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Abstract: Distracted driving is a worldwide problem leading to an astoundingly
increasing number of accidents and deaths. Existing work is concerned with a very
small set of distractions (mostly– cell phone usage). Also, for the most part, it uses
unreliable ad-hoc methods to detect those distractions. In this paper, we present
the first publicly available dataset for “distracted driver” posture estimation with
more distraction postures than existing alternatives. In addition, we propose a re-
liable system that achieves a 95.98% driving posture classification accuracy. The
system consists of a genetically-weighted ensemble of Convolutional Neural Net-
works (CNNs). We show that a weighted ensemble of classifiers using a genetic
algorithm yields in better classification confidence. We also study the effect of
different visual elements (i.e. hands and face) in distraction detection by means of
face and hand localizations. Finally, we present a thinned version of our ensem-
ble that could achieve a 94.29% classification accuracy and operate in a real-time
environment.

1 Introduction

The number of road accidents due to distracted driving is steadily increasing. According to the
National Highway Traffic Safety Administration (NHTSA), in 2015, 3,477 people were killed, and
391,000 were injured in motor vehicle crashes involving distracted drivers [21]. The major cause
of these accidents was the use of mobile phones. The NHTSA defines distracted driving as “any
activity that diverts attention from driving”, including: a) talking or texting on one’s phone, b) eating
and drinking, c) talking to passengers, or d) fiddling with the stereo, entertainment, or navigation
system [21]. The Center for Disease Control and Prevention (CDC) provides a broader definition
of distracted driving by taking into account visual (i.e. taking one’s eyes off the road), manual
(i.e. taking one’s hands off the driving wheel) and cognitive (i.e. taking one’s mind off driving)
causes [23]. We believe that the detection of distracted driver’s postures is key to further preventive
measures. We envision a future where smart vehicles could detect such distraction, and warn the
driver against it (i.e. by beeping). That could also help law enforcement to identify distraction on
highway using radar cameras, and penalize certain forms of distraction.

The 2015 Global Status Report of the World Health Organization (WHO) reported an estimated
1.25 million deaths yearly due to road traffic accidents worldwide [19]. With approximately 89% of
accidents resulting from human errors, self-driving cars will play a vital role to significantly reduce
this number and ultimately save human lives. In fact, latest commercial self-driving cars still require
drivers to pay attention and be ready to take back control of the wheel [8]. This is what makes
distracted drivers detection an important system component in self-driving cars.

Research in the field of distracted driving detection follows the definitions presented in [21] and
[23]. It detects manual, visual, or cognitive types of distractions. Cognitive distractions deal with
tasks of listening, conversing, daydreaming, or just becoming lost in thought. In this form of dis-
traction, the driver is “mentally” distracted from safe driving even though they are in a safe driving
posture. Visual distractions often refer to situations where the driver takes their eyes off the road
due to either “the presence of salient visual information away from the road causing spontaneous
off-road eye glances and momentary rotation of the head” or the use of multimedia devices (i.e. cell
phones, navigation or entertainment systems) [10]. Visual distractions are coined in the following
terms: “sleepiness”, “drowsiness”, “fatigue”, and “inattention”. And, they usually depend on facial
landmarks detection and tracking. Manual distractions are mainly concerned with driver’s activities
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other than safe driving (i.e. reaching behind, adjusting hair and makeup, or eating and drinking). In
this kind of distraction, authors often tend to depend heavily on hand tracking and driving posture
estimation. In this paper, we focus only on “manual” distractions where a driver is distracted by
texting or using cell phone, calling, eating or drinking, reaching behind, fiddling with the radio, or
adjusting hair and makeup.

We present a real-time distracted driver posture estimation system using a weighted ensemble of
convolutional neural networks, a challenging distracted driver’s dataset on which we evaluate our
proposed solution, and an annotation tool [1] for action labeling in those videos.

