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**test components**.

:param test components: list of components whose presence is checked
:type test_components: sequence of :class: RVComp' items
wan
for test comp in test components:
if not self.contains(test_comp) :
return False
return True;

def contains_any(self, test_components):
"""Return True if this RV contains any of **test components**.

:param test components: sequence of components whose presence is tested
:type test_components: sequence of :class: RVComp' items
wan
for test comp in test components:
if self.contains(test_comp) :
return True
return False

def contained in(self, test_components):
"""Return True if sequence **test components** contains all components
from this RV (and perhaps more) .

:param test components: set of components whose presence is checked
:type test_components: sequence of :class: RVComp' items
wan
for component in self.components:
if component not in test components:
return False
return True

def indexed in(self, super rv):
"""Return index array such that this rv is indexed in **super rv**, which
must be a superset of this rv. Resulting array can be used with :func: numpy.take"
and :func: numpy.put’.

:param super_rv: returned indices apply to this rv
:type super_rv: :class: RV®
:rtype: 1D :class: numpy.ndarray of ints with dimension = self.dimension
wan
ret = np.empty(self.dimension, dtype=int)
ret_ind = 0 # current index in returned index array
# process each component from target rv
for comp in self.components:
# find associated component in source rv components:
src_ind = 0 # index in source vector
for source_comp in super_ rv.components:
if source_comp is comp:
ret[ret_ind:] = np.arange(src_ind, src_ind + comp.dimension)
ret_ind += comp.dimension
break;
src_ind += source_comp.dimension
else:

raise AttributeError ("Cannont find component "+str (comp)+" in source_rv.components.")

return ret
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r"""Base class for all Conditional (in general) Probability Density Functions.

When you evaluate a CPdf the result generally also depends on a condition
(vector) named ‘cond’ in PyBayes. For a CPdf that is a :class: 'Pdf’ this is
not the case, the result is unconditional.

Every CPdf takes (apart from others) 2 optional arguments to constructor:

**ry** (:class: RV') and **cond rv** (:class: RV'). When specified, they

denote that the CPdf is associated with a particular random variable (respectively
its condition is associated with a particular random variable); when unspecified,
*anonymous* random variable is assumed (exceptions exist, see :class: ProdPdf’).
It is an error to pass RV whose dimension is not same as CPdf's dimension

(or cond dimension respectively).

:var RV rv: associated random variable (always set in constructor, contains
at least one RVComp)

:var RV cond_rv: associated condition random variable (set in constructor to
potentially empty RV)

*While you can assign different rv and cond_rv to a CPdf, you should be
cautious because sanity checks are only performed in constructor.*

While entire idea of random variable associations may not be needed in simple
cases, it allows you to express more complicated situations. Assume the state
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