Edit on GitHub

Expressions

Every AST node in SQLGlot is represented by a subclass of Expression.

This module contains the implementation of all supported Expression types. Additionally, it exposes a number of helper functions, which are mainly used to programmatically build SQL expressions, such as select.


   1"""
   2## Expressions
   3
   4Every AST node in SQLGlot is represented by a subclass of `Expression`.
   5
   6This module contains the implementation of all supported `Expression` types. Additionally,
   7it exposes a number of helper functions, which are mainly used to programmatically build
   8SQL expressions, such as `sqlglot.expressions.select`.
   9
  10----
  11"""
  12
  13from __future__ import annotations
  14
  15import datetime
  16import math
  17import numbers
  18import re
  19import typing as t
  20from collections import deque
  21from copy import deepcopy
  22from enum import auto
  23from functools import reduce
  24
  25from sqlglot._typing import E
  26from sqlglot.errors import ParseError
  27from sqlglot.helper import (
  28    AutoName,
  29    camel_to_snake_case,
  30    ensure_collection,
  31    ensure_list,
  32    seq_get,
  33    subclasses,
  34)
  35from sqlglot.tokens import Token
  36
  37if t.TYPE_CHECKING:
  38    from sqlglot.dialects.dialect import DialectType
  39
  40
  41class _Expression(type):
  42    def __new__(cls, clsname, bases, attrs):
  43        klass = super().__new__(cls, clsname, bases, attrs)
  44
  45        # When an Expression class is created, its key is automatically set to be
  46        # the lowercase version of the class' name.
  47        klass.key = clsname.lower()
  48
  49        # This is so that docstrings are not inherited in pdoc
  50        klass.__doc__ = klass.__doc__ or ""
  51
  52        return klass
  53
  54
  55SQLGLOT_META = "sqlglot.meta"
  56
  57
  58class Expression(metaclass=_Expression):
  59    """
  60    The base class for all expressions in a syntax tree. Each Expression encapsulates any necessary
  61    context, such as its child expressions, their names (arg keys), and whether a given child expression
  62    is optional or not.
  63
  64    Attributes:
  65        key: a unique key for each class in the Expression hierarchy. This is useful for hashing
  66            and representing expressions as strings.
  67        arg_types: determines what arguments (child nodes) are supported by an expression. It
  68            maps arg keys to booleans that indicate whether the corresponding args are optional.
  69        parent: a reference to the parent expression (or None, in case of root expressions).
  70        arg_key: the arg key an expression is associated with, i.e. the name its parent expression
  71            uses to refer to it.
  72        comments: a list of comments that are associated with a given expression. This is used in
  73            order to preserve comments when transpiling SQL code.
  74        type: the `sqlglot.expressions.DataType` type of an expression. This is inferred by the
  75            optimizer, in order to enable some transformations that require type information.
  76        meta: a dictionary that can be used to store useful metadata for a given expression.
  77
  78    Example:
  79        >>> class Foo(Expression):
  80        ...     arg_types = {"this": True, "expression": False}
  81
  82        The above definition informs us that Foo is an Expression that requires an argument called
  83        "this" and may also optionally receive an argument called "expression".
  84
  85    Args:
  86        args: a mapping used for retrieving the arguments of an expression, given their arg keys.
  87    """
  88
  89    key = "expression"
  90    arg_types = {"this": True}
  91    __slots__ = ("args", "parent", "arg_key", "comments", "_type", "_meta", "_hash")
  92
  93    def __init__(self, **args: t.Any):
  94        self.args: t.Dict[str, t.Any] = args
  95        self.parent: t.Optional[Expression] = None
  96        self.arg_key: t.Optional[str] = None
  97        self.comments: t.Optional[t.List[str]] = None
  98        self._type: t.Optional[DataType] = None
  99        self._meta: t.Optional[t.Dict[str, t.Any]] = None
 100        self._hash: t.Optional[int] = None
 101
 102        for arg_key, value in self.args.items():
 103            self._set_parent(arg_key, value)
 104
 105    def __eq__(self, other) -> bool:
 106        return type(self) is type(other) and hash(self) == hash(other)
 107
 108    @property
 109    def hashable_args(self) -> t.Any:
 110        return frozenset(
 111            (k, tuple(_norm_arg(a) for a in v) if type(v) is list else _norm_arg(v))
 112            for k, v in self.args.items()
 113            if not (v is None or v is False or (type(v) is list and not v))
 114        )
 115
 116    def __hash__(self) -> int:
 117        if self._hash is not None:
 118            return self._hash
 119
 120        return hash((self.__class__, self.hashable_args))
 121
 122    @property
 123    def this(self):
 124        """
 125        Retrieves the argument with key "this".
 126        """
 127        return self.args.get("this")
 128
 129    @property
 130    def expression(self):
 131        """
 132        Retrieves the argument with key "expression".
 133        """
 134        return self.args.get("expression")
 135
 136    @property
 137    def expressions(self):
 138        """
 139        Retrieves the argument with key "expressions".
 140        """
 141        return self.args.get("expressions") or []
 142
 143    def text(self, key) -> str:
 144        """
 145        Returns a textual representation of the argument corresponding to "key". This can only be used
 146        for args that are strings or leaf Expression instances, such as identifiers and literals.
 147        """
 148        field = self.args.get(key)
 149        if isinstance(field, str):
 150            return field
 151        if isinstance(field, (Identifier, Literal, Var)):
 152            return field.this
 153        if isinstance(field, (Star, Null)):
 154            return field.name
 155        return ""
 156
 157    @property
 158    def is_string(self) -> bool:
 159        """
 160        Checks whether a Literal expression is a string.
 161        """
 162        return isinstance(self, Literal) and self.args["is_string"]
 163
 164    @property
 165    def is_number(self) -> bool:
 166        """
 167        Checks whether a Literal expression is a number.
 168        """
 169        return isinstance(self, Literal) and not self.args["is_string"]
 170
 171    @property
 172    def is_int(self) -> bool:
 173        """
 174        Checks whether a Literal expression is an integer.
 175        """
 176        if self.is_number:
 177            try:
 178                int(self.name)
 179                return True
 180            except ValueError:
 181                pass
 182        return False
 183
 184    @property
 185    def is_star(self) -> bool:
 186        """Checks whether an expression is a star."""
 187        return isinstance(self, Star) or (isinstance(self, Column) and isinstance(self.this, Star))
 188
 189    @property
 190    def alias(self) -> str:
 191        """
 192        Returns the alias of the expression, or an empty string if it's not aliased.
 193        """
 194        if isinstance(self.args.get("alias"), TableAlias):
 195            return self.args["alias"].name
 196        return self.text("alias")
 197
 198    @property
 199    def alias_column_names(self) -> t.List[str]:
 200        table_alias = self.args.get("alias")
 201        if not table_alias:
 202            return []
 203        return [c.name for c in table_alias.args.get("columns") or []]
 204
 205    @property
 206    def name(self) -> str:
 207        return self.text("this")
 208
 209    @property
 210    def alias_or_name(self) -> str:
 211        return self.alias or self.name
 212
 213    @property
 214    def output_name(self) -> str:
 215        """
 216        Name of the output column if this expression is a selection.
 217
 218        If the Expression has no output name, an empty string is returned.
 219
 220        Example:
 221            >>> from sqlglot import parse_one
 222            >>> parse_one("SELECT a").expressions[0].output_name
 223            'a'
 224            >>> parse_one("SELECT b AS c").expressions[0].output_name
 225            'c'
 226            >>> parse_one("SELECT 1 + 2").expressions[0].output_name
 227            ''
 228        """
 229        return ""
 230
 231    @property
 232    def type(self) -> t.Optional[DataType]:
 233        return self._type
 234
 235    @type.setter
 236    def type(self, dtype: t.Optional[DataType | DataType.Type | str]) -> None:
 237        if dtype and not isinstance(dtype, DataType):
 238            dtype = DataType.build(dtype)
 239        self._type = dtype  # type: ignore
 240
 241    @property
 242    def meta(self) -> t.Dict[str, t.Any]:
 243        if self._meta is None:
 244            self._meta = {}
 245        return self._meta
 246
 247    def __deepcopy__(self, memo):
 248        copy = self.__class__(**deepcopy(self.args))
 249        if self.comments is not None:
 250            copy.comments = deepcopy(self.comments)
 251
 252        if self._type is not None:
 253            copy._type = self._type.copy()
 254
 255        if self._meta is not None:
 256            copy._meta = deepcopy(self._meta)
 257
 258        return copy
 259
 260    def copy(self):
 261        """
 262        Returns a deep copy of the expression.
 263        """
 264        new = deepcopy(self)
 265        new.parent = self.parent
 266        return new
 267
 268    def add_comments(self, comments: t.Optional[t.List[str]]) -> None:
 269        if self.comments is None:
 270            self.comments = []
 271        if comments:
 272            for comment in comments:
 273                _, *meta = comment.split(SQLGLOT_META)
 274                if meta:
 275                    for kv in "".join(meta).split(","):
 276                        k, *v = kv.split("=")
 277                        value = v[0].strip() if v else True
 278                        self.meta[k.strip()] = value
 279                self.comments.append(comment)
 280
 281    def append(self, arg_key: str, value: t.Any) -> None:
 282        """
 283        Appends value to arg_key if it's a list or sets it as a new list.
 284
 285        Args:
 286            arg_key (str): name of the list expression arg
 287            value (Any): value to append to the list
 288        """
 289        if not isinstance(self.args.get(arg_key), list):
 290            self.args[arg_key] = []
 291        self.args[arg_key].append(value)
 292        self._set_parent(arg_key, value)
 293
 294    def set(self, arg_key: str, value: t.Any) -> None:
 295        """
 296        Sets arg_key to value.
 297
 298        Args:
 299            arg_key: name of the expression arg.
 300            value: value to set the arg to.
 301        """
 302        if value is None:
 303            self.args.pop(arg_key, None)
 304            return
 305
 306        self.args[arg_key] = value
 307        self._set_parent(arg_key, value)
 308
 309    def _set_parent(self, arg_key: str, value: t.Any) -> None:
 310        if hasattr(value, "parent"):
 311            value.parent = self
 312            value.arg_key = arg_key
 313        elif type(value) is list:
 314            for v in value:
 315                if hasattr(v, "parent"):
 316                    v.parent = self
 317                    v.arg_key = arg_key
 318
 319    @property
 320    def depth(self) -> int:
 321        """
 322        Returns the depth of this tree.
 323        """
 324        if self.parent:
 325            return self.parent.depth + 1
 326        return 0
 327
 328    def iter_expressions(self) -> t.Iterator[t.Tuple[str, Expression]]:
 329        """Yields the key and expression for all arguments, exploding list args."""
 330        for k, vs in self.args.items():
 331            if type(vs) is list:
 332                for v in vs:
 333                    if hasattr(v, "parent"):
 334                        yield k, v
 335            else:
 336                if hasattr(vs, "parent"):
 337                    yield k, vs
 338
 339    def find(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Optional[E]:
 340        """
 341        Returns the first node in this tree which matches at least one of
 342        the specified types.
 343
 344        Args:
 345            expression_types: the expression type(s) to match.
 346            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
 347
 348        Returns:
 349            The node which matches the criteria or None if no such node was found.
 350        """
 351        return next(self.find_all(*expression_types, bfs=bfs), None)
 352
 353    def find_all(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Iterator[E]:
 354        """
 355        Returns a generator object which visits all nodes in this tree and only
 356        yields those that match at least one of the specified expression types.
 357
 358        Args:
 359            expression_types: the expression type(s) to match.
 360            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
 361
 362        Returns:
 363            The generator object.
 364        """
 365        for expression, *_ in self.walk(bfs=bfs):
 366            if isinstance(expression, expression_types):
 367                yield expression
 368
 369    def find_ancestor(self, *expression_types: t.Type[E]) -> t.Optional[E]:
 370        """
 371        Returns a nearest parent matching expression_types.
 372
 373        Args:
 374            expression_types: the expression type(s) to match.
 375
 376        Returns:
 377            The parent node.
 378        """
 379        ancestor = self.parent
 380        while ancestor and not isinstance(ancestor, expression_types):
 381            ancestor = ancestor.parent
 382        return t.cast(E, ancestor)
 383
 384    @property
 385    def parent_select(self) -> t.Optional[Select]:
 386        """
 387        Returns the parent select statement.
 388        """
 389        return self.find_ancestor(Select)
 390
 391    @property
 392    def same_parent(self) -> bool:
 393        """Returns if the parent is the same class as itself."""
 394        return type(self.parent) is self.__class__
 395
 396    def root(self) -> Expression:
 397        """
 398        Returns the root expression of this tree.
 399        """
 400        expression = self
 401        while expression.parent:
 402            expression = expression.parent
 403        return expression
 404
 405    def walk(self, bfs=True, prune=None):
 406        """
 407        Returns a generator object which visits all nodes in this tree.
 408
 409        Args:
 410            bfs (bool): if set to True the BFS traversal order will be applied,
 411                otherwise the DFS traversal will be used instead.
 412            prune ((node, parent, arg_key) -> bool): callable that returns True if
 413                the generator should stop traversing this branch of the tree.
 414
 415        Returns:
 416            the generator object.
 417        """
 418        if bfs:
 419            yield from self.bfs(prune=prune)
 420        else:
 421            yield from self.dfs(prune=prune)
 422
 423    def dfs(self, parent=None, key=None, prune=None):
 424        """
 425        Returns a generator object which visits all nodes in this tree in
 426        the DFS (Depth-first) order.
 427
 428        Returns:
 429            The generator object.
 430        """
 431        parent = parent or self.parent
 432        yield self, parent, key
 433        if prune and prune(self, parent, key):
 434            return
 435
 436        for k, v in self.iter_expressions():
 437            yield from v.dfs(self, k, prune)
 438
 439    def bfs(self, prune=None):
 440        """
 441        Returns a generator object which visits all nodes in this tree in
 442        the BFS (Breadth-first) order.
 443
 444        Returns:
 445            The generator object.
 446        """
 447        queue = deque([(self, self.parent, None)])
 448
 449        while queue:
 450            item, parent, key = queue.popleft()
 451
 452            yield item, parent, key
 453            if prune and prune(item, parent, key):
 454                continue
 455
 456            for k, v in item.iter_expressions():
 457                queue.append((v, item, k))
 458
 459    def unnest(self):
 460        """
 461        Returns the first non parenthesis child or self.
 462        """
 463        expression = self
 464        while type(expression) is Paren:
 465            expression = expression.this
 466        return expression
 467
 468    def unalias(self):
 469        """
 470        Returns the inner expression if this is an Alias.
 471        """
 472        if isinstance(self, Alias):
 473            return self.this
 474        return self
 475
 476    def unnest_operands(self):
 477        """
 478        Returns unnested operands as a tuple.
 479        """
 480        return tuple(arg.unnest() for _, arg in self.iter_expressions())
 481
 482    def flatten(self, unnest=True):
 483        """
 484        Returns a generator which yields child nodes who's parents are the same class.
 485
 486        A AND B AND C -> [A, B, C]
 487        """
 488        for node, _, _ in self.dfs(prune=lambda n, p, *_: p and not type(n) is self.__class__):
 489            if not type(node) is self.__class__:
 490                yield node.unnest() if unnest else node
 491
 492    def __str__(self) -> str:
 493        return self.sql()
 494
 495    def __repr__(self) -> str:
 496        return self._to_s()
 497
 498    def sql(self, dialect: DialectType = None, **opts) -> str:
 499        """
 500        Returns SQL string representation of this tree.
 501
 502        Args:
 503            dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
 504            opts: other `sqlglot.generator.Generator` options.
 505
 506        Returns:
 507            The SQL string.
 508        """
 509        from sqlglot.dialects import Dialect
 510
 511        return Dialect.get_or_raise(dialect)().generate(self, **opts)
 512
 513    def _to_s(self, hide_missing: bool = True, level: int = 0) -> str:
 514        indent = "" if not level else "\n"
 515        indent += "".join(["  "] * level)
 516        left = f"({self.key.upper()} "
 517
 518        args: t.Dict[str, t.Any] = {
 519            k: ", ".join(
 520                v._to_s(hide_missing=hide_missing, level=level + 1)
 521                if hasattr(v, "_to_s")
 522                else str(v)
 523                for v in ensure_list(vs)
 524                if v is not None
 525            )
 526            for k, vs in self.args.items()
 527        }
 528        args["comments"] = self.comments
 529        args["type"] = self.type
 530        args = {k: v for k, v in args.items() if v or not hide_missing}
 531
 532        right = ", ".join(f"{k}: {v}" for k, v in args.items())
 533        right += ")"
 534
 535        return indent + left + right
 536
 537    def transform(self, fun, *args, copy=True, **kwargs):
 538        """
 539        Recursively visits all tree nodes (excluding already transformed ones)
 540        and applies the given transformation function to each node.
 541
 542        Args:
 543            fun (function): a function which takes a node as an argument and returns a
 544                new transformed node or the same node without modifications. If the function
 545                returns None, then the corresponding node will be removed from the syntax tree.
 546            copy (bool): if set to True a new tree instance is constructed, otherwise the tree is
 547                modified in place.
 548
 549        Returns:
 550            The transformed tree.
 551        """
 552        node = self.copy() if copy else self
 553        new_node = fun(node, *args, **kwargs)
 554
 555        if new_node is None or not isinstance(new_node, Expression):
 556            return new_node
 557        if new_node is not node:
 558            new_node.parent = node.parent
 559            return new_node
 560
 561        replace_children(new_node, lambda child: child.transform(fun, *args, copy=False, **kwargs))
 562        return new_node
 563
 564    @t.overload
 565    def replace(self, expression: E) -> E:
 566        ...
 567
 568    @t.overload
 569    def replace(self, expression: None) -> None:
 570        ...
 571
 572    def replace(self, expression):
 573        """
 574        Swap out this expression with a new expression.
 575
 576        For example::
 577
 578            >>> tree = Select().select("x").from_("tbl")
 579            >>> tree.find(Column).replace(Column(this="y"))
 580            (COLUMN this: y)
 581            >>> tree.sql()
 582            'SELECT y FROM tbl'
 583
 584        Args:
 585            expression: new node
 586
 587        Returns:
 588            The new expression or expressions.
 589        """
 590        if not self.parent:
 591            return expression
 592
 593        parent = self.parent
 594        self.parent = None
 595
 596        replace_children(parent, lambda child: expression if child is self else child)
 597        return expression
 598
 599    def pop(self: E) -> E:
 600        """
 601        Remove this expression from its AST.
 602
 603        Returns:
 604            The popped expression.
 605        """
 606        self.replace(None)
 607        return self
 608
 609    def assert_is(self, type_: t.Type[E]) -> E:
 610        """
 611        Assert that this `Expression` is an instance of `type_`.
 612
 613        If it is NOT an instance of `type_`, this raises an assertion error.
 614        Otherwise, this returns this expression.
 615
 616        Examples:
 617            This is useful for type security in chained expressions:
 618
 619            >>> import sqlglot
 620            >>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
 621            'SELECT x, z FROM y'
 622        """
 623        assert isinstance(self, type_)
 624        return self
 625
 626    def error_messages(self, args: t.Optional[t.Sequence] = None) -> t.List[str]:
 627        """
 628        Checks if this expression is valid (e.g. all mandatory args are set).
 629
 630        Args:
 631            args: a sequence of values that were used to instantiate a Func expression. This is used
 632                to check that the provided arguments don't exceed the function argument limit.
 633
 634        Returns:
 635            A list of error messages for all possible errors that were found.
 636        """
 637        errors: t.List[str] = []
 638
 639        for k in self.args:
 640            if k not in self.arg_types:
 641                errors.append(f"Unexpected keyword: '{k}' for {self.__class__}")
 642        for k, mandatory in self.arg_types.items():
 643            v = self.args.get(k)
 644            if mandatory and (v is None or (isinstance(v, list) and not v)):
 645                errors.append(f"Required keyword: '{k}' missing for {self.__class__}")
 646
 647        if (
 648            args
 649            and isinstance(self, Func)
 650            and len(args) > len(self.arg_types)
 651            and not self.is_var_len_args
 652        ):
 653            errors.append(
 654                f"The number of provided arguments ({len(args)}) is greater than "
 655                f"the maximum number of supported arguments ({len(self.arg_types)})"
 656            )
 657
 658        return errors
 659
 660    def dump(self):
 661        """
 662        Dump this Expression to a JSON-serializable dict.
 663        """
 664        from sqlglot.serde import dump
 665
 666        return dump(self)
 667
 668    @classmethod
 669    def load(cls, obj):
 670        """
 671        Load a dict (as returned by `Expression.dump`) into an Expression instance.
 672        """
 673        from sqlglot.serde import load
 674
 675        return load(obj)
 676
 677    def and_(
 678        self,
 679        *expressions: t.Optional[ExpOrStr],
 680        dialect: DialectType = None,
 681        copy: bool = True,
 682        **opts,
 683    ) -> Condition:
 684        """
 685        AND this condition with one or multiple expressions.
 686
 687        Example:
 688            >>> condition("x=1").and_("y=1").sql()
 689            'x = 1 AND y = 1'
 690
 691        Args:
 692            *expressions: the SQL code strings to parse.
 693                If an `Expression` instance is passed, it will be used as-is.
 694            dialect: the dialect used to parse the input expression.
 695            copy: whether or not to copy the involved expressions (only applies to Expressions).
 696            opts: other options to use to parse the input expressions.
 697
 698        Returns:
 699            The new And condition.
 700        """
 701        return and_(self, *expressions, dialect=dialect, copy=copy, **opts)
 702
 703    def or_(
 704        self,
 705        *expressions: t.Optional[ExpOrStr],
 706        dialect: DialectType = None,
 707        copy: bool = True,
 708        **opts,
 709    ) -> Condition:
 710        """
 711        OR this condition with one or multiple expressions.
 712
 713        Example:
 714            >>> condition("x=1").or_("y=1").sql()
 715            'x = 1 OR y = 1'
 716
 717        Args:
 718            *expressions: the SQL code strings to parse.
 719                If an `Expression` instance is passed, it will be used as-is.
 720            dialect: the dialect used to parse the input expression.
 721            copy: whether or not to copy the involved expressions (only applies to Expressions).
 722            opts: other options to use to parse the input expressions.
 723
 724        Returns:
 725            The new Or condition.
 726        """
 727        return or_(self, *expressions, dialect=dialect, copy=copy, **opts)
 728
 729    def not_(self, copy: bool = True):
 730        """
 731        Wrap this condition with NOT.
 732
 733        Example:
 734            >>> condition("x=1").not_().sql()
 735            'NOT x = 1'
 736
 737        Args:
 738            copy: whether or not to copy this object.
 739
 740        Returns:
 741            The new Not instance.
 742        """
 743        return not_(self, copy=copy)
 744
 745    def as_(
 746        self,
 747        alias: str | Identifier,
 748        quoted: t.Optional[bool] = None,
 749        dialect: DialectType = None,
 750        copy: bool = True,
 751        **opts,
 752    ) -> Alias:
 753        return alias_(self, alias, quoted=quoted, dialect=dialect, copy=copy, **opts)
 754
 755    def _binop(self, klass: t.Type[E], other: t.Any, reverse: bool = False) -> E:
 756        this = self.copy()
 757        other = convert(other, copy=True)
 758        if not isinstance(this, klass) and not isinstance(other, klass):
 759            this = _wrap(this, Binary)
 760            other = _wrap(other, Binary)
 761        if reverse:
 762            return klass(this=other, expression=this)
 763        return klass(this=this, expression=other)
 764
 765    def __getitem__(self, other: ExpOrStr | t.Tuple[ExpOrStr]) -> Bracket:
 766        return Bracket(
 767            this=self.copy(), expressions=[convert(e, copy=True) for e in ensure_list(other)]
 768        )
 769
 770    def __iter__(self) -> t.Iterator:
 771        if "expressions" in self.arg_types:
 772            return iter(self.args.get("expressions") or [])
 773        # We define this because __getitem__ converts Expression into an iterable, which is
 774        # problematic because one can hit infinite loops if they do "for x in some_expr: ..."
 775        # See: https://peps.python.org/pep-0234/
 776        raise TypeError(f"'{self.__class__.__name__}' object is not iterable")
 777
 778    def isin(
 779        self,
 780        *expressions: t.Any,
 781        query: t.Optional[ExpOrStr] = None,
 782        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
 783        copy: bool = True,
 784        **opts,
 785    ) -> In:
 786        return In(
 787            this=maybe_copy(self, copy),
 788            expressions=[convert(e, copy=copy) for e in expressions],
 789            query=maybe_parse(query, copy=copy, **opts) if query else None,
 790            unnest=Unnest(
 791                expressions=[
 792                    maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts) for e in ensure_list(unnest)
 793                ]
 794            )
 795            if unnest
 796            else None,
 797        )
 798
 799    def between(self, low: t.Any, high: t.Any, copy: bool = True, **opts) -> Between:
 800        return Between(
 801            this=maybe_copy(self, copy),
 802            low=convert(low, copy=copy, **opts),
 803            high=convert(high, copy=copy, **opts),
 804        )
 805
 806    def is_(self, other: ExpOrStr) -> Is:
 807        return self._binop(Is, other)
 808
 809    def like(self, other: ExpOrStr) -> Like:
 810        return self._binop(Like, other)
 811
 812    def ilike(self, other: ExpOrStr) -> ILike:
 813        return self._binop(ILike, other)
 814
 815    def eq(self, other: t.Any) -> EQ:
 816        return self._binop(EQ, other)
 817
 818    def neq(self, other: t.Any) -> NEQ:
 819        return self._binop(NEQ, other)
 820
 821    def rlike(self, other: ExpOrStr) -> RegexpLike:
 822        return self._binop(RegexpLike, other)
 823
 824    def __lt__(self, other: t.Any) -> LT:
 825        return self._binop(LT, other)
 826
 827    def __le__(self, other: t.Any) -> LTE:
 828        return self._binop(LTE, other)
 829
 830    def __gt__(self, other: t.Any) -> GT:
 831        return self._binop(GT, other)
 832
 833    def __ge__(self, other: t.Any) -> GTE:
 834        return self._binop(GTE, other)
 835
 836    def __add__(self, other: t.Any) -> Add:
 837        return self._binop(Add, other)
 838
 839    def __radd__(self, other: t.Any) -> Add:
 840        return self._binop(Add, other, reverse=True)
 841
 842    def __sub__(self, other: t.Any) -> Sub:
 843        return self._binop(Sub, other)
 844
 845    def __rsub__(self, other: t.Any) -> Sub:
 846        return self._binop(Sub, other, reverse=True)
 847
 848    def __mul__(self, other: t.Any) -> Mul:
 849        return self._binop(Mul, other)
 850
 851    def __rmul__(self, other: t.Any) -> Mul:
 852        return self._binop(Mul, other, reverse=True)
 853
 854    def __truediv__(self, other: t.Any) -> Div:
 855        return self._binop(Div, other)
 856
 857    def __rtruediv__(self, other: t.Any) -> Div:
 858        return self._binop(Div, other, reverse=True)
 859
 860    def __floordiv__(self, other: t.Any) -> IntDiv:
 861        return self._binop(IntDiv, other)
 862
 863    def __rfloordiv__(self, other: t.Any) -> IntDiv:
 864        return self._binop(IntDiv, other, reverse=True)
 865
 866    def __mod__(self, other: t.Any) -> Mod:
 867        return self._binop(Mod, other)
 868
 869    def __rmod__(self, other: t.Any) -> Mod:
 870        return self._binop(Mod, other, reverse=True)
 871
 872    def __pow__(self, other: t.Any) -> Pow:
 873        return self._binop(Pow, other)
 874
 875    def __rpow__(self, other: t.Any) -> Pow:
 876        return self._binop(Pow, other, reverse=True)
 877
 878    def __and__(self, other: t.Any) -> And:
 879        return self._binop(And, other)
 880
 881    def __rand__(self, other: t.Any) -> And:
 882        return self._binop(And, other, reverse=True)
 883
 884    def __or__(self, other: t.Any) -> Or:
 885        return self._binop(Or, other)
 886
 887    def __ror__(self, other: t.Any) -> Or:
 888        return self._binop(Or, other, reverse=True)
 889
 890    def __neg__(self) -> Neg:
 891        return Neg(this=_wrap(self.copy(), Binary))
 892
 893    def __invert__(self) -> Not:
 894        return not_(self.copy())
 895
 896
 897IntoType = t.Union[
 898    str,
 899    t.Type[Expression],
 900    t.Collection[t.Union[str, t.Type[Expression]]],
 901]
 902ExpOrStr = t.Union[str, Expression]
 903
 904
 905class Condition(Expression):
 906    """Logical conditions like x AND y, or simply x"""
 907
 908
 909class Predicate(Condition):
 910    """Relationships like x = y, x > 1, x >= y."""
 911
 912
 913class DerivedTable(Expression):
 914    @property
 915    def selects(self) -> t.List[Expression]:
 916        return self.this.selects if isinstance(self.this, Subqueryable) else []
 917
 918    @property
 919    def named_selects(self) -> t.List[str]:
 920        return [select.output_name for select in self.selects]
 921
 922
 923class Unionable(Expression):
 924    def union(
 925        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
 926    ) -> Unionable:
 927        """
 928        Builds a UNION expression.
 929
 930        Example:
 931            >>> import sqlglot
 932            >>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
 933            'SELECT * FROM foo UNION SELECT * FROM bla'
 934
 935        Args:
 936            expression: the SQL code string.
 937                If an `Expression` instance is passed, it will be used as-is.
 938            distinct: set the DISTINCT flag if and only if this is true.
 939            dialect: the dialect used to parse the input expression.
 940            opts: other options to use to parse the input expressions.
 941
 942        Returns:
 943            The new Union expression.
 944        """
 945        return union(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
 946
 947    def intersect(
 948        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
 949    ) -> Unionable:
 950        """
 951        Builds an INTERSECT expression.
 952
 953        Example:
 954            >>> import sqlglot
 955            >>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
 956            'SELECT * FROM foo INTERSECT SELECT * FROM bla'
 957
 958        Args:
 959            expression: the SQL code string.
 960                If an `Expression` instance is passed, it will be used as-is.
 961            distinct: set the DISTINCT flag if and only if this is true.
 962            dialect: the dialect used to parse the input expression.
 963            opts: other options to use to parse the input expressions.
 964
 965        Returns:
 966            The new Intersect expression.
 967        """
 968        return intersect(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
 969
 970    def except_(
 971        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
 972    ) -> Unionable:
 973        """
 974        Builds an EXCEPT expression.
 975
 976        Example:
 977            >>> import sqlglot
 978            >>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
 979            'SELECT * FROM foo EXCEPT SELECT * FROM bla'
 980
 981        Args:
 982            expression: the SQL code string.
 983                If an `Expression` instance is passed, it will be used as-is.
 984            distinct: set the DISTINCT flag if and only if this is true.
 985            dialect: the dialect used to parse the input expression.
 986            opts: other options to use to parse the input expressions.
 987
 988        Returns:
 989            The new Except expression.
 990        """
 991        return except_(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
 992
 993
 994class UDTF(DerivedTable, Unionable):
 995    @property
 996    def selects(self) -> t.List[Expression]:
 997        alias = self.args.get("alias")
 998        return alias.columns if alias else []
 999
1000
1001class Cache(Expression):
1002    arg_types = {
1003        "with": False,
1004        "this": True,
1005        "lazy": False,
1006        "options": False,
1007        "expression": False,
1008    }
1009
1010
1011class Uncache(Expression):
1012    arg_types = {"this": True, "exists": False}
1013
1014
1015class DDL(Expression):
1016    @property
1017    def ctes(self):
1018        with_ = self.args.get("with")
1019        if not with_:
1020            return []
1021        return with_.expressions
1022
1023    @property
1024    def named_selects(self) -> t.List[str]:
1025        if isinstance(self.expression, Subqueryable):
1026            return self.expression.named_selects
1027        return []
1028
1029    @property
1030    def selects(self) -> t.List[Expression]:
1031        if isinstance(self.expression, Subqueryable):
1032            return self.expression.selects
1033        return []
1034
1035
1036class Create(DDL):
1037    arg_types = {
1038        "with": False,
1039        "this": True,
1040        "kind": True,
1041        "expression": False,
1042        "exists": False,
1043        "properties": False,
1044        "replace": False,
1045        "unique": False,
1046        "indexes": False,
1047        "no_schema_binding": False,
1048        "begin": False,
1049        "end": False,
1050        "clone": False,
1051    }
1052
1053
1054# https://docs.snowflake.com/en/sql-reference/sql/create-clone
1055# https://cloud.google.com/bigquery/docs/reference/standard-sql/data-definition-language#create_table_clone_statement
1056# https://cloud.google.com/bigquery/docs/reference/standard-sql/data-definition-language#create_table_copy
1057class Clone(Expression):
1058    arg_types = {
1059        "this": True,
1060        "when": False,
1061        "kind": False,
1062        "shallow": False,
1063        "expression": False,
1064        "copy": False,
1065    }
1066
1067
1068class Describe(Expression):
1069    arg_types = {"this": True, "kind": False, "expressions": False}
1070
1071
1072class Kill(Expression):
1073    arg_types = {"this": True, "kind": False}
1074
1075
1076class Pragma(Expression):
1077    pass
1078
1079
1080class Set(Expression):
1081    arg_types = {"expressions": False, "unset": False, "tag": False}
1082
1083
1084class SetItem(Expression):
1085    arg_types = {
1086        "this": False,
1087        "expressions": False,
1088        "kind": False,
1089        "collate": False,  # MySQL SET NAMES statement
1090        "global": False,
1091    }
1092
1093
1094class Show(Expression):
1095    arg_types = {
1096        "this": True,
1097        "target": False,
1098        "offset": False,
1099        "limit": False,
1100        "like": False,
1101        "where": False,
1102        "db": False,
1103        "scope": False,
1104        "scope_kind": False,
1105        "full": False,
1106        "mutex": False,
1107        "query": False,
1108        "channel": False,
1109        "global": False,
1110        "log": False,
1111        "position": False,
1112        "types": False,
1113    }
1114
1115
1116class UserDefinedFunction(Expression):
1117    arg_types = {"this": True, "expressions": False, "wrapped": False}
1118
1119
1120class CharacterSet(Expression):
1121    arg_types = {"this": True, "default": False}
1122
1123
1124class With(Expression):
1125    arg_types = {"expressions": True, "recursive": False}
1126
1127    @property
1128    def recursive(self) -> bool:
1129        return bool(self.args.get("recursive"))
1130
1131
1132class WithinGroup(Expression):
1133    arg_types = {"this": True, "expression": False}
1134
1135
1136class CTE(DerivedTable):
1137    arg_types = {"this": True, "alias": True}
1138
1139
1140class TableAlias(Expression):
1141    arg_types = {"this": False, "columns": False}
1142
1143    @property
1144    def columns(self):
1145        return self.args.get("columns") or []
1146
1147
1148class BitString(Condition):
1149    pass
1150
1151
1152class HexString(Condition):
1153    pass
1154
1155
1156class ByteString(Condition):
1157    pass
1158
1159
1160class RawString(Condition):
1161    pass
1162
1163
1164class Column(Condition):
1165    arg_types = {"this": True, "table": False, "db": False, "catalog": False, "join_mark": False}
1166
1167    @property
1168    def table(self) -> str:
1169        return self.text("table")
1170
1171    @property
1172    def db(self) -> str:
1173        return self.text("db")
1174
1175    @property
1176    def catalog(self) -> str:
1177        return self.text("catalog")
1178
1179    @property
1180    def output_name(self) -> str:
1181        return self.name
1182
1183    @property
1184    def parts(self) -> t.List[Identifier]:
1185        """Return the parts of a column in order catalog, db, table, name."""
1186        return [
1187            t.cast(Identifier, self.args[part])
1188            for part in ("catalog", "db", "table", "this")
1189            if self.args.get(part)
1190        ]
1191
1192    def to_dot(self) -> Dot | Identifier:
1193        """Converts the column into a dot expression."""
1194        parts = self.parts
1195        parent = self.parent
1196
1197        while parent:
1198            if isinstance(parent, Dot):
1199                parts.append(parent.expression)
1200            parent = parent.parent
1201
1202        return Dot.build(deepcopy(parts)) if len(parts) > 1 else parts[0]
1203
1204
1205class ColumnPosition(Expression):
1206    arg_types = {"this": False, "position": True}
1207
1208
1209class ColumnDef(Expression):
1210    arg_types = {
1211        "this": True,
1212        "kind": False,
1213        "constraints": False,
1214        "exists": False,
1215        "position": False,
1216    }
1217
1218    @property
1219    def constraints(self) -> t.List[ColumnConstraint]:
1220        return self.args.get("constraints") or []
1221
1222
1223class AlterColumn(Expression):
1224    arg_types = {
1225        "this": True,
1226        "dtype": False,
1227        "collate": False,
1228        "using": False,
1229        "default": False,
1230        "drop": False,
1231    }
1232
1233
1234class RenameTable(Expression):
1235    pass
1236
1237
1238class Comment(Expression):
1239    arg_types = {"this": True, "kind": True, "expression": True, "exists": False}
1240
1241
1242class Comprehension(Expression):
1243    arg_types = {"this": True, "expression": True, "iterator": True, "condition": False}
1244
1245
1246# https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/mergetree#mergetree-table-ttl
1247class MergeTreeTTLAction(Expression):
1248    arg_types = {
1249        "this": True,
1250        "delete": False,
1251        "recompress": False,
1252        "to_disk": False,
1253        "to_volume": False,
1254    }
1255
1256
1257# https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/mergetree#mergetree-table-ttl
1258class MergeTreeTTL(Expression):
1259    arg_types = {
1260        "expressions": True,
1261        "where": False,
1262        "group": False,
1263        "aggregates": False,
1264    }
1265
1266
1267# https://dev.mysql.com/doc/refman/8.0/en/create-table.html
1268class IndexConstraintOption(Expression):
1269    arg_types = {
1270        "key_block_size": False,
1271        "using": False,
1272        "parser": False,
1273        "comment": False,
1274        "visible": False,
1275        "engine_attr": False,
1276        "secondary_engine_attr": False,
1277    }
1278
1279
1280class ColumnConstraint(Expression):
1281    arg_types = {"this": False, "kind": True}
1282
1283    @property
1284    def kind(self) -> ColumnConstraintKind:
1285        return self.args["kind"]
1286
1287
1288class ColumnConstraintKind(Expression):
1289    pass
1290
1291
1292class AutoIncrementColumnConstraint(ColumnConstraintKind):
1293    pass
1294
1295
1296class CaseSpecificColumnConstraint(ColumnConstraintKind):
1297    arg_types = {"not_": True}
1298
1299
1300class CharacterSetColumnConstraint(ColumnConstraintKind):
1301    arg_types = {"this": True}
1302
1303
1304class CheckColumnConstraint(ColumnConstraintKind):
1305    pass
1306
1307
1308class ClusteredColumnConstraint(ColumnConstraintKind):
1309    pass
1310
1311
1312class CollateColumnConstraint(ColumnConstraintKind):
1313    pass
1314
1315
1316class CommentColumnConstraint(ColumnConstraintKind):
1317    pass
1318
1319
1320class CompressColumnConstraint(ColumnConstraintKind):
1321    pass
1322
1323
1324class DateFormatColumnConstraint(ColumnConstraintKind):
1325    arg_types = {"this": True}
1326
1327
1328class DefaultColumnConstraint(ColumnConstraintKind):
1329    pass
1330
1331
1332class EncodeColumnConstraint(ColumnConstraintKind):
1333    pass
1334
1335
1336class GeneratedAsIdentityColumnConstraint(ColumnConstraintKind):
1337    # this: True -> ALWAYS, this: False -> BY DEFAULT
1338    arg_types = {
1339        "this": False,
1340        "expression": False,
1341        "on_null": False,
1342        "start": False,
1343        "increment": False,
1344        "minvalue": False,
1345        "maxvalue": False,
1346        "cycle": False,
1347    }
1348
1349
1350# https://dev.mysql.com/doc/refman/8.0/en/create-table.html
1351class IndexColumnConstraint(ColumnConstraintKind):
1352    arg_types = {
1353        "this": False,
1354        "schema": True,
1355        "kind": False,
1356        "index_type": False,
1357        "options": False,
1358    }
1359
1360
1361class InlineLengthColumnConstraint(ColumnConstraintKind):
1362    pass
1363
1364
1365class NonClusteredColumnConstraint(ColumnConstraintKind):
1366    pass
1367
1368
1369class NotForReplicationColumnConstraint(ColumnConstraintKind):
1370    arg_types = {}
1371
1372
1373class NotNullColumnConstraint(ColumnConstraintKind):
1374    arg_types = {"allow_null": False}
1375
1376
1377# https://dev.mysql.com/doc/refman/5.7/en/timestamp-initialization.html
1378class OnUpdateColumnConstraint(ColumnConstraintKind):
1379    pass
1380
1381
1382class PrimaryKeyColumnConstraint(ColumnConstraintKind):
1383    arg_types = {"desc": False}
1384
1385
1386class TitleColumnConstraint(ColumnConstraintKind):
1387    pass
1388
1389
1390class UniqueColumnConstraint(ColumnConstraintKind):
1391    arg_types = {"this": False, "index_type": False}
1392
1393
1394class UppercaseColumnConstraint(ColumnConstraintKind):
1395    arg_types: t.Dict[str, t.Any] = {}
1396
1397
1398class PathColumnConstraint(ColumnConstraintKind):
1399    pass
1400
1401
1402# computed column expression
1403# https://learn.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver16
1404class ComputedColumnConstraint(ColumnConstraintKind):
1405    arg_types = {"this": True, "persisted": False, "not_null": False}
1406
1407
1408class Constraint(Expression):
1409    arg_types = {"this": True, "expressions": True}
1410
1411
1412class Delete(Expression):
1413    arg_types = {
1414        "with": False,
1415        "this": False,
1416        "using": False,
1417        "where": False,
1418        "returning": False,
1419        "limit": False,
1420        "tables": False,  # Multiple-Table Syntax (MySQL)
1421    }
1422
1423    def delete(
1424        self,
1425        table: ExpOrStr,
1426        dialect: DialectType = None,
1427        copy: bool = True,
1428        **opts,
1429    ) -> Delete:
1430        """
1431        Create a DELETE expression or replace the table on an existing DELETE expression.
1432
1433        Example:
1434            >>> delete("tbl").sql()
1435            'DELETE FROM tbl'
1436
1437        Args:
1438            table: the table from which to delete.
1439            dialect: the dialect used to parse the input expression.
1440            copy: if `False`, modify this expression instance in-place.
1441            opts: other options to use to parse the input expressions.
1442
1443        Returns:
1444            Delete: the modified expression.
1445        """
1446        return _apply_builder(
1447            expression=table,
1448            instance=self,
1449            arg="this",
1450            dialect=dialect,
1451            into=Table,
1452            copy=copy,
1453            **opts,
1454        )
1455
1456    def where(
1457        self,
1458        *expressions: t.Optional[ExpOrStr],
1459        append: bool = True,
1460        dialect: DialectType = None,
1461        copy: bool = True,
1462        **opts,
1463    ) -> Delete:
1464        """
1465        Append to or set the WHERE expressions.
1466
1467        Example:
1468            >>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
1469            "DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
1470
1471        Args:
1472            *expressions: the SQL code strings to parse.
1473                If an `Expression` instance is passed, it will be used as-is.
1474                Multiple expressions are combined with an AND operator.
1475            append: if `True`, AND the new expressions to any existing expression.
1476                Otherwise, this resets the expression.
1477            dialect: the dialect used to parse the input expressions.
1478            copy: if `False`, modify this expression instance in-place.
1479            opts: other options to use to parse the input expressions.
1480
1481        Returns:
1482            Delete: the modified expression.
1483        """
1484        return _apply_conjunction_builder(
1485            *expressions,
1486            instance=self,
1487            arg="where",
1488            append=append,
1489            into=Where,
1490            dialect=dialect,
1491            copy=copy,
1492            **opts,
1493        )
1494
1495    def returning(
1496        self,
1497        expression: ExpOrStr,
1498        dialect: DialectType = None,
1499        copy: bool = True,
1500        **opts,
1501    ) -> Delete:
1502        """
1503        Set the RETURNING expression. Not supported by all dialects.
1504
1505        Example:
1506            >>> delete("tbl").returning("*", dialect="postgres").sql()
1507            'DELETE FROM tbl RETURNING *'
1508
1509        Args:
1510            expression: the SQL code strings to parse.
1511                If an `Expression` instance is passed, it will be used as-is.
1512            dialect: the dialect used to parse the input expressions.
1513            copy: if `False`, modify this expression instance in-place.
1514            opts: other options to use to parse the input expressions.
1515
1516        Returns:
1517            Delete: the modified expression.
1518        """
1519        return _apply_builder(
1520            expression=expression,
1521            instance=self,
1522            arg="returning",
1523            prefix="RETURNING",
1524            dialect=dialect,
1525            copy=copy,
1526            into=Returning,
1527            **opts,
1528        )
1529
1530
1531class Drop(Expression):
1532    arg_types = {
1533        "this": False,
1534        "kind": False,
1535        "exists": False,
1536        "temporary": False,
1537        "materialized": False,
1538        "cascade": False,
1539        "constraints": False,
1540        "purge": False,
1541    }
1542
1543
1544class Filter(Expression):
1545    arg_types = {"this": True, "expression": True}
1546
1547
1548class Check(Expression):
1549    pass
1550
1551
1552# https://docs.snowflake.com/en/sql-reference/constructs/connect-by
1553class Connect(Expression):
1554    arg_types = {"start": False, "connect": True}
1555
1556
1557class Prior(Expression):
1558    pass
1559
1560
1561class Directory(Expression):
1562    # https://spark.apache.org/docs/3.0.0-preview/sql-ref-syntax-dml-insert-overwrite-directory-hive.html
1563    arg_types = {"this": True, "local": False, "row_format": False}
1564
1565
1566class ForeignKey(Expression):
1567    arg_types = {
1568        "expressions": True,
1569        "reference": False,
1570        "delete": False,
1571        "update": False,
1572    }
1573
1574
1575class ColumnPrefix(Expression):
1576    arg_types = {"this": True, "expression": True}
1577
1578
1579class PrimaryKey(Expression):
1580    arg_types = {"expressions": True, "options": False}
1581
1582
1583# https://www.postgresql.org/docs/9.1/sql-selectinto.html
1584# https://docs.aws.amazon.com/redshift/latest/dg/r_SELECT_INTO.html#r_SELECT_INTO-examples
1585class Into(Expression):
1586    arg_types = {"this": True, "temporary": False, "unlogged": False}
1587
1588
1589class From(Expression):
1590    @property
1591    def name(self) -> str:
1592        return self.this.name
1593
1594    @property
1595    def alias_or_name(self) -> str:
1596        return self.this.alias_or_name
1597
1598
1599class Having(Expression):
1600    pass
1601
1602
1603class Hint(Expression):
1604    arg_types = {"expressions": True}
1605
1606
1607class JoinHint(Expression):
1608    arg_types = {"this": True, "expressions": True}
1609
1610
1611class Identifier(Expression):
1612    arg_types = {"this": True, "quoted": False, "global": False, "temporary": False}
1613
1614    @property
1615    def quoted(self) -> bool:
1616        return bool(self.args.get("quoted"))
1617
1618    @property
1619    def hashable_args(self) -> t.Any:
1620        return (self.this, self.quoted)
1621
1622    @property
1623    def output_name(self) -> str:
1624        return self.name
1625
1626
1627# https://www.postgresql.org/docs/current/indexes-opclass.html
1628class Opclass(Expression):
1629    arg_types = {"this": True, "expression": True}
1630
1631
1632class Index(Expression):
1633    arg_types = {
1634        "this": False,
1635        "table": False,
1636        "using": False,
1637        "where": False,
1638        "columns": False,
1639        "unique": False,
1640        "primary": False,
1641        "amp": False,  # teradata
1642        "partition_by": False,  # teradata
1643        "where": False,  # postgres partial indexes
1644    }
1645
1646
1647class Insert(DDL):
1648    arg_types = {
1649        "with": False,
1650        "this": True,
1651        "expression": False,
1652        "conflict": False,
1653        "returning": False,
1654        "overwrite": False,
1655        "exists": False,
1656        "partition": False,
1657        "alternative": False,
1658        "where": False,
1659        "ignore": False,
1660        "by_name": False,
1661    }
1662
1663    def with_(
1664        self,
1665        alias: ExpOrStr,
1666        as_: ExpOrStr,
1667        recursive: t.Optional[bool] = None,
1668        append: bool = True,
1669        dialect: DialectType = None,
1670        copy: bool = True,
1671        **opts,
1672    ) -> Insert:
1673        """
1674        Append to or set the common table expressions.
1675
1676        Example:
1677            >>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
1678            'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
1679
1680        Args:
1681            alias: the SQL code string to parse as the table name.
1682                If an `Expression` instance is passed, this is used as-is.
1683            as_: the SQL code string to parse as the table expression.
1684                If an `Expression` instance is passed, it will be used as-is.
1685            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
1686            append: if `True`, add to any existing expressions.
1687                Otherwise, this resets the expressions.
1688            dialect: the dialect used to parse the input expression.
1689            copy: if `False`, modify this expression instance in-place.
1690            opts: other options to use to parse the input expressions.
1691
1692        Returns:
1693            The modified expression.
1694        """
1695        return _apply_cte_builder(
1696            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
1697        )
1698
1699
1700class OnConflict(Expression):
1701    arg_types = {
1702        "duplicate": False,
1703        "expressions": False,
1704        "nothing": False,
1705        "key": False,
1706        "constraint": False,
1707    }
1708
1709
1710class Returning(Expression):
1711    arg_types = {"expressions": True, "into": False}
1712
1713
1714# https://dev.mysql.com/doc/refman/8.0/en/charset-introducer.html
1715class Introducer(Expression):
1716    arg_types = {"this": True, "expression": True}
1717
1718
1719# national char, like n'utf8'
1720class National(Expression):
1721    pass
1722
1723
1724class LoadData(Expression):
1725    arg_types = {
1726        "this": True,
1727        "local": False,
1728        "overwrite": False,
1729        "inpath": True,
1730        "partition": False,
1731        "input_format": False,
1732        "serde": False,
1733    }
1734
1735
1736class Partition(Expression):
1737    arg_types = {"expressions": True}
1738
1739
1740class Fetch(Expression):
1741    arg_types = {
1742        "direction": False,
1743        "count": False,
1744        "percent": False,
1745        "with_ties": False,
1746    }
1747
1748
1749class Group(Expression):
1750    arg_types = {
1751        "expressions": False,
1752        "grouping_sets": False,
1753        "cube": False,
1754        "rollup": False,
1755        "totals": False,
1756        "all": False,
1757    }
1758
1759
1760class Lambda(Expression):
1761    arg_types = {"this": True, "expressions": True}
1762
1763
1764class Limit(Expression):
1765    arg_types = {"this": False, "expression": True, "offset": False}
1766
1767
1768class Literal(Condition):
1769    arg_types = {"this": True, "is_string": True}
1770
1771    @property
1772    def hashable_args(self) -> t.Any:
1773        return (self.this, self.args.get("is_string"))
1774
1775    @classmethod
1776    def number(cls, number) -> Literal:
1777        return cls(this=str(number), is_string=False)
1778
1779    @classmethod
1780    def string(cls, string) -> Literal:
1781        return cls(this=str(string), is_string=True)
1782
1783    @property
1784    def output_name(self) -> str:
1785        return self.name
1786
1787
1788class Join(Expression):
1789    arg_types = {
1790        "this": True,
1791        "on": False,
1792        "side": False,
1793        "kind": False,
1794        "using": False,
1795        "method": False,
1796        "global": False,
1797        "hint": False,
1798    }
1799
1800    @property
1801    def method(self) -> str:
1802        return self.text("method").upper()
1803
1804    @property
1805    def kind(self) -> str:
1806        return self.text("kind").upper()
1807
1808    @property
1809    def side(self) -> str:
1810        return self.text("side").upper()
1811
1812    @property
1813    def hint(self) -> str:
1814        return self.text("hint").upper()
1815
1816    @property
1817    def alias_or_name(self) -> str:
1818        return self.this.alias_or_name
1819
1820    def on(
1821        self,
1822        *expressions: t.Optional[ExpOrStr],
1823        append: bool = True,
1824        dialect: DialectType = None,
1825        copy: bool = True,
1826        **opts,
1827    ) -> Join:
1828        """
1829        Append to or set the ON expressions.
1830
1831        Example:
1832            >>> import sqlglot
1833            >>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
1834            'JOIN x ON y = 1'
1835
1836        Args:
1837            *expressions: the SQL code strings to parse.
1838                If an `Expression` instance is passed, it will be used as-is.
1839                Multiple expressions are combined with an AND operator.
1840            append: if `True`, AND the new expressions to any existing expression.
1841                Otherwise, this resets the expression.
1842            dialect: the dialect used to parse the input expressions.
1843            copy: if `False`, modify this expression instance in-place.
1844            opts: other options to use to parse the input expressions.
1845
1846        Returns:
1847            The modified Join expression.
1848        """
1849        join = _apply_conjunction_builder(
1850            *expressions,
1851            instance=self,
1852            arg="on",
1853            append=append,
1854            dialect=dialect,
1855            copy=copy,
1856            **opts,
1857        )
1858
1859        if join.kind == "CROSS":
1860            join.set("kind", None)
1861
1862        return join
1863
1864    def using(
1865        self,
1866        *expressions: t.Optional[ExpOrStr],
1867        append: bool = True,
1868        dialect: DialectType = None,
1869        copy: bool = True,
1870        **opts,
1871    ) -> Join:
1872        """
1873        Append to or set the USING expressions.
1874
1875        Example:
1876            >>> import sqlglot
1877            >>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
1878            'JOIN x USING (foo, bla)'
1879
1880        Args:
1881            *expressions: the SQL code strings to parse.
1882                If an `Expression` instance is passed, it will be used as-is.
1883            append: if `True`, concatenate the new expressions to the existing "using" list.
1884                Otherwise, this resets the expression.
1885            dialect: the dialect used to parse the input expressions.
1886            copy: if `False`, modify this expression instance in-place.
1887            opts: other options to use to parse the input expressions.
1888
1889        Returns:
1890            The modified Join expression.
1891        """
1892        join = _apply_list_builder(
1893            *expressions,
1894            instance=self,
1895            arg="using",
1896            append=append,
1897            dialect=dialect,
1898            copy=copy,
1899            **opts,
1900        )
1901
1902        if join.kind == "CROSS":
1903            join.set("kind", None)
1904
1905        return join
1906
1907
1908class Lateral(UDTF):
1909    arg_types = {"this": True, "view": False, "outer": False, "alias": False}
1910
1911
1912class MatchRecognize(Expression):
1913    arg_types = {
1914        "partition_by": False,
1915        "order": False,
1916        "measures": False,
1917        "rows": False,
1918        "after": False,
1919        "pattern": False,
1920        "define": False,
1921        "alias": False,
1922    }
1923
1924
1925# Clickhouse FROM FINAL modifier
1926# https://clickhouse.com/docs/en/sql-reference/statements/select/from/#final-modifier
1927class Final(Expression):
1928    pass
1929
1930
1931class Offset(Expression):
1932    arg_types = {"this": False, "expression": True}
1933
1934
1935class Order(Expression):
1936    arg_types = {"this": False, "expressions": True}
1937
1938
1939# hive specific sorts
1940# https://cwiki.apache.org/confluence/display/Hive/LanguageManual+SortBy
1941class Cluster(Order):
1942    pass
1943
1944
1945class Distribute(Order):
1946    pass
1947
1948
1949class Sort(Order):
1950    pass
1951
1952
1953class Ordered(Expression):
1954    arg_types = {"this": True, "desc": False, "nulls_first": True}
1955
1956
1957class Property(Expression):
1958    arg_types = {"this": True, "value": True}
1959
1960
1961class AlgorithmProperty(Property):
1962    arg_types = {"this": True}
1963
1964
1965class AutoIncrementProperty(Property):
1966    arg_types = {"this": True}
1967
1968
1969class BlockCompressionProperty(Property):
1970    arg_types = {"autotemp": False, "always": False, "default": True, "manual": True, "never": True}
1971
1972
1973class CharacterSetProperty(Property):
1974    arg_types = {"this": True, "default": True}
1975
1976
1977class ChecksumProperty(Property):
1978    arg_types = {"on": False, "default": False}
1979
1980
1981class CollateProperty(Property):
1982    arg_types = {"this": True}
1983
1984
1985class CopyGrantsProperty(Property):
1986    arg_types = {}
1987
1988
1989class DataBlocksizeProperty(Property):
1990    arg_types = {
1991        "size": False,
1992        "units": False,
1993        "minimum": False,
1994        "maximum": False,
1995        "default": False,
1996    }
1997
1998
1999class DefinerProperty(Property):
2000    arg_types = {"this": True}
2001
2002
2003class DistKeyProperty(Property):
2004    arg_types = {"this": True}
2005
2006
2007class DistStyleProperty(Property):
2008    arg_types = {"this": True}
2009
2010
2011class EngineProperty(Property):
2012    arg_types = {"this": True}
2013
2014
2015class HeapProperty(Property):
2016    arg_types = {}
2017
2018
2019class ToTableProperty(Property):
2020    arg_types = {"this": True}
2021
2022
2023class ExecuteAsProperty(Property):
2024    arg_types = {"this": True}
2025
2026
2027class ExternalProperty(Property):
2028    arg_types = {"this": False}
2029
2030
2031class FallbackProperty(Property):
2032    arg_types = {"no": True, "protection": False}
2033
2034
2035class FileFormatProperty(Property):
2036    arg_types = {"this": True}
2037
2038
2039class FreespaceProperty(Property):
2040    arg_types = {"this": True, "percent": False}
2041
2042
2043class InputModelProperty(Property):
2044    arg_types = {"this": True}
2045
2046
2047class OutputModelProperty(Property):
2048    arg_types = {"this": True}
2049
2050
2051class IsolatedLoadingProperty(Property):
2052    arg_types = {
2053        "no": True,
2054        "concurrent": True,
2055        "for_all": True,
2056        "for_insert": True,
2057        "for_none": True,
2058    }
2059
2060
2061class JournalProperty(Property):
2062    arg_types = {
2063        "no": False,
2064        "dual": False,
2065        "before": False,
2066        "local": False,
2067        "after": False,
2068    }
2069
2070
2071class LanguageProperty(Property):
2072    arg_types = {"this": True}
2073
2074
2075# spark ddl
2076class ClusteredByProperty(Property):
2077    arg_types = {"expressions": True, "sorted_by": False, "buckets": True}
2078
2079
2080class DictProperty(Property):
2081    arg_types = {"this": True, "kind": True, "settings": False}
2082
2083
2084class DictSubProperty(Property):
2085    pass
2086
2087
2088class DictRange(Property):
2089    arg_types = {"this": True, "min": True, "max": True}
2090
2091
2092# Clickhouse CREATE ... ON CLUSTER modifier
2093# https://clickhouse.com/docs/en/sql-reference/distributed-ddl
2094class OnCluster(Property):
2095    arg_types = {"this": True}
2096
2097
2098class LikeProperty(Property):
2099    arg_types = {"this": True, "expressions": False}
2100
2101
2102class LocationProperty(Property):
2103    arg_types = {"this": True}
2104
2105
2106class LockingProperty(Property):
2107    arg_types = {
2108        "this": False,
2109        "kind": True,
2110        "for_or_in": True,
2111        "lock_type": True,
2112        "override": False,
2113    }
2114
2115
2116class LogProperty(Property):
2117    arg_types = {"no": True}
2118
2119
2120class MaterializedProperty(Property):
2121    arg_types = {"this": False}
2122
2123
2124class MergeBlockRatioProperty(Property):
2125    arg_types = {"this": False, "no": False, "default": False, "percent": False}
2126
2127
2128class NoPrimaryIndexProperty(Property):
2129    arg_types = {}
2130
2131
2132class OnProperty(Property):
2133    arg_types = {"this": True}
2134
2135
2136class OnCommitProperty(Property):
2137    arg_types = {"delete": False}
2138
2139
2140class PartitionedByProperty(Property):
2141    arg_types = {"this": True}
2142
2143
2144class RemoteWithConnectionModelProperty(Property):
2145    arg_types = {"this": True}
2146
2147
2148class ReturnsProperty(Property):
2149    arg_types = {"this": True, "is_table": False, "table": False}
2150
2151
2152class RowFormatProperty(Property):
2153    arg_types = {"this": True}
2154
2155
2156class RowFormatDelimitedProperty(Property):
2157    # https://cwiki.apache.org/confluence/display/hive/languagemanual+dml
2158    arg_types = {
2159        "fields": False,
2160        "escaped": False,
2161        "collection_items": False,
2162        "map_keys": False,
2163        "lines": False,
2164        "null": False,
2165        "serde": False,
2166    }
2167
2168
2169class RowFormatSerdeProperty(Property):
2170    arg_types = {"this": True, "serde_properties": False}
2171
2172
2173# https://spark.apache.org/docs/3.1.2/sql-ref-syntax-qry-select-transform.html
2174class QueryTransform(Expression):
2175    arg_types = {
2176        "expressions": True,
2177        "command_script": True,
2178        "schema": False,
2179        "row_format_before": False,
2180        "record_writer": False,
2181        "row_format_after": False,
2182        "record_reader": False,
2183    }
2184
2185
2186class SampleProperty(Property):
2187    arg_types = {"this": True}
2188
2189
2190class SchemaCommentProperty(Property):
2191    arg_types = {"this": True}
2192
2193
2194class SerdeProperties(Property):
2195    arg_types = {"expressions": True}
2196
2197
2198class SetProperty(Property):
2199    arg_types = {"multi": True}
2200
2201
2202class SettingsProperty(Property):
2203    arg_types = {"expressions": True}
2204
2205
2206class SortKeyProperty(Property):
2207    arg_types = {"this": True, "compound": False}
2208
2209
2210class SqlSecurityProperty(Property):
2211    arg_types = {"definer": True}
2212
2213
2214class StabilityProperty(Property):
2215    arg_types = {"this": True}
2216
2217
2218class TemporaryProperty(Property):
2219    arg_types = {}
2220
2221
2222class TransformModelProperty(Property):
2223    arg_types = {"expressions": True}
2224
2225
2226class TransientProperty(Property):
2227    arg_types = {"this": False}
2228
2229
2230class VolatileProperty(Property):
2231    arg_types = {"this": False}
2232
2233
2234class WithDataProperty(Property):
2235    arg_types = {"no": True, "statistics": False}
2236
2237
2238class WithJournalTableProperty(Property):
2239    arg_types = {"this": True}
2240
2241
2242class Properties(Expression):
2243    arg_types = {"expressions": True}
2244
2245    NAME_TO_PROPERTY = {
2246        "ALGORITHM": AlgorithmProperty,
2247        "AUTO_INCREMENT": AutoIncrementProperty,
2248        "CHARACTER SET": CharacterSetProperty,
2249        "CLUSTERED_BY": ClusteredByProperty,
2250        "COLLATE": CollateProperty,
2251        "COMMENT": SchemaCommentProperty,
2252        "DEFINER": DefinerProperty,
2253        "DISTKEY": DistKeyProperty,
2254        "DISTSTYLE": DistStyleProperty,
2255        "ENGINE": EngineProperty,
2256        "EXECUTE AS": ExecuteAsProperty,
2257        "FORMAT": FileFormatProperty,
2258        "LANGUAGE": LanguageProperty,
2259        "LOCATION": LocationProperty,
2260        "PARTITIONED_BY": PartitionedByProperty,
2261        "RETURNS": ReturnsProperty,
2262        "ROW_FORMAT": RowFormatProperty,
2263        "SORTKEY": SortKeyProperty,
2264    }
2265
2266    PROPERTY_TO_NAME = {v: k for k, v in NAME_TO_PROPERTY.items()}
2267
2268    # CREATE property locations
2269    # Form: schema specified
2270    #   create [POST_CREATE]
2271    #     table a [POST_NAME]
2272    #     (b int) [POST_SCHEMA]
2273    #     with ([POST_WITH])
2274    #     index (b) [POST_INDEX]
2275    #
2276    # Form: alias selection
2277    #   create [POST_CREATE]
2278    #     table a [POST_NAME]
2279    #     as [POST_ALIAS] (select * from b) [POST_EXPRESSION]
2280    #     index (c) [POST_INDEX]
2281    class Location(AutoName):
2282        POST_CREATE = auto()
2283        POST_NAME = auto()
2284        POST_SCHEMA = auto()
2285        POST_WITH = auto()
2286        POST_ALIAS = auto()
2287        POST_EXPRESSION = auto()
2288        POST_INDEX = auto()
2289        UNSUPPORTED = auto()
2290
2291    @classmethod
2292    def from_dict(cls, properties_dict: t.Dict) -> Properties:
2293        expressions = []
2294        for key, value in properties_dict.items():
2295            property_cls = cls.NAME_TO_PROPERTY.get(key.upper())
2296            if property_cls:
2297                expressions.append(property_cls(this=convert(value)))
2298            else:
2299                expressions.append(Property(this=Literal.string(key), value=convert(value)))
2300
2301        return cls(expressions=expressions)
2302
2303
2304class Qualify(Expression):
2305    pass
2306
2307
2308class InputOutputFormat(Expression):
2309    arg_types = {"input_format": False, "output_format": False}
2310
2311
2312# https://www.ibm.com/docs/en/ias?topic=procedures-return-statement-in-sql
2313class Return(Expression):
2314    pass
2315
2316
2317class Reference(Expression):
2318    arg_types = {"this": True, "expressions": False, "options": False}
2319
2320
2321class Tuple(Expression):
2322    arg_types = {"expressions": False}
2323
2324    def isin(
2325        self,
2326        *expressions: t.Any,
2327        query: t.Optional[ExpOrStr] = None,
2328        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
2329        copy: bool = True,
2330        **opts,
2331    ) -> In:
2332        return In(
2333            this=maybe_copy(self, copy),
2334            expressions=[convert(e, copy=copy) for e in expressions],
2335            query=maybe_parse(query, copy=copy, **opts) if query else None,
2336            unnest=Unnest(
2337                expressions=[
2338                    maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts) for e in ensure_list(unnest)
2339                ]
2340            )
2341            if unnest
2342            else None,
2343        )
2344
2345
2346class Subqueryable(Unionable):
2347    def subquery(self, alias: t.Optional[ExpOrStr] = None, copy: bool = True) -> Subquery:
2348        """
2349        Convert this expression to an aliased expression that can be used as a Subquery.
2350
2351        Example:
2352            >>> subquery = Select().select("x").from_("tbl").subquery()
2353            >>> Select().select("x").from_(subquery).sql()
2354            'SELECT x FROM (SELECT x FROM tbl)'
2355
2356        Args:
2357            alias (str | Identifier): an optional alias for the subquery
2358            copy (bool): if `False`, modify this expression instance in-place.
2359
2360        Returns:
2361            Alias: the subquery
2362        """
2363        instance = maybe_copy(self, copy)
2364        if not isinstance(alias, Expression):
2365            alias = TableAlias(this=to_identifier(alias)) if alias else None
2366
2367        return Subquery(this=instance, alias=alias)
2368
2369    def limit(
2370        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2371    ) -> Select:
2372        raise NotImplementedError
2373
2374    @property
2375    def ctes(self):
2376        with_ = self.args.get("with")
2377        if not with_:
2378            return []
2379        return with_.expressions
2380
2381    @property
2382    def selects(self) -> t.List[Expression]:
2383        raise NotImplementedError("Subqueryable objects must implement `selects`")
2384
2385    @property
2386    def named_selects(self) -> t.List[str]:
2387        raise NotImplementedError("Subqueryable objects must implement `named_selects`")
2388
2389    def select(
2390        self,
2391        *expressions: t.Optional[ExpOrStr],
2392        append: bool = True,
2393        dialect: DialectType = None,
2394        copy: bool = True,
2395        **opts,
2396    ) -> Subqueryable:
2397        raise NotImplementedError("Subqueryable objects must implement `select`")
2398
2399    def with_(
2400        self,
2401        alias: ExpOrStr,
2402        as_: ExpOrStr,
2403        recursive: t.Optional[bool] = None,
2404        append: bool = True,
2405        dialect: DialectType = None,
2406        copy: bool = True,
2407        **opts,
2408    ) -> Subqueryable:
2409        """
2410        Append to or set the common table expressions.
2411
2412        Example:
2413            >>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