2 Literature Review

The work in the distracted driver detection field over the past seven years could be clustered into
four groups: multiple independent cell-phone usage detection publications, Laboratory of Intelligent
and Safe Automobiles in University of California San Diego (UCSD) datasets and publications,
Southeast University Distracted Driver dataset and affiliated publications, and recently, StateFarm’s
Distracted Driver Kaggle competition.

2.1 Cell Phone Usage Detection

[4] presents an SVM-based model that detects the use of mobile phone while driving (i.e. distracted
driving). Their dataset consists of frontal image view of a driver’s face. They also make pre-made
assumptions about hand and face locations in the picture. [2] presents another SVM-based classi-
fication method to detect cell phone usage. However, their dataset is collected from transportation
imaging cameras that are deployed in highways and traffic lights which is, indeed, more competitive.
[6] uses AdaBoost classifier and Hidden Markov Models to classify a Kinect’s RGB-D data. Their
solution depends on indoor-produced data. They sit on a chair and a mimmic a certain distraction
(i.e. talking on the phone). This setup misses two essential points: the lighting conditions and the
distance between a Kinect and the driver. In real-life applications, a driver is exposed to a variety of
lighting conditions (i.e. sunlight and shadow). [31] suggests using a Hidden Conditional Random
Fields (HCRF) model to detect cell phone usage. Their model operates face, mouth, and hand fea-
tures of images obtained from a camera mounted above the dashboard. [11] devised a Faster-RCNN
model to detect driver’s cell-phone usage and “hands on the wheel”. Their model is mainly geared
towards face/hand segmentation. They train their Faster-RCNN on the dataset proposed in [7] (that
we also use in this paper). Their proposed solution runs at a 0.06, and 0.09 frames per second for
cell-phone usage, and “hands on the wheel” detection. [24] tackles the problem of cell phone usage
detection. Their approach doesn’t hold any static assumptions though (i.e. in which region of the
image a face is expected to be found). They use a Supervised Descent Method (SDM) to localize
the face landmarks, and then, extract two bounding boxes to the left and the right side of the face.
They train a classifier on each of the two regions to detect cell phone usage: right hand, left hand, or
no usage. Using a histogram of gradients (HOG) and an AdaBoost classifier, they achieve a 93.9%
classification accuracy and operate in a near real-time speed (7.5 frames per second).

2.2 UCSD’s Laboratory of Intelligent and Safe Automobiles Work

[15] presents an vision-based analysis framework that recognizes in-vehicle activities using two
kinect cameras that provide frontal and back views of the driver. Their approach provides “hands
on the wheel” information (i.e. left hand only, both hands, no hands), and uses these information to
detect three types of distractions: adjusting the radio, operating the gear, and adjusting the mirrors.
[16] presents a fusion of classifiers where the image is to be segmented into three regions: wheel,
gear, and instrument panel (i.e. radio). It proposes a classifier for each segment to detect existence of
hands in those regions. The hand information (i.e. output of the classifiers) is passed to an “activity
classifier” that infers the actual activity (i.e. adjusting the radio, operating the gear). [18] extends
existing research to include eye cues to previously existing head and hands cues. However, it still
considers three types of distractions: “wheel region interaction with two hands on the wheel, gear
region activity, and instrument cluster region activity”. [17] presents a region-based classification
approach. It detects hands presence in certain pre-defined regions in an image. A model is learned
for each region separately. All regions are later joined using a second-stage classifier.
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Figure 1: Examples of the proposed Distracted Driver’s Dataset. In a column-level order, postures
are: drinking, adjusting the radio, driving in a safe posture, fiddling with hair or makeup, reaching
behind, talking to passengers, talk on cell phone using left hand, talk on cell phone using right hand,
texting using left hand, and texting using right hand.

