Contents

1 Mandate

B Caussian Pomitive

2.1 Transtformation of Spherical Primitives to Cartesian Primitives|

8__Contractions|

3.1 Segmented Contractions| e

4 "Basis Setl

4.1 Loading basis sets| L
[4.2 Types of coordinate systems used by basis functions|
43— Tinear transformations of basis functions
4.4 Ordering of basis functions| L
4.5 Conventions for ordering Cartesian and spherical components|

6_Evaluations|

6

b.3 Evaluations of density related properties| oo
B3T Density] o .o
5.3.2 Arbitrary derivatives of density|o oL
B33 Gradient of demsity]. v v v v v i i
5.3.4 Laplacian of density|
p.3.50 Hessian of density] L

p.4 Evaluations of density matrix related properties|.

p.4.4 Positive-definite kinetic energy density|] L oL
9.4.5 General form of kinetic energy density| L.

ntegrals
6.1 Overlap integrall
6.1.1 Overlap integral between two different basis sets|
[6.2 Multipole moment integrall. oL oo
[6:3 Tnfegrals over differential operator]
6.3.1 inetic energy integral|
6.3.2 Momentum integrall oo
6.3.3 Angular momentum integrall.o 0oL
[6.4 Integral for interaction with point-charge]
6.4.1 Nuclear-electron attraction integrall.
6.4.2 ectrostatic potential oo oo
6.5 Electron-electron repulsion integral|o o000

10
10
11
11
11
12
12
13
13
14
15
16
16
17

7 Future Development| 23

[8 Not sure where to put this| 24

1 Mandate

e summary

audience

— Developers in quantum chemistry
— Theory people looking for quick implementation of ideas
— ChemTools

features

software

— Pure Python
— Multiplatform (Windows, MacOS, Linux)
— NumPy and SciPy are the only dependencies

Parallizeable (to the extend that numpy is parallizeable)

Open-source

2 (Gaussian Primitive
A Cartesian Gaussian primitive is
gi(rRa,a) = N(as, a)(z — Xa)® (y — Ya)™ (2 — Za)* exp (—aufr — Ral?) 1)

where r = (2,y,2), Ra = (X4a,Ya,Z4) is the center of the primitive, a = (ag,ay,a.) is the
Cartesian components of the angular momentum, ¢ = a, + a, + a., and

3
20y 2 (4&-)ar+ay+a2
N (2 =
(a:;a) \/(7) (2az — D)11(2a, — 1)11(2a, — 1)1

ozl 4 1 (2)
(0%
i) (2a, — 1)!1(2a, —)!(2a, — 1)!!

2
1(a, £

is the normalization constant of the Cartesian primitive. In this module, the primitives are nor-
malized.
A spherical Gaussian primitive is

g; (r|Ra,m,£) = Ng(a,)ng(d),@)re exp (foz,'TQ) (3)

where £ is the angular momentum, m is the z component of the angular momentum, r = |[r — R 4|
is the distance from the center R 4, Yy, is a spherical harmonic, and

- 20@ % (4ai)f
v - (2)' s .

is the normalization constant of the spherical primitive. In this module, we treat all spherical
harmonics to be real.

The “solid harmonic” (Helgaker 6.4.2), Yz, (¢, 60)r", can be transformed into the corresponding
Cartesian expression, (z — X)% (y — Ya)® (2 — Z4)**. Real-valued solid harmonics are denoted
with ng.

95 (r[Ra,m, 0) = Ny(ai,) Sem (7, 6, 0) exp (—air?) (5)

In this module, we strictly utilize Cartesian Gaussian primitives at the lower level and transform to
the spherical form whenever needed. Therefore, primitives will refer to Cartesian primitives unless
otherwise stated.

2.1 Transformation of Spherical Primitives to Cartesian Primitives

To transform the spherical primitives to Cartesian primitives, the (real) solid harmonics are first
transformed into the Cartesian expressions. Using the equations from Helgaker 6.4.4,

L= e Lg

Spp = Négm Z Z Z C«gmwmﬂr\m|72(u+vm)y2(u+vm)2872t7|m\ (6)
t=0 wu=0 v=0

where

U-i-% ifm<0

et =0 (1) () () ()) <8>

1 2 4+ |m|)'(€ — |m]|)!
Niom = zlmla\/ e 2|§m(n il (9)

By linearly transforming the all of primitives with different Cartesian expressions, (z—X 4)% (y—
Ya)*(z — Z4)%, for the given angular momentum using Equation @ spherical primitives can be
obtained, though they are normalized with the Cartesian normalization constants.

Then, the normalization constant of the Cartesian primitive must be replaced with the spherical
primitive by multiplying the newly formed spherical primitives with the following factor.

i >
Um{w ifm>0 (7)

(2ai) 5 (day)"

Ng(ag, l) P 2e—1)1
N(O&i, a) B o 3
Zoe)? (40%')[\/(zam—1)!!(2%1—1)!!(2%—1)!! (10)
 [(2ar — DYM(2ay — 1)M(2a, — 1)!
B (20— 1)1

3 Contractions

Cartesian contractions are linear combinations of Cartesian primitives.