2414            'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
2415
2416        Args:
2417            alias: the SQL code string to parse as the table name.
2418                If an `Expression` instance is passed, this is used as-is.
2419            as_: the SQL code string to parse as the table expression.
2420                If an `Expression` instance is passed, it will be used as-is.
2421            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
2422            append: if `True`, add to any existing expressions.
2423                Otherwise, this resets the expressions.
2424            dialect: the dialect used to parse the input expression.
2425            copy: if `False`, modify this expression instance in-place.
2426            opts: other options to use to parse the input expressions.
2427
2428        Returns:
2429            The modified expression.
2430        """
2431        return _apply_cte_builder(
2432            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
2433        )
2434
2435
2436QUERY_MODIFIERS = {
2437    "match": False,
2438    "laterals": False,
2439    "joins": False,
2440    "connect": False,
2441    "pivots": False,
2442    "where": False,
2443    "group": False,
2444    "having": False,
2445    "qualify": False,
2446    "windows": False,
2447    "distribute": False,
2448    "sort": False,
2449    "cluster": False,
2450    "order": False,
2451    "limit": False,
2452    "offset": False,
2453    "locks": False,
2454    "sample": False,
2455    "settings": False,
2456    "format": False,
2457}
2458
2459
2460# https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-table?view=sql-server-ver16
2461class WithTableHint(Expression):
2462    arg_types = {"expressions": True}
2463
2464
2465# https://dev.mysql.com/doc/refman/8.0/en/index-hints.html
2466class IndexTableHint(Expression):
2467    arg_types = {"this": True, "expressions": False, "target": False}
2468
2469
2470class Table(Expression):
2471    arg_types = {
2472        "this": True,
2473        "alias": False,
2474        "db": False,
2475        "catalog": False,
2476        "laterals": False,
2477        "joins": False,
2478        "pivots": False,
2479        "hints": False,
2480        "system_time": False,
2481        "version": False,
2482        "format": False,
2483        "pattern": False,
2484        "index": False,
2485    }
2486
2487    @property
2488    def name(self) -> str:
2489        if isinstance(self.this, Func):
2490            return ""
2491        return self.this.name
2492
2493    @property
2494    def db(self) -> str:
2495        return self.text("db")
2496
2497    @property
2498    def catalog(self) -> str:
2499        return self.text("catalog")
2500
2501    @property
2502    def selects(self) -> t.List[Expression]:
2503        return []
2504
2505    @property
2506    def named_selects(self) -> t.List[str]:
2507        return []
2508
2509    @property
2510    def parts(self) -> t.List[Expression]:
2511        """Return the parts of a table in order catalog, db, table."""
2512        parts: t.List[Expression] = []
2513
2514        for arg in ("catalog", "db", "this"):
2515            part = self.args.get(arg)
2516
2517            if isinstance(part, Dot):
2518                parts.extend(part.flatten())
2519            elif isinstance(part, Expression):
2520                parts.append(part)
2521
2522        return parts
2523
2524
2525class Union(Subqueryable):
2526    arg_types = {
2527        "with": False,
2528        "this": True,
2529        "expression": True,
2530        "distinct": False,
2531        "by_name": False,
2532        **QUERY_MODIFIERS,
2533    }
2534
2535    def limit(
2536        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2537    ) -> Select:
2538        """
2539        Set the LIMIT expression.
2540
2541        Example:
2542            >>> select("1").union(select("1")).limit(1).sql()
2543            'SELECT * FROM (SELECT 1 UNION SELECT 1) AS _l_0 LIMIT 1'
2544
2545        Args:
2546            expression: the SQL code string to parse.
2547                This can also be an integer.
2548                If a `Limit` instance is passed, this is used as-is.
2549                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2550            dialect: the dialect used to parse the input expression.
2551            copy: if `False`, modify this expression instance in-place.
2552            opts: other options to use to parse the input expressions.
2553
2554        Returns:
2555            The limited subqueryable.
2556        """
2557        return (
2558            select("*")
2559            .from_(self.subquery(alias="_l_0", copy=copy))
2560            .limit(expression, dialect=dialect, copy=False, **opts)
2561        )
2562
2563    def select(
2564        self,
2565        *expressions: t.Optional[ExpOrStr],
2566        append: bool = True,
2567        dialect: DialectType = None,
2568        copy: bool = True,
2569        **opts,
2570    ) -> Union:
2571        """Append to or set the SELECT of the union recursively.
2572
2573        Example:
2574            >>> from sqlglot import parse_one
2575            >>> parse_one("select a from x union select a from y union select a from z").select("b").sql()
2576            'SELECT a, b FROM x UNION SELECT a, b FROM y UNION SELECT a, b FROM z'
2577
2578        Args:
2579            *expressions: the SQL code strings to parse.
2580                If an `Expression` instance is passed, it will be used as-is.
2581            append: if `True`, add to any existing expressions.
2582                Otherwise, this resets the expressions.
2583            dialect: the dialect used to parse the input expressions.
2584            copy: if `False`, modify this expression instance in-place.
2585            opts: other options to use to parse the input expressions.
2586
2587        Returns:
2588            Union: the modified expression.
2589        """
2590        this = self.copy() if copy else self
2591        this.this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
2592        this.expression.unnest().select(
2593            *expressions, append=append, dialect=dialect, copy=False, **opts
2594        )
2595        return this
2596
2597    @property
2598    def named_selects(self) -> t.List[str]:
2599        return self.this.unnest().named_selects
2600
2601    @property
2602    def is_star(self) -> bool:
2603        return self.this.is_star or self.expression.is_star
2604
2605    @property
2606    def selects(self) -> t.List[Expression]:
2607        return self.this.unnest().selects
2608
2609    @property
2610    def left(self):
2611        return self.this
2612
2613    @property
2614    def right(self):
2615        return self.expression
2616
2617
2618class Except(Union):
2619    pass
2620
2621
2622class Intersect(Union):
2623    pass
2624
2625
2626class Unnest(UDTF):
2627    arg_types = {
2628        "expressions": True,
2629        "alias": False,
2630        "offset": False,
2631    }
2632
2633
2634class Update(Expression):
2635    arg_types = {
2636        "with": False,
2637        "this": False,
2638        "expressions": True,
2639        "from": False,
2640        "where": False,
2641        "returning": False,
2642        "order": False,
2643        "limit": False,
2644    }
2645
2646
2647class Values(UDTF):
2648    arg_types = {
2649        "expressions": True,
2650        "ordinality": False,
2651        "alias": False,
2652    }
2653
2654
2655class Var(Expression):
2656    pass
2657
2658
2659class Version(Expression):
2660    """
2661    Time travel, iceberg, bigquery etc
2662    https://trino.io/docs/current/connector/iceberg.html?highlight=snapshot#using-snapshots
2663    https://www.databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
2664    https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax#for_system_time_as_of
2665    https://learn.microsoft.com/en-us/sql/relational-databases/tables/querying-data-in-a-system-versioned-temporal-table?view=sql-server-ver16
2666    this is either TIMESTAMP or VERSION
2667    kind is ("AS OF", "BETWEEN")
2668    """
2669
2670    arg_types = {"this": True, "kind": True, "expression": False}
2671
2672
2673class Schema(Expression):
2674    arg_types = {"this": False, "expressions": False}
2675
2676
2677# https://dev.mysql.com/doc/refman/8.0/en/select.html
2678# https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/SELECT.html
2679class Lock(Expression):
2680    arg_types = {"update": True, "expressions": False, "wait": False}
2681
2682
2683class Select(Subqueryable):
2684    arg_types = {
2685        "with": False,
2686        "kind": False,
2687        "expressions": False,
2688        "hint": False,
2689        "distinct": False,
2690        "into": False,
2691        "from": False,
2692        **QUERY_MODIFIERS,
2693    }
2694
2695    def from_(
2696        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
2697    ) -> Select:
2698        """
2699        Set the FROM expression.
2700
2701        Example:
2702            >>> Select().from_("tbl").select("x").sql()
2703            'SELECT x FROM tbl'
2704
2705        Args:
2706            expression : the SQL code strings to parse.
2707                If a `From` instance is passed, this is used as-is.
2708                If another `Expression` instance is passed, it will be wrapped in a `From`.
2709            dialect: the dialect used to parse the input expression.
2710            copy: if `False`, modify this expression instance in-place.
2711            opts: other options to use to parse the input expressions.
2712
2713        Returns:
2714            The modified Select expression.
2715        """
2716        return _apply_builder(
2717            expression=expression,
2718            instance=self,
2719            arg="from",
2720            into=From,
2721            prefix="FROM",
2722            dialect=dialect,
2723            copy=copy,
2724            **opts,
2725        )
2726
2727    def group_by(
2728        self,
2729        *expressions: t.Optional[ExpOrStr],
2730        append: bool = True,
2731        dialect: DialectType = None,
2732        copy: bool = True,
2733        **opts,
2734    ) -> Select:
2735        """
2736        Set the GROUP BY expression.
2737
2738        Example:
2739            >>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
2740            'SELECT x, COUNT(1) FROM tbl GROUP BY x'
2741
2742        Args:
2743            *expressions: the SQL code strings to parse.
2744                If a `Group` instance is passed, this is used as-is.
2745                If another `Expression` instance is passed, it will be wrapped in a `Group`.
2746                If nothing is passed in then a group by is not applied to the expression
2747            append: if `True`, add to any existing expressions.
2748                Otherwise, this flattens all the `Group` expression into a single expression.
2749            dialect: the dialect used to parse the input expression.
2750            copy: if `False`, modify this expression instance in-place.
2751            opts: other options to use to parse the input expressions.
2752
2753        Returns:
2754            The modified Select expression.
2755        """
2756        if not expressions:
2757            return self if not copy else self.copy()
2758
2759        return _apply_child_list_builder(
2760            *expressions,
2761            instance=self,
2762            arg="group",
2763            append=append,
2764            copy=copy,
2765            prefix="GROUP BY",
2766            into=Group,
2767            dialect=dialect,
2768            **opts,
2769        )
2770
2771    def order_by(
2772        self,
2773        *expressions: t.Optional[ExpOrStr],
2774        append: bool = True,
2775        dialect: DialectType = None,
2776        copy: bool = True,
2777        **opts,
2778    ) -> Select:
2779        """
2780        Set the ORDER BY expression.
2781
2782        Example:
2783            >>> Select().from_("tbl").select("x").order_by("x DESC").sql()
2784            'SELECT x FROM tbl ORDER BY x DESC'
2785
2786        Args:
2787            *expressions: the SQL code strings to parse.
2788                If a `Group` instance is passed, this is used as-is.
2789                If another `Expression` instance is passed, it will be wrapped in a `Order`.
2790            append: if `True`, add to any existing expressions.
2791                Otherwise, this flattens all the `Order` expression into a single expression.
2792            dialect: the dialect used to parse the input expression.
2793            copy: if `False`, modify this expression instance in-place.
2794            opts: other options to use to parse the input expressions.
2795
2796        Returns:
2797            The modified Select expression.
2798        """
2799        return _apply_child_list_builder(
2800            *expressions,
2801            instance=self,
2802            arg="order",
2803            append=append,
2804            copy=copy,
2805            prefix="ORDER BY",
2806            into=Order,
2807            dialect=dialect,
2808            **opts,
2809        )
2810
2811    def sort_by(
2812        self,
2813        *expressions: t.Optional[ExpOrStr],
2814        append: bool = True,
2815        dialect: DialectType = None,
2816        copy: bool = True,
2817        **opts,
2818    ) -> Select:
2819        """
2820        Set the SORT BY expression.
2821
2822        Example:
2823            >>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
2824            'SELECT x FROM tbl SORT BY x DESC'
2825
2826        Args:
2827            *expressions: the SQL code strings to parse.
2828                If a `Group` instance is passed, this is used as-is.
2829                If another `Expression` instance is passed, it will be wrapped in a `SORT`.
2830            append: if `True`, add to any existing expressions.
2831                Otherwise, this flattens all the `Order` expression into a single expression.
2832            dialect: the dialect used to parse the input expression.
2833            copy: if `False`, modify this expression instance in-place.
2834            opts: other options to use to parse the input expressions.
2835
2836        Returns:
2837            The modified Select expression.
2838        """
2839        return _apply_child_list_builder(
2840            *expressions,
2841            instance=self,
2842            arg="sort",
2843            append=append,
2844            copy=copy,
2845            prefix="SORT BY",
2846            into=Sort,
2847            dialect=dialect,
2848            **opts,
2849        )
2850
2851    def cluster_by(
2852        self,
2853        *expressions: t.Optional[ExpOrStr],
2854        append: bool = True,
2855        dialect: DialectType = None,
2856        copy: bool = True,
2857        **opts,
2858    ) -> Select:
2859        """
2860        Set the CLUSTER BY expression.
2861
2862        Example:
2863            >>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
2864            'SELECT x FROM tbl CLUSTER BY x DESC'
2865
2866        Args:
2867            *expressions: the SQL code strings to parse.
2868                If a `Group` instance is passed, this is used as-is.
2869                If another `Expression` instance is passed, it will be wrapped in a `Cluster`.
2870            append: if `True`, add to any existing expressions.
2871                Otherwise, this flattens all the `Order` expression into a single expression.
2872            dialect: the dialect used to parse the input expression.
2873            copy: if `False`, modify this expression instance in-place.
2874            opts: other options to use to parse the input expressions.
2875
2876        Returns:
2877            The modified Select expression.
2878        """
2879        return _apply_child_list_builder(
2880            *expressions,
2881            instance=self,
2882            arg="cluster",
2883            append=append,
2884            copy=copy,
2885            prefix="CLUSTER BY",
2886            into=Cluster,
2887            dialect=dialect,
2888            **opts,
2889        )
2890
2891    def limit(
2892        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2893    ) -> Select:
2894        """
2895        Set the LIMIT expression.
2896
2897        Example:
2898            >>> Select().from_("tbl").select("x").limit(10).sql()
2899            'SELECT x FROM tbl LIMIT 10'
2900
2901        Args:
2902            expression: the SQL code string to parse.
2903                This can also be an integer.
2904                If a `Limit` instance is passed, this is used as-is.
2905                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2906            dialect: the dialect used to parse the input expression.
2907            copy: if `False`, modify this expression instance in-place.
2908            opts: other options to use to parse the input expressions.
2909
2910        Returns:
2911            Select: the modified expression.
2912        """
2913        return _apply_builder(
2914            expression=expression,
2915            instance=self,
2916            arg="limit",
2917            into=Limit,
2918            prefix="LIMIT",
2919            dialect=dialect,
2920            copy=copy,
2921            into_arg="expression",
2922            **opts,
2923        )
2924
2925    def offset(
2926        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2927    ) -> Select:
2928        """
2929        Set the OFFSET expression.
2930
2931        Example:
2932            >>> Select().from_("tbl").select("x").offset(10).sql()
2933            'SELECT x FROM tbl OFFSET 10'
2934
2935        Args:
2936            expression: the SQL code string to parse.
2937                This can also be an integer.
2938                If a `Offset` instance is passed, this is used as-is.
2939                If another `Expression` instance is passed, it will be wrapped in a `Offset`.
2940            dialect: the dialect used to parse the input expression.
2941            copy: if `False`, modify this expression instance in-place.
2942            opts: other options to use to parse the input expressions.
2943
2944        Returns:
2945            The modified Select expression.
2946        """
2947        return _apply_builder(
2948            expression=expression,
2949            instance=self,
2950            arg="offset",
2951            into=Offset,
2952            prefix="OFFSET",
2953            dialect=dialect,
2954            copy=copy,
2955            into_arg="expression",
2956            **opts,
2957        )
2958
2959    def select(
2960        self,
2961        *expressions: t.Optional[ExpOrStr],
2962        append: bool = True,
2963        dialect: DialectType = None,
2964        copy: bool = True,
2965        **opts,
2966    ) -> Select:
2967        """
2968        Append to or set the SELECT expressions.
2969
2970        Example:
2971            >>> Select().select("x", "y").sql()
2972            'SELECT x, y'
2973
2974        Args:
2975            *expressions: the SQL code strings to parse.
2976                If an `Expression` instance is passed, it will be used as-is.
2977            append: if `True`, add to any existing expressions.
2978                Otherwise, this resets the expressions.
2979            dialect: the dialect used to parse the input expressions.
2980            copy: if `False`, modify this expression instance in-place.
2981            opts: other options to use to parse the input expressions.
2982
2983        Returns:
2984            The modified Select expression.
2985        """
2986        return _apply_list_builder(
2987            *expressions,
2988            instance=self,
2989            arg="expressions",
2990            append=append,
2991            dialect=dialect,
2992            copy=copy,
2993            **opts,
2994        )
2995
2996    def lateral(
2997        self,
2998        *expressions: t.Optional[ExpOrStr],
2999        append: bool = True,
3000        dialect: DialectType = None,
3001        copy: bool = True,
3002        **opts,
3003    ) -> Select:
3004        """
3005        Append to or set the LATERAL expressions.
3006
3007        Example:
3008            >>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
3009            'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
3010
3011        Args:
3012            *expressions: the SQL code strings to parse.
3013                If an `Expression` instance is passed, it will be used as-is.
3014            append: if `True`, add to any existing expressions.
3015                Otherwise, this resets the expressions.
3016            dialect: the dialect used to parse the input expressions.
3017            copy: if `False`, modify this expression instance in-place.
3018            opts: other options to use to parse the input expressions.
3019
3020        Returns:
3021            The modified Select expression.
3022        """
3023        return _apply_list_builder(
3024            *expressions,
3025            instance=self,
3026            arg="laterals",
3027            append=append,
3028            into=Lateral,
3029            prefix="LATERAL VIEW",
3030            dialect=dialect,
3031            copy=copy,
3032            **opts,
3033        )
3034
3035    def join(
3036        self,
3037        expression: ExpOrStr,
3038        on: t.Optional[ExpOrStr] = None,
3039        using: t.Optional[ExpOrStr | t.Collection[ExpOrStr]] = None,
3040        append: bool = True,
3041        join_type: t.Optional[str] = None,
3042        join_alias: t.Optional[Identifier | str] = None,
3043        dialect: DialectType = None,
3044        copy: bool = True,
3045        **opts,
3046    ) -> Select:
3047        """
3048        Append to or set the JOIN expressions.
3049
3050        Example:
3051            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
3052            'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
3053
3054            >>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
3055            'SELECT 1 FROM a JOIN b USING (x, y, z)'
3056
3057            Use `join_type` to change the type of join:
3058
3059            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
3060            'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
3061
3062        Args:
3063            expression: the SQL code string to parse.
3064                If an `Expression` instance is passed, it will be used as-is.
3065            on: optionally specify the join "on" criteria as a SQL string.
3066                If an `Expression` instance is passed, it will be used as-is.
3067            using: optionally specify the join "using" criteria as a SQL string.
3068                If an `Expression` instance is passed, it will be used as-is.
3069            append: if `True`, add to any existing expressions.
3070                Otherwise, this resets the expressions.
3071            join_type: if set, alter the parsed join type.
3072            join_alias: an optional alias for the joined source.
3073            dialect: the dialect used to parse the input expressions.
3074            copy: if `False`, modify this expression instance in-place.
3075            opts: other options to use to parse the input expressions.
3076
3077        Returns:
3078            Select: the modified expression.
3079        """
3080        parse_args: t.Dict[str, t.Any] = {"dialect": dialect, **opts}
3081
3082        try:
3083            expression = maybe_parse(expression, into=Join, prefix="JOIN", **parse_args)
3084        except ParseError:
3085            expression = maybe_parse(expression, into=(Join, Expression), **parse_args)
3086
3087        join = expression if isinstance(expression, Join) else Join(this=expression)
3088
3089        if isinstance(join.this, Select):
3090            join.this.replace(join.this.subquery())
3091
3092        if join_type:
3093            method: t.Optional[Token]
3094            side: t.Optional[Token]
3095            kind: t.Optional[Token]
3096
3097            method, side, kind = maybe_parse(join_type, into="JOIN_TYPE", **parse_args)  # type: ignore
3098
3099            if method:
3100                join.set("method", method.text)
3101            if side:
3102                join.set("side", side.text)
3103            if kind:
3104                join.set("kind", kind.text)
3105
3106        if on:
3107            on = and_(*ensure_list(on), dialect=dialect, copy=copy, **opts)
3108            join.set("on", on)
3109
3110        if using:
3111            join = _apply_list_builder(
3112                *ensure_list(using),
3113                instance=join,
3114                arg="using",
3115                append=append,
3116                copy=copy,
3117                into=Identifier,
3118                **opts,
3119            )
3120
3121        if join_alias:
3122            join.set("this", alias_(join.this, join_alias, table=True))
3123
3124        return _apply_list_builder(
3125            join,
3126            instance=self,
3127            arg="joins",
3128            append=append,
3129            copy=copy,
3130            **opts,
3131        )
3132
3133    def where(
3134        self,
3135        *expressions: t.Optional[ExpOrStr],
3136        append: bool = True,
3137        dialect: DialectType = None,
3138        copy: bool = True,
3139        **opts,
3140    ) -> Select:
3141        """
3142        Append to or set the WHERE expressions.
3143
3144        Example:
3145            >>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
3146            "SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
3147
3148        Args:
3149            *expressions: the SQL code strings to parse.
3150                If an `Expression` instance is passed, it will be used as-is.
3151                Multiple expressions are combined with an AND operator.
3152            append: if `True`, AND the new expressions to any existing expression.
3153                Otherwise, this resets the expression.
3154            dialect: the dialect used to parse the input expressions.
3155            copy: if `False`, modify this expression instance in-place.
3156            opts: other options to use to parse the input expressions.
3157
3158        Returns:
3159            Select: the modified expression.
3160        """
3161        return _apply_conjunction_builder(
3162            *expressions,
3163            instance=self,
3164            arg="where",
3165            append=append,
3166            into=Where,
3167            dialect=dialect,
3168            copy=copy,
3169            **opts,
3170        )
3171
3172    def having(
3173        self,
3174        *expressions: t.Optional[ExpOrStr],
3175        append: bool = True,
3176        dialect: DialectType = None,
3177        copy: bool = True,
3178        **opts,
3179    ) -> Select:
3180        """
3181        Append to or set the HAVING expressions.
3182
3183        Example:
3184            >>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
3185            'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
3186
3187        Args:
3188            *expressions: the SQL code strings to parse.
3189                If an `Expression` instance is passed, it will be used as-is.
3190                Multiple expressions are combined with an AND operator.
3191            append: if `True`, AND the new expressions to any existing expression.
3192                Otherwise, this resets the expression.
3193            dialect: the dialect used to parse the input expressions.
3194            copy: if `False`, modify this expression instance in-place.
3195            opts: other options to use to parse the input expressions.
3196
3197        Returns:
3198            The modified Select expression.
3199        """
3200        return _apply_conjunction_builder(
3201            *expressions,
3202            instance=self,
3203            arg="having",
3204            append=append,
3205            into=Having,
3206            dialect=dialect,
3207            copy=copy,
3208            **opts,
3209        )
3210
3211    def window(
3212        self,
3213        *expressions: t.Optional[ExpOrStr],
3214        append: bool = True,
3215        dialect: DialectType = None,
3216        copy: bool = True,
3217        **opts,
3218    ) -> Select:
3219        return _apply_list_builder(
3220            *expressions,
3221            instance=self,
3222            arg="windows",
3223            append=append,
3224            into=Window,
3225            dialect=dialect,
3226            copy=copy,
3227            **opts,
3228        )
3229
3230    def qualify(
3231        self,
3232        *expressions: t.Optional[ExpOrStr],
3233        append: bool = True,
3234        dialect: DialectType = None,
3235        copy: bool = True,
3236        **opts,
3237    ) -> Select:
3238        return _apply_conjunction_builder(
3239            *expressions,
3240            instance=self,
3241            arg="qualify",
3242            append=append,
3243            into=Qualify,
3244            dialect=dialect,
3245            copy=copy,
3246            **opts,
3247        )
3248
3249    def distinct(
3250        self, *ons: t.Optional[ExpOrStr], distinct: bool = True, copy: bool = True
3251    ) -> Select:
3252        """
3253        Set the OFFSET expression.
3254
3255        Example:
3256            >>> Select().from_("tbl").select("x").distinct().sql()
3257            'SELECT DISTINCT x FROM tbl'
3258
3259        Args:
3260            ons: the expressions to distinct on
3261            distinct: whether the Select should be distinct
3262            copy: if `False`, modify this expression instance in-place.
3263
3264        Returns:
3265            Select: the modified expression.
3266        """
3267        instance = maybe_copy(self, copy)
3268        on = Tuple(expressions=[maybe_parse(on, copy=copy) for on in ons if on]) if ons else None
3269        instance.set("distinct", Distinct(on=on) if distinct else None)
3270        return instance
3271
3272    def ctas(
3273        self,
3274        table: ExpOrStr,
3275        properties: t.Optional[t.Dict] = None,
3276        dialect: DialectType = None,
3277        copy: bool = True,
3278        **opts,
3279    ) -> Create:
3280        """
3281        Convert this expression to a CREATE TABLE AS statement.
3282
3283        Example:
3284            >>> Select().select("*").from_("tbl").ctas("x").sql()
3285            'CREATE TABLE x AS SELECT * FROM tbl'
3286
3287        Args:
3288            table: the SQL code string to parse as the table name.
3289                If another `Expression` instance is passed, it will be used as-is.
3290            properties: an optional mapping of table properties
3291            dialect: the dialect used to parse the input table.
3292            copy: if `False`, modify this expression instance in-place.
3293            opts: other options to use to parse the input table.
3294
3295        Returns:
3296            The new Create expression.
3297        """
3298        instance = maybe_copy(self, copy)
3299        table_expression = maybe_parse(
3300            table,
3301            into=Table,
3302            dialect=dialect,
3303            **opts,
3304        )
3305        properties_expression = None
3306        if properties:
3307            properties_expression = Properties.from_dict(properties)
3308
3309        return Create(
3310            this=table_expression,
3311            kind="table",
3312            expression=instance,
3313            properties=properties_expression,
3314        )
3315
3316    def lock(self, update: bool = True, copy: bool = True) -> Select:
3317        """
3318        Set the locking read mode for this expression.
3319
3320        Examples:
3321            >>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
3322            "SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
3323
3324            >>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
3325            "SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
3326
3327        Args:
3328            update: if `True`, the locking type will be `FOR UPDATE`, else it will be `FOR SHARE`.
3329            copy: if `False`, modify this expression instance in-place.
3330
3331        Returns:
3332            The modified expression.
3333        """
3334        inst = maybe_copy(self, copy)
3335        inst.set("locks", [Lock(update=update)])
3336
3337        return inst
3338
3339    def hint(self, *hints: ExpOrStr, dialect: DialectType = None, copy: bool = True) -> Select:
3340        """
3341        Set hints for this expression.
3342
3343        Examples:
3344            >>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
3345            'SELECT /*+ BROADCAST(y) */ x FROM tbl'
3346
3347        Args:
3348            hints: The SQL code strings to parse as the hints.
3349                If an `Expression` instance is passed, it will be used as-is.
3350            dialect: The dialect used to parse the hints.
3351            copy: If `False`, modify this expression instance in-place.
3352
3353        Returns:
3354            The modified expression.
3355        """
3356        inst = maybe_copy(self, copy)
3357        inst.set(
3358            "hint", Hint(expressions=[maybe_parse(h, copy=copy, dialect=dialect) for h in hints])
3359        )
3360
3361        return inst
3362
3363    @property
3364    def named_selects(self) -> t.List[str]:
3365        return [e.output_name for e in self.expressions if e.alias_or_name]
3366
3367    @property
3368    def is_star(self) -> bool:
3369        return any(expression.is_star for expression in self.expressions)
3370
3371    @property
3372    def selects(self) -> t.List[Expression]:
3373        return self.expressions
3374
3375
3376class Subquery(DerivedTable, Unionable):
3377    arg_types = {
3378        "this": True,
3379        "alias": False,
3380        "with": False,
3381        **QUERY_MODIFIERS,
3382    }
3383
3384    def unnest(self):
3385        """
3386        Returns the first non subquery.
3387        """
3388        expression = self
3389        while isinstance(expression, Subquery):
3390            expression = expression.this
3391        return expression
3392
3393    def unwrap(self) -> Subquery:
3394        expression = self
3395        while expression.same_parent and expression.is_wrapper:
3396            expression = t.cast(Subquery, expression.parent)
3397        return expression
3398
3399    @property
3400    def is_wrapper(self) -> bool:
3401        """
3402        Whether this Subquery acts as a simple wrapper around another expression.
3403
3404        SELECT * FROM (((SELECT * FROM t)))
3405                      ^
3406                      This corresponds to a "wrapper" Subquery node
3407        """
3408        return all(v is None for k, v in self.args.items() if k != "this")
3409
3410    @property
3411    def is_star(self) -> bool:
3412        return self.this.is_star
3413
3414    @property
3415    def output_name(self) -> str:
3416        return self.alias
3417
3418
3419class TableSample(Expression):
3420    arg_types = {
3421        "this": False,
3422        "expressions": False,
3423        "method": False,
3424        "bucket_numerator": False,
3425        "bucket_denominator": False,
3426        "bucket_field": False,
3427        "percent": False,
3428        "rows": False,
3429        "size": False,
3430        "seed": False,
3431        "kind": False,
3432    }
3433
3434
3435class Tag(Expression):
3436    """Tags are used for generating arbitrary sql like SELECT <span>x</span>."""
3437
3438    arg_types = {
3439        "this": False,
3440        "prefix": False,
3441        "postfix": False,
3442    }
3443
3444
3445# Represents both the standard SQL PIVOT operator and DuckDB's "simplified" PIVOT syntax
3446# https://duckdb.org/docs/sql/statements/pivot
3447class Pivot(Expression):
3448    arg_types = {
3449        "this": False,
3450        "alias": False,
3451        "expressions": False,
3452        "field": False,
3453        "unpivot": False,
3454        "using": False,
3455        "group": False,
3456        "columns": False,
3457        "include_nulls": False,
3458    }
3459
3460
3461class Window(Condition):
3462    arg_types = {
3463        "this": True,
3464        "partition_by": False,
3465        "order": False,
3466        "spec": False,
3467        "alias": False,
3468        "over": False,
3469        "first": False,
3470    }
3471
3472
3473class WindowSpec(Expression):
3474    arg_types = {
3475        "kind": False,
3476        "start": False,
3477        "start_side": False,
3478        "end": False,
3479        "end_side": False,
3480    }
3481
3482
3483class Where(Expression):
3484    pass
3485
3486
3487class Star(Expression):
3488    arg_types = {"except": False, "replace": False}
3489
3490    @property
3491    def name(self) -> str:
3492        return "*"
3493
3494    @property
3495    def output_name(self) -> str:
3496        return self.name
3497
3498
3499class Parameter(Condition):
3500    arg_types = {"this": True, "wrapped": False}
3501
3502
3503class SessionParameter(Condition):
3504    arg_types = {"this": True, "kind": False}
3505
3506
3507class Placeholder(Condition):
3508    arg_types = {"this": False, "kind": False}
3509
3510
3511class Null(Condition):
3512    arg_types: t.Dict[str, t.Any] = {}
3513
3514    @property
3515    def name(self) -> str:
3516        return "NULL"
3517
3518
3519class Boolean(Condition):
3520    pass
3521
3522
3523class DataTypeParam(Expression):
3524    arg_types = {"this": True, "expression": False}
3525
3526
3527class DataType(Expression):
3528    arg_types = {
3529        "this": True,
3530        "expressions": False,
3531        "nested": False,
3532        "values": False,
3533        "prefix": False,
3534        "kind": False,
3535    }
3536
3537    class Type(AutoName):
3538        ARRAY = auto()
3539        BIGDECIMAL = auto()
3540        BIGINT = auto()
3541        BIGSERIAL = auto()
3542        BINARY = auto()
3543        BIT = auto()
3544        BOOLEAN = auto()
3545        CHAR = auto()
3546        DATE = auto()
3547        DATEMULTIRANGE = auto()
3548        DATERANGE = auto()
3549        DATETIME = auto()
3550        DATETIME64 = auto()
3551        DECIMAL = auto()
3552        DOUBLE = auto()
3553        ENUM = auto()
3554        ENUM8 = auto()
3555        ENUM16 = auto()
3556        FIXEDSTRING = auto()
3557        FLOAT = auto()
3558        GEOGRAPHY = auto()
3559        GEOMETRY = auto()
3560        HLLSKETCH = auto()
3561        HSTORE = auto()
3562        IMAGE = auto()
3563        INET = auto()
3564        INT = auto()
3565        INT128 = auto()
3566        INT256 = auto()
3567        INT4MULTIRANGE = auto()
3568        INT4RANGE = auto()
3569        INT8MULTIRANGE = auto()
3570        INT8RANGE = auto()
3571        INTERVAL = auto()
3572        IPADDRESS = auto()
3573        IPPREFIX = auto()
3574        JSON = auto()
3575        JSONB = auto()
3576        LONGBLOB = auto()
3577        LONGTEXT = auto()
3578        LOWCARDINALITY = auto()
3579        MAP = auto()
3580        MEDIUMBLOB = auto()
3581        MEDIUMINT = auto()
3582        MEDIUMTEXT = auto()
3583        MONEY = auto()
3584        NCHAR = auto()
3585        NESTED = auto()
3586        NULL = auto()
3587        NULLABLE = auto()
3588        NUMMULTIRANGE = auto()
3589        NUMRANGE = auto()
3590        NVARCHAR = auto()
3591        OBJECT = auto()
3592        ROWVERSION = auto()
3593        SERIAL = auto()
3594        SET = auto()
3595        SMALLINT = auto()
3596        SMALLMONEY = auto()
3597        SMALLSERIAL = auto()
3598        STRUCT = auto()
3599        SUPER = auto()
3600        TEXT = auto()
3601        TINYBLOB = auto()
3602        TINYTEXT = auto()
3603        TIME = auto()
3604        TIMETZ = auto()
3605        TIMESTAMP = auto()
3606        TIMESTAMPLTZ = auto()
3607        TIMESTAMPTZ = auto()
3608        TINYINT = auto()
3609        TSMULTIRANGE = auto()
3610        TSRANGE = auto()
3611        TSTZMULTIRANGE = auto()
3612        TSTZRANGE = auto()
3613        UBIGINT = auto()
3614        UINT = auto()
3615        UINT128 = auto()
3616        UINT256 = auto()
3617        UMEDIUMINT = auto()
3618        UDECIMAL = auto()
3619        UNIQUEIDENTIFIER = auto()
3620        UNKNOWN = auto()  # Sentinel value, useful for type annotation
3621        USERDEFINED = "USER-DEFINED"
3622        USMALLINT = auto()
3623        UTINYINT = auto()
3624        UUID = auto()
3625        VARBINARY = auto()
3626        VARCHAR = auto()
3627        VARIANT = auto()
3628        XML = auto()
3629        YEAR = auto()
3630
3631    TEXT_TYPES = {
3632        Type.CHAR,
3633        Type.NCHAR,
3634        Type.VARCHAR,
3635        Type.NVARCHAR,
3636        Type.TEXT,
3637    }
3638
3639    INTEGER_TYPES = {
3640        Type.INT,
3641        Type.TINYINT,
3642        Type.SMALLINT,
3643        Type.BIGINT,
3644        Type.INT128,
3645        Type.INT256,
3646    }
3647
3648    FLOAT_TYPES = {
3649        Type.FLOAT,
3650        Type.DOUBLE,
3651    }
3652
3653    NUMERIC_TYPES = {
3654        *INTEGER_TYPES,
3655        *FLOAT_TYPES,
3656    }
3657
3658    TEMPORAL_TYPES = {
3659        Type.TIME,
3660        Type.TIMETZ,
3661        Type.TIMESTAMP,
3662        Type.TIMESTAMPTZ,
3663        Type.TIMESTAMPLTZ,
3664        Type.DATE,
3665        Type.DATETIME,
3666        Type.DATETIME64,
3667    }
3668
3669    @classmethod
3670    def build(
3671        cls,
3672        dtype: str | DataType | DataType.Type,
3673        dialect: DialectType = None,
3674        udt: bool = False,
3675        **kwargs,
3676    ) -> DataType:
3677        """
3678        Constructs a DataType object.
3679
3680        Args:
3681            dtype: the data type of interest.
3682            dialect: the dialect to use for parsing `dtype`, in case it's a string.
3683            udt: when set to True, `dtype` will be used as-is if it can't be parsed into a
3684                DataType, thus creating a user-defined type.
3685            kawrgs: additional arguments to pass in the constructor of DataType.
3686
3687        Returns:
3688            The constructed DataType object.
3689        """
3690        from sqlglot import parse_one
3691
3692        if isinstance(dtype, str):
3693            if dtype.upper() == "UNKNOWN":
3694                return DataType(this=DataType.Type.UNKNOWN, **kwargs)
3695
3696            try:
3697                data_type_exp = parse_one(dtype, read=dialect, into=DataType)
3698            except ParseError:
3699                if udt:
3700                    return DataType(this=DataType.Type.USERDEFINED, kind=dtype, **kwargs)
3701                raise
3702        elif isinstance(dtype, DataType.Type):
3703            data_type_exp = DataType(this=dtype)
3704        elif isinstance(dtype, DataType):
3705            return dtype
3706        else:
3707            raise ValueError(f"Invalid data type: {type(dtype)}. Expected str or DataType.Type")
3708
3709        return DataType(**{**data_type_exp.args, **kwargs})
3710
3711    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3712        """
3713        Checks whether this DataType matches one of the provided data types. Nested types or precision
3714        will be compared using "structural equivalence" semantics, so e.g. array<int> != array<float>.
3715
3716        Args:
3717            dtypes: the data types to compare this DataType to.
3718
3719        Returns:
3720            True, if and only if there is a type in `dtypes` which is equal to this DataType.
3721        """
3722        for dtype in dtypes:
3723            other = DataType.build(dtype, udt=True)
3724
3725            if (
3726                other.expressions
3727                or self.this == DataType.Type.USERDEFINED
3728                or other.this == DataType.Type.USERDEFINED
3729            ):
3730                matches = self == other
3731            else:
3732                matches = self.this == other.this
3733
3734            if matches:
3735                return True
3736        return False
3737
3738
3739# https://www.postgresql.org/docs/15/datatype-pseudo.html
3740class PseudoType(DataType):
3741    arg_types = {"this": True}
3742
3743
3744# https://www.postgresql.org/docs/15/datatype-oid.html
3745class ObjectIdentifier(DataType):
3746    arg_types = {"this": True}
3747
3748
3749# WHERE x <OP> EXISTS|ALL|ANY|SOME(SELECT ...)
3750class SubqueryPredicate(Predicate):
3751    pass
3752
3753
3754class All(SubqueryPredicate):
3755    pass
3756
3757
3758class Any(SubqueryPredicate):
3759    pass
3760
3761
3762class Exists(SubqueryPredicate):
3763    pass
3764
3765
3766# Commands to interact with the databases or engines. For most of the command
3767# expressions we parse whatever comes after the command's name as a string.
3768class Command(Expression):
3769    arg_types = {"this": True, "expression": False}
3770
3771
3772class Transaction(Expression):
3773    arg_types = {"this": False, "modes": False, "mark": False}
3774
3775
3776class Commit(Expression):
3777    arg_types = {"chain": False, "this": False, "durability": False}
3778
3779
3780class Rollback(Expression):
3781    arg_types = {"savepoint": False, "this": False}
3782
3783
3784class AlterTable(Expression):
3785    arg_types = {"this": True, "actions": True, "exists": False, "only": False}
3786
3787
3788class AddConstraint(Expression):
3789    arg_types = {"this": False, "expression": False, "enforced": False}
3790
3791
3792class DropPartition(Expression):
3793    arg_types = {"expressions": True, "exists": False}
3794
3795
3796# Binary expressions like (ADD a b)
3797class Binary(Condition):
3798    arg_types = {"this": True, "expression": True}
3799
3800    @property
3801    def left(self):
3802        return self.this
3803
3804    @property
3805    def right(self):
3806        return self.expression
3807
3808
3809class Add(Binary):
3810    pass
3811
3812
3813class Connector(Binary):
3814    pass
3815
3816
3817class And(Connector):
3818    pass
3819
3820
3821class Or(Connector):
3822    pass
3823
3824
3825class BitwiseAnd(Binary):
3826    pass
3827
3828
3829class BitwiseLeftShift(Binary):
3830    pass
3831
3832
3833class BitwiseOr(Binary):
3834    pass
3835
3836
3837class BitwiseRightShift(Binary):
3838    pass
3839
3840
3841class BitwiseXor(Binary):
3842    pass
3843
3844
3845class Div(Binary):
3846    pass
3847
3848
3849class Overlaps(Binary):
3850    pass
3851
3852
3853class Dot(Binary):
3854    @property
3855    def name(self) -> str:
3856        return self.expression.name
3857
3858    @property
3859    def output_name(self) -> str:
3860        return self.name
3861
3862    @classmethod
3863    def build(self, expressions: t.Sequence[Expression]) -> Dot:
3864        """Build a Dot object with a sequence of expressions."""
3865        if len(expressions) < 2:
3866            raise ValueError(f"Dot requires >= 2 expressions.")
3867
3868        return t.cast(Dot, reduce(lambda x, y: Dot(this=x, expression=y), expressions))
3869
3870
3871class DPipe(Binary):
3872    pass
3873
3874
3875class SafeDPipe(DPipe):
3876    pass
3877
3878
3879class EQ(Binary, Predicate):
3880    pass
3881
3882
3883class NullSafeEQ(Binary, Predicate):
3884    pass
3885
3886
3887class NullSafeNEQ(Binary, Predicate):
3888    pass
3889
3890
3891class Distance(Binary):
3892    pass
3893
3894
3895class Escape(Binary):
3896    pass
3897
3898
3899class Glob(Binary, Predicate):
3900    pass
3901
3902
3903class GT(Binary, Predicate):
3904    pass
3905
3906
3907class GTE(Binary, Predicate):
3908    pass
3909
3910
3911class ILike(Binary, Predicate):
3912    pass
3913
3914
3915class ILikeAny(Binary, Predicate):
3916    pass
3917
3918
3919class IntDiv(Binary):
3920    pass
3921
3922
3923class Is(Binary, Predicate):
3924    pass
3925
3926
3927class Kwarg(Binary):
3928    """Kwarg in special functions like func(kwarg => y)."""
3929
3930
3931class Like(Binary, Predicate):
3932    pass
3933
3934
3935class LikeAny(Binary, Predicate):
3936    pass
3937
3938
3939class LT(Binary, Predicate):
3940    pass
3941
3942
3943class LTE(Binary, Predicate):
3944    pass
3945
3946
3947class Mod(Binary):
3948    pass
3949
3950
3951class Mul(Binary):
3952    pass
3953
3954
3955class NEQ(Binary, Predicate):
3956    pass
3957
3958
3959class SimilarTo(Binary, Predicate):
3960    pass
3961
3962
3963class Slice(Binary):
3964    arg_types = {"this": False, "expression": False}
3965
3966
3967class Sub(Binary):
3968    pass
3969
3970
3971class ArrayOverlaps(Binary):
3972    pass
3973
3974
3975# Unary Expressions
3976# (NOT a)
3977class Unary(Condition):
3978    pass
3979
3980
3981class BitwiseNot(Unary):
3982    pass
3983
3984
3985class Not(Unary):
3986    pass
3987
3988
3989class Paren(Unary):
3990    arg_types = {"this": True, "with": False}
3991
3992    @property
3993    def output_name(self) -> str:
3994        return self.this.name
3995
3996
3997class Neg(Unary):
3998    pass
3999
4000
4001class Alias(Expression):
4002    arg_types = {"this": True, "alias": False}
4003
4004    @property
4005    def output_name(self) -> str:
4006        return self.alias
4007
4008
4009class Aliases(Expression):
4010    arg_types = {"this": True, "expressions": True}
4011
4012    @property
4013    def aliases(self):
4014        return self.expressions
4015
4016
4017class AtTimeZone(Expression):
4018    arg_types = {"this": True, "zone": True}
4019
4020
4021class Between(Predicate):
4022    arg_types = {"this": True, "low": True, "high": True}
4023
4024
4025class Bracket(Condition):
4026    arg_types = {"this": True, "expressions": True}
4027
4028    @property
4029    def output_name(self) -> str:
4030        if len(self.expressions) == 1:
4031            return self.expressions[0].output_name
4032
4033        return super().output_name
4034
4035
4036class SafeBracket(Bracket):
4037    """Represents array lookup where OOB index yields NULL instead of causing a failure."""
4038
4039
4040class Distinct(Expression):
4041    arg_types = {"expressions": False, "on": False}
4042
4043
4044class In(Predicate):
4045    arg_types = {
4046        "this": True,
4047        "expressions": False,
4048        "query": False,
4049        "unnest": False,
4050        "field": False,
4051        "is_global": False,
4052    }
4053
4054
4055class TimeUnit(Expression):
4056    """Automatically converts unit arg into a var."""
4057
4058    arg_types = {"unit": False}
4059
4060    def __init__(self, **args):
4061        unit = args.get("unit")
4062        if isinstance(unit, (Column, Literal)):
4063            args["unit"] = Var(this=unit.name)
4064        elif isinstance(unit, Week):
4065            unit.set("this", Var(this=unit.this.name))
4066
4067        super().__init__(**args)
4068
4069    @property
4070    def unit(self) -> t.Optional[Var]:
4071        return self.args.get("unit")
4072
4073
4074class IntervalOp(TimeUnit):
4075    arg_types = {"unit": True, "expression": True}
4076
4077    def interval(self):
4078        return Interval(
4079            this=self.expression.copy(),
4080            unit=self.unit.copy(),
4081        )
4082
4083
4084# https://www.oracletutorial.com/oracle-basics/oracle-interval/
4085# https://trino.io/docs/current/language/types.html#interval-day-to-second
4086# https://docs.databricks.com/en/sql/language-manual/data-types/interval-type.html
4087class IntervalSpan(DataType):
4088    arg_types = {"this": True, "expression": True}
4089
4090
4091class Interval(TimeUnit):
4092    arg_types = {"this": False, "unit": False}
4093
4094
4095class IgnoreNulls(Expression):
4096    pass
4097
4098
4099class RespectNulls(Expression):
4100    pass
4101
4102
4103# Functions
4104class Func(Condition):
4105    """
4106    The base class for all function expressions.
4107
4108    Attributes:
4109        is_var_len_args (bool): if set to True the last argument defined in arg_types will be
4110            treated as a variable length argument and the argument's value will be stored as a list.
4111        _sql_names (list): determines the SQL name (1st item in the list) and aliases (subsequent items)
4112            for this function expression. These values are used to map this node to a name during parsing
4113            as well as to provide the function's name during SQL string generation. By default the SQL
4114            name is set to the expression's class name transformed to snake case.
4115    """
4116
4117    is_var_len_args = False
4118
4119    @classmethod
4120    def from_arg_list(cls, args):
4121        if cls.is_var_len_args:
4122            all_arg_keys = list(cls.arg_types)
4123            # If this function supports variable length argument treat the last argument as such.
4124            non_var_len_arg_keys = all_arg_keys[:-1] if cls.is_var_len_args else all_arg_keys
4125            num_non_var = len(non_var_len_arg_keys)
4126
4127            args_dict = {arg_key: arg for arg, arg_key in zip(args, non_var_len_arg_keys)}
4128            args_dict[all_arg_keys[-1]] = args[num_non_var:]
4129        else:
4130            args_dict = {arg_key: arg for arg, arg_key in zip(args, cls.arg_types)}
4131
4132        return cls(**args_dict)
4133
4134    @classmethod
4135    def sql_names(cls):
4136        if cls is Func:
4137            raise NotImplementedError(
4138                "SQL name is only supported by concrete function implementations"
4139            )
4140        if "_sql_names" not in cls.__dict__:
4141            cls._sql_names = [camel_to_snake_case(cls.__name__)]
4142        return cls._sql_names
4143
4144    @classmethod
4145    def sql_name(cls):
4146        return cls.sql_names()[0]
4147
4148    @classmethod
4149    def default_parser_mappings(cls):
4150        return {name: cls.from_arg_list for name in cls.sql_names()}
4151
4152
4153class AggFunc(Func):
4154    pass
4155
4156
4157class ParameterizedAgg(AggFunc):
4158    arg_types = {"this": True, "expressions": True, "params": True}
4159
4160
4161class Abs(Func):
4162    pass
4163
4164
4165# https://spark.apache.org/docs/latest/api/sql/index.html#transform
4166class Transform(Func):
4167    arg_types = {"this": True, "expression": True}
4168
4169
4170class Anonymous(Func):
4171    arg_types = {"this": True, "expressions": False}
4172    is_var_len_args = True
4173
4174
4175# https://docs.snowflake.com/en/sql-reference/functions/hll
4176# https://docs.aws.amazon.com/redshift/latest/dg/r_HLL_function.html
4177class Hll(AggFunc):
4178    arg_types = {"this": True, "expressions": False}
4179    is_var_len_args = True
4180
4181
4182class ApproxDistinct(AggFunc):
4183    arg_types = {"this": True, "accuracy": False}
4184    _sql_names = ["APPROX_DISTINCT", "APPROX_COUNT_DISTINCT"]
4185
4186
4187class Array(Func):
4188    arg_types = {"expressions": False}
4189    is_var_len_args = True
4190
4191
4192# https://docs.snowflake.com/en/sql-reference/functions/to_char
4193class ToChar(Func):
4194    arg_types = {"this": True, "format": False}
4195
4196
4197class GenerateSeries(Func):
4198    arg_types = {"start": True, "end": True, "step": False}
4199
4200
4201class ArrayAgg(AggFunc):
4202    pass
4203
4204
4205class ArrayAll(Func):
4206    arg_types = {"this": True, "expression": True}
4207
4208
4209class ArrayAny(Func):
4210    arg_types = {"this": True, "expression": True}
4211
4212
4213class ArrayConcat(Func):
4214    _sql_names = ["ARRAY_CONCAT", "ARRAY_CAT"]
4215    arg_types = {"this": True, "expressions": False}
4216    is_var_len_args = True
4217
4218
4219class ArrayContains(Binary, Func):
4220    pass
4221
4222
4223class ArrayContained(Binary):
4224    pass
4225
4226
4227class ArrayFilter(Func):
4228    arg_types = {"this": True, "expression": True}
4229    _sql_names = ["FILTER", "ARRAY_FILTER"]
4230
4231
4232class ArrayJoin(Func):
4233    arg_types = {"this": True, "expression": True, "null": False}
4234
4235
4236class ArraySize(Func):
4237    arg_types = {"this": True, "expression": False}
4238
4239
4240class ArraySort(Func):
4241    arg_types = {"this": True, "expression": False}
4242
4243
4244class ArraySum(Func):
4245    pass
4246
4247
4248class ArrayUnionAgg(AggFunc):
4249    pass
4250
4251
4252class Avg(AggFunc):
4253    pass
4254
4255
4256class AnyValue(AggFunc):
4257    arg_types = {"this": True, "having": False, "max": False, "ignore_nulls": False}
4258
4259
4260class First(Func):
4261    arg_types = {"this": True, "ignore_nulls": False}
4262
4263
4264class Last(Func):
4265    arg_types = {"this": True, "ignore_nulls": False}
4266
4267
4268class Case(Func):
4269    arg_types = {"this": False, "ifs": True, "default": False}
4270
4271    def when(self, condition: ExpOrStr, then: ExpOrStr, copy: bool = True, **opts) -> Case:
4272        instance = maybe_copy(self, copy)
4273        instance.append(
4274            "ifs",
4275            If(
4276                this=maybe_parse(condition, copy=copy, **opts),
4277                true=maybe_parse(then, copy=copy, **opts),
4278            ),
4279        )
4280        return instance
4281
4282    def else_(self, condition: ExpOrStr, copy: bool = True, **opts) -> Case:
4283        instance = maybe_copy(self, copy)
4284        instance.set("default", maybe_parse(condition, copy=copy, **opts))
4285        return instance
4286
4287
4288class Cast(Func):
4289    arg_types = {"this": True, "to": True, "format": False}
4290
4291    @property
4292    def name(self) -> str:
4293        return self.this.name
4294
4295    @property
4296    def to(self) -> DataType:
4297        return self.args["to"]
4298
4299    @property
4300    def output_name(self) -> str:
4301        return self.name
4302
4303    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
4304        """
4305        Checks whether this Cast's DataType matches one of the provided data types. Nested types
4306        like arrays or structs will be compared using "structural equivalence" semantics, so e.g.
4307        array<int> != array<float>.
4308
4309        Args:
4310            dtypes: the data types to compare this Cast's DataType to.
4311
4312        Returns:
4313            True, if and only if there is a type in `dtypes` which is equal to this Cast's DataType.
4314        """
4315        return self.to.is_type(*dtypes)
4316
4317
4318class TryCast(Cast):
4319    pass
4320
4321
4322class CastToStrType(Func):
4323    arg_types = {"this": True, "to": True}
4324
4325
4326class Collate(Binary, Func):
4327    pass
4328
4329
4330class Ceil(Func):
4331    arg_types = {"this": True, "decimals": False}
4332    _sql_names = ["CEIL", "CEILING"]
4333
4334
4335class Coalesce(Func):
4336    arg_types = {"this": True, "expressions": False}
4337    is_var_len_args = True
4338    _sql_names = ["COALESCE", "IFNULL", "NVL"]
4339
4340
4341class Chr(Func):
4342    arg_types = {"this": True, "charset": False, "expressions": False}
4343    is_var_len_args = True
4344    _sql_names = ["CHR", "CHAR"]
4345
4346
4347class Concat(Func):
4348    arg_types = {"expressions": True}
4349    is_var_len_args = True
4350
4351
4352class SafeConcat(Concat):
4353    pass
4354
4355
4356class ConcatWs(Concat):
4357    _sql_names = ["CONCAT_WS"]
4358
4359
4360class Count(AggFunc):
4361    arg_types = {"this": False, "expressions": False}
4362    is_var_len_args = True
4363
4364
4365class CountIf(AggFunc):
4366    pass
4367
4368
4369class CurrentDate(Func):
4370    arg_types = {"this": False}
4371
4372
4373class CurrentDatetime(Func):
4374    arg_types = {"this": False}
4375
4376
4377class CurrentTime(Func):
4378    arg_types = {"this": False}
4379
4380
4381class CurrentTimestamp(Func):
4382    arg_types = {"this": False}
4383
4384
4385class CurrentUser(Func):
4386    arg_types = {"this": False}
4387
4388
4389class DateAdd(Func, IntervalOp):
4390    arg_types = {"this": True, "expression": True, "unit": False}
4391
4392
4393class DateSub(Func, IntervalOp):
4394    arg_types = {"this": True, "expression": True, "unit": False}
4395
4396
4397class DateDiff(Func, TimeUnit):
4398    _sql_names = ["DATEDIFF", "DATE_DIFF"]
4399    arg_types = {"this": True, "expression": True, "unit": False}
4400
4401
4402class DateTrunc(Func):
4403    arg_types = {"unit": True, "this": True, "zone": False}
4404
4405    @property
4406    def unit(self) -> Expression:
4407        return self.args["unit"]
4408
4409
4410class DatetimeAdd(Func, IntervalOp):
4411    arg_types = {"this": True, "expression": True, "unit": False}
4412
4413
4414class DatetimeSub(Func, IntervalOp):
4415    arg_types = {"this": True, "expression": True, "unit": False}
4416
4417
4418class DatetimeDiff(Func, TimeUnit):
4419    arg_types = {"this": True, "expression": True, "unit": False}
4420
4421
4422class DatetimeTrunc(Func, TimeUnit):
4423    arg_types = {"this": True, "unit": True, "zone": False}
4424
4425
4426class DayOfWeek(Func):
4427    _sql_names = ["DAY_OF_WEEK", "DAYOFWEEK"]
4428
4429
4430class DayOfMonth(Func):
4431    _sql_names = ["DAY_OF_MONTH", "DAYOFMONTH"]
4432
4433
4434class DayOfYear(Func):
4435    _sql_names = ["DAY_OF_YEAR", "DAYOFYEAR"]
4436
4437
4438class ToDays(Func):
4439    pass
4440
4441
4442class WeekOfYear(Func):
4443    _sql_names = ["WEEK_OF_YEAR", "WEEKOFYEAR"]
4444
4445
4446class MonthsBetween(Func):
4447    arg_types = {"this": True, "expression": True, "roundoff": False}
4448
4449
4450class LastDateOfMonth(Func):
4451    pass
4452
4453
4454class Extract(Func):
4455    arg_types = {"this": True, "expression": True}
4456
4457
4458class Timestamp(Func):
4459    arg_types = {"this": False, "expression": False}
4460
4461
4462class TimestampAdd(Func, TimeUnit):
4463    arg_types = {"this": True, "expression": True, "unit": False}
4464
4465
4466class TimestampSub(Func, TimeUnit):
4467    arg_types = {"this": True, "expression": True, "unit": False}
4468
4469
4470class TimestampDiff(Func, TimeUnit):
4471    arg_types = {"this": True, "expression": True, "unit": False}
4472
4473
4474class TimestampTrunc(Func, TimeUnit):
4475    arg_types = {"this": True, "unit": True, "zone": False}
4476
4477
4478class TimeAdd(Func, TimeUnit):
4479    arg_types = {"this": True, "expression": True, "unit": False}
4480
4481
4482class TimeSub(Func, TimeUnit):
4483    arg_types = {"this": True, "expression": True, "unit": False}
4484
4485
4486class TimeDiff(Func, TimeUnit):
4487    arg_types = {"this": True, "expression": True, "unit": False}
4488
4489
4490class TimeTrunc(Func, TimeUnit):
4491    arg_types = {"this": True, "unit": True, "zone": False}
4492
4493
4494class DateFromParts(Func):
4495    _sql_names = ["DATEFROMPARTS"]
4496    arg_types = {"year": True, "month": True, "day": True}
4497
4498
4499class DateStrToDate(Func):
4500    pass
4501
4502
4503class DateToDateStr(Func):
4504    pass
4505
4506
4507class DateToDi(Func):
4508    pass
4509
4510
4511# https://cloud.google.com/bigquery/docs/reference/standard-sql/date_functions#date
4512class Date(Func):
4513    arg_types = {"this": False, "zone": False, "expressions": False}
4514    is_var_len_args = True
4515
4516
4517class Day(Func):
4518    pass
4519
4520
4521class Decode(Func):
4522    arg_types = {"this": True, "charset": True, "replace": False}
4523
4524
4525class DiToDate(Func):
4526    pass
4527
4528
4529class Encode(Func):
4530    arg_types = {"this": True, "charset": True}
4531
4532
4533class Exp(Func):
4534    pass
4535
4536
4537class Explode(Func):
4538    pass
4539
4540
4541class Floor(Func):
4542    arg_types = {"this": True, "decimals": False}
4543
4544
4545class FromBase64(Func):
4546    pass
4547
4548
4549class ToBase64(Func):
4550    pass
4551
4552
4553class Greatest(Func):
4554    arg_types = {"this": True, "expressions": False}
4555    is_var_len_args = True
4556
4557
4558class GroupConcat(AggFunc):
4559    arg_types = {"this": True, "separator": False}
4560
4561
4562class Hex(Func):
4563    pass
4564
4565
4566class Xor(Connector, Func):
4567    arg_types = {"this": False, "expression": False, "expressions": False}
4568
4569
4570class If(Func):
4571    arg_types = {"this": True, "true": True, "false": False}
4572
4573
4574class Initcap(Func):
4575    arg_types = {"this": True, "expression": False}
4576
4577
4578class IsNan(Func):
4579    _sql_names = ["IS_NAN", "ISNAN"]
4580
4581
4582class FormatJson(Expression):
4583    pass
4584
4585
4586class JSONKeyValue(Expression):
4587    arg_types = {"this": True, "expression": True}
4588
4589
4590class JSONObject(Func):
4591    arg_types = {
4592        "expressions": False,
4593        "null_handling": False,
4594        "unique_keys": False,
4595        "return_type": False,
4596        "encoding": False,
4597    }
4598
4599
4600# https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/JSON_ARRAY.html
4601class JSONArray(Func):
4602    arg_types = {
4603        "expressions": True,
4604        "null_handling": False,
4605        "return_type": False,
4606        "strict": False,
4607    }
4608
4609
4610# https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/JSON_ARRAYAGG.html
4611class JSONArrayAgg(Func):
4612    arg_types = {
4613        "this": True,
4614        "order": False,
4615        "null_handling": False,
4616        "return_type": False,
4617        "strict": False,
4618    }
4619
4620
4621# https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/JSON_TABLE.html
4622# Note: parsing of JSON column definitions is currently incomplete.
4623class JSONColumnDef(Expression):
4624    arg_types = {"this": True, "kind": False, "path": False}
4625
4626
4627# # https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/JSON_TABLE.html
4628class JSONTable(Func):
4629    arg_types = {
4630        "this": True,
4631        "expressions": True,
4632        "path": False,
4633        "error_handling": False,
4634        "empty_handling": False,
4635    }
4636
4637
4638class OpenJSONColumnDef(Expression):
4639    arg_types = {"this": True, "kind": True, "path": False, "as_json": False}
4640
4641
4642class OpenJSON(Func):
4643    arg_types = {"this": True, "path": False, "expressions": False}
4644
4645
4646class JSONBContains(Binary):
4647    _sql_names = ["JSONB_CONTAINS"]
4648
4649
4650class JSONExtract(Binary, Func):
4651    _sql_names = ["JSON_EXTRACT"]
4652
4653
4654class JSONExtractScalar(JSONExtract):
4655    _sql_names = ["JSON_EXTRACT_SCALAR"]
4656
4657
4658class JSONBExtract(JSONExtract):
4659    _sql_names = ["JSONB_EXTRACT"]
4660
4661
4662class JSONBExtractScalar(JSONExtract):
4663    _sql_names = ["JSONB_EXTRACT_SCALAR"]
4664
4665
4666class JSONFormat(Func):
4667    arg_types = {"this": False, "options": False}
4668    _sql_names = ["JSON_FORMAT"]
4669
4670
4671# https://dev.mysql.com/doc/refman/8.0/en/json-search-functions.html#operator_member-of
4672class JSONArrayContains(Binary, Predicate, Func):
4673    _sql_names = ["JSON_ARRAY_CONTAINS"]
4674
4675
4676class ParseJSON(Func):
4677    # BigQuery, Snowflake have PARSE_JSON, Presto has JSON_PARSE
4678    _sql_names = ["PARSE_JSON", "JSON_PARSE"]
4679
4680
4681class Least(Func):
4682    arg_types = {"this": True, "expressions": False}
4683    is_var_len_args = True
4684
4685
4686class Left(Func):
4687    arg_types = {"this": True, "expression": True}
4688
4689
4690class Right(Func):
4691    arg_types = {"this": True, "expression": True}
4692
4693
4694class Length(Func):
4695    _sql_names = ["LENGTH", "LEN"]
4696
4697
4698class Levenshtein(Func):
4699    arg_types = {
4700        "this": True,
4701        "expression": False,
4702        "ins_cost": False,
4703        "del_cost": False,
4704        "sub_cost": False,
4705    }
4706
4707
4708class Ln(Func):
4709    pass
4710
4711
4712class Log(Func):
4713    arg_types = {"this": True, "expression": False}
4714
4715
4716class Log2(Func):
4717    pass
4718
4719
4720class Log10(Func):
4721    pass
4722
4723
4724class LogicalOr(AggFunc):
4725    _sql_names = ["LOGICAL_OR", "BOOL_OR", "BOOLOR_AGG"]
4726
4727
4728class LogicalAnd(AggFunc):
4729    _sql_names = ["LOGICAL_AND", "BOOL_AND", "BOOLAND_AGG"]
4730
4731
4732class Lower(Func):
4733    _sql_names = ["LOWER", "LCASE"]
4734
4735
4736class Map(Func):
4737    arg_types = {"keys": False, "values": False}
4738
4739
4740class MapFromEntries(Func):
4741    pass
4742
4743
4744class StarMap(Func):
4745    pass
4746
4747
4748class VarMap(Func):
4749    arg_types = {"keys": True, "values": True}
4750    is_var_len_args = True
4751
4752    @property
4753    def keys(self) -> t.List[Expression]:
4754        return self.args["keys"].expressions
4755
4756    @property
4757    def values(self) -> t.List[Expression]:
4758        return self.args["values"].expressions
4759
4760
4761# https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
4762class MatchAgainst(Func):
4763    arg_types = {"this": True, "expressions": True, "modifier": False}
4764
4765
4766class Max(AggFunc):
4767    arg_types = {"this": True, "expressions": False}
4768    is_var_len_args = True
4769
4770
4771class MD5(Func):
4772    _sql_names = ["MD5"]
4773
4774
4775# Represents the variant of the MD5 function that returns a binary value
4776class MD5Digest(Func):
4777    _sql_names = ["MD5_DIGEST"]
4778
4779
4780class Min(AggFunc):
4781    arg_types = {"this": True, "expressions": False}
4782    is_var_len_args = True
4783
4784
4785class Month(Func):
4786    pass
4787
4788
4789class Nvl2(Func):
4790    arg_types = {"this": True, "true": True, "false": False}
4791
4792
4793class Posexplode(Func):
4794    pass
4795
4796
4797# https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-predict#mlpredict_function
4798class Predict(Func):
4799    arg_types = {"this": True, "expression": True, "params_struct": False}
4800
4801
4802class Pow(Binary, Func):
4803    _sql_names = ["POWER", "POW"]
4804
4805
4806class PercentileCont(AggFunc):
4807    arg_types = {"this": True, "expression": False}
4808
4809
4810class PercentileDisc(AggFunc):
4811    arg_types = {"this": True, "expression": False}
4812
4813
4814class Quantile(AggFunc):
4815    arg_types = {"this": True, "quantile": True}
4816
4817
4818class ApproxQuantile(Quantile):
4819    arg_types = {"this": True, "quantile": True, "accuracy": False, "weight": False}
4820
4821
4822class RangeN(Func):
4823    arg_types = {"this": True, "expressions": True, "each": False}
4824
4825
4826class ReadCSV(Func):
4827    _sql_names = ["READ_CSV"]
4828    is_var_len_args = True
4829    arg_types = {"this": True, "expressions": False}
4830
4831
4832class Reduce(Func):
4833    arg_types = {"this": True, "initial": True, "merge": True, "finish": False}
4834
4835
4836class RegexpExtract(Func):
4837    arg_types = {
4838        "this": True,
4839        "expression": True,
4840        "position": False,
4841        "occurrence": False,
4842        "parameters": False,
4843        "group": False,
4844    }
4845
4846
4847class RegexpReplace(Func):
4848    arg_types = {
4849        "this": True,
4850        "expression": True,
4851        "replacement": True,
4852        "position": False,
4853        "occurrence": False,
4854        "parameters": False,
4855    }
4856
4857
4858class RegexpLike(Binary, Func):
4859    arg_types = {"this": True, "expression": True, "flag": False}
4860
4861
4862class RegexpILike(Func):
4863    arg_types = {"this": True, "expression": True, "flag": False}
4864
4865
4866# https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.functions.split.html
4867# limit is the number of times a pattern is applied
4868class RegexpSplit(Func):
4869    arg_types = {"this": True, "expression": True, "limit": False}
4870
4871
4872class Repeat(Func):
4873    arg_types = {"this": True, "times": True}
4874
4875
4876class Round(Func):
4877    arg_types = {"this": True, "decimals": False}
4878
4879
4880class RowNumber(Func):
4881    arg_types: t.Dict[str, t.Any] = {}
4882
4883
4884class SafeDivide(Func):
4885    arg_types = {"this": True, "expression": True}
4886
4887
4888class SetAgg(AggFunc):
4889    pass
4890
4891
4892class SHA(Func):
4893    _sql_names = ["SHA", "SHA1"]
4894
4895
4896class SHA2(Func):
4897    _sql_names = ["SHA2"]
4898    arg_types = {"this": True, "length": False}
4899
4900
4901class SortArray(Func):
4902    arg_types = {"this": True, "asc": False}
4903
4904
4905class Split(Func):
4906    arg_types = {"this": True, "expression": True, "limit": False}
4907
4908
4909# Start may be omitted in the case of postgres
4910# https://www.postgresql.org/docs/9.1/functions-string.html @ Table 9-6
4911class Substring(Func):
4912    arg_types = {"this": True, "start": False, "length": False}
4913
4914
4915class StandardHash(Func):
4916    arg_types = {"this": True, "expression": False}
4917
4918
4919class StartsWith(Func):
4920    _sql_names = ["STARTS_WITH", "STARTSWITH"]
4921    arg_types = {"this": True, "expression": True}
4922
4923
4924class StrPosition(Func):
4925    arg_types = {
4926        "this": True,
4927        "substr": True,
4928        "position": False,
4929        "instance": False,
4930    }
4931
4932
4933class StrToDate(Func):
4934    arg_types = {"this": True, "format": True}
4935
4936
4937class StrToTime(Func):
4938    arg_types = {"this": True, "format": True, "zone": False}
4939
4940
4941# Spark allows unix_timestamp()
4942# https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.sql.functions.unix_timestamp.html
4943class StrToUnix(Func):
4944    arg_types = {"this": False, "format": False}
4945
4946
4947# https://prestodb.io/docs/current/functions/string.html
4948# https://spark.apache.org/docs/latest/api/sql/index.html#str_to_map
4949class StrToMap(Func):
4950    arg_types = {
4951        "this": True,
4952        "pair_delim": False,
4953        "key_value_delim": False,
4954        "duplicate_resolution_callback": False,
4955    }
4956
4957
4958class NumberToStr(Func):
4959    arg_types = {"this": True, "format": True, "culture": False}
4960
4961
4962class FromBase(Func):
4963    arg_types = {"this": True, "expression": True}
4964
4965
4966class Struct(Func):
4967    arg_types = {"expressions": True}
4968    is_var_len_args = True
4969
4970
4971class StructExtract(Func):
4972    arg_types = {"this": True, "expression": True}
4973
4974
4975# https://learn.microsoft.com/en-us/sql/t-sql/functions/stuff-transact-sql?view=sql-server-ver16
4976# https://docs.snowflake.com/en/sql-reference/functions/insert
4977class Stuff(Func):
4978    _sql_names = ["STUFF", "INSERT"]
4979    arg_types = {"this": True, "start": True, "length": True, "expression": True}
4980
4981
4982class Sum(AggFunc):
4983    pass
4984
4985
4986class Sqrt(Func):
4987    pass
4988
4989
4990class Stddev(AggFunc):
4991    pass
4992
4993
4994class StddevPop(AggFunc):
4995    pass
4996
4997
4998class StddevSamp(AggFunc):
4999    pass
5000
5001
5002class TimeToStr(Func):
5003    arg_types = {"this": True, "format": True, "culture": False}
5004
5005
5006class TimeToTimeStr(Func):
5007    pass
5008
5009
5010class TimeToUnix(Func):
5011    pass
5012
5013
5014class TimeStrToDate(Func):
5015    pass
5016
5017
5018class TimeStrToTime(Func):
5019    pass
5020
5021
5022class TimeStrToUnix(Func):
5023    pass
5024
5025
5026class Trim(Func):
5027    arg_types = {
5028        "this": True,
5029        "expression": False,
5030        "position": False,
5031        "collation": False,
5032    }
5033
5034
5035class TsOrDsAdd(Func, TimeUnit):