2.3 Southeast University Distracted Driver Dataset

[34] designs a more inclusive distracted driving dataset with a side view of the driver and more ac-
tivities: grasping the steering wheel, operating the shift lever, eating a cake and talking on a cellular
phone. It introduces a contourlet transform for feature extraction, and then, evaluates the perfor-
mance of different classifiers: Random Forests (RF), k-Nearest Neighbors (KNN), and Multi-Layer
Perceptron (MLP). The random forests achieved the highest classification accuracy of 90.5%. [33]
showed that using a multiwavelet transform improves the accuracy of multilayer perceptron clas-
sifier to 90.61% (previously 37.06% in [34]). [32] showed that using a Support Vector Machine
(SVM) with an intersection kernel, followed by Radial Basis Function (RBF) kernel, achieved the
highest accuracies of 92.81% and 94.25%, respectively (in comarison with [34] and [33]). After
testing against other classification methods, they concluded that an SVM with intersection kernel
offers the best real time quality (67 frames per second) and better classification performance. [35]
improves the Multilayer Perceptron classifier using combined features of Pyramid Histogram of Ori-
ented Gradients (PHOG) and spatial scale feature extractors. Their multilayer perceptron achieves
a 94.75% classification accuracy. [28] utilizes Motion History Images (HMI) to make use of the
data’s temporality. Pyramid Histogram of Gradients (PHOG) is applied to the motion history im-
ages. A random forrest trains on the extracted features and yields a 96.56% accuracy. [29] presents
a convolutional neural network solution that achieves a 99.78% classification accuracy. They train
their network in a 2-step process. First, they use pre-trained sparse filters as the parameters of the
first convolutional layer. Second, they fine-tune the network on the actuall dataset. Their accuracy
is measured against the 4-classes of the Southeast dataset.

2.4 StateFarm’s Dataset

StateFarm’s Distracted Driver Detection competition on Kaggle was the first publicly available
dataset for posture classification. In the competition, StateFarm defined ten postures to be detected:
safe driving, texting using right hand, talking on the phone using right hand, texting using left hand,
talking on the phone using left hand, operating the radio, drinking, reaching behind, doing hair and
makeup, and talking to passenger. Our work, in this paper, is mainly inspired by StateFarm’s Dis-
tracted Driver’s competition. While the usage of StateFarm’s dataset is limited to the purposes of
the competition [25], we designed a similar dataset that follows the same postures.

3 Dataset Design

Creating a new dataset was essential to the completion of this work. The available alternatives to
our dataset are: StateFarm and Southeast University (SEU) datasets. StateFarm’s dataset is to be
used for their Kaggle competition purposes only (as per their regulations) [25]. As for Southeast
University (SEU) dataset, it presents only four distraction postures. And, after multiple attempts
to obtain it, we figured out that the authors do not make it publicly available. All the papers ([30,
29, 28, 35, 33, 32, 34]) that benchmarked against the dataset are affiliated with either Southeast
University, Xian Jiaotong-Liverpool University, or Liverpool University, and they have at least one
shared author. With that being said, the collected “distracted driver” dataset is the first publicly
available for driving posture estimation research.
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Figure 2: An overview of our proposed solution. A face detector, a hand detector, and a skin
segmentor are run against each frame. For each output image (i.e. Skin, Face, Hands), an AlexNet
and an InceptionV3 networks are trained (i.e. resulting in 10 neural networks: 5 AlexNet and
5 InceptionV3). The overall class distribution is determined by the weighted sum of all softmax
layers. The weights are learned using a genetic algorithm.

3.1 Camera Setup

The Distracted Driver’s dataset is collected using an ASUS ZenPhone (Model Z00UD) rear camera.
The input was collected in a video format, and then, cut into individual images, 1080 × 1920 each.
The phone was fixed using an arm strap to the car roof handle on top of the front passenger’s seat. In
our use case, this setup proved to be very flexible as we needed to collect data in different vehicles.

3.2 Labeling

In order to label the collected videos, we designed a simple multi-platform action annotation tool
using modern web technologies: Electron, AngularJS, and Javascript. The annotation tool is open-
source and publicly available at [1].

