
Computing dynamic meanings: Building integrated
competence-performance theories for formal semantics

Adrian Brasoveanu, Jakub Dotlačil1

May 8, 2017

1ACKNOWLEDGMENTS to be inserted here . . . This document has been created with LaTeX and
PythonTex (Poore, 2013). The usual disclaimers apply.

2

Contents

1 Introduction 5
1.1 Using pyactr – people familiar with Python . 5
1.2 Using pyactr – beginners . 5
1.3 The structure of the book . 7

2 The ACT-R cognitive architecture and its pyactr implementation 9
2.1 Introduction . 9
2.2 Why do we care about ACT-R, and cognitive architectures and modeling in

general . 10
2.3 Knowledge in ACT-R . 12

2.3.1 Representing declarative knowledge: chunks 13
2.3.2 Representing procedural knowledge: productions 13

2.4 The basics of pyactr: declaring chunks . 14
2.5 Modules and buffers . 17
2.6 Writing productions in pyactr . 19
2.7 Running our first model . 22
2.8 Appendix: The agreement model . 25

3 The basics of syntactic parsing in ACT-R 27
3.1 Top-down parsing . 27
3.2 Building a top-down parser in pyactr . 29

3.2.1 Modules, buffers, and the lexicon . 30
3.2.2 Production rules . 32

3.3 Running the model . 37
3.4 Top-down parsing as an imperfect psycholinguistic model 41
3.5 Exercise: extending the grammar and the top-down parser 43
3.6 Appendix: The top-down parser . 43

4 Left-corner parsing with visual & motor interfaces 49
4.1 The environment in ACT-R: modeling lexical decision tasks 49

4.1.1 The visual module . 51
4.1.2 The motor module . 51

4.2 The lexical decision model: productions . 52
4.3 Running the lexical decision model and understanding the output 55

4.3.1 Visual processes in our lexical decision model 57
4.3.2 Manual processes in our lexical decision model 59

3

4 Contents

4.4 A left-corner parser with visual & motor interfaces 60
4.5 Appendix: The lexical decision model . 61

5 Brief introduction to Bayesian methods and pymc3 for linguists 65
5.1 Introduction . 65
5.2 The Python libraries we need . 66
5.3 The data . 67
5.4 Prior beliefs and the basics of pymc3, matplotlib and seaborn 68
5.5 Our model for generating the data (the likelihood) 72
5.6 Posterior beliefs: estimating the model parameters and answering the theoret-

ical question . 77
5.7 Conclusion . 80

6 Modeling linguistic performance 83
6.1 Introduction . 83
6.2 The power law of forgetting . 83
6.3 The base activation equation . 94
6.4 The attentional weighting equation . 99
6.5 Activation, probability of retrieval, and latency of retrieval 101
6.6 Modeling lexical decision tasks . 107

Chapter 1

Introduction

– overview of the book, intended audience, getting started (installation instructions etc.)

1.1 Using pyactr – people familiar with Python

If you are familiar with Python, you can install pyactr (the Python package that enables
ACT-R) and proceed to Chapter 2. pyactr is a Python 3 package and can be installed using
pip (for Python 3): type the command below in your terminal.

$ pip3 install pyactr 1

Alternatively, you can download the package here: https://github.com/jakdot/pyactr
and follow the instructions there to install the package.

If you are not familiar with Python, you should consider the steps below.

1.2 Using pyactr – beginners

pyactr is a package for Python 3. To get started, you should consider a web-based service
for Python3 like PythonAnywhere. In this type of services, computation is hosted on separate
servers and you don’t have to install anything on your computer (of course, you’ll need
Internet access). If you find you like working with Python and pyactr, you can install them
on your computer at a later point together with a good text editor for code – or install an
integrated desktop environment (IDE) for Python – a common choice is anaconda, which
comes with a variety of ways of working interactively with Python (IDE with Spyder as the
editor, ipython notebooks etc.). But none of this is required to run pyactr and the code in
this book.

a. Go to www.pythonanywhere.com and sign up there.

b. You’ll receive a confirmation e-mail. Confirm your account / e-mail address.

c. Log into your account on www.pythonanywhere.com.

5

https://github.com/jakdot/pyactr
www.pythonanywhere.com
www.pythonanywhere.com

6 Chapter 1. Introduction

d. You should see a window like the one below. Click on Bash (below “Start a new Con-
sole”).

Figure 1: Opening Bash in PythonAnywhere.

e. In Bash, type:

$ pip3 install --user pyactr 1

This will install pyactr in your Python account (not on your computer). The output of
this command should be similar to this:

Collecting pyactr 1

Downloading pyactr-0.1.9-py3-none-any.whl (50kB) 2

100% 3

Requirement already satisfied (use --upgrade to upgrade): 4

pyparsing in /usr/local/lib/python3.5/dist-packages (from pyactr) 5

Requirement already satisfied (use --upgrade to upgrade): 6

simpy in /usr/local/lib/python3.5/dist-packages (from pyactr) 7

Requirement already satisfied (use --upgrade to upgrade): 8

numpy in /usr/local/lib/python3.5/dist-packages (from pyactr) 9

Installing collected packages: pyactr 10

Successfully installed pyactr 11

f. Go back to Consoles. Start Python by clicking on any version higher than 3.2.

1.3. The structure of the book 7

g. A console should open. Type:

import pyactr 1

If no errors appear, you are set and can proceed to Chapter 2. You might get a warning
about the lack of tkinter support and that the simulation GUI is set to false:

~/.local/lib/python3.5/site-packages/pyactr/simulation.py:10: 1

UserWarning: Simulation cannot start a new window because tkinter 2

is not installed. You will have no GUI for environment. If you want 3

to change that, install tkinter. warnings.warn("Simulation cannot 4

start a new window because tkinter is not installed. You will have 5

no GUI for environment. If you want to change that, install tkinter.")6

~/.local/lib/python3.5/site-packages/pyactr/simulation.py:11: 7

UserWarning: Simulation GUI is set to False. 8

warnings.warn("Simulation GUI is set to False.") 9

Ignore it.