5036    arg_types = {"this": True, "expression": True, "unit": False}
5037
5038
5039class TsOrDsToDateStr(Func):
5040    pass
5041
5042
5043class TsOrDsToDate(Func):
5044    arg_types = {"this": True, "format": False}
5045
5046
5047class TsOrDiToDi(Func):
5048    pass
5049
5050
5051class Unhex(Func):
5052    pass
5053
5054
5055class UnixToStr(Func):
5056    arg_types = {"this": True, "format": False}
5057
5058
5059# https://prestodb.io/docs/current/functions/datetime.html
5060# presto has weird zone/hours/minutes
5061class UnixToTime(Func):
5062    arg_types = {"this": True, "scale": False, "zone": False, "hours": False, "minutes": False}
5063
5064    SECONDS = Literal.string("seconds")
5065    MILLIS = Literal.string("millis")
5066    MICROS = Literal.string("micros")
5067
5068
5069class UnixToTimeStr(Func):
5070    pass
5071
5072
5073class Upper(Func):
5074    _sql_names = ["UPPER", "UCASE"]
5075
5076
5077class Variance(AggFunc):
5078    _sql_names = ["VARIANCE", "VARIANCE_SAMP", "VAR_SAMP"]
5079
5080
5081class VariancePop(AggFunc):
5082    _sql_names = ["VARIANCE_POP", "VAR_POP"]
5083
5084
5085class Week(Func):
5086    arg_types = {"this": True, "mode": False}
5087
5088
5089class XMLTable(Func):
5090    arg_types = {"this": True, "passing": False, "columns": False, "by_ref": False}
5091
5092
5093class Year(Func):
5094    pass
5095
5096
5097class Use(Expression):
5098    arg_types = {"this": True, "kind": False}
5099
5100
5101class Merge(Expression):
5102    arg_types = {"this": True, "using": True, "on": True, "expressions": True}
5103
5104
5105class When(Func):
5106    arg_types = {"matched": True, "source": False, "condition": False, "then": True}
5107
5108
5109# https://docs.oracle.com/javadb/10.8.3.0/ref/rrefsqljnextvaluefor.html
5110# https://learn.microsoft.com/en-us/sql/t-sql/functions/next-value-for-transact-sql?view=sql-server-ver16
5111class NextValueFor(Func):
5112    arg_types = {"this": True, "order": False}
5113
5114
5115def _norm_arg(arg):
5116    return arg.lower() if type(arg) is str else arg
5117
5118
5119ALL_FUNCTIONS = subclasses(__name__, Func, (AggFunc, Anonymous, Func))
5120
5121
5122# Helpers
5123@t.overload
5124def maybe_parse(
5125    sql_or_expression: ExpOrStr,
5126    *,
5127    into: t.Type[E],
5128    dialect: DialectType = None,
5129    prefix: t.Optional[str] = None,
5130    copy: bool = False,
5131    **opts,
5132) -> E:
5133    ...
5134
5135
5136@t.overload
5137def maybe_parse(
5138    sql_or_expression: str | E,
5139    *,
5140    into: t.Optional[IntoType] = None,
5141    dialect: DialectType = None,
5142    prefix: t.Optional[str] = None,
5143    copy: bool = False,
5144    **opts,
5145) -> E:
5146    ...
5147
5148
5149def maybe_parse(
5150    sql_or_expression: ExpOrStr,
5151    *,
5152    into: t.Optional[IntoType] = None,
5153    dialect: DialectType = None,
5154    prefix: t.Optional[str] = None,
5155    copy: bool = False,
5156    **opts,
5157) -> Expression:
5158    """Gracefully handle a possible string or expression.
5159
5160    Example:
5161        >>> maybe_parse("1")
5162        (LITERAL this: 1, is_string: False)
5163        >>> maybe_parse(to_identifier("x"))
5164        (IDENTIFIER this: x, quoted: False)
5165
5166    Args:
5167        sql_or_expression: the SQL code string or an expression
5168        into: the SQLGlot Expression to parse into
5169        dialect: the dialect used to parse the input expressions (in the case that an
5170            input expression is a SQL string).
5171        prefix: a string to prefix the sql with before it gets parsed
5172            (automatically includes a space)
5173        copy: whether or not to copy the expression.
5174        **opts: other options to use to parse the input expressions (again, in the case
5175            that an input expression is a SQL string).
5176
5177    Returns:
5178        Expression: the parsed or given expression.
5179    """
5180    if isinstance(sql_or_expression, Expression):
5181        if copy:
5182            return sql_or_expression.copy()
5183        return sql_or_expression
5184
5185    if sql_or_expression is None:
5186        raise ParseError(f"SQL cannot be None")
5187
5188    import sqlglot
5189
5190    sql = str(sql_or_expression)
5191    if prefix:
5192        sql = f"{prefix} {sql}"
5193
5194    return sqlglot.parse_one(sql, read=dialect, into=into, **opts)
5195
5196
5197@t.overload
5198def maybe_copy(instance: None, copy: bool = True) -> None:
5199    ...
5200
5201
5202@t.overload
5203def maybe_copy(instance: E, copy: bool = True) -> E:
5204    ...
5205
5206
5207def maybe_copy(instance, copy=True):
5208    return instance.copy() if copy and instance else instance
5209
5210
5211def _is_wrong_expression(expression, into):
5212    return isinstance(expression, Expression) and not isinstance(expression, into)
5213
5214
5215def _apply_builder(
5216    expression,
5217    instance,
5218    arg,
5219    copy=True,
5220    prefix=None,
5221    into=None,
5222    dialect=None,
5223    into_arg="this",
5224    **opts,
5225):
5226    if _is_wrong_expression(expression, into):
5227        expression = into(**{into_arg: expression})
5228    instance = maybe_copy(instance, copy)
5229    expression = maybe_parse(
5230        sql_or_expression=expression,
5231        prefix=prefix,
5232        into=into,
5233        dialect=dialect,
5234        **opts,
5235    )
5236    instance.set(arg, expression)
5237    return instance
5238
5239
5240def _apply_child_list_builder(
5241    *expressions,
5242    instance,
5243    arg,
5244    append=True,
5245    copy=True,
5246    prefix=None,
5247    into=None,
5248    dialect=None,
5249    properties=None,
5250    **opts,
5251):
5252    instance = maybe_copy(instance, copy)
5253    parsed = []
5254    for expression in expressions:
5255        if expression is not None:
5256            if _is_wrong_expression(expression, into):
5257                expression = into(expressions=[expression])
5258
5259            expression = maybe_parse(
5260                expression,
5261                into=into,
5262                dialect=dialect,
5263                prefix=prefix,
5264                **opts,
5265            )
5266            parsed.extend(expression.expressions)
5267
5268    existing = instance.args.get(arg)
5269    if append and existing:
5270        parsed = existing.expressions + parsed
5271
5272    child = into(expressions=parsed)
5273    for k, v in (properties or {}).items():
5274        child.set(k, v)
5275    instance.set(arg, child)
5276
5277    return instance
5278
5279
5280def _apply_list_builder(
5281    *expressions,
5282    instance,
5283    arg,
5284    append=True,
5285    copy=True,
5286    prefix=None,
5287    into=None,
5288    dialect=None,
5289    **opts,
5290):
5291    inst = maybe_copy(instance, copy)
5292
5293    expressions = [
5294        maybe_parse(
5295            sql_or_expression=expression,
5296            into=into,
5297            prefix=prefix,
5298            dialect=dialect,
5299            **opts,
5300        )
5301        for expression in expressions
5302        if expression is not None
5303    ]
5304
5305    existing_expressions = inst.args.get(arg)
5306    if append and existing_expressions:
5307        expressions = existing_expressions + expressions
5308
5309    inst.set(arg, expressions)
5310    return inst
5311
5312
5313def _apply_conjunction_builder(
5314    *expressions,
5315    instance,
5316    arg,
5317    into=None,
5318    append=True,
5319    copy=True,
5320    dialect=None,
5321    **opts,
5322):
5323    expressions = [exp for exp in expressions if exp is not None and exp != ""]
5324    if not expressions:
5325        return instance
5326
5327    inst = maybe_copy(instance, copy)
5328
5329    existing = inst.args.get(arg)
5330    if append and existing is not None:
5331        expressions = [existing.this if into else existing] + list(expressions)
5332
5333    node = and_(*expressions, dialect=dialect, copy=copy, **opts)
5334
5335    inst.set(arg, into(this=node) if into else node)
5336    return inst
5337
5338
5339def _apply_cte_builder(
5340    instance: E,
5341    alias: ExpOrStr,
5342    as_: ExpOrStr,
5343    recursive: t.Optional[bool] = None,
5344    append: bool = True,
5345    dialect: DialectType = None,
5346    copy: bool = True,
5347    **opts,
5348) -> E:
5349    alias_expression = maybe_parse(alias, dialect=dialect, into=TableAlias, **opts)
5350    as_expression = maybe_parse(as_, dialect=dialect, **opts)
5351    cte = CTE(this=as_expression, alias=alias_expression)
5352    return _apply_child_list_builder(
5353        cte,
5354        instance=instance,
5355        arg="with",
5356        append=append,
5357        copy=copy,
5358        into=With,
5359        properties={"recursive": recursive or False},
5360    )
5361
5362
5363def _combine(
5364    expressions: t.Sequence[t.Optional[ExpOrStr]],
5365    operator: t.Type[Connector],
5366    dialect: DialectType = None,
5367    copy: bool = True,
5368    **opts,
5369) -> Expression:
5370    conditions = [
5371        condition(expression, dialect=dialect, copy=copy, **opts)
5372        for expression in expressions
5373        if expression is not None
5374    ]
5375
5376    this, *rest = conditions
5377    if rest:
5378        this = _wrap(this, Connector)
5379    for expression in rest:
5380        this = operator(this=this, expression=_wrap(expression, Connector))
5381
5382    return this
5383
5384
5385def _wrap(expression: E, kind: t.Type[Expression]) -> E | Paren:
5386    return Paren(this=expression) if isinstance(expression, kind) else expression
5387
5388
5389def union(
5390    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
5391) -> Union:
5392    """
5393    Initializes a syntax tree from one UNION expression.
5394
5395    Example:
5396        >>> union("SELECT * FROM foo", "SELECT * FROM bla").sql()
5397        'SELECT * FROM foo UNION SELECT * FROM bla'
5398
5399    Args:
5400        left: the SQL code string corresponding to the left-hand side.
5401            If an `Expression` instance is passed, it will be used as-is.
5402        right: the SQL code string corresponding to the right-hand side.
5403            If an `Expression` instance is passed, it will be used as-is.
5404        distinct: set the DISTINCT flag if and only if this is true.
5405        dialect: the dialect used to parse the input expression.
5406        opts: other options to use to parse the input expressions.
5407
5408    Returns:
5409        The new Union instance.
5410    """
5411    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
5412    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
5413
5414    return Union(this=left, expression=right, distinct=distinct)
5415
5416
5417def intersect(
5418    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
5419) -> Intersect:
5420    """
5421    Initializes a syntax tree from one INTERSECT expression.
5422
5423    Example:
5424        >>> intersect("SELECT * FROM foo", "SELECT * FROM bla").sql()
5425        'SELECT * FROM foo INTERSECT SELECT * FROM bla'
5426
5427    Args:
5428        left: the SQL code string corresponding to the left-hand side.
5429            If an `Expression` instance is passed, it will be used as-is.
5430        right: the SQL code string corresponding to the right-hand side.
5431            If an `Expression` instance is passed, it will be used as-is.
5432        distinct: set the DISTINCT flag if and only if this is true.
5433        dialect: the dialect used to parse the input expression.
5434        opts: other options to use to parse the input expressions.
5435
5436    Returns:
5437        The new Intersect instance.
5438    """
5439    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
5440    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
5441
5442    return Intersect(this=left, expression=right, distinct=distinct)
5443
5444
5445def except_(
5446    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
5447) -> Except:
5448    """
5449    Initializes a syntax tree from one EXCEPT expression.
5450
5451    Example:
5452        >>> except_("SELECT * FROM foo", "SELECT * FROM bla").sql()
5453        'SELECT * FROM foo EXCEPT SELECT * FROM bla'
5454
5455    Args:
5456        left: the SQL code string corresponding to the left-hand side.
5457            If an `Expression` instance is passed, it will be used as-is.
5458        right: the SQL code string corresponding to the right-hand side.
5459            If an `Expression` instance is passed, it will be used as-is.
5460        distinct: set the DISTINCT flag if and only if this is true.
5461        dialect: the dialect used to parse the input expression.
5462        opts: other options to use to parse the input expressions.
5463
5464    Returns:
5465        The new Except instance.
5466    """
5467    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
5468    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
5469
5470    return Except(this=left, expression=right, distinct=distinct)
5471
5472
5473def select(*expressions: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
5474    """
5475    Initializes a syntax tree from one or multiple SELECT expressions.
5476
5477    Example:
5478        >>> select("col1", "col2").from_("tbl").sql()
5479        'SELECT col1, col2 FROM tbl'
5480
5481    Args:
5482        *expressions: the SQL code string to parse as the expressions of a
5483            SELECT statement. If an Expression instance is passed, this is used as-is.
5484        dialect: the dialect used to parse the input expressions (in the case that an
5485            input expression is a SQL string).
5486        **opts: other options to use to parse the input expressions (again, in the case
5487            that an input expression is a SQL string).
5488
5489    Returns:
5490        Select: the syntax tree for the SELECT statement.
5491    """
5492    return Select().select(*expressions, dialect=dialect, **opts)
5493
5494
5495def from_(expression: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
5496    """
5497    Initializes a syntax tree from a FROM expression.
5498
5499    Example:
5500        >>> from_("tbl").select("col1", "col2").sql()
5501        'SELECT col1, col2 FROM tbl'
5502
5503    Args:
5504        *expression: the SQL code string to parse as the FROM expressions of a
5505            SELECT statement. If an Expression instance is passed, this is used as-is.
5506        dialect: the dialect used to parse the input expression (in the case that the
5507            input expression is a SQL string).
5508        **opts: other options to use to parse the input expressions (again, in the case
5509            that the input expression is a SQL string).
5510
5511    Returns:
5512        Select: the syntax tree for the SELECT statement.
5513    """
5514    return Select().from_(expression, dialect=dialect, **opts)
5515
5516
5517def update(
5518    table: str | Table,
5519    properties: dict,
5520    where: t.Optional[ExpOrStr] = None,
5521    from_: t.Optional[ExpOrStr] = None,
5522    dialect: DialectType = None,
5523    **opts,
5524) -> Update:
5525    """
5526    Creates an update statement.
5527
5528    Example:
5529        >>> update("my_table", {"x": 1, "y": "2", "z": None}, from_="baz", where="id > 1").sql()
5530        "UPDATE my_table SET x = 1, y = '2', z = NULL FROM baz WHERE id > 1"
5531
5532    Args:
5533        *properties: dictionary of properties to set which are
5534            auto converted to sql objects eg None -> NULL
5535        where: sql conditional parsed into a WHERE statement
5536        from_: sql statement parsed into a FROM statement
5537        dialect: the dialect used to parse the input expressions.
5538        **opts: other options to use to parse the input expressions.
5539
5540    Returns:
5541        Update: the syntax tree for the UPDATE statement.
5542    """
5543    update_expr = Update(this=maybe_parse(table, into=Table, dialect=dialect))
5544    update_expr.set(
5545        "expressions",
5546        [
5547            EQ(this=maybe_parse(k, dialect=dialect, **opts), expression=convert(v))
5548            for k, v in properties.items()
5549        ],
5550    )
5551    if from_:
5552        update_expr.set(
5553            "from",
5554            maybe_parse(from_, into=From, dialect=dialect, prefix="FROM", **opts),
5555        )
5556    if isinstance(where, Condition):
5557        where = Where(this=where)
5558    if where:
5559        update_expr.set(
5560            "where",
5561            maybe_parse(where, into=Where, dialect=dialect, prefix="WHERE", **opts),
5562        )
5563    return update_expr
5564
5565
5566def delete(
5567    table: ExpOrStr,
5568    where: t.Optional[ExpOrStr] = None,
5569    returning: t.Optional[ExpOrStr] = None,
5570    dialect: DialectType = None,
5571    **opts,
5572) -> Delete:
5573    """
5574    Builds a delete statement.
5575
5576    Example:
5577        >>> delete("my_table", where="id > 1").sql()
5578        'DELETE FROM my_table WHERE id > 1'
5579
5580    Args:
5581        where: sql conditional parsed into a WHERE statement
5582        returning: sql conditional parsed into a RETURNING statement
5583        dialect: the dialect used to parse the input expressions.
5584        **opts: other options to use to parse the input expressions.
5585
5586    Returns:
5587        Delete: the syntax tree for the DELETE statement.
5588    """
5589    delete_expr = Delete().delete(table, dialect=dialect, copy=False, **opts)
5590    if where:
5591        delete_expr = delete_expr.where(where, dialect=dialect, copy=False, **opts)
5592    if returning:
5593        delete_expr = delete_expr.returning(returning, dialect=dialect, copy=False, **opts)
5594    return delete_expr
5595
5596
5597def insert(
5598    expression: ExpOrStr,
5599    into: ExpOrStr,
5600    columns: t.Optional[t.Sequence[ExpOrStr]] = None,
5601    overwrite: t.Optional[bool] = None,
5602    dialect: DialectType = None,
5603    copy: bool = True,
5604    **opts,
5605) -> Insert:
5606    """
5607    Builds an INSERT statement.
5608
5609    Example:
5610        >>> insert("VALUES (1, 2, 3)", "tbl").sql()
5611        'INSERT INTO tbl VALUES (1, 2, 3)'
5612
5613    Args:
5614        expression: the sql string or expression of the INSERT statement
5615        into: the tbl to insert data to.
5616        columns: optionally the table's column names.
5617        overwrite: whether to INSERT OVERWRITE or not.
5618        dialect: the dialect used to parse the input expressions.
5619        copy: whether or not to copy the expression.
5620        **opts: other options to use to parse the input expressions.
5621
5622    Returns:
5623        Insert: the syntax tree for the INSERT statement.
5624    """
5625    expr = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
5626    this: Table | Schema = maybe_parse(into, into=Table, dialect=dialect, copy=copy, **opts)
5627
5628    if columns:
5629        this = _apply_list_builder(
5630            *columns,
5631            instance=Schema(this=this),
5632            arg="expressions",
5633            into=Identifier,
5634            copy=False,
5635            dialect=dialect,
5636            **opts,
5637        )
5638
5639    return Insert(this=this, expression=expr, overwrite=overwrite)
5640
5641
5642def condition(
5643    expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
5644) -> Condition:
5645    """
5646    Initialize a logical condition expression.
5647
5648    Example:
5649        >>> condition("x=1").sql()
5650        'x = 1'
5651
5652        This is helpful for composing larger logical syntax trees:
5653        >>> where = condition("x=1")
5654        >>> where = where.and_("y=1")
5655        >>> Select().from_("tbl").select("*").where(where).sql()
5656        'SELECT * FROM tbl WHERE x = 1 AND y = 1'
5657
5658    Args:
5659        *expression: the SQL code string to parse.
5660            If an Expression instance is passed, this is used as-is.
5661        dialect: the dialect used to parse the input expression (in the case that the
5662            input expression is a SQL string).
5663        copy: Whether or not to copy `expression` (only applies to expressions).
5664        **opts: other options to use to parse the input expressions (again, in the case
5665            that the input expression is a SQL string).
5666
5667    Returns:
5668        The new Condition instance
5669    """
5670    return maybe_parse(
5671        expression,
5672        into=Condition,
5673        dialect=dialect,
5674        copy=copy,
5675        **opts,
5676    )
5677
5678
5679def and_(
5680    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
5681) -> Condition:
5682    """
5683    Combine multiple conditions with an AND logical operator.
5684
5685    Example:
5686        >>> and_("x=1", and_("y=1", "z=1")).sql()
5687        'x = 1 AND (y = 1 AND z = 1)'
5688
5689    Args:
5690        *expressions: the SQL code strings to parse.
5691            If an Expression instance is passed, this is used as-is.
5692        dialect: the dialect used to parse the input expression.
5693        copy: whether or not to copy `expressions` (only applies to Expressions).
5694        **opts: other options to use to parse the input expressions.
5695
5696    Returns:
5697        And: the new condition
5698    """
5699    return t.cast(Condition, _combine(expressions, And, dialect, copy=copy, **opts))
5700
5701
5702def or_(
5703    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
5704) -> Condition:
5705    """
5706    Combine multiple conditions with an OR logical operator.
5707
5708    Example:
5709        >>> or_("x=1", or_("y=1", "z=1")).sql()
5710        'x = 1 OR (y = 1 OR z = 1)'
5711
5712    Args:
5713        *expressions: the SQL code strings to parse.
5714            If an Expression instance is passed, this is used as-is.
5715        dialect: the dialect used to parse the input expression.
5716        copy: whether or not to copy `expressions` (only applies to Expressions).
5717        **opts: other options to use to parse the input expressions.
5718
5719    Returns:
5720        Or: the new condition
5721    """
5722    return t.cast(Condition, _combine(expressions, Or, dialect, copy=copy, **opts))
5723
5724
5725def not_(expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts) -> Not:
5726    """
5727    Wrap a condition with a NOT operator.
5728
5729    Example:
5730        >>> not_("this_suit='black'").sql()
5731        "NOT this_suit = 'black'"
5732
5733    Args:
5734        expression: the SQL code string to parse.
5735            If an Expression instance is passed, this is used as-is.
5736        dialect: the dialect used to parse the input expression.
5737        copy: whether to copy the expression or not.
5738        **opts: other options to use to parse the input expressions.
5739
5740    Returns:
5741        The new condition.
5742    """
5743    this = condition(
5744        expression,
5745        dialect=dialect,
5746        copy=copy,
5747        **opts,
5748    )
5749    return Not(this=_wrap(this, Connector))
5750
5751
5752def paren(expression: ExpOrStr, copy: bool = True) -> Paren:
5753    """
5754    Wrap an expression in parentheses.
5755
5756    Example:
5757        >>> paren("5 + 3").sql()
5758        '(5 + 3)'
5759
5760    Args:
5761        expression: the SQL code string to parse.
5762            If an Expression instance is passed, this is used as-is.
5763        copy: whether to copy the expression or not.
5764
5765    Returns:
5766        The wrapped expression.
5767    """
5768    return Paren(this=maybe_parse(expression, copy=copy))
5769
5770
5771SAFE_IDENTIFIER_RE = re.compile(r"^[_a-zA-Z][\w]*$")
5772
5773
5774@t.overload
5775def to_identifier(name: None, quoted: t.Optional[bool] = None, copy: bool = True) -> None:
5776    ...
5777
5778
5779@t.overload
5780def to_identifier(
5781    name: str | Identifier, quoted: t.Optional[bool] = None, copy: bool = True
5782) -> Identifier:
5783    ...
5784
5785
5786def to_identifier(name, quoted=None, copy=True):
5787    """Builds an identifier.
5788
5789    Args:
5790        name: The name to turn into an identifier.
5791        quoted: Whether or not force quote the identifier.
5792        copy: Whether or not to copy a passed in Identefier node.
5793
5794    Returns:
5795        The identifier ast node.
5796    """
5797
5798    if name is None:
5799        return None
5800
5801    if isinstance(name, Identifier):
5802        identifier = maybe_copy(name, copy)
5803    elif isinstance(name, str):
5804        identifier = Identifier(
5805            this=name,
5806            quoted=not SAFE_IDENTIFIER_RE.match(name) if quoted is None else quoted,
5807        )
5808    else:
5809        raise ValueError(f"Name needs to be a string or an Identifier, got: {name.__class__}")
5810    return identifier
5811
5812
5813INTERVAL_STRING_RE = re.compile(r"\s*([0-9]+)\s*([a-zA-Z]+)\s*")
5814
5815
5816def to_interval(interval: str | Literal) -> Interval:
5817    """Builds an interval expression from a string like '1 day' or '5 months'."""
5818    if isinstance(interval, Literal):
5819        if not interval.is_string:
5820            raise ValueError("Invalid interval string.")
5821
5822        interval = interval.this
5823
5824    interval_parts = INTERVAL_STRING_RE.match(interval)  # type: ignore
5825
5826    if not interval_parts:
5827        raise ValueError("Invalid interval string.")
5828
5829    return Interval(
5830        this=Literal.string(interval_parts.group(1)),
5831        unit=Var(this=interval_parts.group(2)),
5832    )
5833
5834
5835@t.overload
5836def to_table(sql_path: str | Table, **kwargs) -> Table:
5837    ...
5838
5839
5840@t.overload
5841def to_table(sql_path: None, **kwargs) -> None:
5842    ...
5843
5844
5845def to_table(
5846    sql_path: t.Optional[str | Table], dialect: DialectType = None, **kwargs
5847) -> t.Optional[Table]:
5848    """
5849    Create a table expression from a `[catalog].[schema].[table]` sql path. Catalog and schema are optional.
5850    If a table is passed in then that table is returned.
5851
5852    Args:
5853        sql_path: a `[catalog].[schema].[table]` string.
5854        dialect: the source dialect according to which the table name will be parsed.
5855        kwargs: the kwargs to instantiate the resulting `Table` expression with.
5856
5857    Returns:
5858        A table expression.
5859    """
5860    if sql_path is None or isinstance(sql_path, Table):
5861        return sql_path
5862    if not isinstance(sql_path, str):
5863        raise ValueError(f"Invalid type provided for a table: {type(sql_path)}")
5864
5865    table = maybe_parse(sql_path, into=Table, dialect=dialect)
5866    if table:
5867        for k, v in kwargs.items():
5868            table.set(k, v)
5869
5870    return table
5871
5872
5873def to_column(sql_path: str | Column, **kwargs) -> Column:
5874    """
5875    Create a column from a `[table].[column]` sql path. Schema is optional.
5876
5877    If a column is passed in then that column is returned.
5878
5879    Args:
5880        sql_path: `[table].[column]` string
5881    Returns:
5882        Table: A column expression
5883    """
5884    if sql_path is None or isinstance(sql_path, Column):
5885        return sql_path
5886    if not isinstance(sql_path, str):
5887        raise ValueError(f"Invalid type provided for column: {type(sql_path)}")
5888    return column(*reversed(sql_path.split(".")), **kwargs)  # type: ignore
5889
5890
5891def alias_(
5892    expression: ExpOrStr,
5893    alias: str | Identifier,
5894    table: bool | t.Sequence[str | Identifier] = False,
5895    quoted: t.Optional[bool] = None,
5896    dialect: DialectType = None,
5897    copy: bool = True,
5898    **opts,
5899):
5900    """Create an Alias expression.
5901
5902    Example:
5903        >>> alias_('foo', 'bar').sql()
5904        'foo AS bar'
5905
5906        >>> alias_('(select 1, 2)', 'bar', table=['a', 'b']).sql()
5907        '(SELECT 1, 2) AS bar(a, b)'
5908
5909    Args:
5910        expression: the SQL code strings to parse.
5911            If an Expression instance is passed, this is used as-is.
5912        alias: the alias name to use. If the name has
5913            special characters it is quoted.
5914        table: Whether or not to create a table alias, can also be a list of columns.
5915        quoted: whether or not to quote the alias
5916        dialect: the dialect used to parse the input expression.
5917        copy: Whether or not to copy the expression.
5918        **opts: other options to use to parse the input expressions.
5919
5920    Returns:
5921        Alias: the aliased expression
5922    """
5923    exp = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
5924    alias = to_identifier(alias, quoted=quoted)
5925
5926    if table:
5927        table_alias = TableAlias(this=alias)
5928        exp.set("alias", table_alias)
5929
5930        if not isinstance(table, bool):
5931            for column in table:
5932                table_alias.append("columns", to_identifier(column, quoted=quoted))
5933
5934        return exp
5935
5936    # We don't set the "alias" arg for Window expressions, because that would add an IDENTIFIER node in
5937    # the AST, representing a "named_window" [1] construct (eg. bigquery). What we want is an ALIAS node
5938    # for the complete Window expression.
5939    #
5940    # [1]: https://cloud.google.com/bigquery/docs/reference/standard-sql/window-function-calls
5941
5942    if "alias" in exp.arg_types and not isinstance(exp, Window):
5943        exp.set("alias", alias)
5944        return exp
5945    return Alias(this=exp, alias=alias)
5946
5947
5948def subquery(
5949    expression: ExpOrStr,
5950    alias: t.Optional[Identifier | str] = None,
5951    dialect: DialectType = None,
5952    **opts,
5953) -> Select:
5954    """
5955    Build a subquery expression.
5956
5957    Example:
5958        >>> subquery('select x from tbl', 'bar').select('x').sql()
5959        'SELECT x FROM (SELECT x FROM tbl) AS bar'
5960
5961    Args:
5962        expression: the SQL code strings to parse.
5963            If an Expression instance is passed, this is used as-is.
5964        alias: the alias name to use.
5965        dialect: the dialect used to parse the input expression.
5966        **opts: other options to use to parse the input expressions.
5967
5968    Returns:
5969        A new Select instance with the subquery expression included.
5970    """
5971
5972    expression = maybe_parse(expression, dialect=dialect, **opts).subquery(alias)
5973    return Select().from_(expression, dialect=dialect, **opts)
5974
5975
5976def column(
5977    col: str | Identifier,
5978    table: t.Optional[str | Identifier] = None,
5979    db: t.Optional[str | Identifier] = None,
5980    catalog: t.Optional[str | Identifier] = None,
5981    quoted: t.Optional[bool] = None,
5982) -> Column:
5983    """
5984    Build a Column.
5985
5986    Args:
5987        col: Column name.
5988        table: Table name.
5989        db: Database name.
5990        catalog: Catalog name.
5991        quoted: Whether to force quotes on the column's identifiers.
5992
5993    Returns:
5994        The new Column instance.
5995    """
5996    return Column(
5997        this=to_identifier(col, quoted=quoted),
5998        table=to_identifier(table, quoted=quoted),
5999        db=to_identifier(db, quoted=quoted),
6000        catalog=to_identifier(catalog, quoted=quoted),
6001    )
6002
6003
6004def cast(expression: ExpOrStr, to: str | DataType | DataType.Type, **opts) -> Cast:
6005    """Cast an expression to a data type.
6006
6007    Example:
6008        >>> cast('x + 1', 'int').sql()
6009        'CAST(x + 1 AS INT)'
6010
6011    Args:
6012        expression: The expression to cast.
6013        to: The datatype to cast to.
6014
6015    Returns:
6016        The new Cast instance.
6017    """
6018    expression = maybe_parse(expression, **opts)
6019    data_type = DataType.build(to, **opts)
6020    expression = Cast(this=expression, to=data_type)
6021    expression.type = data_type
6022    return expression
6023
6024
6025def table_(
6026    table: Identifier | str,
6027    db: t.Optional[Identifier | str] = None,
6028    catalog: t.Optional[Identifier | str] = None,
6029    quoted: t.Optional[bool] = None,
6030    alias: t.Optional[Identifier | str] = None,
6031) -> Table:
6032    """Build a Table.
6033
6034    Args:
6035        table: Table name.
6036        db: Database name.
6037        catalog: Catalog name.
6038        quote: Whether to force quotes on the table's identifiers.
6039        alias: Table's alias.
6040
6041    Returns:
6042        The new Table instance.
6043    """
6044    return Table(
6045        this=to_identifier(table, quoted=quoted) if table else None,
6046        db=to_identifier(db, quoted=quoted) if db else None,
6047        catalog=to_identifier(catalog, quoted=quoted) if catalog else None,
6048        alias=TableAlias(this=to_identifier(alias)) if alias else None,
6049    )
6050
6051
6052def values(
6053    values: t.Iterable[t.Tuple[t.Any, ...]],
6054    alias: t.Optional[str] = None,
6055    columns: t.Optional[t.Iterable[str] | t.Dict[str, DataType]] = None,
6056) -> Values:
6057    """Build VALUES statement.
6058
6059    Example:
6060        >>> values([(1, '2')]).sql()
6061        "VALUES (1, '2')"
6062
6063    Args:
6064        values: values statements that will be converted to SQL
6065        alias: optional alias
6066        columns: Optional list of ordered column names or ordered dictionary of column names to types.
6067         If either are provided then an alias is also required.
6068
6069    Returns:
6070        Values: the Values expression object
6071    """
6072    if columns and not alias:
6073        raise ValueError("Alias is required when providing columns")
6074
6075    return Values(
6076        expressions=[convert(tup) for tup in values],
6077        alias=(
6078            TableAlias(this=to_identifier(alias), columns=[to_identifier(x) for x in columns])
6079            if columns
6080            else (TableAlias(this=to_identifier(alias)) if alias else None)
6081        ),
6082    )
6083
6084
6085def var(name: t.Optional[ExpOrStr]) -> Var:
6086    """Build a SQL variable.
6087
6088    Example:
6089        >>> repr(var('x'))
6090        '(VAR this: x)'
6091
6092        >>> repr(var(column('x', table='y')))
6093        '(VAR this: x)'
6094
6095    Args:
6096        name: The name of the var or an expression who's name will become the var.
6097
6098    Returns:
6099        The new variable node.
6100    """
6101    if not name:
6102        raise ValueError("Cannot convert empty name into var.")
6103
6104    if isinstance(name, Expression):
6105        name = name.name
6106    return Var(this=name)
6107
6108
6109def rename_table(old_name: str | Table, new_name: str | Table) -> AlterTable:
6110    """Build ALTER TABLE... RENAME... expression
6111
6112    Args:
6113        old_name: The old name of the table
6114        new_name: The new name of the table
6115
6116    Returns:
6117        Alter table expression
6118    """
6119    old_table = to_table(old_name)
6120    new_table = to_table(new_name)
6121    return AlterTable(
6122        this=old_table,
6123        actions=[
6124            RenameTable(this=new_table),
6125        ],
6126    )
6127
6128
6129def convert(value: t.Any, copy: bool = False) -> Expression:
6130    """Convert a python value into an expression object.
6131
6132    Raises an error if a conversion is not possible.
6133
6134    Args:
6135        value: A python object.
6136        copy: Whether or not to copy `value` (only applies to Expressions and collections).
6137
6138    Returns:
6139        Expression: the equivalent expression object.
6140    """
6141    if isinstance(value, Expression):
6142        return maybe_copy(value, copy)
6143    if isinstance(value, str):
6144        return Literal.string(value)
6145    if isinstance(value, bool):
6146        return Boolean(this=value)
6147    if value is None or (isinstance(value, float) and math.isnan(value)):
6148        return NULL
6149    if isinstance(value, numbers.Number):
6150        return Literal.number(value)
6151    if isinstance(value, datetime.datetime):
6152        datetime_literal = Literal.string(
6153            (value if value.tzinfo else value.replace(tzinfo=datetime.timezone.utc)).isoformat()
6154        )
6155        return TimeStrToTime(this=datetime_literal)
6156    if isinstance(value, datetime.date):
6157        date_literal = Literal.string(value.strftime("%Y-%m-%d"))
6158        return DateStrToDate(this=date_literal)
6159    if isinstance(value, tuple):
6160        return Tuple(expressions=[convert(v, copy=copy) for v in value])
6161    if isinstance(value, list):
6162        return Array(expressions=[convert(v, copy=copy) for v in value])
6163    if isinstance(value, dict):
6164        return Map(
6165            keys=Array(expressions=[convert(k, copy=copy) for k in value]),
6166            values=Array(expressions=[convert(v, copy=copy) for v in value.values()]),
6167        )
6168    raise ValueError(f"Cannot convert {value}")
6169
6170
6171def replace_children(expression: Expression, fun: t.Callable, *args, **kwargs) -> None:
6172    """
6173    Replace children of an expression with the result of a lambda fun(child) -> exp.
6174    """
6175    for k, v in expression.args.items():
6176        is_list_arg = type(v) is list
6177
6178        child_nodes = v if is_list_arg else [v]
6179        new_child_nodes = []
6180
6181        for cn in child_nodes:
6182            if isinstance(cn, Expression):
6183                for child_node in ensure_collection(fun(cn, *args, **kwargs)):
6184                    new_child_nodes.append(child_node)
6185                    child_node.parent = expression
6186                    child_node.arg_key = k
6187            else:
6188                new_child_nodes.append(cn)
6189
6190        expression.args[k] = new_child_nodes if is_list_arg else seq_get(new_child_nodes, 0)
6191
6192
6193def column_table_names(expression: Expression, exclude: str = "") -> t.Set[str]:
6194    """
6195    Return all table names referenced through columns in an expression.
6196
6197    Example:
6198        >>> import sqlglot
6199        >>> sorted(column_table_names(sqlglot.parse_one("a.b AND c.d AND c.e")))
6200        ['a', 'c']
6201
6202    Args:
6203        expression: expression to find table names.
6204        exclude: a table name to exclude
6205
6206    Returns:
6207        A list of unique names.
6208    """
6209    return {
6210        table
6211        for table in (column.table for column in expression.find_all(Column))
6212        if table and table != exclude
6213    }
6214
6215
6216def table_name(table: Table | str, dialect: DialectType = None) -> str:
6217    """Get the full name of a table as a string.
6218
6219    Args:
6220        table: Table expression node or string.
6221        dialect: The dialect to generate the table name for.
6222
6223    Examples:
6224        >>> from sqlglot import exp, parse_one
6225        >>> table_name(parse_one("select * from a.b.c").find(exp.Table))
6226        'a.b.c'
6227
6228    Returns:
6229        The table name.
6230    """
6231
6232    table = maybe_parse(table, into=Table, dialect=dialect)
6233
6234    if not table:
6235        raise ValueError(f"Cannot parse {table}")
6236
6237    return ".".join(
6238        part.sql(dialect=dialect, identify=True)
6239        if not SAFE_IDENTIFIER_RE.match(part.name)
6240        else part.name
6241        for part in table.parts
6242    )
6243
6244
6245def replace_tables(expression: E, mapping: t.Dict[str, str], copy: bool = True) -> E:
6246    """Replace all tables in expression according to the mapping.
6247
6248    Args:
6249        expression: expression node to be transformed and replaced.
6250        mapping: mapping of table names.
6251        copy: whether or not to copy the expression.
6252
6253    Examples:
6254        >>> from sqlglot import exp, parse_one
6255        >>> replace_tables(parse_one("select * from a.b"), {"a.b": "c"}).sql()
6256        'SELECT * FROM c'
6257
6258    Returns:
6259        The mapped expression.
6260    """
6261
6262    def _replace_tables(node: Expression) -> Expression:
6263        if isinstance(node, Table):
6264            new_name = mapping.get(table_name(node))
6265            if new_name:
6266                return to_table(
6267                    new_name,
6268                    **{k: v for k, v in node.args.items() if k not in ("this", "db", "catalog")},
6269                )
6270        return node
6271
6272    return expression.transform(_replace_tables, copy=copy)
6273
6274
6275def replace_placeholders(expression: Expression, *args, **kwargs) -> Expression:
6276    """Replace placeholders in an expression.
6277
6278    Args:
6279        expression: expression node to be transformed and replaced.
6280        args: positional names that will substitute unnamed placeholders in the given order.
6281        kwargs: keyword arguments that will substitute named placeholders.
6282
6283    Examples:
6284        >>> from sqlglot import exp, parse_one
6285        >>> replace_placeholders(
6286        ...     parse_one("select * from :tbl where ? = ?"),
6287        ...     exp.to_identifier("str_col"), "b", tbl=exp.to_identifier("foo")
6288        ... ).sql()
6289        "SELECT * FROM foo WHERE str_col = 'b'"
6290
6291    Returns:
6292        The mapped expression.
6293    """
6294
6295    def _replace_placeholders(node: Expression, args, **kwargs) -> Expression:
6296        if isinstance(node, Placeholder):
6297            if node.name:
6298                new_name = kwargs.get(node.name)
6299                if new_name:
6300                    return convert(new_name)
6301            else:
6302                try:
6303                    return convert(next(args))
6304                except StopIteration:
6305                    pass
6306        return node
6307
6308    return expression.transform(_replace_placeholders, iter(args), **kwargs)
6309
6310
6311def expand(
6312    expression: Expression, sources: t.Dict[str, Subqueryable], copy: bool = True
6313) -> Expression:
6314    """Transforms an expression by expanding all referenced sources into subqueries.
6315
6316    Examples:
6317        >>> from sqlglot import parse_one
6318        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y")}).sql()
6319        'SELECT * FROM (SELECT * FROM y) AS z /* source: x */'
6320
6321        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y"), "y": parse_one("select * from z")}).sql()
6322        'SELECT * FROM (SELECT * FROM (SELECT * FROM z) AS y /* source: y */) AS z /* source: x */'
6323
6324    Args:
6325        expression: The expression to expand.
6326        sources: A dictionary of name to Subqueryables.
6327        copy: Whether or not to copy the expression during transformation. Defaults to True.
6328
6329    Returns:
6330        The transformed expression.
6331    """
6332
6333    def _expand(node: Expression):
6334        if isinstance(node, Table):
6335            name = table_name(node)
6336            source = sources.get(name)
6337            if source:
6338                subquery = source.subquery(node.alias or name)
6339                subquery.comments = [f"source: {name}"]
6340                return subquery.transform(_expand, copy=False)
6341        return node
6342
6343    return expression.transform(_expand, copy=copy)
6344
6345
6346def func(name: str, *args, dialect: DialectType = None, **kwargs) -> Func:
6347    """
6348    Returns a Func expression.
6349
6350    Examples:
6351        >>> func("abs", 5).sql()
6352        'ABS(5)'
6353
6354        >>> func("cast", this=5, to=DataType.build("DOUBLE")).sql()
6355        'CAST(5 AS DOUBLE)'
6356
6357    Args:
6358        name: the name of the function to build.
6359        args: the args used to instantiate the function of interest.
6360        dialect: the source dialect.
6361        kwargs: the kwargs used to instantiate the function of interest.
6362
6363    Note:
6364        The arguments `args` and `kwargs` are mutually exclusive.
6365
6366    Returns:
6367        An instance of the function of interest, or an anonymous function, if `name` doesn't
6368        correspond to an existing `sqlglot.expressions.Func` class.
6369    """
6370    if args and kwargs:
6371        raise ValueError("Can't use both args and kwargs to instantiate a function.")
6372
6373    from sqlglot.dialects.dialect import Dialect
6374
6375    converted: t.List[Expression] = [maybe_parse(arg, dialect=dialect) for arg in args]
6376    kwargs = {key: maybe_parse(value, dialect=dialect) for key, value in kwargs.items()}
6377
6378    parser = Dialect.get_or_raise(dialect)().parser()
6379    from_args_list = parser.FUNCTIONS.get(name.upper())
6380
6381    if from_args_list:
6382        function = from_args_list(converted) if converted else from_args_list.__self__(**kwargs)  # type: ignore
6383    else:
6384        kwargs = kwargs or {"expressions": converted}
6385        function = Anonymous(this=name, **kwargs)
6386
6387    for error_message in function.error_messages(converted):
6388        raise ValueError(error_message)
6389
6390    return function
6391
6392
6393def true() -> Boolean:
6394    """
6395    Returns a true Boolean expression.
6396    """
6397    return Boolean(this=True)
6398
6399
6400def false() -> Boolean:
6401    """
6402    Returns a false Boolean expression.
6403    """
6404    return Boolean(this=False)
6405
6406
6407def null() -> Null:
6408    """
6409    Returns a Null expression.
6410    """
6411    return Null()
6412
6413
6414# TODO: deprecate this
6415TRUE = Boolean(this=True)
6416FALSE = Boolean(this=False)
6417NULL = Null()
SQLGLOT_META = 'sqlglot.meta'
class Expression:
 59class Expression(metaclass=_Expression):
 60    """
 61    The base class for all expressions in a syntax tree. Each Expression encapsulates any necessary
 62    context, such as its child expressions, their names (arg keys), and whether a given child expression
 63    is optional or not.
 64
 65    Attributes:
 66        key: a unique key for each class in the Expression hierarchy. This is useful for hashing
 67            and representing expressions as strings.
 68        arg_types: determines what arguments (child nodes) are supported by an expression. It
 69            maps arg keys to booleans that indicate whether the corresponding args are optional.
 70        parent: a reference to the parent expression (or None, in case of root expressions).
 71        arg_key: the arg key an expression is associated with, i.e. the name its parent expression
 72            uses to refer to it.
 73        comments: a list of comments that are associated with a given expression. This is used in
 74            order to preserve comments when transpiling SQL code.
 75        type: the `sqlglot.expressions.DataType` type of an expression. This is inferred by the
 76            optimizer, in order to enable some transformations that require type information.
 77        meta: a dictionary that can be used to store useful metadata for a given expression.
 78
 79    Example:
 80        >>> class Foo(Expression):
 81        ...     arg_types = {"this": True, "expression": False}
 82
 83        The above definition informs us that Foo is an Expression that requires an argument called
 84        "this" and may also optionally receive an argument called "expression".
 85
 86    Args:
 87        args: a mapping used for retrieving the arguments of an expression, given their arg keys.
 88    """
 89
 90    key = "expression"
 91    arg_types = {"this": True}
 92    __slots__ = ("args", "parent", "arg_key", "comments", "_type", "_meta", "_hash")
 93
 94    def __init__(self, **args: t.Any):
 95        self.args: t.Dict[str, t.Any] = args
 96        self.parent: t.Optional[Expression] = None
 97        self.arg_key: t.Optional[str] = None
 98        self.comments: t.Optional[t.List[str]] = None
 99        self._type: t.Optional[DataType] = None
100        self._meta: t.Optional[t.Dict[str, t.Any]] = None
101        self._hash: t.Optional[int] = None
102
103        for arg_key, value in self.args.items():
104            self._set_parent(arg_key, value)
105
106    def __eq__(self, other) -> bool:
107        return type(self) is type(other) and hash(self) == hash(other)
108
109    @property
110    def hashable_args(self) -> t.Any:
111        return frozenset(
112            (k, tuple(_norm_arg(a) for a in v) if type(v) is list else _norm_arg(v))
113            for k, v in self.args.items()
114            if not (v is None or v is False or (type(v) is list and not v))
115        )
116
117    def __hash__(self) -> int:
118        if self._hash is not None:
119            return self._hash
120
121        return hash((self.__class__, self.hashable_args))
122
123    @property
124    def this(self):
125        """
126        Retrieves the argument with key "this".
127        """
128        return self.args.get("this")
129
130    @property
131    def expression(self):
132        """
133        Retrieves the argument with key "expression".
134        """
135        return self.args.get("expression")
136
137    @property
138    def expressions(self):
139        """
140        Retrieves the argument with key "expressions".
141        """
142        return self.args.get("expressions") or []
143
144    def text(self, key) -> str:
145        """
146        Returns a textual representation of the argument corresponding to "key". This can only be used
147        for args that are strings or leaf Expression instances, such as identifiers and literals.
148        """
149        field = self.args.get(key)
150        if isinstance(field, str):
151            return field
152        if isinstance(field, (Identifier, Literal, Var)):
153            return field.this
154        if isinstance(field, (Star, Null)):
155            return field.name
156        return ""
157
158    @property
159    def is_string(self) -> bool:
160        """
161        Checks whether a Literal expression is a string.
162        """
163        return isinstance(self, Literal) and self.args["is_string"]
164
165    @property
166    def is_number(self) -> bool:
167        """
168        Checks whether a Literal expression is a number.
169        """
170        return isinstance(self, Literal) and not self.args["is_string"]
171
172    @property
173    def is_int(self) -> bool:
174        """
175        Checks whether a Literal expression is an integer.
176        """
177        if self.is_number:
178            try:
179                int(self.name)
180                return True
181            except ValueError:
182                pass
183        return False
184
185    @property
186    def is_star(self) -> bool:
187        """Checks whether an expression is a star."""
188        return isinstance(self, Star) or (isinstance(self, Column) and isinstance(self.this, Star))
189
190    @property
191    def alias(self) -> str:
192        """
193        Returns the alias of the expression, or an empty string if it's not aliased.
194        """
195        if isinstance(self.args.get("alias"), TableAlias):
196            return self.args["alias"].name
197        return self.text("alias")
198
199    @property
200    def alias_column_names(self) -> t.List[str]:
201        table_alias = self.args.get("alias")
202        if not table_alias:
203            return []
204        return [c.name for c in table_alias.args.get("columns") or []]
205
206    @property
207    def name(self) -> str:
208        return self.text("this")
209
210    @property
211    def alias_or_name(self) -> str:
212        return self.alias or self.name
213
214    @property
215    def output_name(self) -> str:
216        """
217        Name of the output column if this expression is a selection.
218
219        If the Expression has no output name, an empty string is returned.
220
221        Example:
222            >>> from sqlglot import parse_one
223            >>> parse_one("SELECT a").expressions[0].output_name
224            'a'
225            >>> parse_one("SELECT b AS c").expressions[0].output_name
226            'c'
227            >>> parse_one("SELECT 1 + 2").expressions[0].output_name
228            ''
229        """
230        return ""
231
232    @property
233    def type(self) -> t.Optional[DataType]:
234        return self._type
235
236    @type.setter
237    def type(self, dtype: t.Optional[DataType | DataType.Type | str]) -> None:
238        if dtype and not isinstance(dtype, DataType):
239            dtype = DataType.build(dtype)
240        self._type = dtype  # type: ignore
241
242    @property
243    def meta(self) -> t.Dict[str, t.Any]:
244        if self._meta is None:
245            self._meta = {}
246        return self._meta
247
248    def __deepcopy__(self, memo):
249        copy = self.__class__(**deepcopy(self.args))
250        if self.comments is not None:
251            copy.comments = deepcopy(self.comments)
252
253        if self._type is not None:
254            copy._type = self._type.copy()
255
256        if self._meta is not None:
257            copy._meta = deepcopy(self._meta)
258
259        return copy
260
261    def copy(self):
262        """
263        Returns a deep copy of the expression.
264        """
265        new = deepcopy(self)
266        new.parent = self.parent
267        return new
268
269    def add_comments(self, comments: t.Optional[t.List[str]]) -> None:
270        if self.comments is None:
271            self.comments = []
272        if comments:
273            for comment in comments:
274                _, *meta = comment.split(SQLGLOT_META)
275                if meta:
276                    for kv in "".join(meta).split(","):
277                        k, *v = kv.split("=")
278                        value = v[0].strip() if v else True
279                        self.meta[k.strip()] = value
280                self.comments.append(comment)
281
282    def append(self, arg_key: str, value: t.Any) -> None:
283        """
284        Appends value to arg_key if it's a list or sets it as a new list.
285
286        Args:
287            arg_key (str): name of the list expression arg
288            value (Any): value to append to the list
289        """
290        if not isinstance(self.args.get(arg_key), list):
291            self.args[arg_key] = []
292        self.args[arg_key].append(value)
293        self._set_parent(arg_key, value)
294
295    def set(self, arg_key: str, value: t.Any) -> None:
296        """
297        Sets arg_key to value.
298
299        Args:
300            arg_key: name of the expression arg.
301            value: value to set the arg to.
302        """
303        if value is None:
304            self.args.pop(arg_key, None)
305            return
306
307        self.args[arg_key] = value
308        self._set_parent(arg_key, value)
309
310    def _set_parent(self, arg_key: str, value: t.Any) -> None:
311        if hasattr(value, "parent"):
312            value.parent = self
313            value.arg_key = arg_key
314        elif type(value) is list:
315            for v in value:
316                if hasattr(v, "parent"):
317                    v.parent = self
318                    v.arg_key = arg_key
319
320    @property
321    def depth(self) -> int:
322        """
323        Returns the depth of this tree.
324        """
325        if self.parent:
326            return self.parent.depth + 1
327        return 0
328
329    def iter_expressions(self) -> t.Iterator[t.Tuple[str, Expression]]:
330        """Yields the key and expression for all arguments, exploding list args."""
331        for k, vs in self.args.items():
332            if type(vs) is list:
333                for v in vs:
334                    if hasattr(v, "parent"):
335                        yield k, v
336            else:
337                if hasattr(vs, "parent"):
338                    yield k, vs
339
340    def find(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Optional[E]:
341        """
342        Returns the first node in this tree which matches at least one of
343        the specified types.
344
345        Args:
346            expression_types: the expression type(s) to match.
347            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
348
349        Returns:
350            The node which matches the criteria or None if no such node was found.
351        """
352        return next(self.find_all(*expression_types, bfs=bfs), None)
353
354    def find_all(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Iterator[E]:
355        """
356        Returns a generator object which visits all nodes in this tree and only
357        yields those that match at least one of the specified expression types.
358
359        Args:
360            expression_types: the expression type(s) to match.
361            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
362
363        Returns:
364            The generator object.
365        """
366        for expression, *_ in self.walk(bfs=bfs):
367            if isinstance(expression, expression_types):
368                yield expression
369
370    def find_ancestor(self, *expression_types: t.Type[E]) -> t.Optional[E]:
371        """
372        Returns a nearest parent matching expression_types.
373
374        Args:
375            expression_types: the expression type(s) to match.
376
377        Returns:
378            The parent node.
379        """
380        ancestor = self.parent
381        while ancestor and not isinstance(ancestor, expression_types):
382            ancestor = ancestor.parent
383        return t.cast(E, ancestor)
384
385    @property
386    def parent_select(self) -> t.Optional[Select]:
387        """
388        Returns the parent select statement.
389        """
390        return self.find_ancestor(Select)
391
392    @property
393    def same_parent(self) -> bool:
394        """Returns if the parent is the same class as itself."""
395        return type(self.parent) is self.__class__
396
397    def root(self) -> Expression:
398        """
399        Returns the root expression of this tree.
400        """
401        expression = self
402        while expression.parent:
403            expression = expression.parent
404        return expression
405
406    def walk(self, bfs=True, prune=None):
407        """
408        Returns a generator object which visits all nodes in this tree.
409
410        Args:
411            bfs (bool): if set to True the BFS traversal order will be applied,
412                otherwise the DFS traversal will be used instead.
413            prune ((node, parent, arg_key) -> bool): callable that returns True if
414                the generator should stop traversing this branch of the tree.
415
416        Returns:
417            the generator object.
418        """
419        if bfs:
420            yield from self.bfs(prune=prune)
421        else:
422            yield from self.dfs(prune=prune)
423
424    def dfs(self, parent=None, key=None, prune=None):
425        """
426        Returns a generator object which visits all nodes in this tree in
427        the DFS (Depth-first) order.
428
429        Returns:
430            The generator object.
431        """
432        parent = parent or self.parent
433        yield self, parent, key
434        if prune and prune(self, parent, key):
435            return
436
437        for k, v in self.iter_expressions():
438            yield from v.dfs(self, k, prune)
439
440    def bfs(self, prune=None):
441        """
442        Returns a generator object which visits all nodes in this tree in
443        the BFS (Breadth-first) order.
444
445        Returns:
446            The generator object.
447        """
448        queue = deque([(self, self.parent, None)])
449
450        while queue:
451            item, parent, key = queue.popleft()
452
453            yield item, parent, key
454            if prune and prune(item, parent, key):
455                continue
456
457            for k, v in item.iter_expressions():
458                queue.append((v, item, k))
459
460    def unnest(self):
461        """
462        Returns the first non parenthesis child or self.
463        """
464        expression = self
465        while type(expression) is Paren:
466            expression = expression.this
467        return expression
468
469    def unalias(self):
470        """
471        Returns the inner expression if this is an Alias.
472        """
473        if isinstance(self, Alias):
474            return self.this
475        return self
476
477    def unnest_operands(self):
478        """
479        Returns unnested operands as a tuple.
480        """
481        return tuple(arg.unnest() for _, arg in self.iter_expressions())
482
483    def flatten(self, unnest=True):
484        """
485        Returns a generator which yields child nodes who's parents are the same class.
486
487        A AND B AND C -> [A, B, C]
488        """
489        for node, _, _ in self.dfs(prune=lambda n, p, *_: p and not type(n) is self.__class__):
490            if not type(node) is self.__class__:
491                yield node.unnest() if unnest else node
492
493    def __str__(self) -> str:
494        return self.sql()
495
496    def __repr__(self) -> str:
497        return self._to_s()
498
499    def sql(self, dialect: DialectType = None, **opts) -> str:
500        """
501        Returns SQL string representation of this tree.
502
503        Args:
504            dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
505            opts: other `sqlglot.generator.Generator` options.
506
507        Returns:
508            The SQL string.
509        """
510        from sqlglot.dialects import Dialect
511
512        return Dialect.get_or_raise(dialect)().generate(self, **opts)
513
514    def _to_s(self, hide_missing: bool = True, level: int = 0) -> str:
515        indent = "" if not level else "\n"
516        indent += "".join(["  "] * level)
517        left = f"({self.key.upper()} "
518
519        args: t.Dict[str, t.Any] = {
520            k: ", ".join(
521                v._to_s(hide_missing=hide_missing, level=level + 1)
522                if hasattr(v, "_to_s")
523                else str(v)
524                for v in ensure_list(vs)
525                if v is not None
526            )
527            for k, vs in self.args.items()
528        }
529        args["comments"] = self.comments
530        args["type"] = self.type
531        args = {k: v for k, v in args.items() if v or not hide_missing}
532
533        right = ", ".join(f"{k}: {v}" for k, v in args.items())
534        right += ")"
535
536        return indent + left + right
537
538    def transform(self, fun, *args, copy=True, **kwargs):
539        """
540        Recursively visits all tree nodes (excluding already transformed ones)
541        and applies the given transformation function to each node.
542
543        Args:
544            fun (function): a function which takes a node as an argument and returns a
545                new transformed node or the same node without modifications. If the function
546                returns None, then the corresponding node will be removed from the syntax tree.
547            copy (bool): if set to True a new tree instance is constructed, otherwise the tree is
548                modified in place.
549
550        Returns:
551            The transformed tree.
552        """
553        node = self.copy() if copy else self
554        new_node = fun(node, *args, **kwargs)
555
556        if new_node is None or not isinstance(new_node, Expression):
557            return new_node
558        if new_node is not node:
559            new_node.parent = node.parent
560            return new_node
561
562        replace_children(new_node, lambda child: child.transform(fun, *args, copy=False, **kwargs))
563        return new_node
564
565    @t.overload
566    def replace(self, expression: E) -> E:
567        ...
568
569    @t.overload
570    def replace(self, expression: None) -> None:
571        ...
572
573    def replace(self, expression):
574        """
575        Swap out this expression with a new expression.
576
577        For example::
578
579            >>> tree = Select().select("x").from_("tbl")
580            >>> tree.find(Column).replace(Column(this="y"))
581            (COLUMN this: y)
582            >>> tree.sql()
583            'SELECT y FROM tbl'
584
585        Args:
586            expression: new node
587
588        Returns:
589            The new expression or expressions.
590        """
591        if not self.parent:
592            return expression
593
594        parent = self.parent
595        self.parent = None
596
597        replace_children(parent, lambda child: expression if child is self else child)
598        return expression
599
600    def pop(self: E) -> E:
601        """
602        Remove this expression from its AST.
603
604        Returns:
605            The popped expression.
606        """
607        self.replace(None)
608        return self
609
610    def assert_is(self, type_: t.Type[E]) -> E:
611        """
612        Assert that this `Expression` is an instance of `type_`.
613
614        If it is NOT an instance of `type_`, this raises an assertion error.
615        Otherwise, this returns this expression.
616
617        Examples:
618            This is useful for type security in chained expressions:
619
620            >>> import sqlglot
621            >>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
622            'SELECT x, z FROM y'
623        """
624        assert isinstance(self, type_)
625        return self
626
627    def error_messages(self, args: t.Optional[t.Sequence] = None) -> t.List[str]:
628        """
629        Checks if this expression is valid (e.g. all mandatory args are set).
630
631        Args:
632            args: a sequence of values that were used to instantiate a Func expression. This is used
633                to check that the provided arguments don't exceed the function argument limit.
634
635        Returns:
636            A list of error messages for all possible errors that were found.
637        """
638        errors: t.List[str] = []
639
640        for k in self.args:
641            if k not in self.arg_types:
642                errors.append(f"Unexpected keyword: '{k}' for {self.__class__}")
643        for k, mandatory in self.arg_types.items():
644            v = self.args.get(k)
645            if mandatory and (v is None or (isinstance(v, list) and not v)):
646                errors.append(f"Required keyword: '{k}' missing for {self.__class__}")
647
648        if (
649            args
650            and isinstance(self, Func)
651            and len(args) > len(self.arg_types)
652            and not self.is_var_len_args
653        ):
654            errors.append(
655                f"The number of provided arguments ({len(args)}) is greater than "
656                f"the maximum number of supported arguments ({len(self.arg_types)})"
657            )
658
659        return errors
660
661    def dump(self):
662        """
663        Dump this Expression to a JSON-serializable dict.
664        """
665        from sqlglot.serde import dump
666
667        return dump(self)
668
669    @classmethod
670    def load(cls, obj):
671        """
672        Load a dict (as returned by `Expression.dump`) into an Expression instance.
673        """
674        from sqlglot.serde import load
675
676        return load(obj)
677
678    def and_(
679        self,
680        *expressions: t.Optional[ExpOrStr],
681        dialect: DialectType = None,
682        copy: bool = True,
683        **opts,
684    ) -> Condition:
685        """
686        AND this condition with one or multiple expressions.
687
688        Example:
689            >>> condition("x=1").and_("y=1").sql()
690            'x = 1 AND y = 1'
691
692        Args:
693            *expressions: the SQL code strings to parse.
694                If an `Expression` instance is passed, it will be used as-is.
695            dialect: the dialect used to parse the input expression.
696            copy: whether or not to copy the involved expressions (only applies to Expressions).
697            opts: other options to use to parse the input expressions.
698
699        Returns:
700            The new And condition.
701        """
702        return and_(self, *expressions, dialect=dialect, copy=copy, **opts)
703
704    def or_(
705        self,
706        *expressions: t.Optional[ExpOrStr],
707        dialect: DialectType = None,
708        copy: bool = True,
709        **opts,
710    ) -> Condition:
711        """
712        OR this condition with one or multiple expressions.
713
714        Example:
715            >>> condition("x=1").or_("y=1").sql()
716            'x = 1 OR y = 1'
717
718        Args:
719            *expressions: the SQL code strings to parse.
720                If an `Expression` instance is passed, it will be used as-is.
721            dialect: the dialect used to parse the input expression.
722            copy: whether or not to copy the involved expressions (only applies to Expressions).
723            opts: other options to use to parse the input expressions.
724
725        Returns:
726            The new Or condition.
727        """
728        return or_(self, *expressions, dialect=dialect, copy=copy, **opts)
729
730    def not_(self, copy: bool = True):
731        """
732        Wrap this condition with NOT.
733
734        Example:
735            >>> condition("x=1").not_().sql()
736            'NOT x = 1'
737
738        Args:
739            copy: whether or not to copy this object.
740
741        Returns:
742            The new Not instance.
743        """
744        return not_(self, copy=copy)
745
746    def as_(
747        self,
748        alias: str | Identifier,
749        quoted: t.Optional[bool] = None,
750        dialect: DialectType = None,
751        copy: bool = True,
752        **opts,
753    ) -> Alias:
754        return alias_(self, alias, quoted=quoted, dialect=dialect, copy=copy, **opts)
755
756    def _binop(self, klass: t.Type[E], other: t.Any, reverse: bool = False) -> E:
757        this = self.copy()
758        other = convert(other, copy=True)
759        if not isinstance(this, klass) and not isinstance(other, klass):
760            this = _wrap(this, Binary)
761            other = _wrap(other, Binary)
762        if reverse:
763            return klass(this=other, expression=this)
764        return klass(this=this, expression=other)
765
766    def __getitem__(self, other: ExpOrStr | t.Tuple[ExpOrStr]) -> Bracket:
767        return Bracket(
768            this=self.copy(), expressions=[convert(e, copy=True) for e in ensure_list(other)]
769        )
770
771    def __iter__(self) -> t.Iterator:
772        if "expressions" in self.arg_types:
773            return iter(self.args.get("expressions") or [])
774        # We define this because __getitem__ converts Expression into an iterable, which is
775        # problematic because one can hit infinite loops if they do "for x in some_expr: ..."
776        # See: https://peps.python.org/pep-0234/
777        raise TypeError(f"'{self.__class__.__name__}' object is not iterable")
778
779    def isin(
780        self,
781        *expressions: t.Any,
782        query: t.Optional[ExpOrStr] = None,
783        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
784        copy: bool = True,
785        **opts,
786    ) -> In:
787        return In(
788            this=maybe_copy(self, copy),
789            expressions=[convert(e, copy=copy) for e in expressions],
790            query=maybe_parse(query, copy=copy, **opts) if query else None,
791            unnest=Unnest(
792                expressions=[
793                    maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts) for e in ensure_list(unnest)
794                ]
795            )
796            if unnest
797            else None,
798        )
799
800    def between(self, low: t.Any, high: t.Any, copy: bool = True, **opts) -> Between:
801        return Between(
802            this=maybe_copy(self, copy),
803            low=convert(low, copy=copy, **opts),
804            high=convert(high, copy=copy, **opts),
805        )
806
807    def is_(self, other: ExpOrStr) -> Is:
808        return self._binop(Is, other)
809
810    def like(self, other: ExpOrStr) -> Like:
811        return self._binop(Like, other)
812
813    def ilike(self, other: ExpOrStr) -> ILike:
814        return self._binop(ILike, other)
815
816    def eq(self, other: t.Any) -> EQ:
817        return self._binop(EQ, other)
818
819    def neq(self, other: t.Any) -> NEQ:
820        return self._binop(NEQ, other)
821
822    def rlike(self, other: ExpOrStr) -> RegexpLike:
823        return self._binop(RegexpLike, other)
824
825    def __lt__(self, other: t.Any) -> LT:
826        return self._binop(LT, other)
827
828    def __le__(self, other: t.Any) -> LTE:
829        return self._binop(LTE, other)
830
831    def __gt__(self, other: t.Any) -> GT:
832        return self._binop(GT, other)
833
834    def __ge__(self, other: t.Any) -> GTE:
835        return self._binop(GTE, other)
836
837    def __add__(self, other: t.Any) -> Add:
838        return self._binop(Add, other)
839
840    def __radd__(self, other: t.Any) -> Add:
841        return self._binop(Add, other, reverse=True)
842
843    def __sub__(self, other: t.Any) -> Sub:
844        return self._binop(Sub, other)
845
846    def __rsub__(self, other: t.Any) -> Sub:
847        return self._binop(Sub, other, reverse=True)
848
849    def __mul__(self, other: t.Any) -> Mul:
850        return self._binop(Mul, other)
851
852    def __rmul__(self, other: t.Any) -> Mul:
853        return self._binop(Mul, other, reverse=True)
854
855    def __truediv__(self, other: t.Any) -> Div:
856        return self._binop(Div, other)
857
858    def __rtruediv__(self, other: t.Any) -> Div:
859        return self._binop(Div, other, reverse=True)
860
861    def __floordiv__(self, other: t.Any) -> IntDiv:
862        return self._binop(IntDiv, other)
863
864    def __rfloordiv__(self, other: t.Any) -> IntDiv:
865        return self._binop(IntDiv, other, reverse=True)
866
867    def __mod__(self, other: t.Any) -> Mod:
868        return self._binop(Mod, other)
869
870    def __rmod__(self, other: t.Any) -> Mod:
871        return self._binop(Mod, other, reverse=True)
872
873    def __pow__(self, other: t.Any) -> Pow:
874        return self._binop(Pow, other)
875
876    def __rpow__(self, other: t.Any) -> Pow:
877        return self._binop(Pow, other, reverse=True)
878
879    def __and__(self, other: t.Any) -> And:
880        return self._binop(And, other)
881
882    def __rand__(self, other: t.Any) -> And:
883        return self._binop(And, other, reverse=True)
884
885    def __or__(self, other: t.Any) -> Or:
886        return self._binop(Or, other)
887
888    def __ror__(self, other: t.Any) -> Or:
889        return self._binop(Or, other, reverse=True)
890
891    def __neg__(self) -> Neg:
892        return Neg(this=_wrap(self.copy(), Binary))
893
894    def __invert__(self) -> Not:
895        return not_(self.copy())