¢(r|RA7 a, da a) = NC(RAa a, da a) Z digi(r|RAa a)

= N.(Ra,a,d,a)No(a)(z — XA)%(y — Ya)™ (2 — Z4)* ZNl o,) exp (—oyr — Ral?)
(11)

where d is the contraction coefficient, a are the exponents of the primitive, and

N.(Ry,a,d,a) = /(Zdigi(ﬂRA,a)) Zdjgj(ﬂRA,a) dr

1
2

1
2

(12)

= szd/ r[R4,a)g;(r|Ra,a)dr

is the L2 normalization constant of the contraction. In this module, the contractions are L2 nor-
malized.

Since the Cartesian expression, (z — X 4)% (y — Ya)% (2 — Z4)%, separates out from the rest of
the primitives, the spherical contractions can be created from Cartesian contractions in the same
way that the spherical primitives are constructed. In fact, we can group together many contractions
of the same angular momentum and transform the contractions at the same time. In many cases, it
is economical to group together contractions that share the same properties. We will denote these
groups as shells.

3.1 Segmented Contractions

In order to transform the Cartesian contractions into spherical contractions, all of the Cartesian
components are needed, i.e. all combinations of nonnegative integers a,, a,, and a, that adds up to
£. Segmented contractions is a group of contractions with the same angular momentum (¢), center
(Ra), contraction coefficients (b) and exponents (a):

{#(r|Ra,a;,d, @)|(a;)z + (aj)y + (a;). = £} (13)

To avoid confusion with the term contraction, we use the term “shell of segmented contractions”.

3.2 Generalized Contractions

Generalized contractions are a set of contractions that have the same center (R4) and exponents
(a).
{o(r[Ra, a0, di, @)l (aje)x + (aje)y + (aje)= = £} (14)
In this module, we do not group together contractions that differ in angular momentum. We
use the term “shell of generalized contractions” to refer to the set of contractions with the same
center (R 4), same angular momentum (¢) and exponents (a):

{6(r|Ra,a;,di, @)|(a;)s + (a5)y + (a;): = £} (15)

We can think of shell of generalized contractions as a union of shells of segmented contractions that
differ only by the contraction coefficients, i.e. they use the same set of primitives.

4 Basis Set

In this module, basis set is defined to be a list of shells of generalized contractions.

4.1 Loading basis sets

Basis set information is often stored in text format. In gbasis, the Gaussian94 format (.gbs) and
the NWChem format (.nwchem) are supported.
Example: Supposed we have the following system:

atoms — [',7H77 , 77H77]
coords = np.array ([[0, O, 0], [0, O, 1]])

e To build a basis set from gbs file for the given atoms and coordinates,

from gbasis.parsers import parse_gbs, make_contractions

all_basis_dict = parse_gbs(”./path/to/from_basissetexchange.gbs”)
basis = make_contractions(all_basis_dict , atoms, coords)

e To build a basis set from nwchem file for the given atoms and coordinates,

from gbasis.parsers import parse.nwchem, make_contractions

all_basis_dict = parse.nwchem (”./path/to/from_basissetexchange .nwchem”)
basis = make_contractions(all_basis_dict , atoms, coords)

gbasis also interfaces to the module iodata, which handles the inputs and outputs for dif-
ferent quantum chemistry formats, such as Gaussian formatted checkpoint files (.fchk) and AIM
wavefunction files (.wfn and .wfx).

Using iodata, suppose we have the following system:

from iodata import load_one

;| mol = load_one (”molecule. fchk”)

To build a basis set,

from gbasis.wrappers import from_iodata

basis = from_iodata (mol)

gbasis also interfaces to pyscf, which is an ab initio computational chemistry program.
Using pysct, suppose we have the following system:

from pyscf import gto
mol = gto.Mole ()

;| mol. build (

atom = "0 00 0; H 01 0; HO 0 17,
basis = ”sto—3g”

h‘)

To build a basis set,

from gbasis.wrappers import from_pyscf

;| basis = from_pyscf(mol)

4.2 Types of coordinate systems used by basis functions

In gbasis, user can provide the coordinate system used by each shell of generalized contractions.
All of the higher level functions have the keyword argument coord_type to specify the coordinate
systems used by the basis. If coord_type="spherical", all of the shells are treated to be spher-
ical. If coord_type="cartesian", all of the shells are treated to be Cartesian. If different shells
correspond to different coordinate system, then a list /tuple of the same length as the basis set must
be provided with each entry being "spherical" or "cartesian" to specify the coordinate system
of the corresponding shell.
Example:

e To treat all contractions to be spherical

l‘output = high_level_function (basis, coord_type="spherical”)

e To treat all contractions to be Cartesian

output = high_level_function (basis, coord_-type="cartesian”)

e To treat first shell of generalized contractions to be Cartesian and second shell to be spherical

output = high_level_function (basis, coord_-type=["cartesian”, "spherical”])

|

In this case, the basis set must consist of exactly two shells of generalized contractions.
Otherwise, an error will raised.

4.3 Linear transformations of basis functions

In gbasis, user can linearly transform the basis functions before computing the desired properties.
All of the higher level functions have the keyword argument transform to specify the matrix that
transforms the basis set. The transformation is applied to the left, i.e.