Throughout the book, we will introduce and discuss various ACT-R models coded in
Python. You can either type them in line by line or even better, load them as files in your
session on PythonAnywhere. Scripts are uploaded under the tab Files. You should be aware
that the free account of PythonAnywhere allows you to run only two consoles, and there is a
limit on the amount of CPU you might use per day. The limit should suffice for the tutorials
but if you find this too constraining, you should consider installing Python (Python3) and
pyactr on your computer and running scripts directly there.

1.3 The structure of the book

!!! Add here brief summary for the structure of the book.
Chapter 2 introduces the ACT-R cognitive framework, the Python 3 implementation we

will be using (pyactr) and ends with a basic ACT-R model for subject-verb agreement. Chap-
ter 3 introduces the basics of syntactic parsing in ACT-R. We build a top-down parser and
learn more about how we can closely examine intermediate results of pyactr simulations
to obtain detailed snapshots of the cognitive states our processing models predict. Chapter
4 introduces a psycholinguistically realistic model of syntactic parsing (left-corner parsing),
as well as vision and motor modules that enable our models of the human mind to inter-
act with the environment in the same way human participants do in actual psycholinguistic
experiments.

Chapter 5 introduces the ‘subsymbolic’ components needed to have a realistic model of
human declarative memory and provides end-to-end models for a variety of psycholinguis-
tic tasks – lexical decision, self-paced reading and eye-tracking – focusing exclusively on
the syntactic aspects of linguistic behavior in these tasks. The models are end-to-end in the
sense that they include explicit linguistic analyses together with a realistic model of declar-
ative memory and simple but reasonably realistic vision and motor modules. The chapter
also discusses how closely these models fit actual data.

The next chapters finally talk about semantics ...

8 Chapter 1. Introduction

Chapter 2

The ACT-R cognitive architecture and
its pyactr implementation

2.1 Introduction

Adaptive Control of Thought – Rational (ACT-R1) is a cognitive architecture: it is a theory
of the structure of the human mind/brain that explains and predicts human cognition. The
ACT-R theory has been implemented in several programming languages, including Java
(jACT-R, Java ACT-R), Swift (PRIM), Python2 (ccm). The canonical implementation has been
created and is maintained in Lisp.

In this book, we will use a novel Python3 implementation (pyactr). This implementation
is very close to the official implementation in Lisp, so once you learn it you should be able
to transfer your skills very quickly to code models in Lisp ACT-R if you wish to do that. At
the same time, Python is currently much more widespread than Lisp and has a much larger
and more diverse ecosystem of libraries, so coding parts that do not directly pertain to the
ACT-R model are much better supported and much easier than in Lisp – for example, data
manipulation/munging, statistical analysis, interactions with the operating system, display-
ing simulation results, incorporating them into tex / pdf documents etc.

Thus, we think pyactr is a better tool to learn ACT-R and cognitive modeling for lin-
guists: the programming language is likely more familiar and commonly used, and data col-
lection, piping, analysis and presentation as well as general software maintenance/enhancement
tasks are much more likely to have good off-the-shelf solutions that require minimal cus-
tomization. The tool will therefore stand less in the way of the task, so we can focus on
doing cognitive modeling for linguistic phenomena, evaluating our models and communi-
cating our results, rather than having to spend a significant amount of time on issues having
to do with the computational tools we need to achieve our modeling goals.

In addition to the convenience and ease of use that comes with Python, reimplementing
ACT-R in pyactr or, as we will sometimes do, implementing parts of ACT-R within Bayesian

1‘Control of thought’ is used here in a descriptive way, similar to the sense of ‘control’ in the notion of ‘control
flow’ in imperative programming languages: it determines the order in which programming statements (or
cognitive actions) are executed / evaluated, and thus captures essential properties of an algorithm and its specific
implementation in a program (or cognitive system). ‘Control of thought’ is definitely not used in a prescriptive
way roughly equivalent to ‘mind control’ / indoctrination.

9

10 Chapter 2. The ACT-R cognitive architecture and its pyactr implementation

pymc3 models (pymc3 is a Python3 library for Bayesian modeling; see chapters 5-6) also serves
to show that ACT-R is a mathematical theory of human cognition that stands on its own
independently of its specific software implementations. While this is well-understood in the
cognitive psychology community, it might not be self-evident to working linguists that ACT-
R’s empirical predictions are driven by general, formalized theoretical principles rather than
tweaking arcane features of a software package.

This book and the cognitive models we build and discuss are not intended as a com-
prehensive introduction and/or reference manual for ACT-R. To become acquainted with
ACT-R’s theoretical foundations in their full glory as well as its plethora of applications in
cognitive psychology, consider Anderson (1990); Anderson and Lebiere (1998); Anderson
et al. (2004); Anderson (2007) among others as well as the ACT-R website http://act-r.
psy.cmu.edu/.

The main goal of this book is to take a hands-on approach to introducing ACT-R by
constructing models that aim to solve linguistic problems. We will interleave theoretical
notes and pyactr code throughout the book. We will therefore often display python code and
its associated output in numbered examples and/or numbered blocks so that we can refer
to specific parts of the code and/or output and discuss them in more detail. For example,
when we want to discuss the code, we will display it like so:

(1) 2 + 2 == 4 1

3 + 2 == 6 2

Note the numbers on the far right – we can use them to refer to specific lines of code, e.g.:
the equality in (1), line 1 is true, while the equality in (1), line 2 is false. We will sometime
also include in-line Python code, displayed like this: 2 + 2 == 4.

Most of the time however, we will want to discuss both the code and its output and we
will display them in the same way they would appear in the interactive Python interpreter,
for example:

[py1] >>> 2 + 2 == 4 1

True 2

>>> 3 + 2 == 6 3

False 4

Once again, all lines are numbered (both the Python code and its output) so that we can
refer back to it.

Examples – whether formulas, linguistic examples, examples of code etc. – will be num-
bered as shown in (1) above. Blocks of python code meant to be run interactively, together
with their associated output, will be numbered separately, as shown in [py1] above.