The base class for all expressions in a syntax tree. Each Expression encapsulates any necessary context, such as its child expressions, their names (arg keys), and whether a given child expression is optional or not.

Attributes:
  • key: a unique key for each class in the Expression hierarchy. This is useful for hashing and representing expressions as strings.
  • arg_types: determines what arguments (child nodes) are supported by an expression. It maps arg keys to booleans that indicate whether the corresponding args are optional.
  • parent: a reference to the parent expression (or None, in case of root expressions).
  • arg_key: the arg key an expression is associated with, i.e. the name its parent expression uses to refer to it.
  • comments: a list of comments that are associated with a given expression. This is used in order to preserve comments when transpiling SQL code.
  • type: the DataType type of an expression. This is inferred by the optimizer, in order to enable some transformations that require type information.
  • meta: a dictionary that can be used to store useful metadata for a given expression.
Example:
>>> class Foo(Expression):
...     arg_types = {"this": True, "expression": False}

The above definition informs us that Foo is an Expression that requires an argument called "this" and may also optionally receive an argument called "expression".

Arguments:
  • args: a mapping used for retrieving the arguments of an expression, given their arg keys.
Expression(**args: Any)
 94    def __init__(self, **args: t.Any):
 95        self.args: t.Dict[str, t.Any] = args
 96        self.parent: t.Optional[Expression] = None
 97        self.arg_key: t.Optional[str] = None
 98        self.comments: t.Optional[t.List[str]] = None
 99        self._type: t.Optional[DataType] = None
100        self._meta: t.Optional[t.Dict[str, t.Any]] = None
101        self._hash: t.Optional[int] = None
102
103        for arg_key, value in self.args.items():
104            self._set_parent(arg_key, value)
key = 'expression'
arg_types = {'this': True}
args: Dict[str, Any]
parent: Optional[Expression]
arg_key: Optional[str]
comments: Optional[List[str]]
hashable_args: Any
this

Retrieves the argument with key "this".

expression

Retrieves the argument with key "expression".

expressions

Retrieves the argument with key "expressions".

def text(self, key) -> str:
144    def text(self, key) -> str:
145        """
146        Returns a textual representation of the argument corresponding to "key". This can only be used
147        for args that are strings or leaf Expression instances, such as identifiers and literals.
148        """
149        field = self.args.get(key)
150        if isinstance(field, str):
151            return field
152        if isinstance(field, (Identifier, Literal, Var)):
153            return field.this
154        if isinstance(field, (Star, Null)):
155            return field.name
156        return ""

Returns a textual representation of the argument corresponding to "key". This can only be used for args that are strings or leaf Expression instances, such as identifiers and literals.

is_string: bool

Checks whether a Literal expression is a string.

is_number: bool

Checks whether a Literal expression is a number.

is_int: bool

Checks whether a Literal expression is an integer.

is_star: bool

Checks whether an expression is a star.

alias: str

Returns the alias of the expression, or an empty string if it's not aliased.

alias_column_names: List[str]
name: str
alias_or_name: str
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
type: Optional[DataType]
meta: Dict[str, Any]
def copy(self):
261    def copy(self):
262        """
263        Returns a deep copy of the expression.
264        """
265        new = deepcopy(self)
266        new.parent = self.parent
267        return new

Returns a deep copy of the expression.

def add_comments(self, comments: Optional[List[str]]) -> None:
269    def add_comments(self, comments: t.Optional[t.List[str]]) -> None:
270        if self.comments is None:
271            self.comments = []
272        if comments:
273            for comment in comments:
274                _, *meta = comment.split(SQLGLOT_META)
275                if meta:
276                    for kv in "".join(meta).split(","):
277                        k, *v = kv.split("=")
278                        value = v[0].strip() if v else True
279                        self.meta[k.strip()] = value
280                self.comments.append(comment)
def append(self, arg_key: str, value: Any) -> None:
282    def append(self, arg_key: str, value: t.Any) -> None:
283        """
284        Appends value to arg_key if it's a list or sets it as a new list.
285
286        Args:
287            arg_key (str): name of the list expression arg
288            value (Any): value to append to the list
289        """
290        if not isinstance(self.args.get(arg_key), list):
291            self.args[arg_key] = []
292        self.args[arg_key].append(value)
293        self._set_parent(arg_key, value)

Appends value to arg_key if it's a list or sets it as a new list.

Arguments:
  • arg_key (str): name of the list expression arg
  • value (Any): value to append to the list
def set(self, arg_key: str, value: Any) -> None:
295    def set(self, arg_key: str, value: t.Any) -> None:
296        """
297        Sets arg_key to value.
298
299        Args:
300            arg_key: name of the expression arg.
301            value: value to set the arg to.
302        """
303        if value is None:
304            self.args.pop(arg_key, None)
305            return
306
307        self.args[arg_key] = value
308        self._set_parent(arg_key, value)

Sets arg_key to value.

Arguments:
  • arg_key: name of the expression arg.
  • value: value to set the arg to.
depth: int

Returns the depth of this tree.

def iter_expressions(self) -> Iterator[Tuple[str, Expression]]:
329    def iter_expressions(self) -> t.Iterator[t.Tuple[str, Expression]]:
330        """Yields the key and expression for all arguments, exploding list args."""
331        for k, vs in self.args.items():
332            if type(vs) is list:
333                for v in vs:
334                    if hasattr(v, "parent"):
335                        yield k, v
336            else:
337                if hasattr(vs, "parent"):
338                    yield k, vs

Yields the key and expression for all arguments, exploding list args.

def find(self, *expression_types: Type[~E], bfs: bool = True) -> Optional[~E]:
340    def find(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Optional[E]:
341        """
342        Returns the first node in this tree which matches at least one of
343        the specified types.
344
345        Args:
346            expression_types: the expression type(s) to match.
347            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
348
349        Returns:
350            The node which matches the criteria or None if no such node was found.
351        """
352        return next(self.find_all(*expression_types, bfs=bfs), None)

Returns the first node in this tree which matches at least one of the specified types.

Arguments:
  • expression_types: the expression type(s) to match.
  • bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
Returns:

The node which matches the criteria or None if no such node was found.

def find_all(self, *expression_types: Type[~E], bfs: bool = True) -> Iterator[~E]:
354    def find_all(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Iterator[E]:
355        """
356        Returns a generator object which visits all nodes in this tree and only
357        yields those that match at least one of the specified expression types.
358
359        Args:
360            expression_types: the expression type(s) to match.
361            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
362
363        Returns:
364            The generator object.
365        """
366        for expression, *_ in self.walk(bfs=bfs):
367            if isinstance(expression, expression_types):
368                yield expression

Returns a generator object which visits all nodes in this tree and only yields those that match at least one of the specified expression types.

Arguments:
  • expression_types: the expression type(s) to match.
  • bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
Returns:

The generator object.

def find_ancestor(self, *expression_types: Type[~E]) -> Optional[~E]:
370    def find_ancestor(self, *expression_types: t.Type[E]) -> t.Optional[E]:
371        """
372        Returns a nearest parent matching expression_types.
373
374        Args:
375            expression_types: the expression type(s) to match.
376
377        Returns:
378            The parent node.
379        """
380        ancestor = self.parent
381        while ancestor and not isinstance(ancestor, expression_types):
382            ancestor = ancestor.parent
383        return t.cast(E, ancestor)

Returns a nearest parent matching expression_types.

Arguments:
  • expression_types: the expression type(s) to match.
Returns:

The parent node.

parent_select: Optional[Select]

Returns the parent select statement.

same_parent: bool

Returns if the parent is the same class as itself.

def root(self) -> Expression:
397    def root(self) -> Expression:
398        """
399        Returns the root expression of this tree.
400        """
401        expression = self
402        while expression.parent:
403            expression = expression.parent
404        return expression

Returns the root expression of this tree.

def walk(self, bfs=True, prune=None):
406    def walk(self, bfs=True, prune=None):
407        """
408        Returns a generator object which visits all nodes in this tree.
409
410        Args:
411            bfs (bool): if set to True the BFS traversal order will be applied,
412                otherwise the DFS traversal will be used instead.
413            prune ((node, parent, arg_key) -> bool): callable that returns True if
414                the generator should stop traversing this branch of the tree.
415
416        Returns:
417            the generator object.
418        """
419        if bfs:
420            yield from self.bfs(prune=prune)
421        else:
422            yield from self.dfs(prune=prune)

Returns a generator object which visits all nodes in this tree.

Arguments:
  • bfs (bool): if set to True the BFS traversal order will be applied, otherwise the DFS traversal will be used instead.
  • prune ((node, parent, arg_key) -> bool): callable that returns True if the generator should stop traversing this branch of the tree.
Returns:

the generator object.

def dfs(self, parent=None, key=None, prune=None):
424    def dfs(self, parent=None, key=None, prune=None):
425        """
426        Returns a generator object which visits all nodes in this tree in
427        the DFS (Depth-first) order.
428
429        Returns:
430            The generator object.
431        """
432        parent = parent or self.parent
433        yield self, parent, key
434        if prune and prune(self, parent, key):
435            return
436
437        for k, v in self.iter_expressions():
438            yield from v.dfs(self, k, prune)

Returns a generator object which visits all nodes in this tree in the DFS (Depth-first) order.

Returns:

The generator object.

def bfs(self, prune=None):
440    def bfs(self, prune=None):
441        """
442        Returns a generator object which visits all nodes in this tree in
443        the BFS (Breadth-first) order.
444
445        Returns:
446            The generator object.
447        """
448        queue = deque([(self, self.parent, None)])
449
450        while queue:
451            item, parent, key = queue.popleft()
452
453            yield item, parent, key
454            if prune and prune(item, parent, key):
455                continue
456
457            for k, v in item.iter_expressions():
458                queue.append((v, item, k))

Returns a generator object which visits all nodes in this tree in the BFS (Breadth-first) order.

Returns:

The generator object.

def unnest(self):
460    def unnest(self):
461        """
462        Returns the first non parenthesis child or self.
463        """
464        expression = self
465        while type(expression) is Paren:
466            expression = expression.this
467        return expression

Returns the first non parenthesis child or self.

def unalias(self):
469    def unalias(self):
470        """
471        Returns the inner expression if this is an Alias.
472        """
473        if isinstance(self, Alias):
474            return self.this
475        return self

Returns the inner expression if this is an Alias.

def unnest_operands(self):
477    def unnest_operands(self):
478        """
479        Returns unnested operands as a tuple.
480        """
481        return tuple(arg.unnest() for _, arg in self.iter_expressions())

Returns unnested operands as a tuple.

def flatten(self, unnest=True):
483    def flatten(self, unnest=True):
484        """
485        Returns a generator which yields child nodes who's parents are the same class.
486
487        A AND B AND C -> [A, B, C]
488        """
489        for node, _, _ in self.dfs(prune=lambda n, p, *_: p and not type(n) is self.__class__):
490            if not type(node) is self.__class__:
491                yield node.unnest() if unnest else node

Returns a generator which yields child nodes who's parents are the same class.

A AND B AND C -> [A, B, C]

def sql( self, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> str:
499    def sql(self, dialect: DialectType = None, **opts) -> str:
500        """
501        Returns SQL string representation of this tree.
502
503        Args:
504            dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
505            opts: other `sqlglot.generator.Generator` options.
506
507        Returns:
508            The SQL string.
509        """
510        from sqlglot.dialects import Dialect
511
512        return Dialect.get_or_raise(dialect)().generate(self, **opts)

Returns SQL string representation of this tree.

Arguments:
  • dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
  • opts: other sqlglot.generator.Generator options.
Returns:

The SQL string.

def transform(self, fun, *args, copy=True, **kwargs):
538    def transform(self, fun, *args, copy=True, **kwargs):
539        """
540        Recursively visits all tree nodes (excluding already transformed ones)
541        and applies the given transformation function to each node.
542
543        Args:
544            fun (function): a function which takes a node as an argument and returns a
545                new transformed node or the same node without modifications. If the function
546                returns None, then the corresponding node will be removed from the syntax tree.
547            copy (bool): if set to True a new tree instance is constructed, otherwise the tree is
548                modified in place.
549
550        Returns:
551            The transformed tree.
552        """
553        node = self.copy() if copy else self
554        new_node = fun(node, *args, **kwargs)
555
556        if new_node is None or not isinstance(new_node, Expression):
557            return new_node
558        if new_node is not node:
559            new_node.parent = node.parent
560            return new_node
561
562        replace_children(new_node, lambda child: child.transform(fun, *args, copy=False, **kwargs))
563        return new_node

Recursively visits all tree nodes (excluding already transformed ones) and applies the given transformation function to each node.

Arguments:
  • fun (function): a function which takes a node as an argument and returns a new transformed node or the same node without modifications. If the function returns None, then the corresponding node will be removed from the syntax tree.
  • copy (bool): if set to True a new tree instance is constructed, otherwise the tree is modified in place.
Returns:

The transformed tree.

def replace(self, expression):
573    def replace(self, expression):
574        """
575        Swap out this expression with a new expression.
576
577        For example::
578
579            >>> tree = Select().select("x").from_("tbl")
580            >>> tree.find(Column).replace(Column(this="y"))
581            (COLUMN this: y)
582            >>> tree.sql()
583            'SELECT y FROM tbl'
584
585        Args:
586            expression: new node
587
588        Returns:
589            The new expression or expressions.
590        """
591        if not self.parent:
592            return expression
593
594        parent = self.parent
595        self.parent = None
596
597        replace_children(parent, lambda child: expression if child is self else child)
598        return expression

Swap out this expression with a new expression.

For example::

>>> tree = Select().select("x").from_("tbl")
>>> tree.find(Column).replace(Column(this="y"))
(COLUMN this: y)
>>> tree.sql()
'SELECT y FROM tbl'
Arguments:
  • expression: new node
Returns:

The new expression or expressions.

def pop(self: ~E) -> ~E:
600    def pop(self: E) -> E:
601        """
602        Remove this expression from its AST.
603
604        Returns:
605            The popped expression.
606        """
607        self.replace(None)
608        return self

Remove this expression from its AST.

Returns:

The popped expression.

def assert_is(self, type_: Type[~E]) -> ~E:
610    def assert_is(self, type_: t.Type[E]) -> E:
611        """
612        Assert that this `Expression` is an instance of `type_`.
613
614        If it is NOT an instance of `type_`, this raises an assertion error.
615        Otherwise, this returns this expression.
616
617        Examples:
618            This is useful for type security in chained expressions:
619
620            >>> import sqlglot
621            >>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
622            'SELECT x, z FROM y'
623        """
624        assert isinstance(self, type_)
625        return self

Assert that this Expression is an instance of type_.

If it is NOT an instance of type_, this raises an assertion error. Otherwise, this returns this expression.

Examples:

This is useful for type security in chained expressions:

>>> import sqlglot
>>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
'SELECT x, z FROM y'
def error_messages(self, args: Optional[Sequence] = None) -> List[str]:
627    def error_messages(self, args: t.Optional[t.Sequence] = None) -> t.List[str]:
628        """
629        Checks if this expression is valid (e.g. all mandatory args are set).
630
631        Args:
632            args: a sequence of values that were used to instantiate a Func expression. This is used
633                to check that the provided arguments don't exceed the function argument limit.
634
635        Returns:
636            A list of error messages for all possible errors that were found.
637        """
638        errors: t.List[str] = []
639
640        for k in self.args:
641            if k not in self.arg_types:
642                errors.append(f"Unexpected keyword: '{k}' for {self.__class__}")
643        for k, mandatory in self.arg_types.items():
644            v = self.args.get(k)
645            if mandatory and (v is None or (isinstance(v, list) and not v)):
646                errors.append(f"Required keyword: '{k}' missing for {self.__class__}")
647
648        if (
649            args
650            and isinstance(self, Func)
651            and len(args) > len(self.arg_types)
652            and not self.is_var_len_args
653        ):
654            errors.append(
655                f"The number of provided arguments ({len(args)}) is greater than "
656                f"the maximum number of supported arguments ({len(self.arg_types)})"
657            )
658
659        return errors

Checks if this expression is valid (e.g. all mandatory args are set).

Arguments:
  • args: a sequence of values that were used to instantiate a Func expression. This is used to check that the provided arguments don't exceed the function argument limit.
Returns:

A list of error messages for all possible errors that were found.

def dump(self):
661    def dump(self):
662        """
663        Dump this Expression to a JSON-serializable dict.
664        """
665        from sqlglot.serde import dump
666
667        return dump(self)

Dump this Expression to a JSON-serializable dict.

@classmethod
def load(cls, obj):
669    @classmethod
670    def load(cls, obj):
671        """
672        Load a dict (as returned by `Expression.dump`) into an Expression instance.
673        """
674        from sqlglot.serde import load
675
676        return load(obj)

Load a dict (as returned by Expression.dump) into an Expression instance.

def and_( self, *expressions: Union[str, Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Condition:
678    def and_(
679        self,
680        *expressions: t.Optional[ExpOrStr],
681        dialect: DialectType = None,
682        copy: bool = True,
683        **opts,
684    ) -> Condition:
685        """
686        AND this condition with one or multiple expressions.
687
688        Example:
689            >>> condition("x=1").and_("y=1").sql()
690            'x = 1 AND y = 1'
691
692        Args:
693            *expressions: the SQL code strings to parse.
694                If an `Expression` instance is passed, it will be used as-is.
695            dialect: the dialect used to parse the input expression.
696            copy: whether or not to copy the involved expressions (only applies to Expressions).
697            opts: other options to use to parse the input expressions.
698
699        Returns:
700            The new And condition.
701        """
702        return and_(self, *expressions, dialect=dialect, copy=copy, **opts)

AND this condition with one or multiple expressions.

Example:
>>> condition("x=1").and_("y=1").sql()
'x = 1 AND y = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether or not to copy the involved expressions (only applies to Expressions).
  • opts: other options to use to parse the input expressions.
Returns:

The new And condition.

def or_( self, *expressions: Union[str, Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Condition:
704    def or_(
705        self,
706        *expressions: t.Optional[ExpOrStr],
707        dialect: DialectType = None,
708        copy: bool = True,
709        **opts,
710    ) -> Condition:
711        """
712        OR this condition with one or multiple expressions.
713
714        Example:
715            >>> condition("x=1").or_("y=1").sql()
716            'x = 1 OR y = 1'
717
718        Args:
719            *expressions: the SQL code strings to parse.
720                If an `Expression` instance is passed, it will be used as-is.
721            dialect: the dialect used to parse the input expression.
722            copy: whether or not to copy the involved expressions (only applies to Expressions).
723            opts: other options to use to parse the input expressions.
724
725        Returns:
726            The new Or condition.
727        """
728        return or_(self, *expressions, dialect=dialect, copy=copy, **opts)

OR this condition with one or multiple expressions.

Example:
>>> condition("x=1").or_("y=1").sql()
'x = 1 OR y = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether or not to copy the involved expressions (only applies to Expressions).
  • opts: other options to use to parse the input expressions.
Returns:

The new Or condition.

def not_(self, copy: bool = True):
730    def not_(self, copy: bool = True):
731        """
732        Wrap this condition with NOT.
733
734        Example:
735            >>> condition("x=1").not_().sql()
736            'NOT x = 1'
737
738        Args:
739            copy: whether or not to copy this object.
740
741        Returns:
742            The new Not instance.
743        """
744        return not_(self, copy=copy)

Wrap this condition with NOT.

Example:
>>> condition("x=1").not_().sql()
'NOT x = 1'
Arguments:
  • copy: whether or not to copy this object.
Returns:

The new Not instance.

def as_( self, alias: str | Identifier, quoted: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Alias:
746    def as_(
747        self,
748        alias: str | Identifier,
749        quoted: t.Optional[bool] = None,
750        dialect: DialectType = None,
751        copy: bool = True,
752        **opts,
753    ) -> Alias:
754        return alias_(self, alias, quoted=quoted, dialect=dialect, copy=copy, **opts)
def isin( self, *expressions: Any, query: Union[str, Expression, NoneType] = None, unnest: Union[str, Expression, NoneType, Collection[Union[str, Expression]]] = None, copy: bool = True, **opts) -> In:
779    def isin(
780        self,
781        *expressions: t.Any,
782        query: t.Optional[ExpOrStr] = None,
783        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
784        copy: bool = True,
785        **opts,
786    ) -> In:
787        return In(
788            this=maybe_copy(self, copy),
789            expressions=[convert(e, copy=copy) for e in expressions],
790            query=maybe_parse(query, copy=copy, **opts) if query else None,
791            unnest=Unnest(
792                expressions=[
793                    maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts) for e in ensure_list(unnest)
794                ]
795            )
796            if unnest
797            else None,
798        )
def between( self, low: Any, high: Any, copy: bool = True, **opts) -> Between:
800    def between(self, low: t.Any, high: t.Any, copy: bool = True, **opts) -> Between:
801        return Between(
802            this=maybe_copy(self, copy),
803            low=convert(low, copy=copy, **opts),
804            high=convert(high, copy=copy, **opts),
805        )
def is_( self, other: Union[str, Expression]) -> Is:
807    def is_(self, other: ExpOrStr) -> Is:
808        return self._binop(Is, other)
def like( self, other: Union[str, Expression]) -> Like:
810    def like(self, other: ExpOrStr) -> Like:
811        return self._binop(Like, other)
def ilike( self, other: Union[str, Expression]) -> ILike:
813    def ilike(self, other: ExpOrStr) -> ILike:
814        return self._binop(ILike, other)
def eq(self, other: Any) -> EQ:
816    def eq(self, other: t.Any) -> EQ:
817        return self._binop(EQ, other)
def neq(self, other: Any) -> NEQ:
819    def neq(self, other: t.Any) -> NEQ:
820        return self._binop(NEQ, other)
def rlike( self, other: Union[str, Expression]) -> RegexpLike:
822    def rlike(self, other: ExpOrStr) -> RegexpLike:
823        return self._binop(RegexpLike, other)
IntoType = typing.Union[str, typing.Type[Expression], typing.Collection[typing.Union[str, typing.Type[Expression]]]]
ExpOrStr = typing.Union[str, Expression]
class Condition(Expression):
906class Condition(Expression):
907    """Logical conditions like x AND y, or simply x"""

Logical conditions like x AND y, or simply x

key = 'condition'
class Predicate(Condition):
910class Predicate(Condition):
911    """Relationships like x = y, x > 1, x >= y."""

Relationships like x = y, x > 1, x >= y.

key = 'predicate'
class DerivedTable(Expression):
914class DerivedTable(Expression):
915    @property
916    def selects(self) -> t.List[Expression]:
917        return self.this.selects if isinstance(self.this, Subqueryable) else []
918
919    @property
920    def named_selects(self) -> t.List[str]:
921        return [select.output_name for select in self.selects]
selects: List[Expression]
named_selects: List[str]
key = 'derivedtable'
class Unionable(Expression):
924class Unionable(Expression):
925    def union(
926        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
927    ) -> Unionable:
928        """
929        Builds a UNION expression.
930
931        Example:
932            >>> import sqlglot
933            >>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
934            'SELECT * FROM foo UNION SELECT * FROM bla'
935
936        Args:
937            expression: the SQL code string.
938                If an `Expression` instance is passed, it will be used as-is.
939            distinct: set the DISTINCT flag if and only if this is true.
940            dialect: the dialect used to parse the input expression.
941            opts: other options to use to parse the input expressions.
942
943        Returns:
944            The new Union expression.
945        """
946        return union(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
947
948    def intersect(
949        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
950    ) -> Unionable:
951        """
952        Builds an INTERSECT expression.
953
954        Example:
955            >>> import sqlglot
956            >>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
957            'SELECT * FROM foo INTERSECT SELECT * FROM bla'
958
959        Args:
960            expression: the SQL code string.
961                If an `Expression` instance is passed, it will be used as-is.
962            distinct: set the DISTINCT flag if and only if this is true.
963            dialect: the dialect used to parse the input expression.
964            opts: other options to use to parse the input expressions.
965
966        Returns:
967            The new Intersect expression.
968        """
969        return intersect(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
970
971    def except_(
972        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
973    ) -> Unionable:
974        """
975        Builds an EXCEPT expression.
976
977        Example:
978            >>> import sqlglot
979            >>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
980            'SELECT * FROM foo EXCEPT SELECT * FROM bla'
981
982        Args:
983            expression: the SQL code string.
984                If an `Expression` instance is passed, it will be used as-is.
985            distinct: set the DISTINCT flag if and only if this is true.
986            dialect: the dialect used to parse the input expression.
987            opts: other options to use to parse the input expressions.
988
989        Returns:
990            The new Except expression.
991        """
992        return except_(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
def union( self, expression: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Unionable:
925    def union(
926        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
927    ) -> Unionable:
928        """
929        Builds a UNION expression.
930
931        Example:
932            >>> import sqlglot
933            >>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
934            'SELECT * FROM foo UNION SELECT * FROM bla'
935
936        Args:
937            expression: the SQL code string.
938                If an `Expression` instance is passed, it will be used as-is.
939            distinct: set the DISTINCT flag if and only if this is true.
940            dialect: the dialect used to parse the input expression.
941            opts: other options to use to parse the input expressions.
942
943        Returns:
944            The new Union expression.
945        """
946        return union(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)

Builds a UNION expression.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
'SELECT * FROM foo UNION SELECT * FROM bla'
Arguments:
  • expression: the SQL code string. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Union expression.

def intersect( self, expression: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Unionable:
948    def intersect(
949        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
950    ) -> Unionable:
951        """
952        Builds an INTERSECT expression.
953
954        Example:
955            >>> import sqlglot
956            >>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
957            'SELECT * FROM foo INTERSECT SELECT * FROM bla'
958
959        Args:
960            expression: the SQL code string.
961                If an `Expression` instance is passed, it will be used as-is.
962            distinct: set the DISTINCT flag if and only if this is true.
963            dialect: the dialect used to parse the input expression.
964            opts: other options to use to parse the input expressions.
965
966        Returns:
967            The new Intersect expression.
968        """
969        return intersect(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)

Builds an INTERSECT expression.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
'SELECT * FROM foo INTERSECT SELECT * FROM bla'
Arguments:
  • expression: the SQL code string. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Intersect expression.

def except_( self, expression: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Unionable:
971    def except_(
972        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
973    ) -> Unionable:
974        """
975        Builds an EXCEPT expression.
976
977        Example:
978            >>> import sqlglot
979            >>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
980            'SELECT * FROM foo EXCEPT SELECT * FROM bla'
981
982        Args:
983            expression: the SQL code string.
984                If an `Expression` instance is passed, it will be used as-is.
985            distinct: set the DISTINCT flag if and only if this is true.
986            dialect: the dialect used to parse the input expression.
987            opts: other options to use to parse the input expressions.
988
989        Returns:
990            The new Except expression.
991        """
992        return except_(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)

Builds an EXCEPT expression.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
'SELECT * FROM foo EXCEPT SELECT * FROM bla'
Arguments:
  • expression: the SQL code string. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Except expression.

key = 'unionable'
class UDTF(DerivedTable, Unionable):
995class UDTF(DerivedTable, Unionable):
996    @property
997    def selects(self) -> t.List[Expression]:
998        alias = self.args.get("alias")
999        return alias.columns if alias else []
selects: List[Expression]
key = 'udtf'
class Cache(Expression):
1002class Cache(Expression):
1003    arg_types = {
1004        "with": False,
1005        "this": True,
1006        "lazy": False,
1007        "options": False,
1008        "expression": False,
1009    }
arg_types = {'with': False, 'this': True, 'lazy': False, 'options': False, 'expression': False}
key = 'cache'
class Uncache(Expression):
1012class Uncache(Expression):
1013    arg_types = {"this": True, "exists": False}
arg_types = {'this': True, 'exists': False}
key = 'uncache'
class DDL(Expression):
1016class DDL(Expression):
1017    @property
1018    def ctes(self):
1019        with_ = self.args.get("with")
1020        if not with_:
1021            return []
1022        return with_.expressions
1023
1024    @property
1025    def named_selects(self) -> t.List[str]:
1026        if isinstance(self.expression, Subqueryable):
1027            return self.expression.named_selects
1028        return []
1029
1030    @property
1031    def selects(self) -> t.List[Expression]:
1032        if isinstance(self.expression, Subqueryable):
1033            return self.expression.selects
1034        return []
ctes
named_selects: List[str]
selects: List[Expression]
key = 'ddl'
class Create(DDL):
1037class Create(DDL):
1038    arg_types = {
1039        "with": False,
1040        "this": True,
1041        "kind": True,
1042        "expression": False,
1043        "exists": False,
1044        "properties": False,
1045        "replace": False,
1046        "unique": False,
1047        "indexes": False,
1048        "no_schema_binding": False,
1049        "begin": False,
1050        "end": False,
1051        "clone": False,
1052    }
arg_types = {'with': False, 'this': True, 'kind': True, 'expression': False, 'exists': False, 'properties': False, 'replace': False, 'unique': False, 'indexes': False, 'no_schema_binding': False, 'begin': False, 'end': False, 'clone': False}
key = 'create'
class Clone(Expression):
1058class Clone(Expression):
1059    arg_types = {
1060        "this": True,
1061        "when": False,
1062        "kind": False,
1063        "shallow": False,
1064        "expression": False,
1065        "copy": False,
1066    }
arg_types = {'this': True, 'when': False, 'kind': False, 'shallow': False, 'expression': False, 'copy': False}
key = 'clone'
class Describe(Expression):
1069class Describe(Expression):
1070    arg_types = {"this": True, "kind": False, "expressions": False}
arg_types = {'this': True, 'kind': False, 'expressions': False}
key = 'describe'
class Kill(Expression):
1073class Kill(Expression):
1074    arg_types = {"this": True, "kind": False}
arg_types = {'this': True, 'kind': False}
key = 'kill'
class Pragma(Expression):
1077class Pragma(Expression):
1078    pass
key = 'pragma'
class Set(Expression):
1081class Set(Expression):
1082    arg_types = {"expressions": False, "unset": False, "tag": False}
arg_types = {'expressions': False, 'unset': False, 'tag': False}
key = 'set'
class SetItem(Expression):
1085class SetItem(Expression):
1086    arg_types = {
1087        "this": False,
1088        "expressions": False,
1089        "kind": False,
1090        "collate": False,  # MySQL SET NAMES statement
1091        "global": False,
1092    }
arg_types = {'this': False, 'expressions': False, 'kind': False, 'collate': False, 'global': False}
key = 'setitem'
class Show(Expression):
1095class Show(Expression):
1096    arg_types = {
1097        "this": True,
1098        "target": False,
1099        "offset": False,
1100        "limit": False,
1101        "like": False,
1102        "where": False,
1103        "db": False,
1104        "scope": False,
1105        "scope_kind": False,
1106        "full": False,
1107        "mutex": False,
1108        "query": False,
1109        "channel": False,
1110        "global": False,
1111        "log": False,
1112        "position": False,
1113        "types": False,
1114    }
arg_types = {'this': True, 'target': False, 'offset': False, 'limit': False, 'like': False, 'where': False, 'db': False, 'scope': False, 'scope_kind': False, 'full': False, 'mutex': False, 'query': False, 'channel': False, 'global': False, 'log': False, 'position': False, 'types': False}
key = 'show'
class UserDefinedFunction(Expression):
1117class UserDefinedFunction(Expression):
1118    arg_types = {"this": True, "expressions": False, "wrapped": False}
arg_types = {'this': True, 'expressions': False, 'wrapped': False}
key = 'userdefinedfunction'
class CharacterSet(Expression):
1121class CharacterSet(Expression):
1122    arg_types = {"this": True, "default": False}
arg_types = {'this': True, 'default': False}
key = 'characterset'
class With(Expression):
1125class With(Expression):
1126    arg_types = {"expressions": True, "recursive": False}
1127
1128    @property
1129    def recursive(self) -> bool:
1130        return bool(self.args.get("recursive"))
arg_types = {'expressions': True, 'recursive': False}
recursive: bool
key = 'with'
class WithinGroup(Expression):
1133class WithinGroup(Expression):
1134    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'withingroup'
class CTE(DerivedTable):
1137class CTE(DerivedTable):
1138    arg_types = {"this": True, "alias": True}
arg_types = {'this': True, 'alias': True}
key = 'cte'
class TableAlias(Expression):
1141class TableAlias(Expression):
1142    arg_types = {"this": False, "columns": False}
1143
1144    @property
1145    def columns(self):
1146        return self.args.get("columns") or []
arg_types = {'this': False, 'columns': False}
columns
key = 'tablealias'
class BitString(Condition):
1149class BitString(Condition):
1150    pass
key = 'bitstring'
class HexString(Condition):
1153class HexString(Condition):
1154    pass
key = 'hexstring'
class ByteString(Condition):
1157class ByteString(Condition):
1158    pass
key = 'bytestring'
class RawString(Condition):
1161class RawString(Condition):
1162    pass
key = 'rawstring'
class Column(Condition):
1165class Column(Condition):
1166    arg_types = {"this": True, "table": False, "db": False, "catalog": False, "join_mark": False}
1167
1168    @property
1169    def table(self) -> str:
1170        return self.text("table")
1171
1172    @property
1173    def db(self) -> str:
1174        return self.text("db")
1175
1176    @property
1177    def catalog(self) -> str:
1178        return self.text("catalog")
1179
1180    @property
1181    def output_name(self) -> str:
1182        return self.name
1183
1184    @property
1185    def parts(self) -> t.List[Identifier]:
1186        """Return the parts of a column in order catalog, db, table, name."""
1187        return [
1188            t.cast(Identifier, self.args[part])
1189            for part in ("catalog", "db", "table", "this")
1190            if self.args.get(part)
1191        ]
1192
1193    def to_dot(self) -> Dot | Identifier:
1194        """Converts the column into a dot expression."""
1195        parts = self.parts
1196        parent = self.parent
1197
1198        while parent:
1199            if isinstance(parent, Dot):
1200                parts.append(parent.expression)
1201            parent = parent.parent
1202
1203        return Dot.build(deepcopy(parts)) if len(parts) > 1 else parts[0]
arg_types = {'this': True, 'table': False, 'db': False, 'catalog': False, 'join_mark': False}
table: str
db: str
catalog: str
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
parts: List[Identifier]

Return the parts of a column in order catalog, db, table, name.

def to_dot(self) -> Dot | Identifier:
1193    def to_dot(self) -> Dot | Identifier:
1194        """Converts the column into a dot expression."""
1195        parts = self.parts
1196        parent = self.parent
1197
1198        while parent:
1199            if isinstance(parent, Dot):
1200                parts.append(parent.expression)
1201            parent = parent.parent
1202
1203        return Dot.build(deepcopy(parts)) if len(parts) > 1 else parts[0]

Converts the column into a dot expression.

key = 'column'
class ColumnPosition(Expression):
1206class ColumnPosition(Expression):
1207    arg_types = {"this": False, "position": True}
arg_types = {'this': False, 'position': True}
key = 'columnposition'
class ColumnDef(Expression):
1210class ColumnDef(Expression):
1211    arg_types = {
1212        "this": True,
1213        "kind": False,
1214        "constraints": False,
1215        "exists": False,
1216        "position": False,
1217    }
1218
1219    @property
1220    def constraints(self) -> t.List[ColumnConstraint]:
1221        return self.args.get("constraints") or []
arg_types = {'this': True, 'kind': False, 'constraints': False, 'exists': False, 'position': False}
constraints: List[ColumnConstraint]
key = 'columndef'
class AlterColumn(Expression):
1224class AlterColumn(Expression):
1225    arg_types = {
1226        "this": True,
1227        "dtype": False,
1228        "collate": False,
1229        "using": False,
1230        "default": False,
1231        "drop": False,
1232    }
arg_types = {'this': True, 'dtype': False, 'collate': False, 'using': False, 'default': False, 'drop': False}
key = 'altercolumn'
class RenameTable(Expression):
1235class RenameTable(Expression):
1236    pass
key = 'renametable'
class Comment(Expression):
1239class Comment(Expression):
1240    arg_types = {"this": True, "kind": True, "expression": True, "exists": False}
arg_types = {'this': True, 'kind': True, 'expression': True, 'exists': False}
key = 'comment'
class Comprehension(Expression):
1243class Comprehension(Expression):
1244    arg_types = {"this": True, "expression": True, "iterator": True, "condition": False}
arg_types = {'this': True, 'expression': True, 'iterator': True, 'condition': False}
key = 'comprehension'
class MergeTreeTTLAction(Expression):
1248class MergeTreeTTLAction(Expression):
1249    arg_types = {
1250        "this": True,
1251        "delete": False,
1252        "recompress": False,
1253        "to_disk": False,
1254        "to_volume": False,
1255    }
arg_types = {'this': True, 'delete': False, 'recompress': False, 'to_disk': False, 'to_volume': False}
key = 'mergetreettlaction'
class MergeTreeTTL(Expression):
1259class MergeTreeTTL(Expression):
1260    arg_types = {
1261        "expressions": True,
1262        "where": False,
1263        "group": False,
1264        "aggregates": False,
1265    }
arg_types = {'expressions': True, 'where': False, 'group': False, 'aggregates': False}
key = 'mergetreettl'
class IndexConstraintOption(Expression):
1269class IndexConstraintOption(Expression):
1270    arg_types = {
1271        "key_block_size": False,
1272        "using": False,
1273        "parser": False,
1274        "comment": False,
1275        "visible": False,
1276        "engine_attr": False,
1277        "secondary_engine_attr": False,
1278    }
arg_types = {'key_block_size': False, 'using': False, 'parser': False, 'comment': False, 'visible': False, 'engine_attr': False, 'secondary_engine_attr': False}
key = 'indexconstraintoption'
class ColumnConstraint(Expression):
1281class ColumnConstraint(Expression):
1282    arg_types = {"this": False, "kind": True}
1283
1284    @property
1285    def kind(self) -> ColumnConstraintKind:
1286        return self.args["kind"]
arg_types = {'this': False, 'kind': True}
key = 'columnconstraint'
class ColumnConstraintKind(Expression):
1289class ColumnConstraintKind(Expression):
1290    pass
key = 'columnconstraintkind'
class AutoIncrementColumnConstraint(ColumnConstraintKind):
1293class AutoIncrementColumnConstraint(ColumnConstraintKind):
1294    pass
key = 'autoincrementcolumnconstraint'
class CaseSpecificColumnConstraint(ColumnConstraintKind):
1297class CaseSpecificColumnConstraint(ColumnConstraintKind):
1298    arg_types = {"not_": True}
arg_types = {'not_': True}
key = 'casespecificcolumnconstraint'
class CharacterSetColumnConstraint(ColumnConstraintKind):
1301class CharacterSetColumnConstraint(ColumnConstraintKind):
1302    arg_types = {"this": True}
arg_types = {'this': True}
key = 'charactersetcolumnconstraint'
class CheckColumnConstraint(ColumnConstraintKind):
1305class CheckColumnConstraint(ColumnConstraintKind):
1306    pass
key = 'checkcolumnconstraint'
class ClusteredColumnConstraint(ColumnConstraintKind):
1309class ClusteredColumnConstraint(ColumnConstraintKind):
1310    pass
key = 'clusteredcolumnconstraint'
class CollateColumnConstraint(ColumnConstraintKind):
1313class CollateColumnConstraint(ColumnConstraintKind):
1314    pass
key = 'collatecolumnconstraint'
class CommentColumnConstraint(ColumnConstraintKind):
1317class CommentColumnConstraint(ColumnConstraintKind):
1318    pass
key = 'commentcolumnconstraint'
class CompressColumnConstraint(ColumnConstraintKind):
1321class CompressColumnConstraint(ColumnConstraintKind):
1322    pass
key = 'compresscolumnconstraint'
class DateFormatColumnConstraint(ColumnConstraintKind):
1325class DateFormatColumnConstraint(ColumnConstraintKind):
1326    arg_types = {"this": True}
arg_types = {'this': True}
key = 'dateformatcolumnconstraint'
class DefaultColumnConstraint(ColumnConstraintKind):
1329class DefaultColumnConstraint(ColumnConstraintKind):
1330    pass
key = 'defaultcolumnconstraint'
class EncodeColumnConstraint(ColumnConstraintKind):
1333class EncodeColumnConstraint(ColumnConstraintKind):
1334    pass
key = 'encodecolumnconstraint'
class GeneratedAsIdentityColumnConstraint(ColumnConstraintKind):
1337class GeneratedAsIdentityColumnConstraint(ColumnConstraintKind):
1338    # this: True -> ALWAYS, this: False -> BY DEFAULT
1339    arg_types = {
1340        "this": False,
1341        "expression": False,
1342        "on_null": False,
1343        "start": False,
1344        "increment": False,
1345        "minvalue": False,
1346        "maxvalue": False,
1347        "cycle": False,
1348    }
arg_types = {'this': False, 'expression': False, 'on_null': False, 'start': False, 'increment': False, 'minvalue': False, 'maxvalue': False, 'cycle': False}
key = 'generatedasidentitycolumnconstraint'
class IndexColumnConstraint(ColumnConstraintKind):
1352class IndexColumnConstraint(ColumnConstraintKind):
1353    arg_types = {
1354        "this": False,
1355        "schema": True,
1356        "kind": False,
1357        "index_type": False,
1358        "options": False,
1359    }
arg_types = {'this': False, 'schema': True, 'kind': False, 'index_type': False, 'options': False}
key = 'indexcolumnconstraint'
class InlineLengthColumnConstraint(ColumnConstraintKind):
1362class InlineLengthColumnConstraint(ColumnConstraintKind):
1363    pass
key = 'inlinelengthcolumnconstraint'
class NonClusteredColumnConstraint(ColumnConstraintKind):
1366class NonClusteredColumnConstraint(ColumnConstraintKind):
1367    pass
key = 'nonclusteredcolumnconstraint'
class NotForReplicationColumnConstraint(ColumnConstraintKind):
1370class NotForReplicationColumnConstraint(ColumnConstraintKind):
1371    arg_types = {}
arg_types = {}
key = 'notforreplicationcolumnconstraint'
class NotNullColumnConstraint(ColumnConstraintKind):
1374class NotNullColumnConstraint(ColumnConstraintKind):
1375    arg_types = {"allow_null": False}
arg_types = {'allow_null': False}
key = 'notnullcolumnconstraint'
class OnUpdateColumnConstraint(ColumnConstraintKind):
1379class OnUpdateColumnConstraint(ColumnConstraintKind):
1380    pass
key = 'onupdatecolumnconstraint'
class PrimaryKeyColumnConstraint(ColumnConstraintKind):
1383class PrimaryKeyColumnConstraint(ColumnConstraintKind):
1384    arg_types = {"desc": False}
arg_types = {'desc': False}
key = 'primarykeycolumnconstraint'
class TitleColumnConstraint(ColumnConstraintKind):
1387class TitleColumnConstraint(ColumnConstraintKind):
1388    pass
key = 'titlecolumnconstraint'
class UniqueColumnConstraint(ColumnConstraintKind):
1391class UniqueColumnConstraint(ColumnConstraintKind):
1392    arg_types = {"this": False, "index_type": False}
arg_types = {'this': False, 'index_type': False}
key = 'uniquecolumnconstraint'
class UppercaseColumnConstraint(ColumnConstraintKind):
1395class UppercaseColumnConstraint(ColumnConstraintKind):
1396    arg_types: t.Dict[str, t.Any] = {}
arg_types: Dict[str, Any] = {}
key = 'uppercasecolumnconstraint'
class PathColumnConstraint(ColumnConstraintKind):
1399class PathColumnConstraint(ColumnConstraintKind):
1400    pass
key = 'pathcolumnconstraint'
class ComputedColumnConstraint(ColumnConstraintKind):
1405class ComputedColumnConstraint(ColumnConstraintKind):
1406    arg_types = {"this": True, "persisted": False, "not_null": False}
arg_types = {'this': True, 'persisted': False, 'not_null': False}
key = 'computedcolumnconstraint'
class Constraint(Expression):
1409class Constraint(Expression):
1410    arg_types = {"this": True, "expressions": True}
arg_types = {'this': True, 'expressions': True}
key = 'constraint'
class Delete(Expression):
1413class Delete(Expression):
1414    arg_types = {
1415        "with": False,
1416        "this": False,
1417        "using": False,
1418        "where": False,
1419        "returning": False,
1420        "limit": False,
1421        "tables": False,  # Multiple-Table Syntax (MySQL)
1422    }
1423
1424    def delete(
1425        self,
1426        table: ExpOrStr,
1427        dialect: DialectType = None,
1428        copy: bool = True,
1429        **opts,
1430    ) -> Delete:
1431        """
1432        Create a DELETE expression or replace the table on an existing DELETE expression.
1433
1434        Example:
1435            >>> delete("tbl").sql()
1436            'DELETE FROM tbl'
1437
1438        Args:
1439            table: the table from which to delete.
1440            dialect: the dialect used to parse the input expression.
1441            copy: if `False`, modify this expression instance in-place.
1442            opts: other options to use to parse the input expressions.
1443
1444        Returns:
1445            Delete: the modified expression.
1446        """
1447        return _apply_builder(
1448            expression=table,
1449            instance=self,
1450            arg="this",
1451            dialect=dialect,
1452            into=Table,
1453            copy=copy,
1454            **opts,
1455        )
1456
1457    def where(
1458        self,
1459        *expressions: t.Optional[ExpOrStr],
1460        append: bool = True,
1461        dialect: DialectType = None,
1462        copy: bool = True,
1463        **opts,
1464    ) -> Delete:
1465        """
1466        Append to or set the WHERE expressions.
1467
1468        Example:
1469            >>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
1470            "DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
1471
1472        Args:
1473            *expressions: the SQL code strings to parse.
1474                If an `Expression` instance is passed, it will be used as-is.
1475                Multiple expressions are combined with an AND operator.
1476            append: if `True`, AND the new expressions to any existing expression.
1477                Otherwise, this resets the expression.
1478            dialect: the dialect used to parse the input expressions.
1479            copy: if `False`, modify this expression instance in-place.
1480            opts: other options to use to parse the input expressions.
1481
1482        Returns:
1483            Delete: the modified expression.
1484        """
1485        return _apply_conjunction_builder(
1486            *expressions,
1487            instance=self,
1488            arg="where",
1489            append=append,
1490            into=Where,
1491            dialect=dialect,
1492            copy=copy,
1493            **opts,
1494        )
1495
1496    def returning(
1497        self,
1498        expression: ExpOrStr,
1499        dialect: DialectType = None,
1500        copy: bool = True,
1501        **opts,
1502    ) -> Delete:
1503        """
1504        Set the RETURNING expression. Not supported by all dialects.
1505
1506        Example:
1507            >>> delete("tbl").returning("*", dialect="postgres").sql()
1508            'DELETE FROM tbl RETURNING *'
1509
1510        Args:
1511            expression: the SQL code strings to parse.
1512                If an `Expression` instance is passed, it will be used as-is.
1513            dialect: the dialect used to parse the input expressions.
1514            copy: if `False`, modify this expression instance in-place.
1515            opts: other options to use to parse the input expressions.
1516
1517        Returns:
1518            Delete: the modified expression.
1519        """
1520        return _apply_builder(
1521            expression=expression,
1522            instance=self,
1523            arg="returning",
1524            prefix="RETURNING",
1525            dialect=dialect,
1526            copy=copy,
1527            into=Returning,
1528            **opts,
1529        )
arg_types = {'with': False, 'this': False, 'using': False, 'where': False, 'returning': False, 'limit': False, 'tables': False}
def delete( self, table: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Delete:
1424    def delete(
1425        self,
1426        table: ExpOrStr,
1427        dialect: DialectType = None,
1428        copy: bool = True,
1429        **opts,
1430    ) -> Delete:
1431        """
1432        Create a DELETE expression or replace the table on an existing DELETE expression.
1433
1434        Example:
1435            >>> delete("tbl").sql()
1436            'DELETE FROM tbl'
1437
1438        Args:
1439            table: the table from which to delete.
1440            dialect: the dialect used to parse the input expression.
1441            copy: if `False`, modify this expression instance in-place.
1442            opts: other options to use to parse the input expressions.
1443
1444        Returns:
1445            Delete: the modified expression.
1446        """
1447        return _apply_builder(
1448            expression=table,
1449            instance=self,
1450            arg="this",
1451            dialect=dialect,
1452            into=Table,
1453            copy=copy,
1454            **opts,
1455        )

Create a DELETE expression or replace the table on an existing DELETE expression.

