(prune=prune)
403
404    def dfs(self, parent=None, key=None, prune=None):
405        """
406        Returns a generator object which visits all nodes in this tree in
407        the DFS (Depth-first) order.
408
409        Returns:
410            The generator object.
411        """
412        parent = parent or self.parent
413        yield self, parent, key
414        if prune and prune(self, parent, key):
415            return
416
417        for k, v in self.iter_expressions():
418            yield from v.dfs(self, k, prune)
419
420    def bfs(self, prune=None):
421        """
422        Returns a generator object which visits all nodes in this tree in
423        the BFS (Breadth-first) order.
424
425        Returns:
426            The generator object.
427        """
428        queue = deque([(self, self.parent, None)])
429
430        while queue:
431            item, parent, key = queue.popleft()
432
433            yield item, parent, key
434            if prune and prune(item, parent, key):
435                continue
436
437            for k, v in item.iter_expressions():
438                queue.append((v, item, k))
439
440    def unnest(self):
441        """
442        Returns the first non parenthesis child or self.
443        """
444        expression = self
445        while type(expression) is Paren:
446            expression = expression.this
447        return expression
448
449    def unalias(self):
450        """
451        Returns the inner expression if this is an Alias.
452        """
453        if isinstance(self, Alias):
454            return self.this
455        return self
456
457    def unnest_operands(self):
458        """
459        Returns unnested operands as a tuple.
460        """
461        return tuple(arg.unnest() for _, arg in self.iter_expressions())
462
463    def flatten(self, unnest=True):
464        """
465        Returns a generator which yields child nodes who's parents are the same class.
466
467        A AND B AND C -> [A, B, C]
468        """
469        for node, _, _ in self.dfs(prune=lambda n, p, *_: p and not type(n) is self.__class__):
470            if not type(node) is self.__class__:
471                yield node.unnest() if unnest else node
472
473    def __str__(self) -> str:
474        return self.sql()
475
476    def __repr__(self) -> str:
477        return self._to_s()
478
479    def sql(self, dialect: DialectType = None, **opts) -> str:
480        """
481        Returns SQL string representation of this tree.
482
483        Args:
484            dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
485            opts: other `sqlglot.generator.Generator` options.
486
487        Returns:
488            The SQL string.
489        """
490        from sqlglot.dialects import Dialect
491
492        return Dialect.get_or_raise(dialect)().generate(self, **opts)
493
494    def _to_s(self, hide_missing: bool = True, level: int = 0) -> str:
495        indent = "" if not level else "\n"
496        indent += "".join(["  "] * level)
497        left = f"({self.key.upper()} "
498
499        args: t.Dict[str, t.Any] = {
500            k: ", ".join(
501                v._to_s(hide_missing=hide_missing, level=level + 1)
502                if hasattr(v, "_to_s")
503                else str(v)
504                for v in ensure_list(vs)
505                if v is not None
506            )
507            for k, vs in self.args.items()
508        }
509        args["comments"] = self.comments
510        args["type"] = self.type
511        args = {k: v for k, v in args.items() if v or not hide_missing}
512
513        right = ", ".join(f"{k}: {v}" for k, v in args.items())
514        right += ")"
515
516        return indent + left + right
517
518    def transform(self, fun, *args, copy=True, **kwargs):
519        """
520        Recursively visits all tree nodes (excluding already transformed ones)
521        and applies the given transformation function to each node.
522
523        Args:
524            fun (function): a function which takes a node as an argument and returns a
525                new transformed node or the same node without modifications. If the function
526                returns None, then the corresponding node will be removed from the syntax tree.
527            copy (bool): if set to True a new tree instance is constructed, otherwise the tree is
528                modified in place.
529
530        Returns:
531            The transformed tree.
532        """
533        node = self.copy() if copy else self
534        new_node = fun(node, *args, **kwargs)
535
536        if new_node is None or not isinstance(new_node, Expression):
537            return new_node
538        if new_node is not node:
539            new_node.parent = node.parent
540            return new_node
541
542        replace_children(new_node, lambda child: child.transform(fun, *args, copy=False, **kwargs))
543        return new_node
544
545    @t.overload
546    def replace(self, expression: E) -> E:
547        ...
548
549    @t.overload
550    def replace(self, expression: None) -> None:
551        ...
552
553    def replace(self, expression):
554        """
555        Swap out this expression with a new expression.
556
557        For example::
558
559            >>> tree = Select().select("x").from_("tbl")
560            >>> tree.find(Column).replace(Column(this="y"))
561            (COLUMN this: y)
562            >>> tree.sql()
563            'SELECT y FROM tbl'
564
565        Args:
566            expression: new node
567
568        Returns:
569            The new expression or expressions.
570        """
571        if not self.parent:
572            return expression
573
574        parent = self.parent
575        self.parent = None
576
577        replace_children(parent, lambda child: expression if child is self else child)
578        return expression
579
580    def pop(self: E) -> E:
581        """
582        Remove this expression from its AST.
583
584        Returns:
585            The popped expression.
586        """
587        self.replace(None)
588        return self
589
590    def assert_is(self, type_: t.Type[E]) -> E:
591        """
592        Assert that this `Expression` is an instance of `type_`.
593
594        If it is NOT an instance of `type_`, this raises an assertion error.
595        Otherwise, this returns this expression.
596
597        Examples:
598            This is useful for type security in chained expressions:
599
600            >>> import sqlglot
601            >>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
602            'SELECT x, z FROM y'
603        """
604        assert isinstance(self, type_)
605        return self
606
607    def error_messages(self, args: t.Optional[t.Sequence] = None) -> t.List[str]:
608        """
609        Checks if this expression is valid (e.g. all mandatory args are set).
610
611        Args:
612            args: a sequence of values that were used to instantiate a Func expression. This is used
613                to check that the provided arguments don't exceed the function argument limit.
614
615        Returns:
616            A list of error messages for all possible errors that were found.
617        """
618        errors: t.List[str] = []
619
620        for k in self.args:
621            if k not in self.arg_types:
622                errors.append(f"Unexpected keyword: '{k}' for {self.__class__}")
623        for k, mandatory in self.arg_types.items():
624            v = self.args.get(k)
625            if mandatory and (v is None or (isinstance(v, list) and not v)):
626                errors.append(f"Required keyword: '{k}' missing for {self.__class__}")
627
628        if (
629            args
630            and isinstance(self, Func)
631            and len(args) > len(self.arg_types)
632            and not self.is_var_len_args
633        ):
634            errors.append(
635                f"The number of provided arguments ({len(args)}) is greater than "
636                f"the maximum number of supported arguments ({len(self.arg_types)})"
637            )
638
639        return errors
640
641    def dump(self):
642        """
643        Dump this Expression to a JSON-serializable dict.
644        """
645        from sqlglot.serde import dump
646
647        return dump(self)
648
649    @classmethod
650    def load(cls, obj):
651        """
652        Load a dict (as returned by `Expression.dump`) into an Expression instance.
653        """
654        from sqlglot.serde import load
655
656        return load(obj)

The base class for all expressions in a syntax tree. Each Expression encapsulates any necessary context, such as its child expressions, their names (arg keys), and whether a given child expression is optional or not.

Attributes:
  • key: a unique key for each class in the Expression hierarchy. This is useful for hashing and representing expressions as strings.
  • arg_types: determines what arguments (child nodes) are supported by an expression. It maps arg keys to booleans that indicate whether the corresponding args are optional.
  • parent: a reference to the parent expression (or None, in case of root expressions).
  • arg_key: the arg key an expression is associated with, i.e. the name its parent expression uses to refer to it.
  • comments: a list of comments that are associated with a given expression. This is used in order to preserve comments when transpiling SQL code.
  • _type: the sqlglot.expressions.DataType type of an expression. This is inferred by the optimizer, in order to enable some transformations that require type information.
Example:
>>> class Foo(Expression):
...     arg_types = {"this": True, "expression": False}

The above definition informs us that Foo is an Expression that requires an argument called "this" and may also optionally receive an argument called "expression".

Arguments:
  • args: a mapping used for retrieving the arguments of an expression, given their arg keys.
Expression(**args: Any)
89    def __init__(self, **args: t.Any):
90        self.args: t.Dict[str, t.Any] = args
91        self.parent: t.Optional[Expression] = None
92        self.arg_key: t.Optional[str] = None
93        self.comments: t.Optional[t.List[str]] = None
94        self._type: t.Optional[DataType] = None
95        self._meta: t.Optional[t.Dict[str, t.Any]] = None
96        self._hash: t.Optional[int] = None
97
98        for arg_key, value in self.args.items():
99            self._set_parent(arg_key, value)
this

Retrieves the argument with key "this".

expression

Retrieves the argument with key "expression".

expressions

Retrieves the argument with key "expressions".

def text(self, key) -> str:
142    def text(self, key) -> str:
143        """
144        Returns a textual representation of the argument corresponding to "key". This can only be used
145        for args that are strings or leaf Expression instances, such as identifiers and literals.
146        """
147        field = self.args.get(key)
148        if isinstance(field, str):
149            return field
150        if isinstance(field, (Identifier, Literal, Var)):
151            return field.this
152        if isinstance(field, (Star, Null)):
153            return field.name
154        return ""

Returns a textual representation of the argument corresponding to "key". This can only be used for args that are strings or leaf Expression instances, such as identifiers and literals.

is_string: bool

Checks whether a Literal expression is a string.

is_number: bool

Checks whether a Literal expression is a number.

is_int: bool

Checks whether a Literal expression is an integer.

is_star: bool

Checks whether an expression is a star.

alias: str

Returns the alias of the expression, or an empty string if it's not aliased.

output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
def copy(self):
252    def copy(self):
253        """
254        Returns a deep copy of the expression.
255        """
256        new = deepcopy(self)
257        new.parent = self.parent
258        return new

Returns a deep copy of the expression.

def add_comments(self, comments: Optional[List[str]]) -> None:
260    def add_comments(self, comments: t.Optional[t.List[str]]) -> None:
261        if self.comments is None:
262            self.comments = []
263        if comments:
264            self.comments.extend(comments)
def append(self, arg_key: str, value: Any) -> None:
266    def append(self, arg_key: str, value: t.Any) -> None:
267        """
268        Appends value to arg_key if it's a list or sets it as a new list.
269
270        Args:
271            arg_key (str): name of the list expression arg
272            value (Any): value to append to the list
273        """
274        if not isinstance(self.args.get(arg_key), list):
275            self.args[arg_key] = []
276        self.args[arg_key].append(value)
277        self._set_parent(arg_key, value)

Appends value to arg_key if it's a list or sets it as a new list.

Arguments:
  • arg_key (str): name of the list expression arg
  • value (Any): value to append to the list
def set(self, arg_key: str, value: Any) -> None:
279    def set(self, arg_key: str, value: t.Any) -> None:
280        """
281        Sets `arg_key` to `value`.
282
283        Args:
284            arg_key (str): name of the expression arg.
285            value: value to set the arg to.
286        """
287        self.args[arg_key] = value
288        self._set_parent(arg_key, value)

Sets arg_key to value.

Arguments:
  • arg_key (str): name of the expression arg.
  • value: value to set the arg to.
depth: int

Returns the depth of this tree.

def iter_expressions(self) -> Iterator[Tuple[str, sqlglot.expressions.Expression]]:
309    def iter_expressions(self) -> t.Iterator[t.Tuple[str, Expression]]:
310        """Yields the key and expression for all arguments, exploding list args."""
311        for k, vs in self.args.items():
312            if type(vs) is list:
313                for v in vs:
314                    if hasattr(v, "parent"):
315                        yield k, v
316            else:
317                if hasattr(vs, "parent"):
318                    yield k, vs

Yields the key and expression for all arguments, exploding list args.

def find(self, *expression_types: Type[~E], bfs: bool = True) -> Optional[~E]:
320    def find(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Optional[E]:
321        """
322        Returns the first node in this tree which matches at least one of
323        the specified types.
324
325        Args:
326            expression_types: the expression type(s) to match.
327            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
328
329        Returns:
330            The node which matches the criteria or None if no such node was found.
331        """
332        return next(self.find_all(*expression_types, bfs=bfs), None)

Returns the first node in this tree which matches at least one of the specified types.

Arguments:
  • expression_types: the expression type(s) to match.
  • bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
Returns:

The node which matches the criteria or None if no such node was found.

def find_all(self, *expression_types: Type[~E], bfs: bool = True) -> Iterator[~E]:
334    def find_all(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Iterator[E]:
335        """
336        Returns a generator object which visits all nodes in this tree and only
337        yields those that match at least one of the specified expression types.
338
339        Args:
340            expression_types: the expression type(s) to match.
341            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
342
343        Returns:
344            The generator object.
345        """
346        for expression, *_ in self.walk(bfs=bfs):
347            if isinstance(expression, expression_types):
348                yield expression

Returns a generator object which visits all nodes in this tree and only yields those that match at least one of the specified expression types.

Arguments:
  • expression_types: the expression type(s) to match.
  • bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
Returns:

The generator object.

def find_ancestor(self, *expression_types: Type[~E]) -> Optional[~E]:
350    def find_ancestor(self, *expression_types: t.Type[E]) -> t.Optional[E]:
351        """
352        Returns a nearest parent matching expression_types.
353
354        Args:
355            expression_types: the expression type(s) to match.
356
357        Returns:
358            The parent node.
359        """
360        ancestor = self.parent
361        while ancestor and not isinstance(ancestor, expression_types):
362            ancestor = ancestor.parent
363        return t.cast(E, ancestor)

Returns a nearest parent matching expression_types.

Arguments:
  • expression_types: the expression type(s) to match.
Returns:

The parent node.

parent_select: Optional[sqlglot.expressions.Select]

Returns the parent select statement.

same_parent: bool

Returns if the parent is the same class as itself.

def root(self) -> sqlglot.expressions.Expression:
377    def root(self) -> Expression:
378        """
379        Returns the root expression of this tree.
380        """
381        expression = self
382        while expression.parent:
383            expression = expression.parent
384        return expression

Returns the root expression of this tree.

def walk(self, bfs=True, prune=None):
386    def walk(self, bfs=True, prune=None):
387        """
388        Returns a generator object which visits all nodes in this tree.
389
390        Args:
391            bfs (bool): if set to True the BFS traversal order will be applied,
392                otherwise the DFS traversal will be used instead.
393            prune ((node, parent, arg_key) -> bool): callable that returns True if
394                the generator should stop traversing this branch of the tree.
395
396        Returns:
397            the generator object.
398        """
399        if bfs:
400            yield from self.bfs(prune=prune)
401        else:
402            yield from self.dfs(prune=prune)

Returns a generator object which visits all nodes in this tree.

Arguments:
  • bfs (bool): if set to True the BFS traversal order will be applied, otherwise the DFS traversal will be used instead.
  • prune ((node, parent, arg_key) -> bool): callable that returns True if the generator should stop traversing this branch of the tree.
Returns:

the generator object.

def dfs(self, parent=None, key=None, prune=None):
404    def dfs(self, parent=None, key=None, prune=None):
405        """
406        Returns a generator object which visits all nodes in this tree in
407        the DFS (Depth-first) order.
408
409        Returns:
410            The generator object.
411        """
412        parent = parent or self.parent
413        yield self, parent, key
414        if prune and prune(self, parent, key):
415            return
416
417        for k, v in self.iter_expressions():
418            yield from v.dfs(self, k, prune)

Returns a generator object which visits all nodes in this tree in the DFS (Depth-first) order.

Returns:

The generator object.

def bfs(self, prune=None):
420    def bfs(self, prune=None):
421        """
422        Returns a generator object which visits all nodes in this tree in
423        the BFS (Breadth-first) order.
424
425        Returns:
426            The generator object.
427        """
428        queue = deque([(self, self.parent, None)])
429
430        while queue:
431            item, parent, key = queue.popleft()
432
433            yield item, parent, key
434            if prune and prune(item, parent, key):
435                continue
436
437            for k, v in item.iter_expressions():
438                queue.append((v, item, k))

Returns a generator object which visits all nodes in this tree in the BFS (Breadth-first) order.

Returns:

The generator object.

def unnest(self):
440    def unnest(self):
441        """
442        Returns the first non parenthesis child or self.
443        """
444        expression = self
445        while type(expression) is Paren:
446            expression = expression.this
447        return expression

Returns the first non parenthesis child or self.

def unalias(self):
449    def unalias(self):
450        """
451        Returns the inner expression if this is an Alias.
452        """
453        if isinstance(self, Alias):
454            return self.this
455        return self

Returns the inner expression if this is an Alias.

def unnest_operands(self):
457    def unnest_operands(self):
458        """
459        Returns unnested operands as a tuple.
460        """
461        return tuple(arg.unnest() for _, arg in self.iter_expressions())

Returns unnested operands as a tuple.

def flatten(self, unnest=True):
463    def flatten(self, unnest=True):
464        """
465        Returns a generator which yields child nodes who's parents are the same class.
466
467        A AND B AND C -> [A, B, C]
468        """
469        for node, _, _ in self.dfs(prune=lambda n, p, *_: p and not type(n) is self.__class__):
470            if not type(node) is self.__class__:
471                yield node.unnest() if unnest else node

Returns a generator which yields child nodes who's parents are the same class.

A AND B AND C -> [A, B, C]

def sql( self, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> str:
479    def sql(self, dialect: DialectType = None, **opts) -> str:
480        """
481        Returns SQL string representation of this tree.
482
483        Args:
484            dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
485            opts: other `sqlglot.generator.Generator` options.
486
487        Returns:
488            The SQL string.
489        """
490        from sqlglot.dialects import Dialect
491
492        return Dialect.get_or_raise(dialect)().generate(self, **opts)

Returns SQL string representation of this tree.

Arguments:
  • dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
  • opts: other sqlglot.generator.Generator options.
Returns:

The SQL string.

def transform(self, fun, *args, copy=True, **kwargs):
518    def transform(self, fun, *args, copy=True, **kwargs):
519        """
520        Recursively visits all tree nodes (excluding already transformed ones)
521        and applies the given transformation function to each node.
522
523        Args:
524            fun (function): a function which takes a node as an argument and returns a
525                new transformed node or the same node without modifications. If the function
526                returns None, then the corresponding node will be removed from the syntax tree.
527            copy (bool): if set to True a new tree instance is constructed, otherwise the tree is
528                modified in place.
529
530        Returns:
531            The transformed tree.
532        """
533        node = self.copy() if copy else self
534        new_node = fun(node, *args, **kwargs)
535
536        if new_node is None or not isinstance(new_node, Expression):
537            return new_node
538        if new_node is not node:
539            new_node.parent = node.parent
540            return new_node
541
542        replace_children(new_node, lambda child: child.transform(fun, *args, copy=False, **kwargs))
543        return new_node

Recursively visits all tree nodes (excluding already transformed ones) and applies the given transformation function to each node.

Arguments:
  • fun (function): a function which takes a node as an argument and returns a new transformed node or the same node without modifications. If the function returns None, then the corresponding node will be removed from the syntax tree.
  • copy (bool): if set to True a new tree instance is constructed, otherwise the tree is modified in place.
Returns:

The transformed tree.

def replace(self, expression):
553    def replace(self, expression):
554        """
555        Swap out this expression with a new expression.
556
557        For example::
558
559            >>> tree = Select().select("x").from_("tbl")
560            >>> tree.find(Column).replace(Column(this="y"))
561            (COLUMN this: y)
562            >>> tree.sql()
563            'SELECT y FROM tbl'
564
565        Args:
566            expression: new node
567
568        Returns:
569            The new expression or expressions.
570        """
571        if not self.parent:
572            return expression
573
574        parent = self.parent
575        self.parent = None
576
577        replace_children(parent, lambda child: expression if child is self else child)
578        return expression

Swap out this expression with a new expression.

For example::

>>> tree = Select().select("x").from_("tbl")
>>> tree.find(Column).replace(Column(this="y"))
(COLUMN this: y)
>>> tree.sql()
'SELECT y FROM tbl'
Arguments:
  • expression: new node
Returns:

The new expression or expressions.

def pop(self: ~E) -> ~E:
580    def pop(self: E) -> E:
581        """
582        Remove this expression from its AST.
583
584        Returns:
585            The popped expression.
586        """
587        self.replace(None)
588        return self

Remove this expression from its AST.

Returns:

The popped expression.

def assert_is(self, type_: Type[~E]) -> ~E:
590    def assert_is(self, type_: t.Type[E]) -> E:
591        """
592        Assert that this `Expression` is an instance of `type_`.
593
594        If it is NOT an instance of `type_`, this raises an assertion error.
595        Otherwise, this returns this expression.
596
597        Examples:
598            This is useful for type security in chained expressions:
599
600            >>> import sqlglot
601            >>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
602            'SELECT x, z FROM y'
603        """
604        assert isinstance(self, type_)
605        return self

Assert that this Expression is an instance of type_.

If it is NOT an instance of type_, this raises an assertion error. Otherwise, this returns this expression.

Examples:

This is useful for type security in chained expressions:

>>> import sqlglot
>>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
'SELECT x, z FROM y'
def error_messages(self, args: Optional[Sequence] = None) -> List[str]:
607    def error_messages(self, args: t.Optional[t.Sequence] = None) -> t.List[str]:
608        """
609        Checks if this expression is valid (e.g. all mandatory args are set).
610
611        Args:
612            args: a sequence of values that were used to instantiate a Func expression. This is used
613                to check that the provided arguments don't exceed the function argument limit.
614
615        Returns:
616            A list of error messages for all possible errors that were found.
617        """
618        errors: t.List[str] = []
619
620        for k in self.args:
621            if k not in self.arg_types:
622                errors.append(f"Unexpected keyword: '{k}' for {self.__class__}")
623        for k, mandatory in self.arg_types.items():
624            v = self.args.get(k)
625            if mandatory and (v is None or (isinstance(v, list) and not v)):
626                errors.append(f"Required keyword: '{k}' missing for {self.__class__}")
627
628        if (
629            args
630            and isinstance(self, Func)
631            and len(args) > len(self.arg_types)
632            and not self.is_var_len_args
633        ):
634            errors.append(
635                f"The number of provided arguments ({len(args)}) is greater than "
636                f"the maximum number of supported arguments ({len(self.arg_types)})"
637            )
638
639        return errors

Checks if this expression is valid (e.g. all mandatory args are set).

Arguments:
  • args: a sequence of values that were used to instantiate a Func expression. This is used to check that the provided arguments don't exceed the function argument limit.
Returns:

A list of error messages for all possible errors that were found.

def dump(self):
641    def dump(self):
642        """
643        Dump this Expression to a JSON-serializable dict.
644        """
645        from sqlglot.serde import dump
646
647        return dump(self)

Dump this Expression to a JSON-serializable dict.

@classmethod
def load(cls, obj):
649    @classmethod
650    def load(cls, obj):
651        """
652        Load a dict (as returned by `Expression.dump`) into an Expression instance.
653        """
654        from sqlglot.serde import load
655
656        return load(obj)

Load a dict (as returned by Expression.dump) into an Expression instance.

class Condition(Expression):
667class Condition(Expression):
668    def and_(
669        self,
670        *expressions: t.Optional[ExpOrStr],
671        dialect: DialectType = None,
672        copy: bool = True,
673        **opts,
674    ) -> Condition:
675        """
676        AND this condition with one or multiple expressions.
677
678        Example:
679            >>> condition("x=1").and_("y=1").sql()
680            'x = 1 AND y = 1'
681
682        Args:
683            *expressions: the SQL code strings to parse.
684                If an `Expression` instance is passed, it will be used as-is.
685            dialect: the dialect used to parse the input expression.
686            copy: whether or not to copy the involved expressions (only applies to Expressions).
687            opts: other options to use to parse the input expressions.
688
689        Returns:
690            The new And condition.
691        """
692        return and_(self, *expressions, dialect=dialect, copy=copy, **opts)
693
694    def or_(
695        self,
696        *expressions: t.Optional[ExpOrStr],
697        dialect: DialectType = None,
698        copy: bool = True,
699        **opts,
700    ) -> Condition:
701        """
702        OR this condition with one or multiple expressions.
703
704        Example:
705            >>> condition("x=1").or_("y=1").sql()
706            'x = 1 OR y = 1'
707
708        Args:
709            *expressions: the SQL code strings to parse.
710                If an `Expression` instance is passed, it will be used as-is.
711            dialect: the dialect used to parse the input expression.
712            copy: whether or not to copy the involved expressions (only applies to Expressions).
713            opts: other options to use to parse the input expressions.
714
715        Returns:
716            The new Or condition.
717        """
718        return or_(self, *expressions, dialect=dialect, copy=copy, **opts)
719
720    def not_(self, copy: bool = True):
721        """
722        Wrap this condition with NOT.
723
724        Example:
725            >>> condition("x=1").not_().sql()
726            'NOT x = 1'
727
728        Args:
729            copy: whether or not to copy this object.
730
731        Returns:
732            The new Not instance.
733        """
734        return not_(self, copy=copy)
735
736    def as_(
737        self,
738        alias: str | Identifier,
739        quoted: t.Optional[bool] = None,
740        dialect: DialectType = None,
741        copy: bool = True,
742        **opts,
743    ) -> Alias:
744        return alias_(self, alias, quoted=quoted, dialect=dialect, copy=copy, **opts)
745
746    def _binop(self, klass: t.Type[E], other: t.Any, reverse: bool = False) -> E:
747        this = self.copy()
748        other = convert(other, copy=True)
749        if not isinstance(this, klass) and not isinstance(other, klass):
750            this = _wrap(this, Binary)
751            other = _wrap(other, Binary)
752        if reverse:
753            return klass(this=other, expression=this)
754        return klass(this=this, expression=other)
755
756    def __getitem__(self, other: ExpOrStr | t.Tuple[ExpOrStr]):
757        return Bracket(
758            this=self.copy(), expressions=[convert(e, copy=True) for e in ensure_list(other)]
759        )
760
761    def isin(
762        self, *expressions: t.Any, query: t.Optional[ExpOrStr] = None, copy: bool = True, **opts
763    ) -> In:
764        return In(
765            this=_maybe_copy(self, copy),
766            expressions=[convert(e, copy=copy) for e in expressions],
767            query=maybe_parse(query, copy=copy, **opts) if query else None,
768        )
769
770    def between(self, low: t.Any, high: t.Any, copy: bool = True, **opts) -> Between:
771        return Between(
772            this=_maybe_copy(self, copy),
773            low=convert(low, copy=copy, **opts),
774            high=convert(high, copy=copy, **opts),
775        )
776
777    def is_(self, other: ExpOrStr) -> Is:
778        return self._binop(Is, other)
779
780    def like(self, other: ExpOrStr) -> Like:
781        return self._binop(Like, other)
782
783    def ilike(self, other: ExpOrStr) -> ILike:
784        return self._binop(ILike, other)
785
786    def eq(self, other: t.Any) -> EQ:
787        return self._binop(EQ, other)
788
789    def neq(self, other: t.Any) -> NEQ:
790        return self._binop(NEQ, other)
791
792    def rlike(self, other: ExpOrStr) -> RegexpLike:
793        return self._binop(RegexpLike, other)
794
795    def __lt__(self, other: t.Any) -> LT:
796        return self._binop(LT, other)
797
798    def __le__(self, other: t.Any) -> LTE:
799        return self._binop(LTE, other)
800
801    def __gt__(self, other: t.Any) -> GT:
802        return self._binop(GT, other)
803
804    def __ge__(self, other: t.Any) -> GTE:
805        return self._binop(GTE, other)
806
807    def __add__(self, other: t.Any) -> Add:
808        return self._binop(Add, other)
809
810    def __radd__(self, other: t.Any) -> Add:
811        return self._binop(Add, other, reverse=True)
812
813    def __sub__(self, other: t.Any) -> Sub:
814        return self._binop(Sub, other)
815
816    def __rsub__(self, other: t.Any) -> Sub:
817        return self._binop(Sub, other, reverse=True)
818
819    def __mul__(self, other: t.Any) -> Mul:
820        return self._binop(Mul, other)
821
822    def __rmul__(self, other: t.Any) -> Mul:
823        return self._binop(Mul, other, reverse=True)
824
825    def __truediv__(self, other: t.Any) -> Div:
826        return self._binop(Div, other)
827
828    def __rtruediv__(self, other: t.Any) -> Div:
829        return self._binop(Div, other, reverse=True)
830
831    def __floordiv__(self, other: t.Any) -> IntDiv:
832        return self._binop(IntDiv, other)
833
834    def __rfloordiv__(self, other: t.Any) -> IntDiv:
835        return self._binop(IntDiv, other, reverse=True)
836
837    def __mod__(self, other: t.Any) -> Mod:
838        return self._binop(Mod, other)
839
840    def __rmod__(self, other: t.Any) -> Mod:
841        return self._binop(Mod, other, reverse=True)
842
843    def __pow__(self, other: t.Any) -> Pow:
844        return self._binop(Pow, other)
845
846    def __rpow__(self, other: t.Any) -> Pow:
847        return self._binop(Pow, other, reverse=True)
848
849    def __and__(self, other: t.Any) -> And:
850        return self._binop(And, other)
851
852    def __rand__(self, other: t.Any) -> And:
853        return self._binop(And, other, reverse=True)
854
855    def __or__(self, other: t.Any) -> Or:
856        return self._binop(Or, other)
857
858    def __ror__(self, other: t.Any) -> Or:
859        return self._binop(Or, other, reverse=True)
860
861    def __neg__(self) -> Neg:
862        return Neg(this=_wrap(self.copy(), Binary))
863
864    def __invert__(self) -> Not:
865        return not_(self.copy())
def and_( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Condition:
668    def and_(
669        self,
670        *expressions: t.Optional[ExpOrStr],
671        dialect: DialectType = None,
672        copy: bool = True,
673        **opts,
674    ) -> Condition:
675        """
676        AND this condition with one or multiple expressions.
677
678        Example:
679            >>> condition("x=1").and_("y=1").sql()
680            'x = 1 AND y = 1'
681
682        Args:
683            *expressions: the SQL code strings to parse.
684                If an `Expression` instance is passed, it will be used as-is.
685            dialect: the dialect used to parse the input expression.
686            copy: whether or not to copy the involved expressions (only applies to Expressions).
687            opts: other options to use to parse the input expressions.
688
689        Returns:
690            The new And condition.
691        """
692        return and_(self, *expressions, dialect=dialect, copy=copy, **opts)

AND this condition with one or multiple expressions.