(S ZTijéf?j (16)
J

where {¢;} is the basis set before transformation and {#; } is the basis function after transformation.

The number of basis functions depends on the coordinate systems specified for each shell. Note that

the transformation matrix assumes that the basis functions are ordered according to Section
Example:

output = high_level_function (basis, transform=transform_mo_ao)

4.4 Ordering of basis functions

Since a shell of generalized contractions is a set of contractions, they must be unpacked. When
unpacked, the basis functions are first ordered by the shells, then by the segmented contraction,
and then by the angular momentum component. For example, suppose the basis set consists of
three shells of generalized contractions, G1, G2, and Gj3:

G1 = {¢(r[Ra, a1, dig, a1)|(a1))z + (a1)y + (a15)- = 1}
G2 = {8(r|Rp, a;, doy, a2)[(az;)s + (az;)y + (az;). = 2} (17)
Gs = {d(r[Ra, a3, dsk, a3)|(as;)s + (asj)y + (as;). = 2}

where d; corresponds to two sets of contraction coefficients, dy corresponds to three sets of contrac-

tion coefficients, and d3 corresponds to one set of contraction coefficients. Then, the basis functions
in the Cartesian form will be ordered as follows:

¢(P|RA7 (1a 07 0),d117 al)) ¢(P|RA7 (Oa 1) O)7d117 a1)7 ¢(I‘|RA, (05 07 1)7 dlla a1>7

¢(r|RBa (27 07 O)a d22a aQ)a ¢)(r|RBv (la 17 0)7 d227 02)7 ¢(r|RBv (1a Oa 1)7 d227 a2)7 (18)
¢

¢(I‘|RA, (27 Oa 0)7 d31a a3)’ ¢(P|RA, (13 1; 0)7 d317 a3)a ¢(F|RA, (1; Oa 1)7 d317 a3)7
¢(r|RA7 (07 2a 0)7 d317 a3)7 ¢(r|RA7 (Oa 17 1)7 d317 (13)7 ¢(T|RA, (Oa 07 2)7 d31, a3)
where , delimits the contractions within a shell of segmented contractions, — delimits the shells

of segmented contractions within a shell of generalized contractions, and = delimits the shells of
generalized contractions.

The basis functions in the spherical form will be ordered as follows:

¢S<r|RA7 _17 1a dlla a1)7 ¢S(r|RAa 07 17d117 al)a ¢s(r‘RA7 17 17 dlla a1)7

¢S(r|RB7 _25 27d217 a?)) ¢s(r|RBa _17 27d21a 02)7 ¢S(T|RB; 07 27d217 a2)7

gbs(r'RBa 17 2) d217a2)7 ¢s(r|RB7 27 2) d211 a2)7

¢S(F|RB, 725 27d227 a?)) ¢S(r|RBa 717 27d227 a2)7 ¢S(r|RBa 07 27d227 a2)7 (19)
¢S(r|RB7 1a 27 d227a2)a ¢S(r|RB7 2a 27 d22) a2)a

¢S(r|RBv 72; 2,d23a (8%} S(rlRBa 71, 27d237 (12)7 ¢S(r|RB; 0, 27d237 (12)7
¢S(r|RBvla23d23aa2)a r|R372a23d23;a2)a

~
<

S

<

¢s(r|RA7 _27 27 d313 a3)7 (bs (I‘|RA, _17 27 d317 a3)7 ¢S(r|RA7 07 2; dSla a3)7
¢8(r|RAﬂ 17 27 d317 Oé3)7 ¢S(r|RA7 27 23 d31; a3)
where each spherical contraction has the form ¢°(r|Ra,m, ¢, d, o).

The specific ordering of the angular momentum components in the Cartesian and spherical form
is determined by the properties

|‘ gbasis.contractions . GeneralizedContractionShell.angmom_components_cart

and

|‘ gbasis.contractions. GeneralizedContractionShell .angmom_components_sph

|

respectively. To change the ordering, make a child of GeneralizedContractionShell and overwrite
these properties with the desired ordering.

4.5 Conventions for ordering Cartesian and spherical components

Cartesian components A shell of generalized contractions of angular momentum ¢ is composed
of (¢+1)(¢+2) Cartesian components of the form % y® 2** such that a, +a, +a, = {. In gbasis,
the ordering of Cartesian components is stored as an ¢ x 3 numpy array, where each entry (i, j)
corresponds to the exponent a; for the i*® component. In other programs, like HORTON2, a different
notation is used, where the components are written as strings of X, Y, and Z, where the number of
times each letter appears corresponds to the exponent a for that letter. These notations are easily
convertible, for example, the gbasis notation for the component XXXZZ is (3,0,2)

In gbasis, all components are sorted by descending a, then by descending a,, as generated by
the following list comprehension:

| [(x, y, self.angmom — x — y)
2 for x in range(self.angmom, —1, —1)
for y in range(self.angmom — x, —1, —1)]

For example, for ¢ = 3, the default ordering is:

0)7
0)’
1)7
O)’

2)’
0),
1)1
2)’
3)7

D L T L T N N
OO OO FFNNW
OFHNWOFENORFO

Spherical (pure) components A shell of generalized contractions of angular momentum ¢ is
composed of 2¢ + 1 spherical components that take the form of cosine- and sine-like real regular
solid harmonics Cy ,, and Sy,,,. We can define these cosine- and sine-like functions using the regular
solid harmonics Ry ,, such that

R@,m = Ce,'m m = 0, ,E

Roon =Sem m=1,..,¢ (20)
In gbasis, we use these definitions to represent spherical components as strings of the form c{m}
and s{m}, where m is the magnetic quantum number for the given angular momentum. N.B.: for
sine-like functions, s{m} corresponds to —m, as per the definition in equation This ordering is
stored as a list of these strings, consistent with the notation found in I0Data.