Example:
>>> delete("tbl").sql()
'DELETE FROM tbl'
Arguments:
  • table: the table from which to delete.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Delete: the modified expression.

def where( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Delete:
1457    def where(
1458        self,
1459        *expressions: t.Optional[ExpOrStr],
1460        append: bool = True,
1461        dialect: DialectType = None,
1462        copy: bool = True,
1463        **opts,
1464    ) -> Delete:
1465        """
1466        Append to or set the WHERE expressions.
1467
1468        Example:
1469            >>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
1470            "DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
1471
1472        Args:
1473            *expressions: the SQL code strings to parse.
1474                If an `Expression` instance is passed, it will be used as-is.
1475                Multiple expressions are combined with an AND operator.
1476            append: if `True`, AND the new expressions to any existing expression.
1477                Otherwise, this resets the expression.
1478            dialect: the dialect used to parse the input expressions.
1479            copy: if `False`, modify this expression instance in-place.
1480            opts: other options to use to parse the input expressions.
1481
1482        Returns:
1483            Delete: the modified expression.
1484        """
1485        return _apply_conjunction_builder(
1486            *expressions,
1487            instance=self,
1488            arg="where",
1489            append=append,
1490            into=Where,
1491            dialect=dialect,
1492            copy=copy,
1493            **opts,
1494        )

Append to or set the WHERE expressions.

Example:
>>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
"DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Delete: the modified expression.

def returning( self, expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Delete:
1496    def returning(
1497        self,
1498        expression: ExpOrStr,
1499        dialect: DialectType = None,
1500        copy: bool = True,
1501        **opts,
1502    ) -> Delete:
1503        """
1504        Set the RETURNING expression. Not supported by all dialects.
1505
1506        Example:
1507            >>> delete("tbl").returning("*", dialect="postgres").sql()
1508            'DELETE FROM tbl RETURNING *'
1509
1510        Args:
1511            expression: the SQL code strings to parse.
1512                If an `Expression` instance is passed, it will be used as-is.
1513            dialect: the dialect used to parse the input expressions.
1514            copy: if `False`, modify this expression instance in-place.
1515            opts: other options to use to parse the input expressions.
1516
1517        Returns:
1518            Delete: the modified expression.
1519        """
1520        return _apply_builder(
1521            expression=expression,
1522            instance=self,
1523            arg="returning",
1524            prefix="RETURNING",
1525            dialect=dialect,
1526            copy=copy,
1527            into=Returning,
1528            **opts,
1529        )

Set the RETURNING expression. Not supported by all dialects.

Example:
>>> delete("tbl").returning("*", dialect="postgres").sql()
'DELETE FROM tbl RETURNING *'
Arguments:
  • expression: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Delete: the modified expression.

key = 'delete'
class Drop(Expression):
1532class Drop(Expression):
1533    arg_types = {
1534        "this": False,
1535        "kind": False,
1536        "exists": False,
1537        "temporary": False,
1538        "materialized": False,
1539        "cascade": False,
1540        "constraints": False,
1541        "purge": False,
1542    }
arg_types = {'this': False, 'kind': False, 'exists': False, 'temporary': False, 'materialized': False, 'cascade': False, 'constraints': False, 'purge': False}
key = 'drop'
class Filter(Expression):
1545class Filter(Expression):
1546    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'filter'
class Check(Expression):
1549class Check(Expression):
1550    pass
key = 'check'
class Connect(Expression):
1554class Connect(Expression):
1555    arg_types = {"start": False, "connect": True}
arg_types = {'start': False, 'connect': True}
key = 'connect'
class Prior(Expression):
1558class Prior(Expression):
1559    pass
key = 'prior'
class Directory(Expression):
1562class Directory(Expression):
1563    # https://spark.apache.org/docs/3.0.0-preview/sql-ref-syntax-dml-insert-overwrite-directory-hive.html
1564    arg_types = {"this": True, "local": False, "row_format": False}
arg_types = {'this': True, 'local': False, 'row_format': False}
key = 'directory'
class ForeignKey(Expression):
1567class ForeignKey(Expression):
1568    arg_types = {
1569        "expressions": True,
1570        "reference": False,
1571        "delete": False,
1572        "update": False,
1573    }
arg_types = {'expressions': True, 'reference': False, 'delete': False, 'update': False}
key = 'foreignkey'
class ColumnPrefix(Expression):
1576class ColumnPrefix(Expression):
1577    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'columnprefix'
class PrimaryKey(Expression):
1580class PrimaryKey(Expression):
1581    arg_types = {"expressions": True, "options": False}
arg_types = {'expressions': True, 'options': False}
key = 'primarykey'
class Into(Expression):
1586class Into(Expression):
1587    arg_types = {"this": True, "temporary": False, "unlogged": False}
arg_types = {'this': True, 'temporary': False, 'unlogged': False}
key = 'into'
class From(Expression):
1590class From(Expression):
1591    @property
1592    def name(self) -> str:
1593        return self.this.name
1594
1595    @property
1596    def alias_or_name(self) -> str:
1597        return self.this.alias_or_name
name: str
alias_or_name: str
key = 'from'
class Having(Expression):
1600class Having(Expression):
1601    pass
key = 'having'
class Hint(Expression):
1604class Hint(Expression):
1605    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'hint'
class JoinHint(Expression):
1608class JoinHint(Expression):
1609    arg_types = {"this": True, "expressions": True}
arg_types = {'this': True, 'expressions': True}
key = 'joinhint'
class Identifier(Expression):
1612class Identifier(Expression):
1613    arg_types = {"this": True, "quoted": False, "global": False, "temporary": False}
1614
1615    @property
1616    def quoted(self) -> bool:
1617        return bool(self.args.get("quoted"))
1618
1619    @property
1620    def hashable_args(self) -> t.Any:
1621        return (self.this, self.quoted)
1622
1623    @property
1624    def output_name(self) -> str:
1625        return self.name
arg_types = {'this': True, 'quoted': False, 'global': False, 'temporary': False}
quoted: bool
hashable_args: Any
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'identifier'
class Opclass(Expression):
1629class Opclass(Expression):
1630    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'opclass'
class Index(Expression):
1633class Index(Expression):
1634    arg_types = {
1635        "this": False,
1636        "table": False,
1637        "using": False,
1638        "where": False,
1639        "columns": False,
1640        "unique": False,
1641        "primary": False,
1642        "amp": False,  # teradata
1643        "partition_by": False,  # teradata
1644        "where": False,  # postgres partial indexes
1645    }
arg_types = {'this': False, 'table': False, 'using': False, 'where': False, 'columns': False, 'unique': False, 'primary': False, 'amp': False, 'partition_by': False}
key = 'index'
class Insert(DDL):
1648class Insert(DDL):
1649    arg_types = {
1650        "with": False,
1651        "this": True,
1652        "expression": False,
1653        "conflict": False,
1654        "returning": False,
1655        "overwrite": False,
1656        "exists": False,
1657        "partition": False,
1658        "alternative": False,
1659        "where": False,
1660        "ignore": False,
1661        "by_name": False,
1662    }
1663
1664    def with_(
1665        self,
1666        alias: ExpOrStr,
1667        as_: ExpOrStr,
1668        recursive: t.Optional[bool] = None,
1669        append: bool = True,
1670        dialect: DialectType = None,
1671        copy: bool = True,
1672        **opts,
1673    ) -> Insert:
1674        """
1675        Append to or set the common table expressions.
1676
1677        Example:
1678            >>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
1679            'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
1680
1681        Args:
1682            alias: the SQL code string to parse as the table name.
1683                If an `Expression` instance is passed, this is used as-is.
1684            as_: the SQL code string to parse as the table expression.
1685                If an `Expression` instance is passed, it will be used as-is.
1686            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
1687            append: if `True`, add to any existing expressions.
1688                Otherwise, this resets the expressions.
1689            dialect: the dialect used to parse the input expression.
1690            copy: if `False`, modify this expression instance in-place.
1691            opts: other options to use to parse the input expressions.
1692
1693        Returns:
1694            The modified expression.
1695        """
1696        return _apply_cte_builder(
1697            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
1698        )
arg_types = {'with': False, 'this': True, 'expression': False, 'conflict': False, 'returning': False, 'overwrite': False, 'exists': False, 'partition': False, 'alternative': False, 'where': False, 'ignore': False, 'by_name': False}
def with_( self, alias: Union[str, Expression], as_: Union[str, Expression], recursive: Optional[bool] = None, append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Insert:
1664    def with_(
1665        self,
1666        alias: ExpOrStr,
1667        as_: ExpOrStr,
1668        recursive: t.Optional[bool] = None,
1669        append: bool = True,
1670        dialect: DialectType = None,
1671        copy: bool = True,
1672        **opts,
1673    ) -> Insert:
1674        """
1675        Append to or set the common table expressions.
1676
1677        Example:
1678            >>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
1679            'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
1680
1681        Args:
1682            alias: the SQL code string to parse as the table name.
1683                If an `Expression` instance is passed, this is used as-is.
1684            as_: the SQL code string to parse as the table expression.
1685                If an `Expression` instance is passed, it will be used as-is.
1686            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
1687            append: if `True`, add to any existing expressions.
1688                Otherwise, this resets the expressions.
1689            dialect: the dialect used to parse the input expression.
1690            copy: if `False`, modify this expression instance in-place.
1691            opts: other options to use to parse the input expressions.
1692
1693        Returns:
1694            The modified expression.
1695        """
1696        return _apply_cte_builder(
1697            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
1698        )

Append to or set the common table expressions.

Example:
>>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
Arguments:
  • alias: the SQL code string to parse as the table name. If an Expression instance is passed, this is used as-is.
  • as_: the SQL code string to parse as the table expression. If an Expression instance is passed, it will be used as-is.
  • recursive: set the RECURSIVE part of the expression. Defaults to False.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified expression.

key = 'insert'
class OnConflict(Expression):
1701class OnConflict(Expression):
1702    arg_types = {
1703        "duplicate": False,
1704        "expressions": False,
1705        "nothing": False,
1706        "key": False,
1707        "constraint": False,
1708    }
arg_types = {'duplicate': False, 'expressions': False, 'nothing': False, 'key': False, 'constraint': False}
key = 'onconflict'
class Returning(Expression):
1711class Returning(Expression):
1712    arg_types = {"expressions": True, "into": False}
arg_types = {'expressions': True, 'into': False}
key = 'returning'
class Introducer(Expression):
1716class Introducer(Expression):
1717    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'introducer'
class National(Expression):
1721class National(Expression):
1722    pass
key = 'national'
class LoadData(Expression):
1725class LoadData(Expression):
1726    arg_types = {
1727        "this": True,
1728        "local": False,
1729        "overwrite": False,
1730        "inpath": True,
1731        "partition": False,
1732        "input_format": False,
1733        "serde": False,
1734    }
arg_types = {'this': True, 'local': False, 'overwrite': False, 'inpath': True, 'partition': False, 'input_format': False, 'serde': False}
key = 'loaddata'
class Partition(Expression):
1737class Partition(Expression):
1738    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'partition'
class Fetch(Expression):
1741class Fetch(Expression):
1742    arg_types = {
1743        "direction": False,
1744        "count": False,
1745        "percent": False,
1746        "with_ties": False,
1747    }
arg_types = {'direction': False, 'count': False, 'percent': False, 'with_ties': False}
key = 'fetch'
class Group(Expression):
1750class Group(Expression):
1751    arg_types = {
1752        "expressions": False,
1753        "grouping_sets": False,
1754        "cube": False,
1755        "rollup": False,
1756        "totals": False,
1757        "all": False,
1758    }
arg_types = {'expressions': False, 'grouping_sets': False, 'cube': False, 'rollup': False, 'totals': False, 'all': False}
key = 'group'
class Lambda(Expression):
1761class Lambda(Expression):
1762    arg_types = {"this": True, "expressions": True}
arg_types = {'this': True, 'expressions': True}
key = 'lambda'
class Limit(Expression):
1765class Limit(Expression):
1766    arg_types = {"this": False, "expression": True, "offset": False}
arg_types = {'this': False, 'expression': True, 'offset': False}
key = 'limit'
class Literal(Condition):
1769class Literal(Condition):
1770    arg_types = {"this": True, "is_string": True}
1771
1772    @property
1773    def hashable_args(self) -> t.Any:
1774        return (self.this, self.args.get("is_string"))
1775
1776    @classmethod
1777    def number(cls, number) -> Literal:
1778        return cls(this=str(number), is_string=False)
1779
1780    @classmethod
1781    def string(cls, string) -> Literal:
1782        return cls(this=str(string), is_string=True)
1783
1784    @property
1785    def output_name(self) -> str:
1786        return self.name
arg_types = {'this': True, 'is_string': True}
hashable_args: Any
@classmethod
def number(cls, number) -> Literal:
1776    @classmethod
1777    def number(cls, number) -> Literal:
1778        return cls(this=str(number), is_string=False)
@classmethod
def string(cls, string) -> Literal:
1780    @classmethod
1781    def string(cls, string) -> Literal:
1782        return cls(this=str(string), is_string=True)
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'literal'
class Join(Expression):
1789class Join(Expression):
1790    arg_types = {
1791        "this": True,
1792        "on": False,
1793        "side": False,
1794        "kind": False,
1795        "using": False,
1796        "method": False,
1797        "global": False,
1798        "hint": False,
1799    }
1800
1801    @property
1802    def method(self) -> str:
1803        return self.text("method").upper()
1804
1805    @property
1806    def kind(self) -> str:
1807        return self.text("kind").upper()
1808
1809    @property
1810    def side(self) -> str:
1811        return self.text("side").upper()
1812
1813    @property
1814    def hint(self) -> str:
1815        return self.text("hint").upper()
1816
1817    @property
1818    def alias_or_name(self) -> str:
1819        return self.this.alias_or_name
1820
1821    def on(
1822        self,
1823        *expressions: t.Optional[ExpOrStr],
1824        append: bool = True,
1825        dialect: DialectType = None,
1826        copy: bool = True,
1827        **opts,
1828    ) -> Join:
1829        """
1830        Append to or set the ON expressions.
1831
1832        Example:
1833            >>> import sqlglot
1834            >>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
1835            'JOIN x ON y = 1'
1836
1837        Args:
1838            *expressions: the SQL code strings to parse.
1839                If an `Expression` instance is passed, it will be used as-is.
1840                Multiple expressions are combined with an AND operator.
1841            append: if `True`, AND the new expressions to any existing expression.
1842                Otherwise, this resets the expression.
1843            dialect: the dialect used to parse the input expressions.
1844            copy: if `False`, modify this expression instance in-place.
1845            opts: other options to use to parse the input expressions.
1846
1847        Returns:
1848            The modified Join expression.
1849        """
1850        join = _apply_conjunction_builder(
1851            *expressions,
1852            instance=self,
1853            arg="on",
1854            append=append,
1855            dialect=dialect,
1856            copy=copy,
1857            **opts,
1858        )
1859
1860        if join.kind == "CROSS":
1861            join.set("kind", None)
1862
1863        return join
1864
1865    def using(
1866        self,
1867        *expressions: t.Optional[ExpOrStr],
1868        append: bool = True,
1869        dialect: DialectType = None,
1870        copy: bool = True,
1871        **opts,
1872    ) -> Join:
1873        """
1874        Append to or set the USING expressions.
1875
1876        Example:
1877            >>> import sqlglot
1878            >>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
1879            'JOIN x USING (foo, bla)'
1880
1881        Args:
1882            *expressions: the SQL code strings to parse.
1883                If an `Expression` instance is passed, it will be used as-is.
1884            append: if `True`, concatenate the new expressions to the existing "using" list.
1885                Otherwise, this resets the expression.
1886            dialect: the dialect used to parse the input expressions.
1887            copy: if `False`, modify this expression instance in-place.
1888            opts: other options to use to parse the input expressions.
1889
1890        Returns:
1891            The modified Join expression.
1892        """
1893        join = _apply_list_builder(
1894            *expressions,
1895            instance=self,
1896            arg="using",
1897            append=append,
1898            dialect=dialect,
1899            copy=copy,
1900            **opts,
1901        )
1902
1903        if join.kind == "CROSS":
1904            join.set("kind", None)
1905
1906        return join
arg_types = {'this': True, 'on': False, 'side': False, 'kind': False, 'using': False, 'method': False, 'global': False, 'hint': False}
method: str
kind: str
side: str
hint: str
alias_or_name: str
def on( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Join:
1821    def on(
1822        self,
1823        *expressions: t.Optional[ExpOrStr],
1824        append: bool = True,
1825        dialect: DialectType = None,
1826        copy: bool = True,
1827        **opts,
1828    ) -> Join:
1829        """
1830        Append to or set the ON expressions.
1831
1832        Example:
1833            >>> import sqlglot
1834            >>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
1835            'JOIN x ON y = 1'
1836
1837        Args:
1838            *expressions: the SQL code strings to parse.
1839                If an `Expression` instance is passed, it will be used as-is.
1840                Multiple expressions are combined with an AND operator.
1841            append: if `True`, AND the new expressions to any existing expression.
1842                Otherwise, this resets the expression.
1843            dialect: the dialect used to parse the input expressions.
1844            copy: if `False`, modify this expression instance in-place.
1845            opts: other options to use to parse the input expressions.
1846
1847        Returns:
1848            The modified Join expression.
1849        """
1850        join = _apply_conjunction_builder(
1851            *expressions,
1852            instance=self,
1853            arg="on",
1854            append=append,
1855            dialect=dialect,
1856            copy=copy,
1857            **opts,
1858        )
1859
1860        if join.kind == "CROSS":
1861            join.set("kind", None)
1862
1863        return join

Append to or set the ON expressions.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
'JOIN x ON y = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Join expression.

def using( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Join:
1865    def using(
1866        self,
1867        *expressions: t.Optional[ExpOrStr],
1868        append: bool = True,
1869        dialect: DialectType = None,
1870        copy: bool = True,
1871        **opts,
1872    ) -> Join:
1873        """
1874        Append to or set the USING expressions.
1875
1876        Example:
1877            >>> import sqlglot
1878            >>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
1879            'JOIN x USING (foo, bla)'
1880
1881        Args:
1882            *expressions: the SQL code strings to parse.
1883                If an `Expression` instance is passed, it will be used as-is.
1884            append: if `True`, concatenate the new expressions to the existing "using" list.
1885                Otherwise, this resets the expression.
1886            dialect: the dialect used to parse the input expressions.
1887            copy: if `False`, modify this expression instance in-place.
1888            opts: other options to use to parse the input expressions.
1889
1890        Returns:
1891            The modified Join expression.
1892        """
1893        join = _apply_list_builder(
1894            *expressions,
1895            instance=self,
1896            arg="using",
1897            append=append,
1898            dialect=dialect,
1899            copy=copy,
1900            **opts,
1901        )
1902
1903        if join.kind == "CROSS":
1904            join.set("kind", None)
1905
1906        return join

Append to or set the USING expressions.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
'JOIN x USING (foo, bla)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, concatenate the new expressions to the existing "using" list. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Join expression.

key = 'join'
class Lateral(UDTF):
1909class Lateral(UDTF):
1910    arg_types = {"this": True, "view": False, "outer": False, "alias": False}
arg_types = {'this': True, 'view': False, 'outer': False, 'alias': False}
key = 'lateral'
class MatchRecognize(Expression):
1913class MatchRecognize(Expression):
1914    arg_types = {
1915        "partition_by": False,
1916        "order": False,
1917        "measures": False,
1918        "rows": False,
1919        "after": False,
1920        "pattern": False,
1921        "define": False,
1922        "alias": False,
1923    }
arg_types = {'partition_by': False, 'order': False, 'measures': False, 'rows': False, 'after': False, 'pattern': False, 'define': False, 'alias': False}
key = 'matchrecognize'
class Final(Expression):
1928class Final(Expression):
1929    pass
key = 'final'
class Offset(Expression):
1932class Offset(Expression):
1933    arg_types = {"this": False, "expression": True}
arg_types = {'this': False, 'expression': True}
key = 'offset'
class Order(Expression):
1936class Order(Expression):
1937    arg_types = {"this": False, "expressions": True}
arg_types = {'this': False, 'expressions': True}
key = 'order'
class Cluster(Order):
1942class Cluster(Order):
1943    pass
key = 'cluster'
class Distribute(Order):
1946class Distribute(Order):
1947    pass
key = 'distribute'
class Sort(Order):
1950class Sort(Order):
1951    pass
key = 'sort'
class Ordered(Expression):
1954class Ordered(Expression):
1955    arg_types = {"this": True, "desc": False, "nulls_first": True}
arg_types = {'this': True, 'desc': False, 'nulls_first': True}
key = 'ordered'
class Property(Expression):
1958class Property(Expression):
1959    arg_types = {"this": True, "value": True}
arg_types = {'this': True, 'value': True}
key = 'property'
class AlgorithmProperty(Property):
1962class AlgorithmProperty(Property):
1963    arg_types = {"this": True}
arg_types = {'this': True}
key = 'algorithmproperty'
class AutoIncrementProperty(Property):
1966class AutoIncrementProperty(Property):
1967    arg_types = {"this": True}
arg_types = {'this': True}
key = 'autoincrementproperty'
class BlockCompressionProperty(Property):
1970class BlockCompressionProperty(Property):
1971    arg_types = {"autotemp": False, "always": False, "default": True, "manual": True, "never": True}
arg_types = {'autotemp': False, 'always': False, 'default': True, 'manual': True, 'never': True}
key = 'blockcompressionproperty'
class CharacterSetProperty(Property):
1974class CharacterSetProperty(Property):
1975    arg_types = {"this": True, "default": True}
arg_types = {'this': True, 'default': True}
key = 'charactersetproperty'
class ChecksumProperty(Property):
1978class ChecksumProperty(Property):
1979    arg_types = {"on": False, "default": False}
arg_types = {'on': False, 'default': False}
key = 'checksumproperty'
class CollateProperty(Property):
1982class CollateProperty(Property):
1983    arg_types = {"this": True}
arg_types = {'this': True}
key = 'collateproperty'
class CopyGrantsProperty(Property):
1986class CopyGrantsProperty(Property):
1987    arg_types = {}
arg_types = {}
key = 'copygrantsproperty'
class DataBlocksizeProperty(Property):
1990class DataBlocksizeProperty(Property):
1991    arg_types = {
1992        "size": False,
1993        "units": False,
1994        "minimum": False,
1995        "maximum": False,
1996        "default": False,
1997    }
arg_types = {'size': False, 'units': False, 'minimum': False, 'maximum': False, 'default': False}
key = 'datablocksizeproperty'
class DefinerProperty(Property):
2000class DefinerProperty(Property):
2001    arg_types = {"this": True}
arg_types = {'this': True}
key = 'definerproperty'
class DistKeyProperty(Property):
2004class DistKeyProperty(Property):
2005    arg_types = {"this": True}
arg_types = {'this': True}
key = 'distkeyproperty'
class DistStyleProperty(Property):
2008class DistStyleProperty(Property):
2009    arg_types = {"this": True}
arg_types = {'this': True}
key = 'diststyleproperty'
class EngineProperty(Property):
2012class EngineProperty(Property):
2013    arg_types = {"this": True}
arg_types = {'this': True}
key = 'engineproperty'
class HeapProperty(Property):
2016class HeapProperty(Property):
2017    arg_types = {}
arg_types = {}
key = 'heapproperty'
class ToTableProperty(Property):
2020class ToTableProperty(Property):
2021    arg_types = {"this": True}
arg_types = {'this': True}
key = 'totableproperty'
class ExecuteAsProperty(Property):
2024class ExecuteAsProperty(Property):
2025    arg_types = {"this": True}
arg_types = {'this': True}
key = 'executeasproperty'
class ExternalProperty(Property):
2028class ExternalProperty(Property):
2029    arg_types = {"this": False}
arg_types = {'this': False}
key = 'externalproperty'
class FallbackProperty(Property):
2032class FallbackProperty(Property):
2033    arg_types = {"no": True, "protection": False}
arg_types = {'no': True, 'protection': False}
key = 'fallbackproperty'
class FileFormatProperty(Property):
2036class FileFormatProperty(Property):
2037    arg_types = {"this": True}
arg_types = {'this': True}
key = 'fileformatproperty'
class FreespaceProperty(Property):
2040class FreespaceProperty(Property):
2041    arg_types = {"this": True, "percent": False}
arg_types = {'this': True, 'percent': False}
key = 'freespaceproperty'
class InputModelProperty(Property):
2044class InputModelProperty(Property):
2045    arg_types = {"this": True}
arg_types = {'this': True}
key = 'inputmodelproperty'
class OutputModelProperty(Property):
2048class OutputModelProperty(Property):
2049    arg_types = {"this": True}
arg_types = {'this': True}
key = 'outputmodelproperty'
class IsolatedLoadingProperty(Property):
2052class IsolatedLoadingProperty(Property):
2053    arg_types = {
2054        "no": True,
2055        "concurrent": True,
2056        "for_all": True,
2057        "for_insert": True,
2058        "for_none": True,
2059    }
arg_types = {'no': True, 'concurrent': True, 'for_all': True, 'for_insert': True, 'for_none': True}
key = 'isolatedloadingproperty'
class JournalProperty(Property):
2062class JournalProperty(Property):
2063    arg_types = {
2064        "no": False,
2065        "dual": False,
2066        "before": False,
2067        "local": False,
2068        "after": False,
2069    }
arg_types = {'no': False, 'dual': False, 'before': False, 'local': False, 'after': False}
key = 'journalproperty'
class LanguageProperty(Property):
2072class LanguageProperty(Property):
2073    arg_types = {"this": True}
arg_types = {'this': True}
key = 'languageproperty'
class ClusteredByProperty(Property):
2077class ClusteredByProperty(Property):
2078    arg_types = {"expressions": True, "sorted_by": False, "buckets": True}
arg_types = {'expressions': True, 'sorted_by': False, 'buckets': True}
key = 'clusteredbyproperty'
class DictProperty(Property):
2081class DictProperty(Property):
2082    arg_types = {"this": True, "kind": True, "settings": False}
arg_types = {'this': True, 'kind': True, 'settings': False}
key = 'dictproperty'
class DictSubProperty(Property):
2085class DictSubProperty(Property):
2086    pass
key = 'dictsubproperty'
class DictRange(Property):
2089class DictRange(Property):
2090    arg_types = {"this": True, "min": True, "max": True}
arg_types = {'this': True, 'min': True, 'max': True}
key = 'dictrange'
class OnCluster(Property):
2095class OnCluster(Property):
2096    arg_types = {"this": True}
arg_types = {'this': True}
key = 'oncluster'
class LikeProperty(Property):
2099class LikeProperty(Property):
2100    arg_types = {"this": True, "expressions": False}
arg_types = {'this': True, 'expressions': False}
key = 'likeproperty'
class LocationProperty(Property):
2103class LocationProperty(Property):
2104    arg_types = {"this": True}
arg_types = {'this': True}
key = 'locationproperty'
class LockingProperty(Property):
2107class LockingProperty(Property):
2108    arg_types = {
2109        "this": False,
2110        "kind": True,
2111        "for_or_in": True,
2112        "lock_type": True,
2113        "override": False,
2114    }
arg_types = {'this': False, 'kind': True, 'for_or_in': True, 'lock_type': True, 'override': False}
key = 'lockingproperty'
class LogProperty(Property):
2117class LogProperty(Property):
2118    arg_types = {"no": True}
arg_types = {'no': True}
key = 'logproperty'
class MaterializedProperty(Property):
2121class MaterializedProperty(Property):
2122    arg_types = {"this": False}
arg_types = {'this': False}
key = 'materializedproperty'
class MergeBlockRatioProperty(Property):
2125class MergeBlockRatioProperty(Property):
2126    arg_types = {"this": False, "no": False, "default": False, "percent": False}
arg_types = {'this': False, 'no': False, 'default': False, 'percent': False}
key = 'mergeblockratioproperty'
class NoPrimaryIndexProperty(Property):
2129class NoPrimaryIndexProperty(Property):
2130    arg_types = {}
arg_types = {}
key = 'noprimaryindexproperty'
class OnProperty(Property):
2133class OnProperty(Property):
2134    arg_types = {"this": True}
arg_types = {'this': True}
key = 'onproperty'
class OnCommitProperty(Property):
2137class OnCommitProperty(Property):
2138    arg_types = {"delete": False}
arg_types = {'delete': False}
key = 'oncommitproperty'
class PartitionedByProperty(Property):
2141class PartitionedByProperty(Property):
2142    arg_types = {"this": True}
arg_types = {'this': True}
key = 'partitionedbyproperty'
class RemoteWithConnectionModelProperty(Property):
2145class RemoteWithConnectionModelProperty(Property):
2146    arg_types = {"this": True}
arg_types = {'this': True}
key = 'remotewithconnectionmodelproperty'
class ReturnsProperty(Property):
2149class ReturnsProperty(Property):
2150    arg_types = {"this": True, "is_table": False, "table": False}
arg_types = {'this': True, 'is_table': False, 'table': False}
key = 'returnsproperty'
class RowFormatProperty(Property):
2153class RowFormatProperty(Property):
2154    arg_types = {"this": True}
arg_types = {'this': True}
key = 'rowformatproperty'
class RowFormatDelimitedProperty(Property):
2157class RowFormatDelimitedProperty(Property):
2158    # https://cwiki.apache.org/confluence/display/hive/languagemanual+dml
2159    arg_types = {
2160        "fields": False,
2161        "escaped": False,
2162        "collection_items": False,
2163        "map_keys": False,
2164        "lines": False,
2165        "null": False,
2166        "serde": False,
2167    }
arg_types = {'fields': False, 'escaped': False, 'collection_items': False, 'map_keys': False, 'lines': False, 'null': False, 'serde': False}
key = 'rowformatdelimitedproperty'
class RowFormatSerdeProperty(Property):
2170class RowFormatSerdeProperty(Property):
2171    arg_types = {"this": True, "serde_properties": False}
arg_types = {'this': True, 'serde_properties': False}
key = 'rowformatserdeproperty'
class QueryTransform(Expression):
2175class QueryTransform(Expression):
2176    arg_types = {
2177        "expressions": True,
2178        "command_script": True,
2179        "schema": False,
2180        "row_format_before": False,
2181        "record_writer": False,
2182        "row_format_after": False,
2183        "record_reader": False,
2184    }
arg_types = {'expressions': True, 'command_script': True, 'schema': False, 'row_format_before': False, 'record_writer': False, 'row_format_after': False, 'record_reader': False}
key = 'querytransform'
class SampleProperty(Property):
2187class SampleProperty(Property):
2188    arg_types = {"this": True}
arg_types = {'this': True}
key = 'sampleproperty'
class SchemaCommentProperty(Property):
2191class SchemaCommentProperty(Property):
2192    arg_types = {"this": True}
arg_types = {'this': True}
key = 'schemacommentproperty'
class SerdeProperties(Property):
2195class SerdeProperties(Property):
2196    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'serdeproperties'
class SetProperty(Property):
2199class SetProperty(Property):
2200    arg_types = {"multi": True}
arg_types = {'multi': True}
key = 'setproperty'
class SettingsProperty(Property):
2203class SettingsProperty(Property):
2204    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'settingsproperty'
class SortKeyProperty(Property):
2207class SortKeyProperty(Property):
2208    arg_types = {"this": True, "compound": False}
arg_types = {'this': True, 'compound': False}
key = 'sortkeyproperty'
class SqlSecurityProperty(Property):
2211class SqlSecurityProperty(Property):
2212    arg_types = {"definer": True}
arg_types = {'definer': True}
key = 'sqlsecurityproperty'
class StabilityProperty(Property):
2215class StabilityProperty(Property):
2216    arg_types = {"this": True}
arg_types = {'this': True}
key = 'stabilityproperty'
class TemporaryProperty(Property):
2219class TemporaryProperty(Property):
2220    arg_types = {}
arg_types = {}
key = 'temporaryproperty'
class TransformModelProperty(Property):
2223class TransformModelProperty(Property):
2224    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'transformmodelproperty'
class TransientProperty(Property):
2227class TransientProperty(Property):
2228    arg_types = {"this": False}
arg_types = {'this': False}
key = 'transientproperty'
class VolatileProperty(Property):
2231class VolatileProperty(Property):
2232    arg_types = {"this": False}
arg_types = {'this': False}
key = 'volatileproperty'
class WithDataProperty(Property):
2235class WithDataProperty(Property):
2236    arg_types = {"no": True, "statistics": False}
arg_types = {'no': True, 'statistics': False}
key = 'withdataproperty'
class WithJournalTableProperty(Property):
2239class WithJournalTableProperty(Property):
2240    arg_types = {"this": True}
arg_types = {'this': True}
key = 'withjournaltableproperty'
class Properties(Expression):
2243class Properties(Expression):
2244    arg_types = {"expressions": True}
2245
2246    NAME_TO_PROPERTY = {
2247        "ALGORITHM": AlgorithmProperty,
2248        "AUTO_INCREMENT": AutoIncrementProperty,
2249        "CHARACTER SET": CharacterSetProperty,
2250        "CLUSTERED_BY": ClusteredByProperty,
2251        "COLLATE": CollateProperty,
2252        "COMMENT": SchemaCommentProperty,
2253        "DEFINER": DefinerProperty,
2254        "DISTKEY": DistKeyProperty,
2255        "DISTSTYLE": DistStyleProperty,
2256        "ENGINE": EngineProperty,
2257        "EXECUTE AS": ExecuteAsProperty,
2258        "FORMAT": FileFormatProperty,
2259        "LANGUAGE": LanguageProperty,
2260        "LOCATION": LocationProperty,
2261        "PARTITIONED_BY": PartitionedByProperty,
2262        "RETURNS": ReturnsProperty,
2263        "ROW_FORMAT": RowFormatProperty,
2264        "SORTKEY": SortKeyProperty,
2265    }
2266
2267    PROPERTY_TO_NAME = {v: k for k, v in NAME_TO_PROPERTY.items()}
2268
2269    # CREATE property locations
2270    # Form: schema specified
2271    #   create [POST_CREATE]
2272    #     table a [POST_NAME]
2273    #     (b int) [POST_SCHEMA]
2274    #     with ([POST_WITH])
2275    #     index (b) [POST_INDEX]
2276    #
2277    # Form: alias selection
2278    #   create [POST_CREATE]
2279    #     table a [POST_NAME]
2280    #     as [POST_ALIAS] (select * from b) [POST_EXPRESSION]
2281    #     index (c) [POST_INDEX]
2282    class Location(AutoName):
2283        POST_CREATE = auto()
2284        POST_NAME = auto()
2285        POST_SCHEMA = auto()
2286        POST_WITH = auto()
2287        POST_ALIAS = auto()
2288        POST_EXPRESSION = auto()
2289        POST_INDEX = auto()
2290        UNSUPPORTED = auto()
2291
2292    @classmethod
2293    def from_dict(cls, properties_dict: t.Dict) -> Properties:
2294        expressions = []
2295        for key, value in properties_dict.items():
2296            property_cls = cls.NAME_TO_PROPERTY.get(key.upper())
2297            if property_cls:
2298                expressions.append(property_cls(this=convert(value)))
2299            else:
2300                expressions.append(Property(this=Literal.string(key), value=convert(value)))
2301
2302        return cls(expressions=expressions)
arg_types = {'expressions': True}
NAME_TO_PROPERTY = {'ALGORITHM': <class 'AlgorithmProperty'>, 'AUTO_INCREMENT': <class 'AutoIncrementProperty'>, 'CHARACTER SET': <class 'CharacterSetProperty'>, 'CLUSTERED_BY': <class 'ClusteredByProperty'>, 'COLLATE': <class 'CollateProperty'>, 'COMMENT': <class 'SchemaCommentProperty'>, 'DEFINER': <class 'DefinerProperty'>, 'DISTKEY': <class 'DistKeyProperty'>, 'DISTSTYLE': <class 'DistStyleProperty'>, 'ENGINE': <class 'EngineProperty'>, 'EXECUTE AS': <class 'ExecuteAsProperty'>, 'FORMAT': <class 'FileFormatProperty'>, 'LANGUAGE': <class 'LanguageProperty'>, 'LOCATION': <class 'LocationProperty'>, 'PARTITIONED_BY': <class 'PartitionedByProperty'>, 'RETURNS': <class 'ReturnsProperty'>, 'ROW_FORMAT': <class 'RowFormatProperty'>, 'SORTKEY': <class 'SortKeyProperty'>}
PROPERTY_TO_NAME = {<class 'AlgorithmProperty'>: 'ALGORITHM', <class 'AutoIncrementProperty'>: 'AUTO_INCREMENT', <class 'CharacterSetProperty'>: 'CHARACTER SET', <class 'ClusteredByProperty'>: 'CLUSTERED_BY', <class 'CollateProperty'>: 'COLLATE', <class 'SchemaCommentProperty'>: 'COMMENT', <class 'DefinerProperty'>: 'DEFINER', <class 'DistKeyProperty'>: 'DISTKEY', <class 'DistStyleProperty'>: 'DISTSTYLE', <class 'EngineProperty'>: 'ENGINE', <class 'ExecuteAsProperty'>: 'EXECUTE AS', <class 'FileFormatProperty'>: 'FORMAT', <class 'LanguageProperty'>: 'LANGUAGE', <class 'LocationProperty'>: 'LOCATION', <class 'PartitionedByProperty'>: 'PARTITIONED_BY', <class 'ReturnsProperty'>: 'RETURNS', <class 'RowFormatProperty'>: 'ROW_FORMAT', <class 'SortKeyProperty'>: 'SORTKEY'}
@classmethod
def from_dict(cls, properties_dict: Dict) -> Properties:
2292    @classmethod
2293    def from_dict(cls, properties_dict: t.Dict) -> Properties:
2294        expressions = []
2295        for key, value in properties_dict.items():
2296            property_cls = cls.NAME_TO_PROPERTY.get(key.upper())
2297            if property_cls:
2298                expressions.append(property_cls(this=convert(value)))
2299            else:
2300                expressions.append(Property(this=Literal.string(key), value=convert(value)))
2301
2302        return cls(expressions=expressions)
key = 'properties'
class Properties.Location(sqlglot.helper.AutoName):
2282    class Location(AutoName):
2283        POST_CREATE = auto()
2284        POST_NAME = auto()
2285        POST_SCHEMA = auto()
2286        POST_WITH = auto()
2287        POST_ALIAS = auto()
2288        POST_EXPRESSION = auto()
2289        POST_INDEX = auto()
2290        UNSUPPORTED = auto()

An enumeration.

POST_CREATE = <Location.POST_CREATE: 'POST_CREATE'>
POST_NAME = <Location.POST_NAME: 'POST_NAME'>
POST_SCHEMA = <Location.POST_SCHEMA: 'POST_SCHEMA'>
POST_WITH = <Location.POST_WITH: 'POST_WITH'>
POST_ALIAS = <Location.POST_ALIAS: 'POST_ALIAS'>
POST_EXPRESSION = <Location.POST_EXPRESSION: 'POST_EXPRESSION'>
POST_INDEX = <Location.POST_INDEX: 'POST_INDEX'>
UNSUPPORTED = <Location.UNSUPPORTED: 'UNSUPPORTED'>
Inherited Members
enum.Enum
name
value
class Qualify(Expression):
2305class Qualify(Expression):
2306    pass
key = 'qualify'
class InputOutputFormat(Expression):
2309class InputOutputFormat(Expression):
2310    arg_types = {"input_format": False, "output_format": False}
arg_types = {'input_format': False, 'output_format': False}
key = 'inputoutputformat'
class Return(Expression):
2314class Return(Expression):
2315    pass
key = 'return'
class Reference(Expression):
2318class Reference(Expression):
2319    arg_types = {"this": True, "expressions": False, "options": False}
arg_types = {'this': True, 'expressions': False, 'options': False}
key = 'reference'
class Tuple(Expression):
2322class Tuple(Expression):
2323    arg_types = {"expressions": False}
2324
2325    def isin(
2326        self,
2327        *expressions: t.Any,
2328        query: t.Optional[ExpOrStr] = None,
2329        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
2330        copy: bool = True,
2331        **opts,
2332    ) -> In:
2333        return In(
2334            this=maybe_copy(self, copy),
2335            expressions=[convert(e, copy=copy) for e in expressions],
2336            query=maybe_parse(query, copy=copy, **opts) if query else None,
2337            unnest=Unnest(
2338                expressions=[
2339                    maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts) for e in ensure_list(unnest)
2340                ]
2341            )
2342            if unnest
2343            else None,
2344        )
arg_types = {'expressions': False}
def isin( self, *expressions: Any, query: Union[str, Expression, NoneType] = None, unnest: Union[str, Expression, NoneType, Collection[Union[str, Expression]]] = None, copy: bool = True, **opts) -> In:
2325    def isin(
2326        self,
2327        *expressions: t.Any,
2328        query: t.Optional[ExpOrStr] = None,
2329        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
2330        copy: bool = True,
2331        **opts,
2332    ) -> In:
2333        return In(
2334            this=maybe_copy(self, copy),
2335            expressions=[convert(e, copy=copy) for e in expressions],
2336            query=maybe_parse(query, copy=copy, **opts) if query else None,
2337            unnest=Unnest(
2338                expressions=[
2339                    maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts) for e in ensure_list(unnest)
2340                ]
2341            )
2342            if unnest
2343            else None,
2344        )
key = 'tuple'
class Subqueryable(Unionable):
2347class Subqueryable(Unionable):
2348    def subquery(self, alias: t.Optional[ExpOrStr] = None, copy: bool = True) -> Subquery:
2349        """
2350        Convert this expression to an aliased expression that can be used as a Subquery.
2351
2352        Example:
2353            >>> subquery = Select().select("x").from_("tbl").subquery()
2354            >>> Select().select("x").from_(subquery).sql()
2355            'SELECT x FROM (SELECT x FROM tbl)'
2356
2357        Args:
2358            alias (str | Identifier): an optional alias for the subquery
2359            copy (bool): if `False`, modify this expression instance in-place.
2360
2361        Returns:
2362            Alias: the subquery
2363        """
2364        instance = maybe_copy(self, copy)
2365        if not isinstance(alias, Expression):
2366            alias = TableAlias(this=to_identifier(alias)) if alias else None
2367
2368        return Subquery(this=instance, alias=alias)
2369
2370    def limit(
2371        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2372    ) -> Select:
2373        raise NotImplementedError
2374
2375    @property
2376    def ctes(self):
2377        with_ = self.args.get("with")
2378        if not with_:
2379            return []
2380        return with_.expressions
2381
2382    @property
2383    def selects(self) -> t.List[Expression]:
2384        raise NotImplementedError("Subqueryable objects must implement `selects`")
2385
2386    @property
2387    def named_selects(self) -> t.List[str]:
2388        raise NotImplementedError("Subqueryable objects must implement `named_selects`")
2389
2390    def select(
2391        self,
2392        *expressions: t.Optional[ExpOrStr],
2393        append: bool = True,
2394        dialect: DialectType = None,
2395        copy: bool = True,
2396        **opts,
2397    ) -> Subqueryable:
2398        raise NotImplementedError("Subqueryable objects must implement `select`")
2399
2400    def with_(
2401        self,
2402        alias: ExpOrStr,
2403        as_: ExpOrStr,
2404        recursive: t.Optional[bool] = None,
2405        append: bool = True,
2406        dialect: DialectType = None,
2407        copy: bool = True,
2408        **opts,
2409    ) -> Subqueryable:
2410        """
2411        Append to or set the common table expressions.
2412
2413        Example:
2414            >>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
2415            'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
2416
2417        Args:
2418            alias: the SQL code string to parse as the table name.
2419                If an `Expression` instance is passed, this is used as-is.
2420            as_: the SQL code string to parse as the table expression.
2421                If an `Expression` instance is passed, it will be used as-is.
2422            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
2423            append: if `True`, add to any existing expressions.
2424                Otherwise, this resets the expressions.
2425            dialect: the dialect used to parse the input expression.
2426            copy: if `False`, modify this expression instance in-place.
2427            opts: other options to use to parse the input expressions.
2428
2429        Returns:
2430            The modified expression.
2431        """
2432        return _apply_cte_builder(
2433            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
2434        )
def subquery( self, alias: Union[str, Expression, NoneType] = None, copy: bool = True) -> Subquery:
2348    def subquery(self, alias: t.Optional[ExpOrStr] = None, copy: bool = True) -> Subquery:
2349        """
2350        Convert this expression to an aliased expression that can be used as a Subquery.
2351
2352        Example:
2353            >>> subquery = Select().select("x").from_("tbl").subquery()
2354            >>> Select().select("x").from_(subquery).sql()
2355            'SELECT x FROM (SELECT x FROM tbl)'
2356
2357        Args:
2358            alias (str | Identifier): an optional alias for the subquery
2359            copy (bool): if `False`, modify this expression instance in-place.
2360
2361        Returns:
2362            Alias: the subquery
2363        """
2364        instance = maybe_copy(self, copy)
2365        if not isinstance(alias, Expression):
2366            alias = TableAlias(this=to_identifier(alias)) if alias else None
2367
2368        return Subquery(this=instance, alias=alias)

Convert this expression to an aliased expression that can be used as a Subquery.

Example:
>>> subquery = Select().select("x").from_("tbl").subquery()
>>> Select().select("x").from_(subquery).sql()
'SELECT x FROM (SELECT x FROM tbl)'
Arguments:
  • alias (str | Identifier): an optional alias for the subquery
  • copy (bool): if False, modify this expression instance in-place.
Returns:

Alias: the subquery

def limit( self, expression: Union[str, Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2370    def limit(
2371        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2372    ) -> Select:
2373        raise NotImplementedError
ctes
selects: List[Expression]
named_selects: List[str]
def select( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Subqueryable:
2390    def select(
2391        self,
2392        *expressions: t.Optional[ExpOrStr],
2393        append: bool = True,
2394        dialect: DialectType = None,
2395        copy: bool = True,
2396        **opts,
2397    ) -> Subqueryable:
2398        raise NotImplementedError("Subqueryable objects must implement `select`")
def with_( self, alias: Union[str, Expression], as_: Union[str, Expression], recursive: Optional[bool] = None, append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Subqueryable:
2400    def with_(
2401        self,
2402        alias: ExpOrStr,
2403        as_: ExpOrStr,
2404        recursive: t.Optional[bool] = None,
2405        append: bool = True,
2406        dialect: DialectType = None,
2407        copy: bool = True,
2408        **opts,
2409    ) -> Subqueryable:
2410        """
2411        Append to or set the common table expressions.
2412
2413        Example:
2414            >>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
2415            'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
2416
2417        Args:
2418            alias: the SQL code string to parse as the table name.
2419                If an `Expression` instance is passed, this is used as-is.
2420            as_: the SQL code string to parse as the table expression.
2421                If an `Expression` instance is passed, it will be used as-is.
2422            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
2423            append: if `True`, add to any existing expressions.
2424                Otherwise, this resets the expressions.
2425            dialect: the dialect used to parse the input expression.
2426            copy: if `False`, modify this expression instance in-place.
2427            opts: other options to use to parse the input expressions.
2428
2429        Returns:
2430            The modified expression.
2431        """
2432        return _apply_cte_builder(
2433            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
2434        )

Append to or set the common table expressions.

Example:
>>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
Arguments:
  • alias: the SQL code string to parse as the table name. If an Expression instance is passed, this is used as-is.
  • as_: the SQL code string to parse as the table expression. If an Expression instance is passed, it will be used as-is.
  • recursive: set the RECURSIVE part of the expression. Defaults to False.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified expression.

key = 'subqueryable'
QUERY_MODIFIERS = {'match': False, 'laterals': False, 'joins': False, 'connect': False, 'pivots': False, 'where': False, 'group': False, 'having': False, 'qualify': False, 'windows': False, 'distribute': False, 'sort': False, 'cluster': False, 'order': False, 'limit': False, 'offset': False, 'locks': False, 'sample': False, 'settings': False, 'format': False}
class WithTableHint(Expression):
2462class WithTableHint(Expression):
2463    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'withtablehint'
class IndexTableHint(Expression):
2467class IndexTableHint(Expression):
2468    arg_types = {"this": True, "expressions": False, "target": False}
arg_types = {'this': True, 'expressions': False, 'target': False}
key = 'indextablehint'
class Table(Expression):
2471class Table(Expression):
2472    arg_types = {
2473        "this": True,
2474        "alias": False,
2475        "db": False,
2476        "catalog": False,
2477        "laterals": False,
2478        "joins": False,
2479        "pivots": False,
2480        "hints": False,
2481        "system_time": False,
2482        "version": False,
2483        "format": False,
2484        "pattern": False,
2485        "index": False,
2486    }
2487
2488    @property
2489    def name(self) -> str:
2490        if isinstance(self.this, Func):
2491            return ""
2492        return self.this.name
2493
2494    @property
2495    def db(self) -> str:
2496        return self.text("db")
2497
2498    @property
2499    def catalog(self) -> str:
2500        return self.text("catalog")
2501
2502    @property
2503    def selects(self) -> t.List[Expression]:
2504        return []
2505
2506    @property
2507    def named_selects(self) -> t.List[str]:
2508        return []
2509
2510    @property
2511    def parts(self) -> t.List[Expression]:
2512        """Return the parts of a table in order catalog, db, table."""
2513        parts: t.List[Expression] = []
2514
2515        for arg in ("catalog", "db", "this"):
2516            part = self.args.get(arg)
2517
2518            if isinstance(part, Dot):
2519                parts.extend(part.flatten())
2520            elif isinstance(part, Expression):
2521                parts.append(part)
2522
2523        return parts
arg_types = {'this': True, 'alias': False, 'db': False, 'catalog': False, 'laterals': False, 'joins': False, 'pivots': False, 'hints': False, 'system_time': False, 'version': False, 'format': False, 'pattern': False, 'index': False}
name: str
db: str
catalog: str
selects: List[Expression]
named_selects: List[str]
parts: List[Expression]

Return the parts of a table in order catalog, db, table.

key = 'table'
class Union(Subqueryable):
2526class Union(Subqueryable):
2527    arg_types = {
2528        "with": False,
2529        "this": True,
2530        "expression": True,
2531        "distinct": False,
2532        "by_name": False,
2533        **QUERY_MODIFIERS,
2534    }
2535
2536    def limit(
2537        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2538    ) -> Select:
2539        """
2540        Set the LIMIT expression.
2541
2542        Example:
2543            >>> select("1").union(select("1")).limit(1).sql()
2544            'SELECT * FROM (SELECT 1 UNION SELECT 1) AS _l_0 LIMIT 1'
2545
2546        Args:
2547            expression: the SQL code string to parse.
2548                This can also be an integer.
2549                If a `Limit` instance is passed, this is used as-is.
2550                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2551            dialect: the dialect used to parse the input expression.
2552            copy: if `False`, modify this expression instance in-place.
2553            opts: other options to use to parse the input expressions.
2554
2555        Returns:
2556            The limited subqueryable.
2557        """
2558        return (
2559            select("*")
2560            .from_(self.subquery(alias="_l_0", copy=copy))
2561            .limit(expression, dialect=dialect, copy=False, **opts)
2562        )
2563
2564    def select(
2565        self,
2566        *expressions: t.Optional[ExpOrStr],
2567        append: bool = True,
2568        dialect: DialectType = None,
2569        copy: bool = True,
2570        **opts,
2571    ) -> Union:
2572        """Append to or set the SELECT of the union recursively.
2573
2574        Example:
2575            >>> from sqlglot import parse_one
2576            >>> parse_one("select a from x union select a from y union select a from z").select("b").sql()
2577            'SELECT a, b FROM x UNION SELECT a, b FROM y UNION SELECT a, b FROM z'
2578
2579        Args:
2580            *expressions: the SQL code strings to parse.
2581                If an `Expression` instance is passed, it will be used as-is.
2582            append: if `True`, add to any existing expressions.
2583                Otherwise, this resets the expressions.
2584            dialect: the dialect used to parse the input expressions.
2585            copy: if `False`, modify this expression instance in-place.
2586            opts: other options to use to parse the input expressions.
2587
2588        Returns:
2589            Union: the modified expression.
2590        """
2591        this = self.copy() if copy else self
2592        this.this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
2593        this.expression.unnest().select(
2594            *expressions, append=append, dialect=dialect, copy=False, **opts
2595        )
2596        return this
2597
2598    @property
2599    def named_selects(self) -> t.List[str]:
2600        return self.this.unnest().named_selects
2601
2602    @property
2603    def is_star(self) -> bool:
2604        return self.this.is_star or self.expression.is_star
2605
2606    @property
2607    def selects(self) -> t.List[Expression]:
2608        return self.this.unnest().selects
2609
2610    @property
2611    def left(self):
2612        return self.this
2613
2614    @property
2615    def right(self):
2616        return self.expression
arg_types = {'with': False, 'this': True, 'expression': True, 'distinct': False, 'by_name': False, 'match': False, 'laterals': False, 'joins': False, 'connect': False, 'pivots': False, 'where': False, 'group': False, 'having': False, 'qualify': False, 'windows': False, 'distribute': False, 'sort': False, 'cluster': False, 'order': False, 'limit': False, 'offset': False, 'locks': False, 'sample': False, 'settings': False, 'format': False}
def limit( self, expression: Union[str, Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2536    def limit(
2537        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2538    ) -> Select:
2539        """
2540        Set the LIMIT expression.
2541
2542        Example:
2543            >>> select("1").union(select("1")).limit(1).sql()
2544            'SELECT * FROM (SELECT 1 UNION SELECT 1) AS _l_0 LIMIT 1'
2545
2546        Args:
2547            expression: the SQL code string to parse.
2548                This can also be an integer.
2549                If a `Limit` instance is passed, this is used as-is.
2550                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2551            dialect: the dialect used to parse the input expression.
2552            copy: if `False`, modify this expression instance in-place.
2553            opts: other options to use to parse the input expressions.
2554
2555        Returns:
2556            The limited subqueryable.
2557        """
2558        return (
2559            select("*")
2560            .from_(self.subquery(alias="_l_0", copy=copy))
2561            .limit(expression, dialect=dialect, copy=False, **opts)
2562        )

Set the LIMIT expression.