Example:
>>> condition("x=1").and_("y=1").sql()
'x = 1 AND y = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether or not to copy the involved expressions (only applies to Expressions).
  • opts: other options to use to parse the input expressions.
Returns:

The new And condition.

def or_( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Condition:
694    def or_(
695        self,
696        *expressions: t.Optional[ExpOrStr],
697        dialect: DialectType = None,
698        copy: bool = True,
699        **opts,
700    ) -> Condition:
701        """
702        OR this condition with one or multiple expressions.
703
704        Example:
705            >>> condition("x=1").or_("y=1").sql()
706            'x = 1 OR y = 1'
707
708        Args:
709            *expressions: the SQL code strings to parse.
710                If an `Expression` instance is passed, it will be used as-is.
711            dialect: the dialect used to parse the input expression.
712            copy: whether or not to copy the involved expressions (only applies to Expressions).
713            opts: other options to use to parse the input expressions.
714
715        Returns:
716            The new Or condition.
717        """
718        return or_(self, *expressions, dialect=dialect, copy=copy, **opts)

OR this condition with one or multiple expressions.

Example:
>>> condition("x=1").or_("y=1").sql()
'x = 1 OR y = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether or not to copy the involved expressions (only applies to Expressions).
  • opts: other options to use to parse the input expressions.
Returns:

The new Or condition.

def not_(self, copy: bool = True):
720    def not_(self, copy: bool = True):
721        """
722        Wrap this condition with NOT.
723
724        Example:
725            >>> condition("x=1").not_().sql()
726            'NOT x = 1'
727
728        Args:
729            copy: whether or not to copy this object.
730
731        Returns:
732            The new Not instance.
733        """
734        return not_(self, copy=copy)

Wrap this condition with NOT.

Example:
>>> condition("x=1").not_().sql()
'NOT x = 1'
Arguments:
  • copy: whether or not to copy this object.
Returns:

The new Not instance.

def as_( self, alias: str | sqlglot.expressions.Identifier, quoted: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Alias:
736    def as_(
737        self,
738        alias: str | Identifier,
739        quoted: t.Optional[bool] = None,
740        dialect: DialectType = None,
741        copy: bool = True,
742        **opts,
743    ) -> Alias:
744        return alias_(self, alias, quoted=quoted, dialect=dialect, copy=copy, **opts)
def isin( self, *expressions: Any, query: Union[str, sqlglot.expressions.Expression, NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.In:
761    def isin(
762        self, *expressions: t.Any, query: t.Optional[ExpOrStr] = None, copy: bool = True, **opts
763    ) -> In:
764        return In(
765            this=_maybe_copy(self, copy),
766            expressions=[convert(e, copy=copy) for e in expressions],
767            query=maybe_parse(query, copy=copy, **opts) if query else None,
768        )
def between( self, low: Any, high: Any, copy: bool = True, **opts) -> sqlglot.expressions.Between:
770    def between(self, low: t.Any, high: t.Any, copy: bool = True, **opts) -> Between:
771        return Between(
772            this=_maybe_copy(self, copy),
773            low=convert(low, copy=copy, **opts),
774            high=convert(high, copy=copy, **opts),
775        )
def is_( self, other: Union[str, sqlglot.expressions.Expression]) -> sqlglot.expressions.Is:
777    def is_(self, other: ExpOrStr) -> Is:
778        return self._binop(Is, other)
def like( self, other: Union[str, sqlglot.expressions.Expression]) -> sqlglot.expressions.Like:
780    def like(self, other: ExpOrStr) -> Like:
781        return self._binop(Like, other)
def ilike( self, other: Union[str, sqlglot.expressions.Expression]) -> sqlglot.expressions.ILike:
783    def ilike(self, other: ExpOrStr) -> ILike:
784        return self._binop(ILike, other)
def eq(self, other: Any) -> sqlglot.expressions.EQ:
786    def eq(self, other: t.Any) -> EQ:
787        return self._binop(EQ, other)
def neq(self, other: Any) -> sqlglot.expressions.NEQ:
789    def neq(self, other: t.Any) -> NEQ:
790        return self._binop(NEQ, other)
def rlike( self, other: Union[str, sqlglot.expressions.Expression]) -> sqlglot.expressions.RegexpLike:
792    def rlike(self, other: ExpOrStr) -> RegexpLike:
793        return self._binop(RegexpLike, other)
class Predicate(Condition):
868class Predicate(Condition):
869    """Relationships like x = y, x > 1, x >= y."""

Relationships like x = y, x > 1, x >= y.

class DerivedTable(Expression):
872class DerivedTable(Expression):
873    @property
874    def alias_column_names(self) -> t.List[str]:
875        table_alias = self.args.get("alias")
876        if not table_alias:
877            return []
878        return [c.name for c in table_alias.args.get("columns") or []]
879
880    @property
881    def selects(self):
882        return self.this.selects if isinstance(self.this, Subqueryable) else []
883
884    @property
885    def named_selects(self):
886        return [select.output_name for select in self.selects]
class Unionable(Expression):
889class Unionable(Expression):
890    def union(
891        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
892    ) -> Unionable:
893        """
894        Builds a UNION expression.
895
896        Example:
897            >>> import sqlglot
898            >>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
899            'SELECT * FROM foo UNION SELECT * FROM bla'
900
901        Args:
902            expression: the SQL code string.
903                If an `Expression` instance is passed, it will be used as-is.
904            distinct: set the DISTINCT flag if and only if this is true.
905            dialect: the dialect used to parse the input expression.
906            opts: other options to use to parse the input expressions.
907
908        Returns:
909            The new Union expression.
910        """
911        return union(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
912
913    def intersect(
914        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
915    ) -> Unionable:
916        """
917        Builds an INTERSECT expression.
918
919        Example:
920            >>> import sqlglot
921            >>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
922            'SELECT * FROM foo INTERSECT SELECT * FROM bla'
923
924        Args:
925            expression: the SQL code string.
926                If an `Expression` instance is passed, it will be used as-is.
927            distinct: set the DISTINCT flag if and only if this is true.
928            dialect: the dialect used to parse the input expression.
929            opts: other options to use to parse the input expressions.
930
931        Returns:
932            The new Intersect expression.
933        """
934        return intersect(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
935
936    def except_(
937        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
938    ) -> Unionable:
939        """
940        Builds an EXCEPT expression.
941
942        Example:
943            >>> import sqlglot
944            >>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
945            'SELECT * FROM foo EXCEPT SELECT * FROM bla'
946
947        Args:
948            expression: the SQL code string.
949                If an `Expression` instance is passed, it will be used as-is.
950            distinct: set the DISTINCT flag if and only if this is true.
951            dialect: the dialect used to parse the input expression.
952            opts: other options to use to parse the input expressions.
953
954        Returns:
955            The new Except expression.
956        """
957        return except_(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
def union( self, expression: Union[str, sqlglot.expressions.Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Unionable:
890    def union(
891        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
892    ) -> Unionable:
893        """
894        Builds a UNION expression.
895
896        Example:
897            >>> import sqlglot
898            >>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
899            'SELECT * FROM foo UNION SELECT * FROM bla'
900
901        Args:
902            expression: the SQL code string.
903                If an `Expression` instance is passed, it will be used as-is.
904            distinct: set the DISTINCT flag if and only if this is true.
905            dialect: the dialect used to parse the input expression.
906            opts: other options to use to parse the input expressions.
907
908        Returns:
909            The new Union expression.
910        """
911        return union(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)

Builds a UNION expression.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
'SELECT * FROM foo UNION SELECT * FROM bla'
Arguments:
  • expression: the SQL code string. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Union expression.

def intersect( self, expression: Union[str, sqlglot.expressions.Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Unionable:
913    def intersect(
914        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
915    ) -> Unionable:
916        """
917        Builds an INTERSECT expression.
918
919        Example:
920            >>> import sqlglot
921            >>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
922            'SELECT * FROM foo INTERSECT SELECT * FROM bla'
923
924        Args:
925            expression: the SQL code string.
926                If an `Expression` instance is passed, it will be used as-is.
927            distinct: set the DISTINCT flag if and only if this is true.
928            dialect: the dialect used to parse the input expression.
929            opts: other options to use to parse the input expressions.
930
931        Returns:
932            The new Intersect expression.
933        """
934        return intersect(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)

Builds an INTERSECT expression.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
'SELECT * FROM foo INTERSECT SELECT * FROM bla'
Arguments:
  • expression: the SQL code string. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Intersect expression.

def except_( self, expression: Union[str, sqlglot.expressions.Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Unionable:
936    def except_(
937        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
938    ) -> Unionable:
939        """
940        Builds an EXCEPT expression.
941
942        Example:
943            >>> import sqlglot
944            >>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
945            'SELECT * FROM foo EXCEPT SELECT * FROM bla'
946
947        Args:
948            expression: the SQL code string.
949                If an `Expression` instance is passed, it will be used as-is.
950            distinct: set the DISTINCT flag if and only if this is true.
951            dialect: the dialect used to parse the input expression.
952            opts: other options to use to parse the input expressions.
953
954        Returns:
955            The new Except expression.
956        """
957        return except_(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)

Builds an EXCEPT expression.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
'SELECT * FROM foo EXCEPT SELECT * FROM bla'
Arguments:
  • expression: the SQL code string. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Except expression.

class UDTF(DerivedTable, Unionable):
960class UDTF(DerivedTable, Unionable):
961    @property
962    def selects(self):
963        alias = self.args.get("alias")
964        return alias.columns if alias else []
class Cache(Expression):
967class Cache(Expression):
968    arg_types = {
969        "with": False,
970        "this": True,
971        "lazy": False,
972        "options": False,
973        "expression": False,
974    }
class Uncache(Expression):
977class Uncache(Expression):
978    arg_types = {"this": True, "exists": False}
class Create(Expression):
981class Create(Expression):
982    arg_types = {
983        "with": False,
984        "this": True,
985        "kind": True,
986        "expression": False,
987        "exists": False,
988        "properties": False,
989        "replace": False,
990        "unique": False,
991        "indexes": False,
992        "no_schema_binding": False,
993        "begin": False,
994        "clone": False,
995    }
class Clone(Expression):
 999class Clone(Expression):
1000    arg_types = {
1001        "this": True,
1002        "when": False,
1003        "kind": False,
1004        "expression": False,
1005    }
class Describe(Expression):
1008class Describe(Expression):
1009    arg_types = {"this": True, "kind": False}
class Pragma(Expression):
1012class Pragma(Expression):
1013    pass
class Set(Expression):
1016class Set(Expression):
1017    arg_types = {"expressions": False}
class SetItem(Expression):
1020class SetItem(Expression):
1021    arg_types = {
1022        "this": False,
1023        "expressions": False,
1024        "kind": False,
1025        "collate": False,  # MySQL SET NAMES statement
1026        "global": False,
1027    }
class Show(Expression):
1030class Show(Expression):
1031    arg_types = {
1032        "this": True,
1033        "target": False,
1034        "offset": False,
1035        "limit": False,
1036        "like": False,
1037        "where": False,
1038        "db": False,
1039        "full": False,
1040        "mutex": False,
1041        "query": False,
1042        "channel": False,
1043        "global": False,
1044        "log": False,
1045        "position": False,
1046        "types": False,
1047    }
class UserDefinedFunction(Expression):
1050class UserDefinedFunction(Expression):
1051    arg_types = {"this": True, "expressions": False, "wrapped": False}
class CharacterSet(Expression):
1054class CharacterSet(Expression):
1055    arg_types = {"this": True, "default": False}
class With(Expression):
1058class With(Expression):
1059    arg_types = {"expressions": True, "recursive": False}
1060
1061    @property
1062    def recursive(self) -> bool:
1063        return bool(self.args.get("recursive"))
class WithinGroup(Expression):
1066class WithinGroup(Expression):
1067    arg_types = {"this": True, "expression": False}
class CTE(DerivedTable):
1070class CTE(DerivedTable):
1071    arg_types = {"this": True, "alias": True}
class TableAlias(Expression):
1074class TableAlias(Expression):
1075    arg_types = {"this": False, "columns": False}
1076
1077    @property
1078    def columns(self):
1079        return self.args.get("columns") or []
class BitString(Condition):
1082class BitString(Condition):
1083    pass
class HexString(Condition):
1086class HexString(Condition):
1087    pass
class ByteString(Condition):
1090class ByteString(Condition):
1091    pass
class RawString(Condition):
1094class RawString(Condition):
1095    pass
class Column(Condition):
1098class Column(Condition):
1099    arg_types = {"this": True, "table": False, "db": False, "catalog": False, "join_mark": False}
1100
1101    @property
1102    def table(self) -> str:
1103        return self.text("table")
1104
1105    @property
1106    def db(self) -> str:
1107        return self.text("db")
1108
1109    @property
1110    def catalog(self) -> str:
1111        return self.text("catalog")
1112
1113    @property
1114    def output_name(self) -> str:
1115        return self.name
1116
1117    @property
1118    def parts(self) -> t.List[Identifier]:
1119        """Return the parts of a column in order catalog, db, table, name."""
1120        return [
1121            t.cast(Identifier, self.args[part])
1122            for part in ("catalog", "db", "table", "this")
1123            if self.args.get(part)
1124        ]
1125
1126    def to_dot(self) -> Dot:
1127        """Converts the column into a dot expression."""
1128        parts = self.parts
1129        parent = self.parent
1130
1131        while parent:
1132            if isinstance(parent, Dot):
1133                parts.append(parent.expression)
1134            parent = parent.parent
1135
1136        return Dot.build(parts)
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''

Return the parts of a column in order catalog, db, table, name.

def to_dot(self) -> sqlglot.expressions.Dot:
1126    def to_dot(self) -> Dot:
1127        """Converts the column into a dot expression."""
1128        parts = self.parts
1129        parent = self.parent
1130
1131        while parent:
1132            if isinstance(parent, Dot):
1133                parts.append(parent.expression)
1134            parent = parent.parent
1135
1136        return Dot.build(parts)

Converts the column into a dot expression.

class ColumnPosition(Expression):
1139class ColumnPosition(Expression):
1140    arg_types = {"this": False, "position": True}
class ColumnDef(Expression):
1143class ColumnDef(Expression):
1144    arg_types = {
1145        "this": True,
1146        "kind": False,
1147        "constraints": False,
1148        "exists": False,
1149        "position": False,
1150    }
1151
1152    @property
1153    def constraints(self) -> t.List[ColumnConstraint]:
1154        return self.args.get("constraints") or []
class AlterColumn(Expression):
1157class AlterColumn(Expression):
1158    arg_types = {
1159        "this": True,
1160        "dtype": False,
1161        "collate": False,
1162        "using": False,
1163        "default": False,
1164        "drop": False,
1165    }
class RenameTable(Expression):
1168class RenameTable(Expression):
1169    pass
class SetTag(Expression):
1172class SetTag(Expression):
1173    arg_types = {"expressions": True, "unset": False}
class Comment(Expression):
1176class Comment(Expression):
1177    arg_types = {"this": True, "kind": True, "expression": True, "exists": False}
class MergeTreeTTLAction(Expression):
1181class MergeTreeTTLAction(Expression):
1182    arg_types = {
1183        "this": True,
1184        "delete": False,
1185        "recompress": False,
1186        "to_disk": False,
1187        "to_volume": False,
1188    }
class MergeTreeTTL(Expression):
1192class MergeTreeTTL(Expression):
1193    arg_types = {
1194        "expressions": True,
1195        "where": False,
1196        "group": False,
1197        "aggregates": False,
1198    }
class ColumnConstraint(Expression):
1201class ColumnConstraint(Expression):
1202    arg_types = {"this": False, "kind": True}
1203
1204    @property
1205    def kind(self) -> ColumnConstraintKind:
1206        return self.args["kind"]
class ColumnConstraintKind(Expression):
1209class ColumnConstraintKind(Expression):
1210    pass
class AutoIncrementColumnConstraint(ColumnConstraintKind):
1213class AutoIncrementColumnConstraint(ColumnConstraintKind):
1214    pass
class CaseSpecificColumnConstraint(ColumnConstraintKind):
1217class CaseSpecificColumnConstraint(ColumnConstraintKind):
1218    arg_types = {"not_": True}
class CharacterSetColumnConstraint(ColumnConstraintKind):
1221class CharacterSetColumnConstraint(ColumnConstraintKind):
1222    arg_types = {"this": True}
class CheckColumnConstraint(ColumnConstraintKind):
1225class CheckColumnConstraint(ColumnConstraintKind):
1226    pass
class CollateColumnConstraint(ColumnConstraintKind):
1229class CollateColumnConstraint(ColumnConstraintKind):
1230    pass
class CommentColumnConstraint(ColumnConstraintKind):
1233class CommentColumnConstraint(ColumnConstraintKind):
1234    pass
class CompressColumnConstraint(ColumnConstraintKind):
1237class CompressColumnConstraint(ColumnConstraintKind):
1238    pass
class DateFormatColumnConstraint(ColumnConstraintKind):
1241class DateFormatColumnConstraint(ColumnConstraintKind):
1242    arg_types = {"this": True}
class DefaultColumnConstraint(ColumnConstraintKind):
1245class DefaultColumnConstraint(ColumnConstraintKind):
1246    pass
class EncodeColumnConstraint(ColumnConstraintKind):
1249class EncodeColumnConstraint(ColumnConstraintKind):
1250    pass
class GeneratedAsIdentityColumnConstraint(ColumnConstraintKind):
1253class GeneratedAsIdentityColumnConstraint(ColumnConstraintKind):
1254    # this: True -> ALWAYS, this: False -> BY DEFAULT
1255    arg_types = {
1256        "this": False,
1257        "expression": False,
1258        "on_null": False,
1259        "start": False,
1260        "increment": False,
1261        "minvalue": False,
1262        "maxvalue": False,
1263        "cycle": False,
1264    }
class InlineLengthColumnConstraint(ColumnConstraintKind):
1267class InlineLengthColumnConstraint(ColumnConstraintKind):
1268    pass
class NotNullColumnConstraint(ColumnConstraintKind):
1271class NotNullColumnConstraint(ColumnConstraintKind):
1272    arg_types = {"allow_null": False}
class OnUpdateColumnConstraint(ColumnConstraintKind):
1276class OnUpdateColumnConstraint(ColumnConstraintKind):
1277    pass
class PrimaryKeyColumnConstraint(ColumnConstraintKind):
1280class PrimaryKeyColumnConstraint(ColumnConstraintKind):
1281    arg_types = {"desc": False}
class TitleColumnConstraint(ColumnConstraintKind):
1284class TitleColumnConstraint(ColumnConstraintKind):
1285    pass
class UniqueColumnConstraint(ColumnConstraintKind):
1288class UniqueColumnConstraint(ColumnConstraintKind):
1289    arg_types = {"this": False}
class UppercaseColumnConstraint(ColumnConstraintKind):
1292class UppercaseColumnConstraint(ColumnConstraintKind):
1293    arg_types: t.Dict[str, t.Any] = {}
class PathColumnConstraint(ColumnConstraintKind):
1296class PathColumnConstraint(ColumnConstraintKind):
1297    pass
class Constraint(Expression):
1300class Constraint(Expression):
1301    arg_types = {"this": True, "expressions": True}
class Delete(Expression):
1304class Delete(Expression):
1305    arg_types = {"with": False, "this": False, "using": False, "where": False, "returning": False}
1306
1307    def delete(
1308        self,
1309        table: ExpOrStr,
1310        dialect: DialectType = None,
1311        copy: bool = True,
1312        **opts,
1313    ) -> Delete:
1314        """
1315        Create a DELETE expression or replace the table on an existing DELETE expression.
1316
1317        Example:
1318            >>> delete("tbl").sql()
1319            'DELETE FROM tbl'
1320
1321        Args:
1322            table: the table from which to delete.
1323            dialect: the dialect used to parse the input expression.
1324            copy: if `False`, modify this expression instance in-place.
1325            opts: other options to use to parse the input expressions.
1326
1327        Returns:
1328            Delete: the modified expression.
1329        """
1330        return _apply_builder(
1331            expression=table,
1332            instance=self,
1333            arg="this",
1334            dialect=dialect,
1335            into=Table,
1336            copy=copy,
1337            **opts,
1338        )
1339
1340    def where(
1341        self,
1342        *expressions: t.Optional[ExpOrStr],
1343        append: bool = True,
1344        dialect: DialectType = None,
1345        copy: bool = True,
1346        **opts,
1347    ) -> Delete:
1348        """
1349        Append to or set the WHERE expressions.
1350
1351        Example:
1352            >>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
1353            "DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
1354
1355        Args:
1356            *expressions: the SQL code strings to parse.
1357                If an `Expression` instance is passed, it will be used as-is.
1358                Multiple expressions are combined with an AND operator.
1359            append: if `True`, AND the new expressions to any existing expression.
1360                Otherwise, this resets the expression.
1361            dialect: the dialect used to parse the input expressions.
1362            copy: if `False`, modify this expression instance in-place.
1363            opts: other options to use to parse the input expressions.
1364
1365        Returns:
1366            Delete: the modified expression.
1367        """
1368        return _apply_conjunction_builder(
1369            *expressions,
1370            instance=self,
1371            arg="where",
1372            append=append,
1373            into=Where,
1374            dialect=dialect,
1375            copy=copy,
1376            **opts,
1377        )
1378
1379    def returning(
1380        self,
1381        expression: ExpOrStr,
1382        dialect: DialectType = None,
1383        copy: bool = True,
1384        **opts,
1385    ) -> Delete:
1386        """
1387        Set the RETURNING expression. Not supported by all dialects.
1388
1389        Example:
1390            >>> delete("tbl").returning("*", dialect="postgres").sql()
1391            'DELETE FROM tbl RETURNING *'
1392
1393        Args:
1394            expression: the SQL code strings to parse.
1395                If an `Expression` instance is passed, it will be used as-is.
1396            dialect: the dialect used to parse the input expressions.
1397            copy: if `False`, modify this expression instance in-place.
1398            opts: other options to use to parse the input expressions.
1399
1400        Returns:
1401            Delete: the modified expression.
1402        """
1403        return _apply_builder(
1404            expression=expression,
1405            instance=self,
1406            arg="returning",
1407            prefix="RETURNING",
1408            dialect=dialect,
1409            copy=copy,
1410            into=Returning,
1411            **opts,
1412        )
def delete( self, table: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Delete:
1307    def delete(
1308        self,
1309        table: ExpOrStr,
1310        dialect: DialectType = None,
1311        copy: bool = True,
1312        **opts,
1313    ) -> Delete:
1314        """
1315        Create a DELETE expression or replace the table on an existing DELETE expression.
1316
1317        Example:
1318            >>> delete("tbl").sql()
1319            'DELETE FROM tbl'
1320
1321        Args:
1322            table: the table from which to delete.
1323            dialect: the dialect used to parse the input expression.
1324            copy: if `False`, modify this expression instance in-place.
1325            opts: other options to use to parse the input expressions.
1326
1327        Returns:
1328            Delete: the modified expression.
1329        """
1330        return _apply_builder(
1331            expression=table,
1332            instance=self,
1333            arg="this",
1334            dialect=dialect,
1335            into=Table,
1336            copy=copy,
1337            **opts,
1338        )

Create a DELETE expression or replace the table on an existing DELETE expression.

Example:
>>> delete("tbl").sql()
'DELETE FROM tbl'
Arguments:
  • table: the table from which to delete.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Delete: the modified expression.

def where( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Delete:
1340    def where(
1341        self,
1342        *expressions: t.Optional[ExpOrStr],
1343        append: bool = True,
1344        dialect: DialectType = None,
1345        copy: bool = True,
1346        **opts,
1347    ) -> Delete:
1348        """
1349        Append to or set the WHERE expressions.
1350
1351        Example:
1352            >>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
1353            "DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
1354
1355        Args:
1356            *expressions: the SQL code strings to parse.
1357                If an `Expression` instance is passed, it will be used as-is.
1358                Multiple expressions are combined with an AND operator.
1359            append: if `True`, AND the new expressions to any existing expression.
1360                Otherwise, this resets the expression.
1361            dialect: the dialect used to parse the input expressions.
1362            copy: if `False`, modify this expression instance in-place.
1363            opts: other options to use to parse the input expressions.
1364
1365        Returns:
1366            Delete: the modified expression.
1367        """
1368        return _apply_conjunction_builder(
1369            *expressions,
1370            instance=self,
1371            arg="where",
1372            append=append,
1373            into=Where,
1374            dialect=dialect,
1375            copy=copy,
1376            **opts,
1377        )

Append to or set the WHERE expressions.

Example:
>>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
"DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Delete: the modified expression.

def returning( self, expression: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Delete:
1379    def returning(
1380        self,
1381        expression: ExpOrStr,
1382        dialect: DialectType = None,
1383        copy: bool = True,
1384        **opts,
1385    ) -> Delete:
1386        """
1387        Set the RETURNING expression. Not supported by all dialects.
1388
1389        Example:
1390            >>> delete("tbl").returning("*", dialect="postgres").sql()
1391            'DELETE FROM tbl RETURNING *'
1392
1393        Args:
1394            expression: the SQL code strings to parse.
1395                If an `Expression` instance is passed, it will be used as-is.
1396            dialect: the dialect used to parse the input expressions.
1397            copy: if `False`, modify this expression instance in-place.
1398            opts: other options to use to parse the input expressions.
1399
1400        Returns:
1401            Delete: the modified expression.
1402        """
1403        return _apply_builder(
1404            expression=expression,
1405            instance=self,
1406            arg="returning",
1407            prefix="RETURNING",
1408            dialect=dialect,
1409            copy=copy,
1410            into=Returning,
1411            **opts,
1412        )

Set the RETURNING expression. Not supported by all dialects.

Example:
>>> delete("tbl").returning("*", dialect="postgres").sql()
'DELETE FROM tbl RETURNING *'
Arguments:
  • expression: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Delete: the modified expression.

class Drop(Expression):
1415class Drop(Expression):
1416    arg_types = {
1417        "this": False,
1418        "kind": False,
1419        "exists": False,
1420        "temporary": False,
1421        "materialized": False,
1422        "cascade": False,
1423        "constraints": False,
1424        "purge": False,
1425    }
class Filter(Expression):
1428class Filter(Expression):
1429    arg_types = {"this": True, "expression": True}
class Check(Expression):
1432class Check(Expression):
1433    pass
class Directory(Expression):
1436class Directory(Expression):
1437    # https://spark.apache.org/docs/3.0.0-preview/sql-ref-syntax-dml-insert-overwrite-directory-hive.html
1438    arg_types = {"this": True, "local": False, "row_format": False}
class ForeignKey(Expression):
1441class ForeignKey(Expression):
1442    arg_types = {
1443        "expressions": True,
1444        "reference": False,
1445        "delete": False,
1446        "update": False,
1447    }
class PrimaryKey(Expression):
1450class PrimaryKey(Expression):
1451    arg_types = {"expressions": True, "options": False}
class Into(Expression):
1456class Into(Expression):
1457    arg_types = {"this": True, "temporary": False, "unlogged": False}
class From(Expression):
1460class From(Expression):
1461    @property
1462    def name(self) -> str:
1463        return self.this.name
1464
1465    @property
1466    def alias_or_name(self) -> str:
1467        return self.this.alias_or_name
class Having(Expression):
1470class Having(Expression):
1471    pass
class Hint(Expression):
1474class Hint(Expression):
1475    arg_types = {"expressions": True}
class JoinHint(Expression):
1478class JoinHint(Expression):
1479    arg_types = {"this": True, "expressions": True}
class Identifier(Expression):
1482class Identifier(Expression):
1483    arg_types = {"this": True, "quoted": False}
1484
1485    @property
1486    def quoted(self) -> bool:
1487        return bool(self.args.get("quoted"))
1488
1489    @property
1490    def hashable_args(self) -> t.Any:
1491        if self.quoted and any(char.isupper() for char in self.this):
1492            return (self.this, self.quoted)
1493        return self.this.lower()
1494
1495    @property
1496    def output_name(self) -> str:
1497        return self.name
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
class Index(Expression):
1500class Index(Expression):
1501    arg_types = {
1502        "this": False,
1503        "table": False,
1504        "using": False,
1505        "where": False,
1506        "columns": False,
1507        "unique": False,
1508        "primary": False,
1509        "amp": False,  # teradata
1510        "partition_by": False,  # teradata
1511    }
class Insert(Expression):
1514class Insert(Expression):
1515    arg_types = {
1516        "with": False,
1517        "this": True,
1518        "expression": False,
1519        "conflict": False,
1520        "returning": False,
1521        "overwrite": False,
1522        "exists": False,
1523        "partition": False,
1524        "alternative": False,
1525    }
1526
1527    def with_(
1528        self,
1529        alias: ExpOrStr,
1530        as_: ExpOrStr,
1531        recursive: t.Optional[bool] = None,
1532        append: bool = True,
1533        dialect: DialectType = None,
1534        copy: bool = True,
1535        **opts,
1536    ) -> Insert:
1537        """
1538        Append to or set the common table expressions.
1539
1540        Example:
1541            >>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
1542            'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
1543
1544        Args:
1545            alias: the SQL code string to parse as the table name.
1546                If an `Expression` instance is passed, this is used as-is.
1547            as_: the SQL code string to parse as the table expression.
1548                If an `Expression` instance is passed, it will be used as-is.
1549            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
1550            append: if `True`, add to any existing expressions.
1551                Otherwise, this resets the expressions.
1552            dialect: the dialect used to parse the input expression.
1553            copy: if `False`, modify this expression instance in-place.
1554            opts: other options to use to parse the input expressions.
1555
1556        Returns:
1557            The modified expression.
1558        """
1559        return _apply_cte_builder(
1560            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
1561        )
def with_( self, alias: Union[str, sqlglot.expressions.Expression], as_: Union[str, sqlglot.expressions.Expression], recursive: Optional[bool] = None, append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Insert:
1527    def with_(
1528        self,
1529        alias: ExpOrStr,
1530        as_: ExpOrStr,
1531        recursive: t.Optional[bool] = None,
1532        append: bool = True,
1533        dialect: DialectType = None,
1534        copy: bool = True,
1535        **opts,
1536    ) -> Insert:
1537        """
1538        Append to or set the common table expressions.
1539
1540        Example:
1541            >>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
1542            'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
1543
1544        Args:
1545            alias: the SQL code string to parse as the table name.
1546                If an `Expression` instance is passed, this is used as-is.
1547            as_: the SQL code string to parse as the table expression.
1548                If an `Expression` instance is passed, it will be used as-is.
1549            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
1550            append: if `True`, add to any existing expressions.
1551                Otherwise, this resets the expressions.
1552            dialect: the dialect used to parse the input expression.
1553            copy: if `False`, modify this expression instance in-place.
1554            opts: other options to use to parse the input expressions.
1555
1556        Returns:
1557            The modified expression.
1558        """
1559        return _apply_cte_builder(
1560            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
1561        )

Append to or set the common table expressions.