3.3 Statistics

We had 31 participants from 7 different countries: Egypt (24), Germany (2), USA (1), Canada (1),
Uganda (1), Palestine (1), and Morocco (1). Out of all participants, 22 were males and 9 were
females. Videos were shot in 4 different cars: Proton Gen2 (26), Mitsubishi Lancer (2), Nissan
Sunny (2), and KIA Carens (1). We extracted 17,308 frames distributed over the following classes:
Drive Safe (3,686), Talk Passenger (2,570), Text Right (1,974), Drink (1,612), Talk Left (1,361),
Text Left (1,301), Talk Right (1,223), Adjust Radio (1,220), Hair & Makeup (1,202), and Reach
Behind (1,159).

4 Proposed Method

Our proposed solution consists of a genetically-weighted ensemble of convolutional neural net-
works. The convolutional neural networks train on raw images, skin-segmented images, face im-
ages, hands images, and “face+hands” images. We train an AlexNet [13] and an InceptionV3 [26]
on those five images sources. In the InceptionV3 network, we fine-tune a pre-trained ImageNet
model (i.e. transfer learning). Then, we evaluate a weighted sum of all networks’ outputs yielding
the final class distribution. The weights are evaluated using a genetic algorithm.
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Figure 3: A modified version of AlexNet for hands/face localization. An AlexNet is trained on
Object/Background images. Fully connected layers are replaced with convolutional layers with the
same weights of the fully connected layers.

4.1 Skin Segmentation

Skin segmentation was a challenging problem to solve due to the different lighting conditions dur-
ing driving. We use a Multivariate Gaussian Naive Bayes classifier to develop a pixel-wise skin
segmentation model that operates on an HSV colorspace. Our model is very similar to [20] except
that we don’t use a histogram. Instead, we use a normal distribution.

P(x | skin) ∼ N (µ Skin, Σ Skin)

P(skin|x) =
P(x|skin) · P(skin)

P(x)

Model(x) =
P(skin | x)

P(skin | x) + P(non-skin | x)

=
P(x | skin)

P(x | skin) + P(x | non-skin)

Note that P(skin) = P(non-skin) = 0.5 (i.e. we don’t make any assumptions about existence of
skin pixels in the image).

We trained our model using the UCI Skin Segmentation dataset [5]. µskin, Σskin, µnon−skin,
and Σnon−skin are evaluated from labeled skin/non-skin values in [5]. Now, we have a normal
distribution for both skin and non-skin pixels ready for use. In order to evaluate the model (i.e.
skin-segment images), for each pixel, x, in the input image, we transform the RGB values to HSV,
and then, feed them to our model. Then, we get a probability heat map of skin in the image. We
classify a pixel to a “skin” when Model(x) > 0.5. Then, we cluster the skin pixels into objects and
remove those with a small number of pixels. In other words, we don’t expect neither faces nor hands
to have a very small number of pixels.

4.2 Face & Hands Detection

We trained the model presented in [14] on the Annotated Facial Landmarks in the Wild (AFLW)
face dataset [12]. The trained model achieved decent results. However, it was sensitive to distance
from the camera (i.e. faces that were close to the camera were not easily detected). We found that
the pre-trained model (presented in [9]) produced better results on our dataset. Given that we did
not have any hand labelled face bounding boxes, we couldn’t formally compare the two models.
However, when randomly selecting images from different classes, we found that [9] was closer to
what we expected.

As for hands detection, we used the pre-trained model presented in [3] with slight modifications.
Their trained model was a binary class AlexNet that classifies hands/non-hands for different proposal
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windows. We transferred the weights of the fully connected layers (i.e. fc6, fc7 and fc8) into
convolutional layers such that each neuron in the fully connected layer was transferred into a depth
layer with a 1-pixel kernel size. This architecture accepts variant size inputs and produces variant-
size outputs. The last convolutional layer has a depth of 2 (i.e. the binary classes) where

Conv8x,y,0 + Conv8x,y,1 = 1

for all x and y such that 0 ≤ x < W and 0 ≤ y < H where W and H are the output’s width and
height, respectively.

