Coverage for /usr/local/lib64/python?2.7/site-pac...

3o0f16

191
192
193
194
195
196 |
197
198
199
200
201

test components.

:param test components: list of components whose presence is checked
:type test_components: sequence of :class: RVComp' items
wan
for test comp in test components:
if not self.contains(test_comp) :
return False
return True;

def contains_any(self, test_components):
"""Return True if this RV contains any of **test components**.

:param test components: sequence of components whose presence is tested
:type test_components: sequence of :class: RVComp' items
wan
for test comp in test components:
if self.contains(test_comp) :
return True
return False

def contained in(self, test_components):
"""Return True if sequence **test components** contains all components
from this RV (and perhaps more) .

:param test components: set of components whose presence is checked
:type test_components: sequence of :class: RVComp' items
wan
for component in self.components:
if component not in test components:
return False
return True

def indexed in(self, super rv):
"""Return index array such that this rv is indexed in **super rv**, which
must be a superset of this rv. Resulting array can be used with :func: numpy.take"
and :func: numpy.put’.

:param super_rv: returned indices apply to this rv
:type super_rv: :class: RV®
:rtype: 1D :class: numpy.ndarray of ints with dimension = self.dimension
wan
ret = np.empty(self.dimension, dtype=int)
ret_ind = 0 # current index in returned index array
process each component from target rv
for comp in self.components:
find associated component in source rv components:
src_ind = 0 # index in source vector
for source_comp in super_ rv.components:
if source_comp is comp:
ret[ret_ind:] = np.arange(src_ind, src_ind + comp.dimension)
ret_ind += comp.dimension
break;
src_ind += source_comp.dimension
else:

raise AttributeError ("Cannont find component "+str (comp)+" in source_rv.components.")

return ret

222 | elass CPdf (object) :

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

r"""Base class for all Conditional (in general) Probability Density Functions.

When you evaluate a CPdf the result generally also depends on a condition
(vector) named ‘cond’ in PyBayes. For a CPdf that is a :class: 'Pdf’ this is
not the case, the result is unconditional.

Every CPdf takes (apart from others) 2 optional arguments to constructor:

ry (:class: RV') and **cond rv** (:class: RV'). When specified, they

denote that the CPdf is associated with a particular random variable (respectively
its condition is associated with a particular random variable); when unspecified,
anonymous random variable is assumed (exceptions exist, see :class: ProdPdf’).
It is an error to pass RV whose dimension is not same as CPdf's dimension

(or cond dimension respectively).

:var RV rv: associated random variable (always set in constructor, contains
at least one RVComp)

:var RV cond_rv: associated condition random variable (set in constructor to
potentially empty RV)

*While you can assign different rv and cond_rv to a CPdf, you should be
cautious because sanity checks are only performed in constructor.*

While entire idea of random variable associations may not be needed in simple
cases, it allows you to express more complicated situations. Assume the state

file:///home/strohel/projekty/pybayes/sandbox/h...

07/23/2011 09:16 PM

