
Python Scientific Ray-tracing Framework

Dr Alex Meakins

1st October 2015

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 2 / 32

What is Raysect?

● A ray-tracing framework for Python
– built for scientific research

● high precision, fully spectral

– easy to extend
● philosophy: ease of use trumps speed, but speed matters

– fully open license (BSD)
● can be embedded in your code commercially
● www.raysect.org / https://github.com/raysect/source

– developers
● Dr Alex Meakins and Dr Matthew Carr

http://www.raysect.org/
https://github.com/raysect/source

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 3 / 32

What is a Ray Tracer?

● Algorithm for simulating light propagation
– geometric optical model of light

● light modelled as a collection of rays
● rays follow a straight path unless they interact with a

medium
– e.g. glass, metal, light source

● Used to simulate optical diagnostics
– forward modelling, diagnostic optimisation

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 4 / 32

Example

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 5 / 32

Ray tracing Algorithm

● Desire intensity/spectrum of light reaching observer
– e.g. camera pixel

– sample light (radiance) along paths reaching observer

– accumulate samples to obtain intensity

● Sampling a path
– trace ray from observer, through material interactions until it

reaches a light source

– propagate spectrum from source through interactions

– “Path tracing” algorithm

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 6 / 32

How Does it Work?

Emitter

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 7 / 32

Isn't that back-to-front?

● Yes!
– geometric optics is mathematically reversible

– emitters generally much larger than observers

– more computational efficient to trace from observer
● typically many orders of magnitude

● Some schemes exist that trace from emitter to observer
– photon tracing

– bi-directional path-tracing

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 8 / 32

What does Raysect Do?

● Tracing algorithm is simple to understand, but hard to
make efficient
– requires complex acceleration structures

– hard to develop and debug
● £££££££££

● Raysect provides optimised infrastructure for ray-tracing
– researchers only need to:

● define a scene containing objects
● define any material physics required for their work

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 9 / 32

A Quick Tour

● Raysect provides a number of classes
– researchers use/build upon these

– four main classes/concepts:
● Rays
● Observers
● Primitives
● the scene-graph (World)

● Let's explore these!

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 10 / 32

Ray Objects

● Represents a ray of light
– defines a line with an origin and direction

– wavelength range and number of spectral samples
● centre of range used for refraction calculations

● Implements tracing algorithm
– spectrum = ray.trace(world)

● causes the ray to start sampling the world
● returns a Spectrum object

– samples of spectral radiance: W/m2/str/nm

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 11 / 32

Observer Objects

● Represents objects that measure light
– e.g. CCDs, cameras, photo diodes, eyes

● Launch rays and accumulate samples of the scene
– more convenient that tracing rays manually

● can place in the world and move around
● coordinate transforms taken care of

– observe() method triggers ray-tracing
● camera.observe()

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 12 / 32

Primitive Objects

● Primitives are geometric objects that rays interact with
– e.g light sources, lenses, mirrors, diffuse surfaces

● Mathematically defined surfaces
– open or closed

● closed surfaces define a volume
– assigned materials

● e.g. glass, metal, emitter
● surface and volume materials

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 13 / 32

Raysect Primitives

● Basic solids
– sphere, box, cylinder, cone

● Constructive Solid Geometry Operators
– union, intersect, subtract

● Meshes
– tri-poly meshes

– importers for STL and OBJ

– optimised for millions of polygons

– support instancing

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 14 / 32

Basic Primitives

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 15 / 32

Constructive Solid Geometry

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 16 / 32

Meshes

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 17 / 32

Ray-Primitive Interaction

● Ray encounters primitive
– point of closest intersection calculated

● hit position and surface normal

– surface material calculation performed
spectrum = primitive.material.evaluate_surface(...)

● how spectrum is obtained up to material

– if ray travelling inside volume
● volume contribution to path calculated

spectrum = primitive.material.evaluate_volume(spectrum, ...)

– emission, attenuation, scattering

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 18 / 32

Materials

● Raysect provides a growing material catalogue
– Glasses, Metals, Diffuse, Emitters, Modifiers

● To ease development, material base-classes provided:
– NullSurface, NullVolume

– SurfaceEmitter, UniformVolumeEmitter,
VolumeEmitterHomogeneous,
VolumeEmitterInHomogeneous

– generic BRDF base classes in development

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 19 / 32

Emitters and Glasses

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 20 / 32

Metals and Diffuse Surfaces

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 21 / 32

Scene Graph

● Primitives and Observers defined in their own local coord
system
– need to be placed into the “world”

– need a system to keep track of the locations/co-ordinate
transforms

● Scene-graph
– tree structure consisting of nodes

● nodes are primitives, observers

– each node has an associated coordinate space
● translated/rotated relative to it's parent

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 22 / 32

The World

● World is the root node of the scene-graph
– all primitives and observers must be attached to World

● Adding nodes to the world
– nodes are parented to another node (e.g. World)
– nodes are given a transform relative to parent

● e.g. a translation and/or rotation
– Can build hierarchies of objects

● manipulate whole group with one transform

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 23 / 32

Typical Work-flow

1) Set-up your primitives and observers
– define materials, set-up camera etc...

2) Assemble the scene-graph
– link primitives and observers to the World

– set transforms

3) Call observe() on an Observer or trace a ray manually

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 24 / 32

Example

● This is what we are going to produce:

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 25 / 32

The Scene

● Primitives:
– Ground

– Checker-board emitter

– Glass sphere

● Observers:
– Pinhole camera

● Will skip some finer details for brevity

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 26 / 32

Add primitives

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 27 / 32

Add Observer

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 28 / 32

Build Scene-graph

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 29 / 32

Observe!

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 30 / 32

Looking at Spectrum

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 31 / 32

Fusion Example: Wall Reflections

● Notes about image:
– emission from SOLPS

modelling code

– technology test, no
realistic materials

● mesh is perfect
Lambertian material

● SOLPS artifact causes
inner “ring” inside
plasma

● mesh incomplete

Raysect: Python Scientific Ray-tracing Framework - 1st October 2015 - Slide 32 / 32

Summary

● Raysect
– A ray-tracing framework for Python

– Provides optimised classes for researchers

– open source
● BSD licensed
● contributions very welcome

● Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