Some quantum chemistry programs, such as ORCA, use conventions that require changing the
signs of specific spherical (pure) components. Therefore, the sign of each component must also be
encoded in the ordering. In gbasis, this is done by prefixing a negative sign to the string for that
component, e.g. -s3.

The standard convention for ordering spherical components in gbasis is from —m to m. The
ordering is generated by the following list comprehension:

[’s{}’.format(m) for m in range(self.angmom, 0, —1)]
2|+ [’c{}’ .format(m) for m in range(self.angmom + 1)]

For example, for ¢ = 3, the default ordering is:

|‘[’53’, 's27, ’sl’, ’c0’, ’cl’, c2’, ’c37]

In ORCA Molden files, the convention for ¢ = 3, illustrating the use of the negative prefix, is:

|‘["CO’7 "cl’, ’sl’, c27, ’s2’, '—c3’, '—s37]

5 Evaluations

For the examples, suppose we have the following set of points:

1| import numpy as np

)

3] grid-1d = np.linspace(—2, 2, num=10)

[

[S

grid_x , grid_-y, grid-z = np.meshgrid(grid-1d, grid-1d, grid-1d)
grid_-3d = np.vstack ([grid_x.ravel(), grid_y.ravel(), grid_z.ravel()]).T

5.1 Evaluation of contractions

The functions in module gbasis.evals.eval return the evaluations of the contractions at different
coordinates:
¢(rn|RAvajvdkaa) (21)

The returned value is an array whose rows corresponds to the basis function and columns corre-
sponds to the coordinate, r,.
These functions can be used to find the values of the orbitals at various points, such as a grid.
Example:

e To evaluate the atomic orbitals,

from gbasis.evals.eval import evaluate_basis

output = evaluate_basis(basis, grid-3d, coord_-type="spherical”)

e To evaluate the molecular orbitals,

from gbasis.evals.eval import evaluate_basis

output = evaluate_basis(basis, grid-3d, transform=transform_mo_ao, coord_-type="
spherical”)

5.2 Evaluation of derivatives of contractions

In gbasis, contractions can be derivatized to arbitrary orders. The functions in module gbasis.evals.eval_deriv

return the evaluations of the given derivative of the contractions at different coordinates.

o= +my+m.

W¢(rH|RA7ajvdk,a) (22)

The returned value is an array whose rows corresponds to the basis function and columns corre-
sponds to the coordinate, r,,.
Example: Suppose the following derivative of the contraction is desired:

63

0xdy? (23)

e To evaluate the derivatives of the atomic orbitals,

from gbasis.evals.eval_deriv import evaluate_deriv_basis

output = evaluate_deriv_basis(basis, grid_3d, np.array([1, 2, 0]), coord_-type="
spherical”)

e To evaluate the derivatives of the molecular orbitals,

10

1| from gbasis.evals.eval_deriv import evaluate_deriv_basis

output = evaluate_deriv_basis(
4 basis , grid-3d, np.array([1, 2, 0]), transform=transform_mo_ao, coord_type="
spherical”

5.3 Evaluations of density related properties

The functions in module gbasis.evals.density return the evaluations of the density and its
derivatives.
Suppose the one_dm is the one-electron density matrix.

5.3.1 Density
)= Z%’j¢i(rn)¢j(rn) (24)

j
Example:

e To evaluate the density using density matrix expressed with respect to atomic orbitals,

=

from gbasis.evals.density import evaluate_density

N

output = evaluate_density (one.dm, basis, grid-3d, coord_-type="spherical”)

e To evaluate the density using density matrix expressed with respect to molecular orbitals,

from gbasis.evals.density import evaluate_density

;| output = evaluate_density (one.dm, basis, grid_-3d, transform=transform_mo_ao,
coord_type="spherical”)

5.3.2 Arbitrary derivatives of density

GLatLy+L: e Z Z Z Zy Qletlutls p(r,)) §latlytla—lo=ly=L p(p)
OxLa Oyl dzL= 200,201 9 gl Qylv 02t OxLle—te QyLu—lvdzL-—1
(25)
Example: Suppose the following derivative of the density is desired:
63
26
0z0y? (26)

e To evaluate the derivative of the density using density matrix expressed with respect to atomic
orbitals,

from gbasis.evals.density import evaluate_deriv_density

=

3] output = evaluate_deriv_density (np.array ([1, 2, 0]), one.dm, basis, grid_3d,
coord_type="spherical”)