Example:
>>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
Arguments:
  • alias: the SQL code string to parse as the table name. If an Expression instance is passed, this is used as-is.
  • as_: the SQL code string to parse as the table expression. If an Expression instance is passed, it will be used as-is.
  • recursive: set the RECURSIVE part of the expression. Defaults to False.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified expression.

class OnConflict(Expression):
1564class OnConflict(Expression):
1565    arg_types = {
1566        "duplicate": False,
1567        "expressions": False,
1568        "nothing": False,
1569        "key": False,
1570        "constraint": False,
1571    }
class Returning(Expression):
1574class Returning(Expression):
1575    arg_types = {"expressions": True}
class Introducer(Expression):
1579class Introducer(Expression):
1580    arg_types = {"this": True, "expression": True}
class National(Expression):
1584class National(Expression):
1585    pass
class LoadData(Expression):
1588class LoadData(Expression):
1589    arg_types = {
1590        "this": True,
1591        "local": False,
1592        "overwrite": False,
1593        "inpath": True,
1594        "partition": False,
1595        "input_format": False,
1596        "serde": False,
1597    }
class Partition(Expression):
1600class Partition(Expression):
1601    arg_types = {"expressions": True}
class Fetch(Expression):
1604class Fetch(Expression):
1605    arg_types = {
1606        "direction": False,
1607        "count": False,
1608        "percent": False,
1609        "with_ties": False,
1610    }
class Group(Expression):
1613class Group(Expression):
1614    arg_types = {
1615        "expressions": False,
1616        "grouping_sets": False,
1617        "cube": False,
1618        "rollup": False,
1619        "totals": False,
1620    }
class Lambda(Expression):
1623class Lambda(Expression):
1624    arg_types = {"this": True, "expressions": True}
class Limit(Expression):
1627class Limit(Expression):
1628    arg_types = {"this": False, "expression": True, "offset": False}
class Literal(Condition):
1631class Literal(Condition):
1632    arg_types = {"this": True, "is_string": True}
1633
1634    @property
1635    def hashable_args(self) -> t.Any:
1636        return (self.this, self.args.get("is_string"))
1637
1638    @classmethod
1639    def number(cls, number) -> Literal:
1640        return cls(this=str(number), is_string=False)
1641
1642    @classmethod
1643    def string(cls, string) -> Literal:
1644        return cls(this=str(string), is_string=True)
1645
1646    @property
1647    def output_name(self) -> str:
1648        return self.name
@classmethod
def number(cls, number) -> sqlglot.expressions.Literal:
1638    @classmethod
1639    def number(cls, number) -> Literal:
1640        return cls(this=str(number), is_string=False)
@classmethod
def string(cls, string) -> sqlglot.expressions.Literal:
1642    @classmethod
1643    def string(cls, string) -> Literal:
1644        return cls(this=str(string), is_string=True)
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
class Join(Expression):
1651class Join(Expression):
1652    arg_types = {
1653        "this": True,
1654        "on": False,
1655        "side": False,
1656        "kind": False,
1657        "using": False,
1658        "method": False,
1659        "global": False,
1660        "hint": False,
1661    }
1662
1663    @property
1664    def method(self) -> str:
1665        return self.text("method").upper()
1666
1667    @property
1668    def kind(self) -> str:
1669        return self.text("kind").upper()
1670
1671    @property
1672    def side(self) -> str:
1673        return self.text("side").upper()
1674
1675    @property
1676    def hint(self) -> str:
1677        return self.text("hint").upper()
1678
1679    @property
1680    def alias_or_name(self) -> str:
1681        return self.this.alias_or_name
1682
1683    def on(
1684        self,
1685        *expressions: t.Optional[ExpOrStr],
1686        append: bool = True,
1687        dialect: DialectType = None,
1688        copy: bool = True,
1689        **opts,
1690    ) -> Join:
1691        """
1692        Append to or set the ON expressions.
1693
1694        Example:
1695            >>> import sqlglot
1696            >>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
1697            'JOIN x ON y = 1'
1698
1699        Args:
1700            *expressions: the SQL code strings to parse.
1701                If an `Expression` instance is passed, it will be used as-is.
1702                Multiple expressions are combined with an AND operator.
1703            append: if `True`, AND the new expressions to any existing expression.
1704                Otherwise, this resets the expression.
1705            dialect: the dialect used to parse the input expressions.
1706            copy: if `False`, modify this expression instance in-place.
1707            opts: other options to use to parse the input expressions.
1708
1709        Returns:
1710            The modified Join expression.
1711        """
1712        join = _apply_conjunction_builder(
1713            *expressions,
1714            instance=self,
1715            arg="on",
1716            append=append,
1717            dialect=dialect,
1718            copy=copy,
1719            **opts,
1720        )
1721
1722        if join.kind == "CROSS":
1723            join.set("kind", None)
1724
1725        return join
1726
1727    def using(
1728        self,
1729        *expressions: t.Optional[ExpOrStr],
1730        append: bool = True,
1731        dialect: DialectType = None,
1732        copy: bool = True,
1733        **opts,
1734    ) -> Join:
1735        """
1736        Append to or set the USING expressions.
1737
1738        Example:
1739            >>> import sqlglot
1740            >>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
1741            'JOIN x USING (foo, bla)'
1742
1743        Args:
1744            *expressions: the SQL code strings to parse.
1745                If an `Expression` instance is passed, it will be used as-is.
1746            append: if `True`, concatenate the new expressions to the existing "using" list.
1747                Otherwise, this resets the expression.
1748            dialect: the dialect used to parse the input expressions.
1749            copy: if `False`, modify this expression instance in-place.
1750            opts: other options to use to parse the input expressions.
1751
1752        Returns:
1753            The modified Join expression.
1754        """
1755        join = _apply_list_builder(
1756            *expressions,
1757            instance=self,
1758            arg="using",
1759            append=append,
1760            dialect=dialect,
1761            copy=copy,
1762            **opts,
1763        )
1764
1765        if join.kind == "CROSS":
1766            join.set("kind", None)
1767
1768        return join
def on( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Join:
1683    def on(
1684        self,
1685        *expressions: t.Optional[ExpOrStr],
1686        append: bool = True,
1687        dialect: DialectType = None,
1688        copy: bool = True,
1689        **opts,
1690    ) -> Join:
1691        """
1692        Append to or set the ON expressions.
1693
1694        Example:
1695            >>> import sqlglot
1696            >>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
1697            'JOIN x ON y = 1'
1698
1699        Args:
1700            *expressions: the SQL code strings to parse.
1701                If an `Expression` instance is passed, it will be used as-is.
1702                Multiple expressions are combined with an AND operator.
1703            append: if `True`, AND the new expressions to any existing expression.
1704                Otherwise, this resets the expression.
1705            dialect: the dialect used to parse the input expressions.
1706            copy: if `False`, modify this expression instance in-place.
1707            opts: other options to use to parse the input expressions.
1708
1709        Returns:
1710            The modified Join expression.
1711        """
1712        join = _apply_conjunction_builder(
1713            *expressions,
1714            instance=self,
1715            arg="on",
1716            append=append,
1717            dialect=dialect,
1718            copy=copy,
1719            **opts,
1720        )
1721
1722        if join.kind == "CROSS":
1723            join.set("kind", None)
1724
1725        return join

Append to or set the ON expressions.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
'JOIN x ON y = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Join expression.

def using( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Join:
1727    def using(
1728        self,
1729        *expressions: t.Optional[ExpOrStr],
1730        append: bool = True,
1731        dialect: DialectType = None,
1732        copy: bool = True,
1733        **opts,
1734    ) -> Join:
1735        """
1736        Append to or set the USING expressions.
1737
1738        Example:
1739            >>> import sqlglot
1740            >>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
1741            'JOIN x USING (foo, bla)'
1742
1743        Args:
1744            *expressions: the SQL code strings to parse.
1745                If an `Expression` instance is passed, it will be used as-is.
1746            append: if `True`, concatenate the new expressions to the existing "using" list.
1747                Otherwise, this resets the expression.
1748            dialect: the dialect used to parse the input expressions.
1749            copy: if `False`, modify this expression instance in-place.
1750            opts: other options to use to parse the input expressions.
1751
1752        Returns:
1753            The modified Join expression.
1754        """
1755        join = _apply_list_builder(
1756            *expressions,
1757            instance=self,
1758            arg="using",
1759            append=append,
1760            dialect=dialect,
1761            copy=copy,
1762            **opts,
1763        )
1764
1765        if join.kind == "CROSS":
1766            join.set("kind", None)
1767
1768        return join

Append to or set the USING expressions.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
'JOIN x USING (foo, bla)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, concatenate the new expressions to the existing "using" list. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Join expression.

class Lateral(UDTF):
1771class Lateral(UDTF):
1772    arg_types = {"this": True, "view": False, "outer": False, "alias": False}
class MatchRecognize(Expression):
1775class MatchRecognize(Expression):
1776    arg_types = {
1777        "partition_by": False,
1778        "order": False,
1779        "measures": False,
1780        "rows": False,
1781        "after": False,
1782        "pattern": False,
1783        "define": False,
1784        "alias": False,
1785    }
class Final(Expression):
1790class Final(Expression):
1791    pass
class Offset(Expression):
1794class Offset(Expression):
1795    arg_types = {"this": False, "expression": True}
class Order(Expression):
1798class Order(Expression):
1799    arg_types = {"this": False, "expressions": True}
class Cluster(Order):
1804class Cluster(Order):
1805    pass
class Distribute(Order):
1808class Distribute(Order):
1809    pass
class Sort(Order):
1812class Sort(Order):
1813    pass
class Ordered(Expression):
1816class Ordered(Expression):
1817    arg_types = {"this": True, "desc": True, "nulls_first": True}
class Property(Expression):
1820class Property(Expression):
1821    arg_types = {"this": True, "value": True}
class AlgorithmProperty(Property):
1824class AlgorithmProperty(Property):
1825    arg_types = {"this": True}
class AutoIncrementProperty(Property):
1828class AutoIncrementProperty(Property):
1829    arg_types = {"this": True}
class BlockCompressionProperty(Property):
1832class BlockCompressionProperty(Property):
1833    arg_types = {"autotemp": False, "always": False, "default": True, "manual": True, "never": True}
class CharacterSetProperty(Property):
1836class CharacterSetProperty(Property):
1837    arg_types = {"this": True, "default": True}
class ChecksumProperty(Property):
1840class ChecksumProperty(Property):
1841    arg_types = {"on": False, "default": False}
class CollateProperty(Property):
1844class CollateProperty(Property):
1845    arg_types = {"this": True}
class DataBlocksizeProperty(Property):
1848class DataBlocksizeProperty(Property):
1849    arg_types = {
1850        "size": False,
1851        "units": False,
1852        "minimum": False,
1853        "maximum": False,
1854        "default": False,
1855    }
class DefinerProperty(Property):
1858class DefinerProperty(Property):
1859    arg_types = {"this": True}
class DistKeyProperty(Property):
1862class DistKeyProperty(Property):
1863    arg_types = {"this": True}
class DistStyleProperty(Property):
1866class DistStyleProperty(Property):
1867    arg_types = {"this": True}
class EngineProperty(Property):
1870class EngineProperty(Property):
1871    arg_types = {"this": True}
class ToTableProperty(Property):
1874class ToTableProperty(Property):
1875    arg_types = {"this": True}
class ExecuteAsProperty(Property):
1878class ExecuteAsProperty(Property):
1879    arg_types = {"this": True}
class ExternalProperty(Property):
1882class ExternalProperty(Property):
1883    arg_types = {"this": False}
class FallbackProperty(Property):
1886class FallbackProperty(Property):
1887    arg_types = {"no": True, "protection": False}
class FileFormatProperty(Property):
1890class FileFormatProperty(Property):
1891    arg_types = {"this": True}
class FreespaceProperty(Property):
1894class FreespaceProperty(Property):
1895    arg_types = {"this": True, "percent": False}
class InputOutputFormat(Expression):
1898class InputOutputFormat(Expression):
1899    arg_types = {"input_format": False, "output_format": False}
class IsolatedLoadingProperty(Property):
1902class IsolatedLoadingProperty(Property):
1903    arg_types = {
1904        "no": True,
1905        "concurrent": True,
1906        "for_all": True,
1907        "for_insert": True,
1908        "for_none": True,
1909    }
class JournalProperty(Property):
1912class JournalProperty(Property):
1913    arg_types = {
1914        "no": False,
1915        "dual": False,
1916        "before": False,
1917        "local": False,
1918        "after": False,
1919    }
class LanguageProperty(Property):
1922class LanguageProperty(Property):
1923    arg_types = {"this": True}
class DictProperty(Property):
1926class DictProperty(Property):
1927    arg_types = {"this": True, "kind": True, "settings": False}
class DictSubProperty(Property):
1930class DictSubProperty(Property):
1931    pass
class DictRange(Property):
1934class DictRange(Property):
1935    arg_types = {"this": True, "min": True, "max": True}
class OnCluster(Property):
1940class OnCluster(Property):
1941    arg_types = {"this": True}
class LikeProperty(Property):
1944class LikeProperty(Property):
1945    arg_types = {"this": True, "expressions": False}
class LocationProperty(Property):
1948class LocationProperty(Property):
1949    arg_types = {"this": True}
class LockingProperty(Property):
1952class LockingProperty(Property):
1953    arg_types = {
1954        "this": False,
1955        "kind": True,
1956        "for_or_in": True,
1957        "lock_type": True,
1958        "override": False,
1959    }
class LogProperty(Property):
1962class LogProperty(Property):
1963    arg_types = {"no": True}
class MaterializedProperty(Property):
1966class MaterializedProperty(Property):
1967    arg_types = {"this": False}
class MergeBlockRatioProperty(Property):
1970class MergeBlockRatioProperty(Property):
1971    arg_types = {"this": False, "no": False, "default": False, "percent": False}
class NoPrimaryIndexProperty(Property):
1974class NoPrimaryIndexProperty(Property):
1975    arg_types = {}
class OnCommitProperty(Property):
1978class OnCommitProperty(Property):
1979    arg_type = {"delete": False}
class PartitionedByProperty(Property):
1982class PartitionedByProperty(Property):
1983    arg_types = {"this": True}
class ReturnsProperty(Property):
1986class ReturnsProperty(Property):
1987    arg_types = {"this": True, "is_table": False, "table": False}
class RowFormatProperty(Property):
1990class RowFormatProperty(Property):
1991    arg_types = {"this": True}
class RowFormatDelimitedProperty(Property):
1994class RowFormatDelimitedProperty(Property):
1995    # https://cwiki.apache.org/confluence/display/hive/languagemanual+dml
1996    arg_types = {
1997        "fields": False,
1998        "escaped": False,
1999        "collection_items": False,
2000        "map_keys": False,
2001        "lines": False,
2002        "null": False,
2003        "serde": False,
2004    }
class RowFormatSerdeProperty(Property):
2007class RowFormatSerdeProperty(Property):
2008    arg_types = {"this": True}
class SchemaCommentProperty(Property):
2011class SchemaCommentProperty(Property):
2012    arg_types = {"this": True}
class SerdeProperties(Property):
2015class SerdeProperties(Property):
2016    arg_types = {"expressions": True}
class SetProperty(Property):
2019class SetProperty(Property):
2020    arg_types = {"multi": True}
class SettingsProperty(Property):
2023class SettingsProperty(Property):
2024    arg_types = {"expressions": True}
class SortKeyProperty(Property):
2027class SortKeyProperty(Property):
2028    arg_types = {"this": True, "compound": False}
class SqlSecurityProperty(Property):
2031class SqlSecurityProperty(Property):
2032    arg_types = {"definer": True}
class StabilityProperty(Property):
2035class StabilityProperty(Property):
2036    arg_types = {"this": True}
class TemporaryProperty(Property):
2039class TemporaryProperty(Property):
2040    arg_types = {}
class TransientProperty(Property):
2043class TransientProperty(Property):
2044    arg_types = {"this": False}
class VolatileProperty(Property):
2047class VolatileProperty(Property):
2048    arg_types = {"this": False}
class WithDataProperty(Property):
2051class WithDataProperty(Property):
2052    arg_types = {"no": True, "statistics": False}
class WithJournalTableProperty(Property):
2055class WithJournalTableProperty(Property):
2056    arg_types = {"this": True}
class Properties(Expression):
2059class Properties(Expression):
2060    arg_types = {"expressions": True}
2061
2062    NAME_TO_PROPERTY = {
2063        "ALGORITHM": AlgorithmProperty,
2064        "AUTO_INCREMENT": AutoIncrementProperty,
2065        "CHARACTER SET": CharacterSetProperty,
2066        "COLLATE": CollateProperty,
2067        "COMMENT": SchemaCommentProperty,
2068        "DEFINER": DefinerProperty,
2069        "DISTKEY": DistKeyProperty,
2070        "DISTSTYLE": DistStyleProperty,
2071        "ENGINE": EngineProperty,
2072        "EXECUTE AS": ExecuteAsProperty,
2073        "FORMAT": FileFormatProperty,
2074        "LANGUAGE": LanguageProperty,
2075        "LOCATION": LocationProperty,
2076        "PARTITIONED_BY": PartitionedByProperty,
2077        "RETURNS": ReturnsProperty,
2078        "ROW_FORMAT": RowFormatProperty,
2079        "SORTKEY": SortKeyProperty,
2080    }
2081
2082    PROPERTY_TO_NAME = {v: k for k, v in NAME_TO_PROPERTY.items()}
2083
2084    # CREATE property locations
2085    # Form: schema specified
2086    #   create [POST_CREATE]
2087    #     table a [POST_NAME]
2088    #     (b int) [POST_SCHEMA]
2089    #     with ([POST_WITH])
2090    #     index (b) [POST_INDEX]
2091    #
2092    # Form: alias selection
2093    #   create [POST_CREATE]
2094    #     table a [POST_NAME]
2095    #     as [POST_ALIAS] (select * from b) [POST_EXPRESSION]
2096    #     index (c) [POST_INDEX]
2097    class Location(AutoName):
2098        POST_CREATE = auto()
2099        POST_NAME = auto()
2100        POST_SCHEMA = auto()
2101        POST_WITH = auto()
2102        POST_ALIAS = auto()
2103        POST_EXPRESSION = auto()
2104        POST_INDEX = auto()
2105        UNSUPPORTED = auto()
2106
2107    @classmethod
2108    def from_dict(cls, properties_dict: t.Dict) -> Properties:
2109        expressions = []
2110        for key, value in properties_dict.items():
2111            property_cls = cls.NAME_TO_PROPERTY.get(key.upper())
2112            if property_cls:
2113                expressions.append(property_cls(this=convert(value)))
2114            else:
2115                expressions.append(Property(this=Literal.string(key), value=convert(value)))
2116
2117        return cls(expressions=expressions)
@classmethod
def from_dict(cls, properties_dict: Dict) -> sqlglot.expressions.Properties:
2107    @classmethod
2108    def from_dict(cls, properties_dict: t.Dict) -> Properties:
2109        expressions = []
2110        for key, value in properties_dict.items():
2111            property_cls = cls.NAME_TO_PROPERTY.get(key.upper())
2112            if property_cls:
2113                expressions.append(property_cls(this=convert(value)))
2114            else:
2115                expressions.append(Property(this=Literal.string(key), value=convert(value)))
2116
2117        return cls(expressions=expressions)
class Properties.Location(sqlglot.helper.AutoName):
2097    class Location(AutoName):
2098        POST_CREATE = auto()
2099        POST_NAME = auto()
2100        POST_SCHEMA = auto()
2101        POST_WITH = auto()
2102        POST_ALIAS = auto()
2103        POST_EXPRESSION = auto()
2104        POST_INDEX = auto()
2105        UNSUPPORTED = auto()

An enumeration.

POST_CREATE = <Location.POST_CREATE: 'POST_CREATE'>
POST_NAME = <Location.POST_NAME: 'POST_NAME'>
POST_SCHEMA = <Location.POST_SCHEMA: 'POST_SCHEMA'>
POST_WITH = <Location.POST_WITH: 'POST_WITH'>
POST_ALIAS = <Location.POST_ALIAS: 'POST_ALIAS'>
POST_EXPRESSION = <Location.POST_EXPRESSION: 'POST_EXPRESSION'>
POST_INDEX = <Location.POST_INDEX: 'POST_INDEX'>
UNSUPPORTED = <Location.UNSUPPORTED: 'UNSUPPORTED'>
Inherited Members
enum.Enum
name
value
class Qualify(Expression):
2120class Qualify(Expression):
2121    pass
class Return(Expression):
2125class Return(Expression):
2126    pass
class Reference(Expression):
2129class Reference(Expression):
2130    arg_types = {"this": True, "expressions": False, "options": False}
class Tuple(Expression):
2133class Tuple(Expression):
2134    arg_types = {"expressions": False}
2135
2136    def isin(
2137        self, *expressions: t.Any, query: t.Optional[ExpOrStr] = None, copy: bool = True, **opts
2138    ) -> In:
2139        return In(
2140            this=_maybe_copy(self, copy),
2141            expressions=[convert(e, copy=copy) for e in expressions],
2142            query=maybe_parse(query, copy=copy, **opts) if query else None,
2143        )
def isin( self, *expressions: Any, query: Union[str, sqlglot.expressions.Expression, NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.In:
2136    def isin(
2137        self, *expressions: t.Any, query: t.Optional[ExpOrStr] = None, copy: bool = True, **opts
2138    ) -> In:
2139        return In(
2140            this=_maybe_copy(self, copy),
2141            expressions=[convert(e, copy=copy) for e in expressions],
2142            query=maybe_parse(query, copy=copy, **opts) if query else None,
2143        )
class Subqueryable(Unionable):
2146class Subqueryable(Unionable):
2147    def subquery(self, alias: t.Optional[ExpOrStr] = None, copy: bool = True) -> Subquery:
2148        """
2149        Convert this expression to an aliased expression that can be used as a Subquery.
2150
2151        Example:
2152            >>> subquery = Select().select("x").from_("tbl").subquery()
2153            >>> Select().select("x").from_(subquery).sql()
2154            'SELECT x FROM (SELECT x FROM tbl)'
2155
2156        Args:
2157            alias (str | Identifier): an optional alias for the subquery
2158            copy (bool): if `False`, modify this expression instance in-place.
2159
2160        Returns:
2161            Alias: the subquery
2162        """
2163        instance = _maybe_copy(self, copy)
2164        if not isinstance(alias, Expression):
2165            alias = TableAlias(this=to_identifier(alias)) if alias else None
2166
2167        return Subquery(this=instance, alias=alias)
2168
2169    def limit(
2170        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2171    ) -> Select:
2172        raise NotImplementedError
2173
2174    @property
2175    def ctes(self):
2176        with_ = self.args.get("with")
2177        if not with_:
2178            return []
2179        return with_.expressions
2180
2181    @property
2182    def selects(self):
2183        raise NotImplementedError("Subqueryable objects must implement `selects`")
2184
2185    @property
2186    def named_selects(self):
2187        raise NotImplementedError("Subqueryable objects must implement `named_selects`")
2188
2189    def with_(
2190        self,
2191        alias: ExpOrStr,
2192        as_: ExpOrStr,
2193        recursive: t.Optional[bool] = None,
2194        append: bool = True,
2195        dialect: DialectType = None,
2196        copy: bool = True,
2197        **opts,
2198    ) -> Subqueryable:
2199        """
2200        Append to or set the common table expressions.
2201
2202        Example:
2203            >>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
2204            'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
2205
2206        Args:
2207            alias: the SQL code string to parse as the table name.
2208                If an `Expression` instance is passed, this is used as-is.
2209            as_: the SQL code string to parse as the table expression.
2210                If an `Expression` instance is passed, it will be used as-is.
2211            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
2212            append: if `True`, add to any existing expressions.
2213                Otherwise, this resets the expressions.
2214            dialect: the dialect used to parse the input expression.
2215            copy: if `False`, modify this expression instance in-place.
2216            opts: other options to use to parse the input expressions.
2217
2218        Returns:
2219            The modified expression.
2220        """
2221        return _apply_cte_builder(
2222            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
2223        )
def subquery( self, alias: Union[str, sqlglot.expressions.Expression, NoneType] = None, copy: bool = True) -> sqlglot.expressions.Subquery:
2147    def subquery(self, alias: t.Optional[ExpOrStr] = None, copy: bool = True) -> Subquery:
2148        """
2149        Convert this expression to an aliased expression that can be used as a Subquery.
2150
2151        Example:
2152            >>> subquery = Select().select("x").from_("tbl").subquery()
2153            >>> Select().select("x").from_(subquery).sql()
2154            'SELECT x FROM (SELECT x FROM tbl)'
2155
2156        Args:
2157            alias (str | Identifier): an optional alias for the subquery
2158            copy (bool): if `False`, modify this expression instance in-place.
2159
2160        Returns:
2161            Alias: the subquery
2162        """
2163        instance = _maybe_copy(self, copy)
2164        if not isinstance(alias, Expression):
2165            alias = TableAlias(this=to_identifier(alias)) if alias else None
2166
2167        return Subquery(this=instance, alias=alias)

Convert this expression to an aliased expression that can be used as a Subquery.

Example:
>>> subquery = Select().select("x").from_("tbl").subquery()
>>> Select().select("x").from_(subquery).sql()
'SELECT x FROM (SELECT x FROM tbl)'
Arguments:
  • alias (str | Identifier): an optional alias for the subquery
  • copy (bool): if False, modify this expression instance in-place.
Returns:

Alias: the subquery

def limit( self, expression: Union[str, sqlglot.expressions.Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2169    def limit(
2170        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2171    ) -> Select:
2172        raise NotImplementedError
def with_( self, alias: Union[str, sqlglot.expressions.Expression], as_: Union[str, sqlglot.expressions.Expression], recursive: Optional[bool] = None, append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Subqueryable:
2189    def with_(
2190        self,
2191        alias: ExpOrStr,
2192        as_: ExpOrStr,
2193        recursive: t.Optional[bool] = None,
2194        append: bool = True,
2195        dialect: DialectType = None,
2196        copy: bool = True,
2197        **opts,
2198    ) -> Subqueryable:
2199        """
2200        Append to or set the common table expressions.
2201
2202        Example:
2203            >>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
2204            'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
2205
2206        Args:
2207            alias: the SQL code string to parse as the table name.
2208                If an `Expression` instance is passed, this is used as-is.
2209            as_: the SQL code string to parse as the table expression.
2210                If an `Expression` instance is passed, it will be used as-is.
2211            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
2212            append: if `True`, add to any existing expressions.
2213                Otherwise, this resets the expressions.
2214            dialect: the dialect used to parse the input expression.
2215            copy: if `False`, modify this expression instance in-place.
2216            opts: other options to use to parse the input expressions.
2217
2218        Returns:
2219            The modified expression.
2220        """
2221        return _apply_cte_builder(
2222            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
2223        )

Append to or set the common table expressions.

Example:
>>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
Arguments:
  • alias: the SQL code string to parse as the table name. If an Expression instance is passed, this is used as-is.
  • as_: the SQL code string to parse as the table expression. If an Expression instance is passed, it will be used as-is.
  • recursive: set the RECURSIVE part of the expression. Defaults to False.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified expression.

class Table(Expression):
2249class Table(Expression):
2250    arg_types = {
2251        "this": True,
2252        "alias": False,
2253        "db": False,
2254        "catalog": False,
2255        "laterals": False,
2256        "joins": False,
2257        "pivots": False,
2258        "hints": False,
2259        "system_time": False,
2260    }
2261
2262    @property
2263    def db(self) -> str:
2264        return self.text("db")
2265
2266    @property
2267    def catalog(self) -> str:
2268        return self.text("catalog")
2269
2270    @property
2271    def parts(self) -> t.List[Identifier]:
2272        """Return the parts of a table in order catalog, db, table."""
2273        return [
2274            t.cast(Identifier, self.args[part])
2275            for part in ("catalog", "db", "this")
2276            if self.args.get(part)
2277        ]

Return the parts of a table in order catalog, db, table.

class SystemTime(Expression):
2281class SystemTime(Expression):
2282    arg_types = {
2283        "this": False,
2284        "expression": False,
2285        "kind": True,
2286    }
class Union(Subqueryable):
2289class Union(Subqueryable):
2290    arg_types = {
2291        "with": False,
2292        "this": True,
2293        "expression": True,
2294        "distinct": False,
2295        **QUERY_MODIFIERS,
2296    }
2297
2298    def limit(
2299        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2300    ) -> Select:
2301        """
2302        Set the LIMIT expression.
2303
2304        Example:
2305            >>> select("1").union(select("1")).limit(1).sql()
2306            'SELECT * FROM (SELECT 1 UNION SELECT 1) AS _l_0 LIMIT 1'
2307
2308        Args:
2309            expression: the SQL code string to parse.
2310                This can also be an integer.
2311                If a `Limit` instance is passed, this is used as-is.
2312                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2313            dialect: the dialect used to parse the input expression.
2314            copy: if `False`, modify this expression instance in-place.
2315            opts: other options to use to parse the input expressions.
2316
2317        Returns:
2318            The limited subqueryable.
2319        """
2320        return (
2321            select("*")
2322            .from_(self.subquery(alias="_l_0", copy=copy))
2323            .limit(expression, dialect=dialect, copy=False, **opts)
2324        )
2325
2326    def select(
2327        self,
2328        *expressions: t.Optional[ExpOrStr],
2329        append: bool = True,
2330        dialect: DialectType = None,
2331        copy: bool = True,
2332        **opts,
2333    ) -> Union:
2334        """Append to or set the SELECT of the union recursively.
2335
2336        Example:
2337            >>> from sqlglot import parse_one
2338            >>> parse_one("select a from x union select a from y union select a from z").select("b").sql()
2339            'SELECT a, b FROM x UNION SELECT a, b FROM y UNION SELECT a, b FROM z'
2340
2341        Args:
2342            *expressions: the SQL code strings to parse.
2343                If an `Expression` instance is passed, it will be used as-is.
2344            append: if `True`, add to any existing expressions.
2345                Otherwise, this resets the expressions.
2346            dialect: the dialect used to parse the input expressions.
2347            copy: if `False`, modify this expression instance in-place.
2348            opts: other options to use to parse the input expressions.
2349
2350        Returns:
2351            Union: the modified expression.
2352        """
2353        this = self.copy() if copy else self
2354        this.this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
2355        this.expression.unnest().select(
2356            *expressions, append=append, dialect=dialect, copy=False, **opts
2357        )
2358        return this
2359
2360    @property
2361    def named_selects(self):
2362        return self.this.unnest().named_selects
2363
2364    @property
2365    def is_star(self) -> bool:
2366        return self.this.is_star or self.expression.is_star
2367
2368    @property
2369    def selects(self):
2370        return self.this.unnest().selects
2371
2372    @property
2373    def left(self):
2374        return self.this
2375
2376    @property
2377    def right(self):
2378        return self.expression
def limit( self, expression: Union[str, sqlglot.expressions.Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2298    def limit(
2299        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2300    ) -> Select:
2301        """
2302        Set the LIMIT expression.
2303
2304        Example:
2305            >>> select("1").union(select("1")).limit(1).sql()
2306            'SELECT * FROM (SELECT 1 UNION SELECT 1) AS _l_0 LIMIT 1'
2307
2308        Args:
2309            expression: the SQL code string to parse.
2310                This can also be an integer.
2311                If a `Limit` instance is passed, this is used as-is.
2312                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2313            dialect: the dialect used to parse the input expression.
2314            copy: if `False`, modify this expression instance in-place.
2315            opts: other options to use to parse the input expressions.
2316
2317        Returns:
2318            The limited subqueryable.
2319        """
2320        return (
2321            select("*")
2322            .from_(self.subquery(alias="_l_0", copy=copy))
2323            .limit(expression, dialect=dialect, copy=False, **opts)
2324        )

Set the LIMIT expression.