2.2 Why do we care about ACT-R, and cognitive architectures and
modeling in general

Linguistics is part of the larger field of cognitive science. So the answer to the question
“Why do we care about ACT-R and cognitive architectures / modeling in general?” is one
that applies to cognitive sciences in general. Here is one recent formulation of what we

http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/

2.2. Why do we care about ACT-R, and cognitive architectures and modeling in general 11

take to be the right answer, taken from chapter 1 of Lewandowsky and Farrell (2010). That
chapter mounts an argument for process models as the proper scientific target to aim for
in the cognitive sciences – roughly, models of human language performance – rather than
characterization models – roughly, models of human language competence. Both process and
characterization models are better than simply descriptive models,

“whose sole purpose is to replace the intricacies of a full data set with a sim-
pler representation in terms of the model’s parameters. Although those models
themselves have no psychological content, they may well have compelling psy-
chological implications. [In contrast, both characterization and process models]
seek to illuminate the workings of the mind, rather than data, but do so to a
greatly varying extent. Models that characterize processes identify and measure
cognitive stages, but they are neutral with respect to the exact mechanics of those
stages. [Process] models, by contrast, describe all cognitive processes in great
detail and leave nothing within their scope unspecified.

Other distinctions between models are possible and have been proposed [. . .],
and we make no claim that our classification is better than other accounts. Un-
like other accounts, however, our three classes of models [descriptive, character-
ization and process models] map into three distinct tasks that confront cognitive
scientists. Do we want to describe data? Do we want to identify and characterize
broad stages of processing? Do we want to explain how exactly a set of postulated
cognitive processes interact to produce the behavior of interest?” (Lewandowsky
and Farrell, 2010, 25)

The advantages and disadvantages of process (performance) models relative to charac-
terization (competence) models can be summarized as follows:

“Like characterization models, [the power of process models] rests on hypothet-
ical cognitive constructs, but [they provide] a detailed explanation of those con-
structs [. . .] One might wonder why not every model belongs to this class. After
all, if one can specify a process, why not do that rather than just identify and
characterize it? The answer is twofold.

First, it is not always possible to specify a presumed process at the level of de-
tail required for [a process] model [. . .] Second, there are cases in which a coarse
characterization may be preferable to a detailed specification. For example, it is
vastly more important for a weatherman to know whether it is raining or snow-
ing, rather than being confronted with the exact details of the water molecules’
Brownian motion.

Likewise, in psychology [and linguistics!], modeling at this level has allowed the-
orists to identify common principles across seemingly disparate areas. That said,
we believe that in most instances, cognitive scientists would ultimately prefer
an explanatory process model over mere characterization.” (Lewandowsky and
Farrell, 2010, 19)

However, there is a more basic reason why generative linguists should consider process
/ performance models in addition to and at the same time as characterization / competence

12 Chapter 2. The ACT-R cognitive architecture and its pyactr implementation

models. The reason is that a priori, we cannot know whether the best analysis of a linguistic
phenomenon is exclusively a matter of competence or performance or both, in much the
same way that we do not know in advance whether certain phenomena are best analyzed in
syntactic terms or semantic terms or both.2 Such determinations can only be done a posteriori:
a variety of accounts need to be devised first, instantiating various points on the competence-
performance theoretical spectrum; once specified in sufficient detail, the accounts can be
empirically and methodologically evaluated in systematic ways. Our goal in this book is to
provide a framework for building process models, i.e., integrated competence-performance
theories, for generative linguistics in general and formal semantics in particular.

Characterization / competence models have been the focus of linguistic theorizing over
the 60 years in which the field of generative linguistics matured, and will rightly continue
to be one of its main foci for the foreseeable future. However, we believe that the field
of generative linguistics in general – and formal semantics in particular – is now mature
enough to start considering process / performance models in a more systematic fashion.

Our main goal for this book is to enable semanticists to productively engage with perfor-
mance questions related to the linguistic phenomena they investigate. We do this by making
it possible and relatively easy for semanticists, and generative linguists in general, to build
integrated competence/performance linguistic models of semantic phenomena that formal-
ize explicit (quantitative) connections between theoretical constructs and experimental data.
Our book should also be of interest to cognitive scientists other than linguists interested to
see more ways in which contemporary generative linguistic theorizing can contribute back
to the broader field of cognitive science.

2.3 Knowledge in ACT-R

There are two types of knowledge in ACT-R: declarative knowledge and procedural knowl-
edge (see also Newell 1990).

The declarative knowledge represents our knowledge of facts. For example, if one knows
what the capital of the Netherlands is, this would be represented in one’s declarative knowl-
edge.

Procedural knowledge is knowledge that we display in our behavior (cf. Newell 1973).
It is often the case that our procedural knowledge is internalized, we are aware that we have
it but we would be hard pressed to explicitly and precisely describe it. Driving, swimming,
riding a bicycle are examples of procedural knowledge. Almost all people who can drive
/ swim / ride a bicycle do so in an automatic way. They are able to do it but they might
completely fail to describe how exactly they do it when asked. This distinction is closely
related to the distinction between explicit (‘know that’) and implicit (‘know how’) knowledge
in analytical philosophy (Ryle 1949; Polanyi 1967; see also Davies 2001 and references therein
for more recent discussions).

ACT-R represents these two types of knowledge in two very different ways. The declar-
ative knowledge is instantiated in chunks. The procedural knowledge is instantiated in pro-
duction rules, or productions for short.

2We selected syntax and semantics only as a convenient example, since issues at the syntax/semantics inter-
face are by now a staple of generative linguistics. Any other linguistic subdisciplines and their interfaces, e.g.,
phonology or pragmatics, would serve equally well to make the same point.

2.3. Knowledge in ACT-R 13

2.3.1 Representing declarative knowledge: chunks

Chunks are lists of attribute-value pairs, familiar to linguists acquainted with feature-based
phrase structure grammars (e.g., GPSG, HPSG or LFG – INSERT REFERENCES HERE).
However, in ACT-R, we use the term slot instead of attribute. For example, we might think
of one’s knowledge of the word carLexeme as a chunk of type WORD with the value /kar/ for
the slot phonology, the value JcarK for the slot meaning, the value noun for the slot category and
the value sg (singular) for the slot number. This is represented in (2) below:

(2) WORD/kar/ JcarK

noun

sg

PHONOLOGY MEANING

CATEGORY

NUMBER

The slot values are the primitive elements /kar/, JcarLexemeK, noun and sg, respectively.
Chunks (complex, non-primitive elements) are boxed, whereas primitive elements are sim-
ple text. A simple arrow () signifies that the chunk at the start of the arrow has the value
at the end of the arrow in the slot with the name that labels the arrow.