11

To evaluate the derivative of the density using density matrix expressed with respect to
molecular orbitals,

from gbasis.evals.density import evaluate_deriv_density

output = evaluate_deriv_density (
np.array ([1, 2, 0]), one.dm, basis, grid_-3d, transform=transform_mo.ao,
coord_type="spherical”

Bow N e

o
~

5.3.3 Gradient of density

Vp(ry) = | & p(rn) (27)

Example:

e To evaluate the gradient of the density using density matrix expressed with respect to atomic
orbitals,

1| from gbasis.evals.density import evaluate_density_gradient

3] output = evaluate_density_gradient (one.dm, basis, grid_-3d, coord_type="spherical”)

e To evaluate the gradient of the density using density matrix expressed with respect to molec-
ular orbitals,

1| from gbasis.evals.density import evaluate_density_gradient

output = evaluate_density_gradient (
4 one.dm, basis, grid_-3d, transform=transform_mo_ao, coord_type="spherical”

o)

5.3.4 Laplacian of density
) 2 2 92
Vop(ry) = @P(rn) + @P(rwz) + @P(rn) (28)

Example:

e To evaluate the laplacian of the density using density matrix expressed with respect to atomic
orbitals,

1| from gbasis.evals.density import evaluate_density_laplacian

3| output = evaluate_density_laplacian (one.dm, basis, grid_-3d, coord_type="spherical”)

where

12

(S

e To evaluate the laplacian of the density using density matrix expressed with respect to molec-
ular orbitals,

from gbasis.evals.density import evaluate_density_laplacian
output = evaluate_density_laplacian (
one.dm, basis, grid_-3d, transform=transform_mo_ao, coord_type="spherical”

)

5.3.5 Hessian of density

2 2 2
%p(rn) Oxé)yp(rn) %p(rn)
2 2 5

Hlp(rn)] = | 525:0(tn) 2zp(tn) 525:p(rn) (20)
2 2 5
Foh(tn) Fyp(tn) Ep(ra)

Example:

e To evaluate the Hessian of the density using density matrix expressed with respect to atomic
orbitals,

from gbasis.evals.density import evaluate_density_hessian

output evaluate_density_hessian (one.dm, basis, grid_3d, coord_type="spherical”)

e To evaluate the Hessian of the density using density matrix expressed with respect to molecular
orbitals,

from gbasis.evals.density import evaluate_density_hessian

output
one_dm ,
)

evaluate_density_hessian (
basis, grid_3d, transform=transform_mo_ao,

coord_type="spherical”

5.4 Evaluations of density matrix related properties

Given the density matrix,

~(r1,1r2) (30)

Z Yij ¢z r ¢] (1‘2)

ij

many properties can be defined by evaluating the derivatives of the density matrix at the same
coordinate:

HP=+Py+p= H=tayta- HP=t+Py+p= Y= tay+a=
apza Pya = 9297 9 an qz’Y(rl’rQ) Zrﬁjapma Pva Pz¢(r1) 9rd 9 ‘Iya Qz¢j
Ty 0Yy 021" 0%y 0Yy 0%y ri=ra=r, Y1 0% ri=r, 0% OYa 0%
(31)

where r; is the first coordinate, ro is the second coordinate, and r,, is the coordinate at which the
derivative is evaluated.

13

=

N

S

Since ;5 is symmetric,

6Px+Py+Pz a‘h+‘h;+‘h 8‘11""13;“’% apm"‘l’y“’.”z
ry{,r = ry{,r
axlwayfy 8zlz aiﬁf aygy azgz '7(1 2) it axlx ayily azlz 8902” ayé’y azgz ’Y(1 2) N
(32)
Again, suppose one_dm is the one-electron density matrix.
5.4.1 Stress tensor
(alsB) = — 20 [22 e1) + =2 fr,r)
o;i(r,|la =——-a| ——~(r,r ——~(r,r
AR 2 8T2‘8T9Py ’ 3rj37‘gw ’
r=r’'=r,
1 0? 0?
+ (1= a) [2) + o (r)
2 Or;Or; orior; N (33)
1
- §5ijﬁv2p(rn)
02 , 9? 1
=—a ——(r, 1-— —(r, — =0;;:8V?
«@ 87"7;67"‘;- ’Y(r I') +(O{) aria,rj ’Y(I' I') pier 2 ’L]/B p(r’ﬂ)
l‘:l":!‘n =r'=rn

Example:

e To evaluate the stress tensor (o = 1 and § = 0) using density matrix expressed with respect
to atomic orbitals,

from gbasis.evals.stress_tensor import evaluate_stress_tensor

output = evaluate_stress_tensor (one.dm, basis, grid-3d, coord_-type="spherical”)

e To evaluate the stress tensor (o = 0.5 and 8 = 1) using density matrix expressed with respect
to atomic orbitals,

from gbasis.evals.stress_tensor import evaluate_stress_tensor

output = evaluate_stress_tensor (one.dm, basis, grid_-3d, alpha=0.5, beta=1,
coord_type="spherical”)

e To evaluate the stress tensor (o =1 and 8 = 0) using density matrix expressed with respect
to molecular orbitals,

from gbasis.evals.stress_tensor import evaluate_stress_tensor

output = evaluate_stress_tensor (
one_.dm, basis, grid_-3d, transform=transform_mo_ao, coord_-type="spherical”
)