Example:
>>> select("1").union(select("1")).limit(1).sql()
'SELECT * FROM (SELECT 1 UNION SELECT 1) AS _l_0 LIMIT 1'
Arguments:
  • expression: the SQL code string to parse. This can also be an integer. If a Limit instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Limit.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The limited subqueryable.

def select( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Union:
2326    def select(
2327        self,
2328        *expressions: t.Optional[ExpOrStr],
2329        append: bool = True,
2330        dialect: DialectType = None,
2331        copy: bool = True,
2332        **opts,
2333    ) -> Union:
2334        """Append to or set the SELECT of the union recursively.
2335
2336        Example:
2337            >>> from sqlglot import parse_one
2338            >>> parse_one("select a from x union select a from y union select a from z").select("b").sql()
2339            'SELECT a, b FROM x UNION SELECT a, b FROM y UNION SELECT a, b FROM z'
2340
2341        Args:
2342            *expressions: the SQL code strings to parse.
2343                If an `Expression` instance is passed, it will be used as-is.
2344            append: if `True`, add to any existing expressions.
2345                Otherwise, this resets the expressions.
2346            dialect: the dialect used to parse the input expressions.
2347            copy: if `False`, modify this expression instance in-place.
2348            opts: other options to use to parse the input expressions.
2349
2350        Returns:
2351            Union: the modified expression.
2352        """
2353        this = self.copy() if copy else self
2354        this.this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
2355        this.expression.unnest().select(
2356            *expressions, append=append, dialect=dialect, copy=False, **opts
2357        )
2358        return this

Append to or set the SELECT of the union recursively.

Example:
>>> from sqlglot import parse_one
>>> parse_one("select a from x union select a from y union select a from z").select("b").sql()
'SELECT a, b FROM x UNION SELECT a, b FROM y UNION SELECT a, b FROM z'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Union: the modified expression.

is_star: bool

Checks whether an expression is a star.

class Except(Union):
2381class Except(Union):
2382    pass
class Intersect(Union):
2385class Intersect(Union):
2386    pass
class Unnest(UDTF):
2389class Unnest(UDTF):
2390    arg_types = {
2391        "expressions": True,
2392        "ordinality": False,
2393        "alias": False,
2394        "offset": False,
2395    }
class Update(Expression):
2398class Update(Expression):
2399    arg_types = {
2400        "with": False,
2401        "this": False,
2402        "expressions": True,
2403        "from": False,
2404        "where": False,
2405        "returning": False,
2406    }
class Values(UDTF):
2409class Values(UDTF):
2410    arg_types = {
2411        "expressions": True,
2412        "ordinality": False,
2413        "alias": False,
2414    }
class Var(Expression):
2417class Var(Expression):
2418    pass
class Schema(Expression):
2421class Schema(Expression):
2422    arg_types = {"this": False, "expressions": False}
class Lock(Expression):
2427class Lock(Expression):
2428    arg_types = {"update": True, "expressions": False, "wait": False}
class Select(Subqueryable):
2431class Select(Subqueryable):
2432    arg_types = {
2433        "with": False,
2434        "kind": False,
2435        "expressions": False,
2436        "hint": False,
2437        "distinct": False,
2438        "struct": False,  # https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax#return_query_results_as_a_value_table
2439        "value": False,
2440        "into": False,
2441        "from": False,
2442        **QUERY_MODIFIERS,
2443    }
2444
2445    def from_(
2446        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
2447    ) -> Select:
2448        """
2449        Set the FROM expression.
2450
2451        Example:
2452            >>> Select().from_("tbl").select("x").sql()
2453            'SELECT x FROM tbl'
2454
2455        Args:
2456            expression : the SQL code strings to parse.
2457                If a `From` instance is passed, this is used as-is.
2458                If another `Expression` instance is passed, it will be wrapped in a `From`.
2459            dialect: the dialect used to parse the input expression.
2460            copy: if `False`, modify this expression instance in-place.
2461            opts: other options to use to parse the input expressions.
2462
2463        Returns:
2464            The modified Select expression.
2465        """
2466        return _apply_builder(
2467            expression=expression,
2468            instance=self,
2469            arg="from",
2470            into=From,
2471            prefix="FROM",
2472            dialect=dialect,
2473            copy=copy,
2474            **opts,
2475        )
2476
2477    def group_by(
2478        self,
2479        *expressions: t.Optional[ExpOrStr],
2480        append: bool = True,
2481        dialect: DialectType = None,
2482        copy: bool = True,
2483        **opts,
2484    ) -> Select:
2485        """
2486        Set the GROUP BY expression.
2487
2488        Example:
2489            >>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
2490            'SELECT x, COUNT(1) FROM tbl GROUP BY x'
2491
2492        Args:
2493            *expressions: the SQL code strings to parse.
2494                If a `Group` instance is passed, this is used as-is.
2495                If another `Expression` instance is passed, it will be wrapped in a `Group`.
2496                If nothing is passed in then a group by is not applied to the expression
2497            append: if `True`, add to any existing expressions.
2498                Otherwise, this flattens all the `Group` expression into a single expression.
2499            dialect: the dialect used to parse the input expression.
2500            copy: if `False`, modify this expression instance in-place.
2501            opts: other options to use to parse the input expressions.
2502
2503        Returns:
2504            The modified Select expression.
2505        """
2506        if not expressions:
2507            return self if not copy else self.copy()
2508
2509        return _apply_child_list_builder(
2510            *expressions,
2511            instance=self,
2512            arg="group",
2513            append=append,
2514            copy=copy,
2515            prefix="GROUP BY",
2516            into=Group,
2517            dialect=dialect,
2518            **opts,
2519        )
2520
2521    def order_by(
2522        self,
2523        *expressions: t.Optional[ExpOrStr],
2524        append: bool = True,
2525        dialect: DialectType = None,
2526        copy: bool = True,
2527        **opts,
2528    ) -> Select:
2529        """
2530        Set the ORDER BY expression.
2531
2532        Example:
2533            >>> Select().from_("tbl").select("x").order_by("x DESC").sql()
2534            'SELECT x FROM tbl ORDER BY x DESC'
2535
2536        Args:
2537            *expressions: the SQL code strings to parse.
2538                If a `Group` instance is passed, this is used as-is.
2539                If another `Expression` instance is passed, it will be wrapped in a `Order`.
2540            append: if `True`, add to any existing expressions.
2541                Otherwise, this flattens all the `Order` expression into a single expression.
2542            dialect: the dialect used to parse the input expression.
2543            copy: if `False`, modify this expression instance in-place.
2544            opts: other options to use to parse the input expressions.
2545
2546        Returns:
2547            The modified Select expression.
2548        """
2549        return _apply_child_list_builder(
2550            *expressions,
2551            instance=self,
2552            arg="order",
2553            append=append,
2554            copy=copy,
2555            prefix="ORDER BY",
2556            into=Order,
2557            dialect=dialect,
2558            **opts,
2559        )
2560
2561    def sort_by(
2562        self,
2563        *expressions: t.Optional[ExpOrStr],
2564        append: bool = True,
2565        dialect: DialectType = None,
2566        copy: bool = True,
2567        **opts,
2568    ) -> Select:
2569        """
2570        Set the SORT BY expression.
2571
2572        Example:
2573            >>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
2574            'SELECT x FROM tbl SORT BY x DESC'
2575
2576        Args:
2577            *expressions: the SQL code strings to parse.
2578                If a `Group` instance is passed, this is used as-is.
2579                If another `Expression` instance is passed, it will be wrapped in a `SORT`.
2580            append: if `True`, add to any existing expressions.
2581                Otherwise, this flattens all the `Order` expression into a single expression.
2582            dialect: the dialect used to parse the input expression.
2583            copy: if `False`, modify this expression instance in-place.
2584            opts: other options to use to parse the input expressions.
2585
2586        Returns:
2587            The modified Select expression.
2588        """
2589        return _apply_child_list_builder(
2590            *expressions,
2591            instance=self,
2592            arg="sort",
2593            append=append,
2594            copy=copy,
2595            prefix="SORT BY",
2596            into=Sort,
2597            dialect=dialect,
2598            **opts,
2599        )
2600
2601    def cluster_by(
2602        self,
2603        *expressions: t.Optional[ExpOrStr],
2604        append: bool = True,
2605        dialect: DialectType = None,
2606        copy: bool = True,
2607        **opts,
2608    ) -> Select:
2609        """
2610        Set the CLUSTER BY expression.
2611
2612        Example:
2613            >>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
2614            'SELECT x FROM tbl CLUSTER BY x DESC'
2615
2616        Args:
2617            *expressions: the SQL code strings to parse.
2618                If a `Group` instance is passed, this is used as-is.
2619                If another `Expression` instance is passed, it will be wrapped in a `Cluster`.
2620            append: if `True`, add to any existing expressions.
2621                Otherwise, this flattens all the `Order` expression into a single expression.
2622            dialect: the dialect used to parse the input expression.
2623            copy: if `False`, modify this expression instance in-place.
2624            opts: other options to use to parse the input expressions.
2625
2626        Returns:
2627            The modified Select expression.
2628        """
2629        return _apply_child_list_builder(
2630            *expressions,
2631            instance=self,
2632            arg="cluster",
2633            append=append,
2634            copy=copy,
2635            prefix="CLUSTER BY",
2636            into=Cluster,
2637            dialect=dialect,
2638            **opts,
2639        )
2640
2641    def limit(
2642        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2643    ) -> Select:
2644        """
2645        Set the LIMIT expression.
2646
2647        Example:
2648            >>> Select().from_("tbl").select("x").limit(10).sql()
2649            'SELECT x FROM tbl LIMIT 10'
2650
2651        Args:
2652            expression: the SQL code string to parse.
2653                This can also be an integer.
2654                If a `Limit` instance is passed, this is used as-is.
2655                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2656            dialect: the dialect used to parse the input expression.
2657            copy: if `False`, modify this expression instance in-place.
2658            opts: other options to use to parse the input expressions.
2659
2660        Returns:
2661            Select: the modified expression.
2662        """
2663        return _apply_builder(
2664            expression=expression,
2665            instance=self,
2666            arg="limit",
2667            into=Limit,
2668            prefix="LIMIT",
2669            dialect=dialect,
2670            copy=copy,
2671            **opts,
2672        )
2673
2674    def offset(
2675        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2676    ) -> Select:
2677        """
2678        Set the OFFSET expression.
2679
2680        Example:
2681            >>> Select().from_("tbl").select("x").offset(10).sql()
2682            'SELECT x FROM tbl OFFSET 10'
2683
2684        Args:
2685            expression: the SQL code string to parse.
2686                This can also be an integer.
2687                If a `Offset` instance is passed, this is used as-is.
2688                If another `Expression` instance is passed, it will be wrapped in a `Offset`.
2689            dialect: the dialect used to parse the input expression.
2690            copy: if `False`, modify this expression instance in-place.
2691            opts: other options to use to parse the input expressions.
2692
2693        Returns:
2694            The modified Select expression.
2695        """
2696        return _apply_builder(
2697            expression=expression,
2698            instance=self,
2699            arg="offset",
2700            into=Offset,
2701            prefix="OFFSET",
2702            dialect=dialect,
2703            copy=copy,
2704            **opts,
2705        )
2706
2707    def select(
2708        self,
2709        *expressions: t.Optional[ExpOrStr],
2710        append: bool = True,
2711        dialect: DialectType = None,
2712        copy: bool = True,
2713        **opts,
2714    ) -> Select:
2715        """
2716        Append to or set the SELECT expressions.
2717
2718        Example:
2719            >>> Select().select("x", "y").sql()
2720            'SELECT x, y'
2721
2722        Args:
2723            *expressions: the SQL code strings to parse.
2724                If an `Expression` instance is passed, it will be used as-is.
2725            append: if `True`, add to any existing expressions.
2726                Otherwise, this resets the expressions.
2727            dialect: the dialect used to parse the input expressions.
2728            copy: if `False`, modify this expression instance in-place.
2729            opts: other options to use to parse the input expressions.
2730
2731        Returns:
2732            The modified Select expression.
2733        """
2734        return _apply_list_builder(
2735            *expressions,
2736            instance=self,
2737            arg="expressions",
2738            append=append,
2739            dialect=dialect,
2740            copy=copy,
2741            **opts,
2742        )
2743
2744    def lateral(
2745        self,
2746        *expressions: t.Optional[ExpOrStr],
2747        append: bool = True,
2748        dialect: DialectType = None,
2749        copy: bool = True,
2750        **opts,
2751    ) -> Select:
2752        """
2753        Append to or set the LATERAL expressions.
2754
2755        Example:
2756            >>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
2757            'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
2758
2759        Args:
2760            *expressions: the SQL code strings to parse.
2761                If an `Expression` instance is passed, it will be used as-is.
2762            append: if `True`, add to any existing expressions.
2763                Otherwise, this resets the expressions.
2764            dialect: the dialect used to parse the input expressions.
2765            copy: if `False`, modify this expression instance in-place.
2766            opts: other options to use to parse the input expressions.
2767
2768        Returns:
2769            The modified Select expression.
2770        """
2771        return _apply_list_builder(
2772            *expressions,
2773            instance=self,
2774            arg="laterals",
2775            append=append,
2776            into=Lateral,
2777            prefix="LATERAL VIEW",
2778            dialect=dialect,
2779            copy=copy,
2780            **opts,
2781        )
2782
2783    def join(
2784        self,
2785        expression: ExpOrStr,
2786        on: t.Optional[ExpOrStr] = None,
2787        using: t.Optional[ExpOrStr | t.List[ExpOrStr]] = None,
2788        append: bool = True,
2789        join_type: t.Optional[str] = None,
2790        join_alias: t.Optional[Identifier | str] = None,
2791        dialect: DialectType = None,
2792        copy: bool = True,
2793        **opts,
2794    ) -> Select:
2795        """
2796        Append to or set the JOIN expressions.
2797
2798        Example:
2799            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
2800            'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
2801
2802            >>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
2803            'SELECT 1 FROM a JOIN b USING (x, y, z)'
2804
2805            Use `join_type` to change the type of join:
2806
2807            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
2808            'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
2809
2810        Args:
2811            expression: the SQL code string to parse.
2812                If an `Expression` instance is passed, it will be used as-is.
2813            on: optionally specify the join "on" criteria as a SQL string.
2814                If an `Expression` instance is passed, it will be used as-is.
2815            using: optionally specify the join "using" criteria as a SQL string.
2816                If an `Expression` instance is passed, it will be used as-is.
2817            append: if `True`, add to any existing expressions.
2818                Otherwise, this resets the expressions.
2819            join_type: if set, alter the parsed join type.
2820            join_alias: an optional alias for the joined source.
2821            dialect: the dialect used to parse the input expressions.
2822            copy: if `False`, modify this expression instance in-place.
2823            opts: other options to use to parse the input expressions.
2824
2825        Returns:
2826            Select: the modified expression.
2827        """
2828        parse_args: t.Dict[str, t.Any] = {"dialect": dialect, **opts}
2829
2830        try:
2831            expression = maybe_parse(expression, into=Join, prefix="JOIN", **parse_args)
2832        except ParseError:
2833            expression = maybe_parse(expression, into=(Join, Expression), **parse_args)
2834
2835        join = expression if isinstance(expression, Join) else Join(this=expression)
2836
2837        if isinstance(join.this, Select):
2838            join.this.replace(join.this.subquery())
2839
2840        if join_type:
2841            method: t.Optional[Token]
2842            side: t.Optional[Token]
2843            kind: t.Optional[Token]
2844
2845            method, side, kind = maybe_parse(join_type, into="JOIN_TYPE", **parse_args)  # type: ignore
2846
2847            if method:
2848                join.set("method", method.text)
2849            if side:
2850                join.set("side", side.text)
2851            if kind:
2852                join.set("kind", kind.text)
2853
2854        if on:
2855            on = and_(*ensure_list(on), dialect=dialect, copy=copy, **opts)
2856            join.set("on", on)
2857
2858        if using:
2859            join = _apply_list_builder(
2860                *ensure_list(using),
2861                instance=join,
2862                arg="using",
2863                append=append,
2864                copy=copy,
2865                **opts,
2866            )
2867
2868        if join_alias:
2869            join.set("this", alias_(join.this, join_alias, table=True))
2870
2871        return _apply_list_builder(
2872            join,
2873            instance=self,
2874            arg="joins",
2875            append=append,
2876            copy=copy,
2877            **opts,
2878        )
2879
2880    def where(
2881        self,
2882        *expressions: t.Optional[ExpOrStr],
2883        append: bool = True,
2884        dialect: DialectType = None,
2885        copy: bool = True,
2886        **opts,
2887    ) -> Select:
2888        """
2889        Append to or set the WHERE expressions.
2890
2891        Example:
2892            >>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
2893            "SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
2894
2895        Args:
2896            *expressions: the SQL code strings to parse.
2897                If an `Expression` instance is passed, it will be used as-is.
2898                Multiple expressions are combined with an AND operator.
2899            append: if `True`, AND the new expressions to any existing expression.
2900                Otherwise, this resets the expression.
2901            dialect: the dialect used to parse the input expressions.
2902            copy: if `False`, modify this expression instance in-place.
2903            opts: other options to use to parse the input expressions.
2904
2905        Returns:
2906            Select: the modified expression.
2907        """
2908        return _apply_conjunction_builder(
2909            *expressions,
2910            instance=self,
2911            arg="where",
2912            append=append,
2913            into=Where,
2914            dialect=dialect,
2915            copy=copy,
2916            **opts,
2917        )
2918
2919    def having(
2920        self,
2921        *expressions: t.Optional[ExpOrStr],
2922        append: bool = True,
2923        dialect: DialectType = None,
2924        copy: bool = True,
2925        **opts,
2926    ) -> Select:
2927        """
2928        Append to or set the HAVING expressions.
2929
2930        Example:
2931            >>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
2932            'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
2933
2934        Args:
2935            *expressions: the SQL code strings to parse.
2936                If an `Expression` instance is passed, it will be used as-is.
2937                Multiple expressions are combined with an AND operator.
2938            append: if `True`, AND the new expressions to any existing expression.
2939                Otherwise, this resets the expression.
2940            dialect: the dialect used to parse the input expressions.
2941            copy: if `False`, modify this expression instance in-place.
2942            opts: other options to use to parse the input expressions.
2943
2944        Returns:
2945            The modified Select expression.
2946        """
2947        return _apply_conjunction_builder(
2948            *expressions,
2949            instance=self,
2950            arg="having",
2951            append=append,
2952            into=Having,
2953            dialect=dialect,
2954            copy=copy,
2955            **opts,
2956        )
2957
2958    def window(
2959        self,
2960        *expressions: t.Optional[ExpOrStr],
2961        append: bool = True,
2962        dialect: DialectType = None,
2963        copy: bool = True,
2964        **opts,
2965    ) -> Select:
2966        return _apply_list_builder(
2967            *expressions,
2968            instance=self,
2969            arg="windows",
2970            append=append,
2971            into=Window,
2972            dialect=dialect,
2973            copy=copy,
2974            **opts,
2975        )
2976
2977    def qualify(
2978        self,
2979        *expressions: t.Optional[ExpOrStr],
2980        append: bool = True,
2981        dialect: DialectType = None,
2982        copy: bool = True,
2983        **opts,
2984    ) -> Select:
2985        return _apply_conjunction_builder(
2986            *expressions,
2987            instance=self,
2988            arg="qualify",
2989            append=append,
2990            into=Qualify,
2991            dialect=dialect,
2992            copy=copy,
2993            **opts,
2994        )
2995
2996    def distinct(
2997        self, *ons: t.Optional[ExpOrStr], distinct: bool = True, copy: bool = True
2998    ) -> Select:
2999        """
3000        Set the OFFSET expression.
3001
3002        Example:
3003            >>> Select().from_("tbl").select("x").distinct().sql()
3004            'SELECT DISTINCT x FROM tbl'
3005
3006        Args:
3007            ons: the expressions to distinct on
3008            distinct: whether the Select should be distinct
3009            copy: if `False`, modify this expression instance in-place.
3010
3011        Returns:
3012            Select: the modified expression.
3013        """
3014        instance = _maybe_copy(self, copy)
3015        on = Tuple(expressions=[maybe_parse(on, copy=copy) for on in ons if on]) if ons else None
3016        instance.set("distinct", Distinct(on=on) if distinct else None)
3017        return instance
3018
3019    def ctas(
3020        self,
3021        table: ExpOrStr,
3022        properties: t.Optional[t.Dict] = None,
3023        dialect: DialectType = None,
3024        copy: bool = True,
3025        **opts,
3026    ) -> Create:
3027        """
3028        Convert this expression to a CREATE TABLE AS statement.
3029
3030        Example:
3031            >>> Select().select("*").from_("tbl").ctas("x").sql()
3032            'CREATE TABLE x AS SELECT * FROM tbl'
3033
3034        Args:
3035            table: the SQL code string to parse as the table name.
3036                If another `Expression` instance is passed, it will be used as-is.
3037            properties: an optional mapping of table properties
3038            dialect: the dialect used to parse the input table.
3039            copy: if `False`, modify this expression instance in-place.
3040            opts: other options to use to parse the input table.
3041
3042        Returns:
3043            The new Create expression.
3044        """
3045        instance = _maybe_copy(self, copy)
3046        table_expression = maybe_parse(
3047            table,
3048            into=Table,
3049            dialect=dialect,
3050            **opts,
3051        )
3052        properties_expression = None
3053        if properties:
3054            properties_expression = Properties.from_dict(properties)
3055
3056        return Create(
3057            this=table_expression,
3058            kind="table",
3059            expression=instance,
3060            properties=properties_expression,
3061        )
3062
3063    def lock(self, update: bool = True, copy: bool = True) -> Select:
3064        """
3065        Set the locking read mode for this expression.
3066
3067        Examples:
3068            >>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
3069            "SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
3070
3071            >>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
3072            "SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
3073
3074        Args:
3075            update: if `True`, the locking type will be `FOR UPDATE`, else it will be `FOR SHARE`.
3076            copy: if `False`, modify this expression instance in-place.
3077
3078        Returns:
3079            The modified expression.
3080        """
3081        inst = _maybe_copy(self, copy)
3082        inst.set("locks", [Lock(update=update)])
3083
3084        return inst
3085
3086    def hint(self, *hints: ExpOrStr, dialect: DialectType = None, copy: bool = True) -> Select:
3087        """
3088        Set hints for this expression.
3089
3090        Examples:
3091            >>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
3092            'SELECT /*+ BROADCAST(y) */ x FROM tbl'
3093
3094        Args:
3095            hints: The SQL code strings to parse as the hints.
3096                If an `Expression` instance is passed, it will be used as-is.
3097            dialect: The dialect used to parse the hints.
3098            copy: If `False`, modify this expression instance in-place.
3099
3100        Returns:
3101            The modified expression.
3102        """
3103        inst = _maybe_copy(self, copy)
3104        inst.set(
3105            "hint", Hint(expressions=[maybe_parse(h, copy=copy, dialect=dialect) for h in hints])
3106        )
3107
3108        return inst
3109
3110    @property
3111    def named_selects(self) -> t.List[str]:
3112        return [e.output_name for e in self.expressions if e.alias_or_name]
3113
3114    @property
3115    def is_star(self) -> bool:
3116        return any(expression.is_star for expression in self.expressions)
3117
3118    @property
3119    def selects(self) -> t.List[Expression]:
3120        return self.expressions
def from_( self, expression: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2445    def from_(
2446        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
2447    ) -> Select:
2448        """
2449        Set the FROM expression.
2450
2451        Example:
2452            >>> Select().from_("tbl").select("x").sql()
2453            'SELECT x FROM tbl'
2454
2455        Args:
2456            expression : the SQL code strings to parse.
2457                If a `From` instance is passed, this is used as-is.
2458                If another `Expression` instance is passed, it will be wrapped in a `From`.
2459            dialect: the dialect used to parse the input expression.
2460            copy: if `False`, modify this expression instance in-place.
2461            opts: other options to use to parse the input expressions.
2462
2463        Returns:
2464            The modified Select expression.
2465        """
2466        return _apply_builder(
2467            expression=expression,
2468            instance=self,
2469            arg="from",
2470            into=From,
2471            prefix="FROM",
2472            dialect=dialect,
2473            copy=copy,
2474            **opts,
2475        )

Set the FROM expression.

Example:
>>> Select().from_("tbl").select("x").sql()
'SELECT x FROM tbl'
Arguments:
  • expression : the SQL code strings to parse. If a From instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a From.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def group_by( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2477    def group_by(
2478        self,
2479        *expressions: t.Optional[ExpOrStr],
2480        append: bool = True,
2481        dialect: DialectType = None,
2482        copy: bool = True,
2483        **opts,
2484    ) -> Select:
2485        """
2486        Set the GROUP BY expression.
2487
2488        Example:
2489            >>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
2490            'SELECT x, COUNT(1) FROM tbl GROUP BY x'
2491
2492        Args:
2493            *expressions: the SQL code strings to parse.
2494                If a `Group` instance is passed, this is used as-is.
2495                If another `Expression` instance is passed, it will be wrapped in a `Group`.
2496                If nothing is passed in then a group by is not applied to the expression
2497            append: if `True`, add to any existing expressions.
2498                Otherwise, this flattens all the `Group` expression into a single expression.
2499            dialect: the dialect used to parse the input expression.
2500            copy: if `False`, modify this expression instance in-place.
2501            opts: other options to use to parse the input expressions.
2502
2503        Returns:
2504            The modified Select expression.
2505        """
2506        if not expressions:
2507            return self if not copy else self.copy()
2508
2509        return _apply_child_list_builder(
2510            *expressions,
2511            instance=self,
2512            arg="group",
2513            append=append,
2514            copy=copy,
2515            prefix="GROUP BY",
2516            into=Group,
2517            dialect=dialect,
2518            **opts,
2519        )

Set the GROUP BY expression.

Example:
>>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
'SELECT x, COUNT(1) FROM tbl GROUP BY x'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Group. If nothing is passed in then a group by is not applied to the expression
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Group expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def order_by( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2521    def order_by(
2522        self,
2523        *expressions: t.Optional[ExpOrStr],
2524        append: bool = True,
2525        dialect: DialectType = None,
2526        copy: bool = True,
2527        **opts,
2528    ) -> Select:
2529        """
2530        Set the ORDER BY expression.
2531
2532        Example:
2533            >>> Select().from_("tbl").select("x").order_by("x DESC").sql()
2534            'SELECT x FROM tbl ORDER BY x DESC'
2535
2536        Args:
2537            *expressions: the SQL code strings to parse.
2538                If a `Group` instance is passed, this is used as-is.
2539                If another `Expression` instance is passed, it will be wrapped in a `Order`.
2540            append: if `True`, add to any existing expressions.
2541                Otherwise, this flattens all the `Order` expression into a single expression.
2542            dialect: the dialect used to parse the input expression.
2543            copy: if `False`, modify this expression instance in-place.
2544            opts: other options to use to parse the input expressions.
2545
2546        Returns:
2547            The modified Select expression.
2548        """
2549        return _apply_child_list_builder(
2550            *expressions,
2551            instance=self,
2552            arg="order",
2553            append=append,
2554            copy=copy,
2555            prefix="ORDER BY",
2556            into=Order,
2557            dialect=dialect,
2558            **opts,
2559        )

Set the ORDER BY expression.

Example:
>>> Select().from_("tbl").select("x").order_by("x DESC").sql()
'SELECT x FROM tbl ORDER BY x DESC'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Order.
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Order expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def sort_by( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2561    def sort_by(
2562        self,
2563        *expressions: t.Optional[ExpOrStr],
2564        append: bool = True,
2565        dialect: DialectType = None,
2566        copy: bool = True,
2567        **opts,
2568    ) -> Select:
2569        """
2570        Set the SORT BY expression.
2571
2572        Example:
2573            >>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
2574            'SELECT x FROM tbl SORT BY x DESC'
2575
2576        Args:
2577            *expressions: the SQL code strings to parse.
2578                If a `Group` instance is passed, this is used as-is.
2579                If another `Expression` instance is passed, it will be wrapped in a `SORT`.
2580            append: if `True`, add to any existing expressions.
2581                Otherwise, this flattens all the `Order` expression into a single expression.
2582            dialect: the dialect used to parse the input expression.
2583            copy: if `False`, modify this expression instance in-place.
2584            opts: other options to use to parse the input expressions.
2585
2586        Returns:
2587            The modified Select expression.
2588        """
2589        return _apply_child_list_builder(
2590            *expressions,
2591            instance=self,
2592            arg="sort",
2593            append=append,
2594            copy=copy,
2595            prefix="SORT BY",
2596            into=Sort,
2597            dialect=dialect,
2598            **opts,
2599        )

Set the SORT BY expression.

Example:
>>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
'SELECT x FROM tbl SORT BY x DESC'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a SORT.
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Order expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def cluster_by( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2601    def cluster_by(
2602        self,
2603        *expressions: t.Optional[ExpOrStr],
2604        append: bool = True,
2605        dialect: DialectType = None,
2606        copy: bool = True,
2607        **opts,
2608    ) -> Select:
2609        """
2610        Set the CLUSTER BY expression.
2611
2612        Example:
2613            >>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
2614            'SELECT x FROM tbl CLUSTER BY x DESC'
2615
2616        Args:
2617            *expressions: the SQL code strings to parse.
2618                If a `Group` instance is passed, this is used as-is.
2619                If another `Expression` instance is passed, it will be wrapped in a `Cluster`.
2620            append: if `True`, add to any existing expressions.
2621                Otherwise, this flattens all the `Order` expression into a single expression.
2622            dialect: the dialect used to parse the input expression.
2623            copy: if `False`, modify this expression instance in-place.
2624            opts: other options to use to parse the input expressions.
2625
2626        Returns:
2627            The modified Select expression.
2628        """
2629        return _apply_child_list_builder(
2630            *expressions,
2631            instance=self,
2632            arg="cluster",
2633            append=append,
2634            copy=copy,
2635            prefix="CLUSTER BY",
2636            into=Cluster,
2637            dialect=dialect,
2638            **opts,
2639        )

Set the CLUSTER BY expression.