4.3 Convolutional Neural Network

For distracted driver posture classification, we trained two classes of neural networks: AlexNet and
InceptionV3. Each network is trained on 5 different image sources (i.e. raw, skin, face, hands and
face+hands images) yielding in 5 models per net and a total of 10 models.

We trained our AlexNet models from scratch. We didn’t use a pre-trained model. As for Incep-
tionV3, we performed transfer learning. We fine-tuned a pre-trained model [27] on the distraction
postures. We removed the “logits” fully connected layer, and replaced it with 10-neuron fully con-
nected layer (i.e. corresponding to 10 driving postures). For all of our models, we used a gradient
descent optimizer with an initial learning rate of 10−2. The learning rate decays linearly in each
epoch with a step of

10−2 − 10−4

Epochs

We trained the networks for 30 epochs. In each, we divide the training dataset into mini-batches of
50 images each.

4.4 GA-based Ensemble of Classifiers

Each classifier produces a class probability vector (i.e. output of “softmax” layer), C1 ... CN , such
that Ci has 10 probabilities (i.e. 10 classes) and N is the number of classifiers (N = 10 in our
situation). In a majority voting system, it is assumed that all experts (i.e. classifiers) can equally
contribute to a better decision by taking the unweighted sum of all classifier outputs.

CMajority =
1

N

N∑
i

Ci

However, that is not usually a valid assumption. In a weighted voting system, we assume that
classifiers do not contribute equally to the ensemble and that some classifiers might yield higher
accuracy than others. Therefore, we need to estimate the weights of each classifier’s contribution to
the ensemble. [22] presents a variety of methods to estimate the weights. We opted to use a genetic
algorithm (i.e. a search-based method).

CWeighted =
1∑N
i wi

N∑
i

wi · Ci

In our genetic algorithm, a chromosome consists of N genes that correspond to the weights
w1 ... wN . Our fitness function evaluates the Negative Log Likelihood (NLL) loss over a 50%
random sample of the population. This helps prevent overfitting. Our population consists of 50
individual. In each iteration, we retain the top 20% of the population and use them as parents. Then,
we randomly select 10% of the remaining 80% of the population as parents. In other words, we have
30% of the population as parents. Now, we randomly mutate 5% of the selected parents. Finally, we
cross-over random pairs of the parents to produce children until we have a full population (i.e. with
50 individuals). We ran the above procedure for only 5 iterations in order to avoid over-fitting. We
selected the chromosome with the highest fitness score (test against all data points– not 50%).
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Drive Safe

Text Left

Talk Left

Text Right

Talk Right

Adjust Radio

Drink

Hair Makeup

Reach Behind

Talk Passenger

T
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b
el

95.34 0 0.33 0.65 0.11 0.43 0.43 0.87 0.11 1.74

0.31 96.63 1.23 0.31 0.92 0 0.31 0 0.31 0

0.29 3.23 96.48 0 0 0 0 0 0 0

2.02 0.61 0 96.15 0.81 0 0.20 0 0 0.20

0 0.33 0 4.90 94.77 0 0 0 0 0

4.26 0 0 0.33 0 95.08 0 0 0 0.33

0.74 0 0 0.25 0 0.74 98.01 0.25 0 0

3.65 0 0 0 0 0 0 95.35 0 1.00

3.79 0 0 0 0 0 1.38 0.34 92.76 1.72

1.40 0 0 0 0 0 0.47 0.31 0.16 97.67

Genetically Weighted Ensemble

Figure 4: Confusion Matrix of Genetically Weighted Ensemble of Classifiers

5 Experiments

We divided our dataset into 75% training and 25% held out test data. Then, we ran the skin segmen-
tation, face and hand detectors on the entire dataset. We tested all of the networks against our test
dataset and obtained the results in Table 1. We notice that both AlexNet and InceptionV3 achieve
best accuracies when trained on the original images. However, the accuracy doesn’t majorly change
in both architectures when switching from the original images to skin segmented images. Hands
seem to have more weight in posture recognition than the face. “Face + Hands” images produce
slightly lower accuracy than the hands images, yet, still higher than the face images. That happens
due to face/hand detector failures. For example, if a hand is not found, we pass a face image to a
“face + hands” classifier. This doesn’t happen in individual cases of hand-only or face-only classifier
because if the hand/face detection fails, we pass the original image to the hand/face classifier as a
fallback mechanism. With better hand/face detectors, the “face+hands” networks are expected to
produce higher accuracies than the “hands” networks.