14

5.4.2 Ehrenfest force

Ehrenfest force is defined as the negative of the divergence of the stress tensor

0
Fi(rplo, B) = — Z%Uij

63

83 / /
_azi: W’y(r,r) —|—Oézz: W’y(r,r)

r=r'=r, r=r'=r,

83
—(1-a)) 5—7(@r)
; Or2or;

r=r'=r, r=r'=r,

o8 1 o _,

3 ,
= 21: W’Y(r, r)

r=r’'=r,

83
—(1-a)) 5—(r)
zi: Ir2or;

+3 Z 5ijﬂ8—mv p(ry)

33
—(1-20) Zi rsan,or) Z
(34)

r=r’'=r, r=r'=r,

Example:

e To evaluate the Ehrenfest force (« = 1 and 8 = 0) using density matrix expressed with respect
to atomic orbitals,

from gbasis.evals.stress_tensor import evaluate_ehrenfest_force

=

N

3] output = evaluate_ehrenfest_force (one.dm, basis, grid-3d, coord_type="spherical”)

e To evaluate the Ehrenfest force (&« = 0.5 and § = 1) using density matrix expressed with
respect to atomic orbitals,

from gbasis.evals.stress_tensor import evaluate_ehrenfest_force

3| output = evaluate_ehrenfest_force (one.dm, basis, grid_-3d, alpha=0.5, beta=1,
coord_type="spherical”)

e To evaluate the Ehrenfest force (« = 1 and 8 = 0) using density matrix expressed with respect
to molecular orbitals,

from gbasis.evals.stress_tensor import evaluate_ehrenfest_force

3] output = evaluate_ehrenfest_force (
| one_.dm, basis, grid_-3d, transform=transform_mo_ao, coord_-type="spherical”

5

15

w oW

5.4.3 Ehrenfest Hessian

Hji(rp|o,) = — %Fj(rnm’ﬁ)
:azi: m'y(r,r')—k%ﬂrvr/) o
Example:

e To evaluate the Ehrenfest Hessian (« = 1 and 8 = 0) using density matrix expressed with
respect to atomic orbitals,

from gbasis.evals.stress_tensor import evaluate_ehrenfest_hessian

output = evaluate_ehrenfest_hessian (one.dm, basis, grid-3d, coord_-type="spherical”)

e To evaluate the Ehrenfest Hessian (o = 0.5 and 8 = 1) using density matrix expressed with
respect to atomic orbitals,

from gbasis.evals.stress_tensor import evaluate_ehrenfest_hessian

;| output = evaluate_ehrenfest_hessian (

o)

one_.dm, basis, grid_3d, alpha=0.5, beta=1, coord_type="spherical”

e To evaluate the Ehrenfest Hessian (« = 1 and 8 = 0) using density matrix expressed with
respect to molecular orbitals,

from gbasis.evals.stress_tensor import evaluate_ehrenfest_hessian

;| output = evaluate_ehrenfest_hessian (

i)

one-dm, basis, grid_-3d, transform=transform_mo_ao, coord_type="spherical”

5.4.4 Positive-definite kinetic energy density

1
t+(I’n) = 5 Vr : vr”y(ra r/)‘r:r’:rn

1 62) 82 , 82 / (36)
=3 (axaw(r,) F Byay) T BT >)r_r/_rn

Example:

16

e To evaluate the positive-definite kinetic energy density using density matrix expressed with
respect to atomic orbitals,

from gbasis.evals.density import evaluate_posdef_kinetic_energy_density

output = evaluate_posdef_kinetic_energy_density (one.dm, basis, grid.-3d, coord_type="
spherical”)

e To evaluate the positive-definite kinetic energy density using density matrix expressed with
respect to molecular orbitals,

from gbasis.evals.density import evaluate_posdef_kinetic_energy_density

;| output = evaluate_posdef_kinetic_energy.-density (

one-dm, basis, grid_-3d, transform=transform_mo_ao, coord_type="spherical”

)

5.4.5 General form of kinetic energy density
to(ry) = ty(rn) + aV3p(r,) (37)
Example:

e To evaluate the general form of the kinetic energy density (o = 1) using density matrix
expressed with respect to atomic orbitals,

from gbasis.evals.density import evaluate_general_kinetic_energy_density

;| output = evaluate_general_kinetic_energy_-density (one.dm, basis, grid-3d, coord_-type=

N

"spherical”)

e To evaluate the general form of the kinetic energy density (o = 0.5) using density matrix
expressed with respect to atomic orbitals,

from gbasis.evals.density import evaluate_general_kinetic_energy_density

output = evaluate_general_kinetic_energy-density (
one.dm, basis, grid_3d, alpha=0.5, coord_type=
)

”spherical”

e To evaluate the general form of the kinetic energy density (o = 1) using density matrix
expressed with respect to molecular orbitals,

from gbasis.evals.density import evaluate_general_kinetic_energy_density

;| output = evaluate_general_kinetic_energy_density (

one_.dm, basis, grid_3d, transform=transform_mo_ao, coord_type="spherical”

)

17

6 Integrals
6.1 Overlap integral

[butwintryae (39)
Example:

e To compute the overlap of a set of atomic orbitals

from gbasis.integrals.overlap import overlap_integral

output = overlap_integral (basis, coord_type="spherical”)

e To compute the overlap of a set of molecular orbitals

from gbasis.integrals.overlap import overlap_integral

;| output = overlap_integral (basis, transform=transform_-mo_ao, coord_-type="spherical”)

6.1.1 Overlap integral between two different basis sets

Overlap integrals between two different basis sets are supported i.e.