The graph representation in (2) will be useful when we introduce activations and more
generally, ACT-R subsymbolic components (see Chapter 6). The same chunk can be repre-
sented as an attribute-value matrix (AVM), which is much more familiar to linguists. We will
overwhelmingly use AVM representations like the one in (3) from now on.

(3)

WORD

PHONOLOGY: /kar/
MEANING: JcarK
CATEGORY: noun
NUMBER: sg

2.3.2 Representing procedural knowledge: productions

A production is an if -statement. It describes an action that takes place if the if ‘part’ (the
antecedent clause) is satisfied; this is why we think of such productions / conditionals as
〈precondition, action〉 pairs. For example, agreement on a verb can be (abstractly) expressed
as follows: if the subject number in the sentence currently under construction is sg (precon-
dition), then check that the verb number in the sentence is sg (action). Of course, this is only
half of the story – another production rule would state a similar 〈precondition, action〉 pair
for pl number. Thus, the basic idea behind production rules is that the if ‘part’ specifies pre-
conditions and if these preconditions are true, the action specified in the ‘then’ part of the
rule is triggered.

Having two rules to specify subject-verb agreement – as we suggested in the previous
paragraph – might seem like a cumbersome way of specifying agreement that misses an

14 Chapter 2. The ACT-R cognitive architecture and its pyactr implementation

important generalization: the two rules are really just one agreement rule with two distinct
values for the number morphology. Could we then just state that the verb should have
the same number specification as the subject? ACT-R allows us to state just that if we use
variables.

A variable is assigned a value in the precondition part of a production and it has that
same value in the action part, i.e., the scope of any variable assignment is the production
rule in which that assignment happens. Given this scope specification for variable assign-
ments, and employing the ACT-R convention that variable names are preceded by ‘=’, we
can reformulate our agreement rule as follows: if the subject number in the sentence cur-
rently under construction is =x, then check that the number specification on the (main) verb
of the sentence is also =x.

2.4 The basics of pyactr: declaring chunks

We introduce the remainder of the ACT-R architecture by discussing its implementation in
pyactr. In this section, we describe the details of declarative knowledge in ACT-R and the
implementation of those details in pyactr. We will then turn to a discussion of modules and
buffers, which are the building blocks of the mind in ACT-R (section §2.5). After this, we can
finally turn to the second type of knowledge in ACT-R: procedural knowledge / productions
(section §2.6).

To use pyactr, we have to import the relevant package:

[py2] >>> import pyactr as actr 1

We use the as keyword so that every time we use methods (functions), classes etc. from
the pyactr package, we can access them by simply invoking actr instead of the longer
pyactr.

Chunks / feature structures are typed (see Carpenter 1992 for an in-depth discussion of
typed feature structures): before introducing a specific chunk, we need to specify a chunk
type and all the slots / attributes of that chunk type. This is just good housekeeping: by
first declaring a type and the attributes associated with that type, we are clear from the start
about what kind of objects we take declarative memory to store.

Let’s create a chunk type that will encode how our lexical knowledge is stored. We don’t
strive here for a linguistically realistic theory of lexical representations, we just want to get
things off the ground and show the inner workings of ACT-R and pyactr:

[py3] >>> actr.chunktype("word", "phonology, meaning, category, number") 1

The function, a.k.a. method, chunktype creates a type word with four slots: phonology,
meaning, category, number. The type name, provided as a character string "word", is the first
argument of the function. The list of slots, with the slots separated by commas, is the second
argument. After declaring a type, we can create chunks of that type, e.g., a chunk that will
encode our lexical knowledge about the noun car.

[py4] >>> carLexeme = actr.makechunk(nameofchunk="car",\ 1

... typename="word",\ 2

2.4. The basics of pyactr: declaring chunks 15

... phonology="/kar/",\ 3

... meaning="[[car]]",\ 4

... category="noun",\ 5

... number="sg") 6

>>> print(carLexeme) 7

word(category= noun, meaning= [[car]], number= sg, phonology= /kar/) 8

The chunk is created using the method makechunk, which has two required arguments:
nameofchunk, provided on line 1 in [py4], and typename (line 2). Other than these two slots
(with their corresponding values), the chunk consists of whatever slot-value pairs we need
it to contain – and they are specified as shown on lines 3-6 in [py4]. In general, we do not
have to specify all the slots that a chunk of a particular type should have; the unspecified
slots will be empty. If you want to inspect a chunk, you can print it – as shown on line 7 in
[py4]. Note that the order of the slot-value pairs is different from the one we used when we
declared the chunk: for example, we defined phonology first (line 3), but that slot appears
last in the output on line 8. This is because chunks are unordered lists of slot-value pairs,
and Python assumes an arbitrary (alphabetic) ordering when printing chunks.

Specifying chunk types is optional. In fact, the information contained in the chunk type
is relevant for pyactr, but it has no theoretical significance in ACT-R – it is just ‘syntactic
sugar’. However, it is recommended to always declare a chunk type before instantiating a
chunk of that type: declaring types clarifies what kind of AVMs are needed in our model and
establishes a correspondence between the phenomena and generalizations we are trying to
model and the computational model itself. For this reason, if we don’t specify a chunk type
before declaring a chunk of that type, pyactr will print a warning message. Among other
things, this helps us debug our code – e.g., if we accidentally mistype and declare a chunk
of type "morphreme" instead of the "morpheme" type we previously declared, we would get a
warning message that a new chunk type has been created. We will not display warnings in
the code output for the remainder of the book.3

It is also recommended that you only use attributes already defined in your chunk type
declaration – or when you first used a chunk of a particular type. However, you can always
add new attributes along the way if you need to: pyactr will assume that all the previously
declared chunks of the same type had no value for those attributes. For example, imagine we
realize half-way through our modeling session that it would be useful to specify what syn-
tactic function a word has. We didn’t have that slot in our carLexeme chunk. So let’s create
a new chunk carLexeme2, which is like carLexeme except it adds this extra piece of informa-
tion in the slot synfunction. We will assume that the synfunction value of carLexeme2 is
subject, as shown on line 7 in [py5]:

[py5] >>> carLexeme2 = actr.makechunk(nameofchunk="car2",\ 1

... typename="word",\ 2

... phonology="/kar/",\ 3

... meaning="[[car]]",\ 4

... category="noun",\ 5

... number="sg",\ 6

... synfunction="subject") 7

3See the pyactr and Python3 documentation for more on warnings.