Example:
>>> select("1").union(select("1")).limit(1).sql()
'SELECT * FROM (SELECT 1 UNION SELECT 1) AS _l_0 LIMIT 1'
Arguments:
  • expression: the SQL code string to parse. This can also be an integer. If a Limit instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Limit.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The limited subqueryable.

def select( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Union:
2564    def select(
2565        self,
2566        *expressions: t.Optional[ExpOrStr],
2567        append: bool = True,
2568        dialect: DialectType = None,
2569        copy: bool = True,
2570        **opts,
2571    ) -> Union:
2572        """Append to or set the SELECT of the union recursively.
2573
2574        Example:
2575            >>> from sqlglot import parse_one
2576            >>> parse_one("select a from x union select a from y union select a from z").select("b").sql()
2577            'SELECT a, b FROM x UNION SELECT a, b FROM y UNION SELECT a, b FROM z'
2578
2579        Args:
2580            *expressions: the SQL code strings to parse.
2581                If an `Expression` instance is passed, it will be used as-is.
2582            append: if `True`, add to any existing expressions.
2583                Otherwise, this resets the expressions.
2584            dialect: the dialect used to parse the input expressions.
2585            copy: if `False`, modify this expression instance in-place.
2586            opts: other options to use to parse the input expressions.
2587
2588        Returns:
2589            Union: the modified expression.
2590        """
2591        this = self.copy() if copy else self
2592        this.this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
2593        this.expression.unnest().select(
2594            *expressions, append=append, dialect=dialect, copy=False, **opts
2595        )
2596        return this

Append to or set the SELECT of the union recursively.

Example:
>>> from sqlglot import parse_one
>>> parse_one("select a from x union select a from y union select a from z").select("b").sql()
'SELECT a, b FROM x UNION SELECT a, b FROM y UNION SELECT a, b FROM z'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Union: the modified expression.

named_selects: List[str]
is_star: bool

Checks whether an expression is a star.

selects: List[Expression]
left
right
key = 'union'
class Except(Union):
2619class Except(Union):
2620    pass
key = 'except'
class Intersect(Union):
2623class Intersect(Union):
2624    pass
key = 'intersect'
class Unnest(UDTF):
2627class Unnest(UDTF):
2628    arg_types = {
2629        "expressions": True,
2630        "alias": False,
2631        "offset": False,
2632    }
arg_types = {'expressions': True, 'alias': False, 'offset': False}
key = 'unnest'
class Update(Expression):
2635class Update(Expression):
2636    arg_types = {
2637        "with": False,
2638        "this": False,
2639        "expressions": True,
2640        "from": False,
2641        "where": False,
2642        "returning": False,
2643        "order": False,
2644        "limit": False,
2645    }
arg_types = {'with': False, 'this': False, 'expressions': True, 'from': False, 'where': False, 'returning': False, 'order': False, 'limit': False}
key = 'update'
class Values(UDTF):
2648class Values(UDTF):
2649    arg_types = {
2650        "expressions": True,
2651        "ordinality": False,
2652        "alias": False,
2653    }
arg_types = {'expressions': True, 'ordinality': False, 'alias': False}
key = 'values'
class Var(Expression):
2656class Var(Expression):
2657    pass
key = 'var'
class Version(Expression):
2660class Version(Expression):
2661    """
2662    Time travel, iceberg, bigquery etc
2663    https://trino.io/docs/current/connector/iceberg.html?highlight=snapshot#using-snapshots
2664    https://www.databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
2665    https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax#for_system_time_as_of
2666    https://learn.microsoft.com/en-us/sql/relational-databases/tables/querying-data-in-a-system-versioned-temporal-table?view=sql-server-ver16
2667    this is either TIMESTAMP or VERSION
2668    kind is ("AS OF", "BETWEEN")
2669    """
2670
2671    arg_types = {"this": True, "kind": True, "expression": False}
arg_types = {'this': True, 'kind': True, 'expression': False}
key = 'version'
class Schema(Expression):
2674class Schema(Expression):
2675    arg_types = {"this": False, "expressions": False}
arg_types = {'this': False, 'expressions': False}
key = 'schema'
class Lock(Expression):
2680class Lock(Expression):
2681    arg_types = {"update": True, "expressions": False, "wait": False}
arg_types = {'update': True, 'expressions': False, 'wait': False}
key = 'lock'
class Select(Subqueryable):
2684class Select(Subqueryable):
2685    arg_types = {
2686        "with": False,
2687        "kind": False,
2688        "expressions": False,
2689        "hint": False,
2690        "distinct": False,
2691        "into": False,
2692        "from": False,
2693        **QUERY_MODIFIERS,
2694    }
2695
2696    def from_(
2697        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
2698    ) -> Select:
2699        """
2700        Set the FROM expression.
2701
2702        Example:
2703            >>> Select().from_("tbl").select("x").sql()
2704            'SELECT x FROM tbl'
2705
2706        Args:
2707            expression : the SQL code strings to parse.
2708                If a `From` instance is passed, this is used as-is.
2709                If another `Expression` instance is passed, it will be wrapped in a `From`.
2710            dialect: the dialect used to parse the input expression.
2711            copy: if `False`, modify this expression instance in-place.
2712            opts: other options to use to parse the input expressions.
2713
2714        Returns:
2715            The modified Select expression.
2716        """
2717        return _apply_builder(
2718            expression=expression,
2719            instance=self,
2720            arg="from",
2721            into=From,
2722            prefix="FROM",
2723            dialect=dialect,
2724            copy=copy,
2725            **opts,
2726        )
2727
2728    def group_by(
2729        self,
2730        *expressions: t.Optional[ExpOrStr],
2731        append: bool = True,
2732        dialect: DialectType = None,
2733        copy: bool = True,
2734        **opts,
2735    ) -> Select:
2736        """
2737        Set the GROUP BY expression.
2738
2739        Example:
2740            >>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
2741            'SELECT x, COUNT(1) FROM tbl GROUP BY x'
2742
2743        Args:
2744            *expressions: the SQL code strings to parse.
2745                If a `Group` instance is passed, this is used as-is.
2746                If another `Expression` instance is passed, it will be wrapped in a `Group`.
2747                If nothing is passed in then a group by is not applied to the expression
2748            append: if `True`, add to any existing expressions.
2749                Otherwise, this flattens all the `Group` expression into a single expression.
2750            dialect: the dialect used to parse the input expression.
2751            copy: if `False`, modify this expression instance in-place.
2752            opts: other options to use to parse the input expressions.
2753
2754        Returns:
2755            The modified Select expression.
2756        """
2757        if not expressions:
2758            return self if not copy else self.copy()
2759
2760        return _apply_child_list_builder(
2761            *expressions,
2762            instance=self,
2763            arg="group",
2764            append=append,
2765            copy=copy,
2766            prefix="GROUP BY",
2767            into=Group,
2768            dialect=dialect,
2769            **opts,
2770        )
2771
2772    def order_by(
2773        self,
2774        *expressions: t.Optional[ExpOrStr],
2775        append: bool = True,
2776        dialect: DialectType = None,
2777        copy: bool = True,
2778        **opts,
2779    ) -> Select:
2780        """
2781        Set the ORDER BY expression.
2782
2783        Example:
2784            >>> Select().from_("tbl").select("x").order_by("x DESC").sql()
2785            'SELECT x FROM tbl ORDER BY x DESC'
2786
2787        Args:
2788            *expressions: the SQL code strings to parse.
2789                If a `Group` instance is passed, this is used as-is.
2790                If another `Expression` instance is passed, it will be wrapped in a `Order`.
2791            append: if `True`, add to any existing expressions.
2792                Otherwise, this flattens all the `Order` expression into a single expression.
2793            dialect: the dialect used to parse the input expression.
2794            copy: if `False`, modify this expression instance in-place.
2795            opts: other options to use to parse the input expressions.
2796
2797        Returns:
2798            The modified Select expression.
2799        """
2800        return _apply_child_list_builder(
2801            *expressions,
2802            instance=self,
2803            arg="order",
2804            append=append,
2805            copy=copy,
2806            prefix="ORDER BY",
2807            into=Order,
2808            dialect=dialect,
2809            **opts,
2810        )
2811
2812    def sort_by(
2813        self,
2814        *expressions: t.Optional[ExpOrStr],
2815        append: bool = True,
2816        dialect: DialectType = None,
2817        copy: bool = True,
2818        **opts,
2819    ) -> Select:
2820        """
2821        Set the SORT BY expression.
2822
2823        Example:
2824            >>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
2825            'SELECT x FROM tbl SORT BY x DESC'
2826
2827        Args:
2828            *expressions: the SQL code strings to parse.
2829                If a `Group` instance is passed, this is used as-is.
2830                If another `Expression` instance is passed, it will be wrapped in a `SORT`.
2831            append: if `True`, add to any existing expressions.
2832                Otherwise, this flattens all the `Order` expression into a single expression.
2833            dialect: the dialect used to parse the input expression.
2834            copy: if `False`, modify this expression instance in-place.
2835            opts: other options to use to parse the input expressions.
2836
2837        Returns:
2838            The modified Select expression.
2839        """
2840        return _apply_child_list_builder(
2841            *expressions,
2842            instance=self,
2843            arg="sort",
2844            append=append,
2845            copy=copy,
2846            prefix="SORT BY",
2847            into=Sort,
2848            dialect=dialect,
2849            **opts,
2850        )
2851
2852    def cluster_by(
2853        self,
2854        *expressions: t.Optional[ExpOrStr],
2855        append: bool = True,
2856        dialect: DialectType = None,
2857        copy: bool = True,
2858        **opts,
2859    ) -> Select:
2860        """
2861        Set the CLUSTER BY expression.
2862
2863        Example:
2864            >>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
2865            'SELECT x FROM tbl CLUSTER BY x DESC'
2866
2867        Args:
2868            *expressions: the SQL code strings to parse.
2869                If a `Group` instance is passed, this is used as-is.
2870                If another `Expression` instance is passed, it will be wrapped in a `Cluster`.
2871            append: if `True`, add to any existing expressions.
2872                Otherwise, this flattens all the `Order` expression into a single expression.
2873            dialect: the dialect used to parse the input expression.
2874            copy: if `False`, modify this expression instance in-place.
2875            opts: other options to use to parse the input expressions.
2876
2877        Returns:
2878            The modified Select expression.
2879        """
2880        return _apply_child_list_builder(
2881            *expressions,
2882            instance=self,
2883            arg="cluster",
2884            append=append,
2885            copy=copy,
2886            prefix="CLUSTER BY",
2887            into=Cluster,
2888            dialect=dialect,
2889            **opts,
2890        )
2891
2892    def limit(
2893        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2894    ) -> Select:
2895        """
2896        Set the LIMIT expression.
2897
2898        Example:
2899            >>> Select().from_("tbl").select("x").limit(10).sql()
2900            'SELECT x FROM tbl LIMIT 10'
2901
2902        Args:
2903            expression: the SQL code string to parse.
2904                This can also be an integer.
2905                If a `Limit` instance is passed, this is used as-is.
2906                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2907            dialect: the dialect used to parse the input expression.
2908            copy: if `False`, modify this expression instance in-place.
2909            opts: other options to use to parse the input expressions.
2910
2911        Returns:
2912            Select: the modified expression.
2913        """
2914        return _apply_builder(
2915            expression=expression,
2916            instance=self,
2917            arg="limit",
2918            into=Limit,
2919            prefix="LIMIT",
2920            dialect=dialect,
2921            copy=copy,
2922            into_arg="expression",
2923            **opts,
2924        )
2925
2926    def offset(
2927        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2928    ) -> Select:
2929        """
2930        Set the OFFSET expression.
2931
2932        Example:
2933            >>> Select().from_("tbl").select("x").offset(10).sql()
2934            'SELECT x FROM tbl OFFSET 10'
2935
2936        Args:
2937            expression: the SQL code string to parse.
2938                This can also be an integer.
2939                If a `Offset` instance is passed, this is used as-is.
2940                If another `Expression` instance is passed, it will be wrapped in a `Offset`.
2941            dialect: the dialect used to parse the input expression.
2942            copy: if `False`, modify this expression instance in-place.
2943            opts: other options to use to parse the input expressions.
2944
2945        Returns:
2946            The modified Select expression.
2947        """
2948        return _apply_builder(
2949            expression=expression,
2950            instance=self,
2951            arg="offset",
2952            into=Offset,
2953            prefix="OFFSET",
2954            dialect=dialect,
2955            copy=copy,
2956            into_arg="expression",
2957            **opts,
2958        )
2959
2960    def select(
2961        self,
2962        *expressions: t.Optional[ExpOrStr],
2963        append: bool = True,
2964        dialect: DialectType = None,
2965        copy: bool = True,
2966        **opts,
2967    ) -> Select:
2968        """
2969        Append to or set the SELECT expressions.
2970
2971        Example:
2972            >>> Select().select("x", "y").sql()
2973            'SELECT x, y'
2974
2975        Args:
2976            *expressions: the SQL code strings to parse.
2977                If an `Expression` instance is passed, it will be used as-is.
2978            append: if `True`, add to any existing expressions.
2979                Otherwise, this resets the expressions.
2980            dialect: the dialect used to parse the input expressions.
2981            copy: if `False`, modify this expression instance in-place.
2982            opts: other options to use to parse the input expressions.
2983
2984        Returns:
2985            The modified Select expression.
2986        """
2987        return _apply_list_builder(
2988            *expressions,
2989            instance=self,
2990            arg="expressions",
2991            append=append,
2992            dialect=dialect,
2993            copy=copy,
2994            **opts,
2995        )
2996
2997    def lateral(
2998        self,
2999        *expressions: t.Optional[ExpOrStr],
3000        append: bool = True,
3001        dialect: DialectType = None,
3002        copy: bool = True,
3003        **opts,
3004    ) -> Select:
3005        """
3006        Append to or set the LATERAL expressions.
3007
3008        Example:
3009            >>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
3010            'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
3011
3012        Args:
3013            *expressions: the SQL code strings to parse.
3014                If an `Expression` instance is passed, it will be used as-is.
3015            append: if `True`, add to any existing expressions.
3016                Otherwise, this resets the expressions.
3017            dialect: the dialect used to parse the input expressions.
3018            copy: if `False`, modify this expression instance in-place.
3019            opts: other options to use to parse the input expressions.
3020
3021        Returns:
3022            The modified Select expression.
3023        """
3024        return _apply_list_builder(
3025            *expressions,
3026            instance=self,
3027            arg="laterals",
3028            append=append,
3029            into=Lateral,
3030            prefix="LATERAL VIEW",
3031            dialect=dialect,
3032            copy=copy,
3033            **opts,
3034        )
3035
3036    def join(
3037        self,
3038        expression: ExpOrStr,
3039        on: t.Optional[ExpOrStr] = None,
3040        using: t.Optional[ExpOrStr | t.Collection[ExpOrStr]] = None,
3041        append: bool = True,
3042        join_type: t.Optional[str] = None,
3043        join_alias: t.Optional[Identifier | str] = None,
3044        dialect: DialectType = None,
3045        copy: bool = True,
3046        **opts,
3047    ) -> Select:
3048        """
3049        Append to or set the JOIN expressions.
3050
3051        Example:
3052            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
3053            'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
3054
3055            >>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
3056            'SELECT 1 FROM a JOIN b USING (x, y, z)'
3057
3058            Use `join_type` to change the type of join:
3059
3060            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
3061            'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
3062
3063        Args:
3064            expression: the SQL code string to parse.
3065                If an `Expression` instance is passed, it will be used as-is.
3066            on: optionally specify the join "on" criteria as a SQL string.
3067                If an `Expression` instance is passed, it will be used as-is.
3068            using: optionally specify the join "using" criteria as a SQL string.
3069                If an `Expression` instance is passed, it will be used as-is.
3070            append: if `True`, add to any existing expressions.
3071                Otherwise, this resets the expressions.
3072            join_type: if set, alter the parsed join type.
3073            join_alias: an optional alias for the joined source.
3074            dialect: the dialect used to parse the input expressions.
3075            copy: if `False`, modify this expression instance in-place.
3076            opts: other options to use to parse the input expressions.
3077
3078        Returns:
3079            Select: the modified expression.
3080        """
3081        parse_args: t.Dict[str, t.Any] = {"dialect": dialect, **opts}
3082
3083        try:
3084            expression = maybe_parse(expression, into=Join, prefix="JOIN", **parse_args)
3085        except ParseError:
3086            expression = maybe_parse(expression, into=(Join, Expression), **parse_args)
3087
3088        join = expression if isinstance(expression, Join) else Join(this=expression)
3089
3090        if isinstance(join.this, Select):
3091            join.this.replace(join.this.subquery())
3092
3093        if join_type:
3094            method: t.Optional[Token]
3095            side: t.Optional[Token]
3096            kind: t.Optional[Token]
3097
3098            method, side, kind = maybe_parse(join_type, into="JOIN_TYPE", **parse_args)  # type: ignore
3099
3100            if method:
3101                join.set("method", method.text)
3102            if side:
3103                join.set("side", side.text)
3104            if kind:
3105                join.set("kind", kind.text)
3106
3107        if on:
3108            on = and_(*ensure_list(on), dialect=dialect, copy=copy, **opts)
3109            join.set("on", on)
3110
3111        if using:
3112            join = _apply_list_builder(
3113                *ensure_list(using),
3114                instance=join,
3115                arg="using",
3116                append=append,
3117                copy=copy,
3118                into=Identifier,
3119                **opts,
3120            )
3121
3122        if join_alias:
3123            join.set("this", alias_(join.this, join_alias, table=True))
3124
3125        return _apply_list_builder(
3126            join,
3127            instance=self,
3128            arg="joins",
3129            append=append,
3130            copy=copy,
3131            **opts,
3132        )
3133
3134    def where(
3135        self,
3136        *expressions: t.Optional[ExpOrStr],
3137        append: bool = True,
3138        dialect: DialectType = None,
3139        copy: bool = True,
3140        **opts,
3141    ) -> Select:
3142        """
3143        Append to or set the WHERE expressions.
3144
3145        Example:
3146            >>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
3147            "SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
3148
3149        Args:
3150            *expressions: the SQL code strings to parse.
3151                If an `Expression` instance is passed, it will be used as-is.
3152                Multiple expressions are combined with an AND operator.
3153            append: if `True`, AND the new expressions to any existing expression.
3154                Otherwise, this resets the expression.
3155            dialect: the dialect used to parse the input expressions.
3156            copy: if `False`, modify this expression instance in-place.
3157            opts: other options to use to parse the input expressions.
3158
3159        Returns:
3160            Select: the modified expression.
3161        """
3162        return _apply_conjunction_builder(
3163            *expressions,
3164            instance=self,
3165            arg="where",
3166            append=append,
3167            into=Where,
3168            dialect=dialect,
3169            copy=copy,
3170            **opts,
3171        )
3172
3173    def having(
3174        self,
3175        *expressions: t.Optional[ExpOrStr],
3176        append: bool = True,
3177        dialect: DialectType = None,
3178        copy: bool = True,
3179        **opts,
3180    ) -> Select:
3181        """
3182        Append to or set the HAVING expressions.
3183
3184        Example:
3185            >>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
3186            'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
3187
3188        Args:
3189            *expressions: the SQL code strings to parse.
3190                If an `Expression` instance is passed, it will be used as-is.
3191                Multiple expressions are combined with an AND operator.
3192            append: if `True`, AND the new expressions to any existing expression.
3193                Otherwise, this resets the expression.
3194            dialect: the dialect used to parse the input expressions.
3195            copy: if `False`, modify this expression instance in-place.
3196            opts: other options to use to parse the input expressions.
3197
3198        Returns:
3199            The modified Select expression.
3200        """
3201        return _apply_conjunction_builder(
3202            *expressions,
3203            instance=self,
3204            arg="having",
3205            append=append,
3206            into=Having,
3207            dialect=dialect,
3208            copy=copy,
3209            **opts,
3210        )
3211
3212    def window(
3213        self,
3214        *expressions: t.Optional[ExpOrStr],
3215        append: bool = True,
3216        dialect: DialectType = None,
3217        copy: bool = True,
3218        **opts,
3219    ) -> Select:
3220        return _apply_list_builder(
3221            *expressions,
3222            instance=self,
3223            arg="windows",
3224            append=append,
3225            into=Window,
3226            dialect=dialect,
3227            copy=copy,
3228            **opts,
3229        )
3230
3231    def qualify(
3232        self,
3233        *expressions: t.Optional[ExpOrStr],
3234        append: bool = True,
3235        dialect: DialectType = None,
3236        copy: bool = True,
3237        **opts,
3238    ) -> Select:
3239        return _apply_conjunction_builder(
3240            *expressions,
3241            instance=self,
3242            arg="qualify",
3243            append=append,
3244            into=Qualify,
3245            dialect=dialect,
3246            copy=copy,
3247            **opts,
3248        )
3249
3250    def distinct(
3251        self, *ons: t.Optional[ExpOrStr], distinct: bool = True, copy: bool = True
3252    ) -> Select:
3253        """
3254        Set the OFFSET expression.
3255
3256        Example:
3257            >>> Select().from_("tbl").select("x").distinct().sql()
3258            'SELECT DISTINCT x FROM tbl'
3259
3260        Args:
3261            ons: the expressions to distinct on
3262            distinct: whether the Select should be distinct
3263            copy: if `False`, modify this expression instance in-place.
3264
3265        Returns:
3266            Select: the modified expression.
3267        """
3268        instance = maybe_copy(self, copy)
3269        on = Tuple(expressions=[maybe_parse(on, copy=copy) for on in ons if on]) if ons else None
3270        instance.set("distinct", Distinct(on=on) if distinct else None)
3271        return instance
3272
3273    def ctas(
3274        self,
3275        table: ExpOrStr,
3276        properties: t.Optional[t.Dict] = None,
3277        dialect: DialectType = None,
3278        copy: bool = True,
3279        **opts,
3280    ) -> Create:
3281        """
3282        Convert this expression to a CREATE TABLE AS statement.
3283
3284        Example:
3285            >>> Select().select("*").from_("tbl").ctas("x").sql()
3286            'CREATE TABLE x AS SELECT * FROM tbl'
3287
3288        Args:
3289            table: the SQL code string to parse as the table name.
3290                If another `Expression` instance is passed, it will be used as-is.
3291            properties: an optional mapping of table properties
3292            dialect: the dialect used to parse the input table.
3293            copy: if `False`, modify this expression instance in-place.
3294            opts: other options to use to parse the input table.
3295
3296        Returns:
3297            The new Create expression.
3298        """
3299        instance = maybe_copy(self, copy)
3300        table_expression = maybe_parse(
3301            table,
3302            into=Table,
3303            dialect=dialect,
3304            **opts,
3305        )
3306        properties_expression = None
3307        if properties:
3308            properties_expression = Properties.from_dict(properties)
3309
3310        return Create(
3311            this=table_expression,
3312            kind="table",
3313            expression=instance,
3314            properties=properties_expression,
3315        )
3316
3317    def lock(self, update: bool = True, copy: bool = True) -> Select:
3318        """
3319        Set the locking read mode for this expression.
3320
3321        Examples:
3322            >>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
3323            "SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
3324
3325            >>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
3326            "SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
3327
3328        Args:
3329            update: if `True`, the locking type will be `FOR UPDATE`, else it will be `FOR SHARE`.
3330            copy: if `False`, modify this expression instance in-place.
3331
3332        Returns:
3333            The modified expression.
3334        """
3335        inst = maybe_copy(self, copy)
3336        inst.set("locks", [Lock(update=update)])
3337
3338        return inst
3339
3340    def hint(self, *hints: ExpOrStr, dialect: DialectType = None, copy: bool = True) -> Select:
3341        """
3342        Set hints for this expression.
3343
3344        Examples:
3345            >>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
3346            'SELECT /*+ BROADCAST(y) */ x FROM tbl'
3347
3348        Args:
3349            hints: The SQL code strings to parse as the hints.
3350                If an `Expression` instance is passed, it will be used as-is.
3351            dialect: The dialect used to parse the hints.
3352            copy: If `False`, modify this expression instance in-place.
3353
3354        Returns:
3355            The modified expression.
3356        """
3357        inst = maybe_copy(self, copy)
3358        inst.set(
3359            "hint", Hint(expressions=[maybe_parse(h, copy=copy, dialect=dialect) for h in hints])
3360        )
3361
3362        return inst
3363
3364    @property
3365    def named_selects(self) -> t.List[str]:
3366        return [e.output_name for e in self.expressions if e.alias_or_name]
3367
3368    @property
3369    def is_star(self) -> bool:
3370        return any(expression.is_star for expression in self.expressions)
3371
3372    @property
3373    def selects(self) -> t.List[Expression]:
3374        return self.expressions
arg_types = {'with': False, 'kind': False, 'expressions': False, 'hint': False, 'distinct': False, 'into': False, 'from': False, 'match': False, 'laterals': False, 'joins': False, 'connect': False, 'pivots': False, 'where': False, 'group': False, 'having': False, 'qualify': False, 'windows': False, 'distribute': False, 'sort': False, 'cluster': False, 'order': False, 'limit': False, 'offset': False, 'locks': False, 'sample': False, 'settings': False, 'format': False}
def from_( self, expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2696    def from_(
2697        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
2698    ) -> Select:
2699        """
2700        Set the FROM expression.
2701
2702        Example:
2703            >>> Select().from_("tbl").select("x").sql()
2704            'SELECT x FROM tbl'
2705
2706        Args:
2707            expression : the SQL code strings to parse.
2708                If a `From` instance is passed, this is used as-is.
2709                If another `Expression` instance is passed, it will be wrapped in a `From`.
2710            dialect: the dialect used to parse the input expression.
2711            copy: if `False`, modify this expression instance in-place.
2712            opts: other options to use to parse the input expressions.
2713
2714        Returns:
2715            The modified Select expression.
2716        """
2717        return _apply_builder(
2718            expression=expression,
2719            instance=self,
2720            arg="from",
2721            into=From,
2722            prefix="FROM",
2723            dialect=dialect,
2724            copy=copy,
2725            **opts,
2726        )

Set the FROM expression.

Example:
>>> Select().from_("tbl").select("x").sql()
'SELECT x FROM tbl'
Arguments:
  • expression : the SQL code strings to parse. If a From instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a From.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def group_by( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2728    def group_by(
2729        self,
2730        *expressions: t.Optional[ExpOrStr],
2731        append: bool = True,
2732        dialect: DialectType = None,
2733        copy: bool = True,
2734        **opts,
2735    ) -> Select:
2736        """
2737        Set the GROUP BY expression.
2738
2739        Example:
2740            >>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
2741            'SELECT x, COUNT(1) FROM tbl GROUP BY x'
2742
2743        Args:
2744            *expressions: the SQL code strings to parse.
2745                If a `Group` instance is passed, this is used as-is.
2746                If another `Expression` instance is passed, it will be wrapped in a `Group`.
2747                If nothing is passed in then a group by is not applied to the expression
2748            append: if `True`, add to any existing expressions.
2749                Otherwise, this flattens all the `Group` expression into a single expression.
2750            dialect: the dialect used to parse the input expression.
2751            copy: if `False`, modify this expression instance in-place.
2752            opts: other options to use to parse the input expressions.
2753
2754        Returns:
2755            The modified Select expression.
2756        """
2757        if not expressions:
2758            return self if not copy else self.copy()
2759
2760        return _apply_child_list_builder(
2761            *expressions,
2762            instance=self,
2763            arg="group",
2764            append=append,
2765            copy=copy,
2766            prefix="GROUP BY",
2767            into=Group,
2768            dialect=dialect,
2769            **opts,
2770        )

Set the GROUP BY expression.

Example:
>>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
'SELECT x, COUNT(1) FROM tbl GROUP BY x'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Group. If nothing is passed in then a group by is not applied to the expression
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Group expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def order_by( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2772    def order_by(
2773        self,
2774        *expressions: t.Optional[ExpOrStr],
2775        append: bool = True,
2776        dialect: DialectType = None,
2777        copy: bool = True,
2778        **opts,
2779    ) -> Select:
2780        """
2781        Set the ORDER BY expression.
2782
2783        Example:
2784            >>> Select().from_("tbl").select("x").order_by("x DESC").sql()
2785            'SELECT x FROM tbl ORDER BY x DESC'
2786
2787        Args:
2788            *expressions: the SQL code strings to parse.
2789                If a `Group` instance is passed, this is used as-is.
2790                If another `Expression` instance is passed, it will be wrapped in a `Order`.
2791            append: if `True`, add to any existing expressions.
2792                Otherwise, this flattens all the `Order` expression into a single expression.
2793            dialect: the dialect used to parse the input expression.
2794            copy: if `False`, modify this expression instance in-place.
2795            opts: other options to use to parse the input expressions.
2796
2797        Returns:
2798            The modified Select expression.
2799        """
2800        return _apply_child_list_builder(
2801            *expressions,
2802            instance=self,
2803            arg="order",
2804            append=append,
2805            copy=copy,
2806            prefix="ORDER BY",
2807            into=Order,
2808            dialect=dialect,
2809            **opts,
2810        )

Set the ORDER BY expression.

Example:
>>> Select().from_("tbl").select("x").order_by("x DESC").sql()
'SELECT x FROM tbl ORDER BY x DESC'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Order.
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Order expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def sort_by( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2812    def sort_by(
2813        self,
2814        *expressions: t.Optional[ExpOrStr],
2815        append: bool = True,
2816        dialect: DialectType = None,
2817        copy: bool = True,
2818        **opts,
2819    ) -> Select:
2820        """
2821        Set the SORT BY expression.
2822
2823        Example:
2824            >>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
2825            'SELECT x FROM tbl SORT BY x DESC'
2826
2827        Args:
2828            *expressions: the SQL code strings to parse.
2829                If a `Group` instance is passed, this is used as-is.
2830                If another `Expression` instance is passed, it will be wrapped in a `SORT`.
2831            append: if `True`, add to any existing expressions.
2832                Otherwise, this flattens all the `Order` expression into a single expression.
2833            dialect: the dialect used to parse the input expression.
2834            copy: if `False`, modify this expression instance in-place.
2835            opts: other options to use to parse the input expressions.
2836
2837        Returns:
2838            The modified Select expression.
2839        """
2840        return _apply_child_list_builder(
2841            *expressions,
2842            instance=self,
2843            arg="sort",
2844            append=append,
2845            copy=copy,
2846            prefix="SORT BY",
2847            into=Sort,
2848            dialect=dialect,
2849            **opts,
2850        )

Set the SORT BY expression.

Example:
>>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
'SELECT x FROM tbl SORT BY x DESC'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a SORT.
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Order expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def cluster_by( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2852    def cluster_by(
2853        self,
2854        *expressions: t.Optional[ExpOrStr],
2855        append: bool = True,
2856        dialect: DialectType = None,
2857        copy: bool = True,
2858        **opts,
2859    ) -> Select:
2860        """
2861        Set the CLUSTER BY expression.
2862
2863        Example:
2864            >>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
2865            'SELECT x FROM tbl CLUSTER BY x DESC'
2866
2867        Args:
2868            *expressions: the SQL code strings to parse.
2869                If a `Group` instance is passed, this is used as-is.
2870                If another `Expression` instance is passed, it will be wrapped in a `Cluster`.
2871            append: if `True`, add to any existing expressions.
2872                Otherwise, this flattens all the `Order` expression into a single expression.
2873            dialect: the dialect used to parse the input expression.
2874            copy: if `False`, modify this expression instance in-place.
2875            opts: other options to use to parse the input expressions.
2876
2877        Returns:
2878            The modified Select expression.
2879        """
2880        return _apply_child_list_builder(
2881            *expressions,
2882            instance=self,
2883            arg="cluster",
2884            append=append,
2885            copy=copy,
2886            prefix="CLUSTER BY",
2887            into=Cluster,
2888            dialect=dialect,
2889            **opts,
2890        )

Set the CLUSTER BY expression.

Example:
>>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
'SELECT x FROM tbl CLUSTER BY x DESC'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Cluster.
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Order expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def limit( self, expression: Union[str, Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2892    def limit(
2893        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2894    ) -> Select:
2895        """
2896        Set the LIMIT expression.
2897
2898        Example:
2899            >>> Select().from_("tbl").select("x").limit(10).sql()
2900            'SELECT x FROM tbl LIMIT 10'
2901
2902        Args:
2903            expression: the SQL code string to parse.
2904                This can also be an integer.
2905                If a `Limit` instance is passed, this is used as-is.
2906                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2907            dialect: the dialect used to parse the input expression.
2908            copy: if `False`, modify this expression instance in-place.
2909            opts: other options to use to parse the input expressions.
2910
2911        Returns:
2912            Select: the modified expression.
2913        """
2914        return _apply_builder(
2915            expression=expression,
2916            instance=self,
2917            arg="limit",
2918            into=Limit,
2919            prefix="LIMIT",
2920            dialect=dialect,
2921            copy=copy,
2922            into_arg="expression",
2923            **opts,
2924        )

Set the LIMIT expression.

Example:
>>> Select().from_("tbl").select("x").limit(10).sql()
'SELECT x FROM tbl LIMIT 10'
Arguments:
  • expression: the SQL code string to parse. This can also be an integer. If a Limit instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Limit.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Select: the modified expression.

def offset( self, expression: Union[str, Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2926    def offset(
2927        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2928    ) -> Select:
2929        """
2930        Set the OFFSET expression.
2931
2932        Example:
2933            >>> Select().from_("tbl").select("x").offset(10).sql()
2934            'SELECT x FROM tbl OFFSET 10'
2935
2936        Args:
2937            expression: the SQL code string to parse.
2938                This can also be an integer.
2939                If a `Offset` instance is passed, this is used as-is.
2940                If another `Expression` instance is passed, it will be wrapped in a `Offset`.
2941            dialect: the dialect used to parse the input expression.
2942            copy: if `False`, modify this expression instance in-place.
2943            opts: other options to use to parse the input expressions.
2944
2945        Returns:
2946            The modified Select expression.
2947        """
2948        return _apply_builder(
2949            expression=expression,
2950            instance=self,
2951            arg="offset",
2952            into=Offset,
2953            prefix="OFFSET",
2954            dialect=dialect,
2955            copy=copy,
2956            into_arg="expression",
2957            **opts,
2958        )

Set the OFFSET expression.

Example:
>>> Select().from_("tbl").select("x").offset(10).sql()
'SELECT x FROM tbl OFFSET 10'
Arguments:
  • expression: the SQL code string to parse. This can also be an integer. If a Offset instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Offset.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def select( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2960    def select(
2961        self,
2962        *expressions: t.Optional[ExpOrStr],
2963        append: bool = True,
2964        dialect: DialectType = None,
2965        copy: bool = True,
2966        **opts,
2967    ) -> Select:
2968        """
2969        Append to or set the SELECT expressions.
2970
2971        Example:
2972            >>> Select().select("x", "y").sql()
2973            'SELECT x, y'
2974
2975        Args:
2976            *expressions: the SQL code strings to parse.
2977                If an `Expression` instance is passed, it will be used as-is.
2978            append: if `True`, add to any existing expressions.
2979                Otherwise, this resets the expressions.
2980            dialect: the dialect used to parse the input expressions.
2981            copy: if `False`, modify this expression instance in-place.
2982            opts: other options to use to parse the input expressions.
2983
2984        Returns:
2985            The modified Select expression.
2986        """
2987        return _apply_list_builder(
2988            *expressions,
2989            instance=self,
2990            arg="expressions",
2991            append=append,
2992            dialect=dialect,
2993            copy=copy,
2994            **opts,
2995        )

Append to or set the SELECT expressions.

Example:
>>> Select().select("x", "y").sql()
'SELECT x, y'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def lateral( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2997    def lateral(
2998        self,
2999        *expressions: t.Optional[ExpOrStr],
3000        append: bool = True,
3001        dialect: DialectType = None,
3002        copy: bool = True,
3003        **opts,
3004    ) -> Select:
3005        """
3006        Append to or set the LATERAL expressions.
3007
3008        Example:
3009            >>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
3010            'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
3011
3012        Args:
3013            *expressions: the SQL code strings to parse.
3014                If an `Expression` instance is passed, it will be used as-is.
3015            append: if `True`, add to any existing expressions.
3016                Otherwise, this resets the expressions.
3017            dialect: the dialect used to parse the input expressions.
3018            copy: if `False`, modify this expression instance in-place.
3019            opts: other options to use to parse the input expressions.
3020
3021        Returns:
3022            The modified Select expression.
3023        """
3024        return _apply_list_builder(
3025            *expressions,
3026            instance=self,
3027            arg="laterals",
3028            append=append,
3029            into=Lateral,
3030            prefix="LATERAL VIEW",
3031            dialect=dialect,
3032            copy=copy,
3033            **opts,
3034        )

Append to or set the LATERAL expressions.

Example:
>>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def join( self, expression: Union[str, Expression], on: Union[str, Expression, NoneType] = None, using: Union[str, Expression, Collection[Union[str, Expression]], NoneType] = None, append: bool = True, join_type: Optional[str] = None, join_alias: Union[Identifier, str, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3036    def join(
3037        self,
3038        expression: ExpOrStr,
3039        on: t.Optional[ExpOrStr] = None,
3040        using: t.Optional[ExpOrStr | t.Collection[ExpOrStr]] = None,
3041        append: bool = True,
3042        join_type: t.Optional[str] = None,
3043        join_alias: t.Optional[Identifier | str] = None,
3044        dialect: DialectType = None,
3045        copy: bool = True,
3046        **opts,
3047    ) -> Select:
3048        """
3049        Append to or set the JOIN expressions.
3050
3051        Example:
3052            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
3053            'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
3054
3055            >>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
3056            'SELECT 1 FROM a JOIN b USING (x, y, z)'
3057
3058            Use `join_type` to change the type of join:
3059
3060            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
3061            'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
3062
3063        Args:
3064            expression: the SQL code string to parse.
3065                If an `Expression` instance is passed, it will be used as-is.
3066            on: optionally specify the join "on" criteria as a SQL string.
3067                If an `Expression` instance is passed, it will be used as-is.
3068            using: optionally specify the join "using" criteria as a SQL string.
3069                If an `Expression` instance is passed, it will be used as-is.
3070            append: if `True`, add to any existing expressions.
3071                Otherwise, this resets the expressions.
3072            join_type: if set, alter the parsed join type.
3073            join_alias: an optional alias for the joined source.
3074            dialect: the dialect used to parse the input expressions.
3075            copy: if `False`, modify this expression instance in-place.
3076            opts: other options to use to parse the input expressions.
3077
3078        Returns:
3079            Select: the modified expression.
3080        """
3081        parse_args: t.Dict[str, t.Any] = {"dialect": dialect, **opts}
3082
3083        try:
3084            expression = maybe_parse(expression, into=Join, prefix="JOIN", **parse_args)
3085        except ParseError:
3086            expression = maybe_parse(expression, into=(Join, Expression), **parse_args)
3087
3088        join = expression if isinstance(expression, Join) else Join(this=expression)
3089
3090        if isinstance(join.this, Select):
3091            join.this.replace(join.this.subquery())
3092
3093        if join_type:
3094            method: t.Optional[Token]
3095            side: t.Optional[Token]
3096            kind: t.Optional[Token]
3097
3098            method, side, kind = maybe_parse(join_type, into="JOIN_TYPE", **parse_args)  # type: ignore
3099
3100            if method:
3101                join.set("method", method.text)
3102            if side:
3103                join.set("side", side.text)
3104            if kind:
3105                join.set("kind", kind.text)
3106
3107        if on:
3108            on = and_(*ensure_list(on), dialect=dialect, copy=copy, **opts)
3109            join.set("on", on)
3110
3111        if using:
3112            join = _apply_list_builder(
3113                *ensure_list(using),
3114                instance=join,
3115                arg="using",
3116                append=append,
3117                copy=copy,
3118                into=Identifier,
3119                **opts,
3120            )
3121
3122        if join_alias:
3123            join.set("this", alias_(join.this, join_alias, table=True))
3124
3125        return _apply_list_builder(
3126            join,
3127            instance=self,
3128            arg="joins",
3129            append=append,
3130            copy=copy,
3131            **opts,
3132        )

Append to or set the JOIN expressions.

Example:
>>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
>>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
'SELECT 1 FROM a JOIN b USING (x, y, z)'

Use join_type to change the type of join:

>>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
Arguments:
  • expression: the SQL code string to parse. If an Expression instance is passed, it will be used as-is.
  • on: optionally specify the join "on" criteria as a SQL string. If an Expression instance is passed, it will be used as-is.
  • using: optionally specify the join "using" criteria as a SQL string. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • join_type: if set, alter the parsed join type.
  • join_alias: an optional alias for the joined source.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Select: the modified expression.

def where( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3134    def where(
3135        self,
3136        *expressions: t.Optional[ExpOrStr],
3137        append: bool = True,
3138        dialect: DialectType = None,
3139        copy: bool = True,
3140        **opts,
3141    ) -> Select:
3142        """
3143        Append to or set the WHERE expressions.
3144
3145        Example:
3146            >>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
3147            "SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
3148
3149        Args:
3150            *expressions: the SQL code strings to parse.
3151                If an `Expression` instance is passed, it will be used as-is.
3152                Multiple expressions are combined with an AND operator.
3153            append: if `True`, AND the new expressions to any existing expression.
3154                Otherwise, this resets the expression.
3155            dialect: the dialect used to parse the input expressions.
3156            copy: if `False`, modify this expression instance in-place.
3157            opts: other options to use to parse the input expressions.
3158
3159        Returns:
3160            Select: the modified expression.
3161        """
3162        return _apply_conjunction_builder(
3163            *expressions,
3164            instance=self,
3165            arg="where",
3166            append=append,
3167            into=Where,
3168            dialect=dialect,
3169            copy=copy,
3170            **opts,
3171        )

Append to or set the WHERE expressions.

Example:
>>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
"SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Select: the modified expression.

def having( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3173    def having(
3174        self,
3175        *expressions: t.Optional[ExpOrStr],
3176        append: bool = True,
3177        dialect: DialectType = None,
3178        copy: bool = True,
3179        **opts,
3180    ) -> Select:
3181        """
3182        Append to or set the HAVING expressions.
3183
3184        Example:
3185            >>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
3186            'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
3187
3188        Args:
3189            *expressions: the SQL code strings to parse.
3190                If an `Expression` instance is passed, it will be used as-is.
3191                Multiple expressions are combined with an AND operator.
3192            append: if `True`, AND the new expressions to any existing expression.
3193                Otherwise, this resets the expression.
3194            dialect: the dialect used to parse the input expressions.
3195            copy: if `False`, modify this expression instance in-place.
3196            opts: other options to use to parse the input expressions.
3197
3198        Returns:
3199            The modified Select expression.
3200        """
3201        return _apply_conjunction_builder(
3202            *expressions,
3203            instance=self,
3204            arg="having",
3205            append=append,
3206            into=Having,
3207            dialect=dialect,
3208            copy=copy,
3209            **opts,
3210        )

Append to or set the HAVING expressions.

Example:
>>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def window( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3212    def window(
3213        self,
3214        *expressions: t.Optional[ExpOrStr],
3215        append: bool = True,
3216        dialect: DialectType = None,
3217        copy: bool = True,
3218        **opts,
3219    ) -> Select:
3220        return _apply_list_builder(
3221            *expressions,
3222            instance=self,
3223            arg="windows",
3224            append=append,
3225            into=Window,
3226            dialect=dialect,
3227            copy=copy,
3228            **opts,
3229        )
def qualify( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3231    def qualify(
3232        self,
3233        *expressions: t.Optional[ExpOrStr],
3234        append: bool = True,
3235        dialect: DialectType = None,
3236        copy: bool = True,
3237        **opts,
3238    ) -> Select:
3239        return _apply_conjunction_builder(
3240            *expressions,
3241            instance=self,
3242            arg="qualify",
3243            append=append,
3244            into=Qualify,
3245            dialect=dialect,
3246            copy=copy,
3247            **opts,
3248        )
def distinct( self, *ons: Union[str, Expression, NoneType], distinct: bool = True, copy: bool = True) -> Select:
3250    def distinct(
3251        self, *ons: t.Optional[ExpOrStr], distinct: bool = True, copy: bool = True
3252    ) -> Select:
3253        """
3254        Set the OFFSET expression.
3255
3256        Example:
3257            >>> Select().from_("tbl").select("x").distinct().sql()
3258            'SELECT DISTINCT x FROM tbl'
3259
3260        Args:
3261            ons: the expressions to distinct on
3262            distinct: whether the Select should be distinct
3263            copy: if `False`, modify this expression instance in-place.
3264
3265        Returns:
3266            Select: the modified expression.
3267        """
3268        instance = maybe_copy(self, copy)
3269        on = Tuple(expressions=[maybe_parse(on, copy=copy) for on in ons if on]) if ons else None
3270        instance.set("distinct", Distinct(on=on) if distinct else None)
3271        return instance

Set the OFFSET expression.

Example:
>>> Select().from_("tbl").select("x").distinct().sql()
'SELECT DISTINCT x FROM tbl'
Arguments:
  • ons: the expressions to distinct on
  • distinct: whether the Select should be distinct
  • copy: if False, modify this expression instance in-place.
Returns:

Select: the modified expression.

def ctas( self, table: Union[str, Expression], properties: Optional[Dict] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Create:
3273    def ctas(
3274        self,
3275        table: ExpOrStr,
3276        properties: t.Optional[t.Dict] = None,
3277        dialect: DialectType = None,
3278        copy: bool = True,
3279        **opts,
3280    ) -> Create:
3281        """
3282        Convert this expression to a CREATE TABLE AS statement.
3283
3284        Example:
3285            >>> Select().select("*").from_("tbl").ctas("x").sql()
3286            'CREATE TABLE x AS SELECT * FROM tbl'
3287
3288        Args:
3289            table: the SQL code string to parse as the table name.
3290                If another `Expression` instance is passed, it will be used as-is.
3291            properties: an optional mapping of table properties
3292            dialect: the dialect used to parse the input table.
3293            copy: if `False`, modify this expression instance in-place.
3294            opts: other options to use to parse the input table.
3295
3296        Returns:
3297            The new Create expression.
3298        """
3299        instance = maybe_copy(self, copy)
3300        table_expression = maybe_parse(
3301            table,
3302            into=Table,
3303            dialect=dialect,
3304            **opts,
3305        )
3306        properties_expression = None
3307        if properties:
3308            properties_expression = Properties.from_dict(properties)
3309
3310        return Create(
3311            this=table_expression,
3312            kind="table",
3313            expression=instance,
3314            properties=properties_expression,
3315        )

Convert this expression to a CREATE TABLE AS statement.

Example:
>>> Select().select("*").from_("tbl").ctas("x").sql()
'CREATE TABLE x AS SELECT * FROM tbl'
Arguments:
  • table: the SQL code string to parse as the table name. If another Expression instance is passed, it will be used as-is.
  • properties: an optional mapping of table properties
  • dialect: the dialect used to parse the input table.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input table.
Returns:

The new Create expression.

def lock( self, update: bool = True, copy: bool = True) -> Select:
3317    def lock(self, update: bool = True, copy: bool = True) -> Select:
3318        """
3319        Set the locking read mode for this expression.
3320
3321        Examples:
3322            >>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
3323            "SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
3324
3325            >>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
3326            "SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
3327
3328        Args:
3329            update: if `True`, the locking type will be `FOR UPDATE`, else it will be `FOR SHARE`.
3330            copy: if `False`, modify this expression instance in-place.
3331
3332        Returns:
3333            The modified expression.
3334        """
3335        inst = maybe_copy(self, copy)
3336        inst.set("locks", [Lock(update=update)])
3337
3338        return inst

Set the locking read mode for this expression.

Examples:
>>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
"SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
>>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
"SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
Arguments:
  • update: if True, the locking type will be FOR UPDATE, else it will be FOR SHARE.
  • copy: if False, modify this expression instance in-place.
Returns:

The modified expression.

def hint( self, *hints: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True) -> Select:
3340    def hint(self, *hints: ExpOrStr, dialect: DialectType = None, copy: bool = True) -> Select:
3341        """
3342        Set hints for this expression.
3343
3344        Examples:
3345            >>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
3346            'SELECT /*+ BROADCAST(y) */ x FROM tbl'
3347
3348        Args:
3349            hints: The SQL code strings to parse as the hints.
3350                If an `Expression` instance is passed, it will be used as-is.
3351            dialect: The dialect used to parse the hints.
3352            copy: If `False`, modify this expression instance in-place.
3353
3354        Returns:
3355            The modified expression.
3356        """
3357        inst = maybe_copy(self, copy)
3358        inst.set(
3359            "hint", Hint(expressions=[maybe_parse(h, copy=copy, dialect=dialect) for h in hints])
3360        )
3361
3362        return inst

Set hints for this expression.

Examples:
>>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
'SELECT /*+ BROADCAST(y) */ x FROM tbl'
Arguments:
  • hints: The SQL code strings to parse as the hints. If an Expression instance is passed, it will be used as-is.
  • dialect: The dialect used to parse the hints.
  • copy: If False, modify this expression instance in-place.
Returns:

The modified expression.

named_selects: List[str]
is_star: bool

Checks whether an expression is a star.

selects: List[Expression]
key = 'select'
class Subquery(DerivedTable, Unionable):
3377class Subquery(DerivedTable, Unionable):
3378    arg_types = {
3379        "this": True,
3380        "alias": False,
3381        "with": False,
3382        **QUERY_MODIFIERS,
3383    }
3384
3385    def unnest(self):
3386        """
3387        Returns the first non subquery.
3388        """
3389        expression = self
3390        while isinstance(expression, Subquery):
3391            expression = expression.this
3392        return expression
3393
3394    def unwrap(self) -> Subquery:
3395        expression = self
3396        while expression.same_parent and expression.is_wrapper:
3397            expression = t.cast(Subquery, expression.parent)
3398        return expression
3399
3400    @property
3401    def is_wrapper(self) -> bool:
3402        """
3403        Whether this Subquery acts as a simple wrapper around another expression.
3404
3405        SELECT * FROM (((SELECT * FROM t)))
3406                      ^
3407                      This corresponds to a "wrapper" Subquery node
3408        """
3409        return all(v is None for k, v in self.args.items() if k != "this")
3410
3411    @property
3412    def is_star(self) -> bool:
3413        return self.this.is_star
3414
3415    @property
3416    def output_name(self) -> str:
3417        return self.alias
arg_types = {'this': True, 'alias': False, 'with': False, 'match': False, 'laterals': False, 'joins': False, 'connect': False, 'pivots': False, 'where': False, 'group': False, 'having': False, 'qualify': False, 'windows': False, 'distribute': False, 'sort': False, 'cluster': False, 'order': False, 'limit': False, 'offset': False, 'locks': False, 'sample': False, 'settings': False, 'format': False}
def unnest(self):
3385    def unnest(self):
3386        """
3387        Returns the first non subquery.
3388        """
3389        expression = self
3390        while isinstance(expression, Subquery):
3391            expression = expression.this
3392        return expression

Returns the first non subquery.

def unwrap(self) -> Subquery:
3394    def unwrap(self) -> Subquery:
3395        expression = self
3396        while expression.same_parent and expression.is_wrapper:
3397            expression = t.cast(Subquery, expression.parent)
3398        return expression
is_wrapper: bool

Whether this Subquery acts as a simple wrapper around another expression.

SELECT * FROM (((SELECT * FROM t))) ^ This corresponds to a "wrapper" Subquery node

is_star: bool

Checks whether an expression is a star.

output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'subquery'
class TableSample(Expression):
3420class TableSample(Expression):
3421    arg_types = {
3422        "this": False,
3423        "expressions": False,
3424        "method": False,
3425        "bucket_numerator": False,
3426        "bucket_denominator": False,
3427        "bucket_field": False,
3428        "percent": False,
3429        "rows": False,
3430        "size": False,
3431        "seed": False,
3432        "kind": False,
3433    }
arg_types = {'this': False, 'expressions': False, 'method': False, 'bucket_numerator': False, 'bucket_denominator': False, 'bucket_field': False, 'percent': False, 'rows': False, 'size': False, 'seed': False, 'kind': False}
key = 'tablesample'
class Tag(Expression):
3436class Tag(Expression):
3437    """Tags are used for generating arbitrary sql like SELECT <span>x</span>."""
3438
3439    arg_types = {
3440        "this": False,
3441        "prefix": False,
3442        "postfix": False,
3443    }

Tags are used for generating arbitrary sql like SELECT x.

arg_types = {'this': False, 'prefix': False, 'postfix': False}
key = 'tag'
class Pivot(Expression):
3448class Pivot(Expression):
3449    arg_types = {
3450        "this": False,
3451        "alias": False,
3452        "expressions": False,
3453        "field": False,
3454        "unpivot": False,
3455        "using": False,
3456        "group": False,
3457        "columns": False,
3458        "include_nulls": False,
3459    }
arg_types = {'this': False, 'alias': False, 'expressions': False, 'field': False, 'unpivot': False, 'using': False, 'group': False, 'columns': False, 'include_nulls': False}
key = 'pivot'
class Window(Condition):
3462class Window(Condition):
3463    arg_types = {
3464        "this": True,
3465        "partition_by": False,
3466        "order": False,
3467        "spec": False,
3468        "alias": False,
3469        "over": False,
3470        "first": False,
3471    }
arg_types = {'this': True, 'partition_by': False, 'order': False, 'spec': False, 'alias': False, 'over': False, 'first': False}
key = 'window'
class WindowSpec(Expression):
3474class WindowSpec(Expression):
3475    arg_types = {
3476        "kind": False,
3477        "start": False,
3478        "start_side": False,
3479        "end": False,
3480        "end_side": False,
3481    }
arg_types = {'kind': False, 'start': False, 'start_side': False, 'end': False, 'end_side': False}
key = 'windowspec'
class Where(Expression):
3484class Where(Expression):
3485    pass
key = 'where'
class Star(Expression):
3488class Star(Expression):
3489    arg_types = {"except": False, "replace": False}
3490
3491    @property
3492    def name(self) -> str:
3493        return "*"
3494
3495    @property
3496    def output_name(self) -> str:
3497        return self.name
arg_types = {'except': False, 'replace': False}
name: str
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'star'
class Parameter(Condition):
3500class Parameter(Condition):
3501    arg_types = {"this": True, "wrapped": False}
arg_types = {'this': True, 'wrapped': False}
key = 'parameter'
class SessionParameter(Condition):
3504class SessionParameter(Condition):
3505    arg_types = {"this": True, "kind": False}
arg_types = {'this': True, 'kind': False}
key = 'sessionparameter'
class Placeholder(Condition):
3508class Placeholder(Condition):
3509    arg_types = {"this": False, "kind": False}
arg_types = {'this': False, 'kind': False}
key = 'placeholder'
class Null(Condition):
3512class Null(Condition):
3513    arg_types: t.Dict[str, t.Any] = {}
3514
3515    @property
3516    def name(self) -> str:
3517        return "NULL"
arg_types: Dict[str, Any] = {}
name: str
key = 'null'
class Boolean(Condition):
3520class Boolean(Condition):
3521    pass
key = 'boolean'
class DataTypeParam(Expression):
3524class DataTypeParam(Expression):
3525    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'datatypeparam'
class DataType(Expression):
3528class DataType(Expression):
3529    arg_types = {
3530        "this": True,
3531        "expressions": False,
3532        "nested": False,
3533        "values": False,
3534        "prefix": False,
3535        "kind": False,
3536    }
3537
3538    class Type(AutoName):
3539        ARRAY = auto()
3540        BIGDECIMAL = auto()
3541        BIGINT = auto()
3542        BIGSERIAL = auto()
3543        BINARY = auto()
3544        BIT = auto()
3545        BOOLEAN = auto()
3546        CHAR = auto()
3547        DATE = auto()
3548        DATEMULTIRANGE = auto()
3549        DATERANGE = auto()
3550        DATETIME = auto()
3551        DATETIME64 = auto()
3552        DECIMAL = auto()
3553        DOUBLE = auto()
3554        ENUM = auto()
3555        ENUM8 = auto()
3556        ENUM16 = auto()
3557        FIXEDSTRING = auto()
3558        FLOAT = auto()
3559        GEOGRAPHY = auto()
3560        GEOMETRY = auto()
3561        HLLSKETCH = auto()
3562        HSTORE = auto()
3563        IMAGE = auto()
3564        INET = auto()
3565        INT = auto()
3566        INT128 = auto()
3567        INT256 = auto()
3568        INT4MULTIRANGE = auto()
3569        INT4RANGE = auto()
3570        INT8MULTIRANGE = auto()
3571        INT8RANGE = auto()
3572        INTERVAL = auto()
3573        IPADDRESS = auto()
3574        IPPREFIX = auto()
3575        JSON = auto()
3576        JSONB = auto()
3577        LONGBLOB = auto()
3578        LONGTEXT = auto()
3579        LOWCARDINALITY = auto()
3580        MAP = auto()
3581        MEDIUMBLOB = auto()
3582        MEDIUMINT = auto()
3583        MEDIUMTEXT = auto()
3584        MONEY = auto()
3585        NCHAR = auto()
3586        NESTED = auto()
3587        NULL = auto()
3588        NULLABLE = auto()
3589        NUMMULTIRANGE = auto()
3590        NUMRANGE = auto()
3591        NVARCHAR = auto()
3592        OBJECT = auto()
3593        ROWVERSION = auto()
3594        SERIAL = auto()
3595        SET = auto()
3596        SMALLINT = auto()
3597        SMALLMONEY = auto()
3598        SMALLSERIAL = auto()
3599        STRUCT = auto()
3600        SUPER = auto()
3601        TEXT = auto()
3602        TINYBLOB = auto()
3603        TINYTEXT = auto()
3604        TIME = auto()
3605        TIMETZ = auto()
3606        TIMESTAMP = auto()
3607        TIMESTAMPLTZ = auto()
3608        TIMESTAMPTZ = auto()
3609        TINYINT = auto()
3610        TSMULTIRANGE = auto()
3611        TSRANGE = auto()
3612        TSTZMULTIRANGE = auto()
3613        TSTZRANGE = auto()
3614        UBIGINT = auto()
3615        UINT = auto()
3616        UINT128 = auto()
3617        UINT256 = auto()
3618        UMEDIUMINT = auto()
3619        UDECIMAL = auto()
3620        UNIQUEIDENTIFIER = auto()
3621        UNKNOWN = auto()  # Sentinel value, useful for type annotation
3622        USERDEFINED = "USER-DEFINED"
3623        USMALLINT = auto()
3624        UTINYINT = auto()
3625        UUID = auto()
3626        VARBINARY = auto()
3627        VARCHAR = auto()
3628        VARIANT = auto()
3629        XML = auto()
3630        YEAR = auto()
3631
3632    TEXT_TYPES = {
3633        Type.CHAR,
3634        Type.NCHAR,
3635        Type.VARCHAR,
3636        Type.NVARCHAR,
3637        Type.TEXT,
3638    }
3639
3640    INTEGER_TYPES = {
3641        Type.INT,
3642        Type.TINYINT,
3643        Type.SMALLINT,
3644        Type.BIGINT,
3645        Type.INT128,
3646        Type.INT256,
3647    }
3648
3649    FLOAT_TYPES = {
3650        Type.FLOAT,
3651        Type.DOUBLE,
3652    }
3653
3654    NUMERIC_TYPES = {
3655        *INTEGER_TYPES,
3656        *FLOAT_TYPES,
3657    }
3658
3659    TEMPORAL_TYPES = {
3660        Type.TIME,
3661        Type.TIMETZ,
3662        Type.TIMESTAMP,
3663        Type.TIMESTAMPTZ,
3664        Type.TIMESTAMPLTZ,
3665        Type.DATE,
3666        Type.DATETIME,
3667        Type.DATETIME64,
3668    }
3669
3670    @classmethod
3671    def build(
3672        cls,
3673        dtype: str | DataType | DataType.Type,
3674        dialect: DialectType = None,
3675        udt: bool = False,
3676        **kwargs,
3677    ) -> DataType:
3678        """
3679        Constructs a DataType object.
3680
3681        Args:
3682            dtype: the data type of interest.
3683            dialect: the dialect to use for parsing `dtype`, in case it's a string.
3684            udt: when set to True, `dtype` will be used as-is if it can't be parsed into a
3685                DataType, thus creating a user-defined type.
3686            kawrgs: additional arguments to pass in the constructor of DataType.
3687
3688        Returns:
3689            The constructed DataType object.
3690        """
3691        from sqlglot import parse_one
3692
3693        if isinstance(dtype, str):
3694            if dtype.upper() == "UNKNOWN":
3695                return DataType(this=DataType.Type.UNKNOWN, **kwargs)
3696
3697            try:
3698                data_type_exp = parse_one(dtype, read=dialect, into=DataType)
3699            except ParseError:
3700                if udt:
3701                    return DataType(this=DataType.Type.USERDEFINED, kind=dtype, **kwargs)
3702                raise
3703        elif isinstance(dtype, DataType.Type):
3704            data_type_exp = DataType(this=dtype)
3705        elif isinstance(dtype, DataType):
3706            return dtype
3707        else:
3708            raise ValueError(f"Invalid data type: {type(dtype)}. Expected str or DataType.Type")
3709
3710        return DataType(**{**data_type_exp.args, **kwargs})
3711
3712    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3713        """
3714        Checks whether this DataType matches one of the provided data types. Nested types or precision
3715        will be compared using "structural equivalence" semantics, so e.g. array<int> != array<float>.
3716
3717        Args:
3718            dtypes: the data types to compare this DataType to.
3719
3720        Returns:
3721            True, if and only if there is a type in `dtypes` which is equal to this DataType.
3722        """
3723        for dtype in dtypes:
3724            other = DataType.build(dtype, udt=True)
3725
3726            if (
3727                other.expressions
3728                or self.this == DataType.Type.USERDEFINED
3729                or other.this == DataType.Type.USERDEFINED
3730            ):
3731                matches = self == other
3732            else:
3733                matches = self.this == other.this
3734
3735            if matches:
3736                return True
3737        return False
arg_types = {'this': True, 'expressions': False, 'nested': False, 'values': False, 'prefix': False, 'kind': False}
TEXT_TYPES = {<Type.NCHAR: 'NCHAR'>, <Type.VARCHAR: 'VARCHAR'>, <Type.NVARCHAR: 'NVARCHAR'>, <Type.TEXT: 'TEXT'>, <Type.CHAR: 'CHAR'>}
INTEGER_TYPES = {<Type.INT: 'INT'>, <Type.SMALLINT: 'SMALLINT'>, <Type.TINYINT: 'TINYINT'>, <Type.BIGINT: 'BIGINT'>, <Type.INT128: 'INT128'>, <Type.INT256: 'INT256'>}
FLOAT_TYPES = {<Type.FLOAT: 'FLOAT'>, <Type.DOUBLE: 'DOUBLE'>}
NUMERIC_TYPES = {<Type.INT128: 'INT128'>, <Type.FLOAT: 'FLOAT'>, <Type.BIGINT: 'BIGINT'>, <Type.INT: 'INT'>, <Type.SMALLINT: 'SMALLINT'>, <Type.TINYINT: 'TINYINT'>, <Type.INT256: 'INT256'>, <Type.DOUBLE: 'DOUBLE'>}
TEMPORAL_TYPES = {<Type.TIMETZ: 'TIMETZ'>, <Type.DATE: 'DATE'>, <Type.TIMESTAMP: 'TIMESTAMP'>, <Type.TIME: 'TIME'>, <Type.TIMESTAMPLTZ: 'TIMESTAMPLTZ'>, <Type.TIMESTAMPTZ: 'TIMESTAMPTZ'>, <Type.DATETIME: 'DATETIME'>, <Type.DATETIME64: 'DATETIME64'>}
@classmethod
def build( cls, dtype: str | DataType | DataType.Type, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, udt: bool = False, **kwargs) -> DataType:
3670    @classmethod
3671    def build(
3672        cls,
3673        dtype: str | DataType | DataType.Type,
3674        dialect: DialectType = None,
3675        udt: bool = False,
3676        **kwargs,
3677    ) -> DataType:
3678        """
3679        Constructs a DataType object.
3680
3681        Args:
3682            dtype: the data type of interest.
3683            dialect: the dialect to use for parsing `dtype`, in case it's a string.
3684            udt: when set to True, `dtype` will be used as-is if it can't be parsed into a
3685                DataType, thus creating a user-defined type.
3686            kawrgs: additional arguments to pass in the constructor of DataType.
3687
3688        Returns:
3689            The constructed DataType object.
3690        """
3691        from sqlglot import parse_one
3692
3693        if isinstance(dtype, str):
3694            if dtype.upper() == "UNKNOWN":
3695                return DataType(this=DataType.Type.UNKNOWN, **kwargs)
3696
3697            try:
3698                data_type_exp = parse_one(dtype, read=dialect, into=DataType)
3699            except ParseError:
3700                if udt:
3701                    return DataType(this=DataType.Type.USERDEFINED, kind=dtype, **kwargs)
3702                raise
3703        elif isinstance(dtype, DataType.Type):
3704            data_type_exp = DataType(this=dtype)
3705        elif isinstance(dtype, DataType):
3706            return dtype
3707        else:
3708            raise ValueError(f"Invalid data type: {type(dtype)}. Expected str or DataType.Type")
3709
3710        return DataType(**{**data_type_exp.args, **kwargs})

Constructs a DataType object.