Example:
>>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
'SELECT x FROM tbl CLUSTER BY x DESC'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Cluster.
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Order expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def limit( self, expression: Union[str, sqlglot.expressions.Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2641    def limit(
2642        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2643    ) -> Select:
2644        """
2645        Set the LIMIT expression.
2646
2647        Example:
2648            >>> Select().from_("tbl").select("x").limit(10).sql()
2649            'SELECT x FROM tbl LIMIT 10'
2650
2651        Args:
2652            expression: the SQL code string to parse.
2653                This can also be an integer.
2654                If a `Limit` instance is passed, this is used as-is.
2655                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2656            dialect: the dialect used to parse the input expression.
2657            copy: if `False`, modify this expression instance in-place.
2658            opts: other options to use to parse the input expressions.
2659
2660        Returns:
2661            Select: the modified expression.
2662        """
2663        return _apply_builder(
2664            expression=expression,
2665            instance=self,
2666            arg="limit",
2667            into=Limit,
2668            prefix="LIMIT",
2669            dialect=dialect,
2670            copy=copy,
2671            **opts,
2672        )

Set the LIMIT expression.

Example:
>>> Select().from_("tbl").select("x").limit(10).sql()
'SELECT x FROM tbl LIMIT 10'
Arguments:
  • expression: the SQL code string to parse. This can also be an integer. If a Limit instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Limit.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Select: the modified expression.

def offset( self, expression: Union[str, sqlglot.expressions.Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2674    def offset(
2675        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2676    ) -> Select:
2677        """
2678        Set the OFFSET expression.
2679
2680        Example:
2681            >>> Select().from_("tbl").select("x").offset(10).sql()
2682            'SELECT x FROM tbl OFFSET 10'
2683
2684        Args:
2685            expression: the SQL code string to parse.
2686                This can also be an integer.
2687                If a `Offset` instance is passed, this is used as-is.
2688                If another `Expression` instance is passed, it will be wrapped in a `Offset`.
2689            dialect: the dialect used to parse the input expression.
2690            copy: if `False`, modify this expression instance in-place.
2691            opts: other options to use to parse the input expressions.
2692
2693        Returns:
2694            The modified Select expression.
2695        """
2696        return _apply_builder(
2697            expression=expression,
2698            instance=self,
2699            arg="offset",
2700            into=Offset,
2701            prefix="OFFSET",
2702            dialect=dialect,
2703            copy=copy,
2704            **opts,
2705        )

Set the OFFSET expression.

Example:
>>> Select().from_("tbl").select("x").offset(10).sql()
'SELECT x FROM tbl OFFSET 10'
Arguments:
  • expression: the SQL code string to parse. This can also be an integer. If a Offset instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Offset.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def select( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2707    def select(
2708        self,
2709        *expressions: t.Optional[ExpOrStr],
2710        append: bool = True,
2711        dialect: DialectType = None,
2712        copy: bool = True,
2713        **opts,
2714    ) -> Select:
2715        """
2716        Append to or set the SELECT expressions.
2717
2718        Example:
2719            >>> Select().select("x", "y").sql()
2720            'SELECT x, y'
2721
2722        Args:
2723            *expressions: the SQL code strings to parse.
2724                If an `Expression` instance is passed, it will be used as-is.
2725            append: if `True`, add to any existing expressions.
2726                Otherwise, this resets the expressions.
2727            dialect: the dialect used to parse the input expressions.
2728            copy: if `False`, modify this expression instance in-place.
2729            opts: other options to use to parse the input expressions.
2730
2731        Returns:
2732            The modified Select expression.
2733        """
2734        return _apply_list_builder(
2735            *expressions,
2736            instance=self,
2737            arg="expressions",
2738            append=append,
2739            dialect=dialect,
2740            copy=copy,
2741            **opts,
2742        )

Append to or set the SELECT expressions.

Example:
>>> Select().select("x", "y").sql()
'SELECT x, y'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def lateral( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2744    def lateral(
2745        self,
2746        *expressions: t.Optional[ExpOrStr],
2747        append: bool = True,
2748        dialect: DialectType = None,
2749        copy: bool = True,
2750        **opts,
2751    ) -> Select:
2752        """
2753        Append to or set the LATERAL expressions.
2754
2755        Example:
2756            >>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
2757            'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
2758
2759        Args:
2760            *expressions: the SQL code strings to parse.
2761                If an `Expression` instance is passed, it will be used as-is.
2762            append: if `True`, add to any existing expressions.
2763                Otherwise, this resets the expressions.
2764            dialect: the dialect used to parse the input expressions.
2765            copy: if `False`, modify this expression instance in-place.
2766            opts: other options to use to parse the input expressions.
2767
2768        Returns:
2769            The modified Select expression.
2770        """
2771        return _apply_list_builder(
2772            *expressions,
2773            instance=self,
2774            arg="laterals",
2775            append=append,
2776            into=Lateral,
2777            prefix="LATERAL VIEW",
2778            dialect=dialect,
2779            copy=copy,
2780            **opts,
2781        )

Append to or set the LATERAL expressions.

Example:
>>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def join( self, expression: Union[str, sqlglot.expressions.Expression], on: Union[str, sqlglot.expressions.Expression, NoneType] = None, using: Union[str, sqlglot.expressions.Expression, List[Union[str, sqlglot.expressions.Expression]], NoneType] = None, append: bool = True, join_type: Optional[str] = None, join_alias: Union[sqlglot.expressions.Identifier, str, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2783    def join(
2784        self,
2785        expression: ExpOrStr,
2786        on: t.Optional[ExpOrStr] = None,
2787        using: t.Optional[ExpOrStr | t.List[ExpOrStr]] = None,
2788        append: bool = True,
2789        join_type: t.Optional[str] = None,
2790        join_alias: t.Optional[Identifier | str] = None,
2791        dialect: DialectType = None,
2792        copy: bool = True,
2793        **opts,
2794    ) -> Select:
2795        """
2796        Append to or set the JOIN expressions.
2797
2798        Example:
2799            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
2800            'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
2801
2802            >>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
2803            'SELECT 1 FROM a JOIN b USING (x, y, z)'
2804
2805            Use `join_type` to change the type of join:
2806
2807            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
2808            'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
2809
2810        Args:
2811            expression: the SQL code string to parse.
2812                If an `Expression` instance is passed, it will be used as-is.
2813            on: optionally specify the join "on" criteria as a SQL string.
2814                If an `Expression` instance is passed, it will be used as-is.
2815            using: optionally specify the join "using" criteria as a SQL string.
2816                If an `Expression` instance is passed, it will be used as-is.
2817            append: if `True`, add to any existing expressions.
2818                Otherwise, this resets the expressions.
2819            join_type: if set, alter the parsed join type.
2820            join_alias: an optional alias for the joined source.
2821            dialect: the dialect used to parse the input expressions.
2822            copy: if `False`, modify this expression instance in-place.
2823            opts: other options to use to parse the input expressions.
2824
2825        Returns:
2826            Select: the modified expression.
2827        """
2828        parse_args: t.Dict[str, t.Any] = {"dialect": dialect, **opts}
2829
2830        try:
2831            expression = maybe_parse(expression, into=Join, prefix="JOIN", **parse_args)
2832        except ParseError:
2833            expression = maybe_parse(expression, into=(Join, Expression), **parse_args)
2834
2835        join = expression if isinstance(expression, Join) else Join(this=expression)
2836
2837        if isinstance(join.this, Select):
2838            join.this.replace(join.this.subquery())
2839
2840        if join_type:
2841            method: t.Optional[Token]
2842            side: t.Optional[Token]
2843            kind: t.Optional[Token]
2844
2845            method, side, kind = maybe_parse(join_type, into="JOIN_TYPE", **parse_args)  # type: ignore
2846
2847            if method:
2848                join.set("method", method.text)
2849            if side:
2850                join.set("side", side.text)
2851            if kind:
2852                join.set("kind", kind.text)
2853
2854        if on:
2855            on = and_(*ensure_list(on), dialect=dialect, copy=copy, **opts)
2856            join.set("on", on)
2857
2858        if using:
2859            join = _apply_list_builder(
2860                *ensure_list(using),
2861                instance=join,
2862                arg="using",
2863                append=append,
2864                copy=copy,
2865                **opts,
2866            )
2867
2868        if join_alias:
2869            join.set("this", alias_(join.this, join_alias, table=True))
2870
2871        return _apply_list_builder(
2872            join,
2873            instance=self,
2874            arg="joins",
2875            append=append,
2876            copy=copy,
2877            **opts,
2878        )

Append to or set the JOIN expressions.

Example:
>>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
>>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
'SELECT 1 FROM a JOIN b USING (x, y, z)'

Use join_type to change the type of join:

>>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
Arguments:
  • expression: the SQL code string to parse. If an Expression instance is passed, it will be used as-is.
  • on: optionally specify the join "on" criteria as a SQL string. If an Expression instance is passed, it will be used as-is.
  • using: optionally specify the join "using" criteria as a SQL string. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • join_type: if set, alter the parsed join type.
  • join_alias: an optional alias for the joined source.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Select: the modified expression.

def where( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2880    def where(
2881        self,
2882        *expressions: t.Optional[ExpOrStr],
2883        append: bool = True,
2884        dialect: DialectType = None,
2885        copy: bool = True,
2886        **opts,
2887    ) -> Select:
2888        """
2889        Append to or set the WHERE expressions.
2890
2891        Example:
2892            >>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
2893            "SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
2894
2895        Args:
2896            *expressions: the SQL code strings to parse.
2897                If an `Expression` instance is passed, it will be used as-is.
2898                Multiple expressions are combined with an AND operator.
2899            append: if `True`, AND the new expressions to any existing expression.
2900                Otherwise, this resets the expression.
2901            dialect: the dialect used to parse the input expressions.
2902            copy: if `False`, modify this expression instance in-place.
2903            opts: other options to use to parse the input expressions.
2904
2905        Returns:
2906            Select: the modified expression.
2907        """
2908        return _apply_conjunction_builder(
2909            *expressions,
2910            instance=self,
2911            arg="where",
2912            append=append,
2913            into=Where,
2914            dialect=dialect,
2915            copy=copy,
2916            **opts,
2917        )

Append to or set the WHERE expressions.

Example:
>>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
"SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Select: the modified expression.

def having( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2919    def having(
2920        self,
2921        *expressions: t.Optional[ExpOrStr],
2922        append: bool = True,
2923        dialect: DialectType = None,
2924        copy: bool = True,
2925        **opts,
2926    ) -> Select:
2927        """
2928        Append to or set the HAVING expressions.
2929
2930        Example:
2931            >>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
2932            'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
2933
2934        Args:
2935            *expressions: the SQL code strings to parse.
2936                If an `Expression` instance is passed, it will be used as-is.
2937                Multiple expressions are combined with an AND operator.
2938            append: if `True`, AND the new expressions to any existing expression.
2939                Otherwise, this resets the expression.
2940            dialect: the dialect used to parse the input expressions.
2941            copy: if `False`, modify this expression instance in-place.
2942            opts: other options to use to parse the input expressions.
2943
2944        Returns:
2945            The modified Select expression.
2946        """
2947        return _apply_conjunction_builder(
2948            *expressions,
2949            instance=self,
2950            arg="having",
2951            append=append,
2952            into=Having,
2953            dialect=dialect,
2954            copy=copy,
2955            **opts,
2956        )

Append to or set the HAVING expressions.

Example:
>>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def window( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2958    def window(
2959        self,
2960        *expressions: t.Optional[ExpOrStr],
2961        append: bool = True,
2962        dialect: DialectType = None,
2963        copy: bool = True,
2964        **opts,
2965    ) -> Select:
2966        return _apply_list_builder(
2967            *expressions,
2968            instance=self,
2969            arg="windows",
2970            append=append,
2971            into=Window,
2972            dialect=dialect,
2973            copy=copy,
2974            **opts,
2975        )
def qualify( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2977    def qualify(
2978        self,
2979        *expressions: t.Optional[ExpOrStr],
2980        append: bool = True,
2981        dialect: DialectType = None,
2982        copy: bool = True,
2983        **opts,
2984    ) -> Select:
2985        return _apply_conjunction_builder(
2986            *expressions,
2987            instance=self,
2988            arg="qualify",
2989            append=append,
2990            into=Qualify,
2991            dialect=dialect,
2992            copy=copy,
2993            **opts,
2994        )
def distinct( self, *ons: Union[str, sqlglot.expressions.Expression, NoneType], distinct: bool = True, copy: bool = True) -> sqlglot.expressions.Select:
2996    def distinct(
2997        self, *ons: t.Optional[ExpOrStr], distinct: bool = True, copy: bool = True
2998    ) -> Select:
2999        """
3000        Set the OFFSET expression.
3001
3002        Example:
3003            >>> Select().from_("tbl").select("x").distinct().sql()
3004            'SELECT DISTINCT x FROM tbl'
3005
3006        Args:
3007            ons: the expressions to distinct on
3008            distinct: whether the Select should be distinct
3009            copy: if `False`, modify this expression instance in-place.
3010
3011        Returns:
3012            Select: the modified expression.
3013        """
3014        instance = _maybe_copy(self, copy)
3015        on = Tuple(expressions=[maybe_parse(on, copy=copy) for on in ons if on]) if ons else None
3016        instance.set("distinct", Distinct(on=on) if distinct else None)
3017        return instance

Set the OFFSET expression.

Example:
>>> Select().from_("tbl").select("x").distinct().sql()
'SELECT DISTINCT x FROM tbl'
Arguments:
  • ons: the expressions to distinct on
  • distinct: whether the Select should be distinct
  • copy: if False, modify this expression instance in-place.
Returns:

Select: the modified expression.

def ctas( self, table: Union[str, sqlglot.expressions.Expression], properties: Optional[Dict] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Create:
3019    def ctas(
3020        self,
3021        table: ExpOrStr,
3022        properties: t.Optional[t.Dict] = None,
3023        dialect: DialectType = None,
3024        copy: bool = True,
3025        **opts,
3026    ) -> Create:
3027        """
3028        Convert this expression to a CREATE TABLE AS statement.
3029
3030        Example:
3031            >>> Select().select("*").from_("tbl").ctas("x").sql()
3032            'CREATE TABLE x AS SELECT * FROM tbl'
3033
3034        Args:
3035            table: the SQL code string to parse as the table name.
3036                If another `Expression` instance is passed, it will be used as-is.
3037            properties: an optional mapping of table properties
3038            dialect: the dialect used to parse the input table.
3039            copy: if `False`, modify this expression instance in-place.
3040            opts: other options to use to parse the input table.
3041
3042        Returns:
3043            The new Create expression.
3044        """
3045        instance = _maybe_copy(self, copy)
3046        table_expression = maybe_parse(
3047            table,
3048            into=Table,
3049            dialect=dialect,
3050            **opts,
3051        )
3052        properties_expression = None
3053        if properties:
3054            properties_expression = Properties.from_dict(properties)
3055
3056        return Create(
3057            this=table_expression,
3058            kind="table",
3059            expression=instance,
3060            properties=properties_expression,
3061        )

Convert this expression to a CREATE TABLE AS statement.

Example:
>>> Select().select("*").from_("tbl").ctas("x").sql()
'CREATE TABLE x AS SELECT * FROM tbl'
Arguments:
  • table: the SQL code string to parse as the table name. If another Expression instance is passed, it will be used as-is.
  • properties: an optional mapping of table properties
  • dialect: the dialect used to parse the input table.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input table.
Returns:

The new Create expression.

def lock( self, update: bool = True, copy: bool = True) -> sqlglot.expressions.Select:
3063    def lock(self, update: bool = True, copy: bool = True) -> Select:
3064        """
3065        Set the locking read mode for this expression.
3066
3067        Examples:
3068            >>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
3069            "SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
3070
3071            >>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
3072            "SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
3073
3074        Args:
3075            update: if `True`, the locking type will be `FOR UPDATE`, else it will be `FOR SHARE`.
3076            copy: if `False`, modify this expression instance in-place.
3077
3078        Returns:
3079            The modified expression.
3080        """
3081        inst = _maybe_copy(self, copy)
3082        inst.set("locks", [Lock(update=update)])
3083
3084        return inst

Set the locking read mode for this expression.

Examples:
>>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
"SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
>>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
"SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
Arguments:
  • update: if True, the locking type will be FOR UPDATE, else it will be FOR SHARE.
  • copy: if False, modify this expression instance in-place.
Returns:

The modified expression.

def hint( self, *hints: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True) -> sqlglot.expressions.Select:
3086    def hint(self, *hints: ExpOrStr, dialect: DialectType = None, copy: bool = True) -> Select:
3087        """
3088        Set hints for this expression.
3089
3090        Examples:
3091            >>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
3092            'SELECT /*+ BROADCAST(y) */ x FROM tbl'
3093
3094        Args:
3095            hints: The SQL code strings to parse as the hints.
3096                If an `Expression` instance is passed, it will be used as-is.
3097            dialect: The dialect used to parse the hints.
3098            copy: If `False`, modify this expression instance in-place.
3099
3100        Returns:
3101            The modified expression.
3102        """
3103        inst = _maybe_copy(self, copy)
3104        inst.set(
3105            "hint", Hint(expressions=[maybe_parse(h, copy=copy, dialect=dialect) for h in hints])
3106        )
3107
3108        return inst

Set hints for this expression.

Examples:
>>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
'SELECT /*+ BROADCAST(y) */ x FROM tbl'
Arguments:
  • hints: The SQL code strings to parse as the hints. If an Expression instance is passed, it will be used as-is.
  • dialect: The dialect used to parse the hints.
  • copy: If False, modify this expression instance in-place.
Returns:

The modified expression.

is_star: bool

Checks whether an expression is a star.

class Subquery(DerivedTable, Unionable):
3123class Subquery(DerivedTable, Unionable):
3124    arg_types = {
3125        "this": True,
3126        "alias": False,
3127        "with": False,
3128        **QUERY_MODIFIERS,
3129    }
3130
3131    def unnest(self):
3132        """
3133        Returns the first non subquery.
3134        """
3135        expression = self
3136        while isinstance(expression, Subquery):
3137            expression = expression.this
3138        return expression
3139
3140    @property
3141    def is_star(self) -> bool:
3142        return self.this.is_star
3143
3144    @property
3145    def output_name(self) -> str:
3146        return self.alias
def unnest(self):
3131    def unnest(self):
3132        """
3133        Returns the first non subquery.
3134        """
3135        expression = self
3136        while isinstance(expression, Subquery):
3137            expression = expression.this
3138        return expression

Returns the first non subquery.

is_star: bool

Checks whether an expression is a star.

output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
class TableSample(Expression):
3149class TableSample(Expression):
3150    arg_types = {
3151        "this": False,
3152        "method": False,
3153        "bucket_numerator": False,
3154        "bucket_denominator": False,
3155        "bucket_field": False,
3156        "percent": False,
3157        "rows": False,
3158        "size": False,
3159        "seed": False,
3160        "kind": False,
3161    }
class Tag(Expression):
3164class Tag(Expression):
3165    """Tags are used for generating arbitrary sql like SELECT <span>x</span>."""
3166
3167    arg_types = {
3168        "this": False,
3169        "prefix": False,
3170        "postfix": False,
3171    }

Tags are used for generating arbitrary sql like SELECT x.

class Pivot(Expression):
3176class Pivot(Expression):
3177    arg_types = {
3178        "this": False,
3179        "alias": False,
3180        "expressions": True,
3181        "field": False,
3182        "unpivot": False,
3183        "using": False,
3184        "group": False,
3185        "columns": False,
3186    }
class Window(Expression):
3189class Window(Expression):
3190    arg_types = {
3191        "this": True,
3192        "partition_by": False,
3193        "order": False,
3194        "spec": False,
3195        "alias": False,
3196        "over": False,
3197        "first": False,
3198    }
class WindowSpec(Expression):
3201class WindowSpec(Expression):
3202    arg_types = {
3203        "kind": False,
3204        "start": False,
3205        "start_side": False,
3206        "end": False,
3207        "end_side": False,
3208    }
class Where(Expression):
3211class Where(Expression):
3212    pass
class Star(Expression):
3215class Star(Expression):
3216    arg_types = {"except": False, "replace": False}
3217
3218    @property
3219    def name(self) -> str:
3220        return "*"
3221
3222    @property
3223    def output_name(self) -> str:
3224        return self.name
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
class Parameter(Expression):
3227class Parameter(Expression):
3228    arg_types = {"this": True, "wrapped": False}
class SessionParameter(Expression):
3231class SessionParameter(Expression):
3232    arg_types = {"this": True, "kind": False}
class Placeholder(Expression):
3235class Placeholder(Expression):
3236    arg_types = {"this": False, "kind": False}
class Null(Condition):
3239class Null(Condition):
3240    arg_types: t.Dict[str, t.Any] = {}
3241
3242    @property
3243    def name(self) -> str:
3244        return "NULL"
class Boolean(Condition):
3247class Boolean(Condition):
3248    pass
class DataTypeSize(Expression):
3251class DataTypeSize(Expression):
3252    arg_types = {"this": True, "expression": False}
class DataType(Expression):
3255class DataType(Expression):
3256    arg_types = {
3257        "this": True,
3258        "expressions": False,
3259        "nested": False,
3260        "values": False,
3261        "prefix": False,
3262    }
3263
3264    class Type(AutoName):
3265        ARRAY = auto()
3266        BIGDECIMAL = auto()
3267        BIGINT = auto()
3268        BIGSERIAL = auto()
3269        BINARY = auto()
3270        BIT = auto()
3271        BOOLEAN = auto()
3272        CHAR = auto()
3273        DATE = auto()
3274        DATETIME = auto()
3275        DATETIME64 = auto()
3276        INT4RANGE = auto()
3277        INT4MULTIRANGE = auto()
3278        INT8RANGE = auto()
3279        INT8MULTIRANGE = auto()
3280        NUMRANGE = auto()
3281        NUMMULTIRANGE = auto()
3282        TSRANGE = auto()
3283        TSMULTIRANGE = auto()
3284        TSTZRANGE = auto()
3285        TSTZMULTIRANGE = auto()
3286        DATERANGE = auto()
3287        DATEMULTIRANGE = auto()
3288        DECIMAL = auto()
3289        DOUBLE = auto()
3290        FLOAT = auto()
3291        GEOGRAPHY = auto()
3292        GEOMETRY = auto()
3293        HLLSKETCH = auto()
3294        HSTORE = auto()
3295        IMAGE = auto()
3296        INET = auto()
3297        INT = auto()
3298        INT128 = auto()
3299        INT256 = auto()
3300        INTERVAL = auto()
3301        JSON = auto()
3302        JSONB = auto()
3303        LONGBLOB = auto()
3304        LONGTEXT = auto()
3305        MAP = auto()
3306        MEDIUMBLOB = auto()
3307        MEDIUMTEXT = auto()
3308        MONEY = auto()
3309        NCHAR = auto()
3310        NULL = auto()
3311        NULLABLE = auto()
3312        NVARCHAR = auto()
3313        OBJECT = auto()
3314        ROWVERSION = auto()
3315        SERIAL = auto()
3316        SMALLINT = auto()
3317        SMALLMONEY = auto()
3318        SMALLSERIAL = auto()
3319        STRUCT = auto()
3320        SUPER = auto()
3321        TEXT = auto()
3322        TIME = auto()
3323        TIMESTAMP = auto()
3324        TIMESTAMPTZ = auto()
3325        TIMESTAMPLTZ = auto()
3326        TINYINT = auto()
3327        UBIGINT = auto()
3328        UINT = auto()
3329        USMALLINT = auto()
3330        UTINYINT = auto()
3331        UNKNOWN = auto()  # Sentinel value, useful for type annotation
3332        UINT128 = auto()
3333        UINT256 = auto()
3334        UNIQUEIDENTIFIER = auto()
3335        UUID = auto()
3336        VARBINARY = auto()
3337        VARCHAR = auto()
3338        VARIANT = auto()
3339        XML = auto()
3340
3341    TEXT_TYPES = {
3342        Type.CHAR,
3343        Type.NCHAR,
3344        Type.VARCHAR,
3345        Type.NVARCHAR,
3346        Type.TEXT,
3347    }
3348
3349    INTEGER_TYPES = {
3350        Type.INT,
3351        Type.TINYINT,
3352        Type.SMALLINT,
3353        Type.BIGINT,
3354        Type.INT128,
3355        Type.INT256,
3356    }
3357
3358    FLOAT_TYPES = {
3359        Type.FLOAT,
3360        Type.DOUBLE,
3361    }
3362
3363    NUMERIC_TYPES = {*INTEGER_TYPES, *FLOAT_TYPES}
3364
3365    TEMPORAL_TYPES = {
3366        Type.TIMESTAMP,
3367        Type.TIMESTAMPTZ,
3368        Type.TIMESTAMPLTZ,
3369        Type.DATE,
3370        Type.DATETIME,
3371        Type.DATETIME64,
3372    }
3373
3374    @classmethod
3375    def build(
3376        cls, dtype: str | DataType | DataType.Type, dialect: DialectType = None, **kwargs
3377    ) -> DataType:
3378        from sqlglot import parse_one
3379
3380        if isinstance(dtype, str):
3381            if dtype.upper() in cls.Type.__members__:
3382                data_type_exp: t.Optional[Expression] = DataType(this=DataType.Type[dtype.upper()])
3383            else:
3384                data_type_exp = parse_one(dtype, read=dialect, into=DataType)
3385
3386            if data_type_exp is None:
3387                raise ValueError(f"Unparsable data type value: {dtype}")
3388        elif isinstance(dtype, DataType.Type):
3389            data_type_exp = DataType(this=dtype)
3390        elif isinstance(dtype, DataType):
3391            return dtype
3392        else:
3393            raise ValueError(f"Invalid data type: {type(dtype)}. Expected str or DataType.Type")
3394
3395        return DataType(**{**data_type_exp.args, **kwargs})
3396
3397    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3398        return any(self.this == DataType.build(dtype).this for dtype in dtypes)
@classmethod
def build( cls, dtype: str | sqlglot.expressions.DataType | sqlglot.expressions.DataType.Type, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **kwargs) -> sqlglot.expressions.DataType:
3374    @classmethod
3375    def build(
3376        cls, dtype: str | DataType | DataType.Type, dialect: DialectType = None, **kwargs
3377    ) -> DataType:
3378        from sqlglot import parse_one
3379
3380        if isinstance(dtype, str):
3381            if dtype.upper() in cls.Type.__members__:
3382                data_type_exp: t.Optional[Expression] = DataType(this=DataType.Type[dtype.upper()])
3383            else:
3384                data_type_exp = parse_one(dtype, read=dialect, into=DataType)
3385
3386            if data_type_exp is None:
3387                raise ValueError(f"Unparsable data type value: {dtype}")
3388        elif isinstance(dtype, DataType.Type):
3389            data_type_exp = DataType(this=dtype)
3390        elif isinstance(dtype, DataType):
3391            return dtype
3392        else:
3393            raise ValueError(f"Invalid data type: {type(dtype)}. Expected str or DataType.Type")
3394
3395        return DataType(**{**data_type_exp.args, **kwargs})
def is_type( self, *dtypes: str | sqlglot.expressions.DataType | sqlglot.expressions.DataType.Type) -> bool:
3397    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3398        return any(self.this == DataType.build(dtype).this for dtype in dtypes)
class DataType.Type(sqlglot.helper.AutoName):
3264    class Type(AutoName):
3265        ARRAY = auto()
3266        BIGDECIMAL = auto()
3267        BIGINT = auto()
3268        BIGSERIAL = auto()
3269        BINARY = auto()
3270        BIT = auto()
3271        BOOLEAN = auto()
3272        CHAR = auto()
3273        DATE = auto()
3274        DATETIME = auto()
3275        DATETIME64 = auto()
3276        INT4RANGE = auto()
3277        INT4MULTIRANGE = auto()
3278        INT8RANGE = auto()
3279        INT8MULTIRANGE = auto()
3280        NUMRANGE = auto()
3281        NUMMULTIRANGE = auto()
3282        TSRANGE = auto()
3283        TSMULTIRANGE = auto()
3284        TSTZRANGE = auto()
3285        TSTZMULTIRANGE = auto()
3286        DATERANGE = auto()
3287        DATEMULTIRANGE = auto()
3288        DECIMAL = auto()
3289        DOUBLE = auto()
3290        FLOAT = auto()
3291        GEOGRAPHY = auto()
3292        GEOMETRY = auto()
3293        HLLSKETCH = auto()
3294        HSTORE = auto()
3295        IMAGE = auto()
3296        INET = auto()
3297        INT = auto()
3298        INT128 = auto()
3299        INT256 = auto()
3300        INTERVAL = auto()
3301        JSON = auto()
3302        JSONB = auto()
3303        LONGBLOB = auto()
3304        LONGTEXT = auto()
3305        MAP = auto()
3306        MEDIUMBLOB = auto()
3307        MEDIUMTEXT = auto()
3308        MONEY = auto()
3309        NCHAR = auto()
3310        NULL = auto()
3311        NULLABLE = auto()
3312        NVARCHAR = auto()
3313        OBJECT = auto()
3314        ROWVERSION = auto()
3315        SERIAL = auto()
3316        SMALLINT = auto()
3317        SMALLMONEY = auto()
3318        SMALLSERIAL = auto()
3319        STRUCT = auto()
3320        SUPER = auto()
3321        TEXT = auto()
3322        TIME = auto()
3323        TIMESTAMP = auto()
3324        TIMESTAMPTZ = auto()
3325        TIMESTAMPLTZ = auto()
3326        TINYINT = auto()
3327        UBIGINT = auto()
3328        UINT = auto()
3329        USMALLINT = auto()
3330        UTINYINT = auto()
3331        UNKNOWN = auto()  # Sentinel value, useful for type annotation
3332        UINT128 = auto()
3333        UINT256 = auto()
3334        UNIQUEIDENTIFIER = auto()
3335        UUID = auto()
3336        VARBINARY = auto()
3337        VARCHAR = auto()
3338        VARIANT = auto()
3339        XML = auto()

An enumeration.