16 Chapter 2. The ACT-R cognitive architecture and its pyactr implementation

>>> print(carLexeme2) 8

word(category= noun, meaning= [[car]], number= sg, phonology= /kar/, 9

synfunction= subject) 10

The command goes through successfully, as shown by the fact that we can print carLexeme2),
but a warning message is issued (not displayed above): UserWarning: Chunk type word
is extended with new attributes.

Another, more intuitive way of specifying a chunk uses the method chunkstring. When
declaring chunks with chunkstring, the chunk type is provided as the value of the isa at-
tribute. The rest of the 〈slot, value〉 pairs are listed immediately after that, separated by
commas. A 〈slot, value〉 pair is specified by separating the slot and value with a blank space.

[py6] >>> carLexeme3 = actr.chunkstring(string=""" 1

... isa word 2

... phonology '/kar/' 3

... meaning '[[car]]' 4

... category 'noun' 5

... number 'sg' 6

... synfunction 'subject'""") 7

>>> print(carLexeme3) 8

word(category= noun, meaning= [[car]], number= sg, phonology= /kar/, 9

synfunction= subject) 10

The method chunkstring provides the same functionality as makechunk. The argument
string defines what the chunk consists of. The slot-value pairs are written as a plain string.
Note that we use three quotation marks rather than one to provide the chunk string. These
signal to Python that the string can appear on more than one line. The first slot-value pair
([py6], line 2) is special – it specifies the type of the chunk, and a special slot is used for this,
isa. The resulting chunk is identical to the previous one: we print the chunk and the result
listed on lines 9-10 of [py6] is the same as before.

Defining chunks as feature structures / AVMs induces a natural notion of identity and
information-based ordering over the space of all chunks. A chunk is identical to another
chunk if and only if (iff) they have the same attributes and the same values for those at-
tributes. A chunk is a part of (less informative than) another chunk if the latter includes
all the 〈slot, value〉 pairs of the former and possibly more. The pyactr library overloads
standard comparison operators for these tasks, as shown below:

[py7] >>> carLexeme2 == carLexeme3 1

True 2

>>> carLexeme == carLexeme2 3

False 4

>>> carLexeme <= carLexeme2 5

True 6

>>> carLexeme < carLexeme2 7

True 8

>>> carLexeme2 < carLexeme 9

False 10

2.5. Modules and buffers 17

Note that chunk types are irrelevant for deciding identity or part-of relations. This might
be counter-intuitive, but it’s an essential feature of ACT-R: chunk types are ‘syntactic sugar’,
useful only for the human modeler. This means that if we define a new chunk type that
happens to have the same slots as another chunk type, chunks of one type might be identical
to or part of chunks of the other type:

[py8] >>> actr.chunktype("syncat", "category") 1

>>> noun = actr.makechunk(nameofchunk="noun", 2

... typename="syncat", 3

... category="noun") 4

>>> noun < carLexeme 5

True 6

>>> noun < carLexeme2 7

True 8

This way of defining chunk identity is a direct expression of ACT-R’s hypothesis that
the human declarative memory is content-addressable memory: the only way we have to
retrieve a chunk is by means of its slot-value content. Chunks are not indexed in any way
and cannot be accessed via their index / memory address: the only way to access a chunk is
by specifying a cue / pattern, which is a slot-value pair or a set of such pairs, and retrieving
chunks that conform to that pattern, i.e., that are subsumed by it.4

2.5 Modules and buffers

Chunks do not live in a vacuum, they are always part of an ACT-R mental architecture.
The ACT-R building blocks for the human mind are modules and buffers. Each module in
ACT-R serves a different mental function. But these modules cannot be accessed or updated
directly: input/output operations associated with a module are always mediated by a buffer
– and each module comes equipped with one such buffer (think of it as the input/output
interface for that mental module).

A buffer has a limited throughput capacity: at any given time, it can carry only one
chunk. For example, the declarative memory module can only be accessed via the retrieval
buffer. And while the memory module supports massively parallel processes – basically
all chunks can be simultaneously checked against a pattern / cue, the module can only be
accessed serially by placing one cue at a time in its associated retrieval buffer. This is a typical
example of how the ACT-R architecture captures actual cognitive behavior by combining
serial and parallel components in specific ways.

For ACT-R, the human mind is a system of modules and associated buffers within and
across which chunks are stored and transacted. This flow of information is driven by pro-
ductions: ACT-R is a production-system based cognitive architecture. Basically, productions

4A feature structure, a.k.a. chunk, C1 subsumes another chunk C2 iff all the information that is contained in
C1 is also contained in C2. Basically, if C1 is atomic / primitive, e.g., the number value sg, then C1 subsumes C2 iff
C2 is also atomic / primitive with the same atom. If C1 is complex, i.e., it is a set of slot-value pairs, C1 subsumes
C2 iff all the slots in the domain of C1 are also in the domain of C2, and for each of the slots in the domain of C1,
the value of that slot subsumes the value of the corresponding slot in C2.

18 Chapter 2. The ACT-R cognitive architecture and its pyactr implementation

are stored in procedural memory while chunks are stored in declarative memory. The archi-
tecture is more complex than that, but in this chapter we will be concerned with only these
two major components of the ACT-R architecture for the human mind: procedural memory
and declarative memory.

As we already mentioned, procedural memory stores productions. Procedural memory
is technically speaking a module, but it is the core / control module for human cognition so
it does not have to be explicitly declared because is always assumed to be part of any men-
tal architecture. The buffer associated with the procedural module is the goal buffer. This
reflects the ACT-R view of human higher cognition as fundamentally goal-driven cognitive.
Similarly, declarative memory is a module, and it stores chunks. The buffer associated with
the declarative memory module is called the retrieval buffer.

Let’s build a mind. The first thing we need to do is to create a container for the mind,
which in pyactr terminology is a model:

[py9] >>> agreement = actr.ACTRModel() 1

The mind we intend to build is simply supposed to check for number agreement between
the main verb and subject of a sentence, hence the name of our ACT-R model in [py9] above.
We can now start fleshing out the anatomy and physiology of this very simple agreeing
mind. That is, we will add information about modules, buffers, chunks and productions.