/ o (r)p(r)dr (39)

Example:

e To compute the overlap between twos sets of atomic orbitals

from gbasis.integrals.overlap_asymm import overlap_integral_asymmetric

;| output = overlap_integral_asymmetric(

basis_one , basis_-two, coord_-type_one="spherical”, coord_-type_-two="spherical”

)

e To compute the overlap between a set of molecular orbitals and a set of atomic orbitals

from gbasis.integrals.overlap_asymm import overlap_integral_asymmetric

;| output = overlap_integral_asymmetric (

basis_one ,

basis_two ,
transform_one=transform_ao_mo ,
coord_type_one="spherical” |
coord_type_-two="spherical”

18

6.2 Multipole moment integral

Multipole moment integral can be obtained for arbitrary moments.

/(ba(r)(l’ — Xo)*(y — Yo)™ (2 — Z¢)™ gy (r)dr
Example: Suppose the integral of the following moments is desired:
(z —1.5)%(y — 2.5)%(z — 3.5)
(x —1.5)(y — 2.5)%*(z — 3.5)*

e To compute the moment of a set of atomic orbitals

from gbasis.integrals.moment import moment_integral

3] output = moment_integral (

basis, np.array ([1.5, 2.5, 3.5]), np.array ([[2, 3, 1], [1, 2, 3]]), coord_-type="

spherical”

e To compute the overlap of a set of molecular orbitals

from gbasis.integrals.moment import moment_integral

;| output = moment_integral (

basis ,

np.array ([1.5, 2.5, 3.5]),
np.array ([[2, 3, 1], [1, 2, 3]]),
transform=transform_mo_ao ,
coord_type="spherical”

6.3 Integrals over differential operator

Integrals over arbitrary differential operator (for Cartesian coordinates) are supported.

geti+y
/¢a 81:‘38yf329¢ (r)dr

6.3.1 Kinetic energy integral
<T> - /¢a(r) (—;W) (1) dr
1 0? 0? 0?
=5 ([oot gzentriar+ [o) gzontriar + [6w zontrrar)

e To compute the kinetic energy integral of a set of atomic orbitals

Example:

19

(43)

from gbasis.integrals.kinetic_energy import kinetic_energy_-integral

output = kinetic_energy_integral (basis, coord_type="spherical”)

e To compute the kinetic energy integral of a set of molecular orbitals

from gbasis.integrals.kinetic_energy import kinetic_energy_-integral

3] output = kinetic_energy._-integral(basis, transform=transform_mo_ao, coord_type="

spherical”)

6.3.2 Momentum integral
®) = [6u(r) (~iV) 1 (x)
[¢a(r) 2 gp(r)dr
= —i | [ualx) & bp(x)dr
[¢a(r)Z oy (r)dr

Example:

e To compute the momentum integral of a set of atomic orbitals

from gbasis.integrals.momentum import momentum_integral

;| output = momentum_integral (basis, coord_type="spherical”)

e To compute the momentum integral of a set of molecular orbitals

from gbasis.integrals.momentum import momentum_integral

;| output = momentum_integral (basis , transform=transform_mo_ao, coord_type="spherical”)

6.3.3 Angular momentum integral

<13> - /¢a(r) (—ir x V) ¢p(r)dr
J ba(®)yZzop(x)dr — [da(r)z 5y (r)dr
|)2 2w — [bty Loy (46)
[Ga(r)a 2 0u(x)dx — [Gu(r)y L n(x)dr
Example:

e To compute the angular momentum integral of a set of atomic orbitals

20

N

from gbasis.integrals.angular_ momentum import angular_momentum_integral

output = angular_momentum_integral (basis , coord_type="spherical”)

e To compute the angular momentum integral of a set of molecular orbitals

from gbasis.integrals.angular_momentum import angular_momentum_integral

;| output = angular_momentum_integral (basis, transform=transform_mo_ao, coord_type="

spherical”)

6.4 Integral for interaction with point-charge

1
[o)t (47)

Example: Suppose there are two point charges: —3 charge at (0,1,2) and 5 charge at (3,4, 6)

e To compute the integral for interaction between these point-charges and the set of atomic
orbital

from gbasis.integrals.point_charge import point_charge_integral

output = point_charge_integral(
basis , np.array([[O, 1, 2}7 [37 4, 6]])7 np-arraY([737 5])7 coord_type="
spherical”

e To compute the integral for interaction between these point-charges and the set of molecular
orbital

from gbasis.integrals.point_charge import point_charge_integral

output = point_charge_integral(
basis ,
np.array ([0, 1, 2], [3, 4, 6]]),
np.array ([=3, 5])
transform=transform_mo_ao ,
coord_type="spherical”,