ARRAY = <Type.ARRAY: 'ARRAY'>
BIGDECIMAL = <Type.BIGDECIMAL: 'BIGDECIMAL'>
BIGINT = <Type.BIGINT: 'BIGINT'>
BIGSERIAL = <Type.BIGSERIAL: 'BIGSERIAL'>
BINARY = <Type.BINARY: 'BINARY'>
BIT = <Type.BIT: 'BIT'>
BOOLEAN = <Type.BOOLEAN: 'BOOLEAN'>
CHAR = <Type.CHAR: 'CHAR'>
DATE = <Type.DATE: 'DATE'>
DATETIME = <Type.DATETIME: 'DATETIME'>
DATETIME64 = <Type.DATETIME64: 'DATETIME64'>
INT4RANGE = <Type.INT4RANGE: 'INT4RANGE'>
INT4MULTIRANGE = <Type.INT4MULTIRANGE: 'INT4MULTIRANGE'>
INT8RANGE = <Type.INT8RANGE: 'INT8RANGE'>
INT8MULTIRANGE = <Type.INT8MULTIRANGE: 'INT8MULTIRANGE'>
NUMRANGE = <Type.NUMRANGE: 'NUMRANGE'>
NUMMULTIRANGE = <Type.NUMMULTIRANGE: 'NUMMULTIRANGE'>
TSRANGE = <Type.TSRANGE: 'TSRANGE'>
TSMULTIRANGE = <Type.TSMULTIRANGE: 'TSMULTIRANGE'>
TSTZRANGE = <Type.TSTZRANGE: 'TSTZRANGE'>
TSTZMULTIRANGE = <Type.TSTZMULTIRANGE: 'TSTZMULTIRANGE'>
DATERANGE = <Type.DATERANGE: 'DATERANGE'>
DATEMULTIRANGE = <Type.DATEMULTIRANGE: 'DATEMULTIRANGE'>
DECIMAL = <Type.DECIMAL: 'DECIMAL'>
DOUBLE = <Type.DOUBLE: 'DOUBLE'>
FLOAT = <Type.FLOAT: 'FLOAT'>
GEOGRAPHY = <Type.GEOGRAPHY: 'GEOGRAPHY'>
GEOMETRY = <Type.GEOMETRY: 'GEOMETRY'>
HLLSKETCH = <Type.HLLSKETCH: 'HLLSKETCH'>
HSTORE = <Type.HSTORE: 'HSTORE'>
IMAGE = <Type.IMAGE: 'IMAGE'>
INET = <Type.INET: 'INET'>
INT = <Type.INT: 'INT'>
INT128 = <Type.INT128: 'INT128'>
INT256 = <Type.INT256: 'INT256'>
INTERVAL = <Type.INTERVAL: 'INTERVAL'>
JSON = <Type.JSON: 'JSON'>
JSONB = <Type.JSONB: 'JSONB'>
LONGBLOB = <Type.LONGBLOB: 'LONGBLOB'>
LONGTEXT = <Type.LONGTEXT: 'LONGTEXT'>
MAP = <Type.MAP: 'MAP'>
MEDIUMBLOB = <Type.MEDIUMBLOB: 'MEDIUMBLOB'>
MEDIUMTEXT = <Type.MEDIUMTEXT: 'MEDIUMTEXT'>
MONEY = <Type.MONEY: 'MONEY'>
NCHAR = <Type.NCHAR: 'NCHAR'>
NULL = <Type.NULL: 'NULL'>
NULLABLE = <Type.NULLABLE: 'NULLABLE'>
NVARCHAR = <Type.NVARCHAR: 'NVARCHAR'>
OBJECT = <Type.OBJECT: 'OBJECT'>
ROWVERSION = <Type.ROWVERSION: 'ROWVERSION'>
SERIAL = <Type.SERIAL: 'SERIAL'>
SMALLINT = <Type.SMALLINT: 'SMALLINT'>
SMALLMONEY = <Type.SMALLMONEY: 'SMALLMONEY'>
SMALLSERIAL = <Type.SMALLSERIAL: 'SMALLSERIAL'>
STRUCT = <Type.STRUCT: 'STRUCT'>
SUPER = <Type.SUPER: 'SUPER'>
TEXT = <Type.TEXT: 'TEXT'>
TIME = <Type.TIME: 'TIME'>
TIMESTAMP = <Type.TIMESTAMP: 'TIMESTAMP'>
TIMESTAMPTZ = <Type.TIMESTAMPTZ: 'TIMESTAMPTZ'>
TIMESTAMPLTZ = <Type.TIMESTAMPLTZ: 'TIMESTAMPLTZ'>
TINYINT = <Type.TINYINT: 'TINYINT'>
UBIGINT = <Type.UBIGINT: 'UBIGINT'>
UINT = <Type.UINT: 'UINT'>
USMALLINT = <Type.USMALLINT: 'USMALLINT'>
UTINYINT = <Type.UTINYINT: 'UTINYINT'>
UNKNOWN = <Type.UNKNOWN: 'UNKNOWN'>
UINT128 = <Type.UINT128: 'UINT128'>
UINT256 = <Type.UINT256: 'UINT256'>
UNIQUEIDENTIFIER = <Type.UNIQUEIDENTIFIER: 'UNIQUEIDENTIFIER'>
UUID = <Type.UUID: 'UUID'>
VARBINARY = <Type.VARBINARY: 'VARBINARY'>
VARCHAR = <Type.VARCHAR: 'VARCHAR'>
VARIANT = <Type.VARIANT: 'VARIANT'>
XML = <Type.XML: 'XML'>
Inherited Members
enum.Enum
name
value
class PseudoType(Expression):
3402class PseudoType(Expression):
3403    pass
class SubqueryPredicate(Predicate):
3407class SubqueryPredicate(Predicate):
3408    pass
class All(SubqueryPredicate):
3411class All(SubqueryPredicate):
3412    pass
class Any(SubqueryPredicate):
3415class Any(SubqueryPredicate):
3416    pass
class Exists(SubqueryPredicate):
3419class Exists(SubqueryPredicate):
3420    pass
class Command(Expression):
3425class Command(Expression):
3426    arg_types = {"this": True, "expression": False}
class Transaction(Expression):
3429class Transaction(Expression):
3430    arg_types = {"this": False, "modes": False}
class Commit(Expression):
3433class Commit(Expression):
3434    arg_types = {"chain": False}
class Rollback(Expression):
3437class Rollback(Expression):
3438    arg_types = {"savepoint": False}
class AlterTable(Expression):
3441class AlterTable(Expression):
3442    arg_types = {"this": True, "actions": True, "exists": False}
class AddConstraint(Expression):
3445class AddConstraint(Expression):
3446    arg_types = {"this": False, "expression": False, "enforced": False}
class DropPartition(Expression):
3449class DropPartition(Expression):
3450    arg_types = {"expressions": True, "exists": False}
class Binary(Condition):
3454class Binary(Condition):
3455    arg_types = {"this": True, "expression": True}
3456
3457    @property
3458    def left(self):
3459        return self.this
3460
3461    @property
3462    def right(self):
3463        return self.expression
class Add(Binary):
3466class Add(Binary):
3467    pass
class Connector(Binary):
3470class Connector(Binary):
3471    pass
class And(Connector):
3474class And(Connector):
3475    pass
class Or(Connector):
3478class Or(Connector):
3479    pass
class BitwiseAnd(Binary):
3482class BitwiseAnd(Binary):
3483    pass
class BitwiseLeftShift(Binary):
3486class BitwiseLeftShift(Binary):
3487    pass
class BitwiseOr(Binary):
3490class BitwiseOr(Binary):
3491    pass
class BitwiseRightShift(Binary):
3494class BitwiseRightShift(Binary):
3495    pass
class BitwiseXor(Binary):
3498class BitwiseXor(Binary):
3499    pass
class Div(Binary):
3502class Div(Binary):
3503    pass
class Overlaps(Binary):
3506class Overlaps(Binary):
3507    pass
class Dot(Binary):
3510class Dot(Binary):
3511    @property
3512    def name(self) -> str:
3513        return self.expression.name
3514
3515    @classmethod
3516    def build(self, expressions: t.Sequence[Expression]) -> Dot:
3517        """Build a Dot object with a sequence of expressions."""
3518        if len(expressions) < 2:
3519            raise ValueError(f"Dot requires >= 2 expressions.")
3520
3521        a, b, *expressions = expressions
3522        dot = Dot(this=a, expression=b)
3523
3524        for expression in expressions:
3525            dot = Dot(this=dot, expression=expression)
3526
3527        return dot
@classmethod
def build( self, expressions: Sequence[sqlglot.expressions.Expression]) -> sqlglot.expressions.Dot:
3515    @classmethod
3516    def build(self, expressions: t.Sequence[Expression]) -> Dot:
3517        """Build a Dot object with a sequence of expressions."""
3518        if len(expressions) < 2:
3519            raise ValueError(f"Dot requires >= 2 expressions.")
3520
3521        a, b, *expressions = expressions
3522        dot = Dot(this=a, expression=b)
3523
3524        for expression in expressions:
3525            dot = Dot(this=dot, expression=expression)
3526
3527        return dot

Build a Dot object with a sequence of expressions.

class DPipe(Binary):
3530class DPipe(Binary):
3531    pass
class SafeDPipe(DPipe):
3534class SafeDPipe(DPipe):
3535    pass
class EQ(Binary, Predicate):
3538class EQ(Binary, Predicate):
3539    pass
class NullSafeEQ(Binary, Predicate):
3542class NullSafeEQ(Binary, Predicate):
3543    pass
class NullSafeNEQ(Binary, Predicate):
3546class NullSafeNEQ(Binary, Predicate):
3547    pass
class Distance(Binary):
3550class Distance(Binary):
3551    pass
class Escape(Binary):
3554class Escape(Binary):
3555    pass
class Glob(Binary, Predicate):
3558class Glob(Binary, Predicate):
3559    pass
class GT(Binary, Predicate):
3562class GT(Binary, Predicate):
3563    pass
class GTE(Binary, Predicate):
3566class GTE(Binary, Predicate):
3567    pass
class ILike(Binary, Predicate):
3570class ILike(Binary, Predicate):
3571    pass
class ILikeAny(Binary, Predicate):
3574class ILikeAny(Binary, Predicate):
3575    pass
class IntDiv(Binary):
3578class IntDiv(Binary):
3579    pass
class Is(Binary, Predicate):
3582class Is(Binary, Predicate):
3583    pass
class Kwarg(Binary):
3586class Kwarg(Binary):
3587    """Kwarg in special functions like func(kwarg => y)."""

Kwarg in special functions like func(kwarg => y).

class Like(Binary, Predicate):
3590class Like(Binary, Predicate):
3591    pass
class LikeAny(Binary, Predicate):
3594class LikeAny(Binary, Predicate):
3595    pass
class LT(Binary, Predicate):
3598class LT(Binary, Predicate):
3599    pass
class LTE(Binary, Predicate):
3602class LTE(Binary, Predicate):
3603    pass
class Mod(Binary):
3606class Mod(Binary):
3607    pass
class Mul(Binary):
3610class Mul(Binary):
3611    pass
class NEQ(Binary, Predicate):
3614class NEQ(Binary, Predicate):
3615    pass
class SimilarTo(Binary, Predicate):
3618class SimilarTo(Binary, Predicate):
3619    pass
class Slice(Binary):
3622class Slice(Binary):
3623    arg_types = {"this": False, "expression": False}
class Sub(Binary):
3626class Sub(Binary):
3627    pass
class ArrayOverlaps(Binary):
3630class ArrayOverlaps(Binary):
3631    pass
class Unary(Condition):
3636class Unary(Condition):
3637    pass
class BitwiseNot(Unary):
3640class BitwiseNot(Unary):
3641    pass
class Not(Unary):
3644class Not(Unary):
3645    pass
class Paren(Unary):
3648class Paren(Unary):
3649    arg_types = {"this": True, "with": False}
3650
3651    @property
3652    def output_name(self) -> str:
3653        return self.this.name
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
class Neg(Unary):
3656class Neg(Unary):
3657    pass
class Alias(Expression):
3660class Alias(Expression):
3661    arg_types = {"this": True, "alias": False}
3662
3663    @property
3664    def output_name(self) -> str:
3665        return self.alias
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
class Aliases(Expression):
3668class Aliases(Expression):
3669    arg_types = {"this": True, "expressions": True}
3670
3671    @property
3672    def aliases(self):
3673        return self.expressions
class AtTimeZone(Expression):
3676class AtTimeZone(Expression):
3677    arg_types = {"this": True, "zone": True}
class Between(Predicate):
3680class Between(Predicate):
3681    arg_types = {"this": True, "low": True, "high": True}
class Bracket(Condition):
3684class Bracket(Condition):
3685    arg_types = {"this": True, "expressions": True}
class Distinct(Expression):
3688class Distinct(Expression):
3689    arg_types = {"expressions": False, "on": False}
class In(Predicate):
3692class In(Predicate):
3693    arg_types = {
3694        "this": True,
3695        "expressions": False,
3696        "query": False,
3697        "unnest": False,
3698        "field": False,
3699        "is_global": False,
3700    }
class TimeUnit(Expression):
3703class TimeUnit(Expression):
3704    """Automatically converts unit arg into a var."""
3705
3706    arg_types = {"unit": False}
3707
3708    def __init__(self, **args):
3709        unit = args.get("unit")
3710        if isinstance(unit, (Column, Literal)):
3711            args["unit"] = Var(this=unit.name)
3712        elif isinstance(unit, Week):
3713            unit.set("this", Var(this=unit.this.name))
3714
3715        super().__init__(**args)

Automatically converts unit arg into a var.

TimeUnit(**args)
3708    def __init__(self, **args):
3709        unit = args.get("unit")
3710        if isinstance(unit, (Column, Literal)):
3711            args["unit"] = Var(this=unit.name)
3712        elif isinstance(unit, Week):
3713            unit.set("this", Var(this=unit.this.name))
3714
3715        super().__init__(**args)
class Interval(TimeUnit):
3718class Interval(TimeUnit):
3719    arg_types = {"this": False, "unit": False}
3720
3721    @property
3722    def unit(self) -> t.Optional[Var]:
3723        return self.args.get("unit")
class IgnoreNulls(Expression):
3726class IgnoreNulls(Expression):
3727    pass
class RespectNulls(Expression):
3730class RespectNulls(Expression):
3731    pass
class Func(Condition):
3735class Func(Condition):
3736    """
3737    The base class for all function expressions.
3738
3739    Attributes:
3740        is_var_len_args (bool): if set to True the last argument defined in arg_types will be
3741            treated as a variable length argument and the argument's value will be stored as a list.
3742        _sql_names (list): determines the SQL name (1st item in the list) and aliases (subsequent items)
3743            for this function expression. These values are used to map this node to a name during parsing
3744            as well as to provide the function's name during SQL string generation. By default the SQL
3745            name is set to the expression's class name transformed to snake case.
3746    """
3747
3748    is_var_len_args = False
3749
3750    @classmethod
3751    def from_arg_list(cls, args):
3752        if cls.is_var_len_args:
3753            all_arg_keys = list(cls.arg_types)
3754            # If this function supports variable length argument treat the last argument as such.
3755            non_var_len_arg_keys = all_arg_keys[:-1] if cls.is_var_len_args else all_arg_keys
3756            num_non_var = len(non_var_len_arg_keys)
3757
3758            args_dict = {arg_key: arg for arg, arg_key in zip(args, non_var_len_arg_keys)}
3759            args_dict[all_arg_keys[-1]] = args[num_non_var:]
3760        else:
3761            args_dict = {arg_key: arg for arg, arg_key in zip(args, cls.arg_types)}
3762
3763        return cls(**args_dict)
3764
3765    @classmethod
3766    def sql_names(cls):
3767        if cls is Func:
3768            raise NotImplementedError(
3769                "SQL name is only supported by concrete function implementations"
3770            )
3771        if "_sql_names" not in cls.__dict__:
3772            cls._sql_names = [camel_to_snake_case(cls.__name__)]
3773        return cls._sql_names
3774
3775    @classmethod
3776    def sql_name(cls):
3777        return cls.sql_names()[0]
3778
3779    @classmethod
3780    def default_parser_mappings(cls):
3781        return {name: cls.from_arg_list for name in cls.sql_names()}

The base class for all function expressions.

Attributes:
  • is_var_len_args (bool): if set to True the last argument defined in arg_types will be treated as a variable length argument and the argument's value will be stored as a list.
  • _sql_names (list): determines the SQL name (1st item in the list) and aliases (subsequent items) for this function expression. These values are used to map this node to a name during parsing as well as to provide the function's name during SQL string generation. By default the SQL name is set to the expression's class name transformed to snake case.
@classmethod
def from_arg_list(cls, args):
3750    @classmethod
3751    def from_arg_list(cls, args):
3752        if cls.is_var_len_args:
3753            all_arg_keys = list(cls.arg_types)
3754            # If this function supports variable length argument treat the last argument as such.
3755            non_var_len_arg_keys = all_arg_keys[:-1] if cls.is_var_len_args else all_arg_keys
3756            num_non_var = len(non_var_len_arg_keys)
3757
3758            args_dict = {arg_key: arg for arg, arg_key in zip(args, non_var_len_arg_keys)}
3759            args_dict[all_arg_keys[-1]] = args[num_non_var:]
3760        else:
3761            args_dict = {arg_key: arg for arg, arg_key in zip(args, cls.arg_types)}
3762
3763        return cls(**args_dict)
@classmethod
def sql_names(cls):
3765    @classmethod
3766    def sql_names(cls):
3767        if cls is Func:
3768            raise NotImplementedError(
3769                "SQL name is only supported by concrete function implementations"
3770            )
3771        if "_sql_names" not in cls.__dict__:
3772            cls._sql_names = [camel_to_snake_case(cls.__name__)]
3773        return cls._sql_names
@classmethod
def sql_name(cls):
3775    @classmethod
3776    def sql_name(cls):
3777        return cls.sql_names()[0]
@classmethod
def default_parser_mappings(cls):
3779    @classmethod
3780    def default_parser_mappings(cls):
3781        return {name: cls.from_arg_list for name in cls.sql_names()}
class AggFunc(Func):
3784class AggFunc(Func):
3785    pass
class ParameterizedAgg(AggFunc):
3788class ParameterizedAgg(AggFunc):
3789    arg_types = {"this": True, "expressions": True, "params": True}
class Abs(Func):
3792class Abs(Func):
3793    pass
class Anonymous(Func):
3796class Anonymous(Func):
3797    arg_types = {"this": True, "expressions": False}
3798    is_var_len_args = True
class Hll(AggFunc):
3803class Hll(AggFunc):
3804    arg_types = {"this": True, "expressions": False}
3805    is_var_len_args = True
class ApproxDistinct(AggFunc):
3808class ApproxDistinct(AggFunc):
3809    arg_types = {"this": True, "accuracy": False}
3810    _sql_names = ["APPROX_DISTINCT", "APPROX_COUNT_DISTINCT"]
class Array(Func):
3813class Array(Func):
3814    arg_types = {"expressions": False}
3815    is_var_len_args = True
class ToChar(Func):
3819class ToChar(Func):
3820    arg_types = {"this": True, "format": False}
class GenerateSeries(Func):
3823class GenerateSeries(Func):
3824    arg_types = {"start": True, "end": True, "step": False}
class ArrayAgg(AggFunc):
3827class ArrayAgg(AggFunc):
3828    pass
class ArrayAll(Func):
3831class ArrayAll(Func):
3832    arg_types = {"this": True, "expression": True}
class ArrayAny(Func):
3835class ArrayAny(Func):
3836    arg_types = {"this": True, "expression": True}
class ArrayConcat(Func):
3839class ArrayConcat(Func):
3840    arg_types = {"this": True, "expressions": False}
3841    is_var_len_args = True
class ArrayContains(Binary, Func):
3844class ArrayContains(Binary, Func):
3845    pass
class ArrayContained(Binary):
3848class ArrayContained(Binary):
3849    pass
class ArrayFilter(Func):
3852class ArrayFilter(Func):
3853    arg_types = {"this": True, "expression": True}
3854    _sql_names = ["FILTER", "ARRAY_FILTER"]
class ArrayJoin(Func):
3857class ArrayJoin(Func):
3858    arg_types = {"this": True, "expression": True, "null": False}
class ArraySize(Func):
3861class ArraySize(Func):
3862    arg_types = {"this": True, "expression": False}
class ArraySort(Func):
3865class ArraySort(Func):
3866    arg_types = {"this": True, "expression": False}
class ArraySum(Func):
3869class ArraySum(Func):
3870    pass
class ArrayUnionAgg(AggFunc):
3873class ArrayUnionAgg(AggFunc):
3874    pass
class Avg(AggFunc):
3877class Avg(AggFunc):
3878    pass
class AnyValue(AggFunc):
3881class AnyValue(AggFunc):
3882    pass
class Case(Func):
3885class Case(Func):
3886    arg_types = {"this": False, "ifs": True, "default": False}
3887
3888    def when(self, condition: ExpOrStr, then: ExpOrStr, copy: bool = True, **opts) -> Case:
3889        instance = _maybe_copy(self, copy)
3890        instance.append(
3891            "ifs",
3892            If(
3893                this=maybe_parse(condition, copy=copy, **opts),
3894                true=maybe_parse(then, copy=copy, **opts),
3895            ),
3896        )
3897        return instance
3898
3899    def else_(self, condition: ExpOrStr, copy: bool = True, **opts) -> Case:
3900        instance = _maybe_copy(self, copy)
3901        instance.set("default", maybe_parse(condition, copy=copy, **opts))
3902        return instance
def when( self, condition: Union[str, sqlglot.expressions.Expression], then: Union[str, sqlglot.expressions.Expression], copy: bool = True, **opts) -> sqlglot.expressions.Case:
3888    def when(self, condition: ExpOrStr, then: ExpOrStr, copy: bool = True, **opts) -> Case:
3889        instance = _maybe_copy(self, copy)
3890        instance.append(
3891            "ifs",
3892            If(
3893                this=maybe_parse(condition, copy=copy, **opts),
3894                true=maybe_parse(then, copy=copy, **opts),
3895            ),
3896        )
3897        return instance
def else_( self, condition: Union[str, sqlglot.expressions.Expression], copy: bool = True, **opts) -> sqlglot.expressions.Case:
3899    def else_(self, condition: ExpOrStr, copy: bool = True, **opts) -> Case:
3900        instance = _maybe_copy(self, copy)
3901        instance.set("default", maybe_parse(condition, copy=copy, **opts))
3902        return instance
class Cast(Func):
3905class Cast(Func):
3906    arg_types = {"this": True, "to": True}
3907
3908    @property
3909    def name(self) -> str:
3910        return self.this.name
3911
3912    @property
3913    def to(self) -> DataType:
3914        return self.args["to"]
3915
3916    @property
3917    def output_name(self) -> str:
3918        return self.name
3919
3920    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3921        return self.to.is_type(*dtypes)
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
def is_type( self, *dtypes: str | sqlglot.expressions.DataType | sqlglot.expressions.DataType.Type) -> bool:
3920    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3921        return self.to.is_type(*dtypes)
class CastToStrType(Func):
3924class CastToStrType(Func):
3925    arg_types = {"this": True, "expression": True}
class Collate(Binary):
3928class Collate(Binary):
3929    pass
class TryCast(Cast):
3932class TryCast(Cast):
3933    pass
class Ceil(Func):
3936class Ceil(Func):
3937    arg_types = {"this": True, "decimals": False}
3938    _sql_names = ["CEIL", "CEILING"]
class Coalesce(Func):
3941class Coalesce(Func):
3942    arg_types = {"this": True, "expressions": False}
3943    is_var_len_args = True
3944    _sql_names = ["COALESCE", "IFNULL", "NVL"]
class Concat(Func):
3947class Concat(Func):
3948    arg_types = {"expressions": True}
3949    is_var_len_args = True
class SafeConcat(Concat):
3952class SafeConcat(Concat):
3953    pass
class ConcatWs(Concat):
3956class ConcatWs(Concat):
3957    _sql_names = ["CONCAT_WS"]
class Count(AggFunc):
3960class Count(AggFunc):
3961    arg_types = {"this": False, "expressions": False}
3962    is_var_len_args = True
class CountIf(AggFunc):
3965class CountIf(AggFunc):
3966    pass
class CurrentDate(Func):
3969class CurrentDate(Func):
3970    arg_types = {"this": False}
class CurrentDatetime(Func):
3973class CurrentDatetime(Func):
3974    arg_types = {"this": False}
class CurrentTime(Func):
3977class CurrentTime(Func):
3978    arg_types = {"this": False}
class CurrentTimestamp(Func):
3981class CurrentTimestamp(Func):
3982    arg_types = {"this": False}
class CurrentUser(Func):
3985class CurrentUser(Func):
3986    arg_types = {"this": False}
class DateAdd(Func, TimeUnit):
3989class DateAdd(Func, TimeUnit):
3990    arg_types = {"this": True, "expression": True, "unit": False}
class DateSub(Func, TimeUnit):
3993class DateSub(Func, TimeUnit):
3994    arg_types = {"this": True, "expression": True, "unit": False}
class DateDiff(Func, TimeUnit):
3997class DateDiff(Func, TimeUnit):
3998    _sql_names = ["DATEDIFF", "DATE_DIFF"]
3999    arg_types = {"this": True, "expression": True, "unit": False}
class DateTrunc(Func):
4002class DateTrunc(Func):
4003    arg_types = {"unit": True, "this": True, "zone": False}
class DatetimeAdd(Func, TimeUnit):
4006class DatetimeAdd(Func, TimeUnit):
4007    arg_types = {"this": True, "expression": True, "unit": False}
class DatetimeSub(Func, TimeUnit):
4010class DatetimeSub(Func, TimeUnit):
4011    arg_types = {"this": True, "expression": True, "unit": False}
class DatetimeDiff(Func, TimeUnit):
4014class DatetimeDiff(Func, TimeUnit):
4015    arg_types = {"this": True, "expression": True, "unit": False}
class DatetimeTrunc(Func, TimeUnit):
4018class DatetimeTrunc(Func, TimeUnit):
4019    arg_types = {"this": True, "unit": True, "zone": False}
class DayOfWeek(Func):
4022class DayOfWeek(Func):
4023    _sql_names = ["DAY_OF_WEEK", "DAYOFWEEK"]
class DayOfMonth(Func):
4026class DayOfMonth(Func):
4027    _sql_names = ["DAY_OF_MONTH", "DAYOFMONTH"]
class DayOfYear(Func):
4030class DayOfYear(Func):
4031    _sql_names = ["DAY_OF_YEAR", "DAYOFYEAR"]
class WeekOfYear(Func):
4034class WeekOfYear(Func):
4035    _sql_names = ["WEEK_OF_YEAR", "WEEKOFYEAR"]
class LastDateOfMonth(Func):
4038class LastDateOfMonth(Func):
4039    pass
class Extract(Func):
4042class Extract(Func):
4043    arg_types = {"this": True, "expression": True}
class TimestampAdd(Func, TimeUnit):
4046class TimestampAdd(Func, TimeUnit):
4047    arg_types = {"this": True, "expression": True, "unit": False}
class TimestampSub(Func, TimeUnit):
4050class TimestampSub(Func, TimeUnit):
4051    arg_types = {"this": True, "expression": True, "unit": False}
class TimestampDiff(Func, TimeUnit):
4054class TimestampDiff(Func, TimeUnit):
4055    arg_types = {"this": True, "expression": True, "unit": False}
class TimestampTrunc(Func, TimeUnit):
4058class TimestampTrunc(Func, TimeUnit):
4059    arg_types = {"this": True, "unit": True, "zone": False}
class TimeAdd(Func, TimeUnit):
4062class TimeAdd(Func, TimeUnit):
4063    arg_types = {"this": True, "expression": True, "unit": False}
class TimeSub(Func, TimeUnit):
4066class TimeSub(Func, TimeUnit):
4067    arg_types = {"this": True, "expression": True, "unit": False}
class TimeDiff(Func, TimeUnit):
4070class TimeDiff(Func, TimeUnit):
4071    arg_types = {"this": True, "expression": True, "unit": False}
class TimeTrunc(Func, TimeUnit):
4074class TimeTrunc(Func, TimeUnit):
4075    arg_types = {"this": True, "unit": True, "zone": False}
class DateFromParts(Func):
4078class DateFromParts(Func):
4079    _sql_names = ["DATEFROMPARTS"]
4080    arg_types = {"year": True, "month": True, "day": True}
class DateStrToDate(Func):
4083class DateStrToDate(Func):
4084    pass
class DateToDateStr(Func):
4087class DateToDateStr(Func):
4088    pass
class DateToDi(Func):
4091class DateToDi(Func):
4092    pass
class Day(Func):
4095class Day(Func):
4096    pass
class Decode(Func):
4099class Decode(Func):
4100    arg_types = {"this": True, "charset": True, "replace": False}
class DiToDate(Func):
4103class DiToDate(Func):
4104    pass
class Encode(Func):
4107class Encode(Func):
4108    arg_types = {"this": True, "charset": True}
class Exp(Func):
4111class Exp(Func):
4112    pass
class Explode(Func):
4115class Explode(Func):
4116    pass
class Floor(Func):
4119class Floor(Func):
4120    arg_types = {"this": True, "decimals": False}
class FromBase64(Func):
4123class FromBase64(Func):
4124    pass
class ToBase64(Func):
4127class ToBase64(Func):
4128    pass
class Greatest(Func):
4131class Greatest(Func):
4132    arg_types = {"this": True, "expressions": False}
4133    is_var_len_args = True
class GroupConcat(Func):
4136class GroupConcat(Func):
4137    arg_types = {"this": True, "separator": False}
class Hex(Func):
4140class Hex(Func):
4141    pass
class If(Func):
4144class If(Func):
4145    arg_types = {"this": True, "true": True, "false": False}
class Initcap(Func):
4148class Initcap(Func):
4149    arg_types = {"this": True, "expression": False}
class JSONKeyValue(Expression):
4152class JSONKeyValue(Expression):
4153    arg_types = {"this": True, "expression": True}
class JSONObject(Func):
4156class JSONObject(Func):
4157    arg_types = {
4158        "expressions": False,
4159        "null_handling": False,
4160        "unique_keys": False,
4161        "return_type": False,
4162        "format_json": False,
4163        "encoding": False,
4164    }
class OpenJSONColumnDef(Expression):
4167class OpenJSONColumnDef(Expression):
4168    arg_types = {"this": True, "kind": True, "path": False, "as_json": False}
class OpenJSON(Func):
4171class OpenJSON(Func):
4172    arg_types = {"this": True, "path": False, "expressions": False}
class JSONBContains(Binary):
4175class JSONBContains(Binary):
4176    _sql_names = ["JSONB_CONTAINS"]
class JSONExtract(Binary, Func):
4179class JSONExtract(Binary, Func):
4180    _sql_names = ["JSON_EXTRACT"]
class JSONExtractScalar(JSONExtract):
4183class JSONExtractScalar(JSONExtract):
4184    _sql_names = ["JSON_EXTRACT_SCALAR"]
class JSONBExtract(JSONExtract):
4187class JSONBExtract(JSONExtract):
4188    _sql_names = ["JSONB_EXTRACT"]
class JSONBExtractScalar(JSONExtract):
4191class JSONBExtractScalar(JSONExtract):
4192    _sql_names = ["JSONB_EXTRACT_SCALAR"]
class JSONFormat(Func):
4195class JSONFormat(Func):
4196    arg_types = {"this": False, "options": False}
4197    _sql_names = ["JSON_FORMAT"]
class Least(Func):
4200class Least(Func):
4201    arg_types = {"expressions": False}
4202    is_var_len_args = True
class Left(Func):
4205class Left(Func):
4206    arg_types = {"this": True, "expression": True}
class Length(Func):
4213class Length(Func):
4214    _sql_names = ["LENGTH", "LEN"]
class Levenshtein(Func):
4217class Levenshtein(Func):
4218    arg_types = {
4219        "this": True,
4220        "expression": False,
4221        "ins_cost": False,
4222        "del_cost": False,
4223        "sub_cost": False,
4224    }
class Ln(Func):
4227class Ln(Func):
4228    pass
class Log(Func):
4231class Log(Func):
4232    arg_types = {"this": True, "expression": False}
class Log2(Func):
4235class Log2(Func):
4236    pass
class Log10(Func):
4239class Log10(Func):
4240    pass
class LogicalOr(AggFunc):
4243class LogicalOr(AggFunc):
4244    _sql_names = ["LOGICAL_OR", "BOOL_OR", "BOOLOR_AGG"]
class LogicalAnd(AggFunc):
4247class LogicalAnd(AggFunc):
4248    _sql_names = ["LOGICAL_AND", "BOOL_AND", "BOOLAND_AGG"]
class Lower(Func):
4251class Lower(Func):
4252    _sql_names = ["LOWER", "LCASE"]
class Map(Func):
4255class Map(Func):
4256    arg_types = {"keys": False, "values": False}
class StarMap(Func):
4259class StarMap(Func):
4260    pass
class VarMap(Func):
4263class VarMap(Func):
4264    arg_types = {"keys": True, "values": True}
4265    is_var_len_args = True
4266
4267    @property
4268    def keys(self) -> t.List[Expression]:
4269        return self.args["keys"].expressions
4270
4271    @property
4272    def values(self) -> t.List[Expression]:
4273        return self.args["values"].expressions
class MatchAgainst(Func):
4277class MatchAgainst(Func):
4278    arg_types = {"this": True, "expressions": True, "modifier": False}
class Max(AggFunc):
4281class Max(AggFunc):
4282    arg_types = {"this": True, "expressions": False}
4283    is_var_len_args = True
class MD5(Func):
4286class MD5(Func):
4287    _sql_names = ["MD5"]
class Min(AggFunc):
4290class Min(AggFunc):
4291    arg_types = {"this": True, "expressions": False}
4292    is_var_len_args = True
class Month(Func):
4295class Month(Func):
4296    pass
class Nvl2(Func):
4299class Nvl2(Func):
4300    arg_types = {"this": True, "true": True, "false": False}
class Posexplode(Func):
4303class Posexplode(Func):
4304    pass
class Pow(Binary, Func):
4307class Pow(Binary, Func):
4308    _sql_names = ["POWER", "POW"]
class PercentileCont(AggFunc):
4311class PercentileCont(AggFunc):
4312    arg_types = {"this": True, "expression": False}
class PercentileDisc(AggFunc):
4315class PercentileDisc(AggFunc):
4316    arg_types = {"this": True, "expression": False}
class Quantile(AggFunc):
4319class Quantile(AggFunc):
4320    arg_types = {"this": True, "quantile": True}
class ApproxQuantile(Quantile):
4323class ApproxQuantile(Quantile):
4324    arg_types = {"this": True, "quantile": True, "accuracy": False, "weight": False}
class RangeN(Func):
4327class RangeN(Func):
4328    arg_types = {"this": True, "expressions": True, "each": False}
class ReadCSV(Func):
4331class ReadCSV(Func):
4332    _sql_names = ["READ_CSV"]
4333    is_var_len_args = True
4334    arg_types = {"this": True, "expressions": False}
class Reduce(Func):
4337class Reduce(Func):
4338    arg_types = {"this": True, "initial": True, "merge": True, "finish": False}
class RegexpExtract(Func):
4341class RegexpExtract(Func):
4342    arg_types = {
4343        "this": True,
4344        "expression": True,
4345        "position": False,
4346        "occurrence": False,
4347        "group": False,
4348    }
class RegexpLike(Func):
4351class RegexpLike(Func):
4352    arg_types = {"this": True, "expression": True, "flag": False}
class RegexpILike(Func):
4355class RegexpILike(Func):
4356    arg_types = {"this": True, "expression": True, "flag": False}
class RegexpSplit(Func):
4361class RegexpSplit(Func):
4362    arg_types = {"this": True, "expression": True, "limit": False}
class Repeat(Func):
4365class Repeat(Func):
4366    arg_types = {"this": True, "times": True}
class Round(Func):
4369class Round(Func):
4370    arg_types = {"this": True, "decimals": False}
class RowNumber(Func):
4373class RowNumber(Func):
4374    arg_types: t.Dict[str, t.Any] = {}
class SafeDivide(Func):
4377class SafeDivide(Func):
4378    arg_types = {"this": True, "expression": True}
class SetAgg(AggFunc):
4381class SetAgg(AggFunc):
4382    pass
class SHA(Func):
4385class SHA(Func):
4386    _sql_names = ["SHA", "SHA1"]
class SHA2(Func):
4389class SHA2(Func):
4390    _sql_names = ["SHA2"]
4391    arg_types = {"this": True, "length": False}
class SortArray(Func):
4394class SortArray(Func):
4395    arg_types = {"this": True, "asc": False}
class Split(Func):
4398class Split(Func):
4399    arg_types = {"this": True, "expression": True, "limit": False}
class Substring(Func):
4404class Substring(Func):
4405    arg_types = {"this": True, "start": False, "length": False}
class StandardHash(Func):
4408class StandardHash(Func):
4409    arg_types = {"this": True, "expression": False}
class StrPosition(Func):
4412class StrPosition(Func):
4413    arg_types = {
4414        "this": True,
4415        "substr": True,
4416        "position": False,
4417        "instance": False,
4418    }
class StrToDate(Func):
4421class StrToDate(Func):
4422    arg_types = {"this": True, "format": True}
class StrToTime(Func):
4425class StrToTime(Func):
4426    arg_types = {"this": True, "format": True}
class StrToUnix(Func):
4431class StrToUnix(Func):
4432    arg_types = {"this": False, "format": False}
class NumberToStr(Func):
4435class NumberToStr(Func):
4436    arg_types = {"this": True, "format": True}
class FromBase(Func):
4439class FromBase(Func):
4440    arg_types = {"this": True, "expression": True}
class Struct(Func):
4443class Struct(Func):
4444    arg_types = {"expressions": True}
4445    is_var_len_args = True
class StructExtract(Func):
4448class StructExtract(Func):
4449    arg_types = {"this": True, "expression": True}
class Sum(AggFunc):
4452class Sum(AggFunc):
4453    pass
class Sqrt(Func):
4456class Sqrt(Func):
4457    pass
class Stddev(AggFunc):
4460class Stddev(AggFunc):
4461    pass
class StddevPop(AggFunc):
4464class StddevPop(AggFunc):
4465    pass
class StddevSamp(AggFunc):
4468class StddevSamp(AggFunc):
4469    pass
class TimeToStr(Func):
4472class TimeToStr(Func):
4473    arg_types = {"this": True, "format": True}
class TimeToTimeStr(Func):
4476class TimeToTimeStr(Func):
4477    pass
class TimeToUnix(Func):
4480class TimeToUnix(Func):
4481    pass
class TimeStrToDate(Func):
4484class TimeStrToDate(Func):
4485    pass
class TimeStrToTime(Func):
4488class TimeStrToTime(Func):
4489    pass
class TimeStrToUnix(Func):
4492class TimeStrToUnix(Func):
4493    pass
class Trim(Func):
4496class Trim(Func):
4497    arg_types = {
4498        "this": True,
4499        "expression": False,
4500        "position": False,
4501        "collation": False,
4502    }
class TsOrDsAdd(Func, TimeUnit):
4505class TsOrDsAdd(Func, TimeUnit):
4506    arg_types = {"this": True, "expression": True, "unit": False}
class TsOrDsToDateStr(Func):
4509class TsOrDsToDateStr(Func):
4510    pass
class TsOrDsToDate(Func):
4513class TsOrDsToDate(Func):
4514    arg_types = {"this": True, "format": False}
class TsOrDiToDi(Func):
4517class TsOrDiToDi(Func):
4518    pass
class Unhex(Func):
4521class Unhex(Func):
4522    pass
class UnixToStr(Func):
4525class UnixToStr(Func):
4526    arg_types = {"this": True, "format": False}
class UnixToTime(Func):
4531class UnixToTime(Func):
4532    arg_types = {"this": True, "scale": False, "zone": False, "hours": False, "minutes": False}
4533
4534    SECONDS = Literal.string("seconds")
4535    MILLIS = Literal.string("millis")
4536    MICROS = Literal.string("micros")
class UnixToTimeStr(Func):
4539class UnixToTimeStr(Func):
4540    pass
class Upper(Func):
4543class Upper(Func):
4544    _sql_names = ["UPPER", "UCASE"]
class Variance(AggFunc):
4547class Variance(AggFunc):
4548    _sql_names = ["VARIANCE", "VARIANCE_SAMP", "VAR_SAMP"]
class VariancePop(AggFunc):
4551class VariancePop(AggFunc):
4552    _sql_names = ["VARIANCE_POP", "VAR_POP"]
class Week(Func):
4555class Week(Func):
4556    arg_types = {"this": True, "mode": False}
class XMLTable(Func):
4559class XMLTable(Func):
4560    arg_types = {"this": True, "passing": False, "columns": False, "by_ref": False}
class Year(Func):
4563class Year(Func):
4564    pass
class Use(Expression):
4567class Use(Expression):
4568    arg_types = {"this": True, "kind": False}
class Merge(Expression):
4571class Merge(Expression):
4572    arg_types = {"this": True, "using": True, "on": True, "expressions": True}
class When(Func):
4575class When(Func):
4576    arg_types = {"matched": True, "source": False, "condition": False, "then": True}
class NextValueFor(Func):
4581class NextValueFor(Func):
4582    arg_types = {"this": True, "order": False}
def maybe_parse( sql_or_expression: Union[str, sqlglot.expressions.Expression], *, into: Union[str, Type[sqlglot.expressions.Expression], Collection[Union[str, Type[sqlglot.expressions.Expression]]], NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, prefix: Optional[str] = None, copy: bool = False, **opts) -> sqlglot.expressions.Expression:
4619def maybe_parse(
4620    sql_or_expression: ExpOrStr,
4621    *,
4622    into: t.Optional[IntoType] = None,
4623    dialect: DialectType = None,
4624    prefix: t.Optional[str] = None,
4625    copy: bool = False,
4626    **opts,
4627) -> Expression:
4628    """Gracefully handle a possible string or expression.
4629
4630    Example:
4631        >>> maybe_parse("1")
4632        (LITERAL this: 1, is_string: False)
4633        >>> maybe_parse(to_identifier("x"))
4634        (IDENTIFIER this: x, quoted: False)
4635
4636    Args:
4637        sql_or_expression: the SQL code string or an expression
4638        into: the SQLGlot Expression to parse into
4639        dialect: the dialect used to parse the input expressions (in the case that an
4640            input expression is a SQL string).
4641        prefix: a string to prefix the sql with before it gets parsed
4642            (automatically includes a space)
4643        copy: whether or not to copy the expression.
4644        **opts: other options to use to parse the input expressions (again, in the case
4645            that an input expression is a SQL string).
4646
4647    Returns:
4648        Expression: the parsed or given expression.
4649    """
4650    if isinstance(sql_or_expression, Expression):
4651        if copy:
4652            return sql_or_expression.copy()
4653        return sql_or_expression
4654
4655    if sql_or_expression is None:
4656        raise ParseError(f"SQL cannot be None")
4657
4658    import sqlglot
4659
4660    sql = str(sql_or_expression)
4661    if prefix:
4662        sql = f"{prefix} {sql}"
4663
4664    return sqlglot.parse_one(sql, read=dialect, into=into, **opts)