As mentioned above, any ACT-R model has a procedural memory module, but for con-
venience it also comes equipped by default with a declarative memory module and the goal
and retrieval buffers. When initialized, these buffers/modules are empty. We can check that
for declarative memory, for example:

[py10] >>> agreement.decmem 1

{} 2

decmem is an attribute of our agreement ACT-R model, and it stores the declarative mem-
ory module. The retrieval and goal attributes store the retrieval and the goal buffer, re-
spectively.

[py11] >>> agreement.goal 1

set() 2

>>> agreement.retrieval 3

set() 4

It is convenient to have a shorter alias for the declarative memory module, so we intro-
duce a new variable dm and assign it the decmem module:

[py12] >>> dm = agreement.decmem 1

We might want to add a chunk to our declarative memory, e.g., our carLexeme2 chunk.
We add chunks by invoking the add method associated with the declarative memory module;
the argument of this function call is the chunk that should be added:

2.6. Writing productions in pyactr 19

[py13] >>> dm.add(carLexeme2) 1

>>> print(dm) 2

{word(category= noun, meaning= [[car]], number= sg, phonology= /kar/, 3

synfunction= subject): array([0.])} 4

Note that when we inspect dm, we can see the chunk we just added. The chunk-encoding
time is also recorded – this is the simulation time at which the chunk was added to declara-
tive memory. We have not yet run the model / started the model simulation, so that time is
0 (line 4 of [py13]).

2.6 Writing productions in pyactr

Recall that productions are essentially conditionals (if -statements), with the preconditions
that need to be satisfied listed in the antecedent of the conditional and the action that is
triggered if the preconditions are satisfied listed in the consequent. Thus, productions have
two parts: the preconditions that precede the double arrow (==>) and the actions that follow
the arrow.

Let’s add some productions to our model to simulate a basic form of verb agreement.5

Our model of subject-verb agreement will be very elementary, but the point is learning how
to assemble the basic architecture of the model / mind rather than building a realistic pro-
cessing model of this linguistic phenomenon. We restrict ourselves to agreement in number
for 3rd person present tense verbs. We make no attempt to model syntactic parsing, we will
just assume that our declarative memory stores the subject of the clause and the current verb
is already present in the goal buffer, where it is being actively assembled/specified.

What should our agreement model do? One production should state that if the goal
buffer has a chunk of category ‘verb’ in it and the current task is to agree, then the subject
should be retrieved. The second production should state that if the number specification on
the subject in the retrieval buffer is =x, then the number of the verb in the goal buffer should
also be =x (recall that the = sign before a string indicates that the string is the name of a
variable). The third rule should say that if the verb is assigned a number, the task is done.

Let’s start with the first production: noun retrieval. As shown in [py14], line 1 below,
we give the production a descriptive name "retrieve" that will make the simulation out-
put more readable. In general, productions are created by the method productionstring
associated with our ACT-R model, and they have two arguments (there is actually a third ar-
gument; more on that later): name, the name of the production, and string, which provides
the actual content of the production.

[py14] >>> agreement.productionstring(name="retrieve", string=""" 1

... =g> 2

... isa goal_lexeme 3

... category 'verb' 4

... task agree 5

... ?retrieval> 6

... buffer empty 7

5The full model is provided in the appendix to this chapter.

20 Chapter 2. The ACT-R cognitive architecture and its pyactr implementation

... ==> 8

... =g> 9

... isa goal_lexeme 10

... task trigger_agreement 11

... category 'verb' 12

... +retrieval> 13

... isa word 14

... category 'noun' 15

... synfunction 'subject' 16

... """) 17

{'=g': goal_lexeme(category= verb, task= agree), '?retrieval': {'buffer': 18

'empty'}} 19

==> 20

{'=g': goal_lexeme(category= verb, task= trigger_agreement), '+retrieval': 21

word(category= noun, meaning= , number= , phonology= , synfunction= 22

subject)} 23

The preconditions (left hand side of the rule / antecedent of the conditional) and the
actions (right hand side of the rule / consequent of the conditional) are separated by ==> –
see line 8 of [py14] above. The rule has two preconditions. The first one starts on line 2:
=g> indicates that this precondition will check that the chunk currently stored in the goal
buffer (that’s what g encodes) is (that’s what = encodes) of a particular kind: the chunk has
to be a goal_lexeme (line 3) of category 'verb' (line 4), and the current task for this lexeme
should be agree (line 5). The second precondition starts on line 6: ?retrieval> indicates
that this precondition will check whether the retrieval buffer is in a certain state (that’s
what ? encodes). The state is specified on line 7: the retrieval buffer needs to be empty (no
chunk should be stored there).

In general, we can check for a variety of states that buffers could be in. For exam-
ple: '?g> buffer full' checks whether the goal buffer is full (whether it carries a chunk);
'?retrieval> state busy' checks if the retrieval buffer is working on retrieving a chunk;
and '?retrieval> state error' checks if the last retrieval has failed (no chunk has been
found).

If these two preconditions are met, the rule triggers two actions. The first action is stated
starting on line 9 of [py14]: we modify the goal_lexeme chunk by changing the current task
from agree to trigger_agreement. When such a feature-value update takes place, the other
features of the updated chunk – here, the goal_lexeme chunk – remain the same.

The triggered agreement on the goal_lexeme chunk needs to identify a subject noun so
that it can agree with that noun in number, which leads us to the second action. This action is
stated starting on line 13: +retrieval> indicates that we access the retrieval buffer (recall
that we just verified that this buffer is empty) and we add a new chunk to it (that’s what
+ means). This chunk is our memory cue / query: we want to retrieve from declarative
memory a chunk of type word that is a 'noun' and a 'subject'.6

Memory cues always consist of chunks, i.e., feature structures, and the retrieval process

6Strictly speaking, it is not necessary to ensure that the retrieval buffer is empty before placing a retrieval
request. The model would have worked just as well if the retrieval buffer had been non-empty – the buffer
would just be flushed/emptied first, and the memory cue would then be placed in it.

2.6. Writing productions in pyactr 21

asks the declarative memory module to provide a larger chunk that the cue chunk is a part
of (technically, a chunk in declarative memory that is subsumed by our cue chunk). In our
specific case, the cue requests the retrieval of a chunk that has at least the following 〈slot,
value〉 pairs: the chunk should be of type word, its category should be 'noun' and its syntac-
tic category should be 'subject'.

