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What is Raysect?

● A ray-tracing framework for Python
– built for scientific research

● high precision, fully spectral

– easy to extend
● philosophy: ease of use trumps speed, but speed matters

– fully open license (BSD)
● can be embedded in your code commercially
● www.raysect.org / https://github.com/raysect/source

– developers
● Dr Alex Meakins and Dr Matthew Carr

http://www.raysect.org/
https://github.com/raysect/source
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What is a Ray Tracer?

● Algorithm for simulating light propagation 
– geometric optical model of light

● light modelled as a collection of rays
● rays follow a straight path unless they interact with a 

medium
–  e.g. glass, metal, light source

● Used to simulate optical diagnostics
– forward modelling, diagnostic optimisation
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Example
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Ray tracing Algorithm

● Desire intensity/spectrum of light reaching observer
– e.g. camera pixel

– sample light (radiance) along paths reaching observer

– accumulate samples to obtain intensity

● Sampling a path
– trace ray from observer, through material interactions until it 

reaches a light source

– propagate spectrum from source through interactions

– “Path tracing” algorithm
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How Does it Work?

Emitter
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Isn't that back-to-front?

● Yes!
– geometric optics is mathematically reversible

– emitters generally much larger than observers

– more computational efficient to trace from observer
● typically many orders of magnitude

● Some schemes exist that trace from emitter to observer
– photon tracing

– bi-directional path-tracing
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What does Raysect Do?

● Tracing algorithm is simple to understand, but hard to 
make efficient
– requires complex acceleration structures

– hard to develop and debug
● £££££££££

● Raysect provides optimised infrastructure for ray-tracing
– researchers only need to:

● define a scene containing objects
● define any material physics required for their work
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A Quick Tour

● Raysect provides a number of classes
– researchers use/build upon these

– four main classes/concepts:
● Rays
● Observers
● Primitives
● the scene-graph (World)

● Let's explore these!
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Ray Objects

● Represents a ray of light
– defines a line with an origin and direction

– wavelength range and number of spectral samples
● centre of range used for refraction calculations

● Implements tracing algorithm
– spectrum = ray.trace(world)

● causes the ray to start sampling the world
● returns a Spectrum object

– samples of spectral radiance: W/m2/str/nm
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Observer Objects

● Represents objects that measure light
– e.g. CCDs, cameras, photo diodes, eyes

● Launch rays and accumulate samples of the scene
– more convenient that tracing rays manually

● can place in the world and move around
● coordinate transforms taken care of

– observe() method triggers ray-tracing
● camera.observe()
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Primitive Objects

● Primitives are geometric objects that rays interact with
– e.g light sources, lenses, mirrors, diffuse surfaces

● Mathematically defined surfaces
– open or closed

● closed surfaces define a volume
– assigned materials

● e.g. glass, metal, emitter
● surface and volume materials
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Raysect Primitives

● Basic solids
– sphere, box, cylinder, cone

● Constructive Solid Geometry Operators
– union, intersect, subtract

● Meshes
– tri-poly meshes

– importers for STL and OBJ

– optimised for millions of polygons

– support instancing
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Basic Primitives
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Constructive Solid Geometry
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Meshes
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Ray-Primitive Interaction

● Ray encounters primitive
– point of closest intersection calculated

● hit position and surface normal

– surface material calculation performed
spectrum = primitive.material.evaluate_surface(...)

● how spectrum is obtained up to material

– if ray travelling inside volume
● volume contribution to path calculated

spectrum = primitive.material.evaluate_volume(spectrum, ...)

– emission, attenuation, scattering
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Materials

● Raysect provides a growing material catalogue
– Glasses, Metals, Diffuse, Emitters, Modifiers

● To ease development, material base-classes provided:
– NullSurface, NullVolume

– SurfaceEmitter, UniformVolumeEmitter, 
VolumeEmitterHomogeneous, 
VolumeEmitterInHomogeneous

– generic BRDF base classes in development
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Emitters and Glasses
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Metals and Diffuse Surfaces
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Scene Graph

● Primitives and Observers defined in their own local coord 
system
– need to be placed into the “world”

– need a system to keep track of the locations/co-ordinate 
transforms

● Scene-graph
– tree structure consisting of nodes

● nodes are primitives, observers

– each node has an associated coordinate space
● translated/rotated relative to it's parent
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The World

● World is the root node of the scene-graph
– all primitives and observers must be attached to World

● Adding nodes to the world
– nodes are parented to another node (e.g. World)
– nodes are given a transform relative to parent

● e.g. a translation and/or rotation
– Can build hierarchies of objects

● manipulate whole group with one transform
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Typical Work-flow

1) Set-up your primitives and observers
– define materials, set-up camera etc...

2) Assemble the scene-graph
– link primitives and observers to the World

– set transforms

3) Call observe() on an Observer or trace a ray manually
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Example

● This is what we are going to produce:
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The Scene

● Primitives:
– Ground

– Checker-board emitter

– Glass sphere

● Observers:
– Pinhole camera

● Will skip some finer details for brevity
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Add primitives
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Add Observer
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Build Scene-graph
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Observe!
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Looking at Spectrum
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Fusion Example: Wall Reflections

● Notes about image:
– emission from SOLPS 

modelling code

– technology test, no 
realistic materials

● mesh is perfect 
Lambertian material 

● SOLPS artifact causes 
inner “ring” inside 
plasma

● mesh incomplete
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Summary

● Raysect
– A ray-tracing framework for Python

– Provides optimised classes for researchers

– open source
● BSD licensed
● contributions very welcome

● Any questions?
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