Gracefully handle a possible string or expression.

Example:
>>> maybe_parse("1")
(LITERAL this: 1, is_string: False)
>>> maybe_parse(to_identifier("x"))
(IDENTIFIER this: x, quoted: False)
Arguments:
  • sql_or_expression: the SQL code string or an expression
  • into: the SQLGlot Expression to parse into
  • dialect: the dialect used to parse the input expressions (in the case that an input expression is a SQL string).
  • prefix: a string to prefix the sql with before it gets parsed (automatically includes a space)
  • copy: whether or not to copy the expression.
  • **opts: other options to use to parse the input expressions (again, in the case that an input expression is a SQL string).
Returns:

Expression: the parsed or given expression.

def union( left: Union[str, sqlglot.expressions.Expression], right: Union[str, sqlglot.expressions.Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Union:
4848def union(
4849    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
4850) -> Union:
4851    """
4852    Initializes a syntax tree from one UNION expression.
4853
4854    Example:
4855        >>> union("SELECT * FROM foo", "SELECT * FROM bla").sql()
4856        'SELECT * FROM foo UNION SELECT * FROM bla'
4857
4858    Args:
4859        left: the SQL code string corresponding to the left-hand side.
4860            If an `Expression` instance is passed, it will be used as-is.
4861        right: the SQL code string corresponding to the right-hand side.
4862            If an `Expression` instance is passed, it will be used as-is.
4863        distinct: set the DISTINCT flag if and only if this is true.
4864        dialect: the dialect used to parse the input expression.
4865        opts: other options to use to parse the input expressions.
4866
4867    Returns:
4868        The new Union instance.
4869    """
4870    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
4871    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
4872
4873    return Union(this=left, expression=right, distinct=distinct)

Initializes a syntax tree from one UNION expression.

Example:
>>> union("SELECT * FROM foo", "SELECT * FROM bla").sql()
'SELECT * FROM foo UNION SELECT * FROM bla'
Arguments:
  • left: the SQL code string corresponding to the left-hand side. If an Expression instance is passed, it will be used as-is.
  • right: the SQL code string corresponding to the right-hand side. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Union instance.

def intersect( left: Union[str, sqlglot.expressions.Expression], right: Union[str, sqlglot.expressions.Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Intersect:
4876def intersect(
4877    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
4878) -> Intersect:
4879    """
4880    Initializes a syntax tree from one INTERSECT expression.
4881
4882    Example:
4883        >>> intersect("SELECT * FROM foo", "SELECT * FROM bla").sql()
4884        'SELECT * FROM foo INTERSECT SELECT * FROM bla'
4885
4886    Args:
4887        left: the SQL code string corresponding to the left-hand side.
4888            If an `Expression` instance is passed, it will be used as-is.
4889        right: the SQL code string corresponding to the right-hand side.
4890            If an `Expression` instance is passed, it will be used as-is.
4891        distinct: set the DISTINCT flag if and only if this is true.
4892        dialect: the dialect used to parse the input expression.
4893        opts: other options to use to parse the input expressions.
4894
4895    Returns:
4896        The new Intersect instance.
4897    """
4898    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
4899    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
4900
4901    return Intersect(this=left, expression=right, distinct=distinct)

Initializes a syntax tree from one INTERSECT expression.

Example:
>>> intersect("SELECT * FROM foo", "SELECT * FROM bla").sql()
'SELECT * FROM foo INTERSECT SELECT * FROM bla'
Arguments:
  • left: the SQL code string corresponding to the left-hand side. If an Expression instance is passed, it will be used as-is.
  • right: the SQL code string corresponding to the right-hand side. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Intersect instance.

def except_( left: Union[str, sqlglot.expressions.Expression], right: Union[str, sqlglot.expressions.Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Except:
4904def except_(
4905    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
4906) -> Except:
4907    """
4908    Initializes a syntax tree from one EXCEPT expression.
4909
4910    Example:
4911        >>> except_("SELECT * FROM foo", "SELECT * FROM bla").sql()
4912        'SELECT * FROM foo EXCEPT SELECT * FROM bla'
4913
4914    Args:
4915        left: the SQL code string corresponding to the left-hand side.
4916            If an `Expression` instance is passed, it will be used as-is.
4917        right: the SQL code string corresponding to the right-hand side.
4918            If an `Expression` instance is passed, it will be used as-is.
4919        distinct: set the DISTINCT flag if and only if this is true.
4920        dialect: the dialect used to parse the input expression.
4921        opts: other options to use to parse the input expressions.
4922
4923    Returns:
4924        The new Except instance.
4925    """
4926    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
4927    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
4928
4929    return Except(this=left, expression=right, distinct=distinct)

Initializes a syntax tree from one EXCEPT expression.

Example:
>>> except_("SELECT * FROM foo", "SELECT * FROM bla").sql()
'SELECT * FROM foo EXCEPT SELECT * FROM bla'
Arguments:
  • left: the SQL code string corresponding to the left-hand side. If an Expression instance is passed, it will be used as-is.
  • right: the SQL code string corresponding to the right-hand side. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Except instance.

def select( *expressions: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Select:
4932def select(*expressions: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
4933    """
4934    Initializes a syntax tree from one or multiple SELECT expressions.
4935
4936    Example:
4937        >>> select("col1", "col2").from_("tbl").sql()
4938        'SELECT col1, col2 FROM tbl'
4939
4940    Args:
4941        *expressions: the SQL code string to parse as the expressions of a
4942            SELECT statement. If an Expression instance is passed, this is used as-is.
4943        dialect: the dialect used to parse the input expressions (in the case that an
4944            input expression is a SQL string).
4945        **opts: other options to use to parse the input expressions (again, in the case
4946            that an input expression is a SQL string).
4947
4948    Returns:
4949        Select: the syntax tree for the SELECT statement.
4950    """
4951    return Select().select(*expressions, dialect=dialect, **opts)

Initializes a syntax tree from one or multiple SELECT expressions.

Example:
>>> select("col1", "col2").from_("tbl").sql()
'SELECT col1, col2 FROM tbl'
Arguments:
  • *expressions: the SQL code string to parse as the expressions of a SELECT statement. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expressions (in the case that an input expression is a SQL string).
  • **opts: other options to use to parse the input expressions (again, in the case that an input expression is a SQL string).
Returns:

Select: the syntax tree for the SELECT statement.

def from_( expression: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Select:
4954def from_(expression: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
4955    """
4956    Initializes a syntax tree from a FROM expression.
4957
4958    Example:
4959        >>> from_("tbl").select("col1", "col2").sql()
4960        'SELECT col1, col2 FROM tbl'
4961
4962    Args:
4963        *expression: the SQL code string to parse as the FROM expressions of a
4964            SELECT statement. If an Expression instance is passed, this is used as-is.
4965        dialect: the dialect used to parse the input expression (in the case that the
4966            input expression is a SQL string).
4967        **opts: other options to use to parse the input expressions (again, in the case
4968            that the input expression is a SQL string).
4969
4970    Returns:
4971        Select: the syntax tree for the SELECT statement.
4972    """
4973    return Select().from_(expression, dialect=dialect, **opts)

Initializes a syntax tree from a FROM expression.

Example:
>>> from_("tbl").select("col1", "col2").sql()
'SELECT col1, col2 FROM tbl'
Arguments:
  • *expression: the SQL code string to parse as the FROM expressions of a SELECT statement. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression (in the case that the input expression is a SQL string).
  • **opts: other options to use to parse the input expressions (again, in the case that the input expression is a SQL string).
Returns:

Select: the syntax tree for the SELECT statement.

def update( table: str | sqlglot.expressions.Table, properties: dict, where: Union[str, sqlglot.expressions.Expression, NoneType] = None, from_: Union[str, sqlglot.expressions.Expression, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Update:
4976def update(
4977    table: str | Table,
4978    properties: dict,
4979    where: t.Optional[ExpOrStr] = None,
4980    from_: t.Optional[ExpOrStr] = None,
4981    dialect: DialectType = None,
4982    **opts,
4983) -> Update:
4984    """
4985    Creates an update statement.
4986
4987    Example:
4988        >>> update("my_table", {"x": 1, "y": "2", "z": None}, from_="baz", where="id > 1").sql()
4989        "UPDATE my_table SET x = 1, y = '2', z = NULL FROM baz WHERE id > 1"
4990
4991    Args:
4992        *properties: dictionary of properties to set which are
4993            auto converted to sql objects eg None -> NULL
4994        where: sql conditional parsed into a WHERE statement
4995        from_: sql statement parsed into a FROM statement
4996        dialect: the dialect used to parse the input expressions.
4997        **opts: other options to use to parse the input expressions.
4998
4999    Returns:
5000        Update: the syntax tree for the UPDATE statement.
5001    """
5002    update_expr = Update(this=maybe_parse(table, into=Table, dialect=dialect))
5003    update_expr.set(
5004        "expressions",
5005        [
5006            EQ(this=maybe_parse(k, dialect=dialect, **opts), expression=convert(v))
5007            for k, v in properties.items()
5008        ],
5009    )
5010    if from_:
5011        update_expr.set(
5012            "from",
5013            maybe_parse(from_, into=From, dialect=dialect, prefix="FROM", **opts),
5014        )
5015    if isinstance(where, Condition):
5016        where = Where(this=where)
5017    if where:
5018        update_expr.set(
5019            "where",
5020            maybe_parse(where, into=Where, dialect=dialect, prefix="WHERE", **opts),
5021        )
5022    return update_expr

Creates an update statement.

Example:
>>> update("my_table", {"x": 1, "y": "2", "z": None}, from_="baz", where="id > 1").sql()
"UPDATE my_table SET x = 1, y = '2', z = NULL FROM baz WHERE id > 1"
Arguments:
  • *properties: dictionary of properties to set which are auto converted to sql objects eg None -> NULL
  • where: sql conditional parsed into a WHERE statement
  • from_: sql statement parsed into a FROM statement
  • dialect: the dialect used to parse the input expressions.
  • **opts: other options to use to parse the input expressions.
Returns:

Update: the syntax tree for the UPDATE statement.

def delete( table: Union[str, sqlglot.expressions.Expression], where: Union[str, sqlglot.expressions.Expression, NoneType] = None, returning: Union[str, sqlglot.expressions.Expression, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Delete:
5025def delete(
5026    table: ExpOrStr,
5027    where: t.Optional[ExpOrStr] = None,
5028    returning: t.Optional[ExpOrStr] = None,
5029    dialect: DialectType = None,
5030    **opts,
5031) -> Delete:
5032    """
5033    Builds a delete statement.
5034
5035    Example:
5036        >>> delete("my_table", where="id > 1").sql()
5037        'DELETE FROM my_table WHERE id > 1'
5038
5039    Args:
5040        where: sql conditional parsed into a WHERE statement
5041        returning: sql conditional parsed into a RETURNING statement
5042        dialect: the dialect used to parse the input expressions.
5043        **opts: other options to use to parse the input expressions.
5044
5045    Returns:
5046        Delete: the syntax tree for the DELETE statement.
5047    """
5048    delete_expr = Delete().delete(table, dialect=dialect, copy=False, **opts)
5049    if where:
5050        delete_expr = delete_expr.where(where, dialect=dialect, copy=False, **opts)
5051    if returning:
5052        delete_expr = delete_expr.returning(returning, dialect=dialect, copy=False, **opts)
5053    return delete_expr

Builds a delete statement.

Example:
>>> delete("my_table", where="id > 1").sql()
'DELETE FROM my_table WHERE id > 1'
Arguments:
  • where: sql conditional parsed into a WHERE statement
  • returning: sql conditional parsed into a RETURNING statement
  • dialect: the dialect used to parse the input expressions.
  • **opts: other options to use to parse the input expressions.
Returns:

Delete: the syntax tree for the DELETE statement.

def insert( expression: Union[str, sqlglot.expressions.Expression], into: Union[str, sqlglot.expressions.Expression], columns: Optional[Sequence[Union[str, sqlglot.expressions.Expression]]] = None, overwrite: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Insert:
5056def insert(
5057    expression: ExpOrStr,
5058    into: ExpOrStr,
5059    columns: t.Optional[t.Sequence[ExpOrStr]] = None,
5060    overwrite: t.Optional[bool] = None,
5061    dialect: DialectType = None,
5062    copy: bool = True,
5063    **opts,
5064) -> Insert:
5065    """
5066    Builds an INSERT statement.
5067
5068    Example:
5069        >>> insert("VALUES (1, 2, 3)", "tbl").sql()
5070        'INSERT INTO tbl VALUES (1, 2, 3)'
5071
5072    Args:
5073        expression: the sql string or expression of the INSERT statement
5074        into: the tbl to insert data to.
5075        columns: optionally the table's column names.
5076        overwrite: whether to INSERT OVERWRITE or not.
5077        dialect: the dialect used to parse the input expressions.
5078        copy: whether or not to copy the expression.
5079        **opts: other options to use to parse the input expressions.
5080
5081    Returns:
5082        Insert: the syntax tree for the INSERT statement.
5083    """
5084    expr = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
5085    this: Table | Schema = maybe_parse(into, into=Table, dialect=dialect, copy=copy, **opts)
5086
5087    if columns:
5088        this = _apply_list_builder(
5089            *columns,
5090            instance=Schema(this=this),
5091            arg="expressions",
5092            into=Identifier,
5093            copy=False,
5094            dialect=dialect,
5095            **opts,
5096        )
5097
5098    return Insert(this=this, expression=expr, overwrite=overwrite)

Builds an INSERT statement.

Example:
>>> insert("VALUES (1, 2, 3)", "tbl").sql()
'INSERT INTO tbl VALUES (1, 2, 3)'
Arguments:
  • expression: the sql string or expression of the INSERT statement
  • into: the tbl to insert data to.
  • columns: optionally the table's column names.
  • overwrite: whether to INSERT OVERWRITE or not.
  • dialect: the dialect used to parse the input expressions.
  • copy: whether or not to copy the expression.
  • **opts: other options to use to parse the input expressions.
Returns:

Insert: the syntax tree for the INSERT statement.

def condition( expression: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Condition:
5101def condition(
5102    expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
5103) -> Condition:
5104    """
5105    Initialize a logical condition expression.
5106
5107    Example:
5108        >>> condition("x=1").sql()
5109        'x = 1'
5110
5111        This is helpful for composing larger logical syntax trees:
5112        >>> where = condition("x=1")
5113        >>> where = where.and_("y=1")
5114        >>> Select().from_("tbl").select("*").where(where).sql()
5115        'SELECT * FROM tbl WHERE x = 1 AND y = 1'
5116
5117    Args:
5118        *expression: the SQL code string to parse.
5119            If an Expression instance is passed, this is used as-is.
5120        dialect: the dialect used to parse the input expression (in the case that the
5121            input expression is a SQL string).
5122        copy: Whether or not to copy `expression` (only applies to expressions).
5123        **opts: other options to use to parse the input expressions (again, in the case
5124            that the input expression is a SQL string).
5125
5126    Returns:
5127        The new Condition instance
5128    """
5129    return maybe_parse(
5130        expression,
5131        into=Condition,
5132        dialect=dialect,
5133        copy=copy,
5134        **opts,
5135    )

Initialize a logical condition expression.

Example:
>>> condition("x=1").sql()
'x = 1'

This is helpful for composing larger logical syntax trees:

>>> where = condition("x=1")
>>> where = where.and_("y=1")
>>> Select().from_("tbl").select("*").where(where).sql()
'SELECT * FROM tbl WHERE x = 1 AND y = 1'
Arguments:
  • *expression: the SQL code string to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression (in the case that the input expression is a SQL string).
  • copy: Whether or not to copy expression (only applies to expressions).
  • **opts: other options to use to parse the input expressions (again, in the case that the input expression is a SQL string).
Returns:

The new Condition instance

def and_( *expressions: Union[str, sqlglot.expressions.Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Condition:
5138def and_(
5139    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
5140) -> Condition:
5141    """
5142    Combine multiple conditions with an AND logical operator.
5143
5144    Example:
5145        >>> and_("x=1", and_("y=1", "z=1")).sql()
5146        'x = 1 AND (y = 1 AND z = 1)'
5147
5148    Args:
5149        *expressions: the SQL code strings to parse.
5150            If an Expression instance is passed, this is used as-is.
5151        dialect: the dialect used to parse the input expression.
5152        copy: whether or not to copy `expressions` (only applies to Expressions).
5153        **opts: other options to use to parse the input expressions.
5154
5155    Returns:
5156        And: the new condition
5157    """
5158    return t.cast(Condition, _combine(expressions, And, dialect, copy=copy, **opts))

Combine multiple conditions with an AND logical operator.

Example:
>>> and_("x=1", and_("y=1", "z=1")).sql()
'x = 1 AND (y = 1 AND z = 1)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether or not to copy expressions (only applies to Expressions).
  • **opts: other options to use to parse the input expressions.
Returns:

And: the new condition

def or_( *expressions: Union[str, sqlglot.expressions.Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Condition:
5161def or_(
5162    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
5163) -> Condition:
5164    """
5165    Combine multiple conditions with an OR logical operator.
5166
5167    Example:
5168        >>> or_("x=1", or_("y=1", "z=1")).sql()
5169        'x = 1 OR (y = 1 OR z = 1)'
5170
5171    Args:
5172        *expressions: the SQL code strings to parse.
5173            If an Expression instance is passed, this is used as-is.
5174        dialect: the dialect used to parse the input expression.
5175        copy: whether or not to copy `expressions` (only applies to Expressions).
5176        **opts: other options to use to parse the input expressions.
5177
5178    Returns:
5179        Or: the new condition
5180    """
5181    return t.cast(Condition, _combine(expressions, Or, dialect, copy=copy, **opts))

Combine multiple conditions with an OR logical operator.