5.1 Benchmarking

We trained and tested our models using an EVGA GeForce GTX TITAN X 12GB GPU, Intel(R)
Core(TM) i7-5960X CPU @ 3.00GHz, and a 48 GM RAM. On average, AlexNet processed 182
frames per second using a GPU and 52 frames per second using a CPU. InceptionV3 processes 72
frames per second using a GPU and 5.5 frames per second using a CPU.

5.2 Real System

An ensemble of two AlexNet models (Original and Skin-segmented networks) produce a satisfactory
classification accuracy (i.e. 94.29%). Meanwhile, it still maintains a real-time performance on a
CPU-based system.

5.3 Analysis

In Figure 4, we notice that the most confusing posture is the “safe driving”. This is due to the lack
of temporal context in static images. In a static image, a driver would appear in a “safe driving”
posture. However, contextually, he/she was distracted by doing some other activity. “Text Left” is
mostly confused for “Talk Left” and vice versa. Same applies to “Text Right” and “Talk Right”.
“Adjust Radio” is mainly confused for a “safe driving” posture. That is due to lack of the previously
mentioned temporal context. Apart from safe driving, “Hair & Makeup” is confused for talking to
passenger. That is because, in most cases, when drivers did their hair/makeup on the left side of
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Table 1: Distracted Driver Posture Classification Results

Model Source Loss (NLL) Accuracy (%)

AlexNet

Original 0.3909 93.65

Skin Segmented 0.3446 93.60

Face 1.0516 84.28

Hands 0.6186 89.52

Face + Hands 0.8298 86.68

InceptionV3

Original 0.2654 95.17

Skin Segmented 0.2937 94.57

Face 0.6096 88.82

Hands 0.4546 91.62

Face + Hands 0.4495 90.88

Real-time System 0.2727 94.29

Majority Voting Ensemble 0.1661 95.77

GA-Weighted Ensemble 0.1575 95.98

their face, they needed to tilt their face slightly right (while looking at the frontal mirror). Thus, the
network thought the person was talking to passenger. “Reach Behind” was confused for both talking
to passenger and drinking. That makes sense as people tend to naturally look towards the camera
while reaching behind. As for the drinking confusion, it is due to right-arm movement from the
steering wheel to the back seat. A still image in the middle of that move could be easily mistaken for
a drinking posture. “Drink” and “Talk to Passenger” postures were not easily confused with other
postures as 98% and 97.67% of their images were correctly classified.

6 Conclusion

Distracted driving is a major problem leading to a striking number of accidents worldwide. Besides,
its detection is an important system component in self-driving cars. In this paper, we presented a ro-
bust vision-based system that recognizes distracted driving postures. We collected a distracted driver
dataset that we used to develop and test our system. Our best model utilizes a genetically weighted
ensemble of convolutional neural networks to achieve a 95.98% classification accuracy. We also
showed that a simpler model (only using AlexNet) could operate in real-time and still maintain a
satisfactory classification accuracy. Face and hands detection is proved to improve classification ac-
curacy in our ensemble. However, in a real-time setting, their performance overhead is much higher
than their contribution.

In a future work, we need to devise a better face and hands detector. We would need to manually label
hand and face proposals and use them to train a Fast RCNN to localize both faces and hands in one
shot. We would love to evaluate that against our existing CNN-based localization system. In order
to overcome the “safe driving” posture confusion with other classes, we would need to incorporate
temporality in our decision. We shall test the performance of a Recurrent Neural Network (RNN)
against sequential stream of frames. We envision a performance improvement due to temporal
features.
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