Arguments:
  • dtype: the data type of interest.
  • dialect: the dialect to use for parsing dtype, in case it's a string.
  • udt: when set to True, dtype will be used as-is if it can't be parsed into a DataType, thus creating a user-defined type.
  • kawrgs: additional arguments to pass in the constructor of DataType.
Returns:

The constructed DataType object.

def is_type( self, *dtypes: str | DataType | DataType.Type) -> bool:
3712    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3713        """
3714        Checks whether this DataType matches one of the provided data types. Nested types or precision
3715        will be compared using "structural equivalence" semantics, so e.g. array<int> != array<float>.
3716
3717        Args:
3718            dtypes: the data types to compare this DataType to.
3719
3720        Returns:
3721            True, if and only if there is a type in `dtypes` which is equal to this DataType.
3722        """
3723        for dtype in dtypes:
3724            other = DataType.build(dtype, udt=True)
3725
3726            if (
3727                other.expressions
3728                or self.this == DataType.Type.USERDEFINED
3729                or other.this == DataType.Type.USERDEFINED
3730            ):
3731                matches = self == other
3732            else:
3733                matches = self.this == other.this
3734
3735            if matches:
3736                return True
3737        return False

Checks whether this DataType matches one of the provided data types. Nested types or precision will be compared using "structural equivalence" semantics, so e.g. array != array.

Arguments:
  • dtypes: the data types to compare this DataType to.
Returns:

True, if and only if there is a type in dtypes which is equal to this DataType.

key = 'datatype'
class DataType.Type(sqlglot.helper.AutoName):
3538    class Type(AutoName):
3539        ARRAY = auto()
3540        BIGDECIMAL = auto()
3541        BIGINT = auto()
3542        BIGSERIAL = auto()
3543        BINARY = auto()
3544        BIT = auto()
3545        BOOLEAN = auto()
3546        CHAR = auto()
3547        DATE = auto()
3548        DATEMULTIRANGE = auto()
3549        DATERANGE = auto()
3550        DATETIME = auto()
3551        DATETIME64 = auto()
3552        DECIMAL = auto()
3553        DOUBLE = auto()
3554        ENUM = auto()
3555        ENUM8 = auto()
3556        ENUM16 = auto()
3557        FIXEDSTRING = auto()
3558        FLOAT = auto()
3559        GEOGRAPHY = auto()
3560        GEOMETRY = auto()
3561        HLLSKETCH = auto()
3562        HSTORE = auto()
3563        IMAGE = auto()
3564        INET = auto()
3565        INT = auto()
3566        INT128 = auto()
3567        INT256 = auto()
3568        INT4MULTIRANGE = auto()
3569        INT4RANGE = auto()
3570        INT8MULTIRANGE = auto()
3571        INT8RANGE = auto()
3572        INTERVAL = auto()
3573        IPADDRESS = auto()
3574        IPPREFIX = auto()
3575        JSON = auto()
3576        JSONB = auto()
3577        LONGBLOB = auto()
3578        LONGTEXT = auto()
3579        LOWCARDINALITY = auto()
3580        MAP = auto()
3581        MEDIUMBLOB = auto()
3582        MEDIUMINT = auto()
3583        MEDIUMTEXT = auto()
3584        MONEY = auto()
3585        NCHAR = auto()
3586        NESTED = auto()
3587        NULL = auto()
3588        NULLABLE = auto()
3589        NUMMULTIRANGE = auto()
3590        NUMRANGE = auto()
3591        NVARCHAR = auto()
3592        OBJECT = auto()
3593        ROWVERSION = auto()
3594        SERIAL = auto()
3595        SET = auto()
3596        SMALLINT = auto()
3597        SMALLMONEY = auto()
3598        SMALLSERIAL = auto()
3599        STRUCT = auto()
3600        SUPER = auto()
3601        TEXT = auto()
3602        TINYBLOB = auto()
3603        TINYTEXT = auto()
3604        TIME = auto()
3605        TIMETZ = auto()
3606        TIMESTAMP = auto()
3607        TIMESTAMPLTZ = auto()
3608        TIMESTAMPTZ = auto()
3609        TINYINT = auto()
3610        TSMULTIRANGE = auto()
3611        TSRANGE = auto()
3612        TSTZMULTIRANGE = auto()
3613        TSTZRANGE = auto()
3614        UBIGINT = auto()
3615        UINT = auto()
3616        UINT128 = auto()
3617        UINT256 = auto()
3618        UMEDIUMINT = auto()
3619        UDECIMAL = auto()
3620        UNIQUEIDENTIFIER = auto()
3621        UNKNOWN = auto()  # Sentinel value, useful for type annotation
3622        USERDEFINED = "USER-DEFINED"
3623        USMALLINT = auto()
3624        UTINYINT = auto()
3625        UUID = auto()
3626        VARBINARY = auto()
3627        VARCHAR = auto()
3628        VARIANT = auto()
3629        XML = auto()
3630        YEAR = auto()

An enumeration.

ARRAY = <Type.ARRAY: 'ARRAY'>
BIGDECIMAL = <Type.BIGDECIMAL: 'BIGDECIMAL'>
BIGINT = <Type.BIGINT: 'BIGINT'>
BIGSERIAL = <Type.BIGSERIAL: 'BIGSERIAL'>
BINARY = <Type.BINARY: 'BINARY'>
BIT = <Type.BIT: 'BIT'>
BOOLEAN = <Type.BOOLEAN: 'BOOLEAN'>
CHAR = <Type.CHAR: 'CHAR'>
DATE = <Type.DATE: 'DATE'>
DATEMULTIRANGE = <Type.DATEMULTIRANGE: 'DATEMULTIRANGE'>
DATERANGE = <Type.DATERANGE: 'DATERANGE'>
DATETIME = <Type.DATETIME: 'DATETIME'>
DATETIME64 = <Type.DATETIME64: 'DATETIME64'>
DECIMAL = <Type.DECIMAL: 'DECIMAL'>
DOUBLE = <Type.DOUBLE: 'DOUBLE'>
ENUM = <Type.ENUM: 'ENUM'>
ENUM8 = <Type.ENUM8: 'ENUM8'>
ENUM16 = <Type.ENUM16: 'ENUM16'>
FIXEDSTRING = <Type.FIXEDSTRING: 'FIXEDSTRING'>
FLOAT = <Type.FLOAT: 'FLOAT'>
GEOGRAPHY = <Type.GEOGRAPHY: 'GEOGRAPHY'>
GEOMETRY = <Type.GEOMETRY: 'GEOMETRY'>
HLLSKETCH = <Type.HLLSKETCH: 'HLLSKETCH'>
HSTORE = <Type.HSTORE: 'HSTORE'>
IMAGE = <Type.IMAGE: 'IMAGE'>
INET = <Type.INET: 'INET'>
INT = <Type.INT: 'INT'>
INT128 = <Type.INT128: 'INT128'>
INT256 = <Type.INT256: 'INT256'>
INT4MULTIRANGE = <Type.INT4MULTIRANGE: 'INT4MULTIRANGE'>
INT4RANGE = <Type.INT4RANGE: 'INT4RANGE'>
INT8MULTIRANGE = <Type.INT8MULTIRANGE: 'INT8MULTIRANGE'>
INT8RANGE = <Type.INT8RANGE: 'INT8RANGE'>
INTERVAL = <Type.INTERVAL: 'INTERVAL'>
IPADDRESS = <Type.IPADDRESS: 'IPADDRESS'>
IPPREFIX = <Type.IPPREFIX: 'IPPREFIX'>
JSON = <Type.JSON: 'JSON'>
JSONB = <Type.JSONB: 'JSONB'>
LONGBLOB = <Type.LONGBLOB: 'LONGBLOB'>
LONGTEXT = <Type.LONGTEXT: 'LONGTEXT'>
LOWCARDINALITY = <Type.LOWCARDINALITY: 'LOWCARDINALITY'>
MAP = <Type.MAP: 'MAP'>
MEDIUMBLOB = <Type.MEDIUMBLOB: 'MEDIUMBLOB'>
MEDIUMINT = <Type.MEDIUMINT: 'MEDIUMINT'>
MEDIUMTEXT = <Type.MEDIUMTEXT: 'MEDIUMTEXT'>
MONEY = <Type.MONEY: 'MONEY'>
NCHAR = <Type.NCHAR: 'NCHAR'>
NESTED = <Type.NESTED: 'NESTED'>
NULL = <Type.NULL: 'NULL'>
NULLABLE = <Type.NULLABLE: 'NULLABLE'>
NUMMULTIRANGE = <Type.NUMMULTIRANGE: 'NUMMULTIRANGE'>
NUMRANGE = <Type.NUMRANGE: 'NUMRANGE'>
NVARCHAR = <Type.NVARCHAR: 'NVARCHAR'>
OBJECT = <Type.OBJECT: 'OBJECT'>
ROWVERSION = <Type.ROWVERSION: 'ROWVERSION'>
SERIAL = <Type.SERIAL: 'SERIAL'>
SET = <Type.SET: 'SET'>
SMALLINT = <Type.SMALLINT: 'SMALLINT'>
SMALLMONEY = <Type.SMALLMONEY: 'SMALLMONEY'>
SMALLSERIAL = <Type.SMALLSERIAL: 'SMALLSERIAL'>
STRUCT = <Type.STRUCT: 'STRUCT'>
SUPER = <Type.SUPER: 'SUPER'>
TEXT = <Type.TEXT: 'TEXT'>
TINYBLOB = <Type.TINYBLOB: 'TINYBLOB'>
TINYTEXT = <Type.TINYTEXT: 'TINYTEXT'>
TIME = <Type.TIME: 'TIME'>
TIMETZ = <Type.TIMETZ: 'TIMETZ'>
TIMESTAMP = <Type.TIMESTAMP: 'TIMESTAMP'>
TIMESTAMPLTZ = <Type.TIMESTAMPLTZ: 'TIMESTAMPLTZ'>
TIMESTAMPTZ = <Type.TIMESTAMPTZ: 'TIMESTAMPTZ'>
TINYINT = <Type.TINYINT: 'TINYINT'>
TSMULTIRANGE = <Type.TSMULTIRANGE: 'TSMULTIRANGE'>
TSRANGE = <Type.TSRANGE: 'TSRANGE'>
TSTZMULTIRANGE = <Type.TSTZMULTIRANGE: 'TSTZMULTIRANGE'>
TSTZRANGE = <Type.TSTZRANGE: 'TSTZRANGE'>
UBIGINT = <Type.UBIGINT: 'UBIGINT'>
UINT = <Type.UINT: 'UINT'>
UINT128 = <Type.UINT128: 'UINT128'>
UINT256 = <Type.UINT256: 'UINT256'>
UMEDIUMINT = <Type.UMEDIUMINT: 'UMEDIUMINT'>
UDECIMAL = <Type.UDECIMAL: 'UDECIMAL'>
UNIQUEIDENTIFIER = <Type.UNIQUEIDENTIFIER: 'UNIQUEIDENTIFIER'>
UNKNOWN = <Type.UNKNOWN: 'UNKNOWN'>
USERDEFINED = <Type.USERDEFINED: 'USER-DEFINED'>
USMALLINT = <Type.USMALLINT: 'USMALLINT'>
UTINYINT = <Type.UTINYINT: 'UTINYINT'>
UUID = <Type.UUID: 'UUID'>
VARBINARY = <Type.VARBINARY: 'VARBINARY'>
VARCHAR = <Type.VARCHAR: 'VARCHAR'>
VARIANT = <Type.VARIANT: 'VARIANT'>
XML = <Type.XML: 'XML'>
YEAR = <Type.YEAR: 'YEAR'>
Inherited Members
enum.Enum
name
value
class PseudoType(DataType):
3741class PseudoType(DataType):
3742    arg_types = {"this": True}
arg_types = {'this': True}
key = 'pseudotype'
class ObjectIdentifier(DataType):
3746class ObjectIdentifier(DataType):
3747    arg_types = {"this": True}
arg_types = {'this': True}
key = 'objectidentifier'
class SubqueryPredicate(Predicate):
3751class SubqueryPredicate(Predicate):
3752    pass
key = 'subquerypredicate'
class All(SubqueryPredicate):
3755class All(SubqueryPredicate):
3756    pass
key = 'all'
class Any(SubqueryPredicate):
3759class Any(SubqueryPredicate):
3760    pass
key = 'any'
class Exists(SubqueryPredicate):
3763class Exists(SubqueryPredicate):
3764    pass
key = 'exists'
class Command(Expression):
3769class Command(Expression):
3770    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'command'
class Transaction(Expression):
3773class Transaction(Expression):
3774    arg_types = {"this": False, "modes": False, "mark": False}
arg_types = {'this': False, 'modes': False, 'mark': False}
key = 'transaction'
class Commit(Expression):
3777class Commit(Expression):
3778    arg_types = {"chain": False, "this": False, "durability": False}
arg_types = {'chain': False, 'this': False, 'durability': False}
key = 'commit'
class Rollback(Expression):
3781class Rollback(Expression):
3782    arg_types = {"savepoint": False, "this": False}
arg_types = {'savepoint': False, 'this': False}
key = 'rollback'
class AlterTable(Expression):
3785class AlterTable(Expression):
3786    arg_types = {"this": True, "actions": True, "exists": False, "only": False}
arg_types = {'this': True, 'actions': True, 'exists': False, 'only': False}
key = 'altertable'
class AddConstraint(Expression):
3789class AddConstraint(Expression):
3790    arg_types = {"this": False, "expression": False, "enforced": False}
arg_types = {'this': False, 'expression': False, 'enforced': False}
key = 'addconstraint'
class DropPartition(Expression):
3793class DropPartition(Expression):
3794    arg_types = {"expressions": True, "exists": False}
arg_types = {'expressions': True, 'exists': False}
key = 'droppartition'
class Binary(Condition):
3798class Binary(Condition):
3799    arg_types = {"this": True, "expression": True}
3800
3801    @property
3802    def left(self):
3803        return self.this
3804
3805    @property
3806    def right(self):
3807        return self.expression
arg_types = {'this': True, 'expression': True}
left
right
key = 'binary'
class Add(Binary):
3810class Add(Binary):
3811    pass
key = 'add'
class Connector(Binary):
3814class Connector(Binary):
3815    pass
key = 'connector'
class And(Connector):
3818class And(Connector):
3819    pass
key = 'and'
class Or(Connector):
3822class Or(Connector):
3823    pass
key = 'or'
class BitwiseAnd(Binary):
3826class BitwiseAnd(Binary):
3827    pass
key = 'bitwiseand'
class BitwiseLeftShift(Binary):
3830class BitwiseLeftShift(Binary):
3831    pass
key = 'bitwiseleftshift'
class BitwiseOr(Binary):
3834class BitwiseOr(Binary):
3835    pass
key = 'bitwiseor'
class BitwiseRightShift(Binary):
3838class BitwiseRightShift(Binary):
3839    pass
key = 'bitwiserightshift'
class BitwiseXor(Binary):
3842class BitwiseXor(Binary):
3843    pass
key = 'bitwisexor'
class Div(Binary):
3846class Div(Binary):
3847    pass
key = 'div'
class Overlaps(Binary):
3850class Overlaps(Binary):
3851    pass
key = 'overlaps'
class Dot(Binary):
3854class Dot(Binary):
3855    @property
3856    def name(self) -> str:
3857        return self.expression.name
3858
3859    @property
3860    def output_name(self) -> str:
3861        return self.name
3862
3863    @classmethod
3864    def build(self, expressions: t.Sequence[Expression]) -> Dot:
3865        """Build a Dot object with a sequence of expressions."""
3866        if len(expressions) < 2:
3867            raise ValueError(f"Dot requires >= 2 expressions.")
3868
3869        return t.cast(Dot, reduce(lambda x, y: Dot(this=x, expression=y), expressions))
name: str
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
@classmethod
def build( self, expressions: Sequence[Expression]) -> Dot:
3863    @classmethod
3864    def build(self, expressions: t.Sequence[Expression]) -> Dot:
3865        """Build a Dot object with a sequence of expressions."""
3866        if len(expressions) < 2:
3867            raise ValueError(f"Dot requires >= 2 expressions.")
3868
3869        return t.cast(Dot, reduce(lambda x, y: Dot(this=x, expression=y), expressions))

Build a Dot object with a sequence of expressions.

key = 'dot'
class DPipe(Binary):
3872class DPipe(Binary):
3873    pass
key = 'dpipe'
class SafeDPipe(DPipe):
3876class SafeDPipe(DPipe):
3877    pass
key = 'safedpipe'
class EQ(Binary, Predicate):
3880class EQ(Binary, Predicate):
3881    pass
key = 'eq'
class NullSafeEQ(Binary, Predicate):
3884class NullSafeEQ(Binary, Predicate):
3885    pass
key = 'nullsafeeq'
class NullSafeNEQ(Binary, Predicate):
3888class NullSafeNEQ(Binary, Predicate):
3889    pass
key = 'nullsafeneq'
class Distance(Binary):
3892class Distance(Binary):
3893    pass
key = 'distance'
class Escape(Binary):
3896class Escape(Binary):
3897    pass
key = 'escape'
class Glob(Binary, Predicate):
3900class Glob(Binary, Predicate):
3901    pass
key = 'glob'
class GT(Binary, Predicate):
3904class GT(Binary, Predicate):
3905    pass
key = 'gt'
class GTE(Binary, Predicate):
3908class GTE(Binary, Predicate):
3909    pass
key = 'gte'
class ILike(Binary, Predicate):
3912class ILike(Binary, Predicate):
3913    pass
key = 'ilike'
class ILikeAny(Binary, Predicate):
3916class ILikeAny(Binary, Predicate):
3917    pass
key = 'ilikeany'
class IntDiv(Binary):
3920class IntDiv(Binary):
3921    pass
key = 'intdiv'
class Is(Binary, Predicate):
3924class Is(Binary, Predicate):
3925    pass
key = 'is'
class Kwarg(Binary):
3928class Kwarg(Binary):
3929    """Kwarg in special functions like func(kwarg => y)."""

Kwarg in special functions like func(kwarg => y).

key = 'kwarg'
class Like(Binary, Predicate):
3932class Like(Binary, Predicate):
3933    pass
key = 'like'
class LikeAny(Binary, Predicate):
3936class LikeAny(Binary, Predicate):
3937    pass
key = 'likeany'
class LT(Binary, Predicate):
3940class LT(Binary, Predicate):
3941    pass
key = 'lt'
class LTE(Binary, Predicate):
3944class LTE(Binary, Predicate):
3945    pass
key = 'lte'
class Mod(Binary):
3948class Mod(Binary):
3949    pass
key = 'mod'
class Mul(Binary):
3952class Mul(Binary):
3953    pass
key = 'mul'
class NEQ(Binary, Predicate):
3956class NEQ(Binary, Predicate):
3957    pass
key = 'neq'
class SimilarTo(Binary, Predicate):
3960class SimilarTo(Binary, Predicate):
3961    pass
key = 'similarto'
class Slice(Binary):
3964class Slice(Binary):
3965    arg_types = {"this": False, "expression": False}
arg_types = {'this': False, 'expression': False}
key = 'slice'
class Sub(Binary):
3968class Sub(Binary):
3969    pass
key = 'sub'
class ArrayOverlaps(Binary):
3972class ArrayOverlaps(Binary):
3973    pass
key = 'arrayoverlaps'
class Unary(Condition):
3978class Unary(Condition):
3979    pass
key = 'unary'
class BitwiseNot(Unary):
3982class BitwiseNot(Unary):
3983    pass
key = 'bitwisenot'
class Not(Unary):
3986class Not(Unary):
3987    pass
key = 'not'
class Paren(Unary):
3990class Paren(Unary):
3991    arg_types = {"this": True, "with": False}
3992
3993    @property
3994    def output_name(self) -> str:
3995        return self.this.name
arg_types = {'this': True, 'with': False}
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'paren'
class Neg(Unary):
3998class Neg(Unary):
3999    pass
key = 'neg'
class Alias(Expression):
4002class Alias(Expression):
4003    arg_types = {"this": True, "alias": False}
4004
4005    @property
4006    def output_name(self) -> str:
4007        return self.alias
arg_types = {'this': True, 'alias': False}
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'alias'
class Aliases(Expression):
4010class Aliases(Expression):
4011    arg_types = {"this": True, "expressions": True}
4012
4013    @property
4014    def aliases(self):
4015        return self.expressions
arg_types = {'this': True, 'expressions': True}
aliases
key = 'aliases'
class AtTimeZone(Expression):
4018class AtTimeZone(Expression):
4019    arg_types = {"this": True, "zone": True}
arg_types = {'this': True, 'zone': True}
key = 'attimezone'
class Between(Predicate):
4022class Between(Predicate):
4023    arg_types = {"this": True, "low": True, "high": True}
arg_types = {'this': True, 'low': True, 'high': True}
key = 'between'
class Bracket(Condition):
4026class Bracket(Condition):
4027    arg_types = {"this": True, "expressions": True}
4028
4029    @property
4030    def output_name(self) -> str:
4031        if len(self.expressions) == 1:
4032            return self.expressions[0].output_name
4033
4034        return super().output_name
arg_types = {'this': True, 'expressions': True}
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'bracket'
class SafeBracket(Bracket):
4037class SafeBracket(Bracket):
4038    """Represents array lookup where OOB index yields NULL instead of causing a failure."""

Represents array lookup where OOB index yields NULL instead of causing a failure.

key = 'safebracket'
class Distinct(Expression):
4041class Distinct(Expression):
4042    arg_types = {"expressions": False, "on": False}
arg_types = {'expressions': False, 'on': False}
key = 'distinct'
class In(Predicate):
4045class In(Predicate):
4046    arg_types = {
4047        "this": True,
4048        "expressions": False,
4049        "query": False,
4050        "unnest": False,
4051        "field": False,
4052        "is_global": False,
4053    }
arg_types = {'this': True, 'expressions': False, 'query': False, 'unnest': False, 'field': False, 'is_global': False}
key = 'in'
class TimeUnit(Expression):
4056class TimeUnit(Expression):
4057    """Automatically converts unit arg into a var."""
4058
4059    arg_types = {"unit": False}
4060
4061    def __init__(self, **args):
4062        unit = args.get("unit")
4063        if isinstance(unit, (Column, Literal)):
4064            args["unit"] = Var(this=unit.name)
4065        elif isinstance(unit, Week):
4066            unit.set("this", Var(this=unit.this.name))
4067
4068        super().__init__(**args)
4069
4070    @property
4071    def unit(self) -> t.Optional[Var]:
4072        return self.args.get("unit")

Automatically converts unit arg into a var.

TimeUnit(**args)
4061    def __init__(self, **args):
4062        unit = args.get("unit")
4063        if isinstance(unit, (Column, Literal)):
4064            args["unit"] = Var(this=unit.name)
4065        elif isinstance(unit, Week):
4066            unit.set("this", Var(this=unit.this.name))
4067
4068        super().__init__(**args)
arg_types = {'unit': False}
unit: Optional[Var]
key = 'timeunit'
class IntervalOp(TimeUnit):
4075class IntervalOp(TimeUnit):
4076    arg_types = {"unit": True, "expression": True}
4077
4078    def interval(self):
4079        return Interval(
4080            this=self.expression.copy(),
4081            unit=self.unit.copy(),
4082        )
arg_types = {'unit': True, 'expression': True}
def interval(self):
4078    def interval(self):
4079        return Interval(
4080            this=self.expression.copy(),
4081            unit=self.unit.copy(),
4082        )
key = 'intervalop'
class IntervalSpan(DataType):
4088class IntervalSpan(DataType):
4089    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'intervalspan'
class Interval(TimeUnit):
4092class Interval(TimeUnit):
4093    arg_types = {"this": False, "unit": False}
arg_types = {'this': False, 'unit': False}
key = 'interval'
class IgnoreNulls(Expression):
4096class IgnoreNulls(Expression):
4097    pass
key = 'ignorenulls'
class RespectNulls(Expression):
4100class RespectNulls(Expression):
4101    pass
key = 'respectnulls'
class Func(Condition):
4105class Func(Condition):
4106    """
4107    The base class for all function expressions.
4108
4109    Attributes:
4110        is_var_len_args (bool): if set to True the last argument defined in arg_types will be
4111            treated as a variable length argument and the argument's value will be stored as a list.
4112        _sql_names (list): determines the SQL name (1st item in the list) and aliases (subsequent items)
4113            for this function expression. These values are used to map this node to a name during parsing
4114            as well as to provide the function's name during SQL string generation. By default the SQL
4115            name is set to the expression's class name transformed to snake case.
4116    """
4117
4118    is_var_len_args = False
4119
4120    @classmethod
4121    def from_arg_list(cls, args):
4122        if cls.is_var_len_args:
4123            all_arg_keys = list(cls.arg_types)
4124            # If this function supports variable length argument treat the last argument as such.
4125            non_var_len_arg_keys = all_arg_keys[:-1] if cls.is_var_len_args else all_arg_keys
4126            num_non_var = len(non_var_len_arg_keys)
4127
4128            args_dict = {arg_key: arg for arg, arg_key in zip(args, non_var_len_arg_keys)}
4129            args_dict[all_arg_keys[-1]] = args[num_non_var:]
4130        else:
4131            args_dict = {arg_key: arg for arg, arg_key in zip(args, cls.arg_types)}
4132
4133        return cls(**args_dict)
4134
4135    @classmethod
4136    def sql_names(cls):
4137        if cls is Func:
4138            raise NotImplementedError(
4139                "SQL name is only supported by concrete function implementations"
4140            )
4141        if "_sql_names" not in cls.__dict__:
4142            cls._sql_names = [camel_to_snake_case(cls.__name__)]
4143        return cls._sql_names
4144
4145    @classmethod
4146    def sql_name(cls):
4147        return cls.sql_names()[0]
4148
4149    @classmethod
4150    def default_parser_mappings(cls):
4151        return {name: cls.from_arg_list for name in cls.sql_names()}

The base class for all function expressions.

Attributes:
  • is_var_len_args (bool): if set to True the last argument defined in arg_types will be treated as a variable length argument and the argument's value will be stored as a list.
  • _sql_names (list): determines the SQL name (1st item in the list) and aliases (subsequent items) for this function expression. These values are used to map this node to a name during parsing as well as to provide the function's name during SQL string generation. By default the SQL name is set to the expression's class name transformed to snake case.
is_var_len_args = False
@classmethod
def from_arg_list(cls, args):
4120    @classmethod
4121    def from_arg_list(cls, args):
4122        if cls.is_var_len_args:
4123            all_arg_keys = list(cls.arg_types)
4124            # If this function supports variable length argument treat the last argument as such.
4125            non_var_len_arg_keys = all_arg_keys[:-1] if cls.is_var_len_args else all_arg_keys
4126            num_non_var = len(non_var_len_arg_keys)
4127
4128            args_dict = {arg_key: arg for arg, arg_key in zip(args, non_var_len_arg_keys)}
4129            args_dict[all_arg_keys[-1]] = args[num_non_var:]
4130        else:
4131            args_dict = {arg_key: arg for arg, arg_key in zip(args, cls.arg_types)}
4132
4133        return cls(**args_dict)
@classmethod
def sql_names(cls):
4135    @classmethod
4136    def sql_names(cls):
4137        if cls is Func:
4138            raise NotImplementedError(
4139                "SQL name is only supported by concrete function implementations"
4140            )
4141        if "_sql_names" not in cls.__dict__:
4142            cls._sql_names = [camel_to_snake_case(cls.__name__)]
4143        return cls._sql_names
@classmethod
def sql_name(cls):
4145    @classmethod
4146    def sql_name(cls):
4147        return cls.sql_names()[0]
@classmethod
def default_parser_mappings(cls):
4149    @classmethod
4150    def default_parser_mappings(cls):
4151        return {name: cls.from_arg_list for name in cls.sql_names()}
key = 'func'
class AggFunc(Func):
4154class AggFunc(Func):
4155    pass
key = 'aggfunc'
class ParameterizedAgg(AggFunc):
4158class ParameterizedAgg(AggFunc):
4159    arg_types = {"this": True, "expressions": True, "params": True}
arg_types = {'this': True, 'expressions': True, 'params': True}
key = 'parameterizedagg'
class Abs(Func):
4162class Abs(Func):
4163    pass
key = 'abs'
class Transform(Func):
4167class Transform(Func):
4168    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'transform'
class Anonymous(Func):
4171class Anonymous(Func):
4172    arg_types = {"this": True, "expressions": False}
4173    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'anonymous'
class Hll(AggFunc):
4178class Hll(AggFunc):
4179    arg_types = {"this": True, "expressions": False}
4180    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'hll'
class ApproxDistinct(AggFunc):
4183class ApproxDistinct(AggFunc):
4184    arg_types = {"this": True, "accuracy": False}
4185    _sql_names = ["APPROX_DISTINCT", "APPROX_COUNT_DISTINCT"]
arg_types = {'this': True, 'accuracy': False}
key = 'approxdistinct'
class Array(Func):
4188class Array(Func):
4189    arg_types = {"expressions": False}
4190    is_var_len_args = True
arg_types = {'expressions': False}
is_var_len_args = True
key = 'array'
class ToChar(Func):
4194class ToChar(Func):
4195    arg_types = {"this": True, "format": False}
arg_types = {'this': True, 'format': False}
key = 'tochar'
class GenerateSeries(Func):
4198class GenerateSeries(Func):
4199    arg_types = {"start": True, "end": True, "step": False}
arg_types = {'start': True, 'end': True, 'step': False}
key = 'generateseries'
class ArrayAgg(AggFunc):
4202class ArrayAgg(AggFunc):
4203    pass
key = 'arrayagg'
class ArrayAll(Func):
4206class ArrayAll(Func):
4207    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'arrayall'
class ArrayAny(Func):
4210class ArrayAny(Func):
4211    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'arrayany'
class ArrayConcat(Func):
4214class ArrayConcat(Func):
4215    _sql_names = ["ARRAY_CONCAT", "ARRAY_CAT"]
4216    arg_types = {"this": True, "expressions": False}
4217    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'arrayconcat'
class ArrayContains(Binary, Func):
4220class ArrayContains(Binary, Func):
4221    pass
key = 'arraycontains'
class ArrayContained(Binary):
4224class ArrayContained(Binary):
4225    pass
key = 'arraycontained'
class ArrayFilter(Func):
4228class ArrayFilter(Func):
4229    arg_types = {"this": True, "expression": True}
4230    _sql_names = ["FILTER", "ARRAY_FILTER"]
arg_types = {'this': True, 'expression': True}
key = 'arrayfilter'
class ArrayJoin(Func):
4233class ArrayJoin(Func):
4234    arg_types = {"this": True, "expression": True, "null": False}
arg_types = {'this': True, 'expression': True, 'null': False}
key = 'arrayjoin'
class ArraySize(Func):
4237class ArraySize(Func):
4238    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'arraysize'
class ArraySort(Func):
4241class ArraySort(Func):
4242    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'arraysort'
class ArraySum(Func):
4245class ArraySum(Func):
4246    pass
key = 'arraysum'
class ArrayUnionAgg(AggFunc):
4249class ArrayUnionAgg(AggFunc):
4250    pass
key = 'arrayunionagg'
class Avg(AggFunc):
4253class Avg(AggFunc):
4254    pass
key = 'avg'
class AnyValue(AggFunc):
4257class AnyValue(AggFunc):
4258    arg_types = {"this": True, "having": False, "max": False, "ignore_nulls": False}
arg_types = {'this': True, 'having': False, 'max': False, 'ignore_nulls': False}
key = 'anyvalue'
class First(Func):
4261class First(Func):
4262    arg_types = {"this": True, "ignore_nulls": False}
arg_types = {'this': True, 'ignore_nulls': False}
key = 'first'
class Last(Func):
4265class Last(Func):
4266    arg_types = {"this": True, "ignore_nulls": False}
arg_types = {'this': True, 'ignore_nulls': False}
key = 'last'
class Case(Func):
4269class Case(Func):
4270    arg_types = {"this": False, "ifs": True, "default": False}
4271
4272    def when(self, condition: ExpOrStr, then: ExpOrStr, copy: bool = True, **opts) -> Case:
4273        instance = maybe_copy(self, copy)
4274        instance.append(
4275            "ifs",
4276            If(
4277                this=maybe_parse(condition, copy=copy, **opts),
4278                true=maybe_parse(then, copy=copy, **opts),
4279            ),
4280        )
4281        return instance
4282
4283    def else_(self, condition: ExpOrStr, copy: bool = True, **opts) -> Case:
4284        instance = maybe_copy(self, copy)
4285        instance.set("default", maybe_parse(condition, copy=copy, **opts))
4286        return instance
arg_types = {'this': False, 'ifs': True, 'default': False}
def when( self, condition: Union[str, Expression], then: Union[str, Expression], copy: bool = True, **opts) -> Case:
4272    def when(self, condition: ExpOrStr, then: ExpOrStr, copy: bool = True, **opts) -> Case:
4273        instance = maybe_copy(self, copy)
4274        instance.append(
4275            "ifs",
4276            If(
4277                this=maybe_parse(condition, copy=copy, **opts),
4278                true=maybe_parse(then, copy=copy, **opts),
4279            ),
4280        )
4281        return instance
def else_( self, condition: Union[str, Expression], copy: bool = True, **opts) -> Case:
4283    def else_(self, condition: ExpOrStr, copy: bool = True, **opts) -> Case:
4284        instance = maybe_copy(self, copy)
4285        instance.set("default", maybe_parse(condition, copy=copy, **opts))
4286        return instance
key = 'case'
class Cast(Func):
4289class Cast(Func):
4290    arg_types = {"this": True, "to": True, "format": False}
4291
4292    @property
4293    def name(self) -> str:
4294        return self.this.name
4295
4296    @property
4297    def to(self) -> DataType:
4298        return self.args["to"]
4299
4300    @property
4301    def output_name(self) -> str:
4302        return self.name
4303
4304    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
4305        """
4306        Checks whether this Cast's DataType matches one of the provided data types. Nested types
4307        like arrays or structs will be compared using "structural equivalence" semantics, so e.g.
4308        array<int> != array<float>.
4309
4310        Args:
4311            dtypes: the data types to compare this Cast's DataType to.
4312
4313        Returns:
4314            True, if and only if there is a type in `dtypes` which is equal to this Cast's DataType.
4315        """
4316        return self.to.is_type(*dtypes)
arg_types = {'this': True, 'to': True, 'format': False}
name: str
to: DataType
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
def is_type( self, *dtypes: str | DataType | DataType.Type) -> bool:
4304    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
4305        """
4306        Checks whether this Cast's DataType matches one of the provided data types. Nested types
4307        like arrays or structs will be compared using "structural equivalence" semantics, so e.g.
4308        array<int> != array<float>.
4309
4310        Args:
4311            dtypes: the data types to compare this Cast's DataType to.
4312
4313        Returns:
4314            True, if and only if there is a type in `dtypes` which is equal to this Cast's DataType.
4315        """
4316        return self.to.is_type(*dtypes)

Checks whether this Cast's DataType matches one of the provided data types. Nested types like arrays or structs will be compared using "structural equivalence" semantics, so e.g. array != array.

Arguments:
  • dtypes: the data types to compare this Cast's DataType to.
Returns:

True, if and only if there is a type in dtypes which is equal to this Cast's DataType.

key = 'cast'
class TryCast(Cast):
4319class TryCast(Cast):
4320    pass
key = 'trycast'
class CastToStrType(Func):
4323class CastToStrType(Func):
4324    arg_types = {"this": True, "to": True}
arg_types = {'this': True, 'to': True}
key = 'casttostrtype'
class Collate(Binary, Func):
4327class Collate(Binary, Func):
4328    pass
key = 'collate'
class Ceil(Func):
4331class Ceil(Func):
4332    arg_types = {"this": True, "decimals": False}
4333    _sql_names = ["CEIL", "CEILING"]
arg_types = {'this': True, 'decimals': False}
key = 'ceil'
class Coalesce(Func):
4336class Coalesce(Func):
4337    arg_types = {"this": True, "expressions": False}
4338    is_var_len_args = True
4339    _sql_names = ["COALESCE", "IFNULL", "NVL"]
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'coalesce'
class Chr(Func):
4342class Chr(Func):
4343    arg_types = {"this": True, "charset": False, "expressions": False}
4344    is_var_len_args = True
4345    _sql_names = ["CHR", "CHAR"]
arg_types = {'this': True, 'charset': False, 'expressions': False}
is_var_len_args = True
key = 'chr'
class Concat(Func):
4348class Concat(Func):
4349    arg_types = {"expressions": True}
4350    is_var_len_args = True
arg_types = {'expressions': True}
is_var_len_args = True
key = 'concat'
class SafeConcat(Concat):
4353class SafeConcat(Concat):
4354    pass
key = 'safeconcat'
class ConcatWs(Concat):
4357class ConcatWs(Concat):
4358    _sql_names = ["CONCAT_WS"]
key = 'concatws'
class Count(AggFunc):
4361class Count(AggFunc):
4362    arg_types = {"this": False, "expressions": False}
4363    is_var_len_args = True
arg_types = {'this': False, 'expressions': False}
is_var_len_args = True
key = 'count'
class CountIf(AggFunc):
4366class CountIf(AggFunc):
4367    pass
key = 'countif'
class CurrentDate(Func):
4370class CurrentDate(Func):
4371    arg_types = {"this": False}
arg_types = {'this': False}
key = 'currentdate'
class CurrentDatetime(Func):
4374class CurrentDatetime(Func):
4375    arg_types = {"this": False}
arg_types = {'this': False}
key = 'currentdatetime'
class CurrentTime(Func):
4378class CurrentTime(Func):
4379    arg_types = {"this": False}
arg_types = {'this': False}
key = 'currenttime'
class CurrentTimestamp(Func):
4382class CurrentTimestamp(Func):
4383    arg_types = {"this": False}
arg_types = {'this': False}
key = 'currenttimestamp'
class CurrentUser(Func):
4386class CurrentUser(Func):
4387    arg_types = {"this": False}
arg_types = {'this': False}
key = 'currentuser'
class DateAdd(Func, IntervalOp):
4390class DateAdd(Func, IntervalOp):
4391    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'dateadd'
class DateSub(Func, IntervalOp):
4394class DateSub(Func, IntervalOp):
4395    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'datesub'
class DateDiff(Func, TimeUnit):
4398class DateDiff(Func, TimeUnit):
4399    _sql_names = ["DATEDIFF", "DATE_DIFF"]
4400    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'datediff'
class DateTrunc(Func):
4403class DateTrunc(Func):
4404    arg_types = {"unit": True, "this": True, "zone": False}
4405
4406    @property
4407    def unit(self) -> Expression:
4408        return self.args["unit"]
arg_types = {'unit': True, 'this': True, 'zone': False}
unit: Expression
key = 'datetrunc'
class DatetimeAdd(Func, IntervalOp):
4411class DatetimeAdd(Func, IntervalOp):
4412    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'datetimeadd'
class DatetimeSub(Func, IntervalOp):
4415class DatetimeSub(Func, IntervalOp):
4416    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'datetimesub'
class DatetimeDiff(Func, TimeUnit):
4419class DatetimeDiff(Func, TimeUnit):
4420    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'datetimediff'
class DatetimeTrunc(Func, TimeUnit):
4423class DatetimeTrunc(Func, TimeUnit):
4424    arg_types = {"this": True, "unit": True, "zone": False}
arg_types = {'this': True, 'unit': True, 'zone': False}
key = 'datetimetrunc'
class DayOfWeek(Func):
4427class DayOfWeek(Func):
4428    _sql_names = ["DAY_OF_WEEK", "DAYOFWEEK"]
key = 'dayofweek'
class DayOfMonth(Func):
4431class DayOfMonth(Func):
4432    _sql_names = ["DAY_OF_MONTH", "DAYOFMONTH"]
key = 'dayofmonth'
class DayOfYear(Func):
4435class DayOfYear(Func):
4436    _sql_names = ["DAY_OF_YEAR", "DAYOFYEAR"]
key = 'dayofyear'
class ToDays(Func):
4439class ToDays(Func):
4440    pass
key = 'todays'
class WeekOfYear(Func):
4443class WeekOfYear(Func):
4444    _sql_names = ["WEEK_OF_YEAR", "WEEKOFYEAR"]
key = 'weekofyear'
class MonthsBetween(Func):
4447class MonthsBetween(Func):
4448    arg_types = {"this": True, "expression": True, "roundoff": False}
arg_types = {'this': True, 'expression': True, 'roundoff': False}
key = 'monthsbetween'
class LastDateOfMonth(Func):
4451class LastDateOfMonth(Func):
4452    pass
key = 'lastdateofmonth'
class Extract(Func):
4455class Extract(Func):
4456    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'extract'
class Timestamp(Func):
4459class Timestamp(Func):
4460    arg_types = {"this": False, "expression": False}
arg_types = {'this': False, 'expression': False}
key = 'timestamp'
class TimestampAdd(Func, TimeUnit):
4463class TimestampAdd(Func, TimeUnit):
4464    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timestampadd'
class TimestampSub(Func, TimeUnit):
4467class TimestampSub(Func, TimeUnit):
4468    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timestampsub'
class TimestampDiff(Func, TimeUnit):
4471class TimestampDiff(Func, TimeUnit):
4472    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timestampdiff'
class TimestampTrunc(Func, TimeUnit):
4475class TimestampTrunc(Func, TimeUnit):
4476    arg_types = {"this": True, "unit": True, "zone": False}
arg_types = {'this': True, 'unit': True, 'zone': False}
key = 'timestamptrunc'
class TimeAdd(Func, TimeUnit):
4479class TimeAdd(Func, TimeUnit):
4480    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timeadd'
class TimeSub(Func, TimeUnit):
4483class TimeSub(Func, TimeUnit):
4484    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timesub'
class TimeDiff(Func, TimeUnit):
4487class TimeDiff(Func, TimeUnit):
4488    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timediff'
class TimeTrunc(Func, TimeUnit):
4491class TimeTrunc(Func, TimeUnit):
4492    arg_types = {"this": True, "unit": True, "zone": False}
arg_types = {'this': True, 'unit': True, 'zone': False}
key = 'timetrunc'
class DateFromParts(Func):
4495class DateFromParts(Func):
4496    _sql_names = ["DATEFROMPARTS"]
4497    arg_types = {"year": True, "month": True, "day": True}
arg_types = {'year': True, 'month': True, 'day': True}
key = 'datefromparts'
class DateStrToDate(Func):
4500class DateStrToDate(Func):
4501    pass
key = 'datestrtodate'
class DateToDateStr(Func):
4504class DateToDateStr(Func):
4505    pass
key = 'datetodatestr'
class DateToDi(Func):
4508class DateToDi(Func):
4509    pass
key = 'datetodi'
class Date(Func):
4513class Date(Func):
4514    arg_types = {"this": False, "zone": False, "expressions": False}
4515    is_var_len_args = True
arg_types = {'this': False, 'zone': False, 'expressions': False}
is_var_len_args = True
key = 'date'
class Day(Func):
4518class Day(Func):
4519    pass
key = 'day'
class Decode(Func):
4522class Decode(Func):
4523    arg_types = {"this": True, "charset": True, "replace": False}
arg_types = {'this': True, 'charset': True, 'replace': False}
key = 'decode'
class DiToDate(Func):
4526class DiToDate(Func):
4527    pass
key = 'ditodate'
class Encode(Func):
4530class Encode(Func):
4531    arg_types = {"this": True, "charset": True}
arg_types = {'this': True, 'charset': True}
key = 'encode'
class Exp(Func):
4534class Exp(Func):
4535    pass
key = 'exp'
class Explode(Func):
4538class Explode(Func):
4539    pass
key = 'explode'
class Floor(Func):
4542class Floor(Func):
4543    arg_types = {"this": True, "decimals": False}
arg_types = {'this': True, 'decimals': False}
key = 'floor'
class FromBase64(Func):
4546class FromBase64(Func):
4547    pass
key = 'frombase64'
class ToBase64(Func):
4550class ToBase64(Func):
4551    pass
key = 'tobase64'
class Greatest(Func):
4554class Greatest(Func):
4555    arg_types = {"this": True, "expressions": False}
4556    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'greatest'
class GroupConcat(AggFunc):
4559class GroupConcat(AggFunc):
4560    arg_types = {"this": True, "separator": False}
arg_types = {'this': True, 'separator': False}
key = 'groupconcat'
class Hex(Func):
4563class Hex(Func):
4564    pass
key = 'hex'
class Xor(Connector, Func):
4567class Xor(Connector, Func):
4568    arg_types = {"this": False, "expression": False, "expressions": False}
arg_types = {'this': False, 'expression': False, 'expressions': False}
key = 'xor'
class If(Func):
4571class If(Func):
4572    arg_types = {"this": True, "true": True, "false": False}
arg_types = {'this': True, 'true': True, 'false': False}
key = 'if'
class Initcap(Func):
4575class Initcap(Func):
4576    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'initcap'
class IsNan(Func):
4579class IsNan(Func):
4580    _sql_names = ["IS_NAN", "ISNAN"]
key = 'isnan'
class FormatJson(Expression):
4583class FormatJson(Expression):
4584    pass
key = 'formatjson'
class JSONKeyValue(Expression):
4587class JSONKeyValue(Expression):
4588    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'jsonkeyvalue'
class JSONObject(Func):
4591class JSONObject(Func):
4592    arg_types = {
4593        "expressions": False,
4594        "null_handling": False,
4595        "unique_keys": False,
4596        "return_type": False,
4597        "encoding": False,
4598    }
arg_types = {'expressions': False, 'null_handling': False, 'unique_keys': False, 'return_type': False, 'encoding': False}
key = 'jsonobject'
class JSONArray(Func):
4602class JSONArray(Func):
4603    arg_types = {
4604        "expressions": True,
4605        "null_handling": False,
4606        "return_type": False,
4607        "strict": False,
4608    }
arg_types = {'expressions': True, 'null_handling': False, 'return_type': False, 'strict': False}
key = 'jsonarray'
class JSONArrayAgg(Func):
4612class JSONArrayAgg(Func):
4613    arg_types = {
4614        "this": True,
4615        "order": False,
4616        "null_handling": False,
4617        "return_type": False,
4618        "strict": False,
4619    }
arg_types = {'this': True, 'order': False, 'null_handling': False, 'return_type': False, 'strict': False}
key = 'jsonarrayagg'
class JSONColumnDef(Expression):
4624class JSONColumnDef(Expression):
4625    arg_types = {"this": True, "kind": False, "path": False}
arg_types = {'this': True, 'kind': False, 'path': False}
key = 'jsoncolumndef'
class JSONTable(Func):
4629class JSONTable(Func):
4630    arg_types = {
4631        "this": True,
4632        "expressions": True,
4633        "path": False,
4634        "error_handling": False,
4635        "empty_handling": False,
4636    }
arg_types = {'this': True, 'expressions': True, 'path': False, 'error_handling': False, 'empty_handling': False}
key = 'jsontable'
class OpenJSONColumnDef(Expression):
4639class OpenJSONColumnDef(Expression):
4640    arg_types = {"this": True, "kind": True, "path": False, "as_json": False}
arg_types = {'this': True, 'kind': True, 'path': False, 'as_json': False}
key = 'openjsoncolumndef'
class OpenJSON(Func):
4643class OpenJSON(Func):
4644    arg_types = {"this": True, "path": False, "expressions": False}
arg_types = {'this': True, 'path': False, 'expressions': False}
key = 'openjson'
class JSONBContains(Binary):
4647class JSONBContains(Binary):
4648    _sql_names = ["JSONB_CONTAINS"]
key = 'jsonbcontains'
class JSONExtract(Binary, Func):
4651class JSONExtract(Binary, Func):
4652    _sql_names = ["JSON_EXTRACT"]
key = 'jsonextract'
class JSONExtractScalar(JSONExtract):
4655class JSONExtractScalar(JSONExtract):
4656    _sql_names = ["JSON_EXTRACT_SCALAR"]
key = 'jsonextractscalar'
class JSONBExtract(JSONExtract):
4659class JSONBExtract(JSONExtract):
4660    _sql_names = ["JSONB_EXTRACT"]
key = 'jsonbextract'
class JSONBExtractScalar(JSONExtract):
4663class JSONBExtractScalar(JSONExtract):
4664    _sql_names = ["JSONB_EXTRACT_SCALAR"]
key = 'jsonbextractscalar'
class JSONFormat(Func):
4667class JSONFormat(Func):
4668    arg_types = {"this": False, "options": False}
4669    _sql_names = ["JSON_FORMAT"]
arg_types = {'this': False, 'options': False}
key = 'jsonformat'
class JSONArrayContains(Binary, Predicate, Func):
4673class JSONArrayContains(Binary, Predicate, Func):
4674    _sql_names = ["JSON_ARRAY_CONTAINS"]
key = 'jsonarraycontains'
class ParseJSON(Func):
4677class ParseJSON(Func):
4678    # BigQuery, Snowflake have PARSE_JSON, Presto has JSON_PARSE
4679    _sql_names = ["PARSE_JSON", "JSON_PARSE"]
key = 'parsejson'
class Least(Func):
4682class Least(Func):
4683    arg_types = {"this": True, "expressions": False}
4684    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'least'
class Left(Func):
4687class Left(Func):
4688    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'left'
class Length(Func):
4695class Length(Func):
4696    _sql_names = ["LENGTH", "LEN"]
key = 'length'
class Levenshtein(Func):
4699class Levenshtein(Func):
4700    arg_types = {
4701        "this": True,
4702        "expression": False,
4703        "ins_cost": False,
4704        "del_cost": False,
4705        "sub_cost": False,
4706    }
arg_types = {'this': True, 'expression': False, 'ins_cost': False, 'del_cost': False, 'sub_cost': False}
key = 'levenshtein'
class Ln(Func):
4709class Ln(Func):
4710    pass
key = 'ln'
class Log(Func):
4713class Log(Func):
4714    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'log'
class Log2(Func):
4717class Log2(Func):
4718    pass
key = 'log2'
class Log10(Func):
4721class Log10(Func):
4722    pass
key = 'log10'
class LogicalOr(AggFunc):
4725class LogicalOr(AggFunc):
4726    _sql_names = ["LOGICAL_OR", "BOOL_OR", "BOOLOR_AGG"]
key = 'logicalor'
class LogicalAnd(AggFunc):
4729class LogicalAnd(AggFunc):
4730    _sql_names = ["LOGICAL_AND", "BOOL_AND", "BOOLAND_AGG"]
key = 'logicaland'
class Lower(Func):
4733class Lower(Func):
4734    _sql_names = ["LOWER", "LCASE"]
key = 'lower'
class Map(Func):
4737class Map(Func):
4738    arg_types = {"keys": False, "values": False}
arg_types = {'keys': False, 'values': False}
key = 'map'
class MapFromEntries(Func):
4741class MapFromEntries(Func):
4742    pass
key = 'mapfromentries'
class StarMap(Func):
4745class StarMap(Func):
4746    pass
key = 'starmap'
class VarMap(Func):
4749class VarMap(Func):
4750    arg_types = {"keys": True, "values": True}
4751    is_var_len_args = True
4752
4753    @property
4754    def keys(self) -> t.List[Expression]:
4755        return self.args["keys"].expressions
4756
4757    @property
4758    def values(self) -> t.List[Expression]:
4759        return self.args["values"].expressions
arg_types = {'keys': True, 'values': True}
is_var_len_args = True
keys: List[Expression]
values: List[Expression]
key = 'varmap'
class MatchAgainst(Func):
4763class MatchAgainst(Func):
4764    arg_types = {"this": True, "expressions": True, "modifier": False}
arg_types = {'this': True, 'expressions': True, 'modifier': False}
key = 'matchagainst'
class Max(AggFunc):
4767class Max(AggFunc):
4768    arg_types = {"this": True, "expressions": False}
4769    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'max'
class MD5(Func):
4772class MD5(Func):
4773    _sql_names = ["MD5"]
key = 'md5'
class MD5Digest(Func):
4777class MD5Digest(Func):
4778    _sql_names = ["MD5_DIGEST"]
key = 'md5digest'
class Min(AggFunc):
4781class Min(AggFunc):
4782    arg_types = {"this": True, "expressions": False}
4783    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'min'
class Month(Func):
4786class Month(Func):
4787    pass
key = 'month'
class Nvl2(Func):
4790class Nvl2(Func):
4791    arg_types = {"this": True, "true": True, "false": False}
arg_types = {'this': True, 'true': True, 'false': False}
key = 'nvl2'
class Posexplode(Func):
4794class Posexplode(Func):
4795    pass
key = 'posexplode'
class Predict(Func):
4799class Predict(Func):
4800    arg_types = {"this": True, "expression": True, "params_struct": False}
arg_types = {'this': True, 'expression': True, 'params_struct': False}
key = 'predict'
class Pow(Binary, Func):
4803class Pow(Binary, Func):
4804    _sql_names = ["POWER", "POW"]
key = 'pow'
class PercentileCont(AggFunc):
4807class PercentileCont(AggFunc):
4808    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'percentilecont'
class PercentileDisc(AggFunc):
4811class PercentileDisc(AggFunc):
4812    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'percentiledisc'
class Quantile(AggFunc):
4815class Quantile(AggFunc):
4816    arg_types = {"this": True, "quantile": True}
arg_types = {'this': True, 'quantile': True}
key = 'quantile'
class ApproxQuantile(Quantile):
4819class ApproxQuantile(Quantile):
4820    arg_types = {"this": True, "quantile": True, "accuracy": False, "weight": False}
arg_types = {'this': True, 'quantile': True, 'accuracy': False, 'weight': False}
key = 'approxquantile'
class RangeN(Func):
4823class RangeN(Func):
4824    arg_types = {"this": True, "expressions": True, "each": False}
arg_types = {'this': True, 'expressions': True, 'each': False}
key = 'rangen'
class ReadCSV(Func):
4827class ReadCSV(Func):
4828    _sql_names = ["READ_CSV"]
4829    is_var_len_args = True
4830    arg_types = {"this": True, "expressions": False}
is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
key = 'readcsv'
class Reduce(Func):
4833class Reduce(Func):
4834    arg_types = {"this": True, "initial": True, "merge": True, "finish": False}
arg_types = {'this': True, 'initial': True, 'merge': True, 'finish': False}
key = 'reduce'
class RegexpExtract(Func):
4837class RegexpExtract(Func):
4838    arg_types = {
4839        "this": True,
4840        "expression": True,
4841        "position": False,
4842        "occurrence": False,
4843        "parameters": False,
4844        "group": False,
4845    }
arg_types = {'this': True, 'expression': True, 'position': False, 'occurrence': False, 'parameters': False, 'group': False}
key = 'regexpextract'
class RegexpReplace(Func):
4848class RegexpReplace(Func):
4849    arg_types = {
4850        "this": True,
4851        "expression": True,
4852        "replacement": True,
4853        "position": False,
4854        "occurrence": False,
4855        "parameters": False,
4856    }
arg_types = {'this': True, 'expression': True, 'replacement': True, 'position': False, 'occurrence': False, 'parameters': False}
key = 'regexpreplace'
class RegexpLike(Binary, Func):
4859class RegexpLike(Binary, Func):
4860    arg_types = {"this": True, "expression": True, "flag": False}
arg_types = {'this': True, 'expression': True, 'flag': False}
key = 'regexplike'
class RegexpILike(Func):
4863class RegexpILike(Func):
4864    arg_types = {"this": True, "expression": True, "flag": False}
arg_types = {'this': True, 'expression': True, 'flag': False}
key = 'regexpilike'
class RegexpSplit(Func):
4869class RegexpSplit(Func):
4870    arg_types = {"this": True, "expression": True, "limit": False}
arg_types = {'this': True, 'expression': True, 'limit': False}
key = 'regexpsplit'
class Repeat(Func):
4873class Repeat(Func):
4874    arg_types = {"this": True, "times": True}
arg_types = {'this': True, 'times': True}
key = 'repeat'
class Round(Func):
4877class Round(Func):
4878    arg_types = {"this": True, "decimals": False}
arg_types = {'this': True, 'decimals': False}
key = 'round'
class RowNumber(Func):
4881class RowNumber(Func):
4882    arg_types: t.Dict[str, t.Any] = {}
arg_types: Dict[str, Any] = {}
key = 'rownumber'
class SafeDivide(Func):
4885class SafeDivide(Func):
4886    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'safedivide'
class SetAgg(AggFunc):
4889class SetAgg(AggFunc):
4890    pass
key = 'setagg'
class SHA(Func):
4893class SHA(Func):
4894    _sql_names = ["SHA", "SHA1"]
key = 'sha'
class SHA2(Func):
4897class SHA2(Func):
4898    _sql_names = ["SHA2"]
4899    arg_types = {"this": True, "length": False}
arg_types = {'this': True, 'length': False}
key = 'sha2'
class SortArray(Func):
4902class SortArray(Func):
4903    arg_types = {"this": True, "asc": False}
arg_types = {'this': True, 'asc': False}
key = 'sortarray'
class Split(Func):
4906class Split(Func):
4907    arg_types = {"this": True, "expression": True, "limit": False}
arg_types = {'this': True, 'expression': True, 'limit': False}
key = 'split'
class Substring(Func):
4912class Substring(Func):
4913    arg_types = {"this": True, "start": False, "length": False}
arg_types = {'this': True, 'start': False, 'length': False}
key = 'substring'
class StandardHash(Func):
4916class StandardHash(Func):
4917    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'standardhash'
class StartsWith(Func):
4920class StartsWith(Func):
4921    _sql_names = ["STARTS_WITH", "STARTSWITH"]
4922    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'startswith'
class StrPosition(Func):
4925class StrPosition(Func):
4926    arg_types = {
4927        "this": True,
4928        "substr": True,
4929        "position": False,
4930        "instance": False,
4931    }
arg_types = {'this': True, 'substr': True, 'position': False, 'instance': False}
key = 'strposition'
class StrToDate(Func):
4934class StrToDate(Func):
4935    arg_types = {"this": True, "format": True}
arg_types = {'this': True, 'format': True}
key = 'strtodate'
class StrToTime(Func):
4938class StrToTime(Func):
4939    arg_types = {"this": True, "format": True, "zone": False}
arg_types = {'this': True, 'format': True, 'zone': False}
key = 'strtotime'
class StrToUnix(Func):
4944class StrToUnix(Func):
4945    arg_types = {"this": False, "format": False}
arg_types = {'this': False, 'format': False}
key = 'strtounix'
class StrToMap(Func):
4950class StrToMap(Func):
4951    arg_types = {
4952        "this": True,
4953        "pair_delim": False,
4954        "key_value_delim": False,
4955        "duplicate_resolution_callback": False,
4956    }
arg_types = {'this': True, 'pair_delim': False, 'key_value_delim': False, 'duplicate_resolution_callback': False}
key = 'strtomap'
class NumberToStr(Func):
4959class NumberToStr(Func):
4960    arg_types = {"this": True, "format": True, "culture": False}
arg_types = {'this': True, 'format': True, 'culture': False}
key = 'numbertostr'
class FromBase(Func):
4963class FromBase(Func):
4964    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'frombase'
class Struct(Func):
4967class Struct(Func):
4968    arg_types = {"expressions": True}
4969    is_var_len_args = True
arg_types = {'expressions': True}
is_var_len_args = True
key = 'struct'
class StructExtract(Func):
4972class StructExtract(Func):
4973    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'structextract'
class Stuff(Func):
4978class Stuff(Func):
4979    _sql_names = ["STUFF", "INSERT"]
4980    arg_types = {"this": True, "start": True, "length": True, "expression": True}
arg_types = {'this': True, 'start': True, 'length': True, 'expression': True}
key = 'stuff'
class Sum(AggFunc):
4983class Sum(AggFunc):
4984    pass
key = 'sum'
class Sqrt(Func):
4987class Sqrt(Func):
4988    pass
key = 'sqrt'
class Stddev(AggFunc):
4991class Stddev(AggFunc):
4992    pass
key = 'stddev'
class StddevPop(AggFunc):
4995class StddevPop(AggFunc):
4996    pass
key = 'stddevpop'
class StddevSamp(AggFunc):
4999class StddevSamp(AggFunc):
5000    pass
key = 'stddevsamp'
class TimeToStr(Func):
5003class TimeToStr(Func):
5004    arg_types = {"this": True, "format": True, "culture": False}
arg_types = {'this': True, 'format': True, 'culture': False}
key = 'timetostr'
class TimeToTimeStr(Func):
5007class TimeToTimeStr(Func):
5008    pass
key = 'timetotimestr'
class TimeToUnix(Func):
5011class TimeToUnix(Func):
5012    pass
key = 'timetounix'
class TimeStrToDate(Func):
5015class TimeStrToDate(Func):
5016    pass
key = 'timestrtodate'
class TimeStrToTime(Func):
5019class TimeStrToTime(Func):
5020    pass
key = 'timestrtotime'
class TimeStrToUnix(Func):
5023class TimeStrToUnix(Func):
5024    pass
key = 'timestrtounix'
class Trim(Func):
5027class Trim(Func):
5028    arg_types = {
5029        "this": True,
5030        "expression": False,
5031        "position": False,
5032        "collation": False,
5033    }
arg_types = {'this': True, 'expression': False, 'position': False, 'collation': False}
key = 'trim'
class TsOrDsAdd(Func, TimeUnit):
5036class TsOrDsAdd(Func, TimeUnit):
5037    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'tsordsadd'
class TsOrDsToDateStr(Func):
5040class TsOrDsToDateStr(Func):
5041    pass
key = 'tsordstodatestr'
class TsOrDsToDate(Func):
5044class TsOrDsToDate(Func):
5045    arg_types = {"this": True, "format": False}
arg_types = {'this': True, 'format': False}
key = 'tsordstodate'
class TsOrDiToDi(Func):
5048class TsOrDiToDi(Func):
5049    pass
key = 'tsorditodi'
class Unhex(Func):
5052class Unhex(Func):
5053    pass
key = 'unhex'
class UnixToStr(Func):
5056class UnixToStr(Func):
5057    arg_types = {"this": True, "format": False}
arg_types = {'this': True, 'format': False}
key = 'unixtostr'
class UnixToTime(Func):
5062class UnixToTime(Func):
5063    arg_types = {"this": True, "scale": False, "zone": False, "hours": False, "minutes": False}
5064
5065    SECONDS = Literal.string("seconds")
5066    MILLIS = Literal.string("millis")
5067    MICROS = Literal.string("micros")
arg_types = {'this': True, 'scale': False, 'zone': False, 'hours': False, 'minutes': False}
SECONDS = (LITERAL this: seconds, is_string: True)
MILLIS = (LITERAL this: millis, is_string: True)
MICROS = (LITERAL this: micros, is_string: True)
key = 'unixtotime'
class UnixToTimeStr(Func):
5070class UnixToTimeStr(Func):
5071    pass
key = 'unixtotimestr'
class Upper(Func):
5074class Upper(Func):
5075    _sql_names = ["UPPER", "UCASE"]
key = 'upper'
class Variance(AggFunc):
5078class Variance(AggFunc):
5079    _sql_names = ["VARIANCE", "VARIANCE_SAMP", "VAR_SAMP"]
key = 'variance'
class VariancePop(AggFunc):
5082class VariancePop(AggFunc):
5083    _sql_names = ["VARIANCE_POP", "VAR_POP"]
key = 'variancepop'
class Week(Func):
5086class Week(Func):
5087    arg_types = {"this": True, "mode": False}
arg_types = {'this': True, 'mode': False}
key = 'week'
class XMLTable(Func):
5090class XMLTable(Func):
5091    arg_types = {"this": True, "passing": False, "columns": False, "by_ref": False}
arg_types = {'this': True, 'passing': False, 'columns': False, 'by_ref': False}
key = 'xmltable'
class Year(Func):
5094class Year(Func):
5095    pass
key = 'year'
class Use(Expression):
5098class Use(Expression):
5099    arg_types = {"this": True, "kind": False}
arg_types = {'this': True, 'kind': False}
key = 'use'
class Merge(Expression):
5102class Merge(Expression):
5103    arg_types = {"this": True, "using": True, "on": True, "expressions": True}
arg_types = {'this': True, 'using': True, 'on': True, 'expressions': True}
key = 'merge'
class When(Func):
5106class When(Func):
5107    arg_types = {"matched": True, "source": False, "condition": False, "then": True}
arg_types = {'matched': True, 'source': False, 'condition': False, 'then': True}
key = 'when'
class NextValueFor(Func):
5112class NextValueFor(Func):
5113    arg_types = {"this": True, "order": False}
arg_types = {'this': True, 'order': False}
key = 'nextvaluefor'
ALL_FUNCTIONS = [<class 'Abs'>, <class 'AnyValue'>, <class 'ApproxDistinct'>, <class 'ApproxQuantile'>, <class 'Array'>, <class 'ArrayAgg'>, <class 'ArrayAll'>, <class 'ArrayAny'>, <class 'ArrayConcat'>, <class 'ArrayContains'>, <class 'ArrayFilter'>, <class 'ArrayJoin'>, <class 'ArraySize'>, <class 'ArraySort'>, <class 'ArraySum'>, <class 'ArrayUnionAgg'>, <class 'Avg'>, <class 'Case'>, <class 'Cast'>, <class 'CastToStrType'>, <class 'Ceil'>, <class 'Chr'>, <class 'Coalesce'>, <class 'Collate'>, <class 'Concat'>, <class 'ConcatWs'>, <class 'Count'>, <class 'CountIf'>, <class 'CurrentDate'>, <class 'CurrentDatetime'>, <class 'CurrentTime'>, <class 'CurrentTimestamp'>, <class 'CurrentUser'>, <class 'Date'>, <class 'DateAdd'>, <class 'DateDiff'>, <class 'DateFromParts'>, <class 'DateStrToDate'>, <class 'DateSub'>, <class 'DateToDateStr'>, <class 'DateToDi'>, <class 'DateTrunc'>, <class 'DatetimeAdd'>, <class 'DatetimeDiff'>, <class 'DatetimeSub'>, <class 'DatetimeTrunc'>, <class 'Day'>, <class 'DayOfMonth'>, <class 'DayOfWeek'>, <class 'DayOfYear'>, <class 'Decode'>, <class 'DiToDate'>, <class 'Encode'>, <class 'Exp'>, <class 'Explode'>, <class 'Extract'>, <class 'First'>, <class 'Floor'>, <class 'FromBase'>, <class 'FromBase64'>, <class 'GenerateSeries'>, <class 'Greatest'>, <class 'GroupConcat'>, <class 'Hex'>, <class 'Hll'>, <class 'If'>, <class 'Initcap'>, <class 'IsNan'>, <class 'JSONArray'>, <class 'JSONArrayAgg'>, <class 'JSONArrayContains'>, <class 'JSONBExtract'>, <class 'JSONBExtractScalar'>, <class 'JSONExtract'>, <class 'JSONExtractScalar'>, <class 'JSONFormat'>, <class 'JSONObject'>, <class 'JSONTable'>, <class 'Last'>, <class 'LastDateOfMonth'>, <class 'Least'>, <class 'Left'>, <class 'Length'>, <class 'Levenshtein'>, <class 'Ln'>, <class 'Log'>, <class 'Log10'>, <class 'Log2'>, <class 'LogicalAnd'>, <class 'LogicalOr'>, <class 'Lower'>, <class 'MD5'>, <class 'MD5Digest'>, <class 'Map'>, <class 'MapFromEntries'>, <class 'MatchAgainst'>, <class 'Max'>, <class 'Min'>, <class 'Month'>, <class 'MonthsBetween'>, <class 'NextValueFor'>, <class 'NumberToStr'>, <class 'Nvl2'>, <class 'OpenJSON'>, <class 'ParameterizedAgg'>, <class 'ParseJSON'>, <class 'PercentileCont'>, <class 'PercentileDisc'>, <class 'Posexplode'>, <class 'Pow'>, <class 'Predict'>, <class 'Quantile'>, <class 'RangeN'>, <class 'ReadCSV'>, <class 'Reduce'>, <class 'RegexpExtract'>, <class 'RegexpILike'>, <class 'RegexpLike'>, <class 'RegexpReplace'>, <class 'RegexpSplit'>, <class 'Repeat'>, <class 'Right'>, <class 'Round'>, <class 'RowNumber'>, <class 'SHA'>, <class 'SHA2'>, <class 'SafeConcat'>, <class 'SafeDivide'>, <class 'SetAgg'>, <class 'SortArray'>, <class 'Split'>, <class 'Sqrt'>, <class 'StandardHash'>, <class 'StarMap'>, <class 'StartsWith'>, <class 'Stddev'>, <class 'StddevPop'>, <class 'StddevSamp'>, <class 'StrPosition'>, <class 'StrToDate'>, <class 'StrToMap'>, <class 'StrToTime'>, <class 'StrToUnix'>, <class 'Struct'>, <class 'StructExtract'>, <class 'Stuff'>, <class 'Substring'>, <class 'Sum'>, <class 'TimeAdd'>, <class 'TimeDiff'>, <class 'TimeStrToDate'>, <class 'TimeStrToTime'>, <class 'TimeStrToUnix'>, <class 'TimeSub'>, <class 'TimeToStr'>, <class 'TimeToTimeStr'>, <class 'TimeToUnix'>, <class 'TimeTrunc'>, <class 'Timestamp'>, <class 'TimestampAdd'>, <class 'TimestampDiff'>, <class 'TimestampSub'>, <class 'TimestampTrunc'>, <class 'ToBase64'>, <class 'ToChar'>, <class 'ToDays'>, <class 'Transform'>, <class 'Trim'>, <class 'TryCast'>, <class 'TsOrDiToDi'>, <class 'TsOrDsAdd'>, <class 'TsOrDsToDate'>, <class 'TsOrDsToDateStr'>, <class 'Unhex'>, <class 'UnixToStr'>, <class 'UnixToTime'>, <class 'UnixToTimeStr'>, <class 'Upper'>, <class 'VarMap'>, <class 'Variance'>, <class 'VariancePop'>, <class 'Week'>, <class 'WeekOfYear'>, <class 'When'>, <class 'XMLTable'>, <class 'Xor'>, <class 'Year'>]
def maybe_parse( sql_or_expression: Union[str, Expression], *, into: Union[str, Type[Expression], Collection[Union[str, Type[Expression]]], NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, prefix: Optional[str] = None, copy: bool = False, **opts) -> Expression:
5150def maybe_parse(
5151    sql_or_expression: ExpOrStr,
5152    *,
5153    into: t.Optional[IntoType] = None,
5154    dialect: DialectType = None,
5155    prefix: t.Optional[str] = None,
5156    copy: bool = False,
5157    **opts,
5158) -> Expression:
5159    """Gracefully handle a possible string or expression.
5160
5161    Example:
5162        >>> maybe_parse("1")
5163        (LITERAL this: 1, is_string: False)
5164        >>> maybe_parse(to_identifier("x"))
5165        (IDENTIFIER this: x, quoted: False)
5166
5167    Args:
5168        sql_or_expression: the SQL code string or an expression
5169        into: the SQLGlot Expression to parse into
5170        dialect: the dialect used to parse the input expressions (in the case that an
5171            input expression is a SQL string).
5172        prefix: a string to prefix the sql with before it gets parsed
5173            (automatically includes a space)
5174        copy: whether or not to copy the expression.
5175        **opts: other options to use to parse the input expressions (again, in the case
5176            that an input expression is a SQL string).
5177
5178    Returns:
5179        Expression: the parsed or given expression.
5180    """
5181    if isinstance(sql_or_expression, Expression):
5182        if copy:
5183            return sql_or_expression.copy()
5184        return sql_or_expression
5185
5186    if sql_or_expression is None:
5187        raise ParseError(f"SQL cannot be None")
5188
5189    import sqlglot
5190
5191    sql = str(sql_or_expression)
5192    if prefix:
5193        sql = f"{prefix} {sql}"
5194
5195    return sqlglot.parse_one(sql, read=dialect, into=into, **opts)