Example:
>>> or_("x=1", or_("y=1", "z=1")).sql()
'x = 1 OR (y = 1 OR z = 1)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether or not to copy expressions (only applies to Expressions).
  • **opts: other options to use to parse the input expressions.
Returns:

Or: the new condition

def not_( expression: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Not:
5184def not_(expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts) -> Not:
5185    """
5186    Wrap a condition with a NOT operator.
5187
5188    Example:
5189        >>> not_("this_suit='black'").sql()
5190        "NOT this_suit = 'black'"
5191
5192    Args:
5193        expression: the SQL code string to parse.
5194            If an Expression instance is passed, this is used as-is.
5195        dialect: the dialect used to parse the input expression.
5196        copy: whether to copy the expression or not.
5197        **opts: other options to use to parse the input expressions.
5198
5199    Returns:
5200        The new condition.
5201    """
5202    this = condition(
5203        expression,
5204        dialect=dialect,
5205        copy=copy,
5206        **opts,
5207    )
5208    return Not(this=_wrap(this, Connector))

Wrap a condition with a NOT operator.

Example:
>>> not_("this_suit='black'").sql()
"NOT this_suit = 'black'"
Arguments:
  • expression: the SQL code string to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy the expression or not.
  • **opts: other options to use to parse the input expressions.
Returns:

The new condition.

def paren( expression: Union[str, sqlglot.expressions.Expression], copy: bool = True) -> sqlglot.expressions.Paren:
5211def paren(expression: ExpOrStr, copy: bool = True) -> Paren:
5212    """
5213    Wrap an expression in parentheses.
5214
5215    Example:
5216        >>> paren("5 + 3").sql()
5217        '(5 + 3)'
5218
5219    Args:
5220        expression: the SQL code string to parse.
5221            If an Expression instance is passed, this is used as-is.
5222        copy: whether to copy the expression or not.
5223
5224    Returns:
5225        The wrapped expression.
5226    """
5227    return Paren(this=maybe_parse(expression, copy=copy))

Wrap an expression in parentheses.

Example:
>>> paren("5 + 3").sql()
'(5 + 3)'
Arguments:
  • expression: the SQL code string to parse. If an Expression instance is passed, this is used as-is.
  • copy: whether to copy the expression or not.
Returns:

The wrapped expression.

def to_identifier(name, quoted=None, copy=True):
5245def to_identifier(name, quoted=None, copy=True):
5246    """Builds an identifier.
5247
5248    Args:
5249        name: The name to turn into an identifier.
5250        quoted: Whether or not force quote the identifier.
5251        copy: Whether or not to copy a passed in Identefier node.
5252
5253    Returns:
5254        The identifier ast node.
5255    """
5256
5257    if name is None:
5258        return None
5259
5260    if isinstance(name, Identifier):
5261        identifier = _maybe_copy(name, copy)
5262    elif isinstance(name, str):
5263        identifier = Identifier(
5264            this=name,
5265            quoted=not SAFE_IDENTIFIER_RE.match(name) if quoted is None else quoted,
5266        )
5267    else:
5268        raise ValueError(f"Name needs to be a string or an Identifier, got: {name.__class__}")
5269    return identifier

Builds an identifier.

Arguments:
  • name: The name to turn into an identifier.
  • quoted: Whether or not force quote the identifier.
  • copy: Whether or not to copy a passed in Identefier node.
Returns:

The identifier ast node.

def to_interval( interval: str | sqlglot.expressions.Literal) -> sqlglot.expressions.Interval:
5275def to_interval(interval: str | Literal) -> Interval:
5276    """Builds an interval expression from a string like '1 day' or '5 months'."""
5277    if isinstance(interval, Literal):
5278        if not interval.is_string:
5279            raise ValueError("Invalid interval string.")
5280
5281        interval = interval.this
5282
5283    interval_parts = INTERVAL_STRING_RE.match(interval)  # type: ignore
5284
5285    if not interval_parts:
5286        raise ValueError("Invalid interval string.")
5287
5288    return Interval(
5289        this=Literal.string(interval_parts.group(1)),
5290        unit=Var(this=interval_parts.group(2)),
5291    )

Builds an interval expression from a string like '1 day' or '5 months'.

def to_table( sql_path: Union[str, sqlglot.expressions.Table, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **kwargs) -> Optional[sqlglot.expressions.Table]:
5304def to_table(
5305    sql_path: t.Optional[str | Table], dialect: DialectType = None, **kwargs
5306) -> t.Optional[Table]:
5307    """
5308    Create a table expression from a `[catalog].[schema].[table]` sql path. Catalog and schema are optional.
5309    If a table is passed in then that table is returned.
5310
5311    Args:
5312        sql_path: a `[catalog].[schema].[table]` string.
5313        dialect: the source dialect according to which the table name will be parsed.
5314        kwargs: the kwargs to instantiate the resulting `Table` expression with.
5315
5316    Returns:
5317        A table expression.
5318    """
5319    if sql_path is None or isinstance(sql_path, Table):
5320        return sql_path
5321    if not isinstance(sql_path, str):
5322        raise ValueError(f"Invalid type provided for a table: {type(sql_path)}")
5323
5324    table = maybe_parse(sql_path, into=Table, dialect=dialect)
5325    if table:
5326        for k, v in kwargs.items():
5327            table.set(k, v)
5328
5329    return table

Create a table expression from a [catalog].[schema].[table] sql path. Catalog and schema are optional. If a table is passed in then that table is returned.

Arguments:
  • sql_path: a [catalog].[schema].[table] string.
  • dialect: the source dialect according to which the table name will be parsed.
  • kwargs: the kwargs to instantiate the resulting Table expression with.
Returns:

A table expression.

def to_column( sql_path: str | sqlglot.expressions.Column, **kwargs) -> sqlglot.expressions.Column:
5332def to_column(sql_path: str | Column, **kwargs) -> Column:
5333    """
5334    Create a column from a `[table].[column]` sql path. Schema is optional.
5335
5336    If a column is passed in then that column is returned.
5337
5338    Args:
5339        sql_path: `[table].[column]` string
5340    Returns:
5341        Table: A column expression
5342    """
5343    if sql_path is None or isinstance(sql_path, Column):
5344        return sql_path
5345    if not isinstance(sql_path, str):
5346        raise ValueError(f"Invalid type provided for column: {type(sql_path)}")
5347    return column(*reversed(sql_path.split(".")), **kwargs)  # type: ignore

Create a column from a [table].[column] sql path. Schema is optional.

If a column is passed in then that column is returned.

Arguments:
  • sql_path: [table].[column] string
Returns:

Table: A column expression

def alias_( expression: Union[str, sqlglot.expressions.Expression], alias: str | sqlglot.expressions.Identifier, table: Union[bool, Sequence[str | sqlglot.expressions.Identifier]] = False, quoted: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts):
5350def alias_(
5351    expression: ExpOrStr,
5352    alias: str | Identifier,
5353    table: bool | t.Sequence[str | Identifier] = False,
5354    quoted: t.Optional[bool] = None,
5355    dialect: DialectType = None,
5356    copy: bool = True,
5357    **opts,
5358):
5359    """Create an Alias expression.
5360
5361    Example:
5362        >>> alias_('foo', 'bar').sql()
5363        'foo AS bar'
5364
5365        >>> alias_('(select 1, 2)', 'bar', table=['a', 'b']).sql()
5366        '(SELECT 1, 2) AS bar(a, b)'
5367
5368    Args:
5369        expression: the SQL code strings to parse.
5370            If an Expression instance is passed, this is used as-is.
5371        alias: the alias name to use. If the name has
5372            special characters it is quoted.
5373        table: Whether or not to create a table alias, can also be a list of columns.
5374        quoted: whether or not to quote the alias
5375        dialect: the dialect used to parse the input expression.
5376        copy: Whether or not to copy the expression.
5377        **opts: other options to use to parse the input expressions.
5378
5379    Returns:
5380        Alias: the aliased expression
5381    """
5382    exp = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
5383    alias = to_identifier(alias, quoted=quoted)
5384
5385    if table:
5386        table_alias = TableAlias(this=alias)
5387        exp.set("alias", table_alias)
5388
5389        if not isinstance(table, bool):
5390            for column in table:
5391                table_alias.append("columns", to_identifier(column, quoted=quoted))
5392
5393        return exp
5394
5395    # We don't set the "alias" arg for Window expressions, because that would add an IDENTIFIER node in
5396    # the AST, representing a "named_window" [1] construct (eg. bigquery). What we want is an ALIAS node
5397    # for the complete Window expression.
5398    #
5399    # [1]: https://cloud.google.com/bigquery/docs/reference/standard-sql/window-function-calls
5400
5401    if "alias" in exp.arg_types and not isinstance(exp, Window):
5402        exp.set("alias", alias)
5403        return exp
5404    return Alias(this=exp, alias=alias)

Create an Alias expression.

Example:
>>> alias_('foo', 'bar').sql()
'foo AS bar'
>>> alias_('(select 1, 2)', 'bar', table=['a', 'b']).sql()
'(SELECT 1, 2) AS bar(a, b)'
Arguments:
  • expression: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • alias: the alias name to use. If the name has special characters it is quoted.
  • table: Whether or not to create a table alias, can also be a list of columns.
  • quoted: whether or not to quote the alias
  • dialect: the dialect used to parse the input expression.
  • copy: Whether or not to copy the expression.
  • **opts: other options to use to parse the input expressions.
Returns:

Alias: the aliased expression

def subquery( expression: Union[str, sqlglot.expressions.Expression], alias: Union[sqlglot.expressions.Identifier, str, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Select:
5407def subquery(
5408    expression: ExpOrStr,
5409    alias: t.Optional[Identifier | str] = None,
5410    dialect: DialectType = None,
5411    **opts,
5412) -> Select:
5413    """
5414    Build a subquery expression.
5415
5416    Example:
5417        >>> subquery('select x from tbl', 'bar').select('x').sql()
5418        'SELECT x FROM (SELECT x FROM tbl) AS bar'
5419
5420    Args:
5421        expression: the SQL code strings to parse.
5422            If an Expression instance is passed, this is used as-is.
5423        alias: the alias name to use.
5424        dialect: the dialect used to parse the input expression.
5425        **opts: other options to use to parse the input expressions.
5426
5427    Returns:
5428        A new Select instance with the subquery expression included.
5429    """
5430
5431    expression = maybe_parse(expression, dialect=dialect, **opts).subquery(alias)
5432    return Select().from_(expression, dialect=dialect, **opts)

Build a subquery expression.

Example:
>>> subquery('select x from tbl', 'bar').select('x').sql()
'SELECT x FROM (SELECT x FROM tbl) AS bar'
Arguments:
  • expression: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • alias: the alias name to use.
  • dialect: the dialect used to parse the input expression.
  • **opts: other options to use to parse the input expressions.
Returns:

A new Select instance with the subquery expression included.

def column( col: str | sqlglot.expressions.Identifier, table: Union[sqlglot.expressions.Identifier, str, NoneType] = None, db: Union[sqlglot.expressions.Identifier, str, NoneType] = None, catalog: Union[sqlglot.expressions.Identifier, str, NoneType] = None, quoted: Optional[bool] = None) -> sqlglot.expressions.Column:
5435def column(
5436    col: str | Identifier,
5437    table: t.Optional[str | Identifier] = None,
5438    db: t.Optional[str | Identifier] = None,
5439    catalog: t.Optional[str | Identifier] = None,
5440    quoted: t.Optional[bool] = None,
5441) -> Column:
5442    """
5443    Build a Column.
5444
5445    Args:
5446        col: Column name.
5447        table: Table name.
5448        db: Database name.
5449        catalog: Catalog name.
5450        quoted: Whether to force quotes on the column's identifiers.
5451
5452    Returns:
5453        The new Column instance.
5454    """
5455    return Column(
5456        this=to_identifier(col, quoted=quoted),
5457        table=to_identifier(table, quoted=quoted),
5458        db=to_identifier(db, quoted=quoted),
5459        catalog=to_identifier(catalog, quoted=quoted),
5460    )

Build a Column.

Arguments:
  • col: Column name.
  • table: Table name.
  • db: Database name.
  • catalog: Catalog name.
  • quoted: Whether to force quotes on the column's identifiers.
Returns:

The new Column instance.

def cast( expression: Union[str, sqlglot.expressions.Expression], to: str | sqlglot.expressions.DataType | sqlglot.expressions.DataType.Type, **opts) -> sqlglot.expressions.Cast:
5463def cast(expression: ExpOrStr, to: str | DataType | DataType.Type, **opts) -> Cast:
5464    """Cast an expression to a data type.
5465
5466    Example:
5467        >>> cast('x + 1', 'int').sql()
5468        'CAST(x + 1 AS INT)'
5469
5470    Args:
5471        expression: The expression to cast.
5472        to: The datatype to cast to.
5473
5474    Returns:
5475        The new Cast instance.
5476    """
5477    expression = maybe_parse(expression, **opts)
5478    return Cast(this=expression, to=DataType.build(to, **opts))

Cast an expression to a data type.

Example:
>>> cast('x + 1', 'int').sql()
'CAST(x + 1 AS INT)'
Arguments:
  • expression: The expression to cast.
  • to: The datatype to cast to.
Returns:

The new Cast instance.

def table_( table: sqlglot.expressions.Identifier | str, db: Union[sqlglot.expressions.Identifier, str, NoneType] = None, catalog: Union[sqlglot.expressions.Identifier, str, NoneType] = None, quoted: Optional[bool] = None, alias: Union[sqlglot.expressions.Identifier, str, NoneType] = None) -> sqlglot.expressions.Table:
5481def table_(
5482    table: Identifier | str,
5483    db: t.Optional[Identifier | str] = None,
5484    catalog: t.Optional[Identifier | str] = None,
5485    quoted: t.Optional[bool] = None,
5486    alias: t.Optional[Identifier | str] = None,
5487) -> Table:
5488    """Build a Table.
5489
5490    Args:
5491        table: Table name.
5492        db: Database name.
5493        catalog: Catalog name.
5494        quote: Whether to force quotes on the table's identifiers.
5495        alias: Table's alias.
5496
5497    Returns:
5498        The new Table instance.
5499    """
5500    return Table(
5501        this=to_identifier(table, quoted=quoted),
5502        db=to_identifier(db, quoted=quoted),
5503        catalog=to_identifier(catalog, quoted=quoted),
5504        alias=TableAlias(this=to_identifier(alias)) if alias else None,
5505    )

Build a Table.

Arguments:
  • table: Table name.
  • db: Database name.
  • catalog: Catalog name.
  • quote: Whether to force quotes on the table's identifiers.
  • alias: Table's alias.
Returns:

The new Table instance.

def values( values: Iterable[Tuple[Any, ...]], alias: Optional[str] = None, columns: Union[Iterable[str], Dict[str, sqlglot.expressions.DataType], NoneType] = None) -> sqlglot.expressions.Values:
5508def values(
5509    values: t.Iterable[t.Tuple[t.Any, ...]],
5510    alias: t.Optional[str] = None,
5511    columns: t.Optional[t.Iterable[str] | t.Dict[str, DataType]] = None,
5512) -> Values:
5513    """Build VALUES statement.
5514
5515    Example:
5516        >>> values([(1, '2')]).sql()
5517        "VALUES (1, '2')"
5518
5519    Args:
5520        values: values statements that will be converted to SQL
5521        alias: optional alias
5522        columns: Optional list of ordered column names or ordered dictionary of column names to types.
5523         If either are provided then an alias is also required.
5524
5525    Returns:
5526        Values: the Values expression object
5527    """
5528    if columns and not alias:
5529        raise ValueError("Alias is required when providing columns")
5530
5531    return Values(
5532        expressions=[convert(tup) for tup in values],
5533        alias=(
5534            TableAlias(this=to_identifier(alias), columns=[to_identifier(x) for x in columns])
5535            if columns
5536            else (TableAlias(this=to_identifier(alias)) if alias else None)
5537        ),
5538    )

Build VALUES statement.

Example:
>>> values([(1, '2')]).sql()
"VALUES (1, '2')"
Arguments:
  • values: values statements that will be converted to SQL
  • alias: optional alias
  • columns: Optional list of ordered column names or ordered dictionary of column names to types. If either are provided then an alias is also required.
Returns:

Values: the Values expression object

def var( name: Union[str, sqlglot.expressions.Expression, NoneType]) -> sqlglot.expressions.Var:
5541def var(name: t.Optional[ExpOrStr]) -> Var:
5542    """Build a SQL variable.
5543
5544    Example:
5545        >>> repr(var('x'))
5546        '(VAR this: x)'
5547
5548        >>> repr(var(column('x', table='y')))
5549        '(VAR this: x)'
5550
5551    Args:
5552        name: The name of the var or an expression who's name will become the var.
5553
5554    Returns:
5555        The new variable node.
5556    """
5557    if not name:
5558        raise ValueError("Cannot convert empty name into var.")
5559
5560    if isinstance(name, Expression):
5561        name = name.name
5562    return Var(this=name)

Build a SQL variable.

Example:
>>> repr(var('x'))
'(VAR this: x)'
>>> repr(var(column('x', table='y')))
'(VAR this: x)'
Arguments:
  • name: The name of the var or an expression who's name will become the var.
Returns:

The new variable node.

def rename_table( old_name: str | sqlglot.expressions.Table, new_name: str | sqlglot.expressions.Table) -> sqlglot.expressions.AlterTable:
5565def rename_table(old_name: str | Table, new_name: str | Table) -> AlterTable:
5566    """Build ALTER TABLE... RENAME... expression
5567
5568    Args:
5569        old_name: The old name of the table
5570        new_name: The new name of the table
5571
5572    Returns:
5573        Alter table expression
5574    """
5575    old_table = to_table(old_name)
5576    new_table = to_table(new_name)
5577    return AlterTable(
5578        this=old_table,
5579        actions=[
5580            RenameTable(this=new_table),
5581        ],
5582    )

Build ALTER TABLE... RENAME... expression

Arguments:
  • old_name: The old name of the table
  • new_name: The new name of the table
Returns:

Alter table expression

def convert(value: Any, copy: bool = False) -> sqlglot.expressions.Expression:
5585def convert(value: t.Any, copy: bool = False) -> Expression:
5586    """Convert a python value into an expression object.
5587
5588    Raises an error if a conversion is not possible.
5589
5590    Args:
5591        value: A python object.
5592        copy: Whether or not to copy `value` (only applies to Expressions and collections).
5593
5594    Returns:
5595        Expression: the equivalent expression object.
5596    """
5597    if isinstance(value, Expression):
5598        return _maybe_copy(value, copy)
5599    if isinstance(value, str):
5600        return Literal.string(value)
5601    if isinstance(value, bool):
5602        return Boolean(this=value)
5603    if value is None or (isinstance(value, float) and math.isnan(value)):
5604        return NULL
5605    if isinstance(value, numbers.Number):
5606        return Literal.number(value)
5607    if isinstance(value, datetime.datetime):
5608        datetime_literal = Literal.string(
5609            (value if value.tzinfo else value.replace(tzinfo=datetime.timezone.utc)).isoformat()
5610        )
5611        return TimeStrToTime(this=datetime_literal)
5612    if isinstance(value, datetime.date):
5613        date_literal = Literal.string(value.strftime("%Y-%m-%d"))
5614        return DateStrToDate(this=date_literal)
5615    if isinstance(value, tuple):
5616        return Tuple(expressions=[convert(v, copy=copy) for v in value])
5617    if isinstance(value, list):
5618        return Array(expressions=[convert(v, copy=copy) for v in value])
5619    if isinstance(value, dict):
5620        return Map(
5621            keys=[convert(k, copy=copy) for k in value],
5622            values=[convert(v, copy=copy) for v in value.values()],
5623        )
5624    raise ValueError(f"Cannot convert {value}")

Convert a python value into an expression object.

Raises an error if a conversion is not possible.

Arguments:
  • value: A python object.
  • copy: Whether or not to copy value (only applies to Expressions and collections).
Returns:

Expression: the equivalent expression object.

def replace_children( expression: sqlglot.expressions.Expression, fun: Callable, *args, **kwargs) -> None:
5627def replace_children(expression: Expression, fun: t.Callable, *args, **kwargs) -> None:
5628    """
5629    Replace children of an expression with the result of a lambda fun(child) -> exp.
5630    """
5631    for k, v in expression.args.items():
5632        is_list_arg = type(v) is list
5633
5634        child_nodes = v if is_list_arg else [v]
5635        new_child_nodes = []
5636
5637        for cn in child_nodes:
5638            if isinstance(cn, Expression):
5639                for child_node in ensure_collection(fun(cn, *args, **kwargs)):
5640                    new_child_nodes.append(child_node)
5641                    child_node.parent = expression
5642                    child_node.arg_key = k
5643            else:
5644                new_child_nodes.append(cn)
5645
5646        expression.args[k] = new_child_nodes if is_list_arg else seq_get(new_child_nodes, 0)

Replace children of an expression with the result of a lambda fun(child) -> exp.

def column_table_names(expression: sqlglot.expressions.Expression) -> List[str]:
5649def column_table_names(expression: Expression) -> t.List[str]:
5650    """
5651    Return all table names referenced through columns in an expression.
5652
5653    Example:
5654        >>> import sqlglot
5655        >>> column_table_names(sqlglot.parse_one("a.b AND c.d AND c.e"))
5656        ['c', 'a']
5657
5658    Args:
5659        expression: expression to find table names.
5660
5661    Returns:
5662        A list of unique names.
5663    """
5664    return list(dict.fromkeys(column.table for column in expression.find_all(Column)))

Return all table names referenced through columns in an expression.

Example:
>>> import sqlglot
>>> column_table_names(sqlglot.parse_one("a.b AND c.d AND c.e"))
['c', 'a']
Arguments:
  • expression: expression to find table names.
Returns:

A list of unique names.

def table_name(table: sqlglot.expressions.Table | str) -> str:
5667def table_name(table: Table | str) -> str:
5668    """Get the full name of a table as a string.
5669
5670    Args:
5671        table: table expression node or string.
5672
5673    Examples:
5674        >>> from sqlglot import exp, parse_one
5675        >>> table_name(parse_one("select * from a.b.c").find(exp.Table))
5676        'a.b.c'
5677
5678    Returns:
5679        The table name.
5680    """
5681
5682    table = maybe_parse(table, into=Table)
5683
5684    if not table:
5685        raise ValueError(f"Cannot parse {table}")
5686
5687    return ".".join(part for part in (table.text("catalog"), table.text("db"), table.name) if part)

Get the full name of a table as a string.

Arguments:
  • table: table expression node or string.
Examples:
>>> from sqlglot import exp, parse_one
>>> table_name(parse_one("select * from a.b.c").find(exp.Table))
'a.b.c'
Returns:

The table name.

def replace_tables(expression: ~E, mapping: Dict[str, str], copy: bool = True) -> ~E:
5690def replace_tables(expression: E, mapping: t.Dict[str, str], copy: bool = True) -> E:
5691    """Replace all tables in expression according to the mapping.
5692
5693    Args:
5694        expression: expression node to be transformed and replaced.
5695        mapping: mapping of table names.
5696        copy: whether or not to copy the expression.
5697
5698    Examples:
5699        >>> from sqlglot import exp, parse_one
5700        >>> replace_tables(parse_one("select * from a.b"), {"a.b": "c"}).sql()
5701        'SELECT * FROM c'
5702
5703    Returns:
5704        The mapped expression.
5705    """
5706
5707    def _replace_tables(node: Expression) -> Expression:
5708        if isinstance(node, Table):
5709            new_name = mapping.get(table_name(node))
5710            if new_name:
5711                return to_table(
5712                    new_name,
5713                    **{k: v for k, v in node.args.items() if k not in ("this", "db", "catalog")},
5714                )
5715        return node
5716
5717    return expression.transform(_replace_tables, copy=copy)

Replace all tables in expression according to the mapping.

Arguments:
  • expression: expression node to be transformed and replaced.
  • mapping: mapping of table names.
  • copy: whether or not to copy the expression.
Examples:
>>> from sqlglot import exp, parse_one
>>> replace_tables(parse_one("select * from a.b"), {"a.b": "c"}).sql()
'SELECT * FROM c'
Returns:

The mapped expression.

def replace_placeholders( expression: sqlglot.expressions.Expression, *args, **kwargs) -> sqlglot.expressions.Expression:
5720def replace_placeholders(expression: Expression, *args, **kwargs) -> Expression:
5721    """Replace placeholders in an expression.
5722
5723    Args:
5724        expression: expression node to be transformed and replaced.
5725        args: positional names that will substitute unnamed placeholders in the given order.
5726        kwargs: keyword arguments that will substitute named placeholders.
5727
5728    Examples:
5729        >>> from sqlglot import exp, parse_one
5730        >>> replace_placeholders(
5731        ...     parse_one("select * from :tbl where ? = ?"),
5732        ...     exp.to_identifier("str_col"), "b", tbl=exp.to_identifier("foo")
5733        ... ).sql()
5734        "SELECT * FROM foo WHERE str_col = 'b'"
5735
5736    Returns:
5737        The mapped expression.
5738    """
5739
5740    def _replace_placeholders(node: Expression, args, **kwargs) -> Expression:
5741        if isinstance(node, Placeholder):
5742            if node.name:
5743                new_name = kwargs.get(node.name)
5744                if new_name:
5745                    return convert(new_name)
5746            else:
5747                try:
5748                    return convert(next(args))
5749                except StopIteration:
5750                    pass
5751        return node
5752
5753    return expression.transform(_replace_placeholders, iter(args), **kwargs)

Replace placeholders in an expression.

Arguments:
  • expression: expression node to be transformed and replaced.
  • args: positional names that will substitute unnamed placeholders in the given order.
  • kwargs: keyword arguments that will substitute named placeholders.
Examples:
>>> from sqlglot import exp, parse_one
>>> replace_placeholders(
...     parse_one("select * from :tbl where ? = ?"),
...     exp.to_identifier("str_col"), "b", tbl=exp.to_identifier("foo")
... ).sql()
"SELECT * FROM foo WHERE str_col = 'b'"
Returns:

The mapped expression.

def expand( expression: sqlglot.expressions.Expression, sources: Dict[str, sqlglot.expressions.Subqueryable], copy: bool = True) -> sqlglot.expressions.Expression:
5756def expand(
5757    expression: Expression, sources: t.Dict[str, Subqueryable], copy: bool = True
5758) -> Expression:
5759    """Transforms an expression by expanding all referenced sources into subqueries.
5760
5761    Examples:
5762        >>> from sqlglot import parse_one
5763        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y")}).sql()
5764        'SELECT * FROM (SELECT * FROM y) AS z /* source: x */'
5765
5766        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y"), "y": parse_one("select * from z")}).sql()
5767        'SELECT * FROM (SELECT * FROM (SELECT * FROM z) AS y /* source: y */) AS z /* source: x */'
5768
5769    Args:
5770        expression: The expression to expand.
5771        sources: A dictionary of name to Subqueryables.
5772        copy: Whether or not to copy the expression during transformation. Defaults to True.
5773
5774    Returns:
5775        The transformed expression.
5776    """
5777
5778    def _expand(node: Expression):
5779        if isinstance(node, Table):
5780            name = table_name(node)
5781            source = sources.get(name)
5782            if source:
5783                subquery = source.subquery(node.alias or name)
5784                subquery.comments = [f"source: {name}"]
5785                return subquery.transform(_expand, copy=False)
5786        return node
5787
5788    return expression.transform(_expand, copy=copy)

Transforms an expression by expanding all referenced sources into subqueries.

Examples:
>>> from sqlglot import parse_one
>>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y")}).sql()
'SELECT * FROM (SELECT * FROM y) AS z /* source: x */'
>>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y"), "y": parse_one("select * from z")}).sql()
'SELECT * FROM (SELECT * FROM (SELECT * FROM z) AS y /* source: y */) AS z /* source: x */'
Arguments:
  • expression: The expression to expand.
  • sources: A dictionary of name to Subqueryables.
  • copy: Whether or not to copy the expression during transformation. Defaults to True.
Returns:

The transformed expression.

def func( name: str, *args, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **kwargs) -> sqlglot.expressions.Func:
5791def func(name: str, *args, dialect: DialectType = None, **kwargs) -> Func:
5792    """
5793    Returns a Func expression.
5794
5795    Examples:
5796        >>> func("abs", 5).sql()
5797        'ABS(5)'
5798
5799        >>> func("cast", this=5, to=DataType.build("DOUBLE")).sql()
5800        'CAST(5 AS DOUBLE)'
5801
5802    Args:
5803        name: the name of the function to build.
5804        args: the args used to instantiate the function of interest.
5805        dialect: the source dialect.
5806        kwargs: the kwargs used to instantiate the function of interest.
5807
5808    Note:
5809        The arguments `args` and `kwargs` are mutually exclusive.
5810
5811    Returns:
5812        An instance of the function of interest, or an anonymous function, if `name` doesn't
5813        correspond to an existing `sqlglot.expressions.Func` class.
5814    """
5815    if args and kwargs:
5816        raise ValueError("Can't use both args and kwargs to instantiate a function.")
5817
5818    from sqlglot.dialects.dialect import Dialect
5819
5820    converted: t.List[Expression] = [maybe_parse(arg, dialect=dialect) for arg in args]
5821    kwargs = {key: maybe_parse(value, dialect=dialect) for key, value in kwargs.items()}
5822
5823    parser = Dialect.get_or_raise(dialect)().parser()
5824    from_args_list = parser.FUNCTIONS.get(name.upper())
5825
5826    if from_args_list:
5827        function = from_args_list(converted) if converted else from_args_list.__self__(**kwargs)  # type: ignore
5828    else:
5829        kwargs = kwargs or {"expressions": converted}
5830        function = Anonymous(this=name, **kwargs)
5831
5832    for error_message in function.error_messages(converted):
5833        raise ValueError(error_message)
5834
5835    return function

Returns a Func expression.

Examples:
>>> func("abs", 5).sql()
'ABS(5)'
>>> func("cast", this=5, to=DataType.build("DOUBLE")).sql()
'CAST(5 AS DOUBLE)'
Arguments:
  • name: the name of the function to build.
  • args: the args used to instantiate the function of interest.
  • dialect: the source dialect.
  • kwargs: the kwargs used to instantiate the function of interest.
Note:

The arguments args and kwargs are mutually exclusive.

Returns:

An instance of the function of interest, or an anonymous function, if name doesn't correspond to an existing sqlglot.expressions.Func class.

def true() -> sqlglot.expressions.Boolean:
5838def true() -> Boolean:
5839    """
5840    Returns a true Boolean expression.
5841    """
5842    return Boolean(this=True)

Returns a true Boolean expression.

def false() -> sqlglot.expressions.Boolean:
5845def false() -> Boolean:
5846    """
5847    Returns a false Boolean expression.
5848    """
5849    return Boolean(this=False)

Returns a false Boolean expression.

def null() -> sqlglot.expressions.Null:
5852def null() -> Null:
5853    """
5854    Returns a Null expression.
5855    """
5856    return Null()

Returns a Null expression.