We are now in a state in which a subject noun will be retrieved from declarative memory
and placed in the retrieval buffer, and the goal lexeme is in an ‘active’ state of triggered
agreement. The second production rule performs the agreement:

[py15] >>> agreement.productionstring(name="agree", string=""" 1

... =g> 2

... isa goal_lexeme 3

... task trigger_agreement 4

... category 'verb' 5

... =retrieval> 6

... isa word 7

... category 'noun' 8

... synfunction 'subject' 9

... number =x 10

... ==> 11

... =g> 12

... isa goal_lexeme 13

... category 'verb' 14

... number =x 15

... task done 16

... """) 17

{'=g': goal_lexeme(category= verb, task= trigger_agreement), '=retrieval': 18

word(category= noun, meaning= , number= =x, phonology= , synfunction= 19

subject)} 20

==> 21

{'=g': goal_lexeme(category= verb, number= =x, task= done)} 22

The two preconditions of the rule in [py15] above ensure that we are in the correct state:

• lines 2-5: the chunk in the goal buffer is (=) a goal_lexeme of category 'verb' that is in
an active state of agreeing (the current task is trigger_agreement)

• lines 6-10: the chunk in the retrieval buffer is (=) a word of category 'noun' that is a
'subject' and that has a number specification =x (more precisely: take that number
specification and assign it to the variable =x)

After checking that we are in the correct state, we trigger the agreeing action: lines 12-16
in [py15] tell us that the chunk that is currently in the goal buffer should be maintained there
(that’s what = on line 12 encodes) and its feature structure should be updated as follows:
the type and category should stay the same (goal_lexeme and 'verb', respectively), but a
new number specification should be added, namely =x, which is the same number specifica-
tion as the one for the subject noun we have retrieved from declarative memory. Since this

22 Chapter 2. The ACT-R cognitive architecture and its pyactr implementation

completes the agreement operation, the task slot of the agreeing goal lexeme should also be
updated and marked as done.

The third and final production rule just mops things up: we are done, so the goal buffer
is flushed and our simulation can end. The action on line 6 in [py16], namely ~g>, simply
discards the chunk present in the goal buffer.

[py16] >>> agreement.productionstring(name="done", string=""" 1

... =g> 2

... isa goal_lexeme 3

... task done 4

... ==> 5

... ~g> 6

... """) 7

{'=g': goal_lexeme(category= , number= , task= done)} 8

==> 9

{'~g': None} 10

2.7 Running our first model

To start running the agreement model, we just have to add an appropriate chunk to the goal
buffer. Recall that the ACT-R view of higher cognition is that it is goal-driven: if there is no
goal, no productions will fire and the mind will not change state. We do this in [py17] below:
we first declare our goal_lexeme type (line 1 in [py17]) and then add one such chunk to the
goal buffer (lines 2-6; chunk are always added to buffers / modules using the method add).
We check that the chunk has been added to the goal buffer by printing its contents (line 7);
note that the number specification on line 8 is empty.

[py17] >>> actr.chunktype("goal_lexeme", "task, category, number") 1

>>> agreement.goal.add(actr.chunkstring(string=""" 2

... isa goal_lexeme 3

... task agree 4

... category 'verb' 5

... """)) 6

>>> agreement.goal 7

{goal_lexeme(category= verb, number= , task= agree)} 8

We can now run the model by invoking the simulation method (with no arguments),
as shown in [py18], line 1 below. This takes the model specification and initializes various
parameters as dictated by the model (e.g., simulation start time). We can then execute one
run of the simulation, as shown on line 2 in [py18].

[py18] >>> agreement_sim = agreement.simulation() 1

>>> agreement_sim.run() 2

(0, 'PROCEDURAL', 'CONFLICT RESOLUTION') 3

(0, 'PROCEDURAL', 'RULE SELECTED: retrieve') 4

(0.05, 'PROCEDURAL', 'RULE FIRED: retrieve') 5

2.7. Running our first model 23

(0.05, 'g', 'MODIFIED') 6

(0.05, 'retrieval', 'START RETRIEVAL') 7

(0.05, 'PROCEDURAL', 'CONFLICT RESOLUTION') 8

(0.05, 'PROCEDURAL', 'NO RULE FOUND') 9

(0.1, 'retrieval', 'CLEARED') 10

(0.1, 'retrieval', 'RETRIEVED: word(category= noun, meaning= [[car]], 11

number= sg, phonology= /kar/, synfunction= subject)') 12

(0.1, 'PROCEDURAL', 'CONFLICT RESOLUTION') 13

(0.1, 'PROCEDURAL', 'RULE SELECTED: agree') 14

(0.15, 'PROCEDURAL', 'RULE FIRED: agree') 15

(0.15, 'g', 'MODIFIED') 16

(0.15, 'PROCEDURAL', 'CONFLICT RESOLUTION') 17

(0.15, 'PROCEDURAL', 'RULE SELECTED: done') 18

(0.2, 'PROCEDURAL', 'RULE FIRED: done') 19

(0.2, 'g', 'CLEARED') 20

(0.2, 'PROCEDURAL', 'CONFLICT RESOLUTION') 21

(0.2, 'PROCEDURAL', 'NO RULE FOUND') 22

The output of the run() command is the temporal trace of our model simulation. Each
line specifies three elements: (i) simulation time (in seconds); (ii) the module (name in upper-
case letters) or buffer (name in lower-case letters) that is affected; and finally (iii) a descrip-
tion of what is happening to the module. Every cognitive step in the model takes by default
50 ms, i.e., 0.05 seconds – this is the ACT-R default time for an elementary cognitive opera-
tion.

The first line of our temporal trace (line 3 in [py18]) states that conflict resolution is taking
place in the procedural memory module, i.e., the module where all the production rules
reside. This happens at simulation time 0. The main function of ‘conflict resolution’ is to
examine the current state of the mind (basically, the state of the buffers in our model) and to
determine if any production rule can apply, i.e., if the current state of the mind satisfies the
preconditions of any production rule. If the preconditions of multiple rules are satisfied, we
have a conflict because only one production rule can fire at any given time. In that case, we
need to select one rule (‘resolve the conflict’).