6.4.1 Nuclear-electron attraction integral

_ZC = — r ! r)ar
[o) =g nte)s = ~Ze [u(o) gl (15)

Example: Suppose there are two nuclei: He at (0,1,2) and Al at (3,4,6)

e To compute the nuclear-electron attraction integral of the set of atomic orbital

21

from gbasis.integrals.nuclear_electron_attraction import
nuclear_electron_attraction_integral

;| output = nuclear_electron_attraction_integral(

basis , np.array ([[0, 1, 2], [3, 4, 6]]), np.array ([2, 13]), coord_type="
spherical”

e To compute the nuclear-electron attraction integral of the set of molecular orbital

from gbasis.integrals.nuclear_electron_attraction import
nuclear_electron_attraction_integral

output = nuclear_electron_attraction_integral(
basis ,
np.array ([[0, 1, 2], [3, 4, 6]]),
np.array ([2, 13])
transform=transform_mo_ao ,
coord_type="spherical”,

6.4.2 Electrostatic potential

Za -1 _ A_ #
_gmc_aﬂ%;”“b/ O RO | = 2 R Ryl Z”/ e e

(49)

Example: Suppose there are two nuclei, He at (0, 1,2) and Al at (3,4,6) (0,1,2) and (3,4, 6), the

electrostatic potential is measured at points (0.5,1.5,2.5) and (2.5,3.5,5.5), and the one-electron
density matrix is given by one_dm.

e To compute the electrostatic potential using density matrix expressed with respect to atomic
orbitals

from gbasis.evals.electrostatic_potential import electrostatic_potential

output = electrostatic_potential(
basis ,
one_dm ,
np.array ([[0.5, 1.5, 2.5], [2.5,
np.array ([[0, 1, 2], [3, 4, 6]]),
np.array ([2, 13]),
coord_type="spherical” |

3.5, 5.5]]),

e To compute the electrostatic potential using density matrix expressed with respect to molec-
ular orbitals

from gbasis.evals.electrostatic_.potential import electrostatic_potential

output = electrostatic_potential(
basis ,
one_dm ,

np.array ([[0.5, 1.5, 2.5], [2.5, 3.5, 5.5]]),

N

S

np.array ([[0, 1, 2], [3, 4, 6]]),
np.array ([2, 13]),
transform=transform_mo_ao ,
coord_-type="spherical”

)

6.5 Electron-electron repulsion integral
In the Chemists’ notation,

1

vy — 1o

/ 67(r1)dn(r1) 67 (r2)da(ra)dr (50)

In the Physicists’ notation

1

[r1 — 1o

/ 67 (1) 85 (1) be(1)da(ra)dr (51)

Though both conventions are supported at the higher level, lower level code uses the Chemists’
notation.
Example:

e To compute the electron repulsion integral of a set of atomic orbitals in Physicists’ notation

from gbasis.integrals.electron_repulsion import electron_repulsion_integral

output = electron_repulsion_integral (basis, coord_type="spherical”)

e To compute the electron repulsion integral of a set of molecular orbitals in Physicists’ notation

from gbasis.integrals.electron_repulsion import electron_repulsion_integral

output = electron_repulsion_integral (basis, transform=transform_mo_ao, coord_-type="
spherical”)

e To compute the electron repulsion integral of a set of molecular orbitals in Chemists’ notation

from gbasis.integrals.electron_repulsion import electron_repulsion_integral

output = electron_repulsion_integral(
basis , transform=transform_mo_ao, coord_type="spherical”, notation="chemist”
)

7 Future Development
e screening (overlap)
e screening (two electron integrals)
e improve performance in two electron integral

e zeroth order regular approximation (zora) for relativistic effects

23

e density fitting

e derivative of contractions with respect to the center
e derivative of integrals with respect to center

e periodic boundary condition

e damped two electron integral

8 Not sure where to put this

e Feature requests via github

e Contributions are welcome

24

	Mandate
	Gaussian Primitive
	Transformation of Spherical Primitives to Cartesian Primitives

	Contractions
	Segmented Contractions
	Generalized Contractions

	Basis Set
	Loading basis sets
	Types of coordinate systems used by basis functions
	Linear transformations of basis functions
	Ordering of basis functions
	Conventions for ordering Cartesian and spherical components

	Evaluations
	Evaluation of contractions
	Evaluation of derivatives of contractions
	Evaluations of density related properties
	Density
	Arbitrary derivatives of density
	Gradient of density
	Laplacian of density
	Hessian of density

	Evaluations of density matrix related properties
	Stress tensor
	Ehrenfest force
	Ehrenfest Hessian
	Positive-definite kinetic energy density
	General form of kinetic energy density

	Integrals
	Overlap integral
	Overlap integral between two different basis sets

	Multipole moment integral
	Integrals over differential operator
	Kinetic energy integral
	Momentum integral
	Angular momentum integral

	Integral for interaction with point-charge
	Nuclear-electron attraction integral
	Electrostatic potential

	Electron-electron repulsion integral

	Future Development
	Not sure where to put this