Gracefully handle a possible string or expression.

Example:
>>> maybe_parse("1")
(LITERAL this: 1, is_string: False)
>>> maybe_parse(to_identifier("x"))
(IDENTIFIER this: x, quoted: False)
Arguments:
  • sql_or_expression: the SQL code string or an expression
  • into: the SQLGlot Expression to parse into
  • dialect: the dialect used to parse the input expressions (in the case that an input expression is a SQL string).
  • prefix: a string to prefix the sql with before it gets parsed (automatically includes a space)
  • copy: whether or not to copy the expression.
  • **opts: other options to use to parse the input expressions (again, in the case that an input expression is a SQL string).
Returns:

Expression: the parsed or given expression.

def maybe_copy(instance, copy=True):
5208def maybe_copy(instance, copy=True):
5209    return instance.copy() if copy and instance else instance
def union( left: Union[str, Expression], right: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Union:
5390def union(
5391    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
5392) -> Union:
5393    """
5394    Initializes a syntax tree from one UNION expression.
5395
5396    Example:
5397        >>> union("SELECT * FROM foo", "SELECT * FROM bla").sql()
5398        'SELECT * FROM foo UNION SELECT * FROM bla'
5399
5400    Args:
5401        left: the SQL code string corresponding to the left-hand side.
5402            If an `Expression` instance is passed, it will be used as-is.
5403        right: the SQL code string corresponding to the right-hand side.
5404            If an `Expression` instance is passed, it will be used as-is.
5405        distinct: set the DISTINCT flag if and only if this is true.
5406        dialect: the dialect used to parse the input expression.
5407        opts: other options to use to parse the input expressions.
5408
5409    Returns:
5410        The new Union instance.
5411    """
5412    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
5413    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
5414
5415    return Union(this=left, expression=right, distinct=distinct)

Initializes a syntax tree from one UNION expression.

Example:
>>> union("SELECT * FROM foo", "SELECT * FROM bla").sql()
'SELECT * FROM foo UNION SELECT * FROM bla'
Arguments:
  • left: the SQL code string corresponding to the left-hand side. If an Expression instance is passed, it will be used as-is.
  • right: the SQL code string corresponding to the right-hand side. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Union instance.

def intersect( left: Union[str, Expression], right: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Intersect:
5418def intersect(
5419    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
5420) -> Intersect:
5421    """
5422    Initializes a syntax tree from one INTERSECT expression.
5423
5424    Example:
5425        >>> intersect("SELECT * FROM foo", "SELECT * FROM bla").sql()
5426        'SELECT * FROM foo INTERSECT SELECT * FROM bla'
5427
5428    Args:
5429        left: the SQL code string corresponding to the left-hand side.
5430            If an `Expression` instance is passed, it will be used as-is.
5431        right: the SQL code string corresponding to the right-hand side.
5432            If an `Expression` instance is passed, it will be used as-is.
5433        distinct: set the DISTINCT flag if and only if this is true.
5434        dialect: the dialect used to parse the input expression.
5435        opts: other options to use to parse the input expressions.
5436
5437    Returns:
5438        The new Intersect instance.
5439    """
5440    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
5441    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
5442
5443    return Intersect(this=left, expression=right, distinct=distinct)

Initializes a syntax tree from one INTERSECT expression.

Example:
>>> intersect("SELECT * FROM foo", "SELECT * FROM bla").sql()
'SELECT * FROM foo INTERSECT SELECT * FROM bla'
Arguments:
  • left: the SQL code string corresponding to the left-hand side. If an Expression instance is passed, it will be used as-is.
  • right: the SQL code string corresponding to the right-hand side. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Intersect instance.

def except_( left: Union[str, Expression], right: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Except:
5446def except_(
5447    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
5448) -> Except:
5449    """
5450    Initializes a syntax tree from one EXCEPT expression.
5451
5452    Example:
5453        >>> except_("SELECT * FROM foo", "SELECT * FROM bla").sql()
5454        'SELECT * FROM foo EXCEPT SELECT * FROM bla'
5455
5456    Args:
5457        left: the SQL code string corresponding to the left-hand side.
5458            If an `Expression` instance is passed, it will be used as-is.
5459        right: the SQL code string corresponding to the right-hand side.
5460            If an `Expression` instance is passed, it will be used as-is.
5461        distinct: set the DISTINCT flag if and only if this is true.
5462        dialect: the dialect used to parse the input expression.
5463        opts: other options to use to parse the input expressions.
5464
5465    Returns:
5466        The new Except instance.
5467    """
5468    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
5469    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
5470
5471    return Except(this=left, expression=right, distinct=distinct)

Initializes a syntax tree from one EXCEPT expression.

Example:
>>> except_("SELECT * FROM foo", "SELECT * FROM bla").sql()
'SELECT * FROM foo EXCEPT SELECT * FROM bla'
Arguments:
  • left: the SQL code string corresponding to the left-hand side. If an Expression instance is passed, it will be used as-is.
  • right: the SQL code string corresponding to the right-hand side. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Except instance.

def select( *expressions: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Select:
5474def select(*expressions: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
5475    """
5476    Initializes a syntax tree from one or multiple SELECT expressions.
5477
5478    Example:
5479        >>> select("col1", "col2").from_("tbl").sql()
5480        'SELECT col1, col2 FROM tbl'
5481
5482    Args:
5483        *expressions: the SQL code string to parse as the expressions of a
5484            SELECT statement. If an Expression instance is passed, this is used as-is.
5485        dialect: the dialect used to parse the input expressions (in the case that an
5486            input expression is a SQL string).
5487        **opts: other options to use to parse the input expressions (again, in the case
5488            that an input expression is a SQL string).
5489
5490    Returns:
5491        Select: the syntax tree for the SELECT statement.
5492    """
5493    return Select().select(*expressions, dialect=dialect, **opts)

Initializes a syntax tree from one or multiple SELECT expressions.

Example:
>>> select("col1", "col2").from_("tbl").sql()
'SELECT col1, col2 FROM tbl'
Arguments:
  • *expressions: the SQL code string to parse as the expressions of a SELECT statement. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expressions (in the case that an input expression is a SQL string).
  • **opts: other options to use to parse the input expressions (again, in the case that an input expression is a SQL string).
Returns:

Select: the syntax tree for the SELECT statement.

def from_( expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Select:
5496def from_(expression: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
5497    """
5498    Initializes a syntax tree from a FROM expression.
5499
5500    Example:
5501        >>> from_("tbl").select("col1", "col2").sql()
5502        'SELECT col1, col2 FROM tbl'
5503
5504    Args:
5505        *expression: the SQL code string to parse as the FROM expressions of a
5506            SELECT statement. If an Expression instance is passed, this is used as-is.
5507        dialect: the dialect used to parse the input expression (in the case that the
5508            input expression is a SQL string).
5509        **opts: other options to use to parse the input expressions (again, in the case
5510            that the input expression is a SQL string).
5511
5512    Returns:
5513        Select: the syntax tree for the SELECT statement.
5514    """
5515    return Select().from_(expression, dialect=dialect, **opts)

Initializes a syntax tree from a FROM expression.

Example:
>>> from_("tbl").select("col1", "col2").sql()
'SELECT col1, col2 FROM tbl'
Arguments:
  • *expression: the SQL code string to parse as the FROM expressions of a SELECT statement. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression (in the case that the input expression is a SQL string).
  • **opts: other options to use to parse the input expressions (again, in the case that the input expression is a SQL string).
Returns:

Select: the syntax tree for the SELECT statement.

def update( table: str | Table, properties: dict, where: Union[str, Expression, NoneType] = None, from_: Union[str, Expression, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Update:
5518def update(
5519    table: str | Table,
5520    properties: dict,
5521    where: t.Optional[ExpOrStr] = None,
5522    from_: t.Optional[ExpOrStr] = None,
5523    dialect: DialectType = None,
5524    **opts,
5525) -> Update:
5526    """
5527    Creates an update statement.
5528
5529    Example:
5530        >>> update("my_table", {"x": 1, "y": "2", "z": None}, from_="baz", where="id > 1").sql()
5531        "UPDATE my_table SET x = 1, y = '2', z = NULL FROM baz WHERE id > 1"
5532
5533    Args:
5534        *properties: dictionary of properties to set which are
5535            auto converted to sql objects eg None -> NULL
5536        where: sql conditional parsed into a WHERE statement
5537        from_: sql statement parsed into a FROM statement
5538        dialect: the dialect used to parse the input expressions.
5539        **opts: other options to use to parse the input expressions.
5540
5541    Returns:
5542        Update: the syntax tree for the UPDATE statement.
5543    """
5544    update_expr = Update(this=maybe_parse(table, into=Table, dialect=dialect))
5545    update_expr.set(
5546        "expressions",
5547        [
5548            EQ(this=maybe_parse(k, dialect=dialect, **opts), expression=convert(v))
5549            for k, v in properties.items()
5550        ],
5551    )
5552    if from_:
5553        update_expr.set(
5554            "from",
5555            maybe_parse(from_, into=From, dialect=dialect, prefix="FROM", **opts),
5556        )
5557    if isinstance(where, Condition):
5558        where = Where(this=where)
5559    if where:
5560        update_expr.set(
5561            "where",
5562            maybe_parse(where, into=Where, dialect=dialect, prefix="WHERE", **opts),
5563        )
5564    return update_expr

Creates an update statement.

Example:
>>> update("my_table", {"x": 1, "y": "2", "z": None}, from_="baz", where="id > 1").sql()
"UPDATE my_table SET x = 1, y = '2', z = NULL FROM baz WHERE id > 1"
Arguments:
  • *properties: dictionary of properties to set which are auto converted to sql objects eg None -> NULL
  • where: sql conditional parsed into a WHERE statement
  • from_: sql statement parsed into a FROM statement
  • dialect: the dialect used to parse the input expressions.
  • **opts: other options to use to parse the input expressions.
Returns:

Update: the syntax tree for the UPDATE statement.

def delete( table: Union[str, Expression], where: Union[str, Expression, NoneType] = None, returning: Union[str, Expression, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Delete:
5567def delete(
5568    table: ExpOrStr,
5569    where: t.Optional[ExpOrStr] = None,
5570    returning: t.Optional[ExpOrStr] = None,
5571    dialect: DialectType = None,
5572    **opts,
5573) -> Delete:
5574    """
5575    Builds a delete statement.
5576
5577    Example:
5578        >>> delete("my_table", where="id > 1").sql()
5579        'DELETE FROM my_table WHERE id > 1'
5580
5581    Args:
5582        where: sql conditional parsed into a WHERE statement
5583        returning: sql conditional parsed into a RETURNING statement
5584        dialect: the dialect used to parse the input expressions.
5585        **opts: other options to use to parse the input expressions.
5586
5587    Returns:
5588        Delete: the syntax tree for the DELETE statement.
5589    """
5590    delete_expr = Delete().delete(table, dialect=dialect, copy=False, **opts)
5591    if where:
5592        delete_expr = delete_expr.where(where, dialect=dialect, copy=False, **opts)
5593    if returning:
5594        delete_expr = delete_expr.returning(returning, dialect=dialect, copy=False, **opts)
5595    return delete_expr

Builds a delete statement.

Example:
>>> delete("my_table", where="id > 1").sql()
'DELETE FROM my_table WHERE id > 1'
Arguments:
  • where: sql conditional parsed into a WHERE statement
  • returning: sql conditional parsed into a RETURNING statement
  • dialect: the dialect used to parse the input expressions.
  • **opts: other options to use to parse the input expressions.
Returns:

Delete: the syntax tree for the DELETE statement.

def insert( expression: Union[str, Expression], into: Union[str, Expression], columns: Optional[Sequence[Union[str, Expression]]] = None, overwrite: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Insert:
5598def insert(
5599    expression: ExpOrStr,
5600    into: ExpOrStr,
5601    columns: t.Optional[t.Sequence[ExpOrStr]] = None,
5602    overwrite: t.Optional[bool] = None,
5603    dialect: DialectType = None,
5604    copy: bool = True,
5605    **opts,
5606) -> Insert:
5607    """
5608    Builds an INSERT statement.
5609
5610    Example:
5611        >>> insert("VALUES (1, 2, 3)", "tbl").sql()
5612        'INSERT INTO tbl VALUES (1, 2, 3)'
5613
5614    Args:
5615        expression: the sql string or expression of the INSERT statement
5616        into: the tbl to insert data to.
5617        columns: optionally the table's column names.
5618        overwrite: whether to INSERT OVERWRITE or not.
5619        dialect: the dialect used to parse the input expressions.
5620        copy: whether or not to copy the expression.
5621        **opts: other options to use to parse the input expressions.
5622
5623    Returns:
5624        Insert: the syntax tree for the INSERT statement.
5625    """
5626    expr = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
5627    this: Table | Schema = maybe_parse(into, into=Table, dialect=dialect, copy=copy, **opts)
5628
5629    if columns:
5630        this = _apply_list_builder(
5631            *columns,
5632            instance=Schema(this=this),
5633            arg="expressions",
5634            into=Identifier,
5635            copy=False,
5636            dialect=dialect,
5637            **opts,
5638        )
5639
5640    return Insert(this=this, expression=expr, overwrite=overwrite)

Builds an INSERT statement.

Example:
>>> insert("VALUES (1, 2, 3)", "tbl").sql()
'INSERT INTO tbl VALUES (1, 2, 3)'
Arguments:
  • expression: the sql string or expression of the INSERT statement
  • into: the tbl to insert data to.
  • columns: optionally the table's column names.
  • overwrite: whether to INSERT OVERWRITE or not.
  • dialect: the dialect used to parse the input expressions.
  • copy: whether or not to copy the expression.
  • **opts: other options to use to parse the input expressions.
Returns:

Insert: the syntax tree for the INSERT statement.

def condition( expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Condition:
5643def condition(
5644    expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
5645) -> Condition:
5646    """
5647    Initialize a logical condition expression.
5648
5649    Example:
5650        >>> condition("x=1").sql()
5651        'x = 1'
5652
5653        This is helpful for composing larger logical syntax trees:
5654        >>> where = condition("x=1")
5655        >>> where = where.and_("y=1")
5656        >>> Select().from_("tbl").select("*").where(where).sql()
5657        'SELECT * FROM tbl WHERE x = 1 AND y = 1'
5658
5659    Args:
5660        *expression: the SQL code string to parse.
5661            If an Expression instance is passed, this is used as-is.
5662        dialect: the dialect used to parse the input expression (in the case that the
5663            input expression is a SQL string).
5664        copy: Whether or not to copy `expression` (only applies to expressions).
5665        **opts: other options to use to parse the input expressions (again, in the case
5666            that the input expression is a SQL string).
5667
5668    Returns:
5669        The new Condition instance
5670    """
5671    return maybe_parse(
5672        expression,
5673        into=Condition,
5674        dialect=dialect,
5675        copy=copy,
5676        **opts,
5677    )

Initialize a logical condition expression.

Example:
>>> condition("x=1").sql()
'x = 1'

This is helpful for composing larger logical syntax trees:

>>> where = condition("x=1")
>>> where = where.and_("y=1")
>>> Select().from_("tbl").select("*").where(where).sql()
'SELECT * FROM tbl WHERE x = 1 AND y = 1'
Arguments:
  • *expression: the SQL code string to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression (in the case that the input expression is a SQL string).
  • copy: Whether or not to copy expression (only applies to expressions).
  • **opts: other options to use to parse the input expressions (again, in the case that the input expression is a SQL string).
Returns:

The new Condition instance

def and_( *expressions: Union[str, Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Condition:
5680def and_(
5681    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
5682) -> Condition:
5683    """
5684    Combine multiple conditions with an AND logical operator.
5685
5686    Example:
5687        >>> and_("x=1", and_("y=1", "z=1")).sql()
5688        'x = 1 AND (y = 1 AND z = 1)'
5689
5690    Args:
5691        *expressions: the SQL code strings to parse.
5692            If an Expression instance is passed, this is used as-is.
5693        dialect: the dialect used to parse the input expression.
5694        copy: whether or not to copy `expressions` (only applies to Expressions).
5695        **opts: other options to use to parse the input expressions.
5696
5697    Returns:
5698        And: the new condition
5699    """
5700    return t.cast(Condition, _combine(expressions, And, dialect, copy=copy, **opts))

Combine multiple conditions with an AND logical operator.

Example:
>>> and_("x=1", and_("y=1", "z=1")).sql()
'x = 1 AND (y = 1 AND z = 1)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether or not to copy expressions (only applies to Expressions).
  • **opts: other options to use to parse the input expressions.
Returns:

And: the new condition

def or_( *expressions: Union[str, Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Condition:
5703def or_(
5704    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
5705) -> Condition:
5706    """
5707    Combine multiple conditions with an OR logical operator.
5708
5709    Example:
5710        >>> or_("x=1", or_("y=1", "z=1")).sql()
5711        'x = 1 OR (y = 1 OR z = 1)'
5712
5713    Args:
5714        *expressions: the SQL code strings to parse.
5715            If an Expression instance is passed, this is used as-is.
5716        dialect: the dialect used to parse the input expression.
5717        copy: whether or not to copy `expressions` (only applies to Expressions).
5718        **opts: other options to use to parse the input expressions.
5719
5720    Returns:
5721        Or: the new condition
5722    """
5723    return t.cast(Condition, _combine(expressions, Or, dialect, copy=copy, **opts))

Combine multiple conditions with an OR logical operator.

Example:
>>> or_("x=1", or_("y=1", "z=1")).sql()
'x = 1 OR (y = 1 OR z = 1)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether or not to copy expressions (only applies to Expressions).
  • **opts: other options to use to parse the input expressions.
Returns:

Or: the new condition

def not_( expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Not:
5726def not_(expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts) -> Not:
5727    """
5728    Wrap a condition with a NOT operator.
5729
5730    Example:
5731        >>> not_("this_suit='black'").sql()
5732        "NOT this_suit = 'black'"
5733
5734    Args:
5735        expression: the SQL code string to parse.
5736            If an Expression instance is passed, this is used as-is.
5737        dialect: the dialect used to parse the input expression.
5738        copy: whether to copy the expression or not.
5739        **opts: other options to use to parse the input expressions.
5740
5741    Returns:
5742        The new condition.
5743    """
5744    this = condition(
5745        expression,
5746        dialect=dialect,
5747        copy=copy,
5748        **opts,
5749    )
5750    return Not(this=_wrap(this, Connector))

Wrap a condition with a NOT operator.

Example:
>>> not_("this_suit='black'").sql()
"NOT this_suit = 'black'"
Arguments:
  • expression: the SQL code string to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy the expression or not.
  • **opts: other options to use to parse the input expressions.
Returns:

The new condition.

def paren( expression: Union[str, Expression], copy: bool = True) -> Paren:
5753def paren(expression: ExpOrStr, copy: bool = True) -> Paren:
5754    """
5755    Wrap an expression in parentheses.
5756
5757    Example:
5758        >>> paren("5 + 3").sql()
5759        '(5 + 3)'
5760
5761    Args:
5762        expression: the SQL code string to parse.
5763            If an Expression instance is passed, this is used as-is.
5764        copy: whether to copy the expression or not.
5765
5766    Returns:
5767        The wrapped expression.
5768    """
5769    return Paren(this=maybe_parse(expression, copy=copy))

Wrap an expression in parentheses.

Example:
>>> paren("5 + 3").sql()
'(5 + 3)'
Arguments:
  • expression: the SQL code string to parse. If an Expression instance is passed, this is used as-is.
  • copy: whether to copy the expression or not.
Returns:

The wrapped expression.

SAFE_IDENTIFIER_RE = re.compile('^[_a-zA-Z][\\w]*$')
def to_identifier(name, quoted=None, copy=True):
5787def to_identifier(name, quoted=None, copy=True):
5788    """Builds an identifier.
5789
5790    Args:
5791        name: The name to turn into an identifier.
5792        quoted: Whether or not force quote the identifier.
5793        copy: Whether or not to copy a passed in Identefier node.
5794
5795    Returns:
5796        The identifier ast node.
5797    """
5798
5799    if name is None:
5800        return None
5801
5802    if isinstance(name, Identifier):
5803        identifier = maybe_copy(name, copy)
5804    elif isinstance(name, str):
5805        identifier = Identifier(
5806            this=name,
5807            quoted=not SAFE_IDENTIFIER_RE.match(name) if quoted is None else quoted,
5808        )
5809    else:
5810        raise ValueError(f"Name needs to be a string or an Identifier, got: {name.__class__}")
5811    return identifier

Builds an identifier.

Arguments:
  • name: The name to turn into an identifier.
  • quoted: Whether or not force quote the identifier.
  • copy: Whether or not to copy a passed in Identefier node.
Returns:

The identifier ast node.

INTERVAL_STRING_RE = re.compile('\\s*([0-9]+)\\s*([a-zA-Z]+)\\s*')
def to_interval( interval: str | Literal) -> Interval:
5817def to_interval(interval: str | Literal) -> Interval:
5818    """Builds an interval expression from a string like '1 day' or '5 months'."""
5819    if isinstance(interval, Literal):
5820        if not interval.is_string:
5821            raise ValueError("Invalid interval string.")
5822
5823        interval = interval.this
5824
5825    interval_parts = INTERVAL_STRING_RE.match(interval)  # type: ignore
5826
5827    if not interval_parts:
5828        raise ValueError("Invalid interval string.")
5829
5830    return Interval(
5831        this=Literal.string(interval_parts.group(1)),
5832        unit=Var(this=interval_parts.group(2)),
5833    )

Builds an interval expression from a string like '1 day' or '5 months'.

def to_table( sql_path: Union[str, Table, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **kwargs) -> Optional[Table]:
5846def to_table(
5847    sql_path: t.Optional[str | Table], dialect: DialectType = None, **kwargs
5848) -> t.Optional[Table]:
5849    """
5850    Create a table expression from a `[catalog].[schema].[table]` sql path. Catalog and schema are optional.
5851    If a table is passed in then that table is returned.
5852
5853    Args:
5854        sql_path: a `[catalog].[schema].[table]` string.
5855        dialect: the source dialect according to which the table name will be parsed.
5856        kwargs: the kwargs to instantiate the resulting `Table` expression with.
5857
5858    Returns:
5859        A table expression.
5860    """
5861    if sql_path is None or isinstance(sql_path, Table):
5862        return sql_path
5863    if not isinstance(sql_path, str):
5864        raise ValueError(f"Invalid type provided for a table: {type(sql_path)}")
5865
5866    table = maybe_parse(sql_path, into=Table, dialect=dialect)
5867    if table:
5868        for k, v in kwargs.items():
5869            table.set(k, v)
5870
5871    return table

Create a table expression from a [catalog].[schema].[table] sql path. Catalog and schema are optional. If a table is passed in then that table is returned.

Arguments:
  • sql_path: a [catalog].[schema].[table] string.
  • dialect: the source dialect according to which the table name will be parsed.
  • kwargs: the kwargs to instantiate the resulting Table expression with.
Returns:

A table expression.

def to_column( sql_path: str | Column, **kwargs) -> Column:
5874def to_column(sql_path: str | Column, **kwargs) -> Column:
5875    """
5876    Create a column from a `[table].[column]` sql path. Schema is optional.
5877
5878    If a column is passed in then that column is returned.
5879
5880    Args:
5881        sql_path: `[table].[column]` string
5882    Returns:
5883        Table: A column expression
5884    """
5885    if sql_path is None or isinstance(sql_path, Column):
5886        return sql_path
5887    if not isinstance(sql_path, str):
5888        raise ValueError(f"Invalid type provided for column: {type(sql_path)}")
5889    return column(*reversed(sql_path.split(".")), **kwargs)  # type: ignore

Create a column from a [table].[column] sql path. Schema is optional.

If a column is passed in then that column is returned.

Arguments:
  • sql_path: [table].[column] string
Returns:

Table: A column expression

def alias_( expression: Union[str, Expression], alias: str | Identifier, table: Union[bool, Sequence[str | Identifier]] = False, quoted: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts):
5892def alias_(
5893    expression: ExpOrStr,
5894    alias: str | Identifier,
5895    table: bool | t.Sequence[str | Identifier] = False,
5896    quoted: t.Optional[bool] = None,
5897    dialect: DialectType = None,
5898    copy: bool = True,
5899    **opts,
5900):
5901    """Create an Alias expression.
5902
5903    Example:
5904        >>> alias_('foo', 'bar').sql()
5905        'foo AS bar'
5906
5907        >>> alias_('(select 1, 2)', 'bar', table=['a', 'b']).sql()
5908        '(SELECT 1, 2) AS bar(a, b)'
5909
5910    Args:
5911        expression: the SQL code strings to parse.
5912            If an Expression instance is passed, this is used as-is.
5913        alias: the alias name to use. If the name has
5914            special characters it is quoted.
5915        table: Whether or not to create a table alias, can also be a list of columns.
5916        quoted: whether or not to quote the alias
5917        dialect: the dialect used to parse the input expression.
5918        copy: Whether or not to copy the expression.
5919        **opts: other options to use to parse the input expressions.
5920
5921    Returns:
5922        Alias: the aliased expression
5923    """
5924    exp = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
5925    alias = to_identifier(alias, quoted=quoted)
5926
5927    if table:
5928        table_alias = TableAlias(this=alias)
5929        exp.set("alias", table_alias)
5930
5931        if not isinstance(table, bool):
5932            for column in table:
5933                table_alias.append("columns", to_identifier(column, quoted=quoted))
5934
5935        return exp
5936
5937    # We don't set the "alias" arg for Window expressions, because that would add an IDENTIFIER node in
5938    # the AST, representing a "named_window" [1] construct (eg. bigquery). What we want is an ALIAS node
5939    # for the complete Window expression.
5940    #
5941    # [1]: https://cloud.google.com/bigquery/docs/reference/standard-sql/window-function-calls
5942
5943    if "alias" in exp.arg_types and not isinstance(exp, Window):
5944        exp.set("alias", alias)
5945        return exp
5946    return Alias(this=exp, alias=alias)

Create an Alias expression.

Example:
>>> alias_('foo', 'bar').sql()
'foo AS bar'
>>> alias_('(select 1, 2)', 'bar', table=['a', 'b']).sql()
'(SELECT 1, 2) AS bar(a, b)'
Arguments:
  • expression: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • alias: the alias name to use. If the name has special characters it is quoted.
  • table: Whether or not to create a table alias, can also be a list of columns.
  • quoted: whether or not to quote the alias
  • dialect: the dialect used to parse the input expression.
  • copy: Whether or not to copy the expression.
  • **opts: other options to use to parse the input expressions.
Returns:

Alias: the aliased expression

def subquery( expression: Union[str, Expression], alias: Union[Identifier, str, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Select:
5949def subquery(
5950    expression: ExpOrStr,
5951    alias: t.Optional[Identifier | str] = None,
5952    dialect: DialectType = None,
5953    **opts,
5954) -> Select:
5955    """
5956    Build a subquery expression.
5957
5958    Example:
5959        >>> subquery('select x from tbl', 'bar').select('x').sql()
5960        'SELECT x FROM (SELECT x FROM tbl) AS bar'
5961
5962    Args:
5963        expression: the SQL code strings to parse.
5964            If an Expression instance is passed, this is used as-is.
5965        alias: the alias name to use.
5966        dialect: the dialect used to parse the input expression.
5967        **opts: other options to use to parse the input expressions.
5968
5969    Returns:
5970        A new Select instance with the subquery expression included.
5971    """
5972
5973    expression = maybe_parse(expression, dialect=dialect, **opts).subquery(alias)
5974    return Select().from_(expression, dialect=dialect, **opts)

Build a subquery expression.

Example:
>>> subquery('select x from tbl', 'bar').select('x').sql()
'SELECT x FROM (SELECT x FROM tbl) AS bar'
Arguments:
  • expression: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • alias: the alias name to use.
  • dialect: the dialect used to parse the input expression.
  • **opts: other options to use to parse the input expressions.
Returns:

A new Select instance with the subquery expression included.

def column( col: str | Identifier, table: Union[Identifier, str, NoneType] = None, db: Union[Identifier, str, NoneType] = None, catalog: Union[Identifier, str, NoneType] = None, quoted: Optional[bool] = None) -> Column:
5977def column(
5978    col: str | Identifier,
5979    table: t.Optional[str | Identifier] = None,
5980    db: t.Optional[str | Identifier] = None,
5981    catalog: t.Optional[str | Identifier] = None,
5982    quoted: t.Optional[bool] = None,
5983) -> Column:
5984    """
5985    Build a Column.
5986
5987    Args:
5988        col: Column name.
5989        table: Table name.
5990        db: Database name.
5991        catalog: Catalog name.
5992        quoted: Whether to force quotes on the column's identifiers.
5993
5994    Returns:
5995        The new Column instance.
5996    """
5997    return Column(
5998        this=to_identifier(col, quoted=quoted),
5999        table=to_identifier(table, quoted=quoted),
6000        db=to_identifier(db, quoted=quoted),
6001        catalog=to_identifier(catalog, quoted=quoted),
6002    )

Build a Column.

Arguments:
  • col: Column name.
  • table: Table name.
  • db: Database name.
  • catalog: Catalog name.
  • quoted: Whether to force quotes on the column's identifiers.
Returns:

The new Column instance.

def cast( expression: Union[str, Expression], to: str | DataType | DataType.Type, **opts) -> Cast:
6005def cast(expression: ExpOrStr, to: str | DataType | DataType.Type, **opts) -> Cast:
6006    """Cast an expression to a data type.
6007
6008    Example:
6009        >>> cast('x + 1', 'int').sql()
6010        'CAST(x + 1 AS INT)'
6011
6012    Args:
6013        expression: The expression to cast.
6014        to: The datatype to cast to.
6015
6016    Returns:
6017        The new Cast instance.
6018    """
6019    expression = maybe_parse(expression, **opts)
6020    data_type = DataType.build(to, **opts)
6021    expression = Cast(this=expression, to=data_type)
6022    expression.type = data_type
6023    return expression

Cast an expression to a data type.

Example:
>>> cast('x + 1', 'int').sql()
'CAST(x + 1 AS INT)'
Arguments:
  • expression: The expression to cast.
  • to: The datatype to cast to.
Returns:

The new Cast instance.

def table_( table: Identifier | str, db: Union[Identifier, str, NoneType] = None, catalog: Union[Identifier, str, NoneType] = None, quoted: Optional[bool] = None, alias: Union[Identifier, str, NoneType] = None) -> Table:
6026def table_(
6027    table: Identifier | str,
6028    db: t.Optional[Identifier | str] = None,
6029    catalog: t.Optional[Identifier | str] = None,
6030    quoted: t.Optional[bool] = None,
6031    alias: t.Optional[Identifier | str] = None,
6032) -> Table:
6033    """Build a Table.
6034
6035    Args:
6036        table: Table name.
6037        db: Database name.
6038        catalog: Catalog name.
6039        quote: Whether to force quotes on the table's identifiers.
6040        alias: Table's alias.
6041
6042    Returns:
6043        The new Table instance.
6044    """
6045    return Table(
6046        this=to_identifier(table, quoted=quoted) if table else None,
6047        db=to_identifier(db, quoted=quoted) if db else None,
6048        catalog=to_identifier(catalog, quoted=quoted) if catalog else None,
6049        alias=TableAlias(this=to_identifier(alias)) if alias else None,
6050    )

Build a Table.

Arguments:
  • table: Table name.
  • db: Database name.
  • catalog: Catalog name.
  • quote: Whether to force quotes on the table's identifiers.
  • alias: Table's alias.
Returns:

The new Table instance.

def values( values: Iterable[Tuple[Any, ...]], alias: Optional[str] = None, columns: Union[Iterable[str], Dict[str, DataType], NoneType] = None) -> Values:
6053def values(
6054    values: t.Iterable[t.Tuple[t.Any, ...]],
6055    alias: t.Optional[str] = None,
6056    columns: t.Optional[t.Iterable[str] | t.Dict[str, DataType]] = None,
6057) -> Values:
6058    """Build VALUES statement.
6059
6060    Example:
6061        >>> values([(1, '2')]).sql()
6062        "VALUES (1, '2')"
6063
6064    Args:
6065        values: values statements that will be converted to SQL
6066        alias: optional alias
6067        columns: Optional list of ordered column names or ordered dictionary of column names to types.
6068         If either are provided then an alias is also required.
6069
6070    Returns:
6071        Values: the Values expression object
6072    """
6073    if columns and not alias:
6074        raise ValueError("Alias is required when providing columns")
6075
6076    return Values(
6077        expressions=[convert(tup) for tup in values],
6078        alias=(
6079            TableAlias(this=to_identifier(alias), columns=[to_identifier(x) for x in columns])
6080            if columns
6081            else (TableAlias(this=to_identifier(alias)) if alias else None)
6082        ),
6083    )

Build VALUES statement.

Example:
>>> values([(1, '2')]).sql()
"VALUES (1, '2')"
Arguments:
  • values: values statements that will be converted to SQL
  • alias: optional alias
  • columns: Optional list of ordered column names or ordered dictionary of column names to types. If either are provided then an alias is also required.
Returns:

Values: the Values expression object

def var( name: Union[str, Expression, NoneType]) -> Var:
6086def var(name: t.Optional[ExpOrStr]) -> Var:
6087    """Build a SQL variable.
6088
6089    Example:
6090        >>> repr(var('x'))
6091        '(VAR this: x)'
6092
6093        >>> repr(var(column('x', table='y')))
6094        '(VAR this: x)'
6095
6096    Args:
6097        name: The name of the var or an expression who's name will become the var.
6098
6099    Returns:
6100        The new variable node.
6101    """
6102    if not name:
6103        raise ValueError("Cannot convert empty name into var.")
6104
6105    if isinstance(name, Expression):
6106        name = name.name
6107    return Var(this=name)

Build a SQL variable.

Example:
>>> repr(var('x'))
'(VAR this: x)'
>>> repr(var(column('x', table='y')))
'(VAR this: x)'
Arguments:
  • name: The name of the var or an expression who's name will become the var.
Returns:

The new variable node.

def rename_table( old_name: str | Table, new_name: str | Table) -> AlterTable:
6110def rename_table(old_name: str | Table, new_name: str | Table) -> AlterTable:
6111    """Build ALTER TABLE... RENAME... expression
6112
6113    Args:
6114        old_name: The old name of the table
6115        new_name: The new name of the table
6116
6117    Returns:
6118        Alter table expression
6119    """
6120    old_table = to_table(old_name)
6121    new_table = to_table(new_name)
6122    return AlterTable(
6123        this=old_table,
6124        actions=[
6125            RenameTable(this=new_table),
6126        ],
6127    )

Build ALTER TABLE... RENAME... expression

Arguments:
  • old_name: The old name of the table
  • new_name: The new name of the table
Returns:

Alter table expression

def convert(value: Any, copy: bool = False) -> Expression:
6130def convert(value: t.Any, copy: bool = False) -> Expression:
6131    """Convert a python value into an expression object.
6132
6133    Raises an error if a conversion is not possible.
6134
6135    Args:
6136        value: A python object.
6137        copy: Whether or not to copy `value` (only applies to Expressions and collections).
6138
6139    Returns:
6140        Expression: the equivalent expression object.
6141    """
6142    if isinstance(value, Expression):
6143        return maybe_copy(value, copy)
6144    if isinstance(value, str):
6145        return Literal.string(value)
6146    if isinstance(value, bool):
6147        return Boolean(this=value)
6148    if value is None or (isinstance(value, float) and math.isnan(value)):
6149        return NULL
6150    if isinstance(value, numbers.Number):
6151        return Literal.number(value)
6152    if isinstance(value, datetime.datetime):
6153        datetime_literal = Literal.string(
6154            (value if value.tzinfo else value.replace(tzinfo=datetime.timezone.utc)).isoformat()
6155        )
6156        return TimeStrToTime(this=datetime_literal)
6157    if isinstance(value, datetime.date):
6158        date_literal = Literal.string(value.strftime("%Y-%m-%d"))
6159        return DateStrToDate(this=date_literal)
6160    if isinstance(value, tuple):
6161        return Tuple(expressions=[convert(v, copy=copy) for v in value])
6162    if isinstance(value, list):
6163        return Array(expressions=[convert(v, copy=copy) for v in value])
6164    if isinstance(value, dict):
6165        return Map(
6166            keys=Array(expressions=[convert(k, copy=copy) for k in value]),
6167            values=Array(expressions=[convert(v, copy=copy) for v in value.values()]),
6168        )
6169    raise ValueError(f"Cannot convert {value}")

Convert a python value into an expression object.

Raises an error if a conversion is not possible.

Arguments:
  • value: A python object.
  • copy: Whether or not to copy value (only applies to Expressions and collections).
Returns:

Expression: the equivalent expression object.

def replace_children( expression: Expression, fun: Callable, *args, **kwargs) -> None:
6172def replace_children(expression: Expression, fun: t.Callable, *args, **kwargs) -> None:
6173    """
6174    Replace children of an expression with the result of a lambda fun(child) -> exp.
6175    """
6176    for k, v in expression.args.items():
6177        is_list_arg = type(v) is list
6178
6179        child_nodes = v if is_list_arg else [v]
6180        new_child_nodes = []
6181
6182        for cn in child_nodes:
6183            if isinstance(cn, Expression):
6184                for child_node in ensure_collection(fun(cn, *args, **kwargs)):
6185                    new_child_nodes.append(child_node)
6186                    child_node.parent = expression
6187                    child_node.arg_key = k
6188            else:
6189                new_child_nodes.append(cn)
6190
6191        expression.args[k] = new_child_nodes if is_list_arg else seq_get(new_child_nodes, 0)

Replace children of an expression with the result of a lambda fun(child) -> exp.

def column_table_names( expression: Expression, exclude: str = '') -> Set[str]:
6194def column_table_names(expression: Expression, exclude: str = "") -> t.Set[str]:
6195    """
6196    Return all table names referenced through columns in an expression.
6197
6198    Example:
6199        >>> import sqlglot
6200        >>> sorted(column_table_names(sqlglot.parse_one("a.b AND c.d AND c.e")))
6201        ['a', 'c']
6202
6203    Args:
6204        expression: expression to find table names.
6205        exclude: a table name to exclude
6206
6207    Returns:
6208        A list of unique names.
6209    """
6210    return {
6211        table
6212        for table in (column.table for column in expression.find_all(Column))
6213        if table and table != exclude
6214    }

Return all table names referenced through columns in an expression.

Example:
>>> import sqlglot
>>> sorted(column_table_names(sqlglot.parse_one("a.b AND c.d AND c.e")))
['a', 'c']
Arguments:
  • expression: expression to find table names.
  • exclude: a table name to exclude
Returns:

A list of unique names.

def table_name( table: Table | str, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None) -> str:
6217def table_name(table: Table | str, dialect: DialectType = None) -> str:
6218    """Get the full name of a table as a string.
6219
6220    Args:
6221        table: Table expression node or string.
6222        dialect: The dialect to generate the table name for.
6223
6224    Examples:
6225        >>> from sqlglot import exp, parse_one
6226        >>> table_name(parse_one("select * from a.b.c").find(exp.Table))
6227        'a.b.c'
6228
6229    Returns:
6230        The table name.
6231    """
6232
6233    table = maybe_parse(table, into=Table, dialect=dialect)
6234
6235    if not table:
6236        raise ValueError(f"Cannot parse {table}")
6237
6238    return ".".join(
6239        part.sql(dialect=dialect, identify=True)
6240        if not SAFE_IDENTIFIER_RE.match(part.name)
6241        else part.name
6242        for part in table.parts
6243    )

Get the full name of a table as a string.

Arguments:
  • table: Table expression node or string.
  • dialect: The dialect to generate the table name for.
Examples:
>>> from sqlglot import exp, parse_one
>>> table_name(parse_one("select * from a.b.c").find(exp.Table))
'a.b.c'
Returns:

The table name.

def replace_tables(expression: ~E, mapping: Dict[str, str], copy: bool = True) -> ~E:
6246def replace_tables(expression: E, mapping: t.Dict[str, str], copy: bool = True) -> E:
6247    """Replace all tables in expression according to the mapping.
6248
6249    Args:
6250        expression: expression node to be transformed and replaced.
6251        mapping: mapping of table names.
6252        copy: whether or not to copy the expression.
6253
6254    Examples:
6255        >>> from sqlglot import exp, parse_one
6256        >>> replace_tables(parse_one("select * from a.b"), {"a.b": "c"}).sql()
6257        'SELECT * FROM c'
6258
6259    Returns:
6260        The mapped expression.
6261    """
6262
6263    def _replace_tables(node: Expression) -> Expression:
6264        if isinstance(node, Table):
6265            new_name = mapping.get(table_name(node))
6266            if new_name:
6267                return to_table(
6268                    new_name,
6269                    **{k: v for k, v in node.args.items() if k not in ("this", "db", "catalog")},
6270                )
6271        return node
6272
6273    return expression.transform(_replace_tables, copy=copy)

Replace all tables in expression according to the mapping.

Arguments:
  • expression: expression node to be transformed and replaced.
  • mapping: mapping of table names.
  • copy: whether or not to copy the expression.
Examples:
>>> from sqlglot import exp, parse_one
>>> replace_tables(parse_one("select * from a.b"), {"a.b": "c"}).sql()
'SELECT * FROM c'
Returns:

The mapped expression.

def replace_placeholders( expression: Expression, *args, **kwargs) -> Expression:
6276def replace_placeholders(expression: Expression, *args, **kwargs) -> Expression:
6277    """Replace placeholders in an expression.
6278
6279    Args:
6280        expression: expression node to be transformed and replaced.
6281        args: positional names that will substitute unnamed placeholders in the given order.
6282        kwargs: keyword arguments that will substitute named placeholders.
6283
6284    Examples:
6285        >>> from sqlglot import exp, parse_one
6286        >>> replace_placeholders(
6287        ...     parse_one("select * from :tbl where ? = ?"),
6288        ...     exp.to_identifier("str_col"), "b", tbl=exp.to_identifier("foo")
6289        ... ).sql()
6290        "SELECT * FROM foo WHERE str_col = 'b'"
6291
6292    Returns:
6293        The mapped expression.
6294    """
6295
6296    def _replace_placeholders(node: Expression, args, **kwargs) -> Expression:
6297        if isinstance(node, Placeholder):
6298            if node.name:
6299                new_name = kwargs.get(node.name)
6300                if new_name:
6301                    return convert(new_name)
6302            else:
6303                try:
6304                    return convert(next(args))
6305                except StopIteration:
6306                    pass
6307        return node
6308
6309    return expression.transform(_replace_placeholders, iter(args), **kwargs)

Replace placeholders in an expression.

Arguments:
  • expression: expression node to be transformed and replaced.
  • args: positional names that will substitute unnamed placeholders in the given order.
  • kwargs: keyword arguments that will substitute named placeholders.
Examples:
>>> from sqlglot import exp, parse_one
>>> replace_placeholders(
...     parse_one("select * from :tbl where ? = ?"),
...     exp.to_identifier("str_col"), "b", tbl=exp.to_identifier("foo")
... ).sql()
"SELECT * FROM foo WHERE str_col = 'b'"
Returns:

The mapped expression.

def expand( expression: Expression, sources: Dict[str, Subqueryable], copy: bool = True) -> Expression:
6312def expand(
6313    expression: Expression, sources: t.Dict[str, Subqueryable], copy: bool = True
6314) -> Expression:
6315    """Transforms an expression by expanding all referenced sources into subqueries.
6316
6317    Examples:
6318        >>> from sqlglot import parse_one
6319        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y")}).sql()
6320        'SELECT * FROM (SELECT * FROM y) AS z /* source: x */'
6321
6322        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y"), "y": parse_one("select * from z")}).sql()
6323        'SELECT * FROM (SELECT * FROM (SELECT * FROM z) AS y /* source: y */) AS z /* source: x */'
6324
6325    Args:
6326        expression: The expression to expand.
6327        sources: A dictionary of name to Subqueryables.
6328        copy: Whether or not to copy the expression during transformation. Defaults to True.
6329
6330    Returns:
6331        The transformed expression.
6332    """
6333
6334    def _expand(node: Expression):
6335        if isinstance(node, Table):
6336            name = table_name(node)
6337            source = sources.get(name)
6338            if source:
6339                subquery = source.subquery(node.alias or name)
6340                subquery.comments = [f"source: {name}"]
6341                return subquery.transform(_expand, copy=False)
6342        return node
6343
6344    return expression.transform(_expand, copy=copy)

Transforms an expression by expanding all referenced sources into subqueries.

Examples:
>>> from sqlglot import parse_one
>>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y")}).sql()
'SELECT * FROM (SELECT * FROM y) AS z /* source: x */'
>>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y"), "y": parse_one("select * from z")}).sql()
'SELECT * FROM (SELECT * FROM (SELECT * FROM z) AS y /* source: y */) AS z /* source: x */'
Arguments:
  • expression: The expression to expand.
  • sources: A dictionary of name to Subqueryables.
  • copy: Whether or not to copy the expression during transformation. Defaults to True.
Returns:

The transformed expression.

def func( name: str, *args, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **kwargs) -> Func:
6347def func(name: str, *args, dialect: DialectType = None, **kwargs) -> Func:
6348    """
6349    Returns a Func expression.
6350
6351    Examples:
6352        >>> func("abs", 5).sql()
6353        'ABS(5)'
6354
6355        >>> func("cast", this=5, to=DataType.build("DOUBLE")).sql()
6356        'CAST(5 AS DOUBLE)'
6357
6358    Args:
6359        name: the name of the function to build.
6360        args: the args used to instantiate the function of interest.
6361        dialect: the source dialect.
6362        kwargs: the kwargs used to instantiate the function of interest.
6363
6364    Note:
6365        The arguments `args` and `kwargs` are mutually exclusive.
6366
6367    Returns:
6368        An instance of the function of interest, or an anonymous function, if `name` doesn't
6369        correspond to an existing `sqlglot.expressions.Func` class.
6370    """
6371    if args and kwargs:
6372        raise ValueError("Can't use both args and kwargs to instantiate a function.")
6373
6374    from sqlglot.dialects.dialect import Dialect
6375
6376    converted: t.List[Expression] = [maybe_parse(arg, dialect=dialect) for arg in args]
6377    kwargs = {key: maybe_parse(value, dialect=dialect) for key, value in kwargs.items()}
6378
6379    parser = Dialect.get_or_raise(dialect)().parser()
6380    from_args_list = parser.FUNCTIONS.get(name.upper())
6381
6382    if from_args_list:
6383        function = from_args_list(converted) if converted else from_args_list.__self__(**kwargs)  # type: ignore
6384    else:
6385        kwargs = kwargs or {"expressions": converted}
6386        function = Anonymous(this=name, **kwargs)
6387
6388    for error_message in function.error_messages(converted):
6389        raise ValueError(error_message)
6390
6391    return function

Returns a Func expression.

Examples:
>>> func("abs", 5).sql()
'ABS(5)'
>>> func("cast", this=5, to=DataType.build("DOUBLE")).sql()
'CAST(5 AS DOUBLE)'
Arguments:
  • name: the name of the function to build.
  • args: the args used to instantiate the function of interest.
  • dialect: the source dialect.
  • kwargs: the kwargs used to instantiate the function of interest.
Note:

The arguments args and kwargs are mutually exclusive.

Returns:

An instance of the function of interest, or an anonymous function, if name doesn't correspond to an existing Func class.

def true() -> Boolean:
6394def true() -> Boolean:
6395    """
6396    Returns a true Boolean expression.
6397    """
6398    return Boolean(this=True)

Returns a true Boolean expression.

def false() -> Boolean:
6401def false() -> Boolean:
6402    """
6403    Returns a false Boolean expression.
6404    """
6405    return Boolean(this=False)

Returns a false Boolean expression.

def null() -> Null:
6408def null() -> Null:
6409    """
6410    Returns a Null expression.
6411    """
6412    return Null()

Returns a Null expression.

TRUE = (BOOLEAN this: True)
FALSE = (BOOLEAN this: False)
NULL = (NULL )