Note how ACT-R once again combines serial and parallel components to capture actual
cognitive behavior. Checking if the current state of the mind satisfies the conditions of any
rule is a massively parallel process: all rules are simultaneously and very quickly (instanta-
neously) checked. But rule firing is serial: at any given point in the cognitive process, only
one rule can fire / apply. This is parallel to the interaction between the parallel computations
in the declarative memory module (all chunks are simultaneously checked against a pattern
/ cue) and the serial way in which retrieval cues can be placed in the retrieval buffer (one at
a time).

‘Conflict resolution’ is particularly simple in the present case. Given the state of the goal
and retrieval buffers, only one rule can apply: our first production rule, which we named
retrieve in [py14] above. Line 4 in [py18] shows that the retrieve rule is selected at time
0. The rule fires, and this takes the ACT-R default time of 50 ms, as shown on line 5. The
state of our mind has changed as a consequence of this rule firing, and the subsequent lines
in the output report on that new state: the goal buffer has been modified (line 6; the goal

24 Chapter 2. The ACT-R cognitive architecture and its pyactr implementation

lexeme has entered the active trigger_agreement state) and the retrieval buffer has started
a memory retrieval procedure (line 7), which will take time to complete.

Now that the retrieve rule has fired, the procedural module enters a ‘conflict resolution’
state again and looks for production rules to apply (line 8). The current state of the mind (i.e.,
the buffer state) does not satisfy the preconditions of any rule, so none is fired (line 9).

However, a memory retrieval process has been started and is completed 50 ms later, i.e.,
at the next simulation time of 100 ms. Retrieval time is set to a default value of 50 ms here,
but ACT-R specifies in great detail how memory behaves, and makes clear predictions about
retrieval accuracy and retrieval latency. This is discussed in detail in chapter 6, but we want
to keep our first model simple so we use the default 50 ms retrieval time here.

At the 100 ms point, the memory retrieval process has been completed and the retrieval
buffer is cleared (line 10) so that the newly retrieved chunk can be placed there (lines 11-12).

The mind is now in a new state since the buffer contents have changed, so the procedural
module reenters a ‘conflict resolution’ state of rule collection & rule selection (line 13). This
time, the resolution process identifies one rule that can fire (line 14), namely the second
production rule we discussed in [py15] above and which we named agree.

The agree rule takes 50 ms to fire (line 15 of [py18]), so we are now at 150 ms in simulation
time. As a consequence of the agree rule, the chunk in the goal buffer has been modified (line
16): its number specification has been updated so that it is now the same number as the noun
chunk in the retrieval buffer.

Agreement has been performed, so the third and final production rule is selected (lines
17-18). The rule takes 50 ms to fire (line 19), so at time 0.2 s, the goal buffer is cleared (line
20), and no further rule can apply (lines 21-22).

When the goal buffer is cleared, the information stored in it does not disappear. The ACT-
R architecture specifies that the cleared information is automatically transferred to declara-
tive memory. The intuition behind this is that our past accomplished goals, i.e., the results
of our past successful cognitive processes, become our present (newly acquired) memory
facts. This is also the case in pyactr. We can inspect the final state of the declarative memory
module to see that it stores the cleared goal-buffer chunk:

[py19] >>> dm 1

{goal_lexeme(category= verb, number= sg, task= done): array([0.2]), 2

word(category= noun, meaning= [[car]], number= sg, phonology= /kar/, 3

synfunction= subject): array([0.])} 4

Note that this newly added chunk is time-stamped with the simulation time at which the
goal buffer was cleared (0.2 s).

And that’s it. At its core, ACT-R provides a fairly simple framework for building process
models that is accessible to generative linguists because it is production, a.k.a. rule, based
and manipulates feature structures of a familiar kind.

To be sure, our first model and the introduction to ACT-R and pyactr in this chapter are
overly simplistic in many ways. But the main point is that we can now start building explicit
and more realistic computational models for linguistic processes and behaviors.

Our development of integrated competence-performance theories for linguistic phenom-
ena is now at a stage similar to that point in a formal semantics intro course where the se-
mantics for classical first order logic (FOL) has been introduced. FOL semantics is in many

2.8. Appendix: The agreement model 25

ways an overly simplistic model for natural language semantics, but it provides the basic
structure that more realistic theories of natural language interpretation (in the Montagovian
tradition) can build on.

2.8 Appendix: The agreement model

File ch2_agreement.py:

""" 1

A basic model that simulates subject-verb agreement. 2

We abstract away from syntactic parsing, among other things. 3

""" 4

5

import pyactr as actr 6

import random 7

8

actr.chunktype("word", "phonology, meaning, category, number, syncat") 9

actr.chunktype("goal_lexeme", "task, category, number") 10

11

carLexeme = actr.makechunk(12

nameofchunk="car", 13

typename="word", 14

phonology="/ka:/", 15

meaning="[[car]]", 16

category="noun", 17

number="sg", 18

syncat="subject") 19

20

agreement = actr.ACTRModel() 21

22

dm = agreement.decmem 23

dm.add(carLexeme) 24

25

agreement.goal.add(actr.chunkstring(string=""" 26

isa goal_lexeme 27

task agree 28

category 'verb'""")) 29

30

agreement.productionstring(name="retrieve", string=""" 31

=g> 32

isa goal_lexeme 33

category 'verb' 34

task agree 35

?retrieval> 36

buffer empty 37

==> 38

26 Chapter 2. The ACT-R cognitive architecture and its pyactr implementation

=g> 39

isa goal_lexeme 40

task trigger_agreement 41

category 'verb' 42

+retrieval> 43

isa word 44

category 'noun' 45

syncat 'subject' 46

""") 47

48

agreement.productionstring(name="agree", string=""" 49

=g> 50

isa goal_lexeme 51

task trigger_agreement 52

category 'verb' 53

=retrieval> 54

isa word 55

category 'noun' 56

syncat 'subject' 57

number =x 58

==> 59

=g> 60

isa goal_lexeme 61

task done 62

category 'verb' 63

number =x 64

""") 65

66

agreement.productionstring(name="done", string=""" 67

=g> 68

isa goal_lexeme 69

task done 70

category 'verb' 71

number =x 72

==> 73

~g>""") 74

75

if __name__ == "__main__": 76

agreement_sim = agreement.simulation() 77

agreement_sim.run() 78

print("\nDeclarative memory at the end of the simulation:") 79

print(dm) 80

