
vegas Documentation
Release 3.3.1

G.P. Lepage

April 18, 2017

CONTENTS

1 Tutorial 3
1.1 Introduction . 3
1.2 Basic Integrals . 4
1.3 Multiple Integrands Simultaneously . 10
1.4 Faster Integrands . 12
1.5 Multiple Processors . 15
1.6 Sums with vegas . 16
1.7 vegas as a Random Number Generator . 17
1.8 Integrands in C or Fortran . 18
1.9 Implementation Notes . 22

2 How vegas Works 25
2.1 Importance Sampling . 25
2.2 The vegas Grid . 26
2.3 Adaptive Stratified Sampling . 28

3 vegas Module 31
3.1 Introduction . 31
3.2 Integrator Objects . 31
3.3 AdaptiveMap Objects . 35
3.4 PDFIntegrator Objects . 40
3.5 Other Objects and Functions . 42

4 Indices and tables 45

Python Module Index 47

Index 49

i

ii

vegas Documentation, Release 3.3.1

Contents:

CONTENTS 1

vegas Documentation, Release 3.3.1

2 CONTENTS

CHAPTER

ONE

TUTORIAL

1.1 Introduction

Class vegas.Integrator gives Monte Carlo estimates of arbitrary multidimensional integrals using the vegas
algorithm (G. P. Lepage, J. Comput. Phys. 27 (1978) 192). The algorithm has two components. First an automatic
transformation is applied to to the integration variables in an attempt to flatten the integrand. Then a Monte Carlo
estimate of the integral is made using the transformed variables. Flattening the integrand makes the integral easier and
improves the estimate. The transformation applied to the integration variables is optimized over several iterations of the
algorithm: information about the integrand that is collected during one iteration is used to improve the transformation
used in the next iteration.

Monte Carlo integration makes few assumptions about the integrand — it needn’t be analytic nor even continuous.
This makes Monte Carlo integation unusually robust. It also makes it well suited for adaptive integration. Adaptive
strategies are essential for multidimensional integration, especially in high dimensions, because multidimensional
space is large, with lots of corners, making it easy to lose important features in the integrand.

Monte Carlo integration also provides efficient and reliable methods for estimating the accuracy of its results. In
particular, each Monte Carlo estimate of an integral is a random number from a distribution whose mean is the correct
value of the integral. This distribution is Gaussian or normal provided the number of integrand samples is sufficiently
large. In practive we generate multiple estimates of the integral in order to verify that the distribution is indeed
Gaussian. Error analysis is straightforward if the integral estimates are Gaussian.

The vegas algorithm has been in use for decades and implementations are available in many programming languages,
including Fortran (the original version), C and C++. The algorithm used here is significantly improved over the original
implementation, and that used in most other implementations. It uses two adaptive strategies: importance sampling,
as in the original implementation, and adaptive stratified sampling, which is new.

This module is written in Cython, so it is almost as fast as compiled Fortran or C, particularly when the integrand is
also coded in Cython (or some other compiled language), as discussed below.

The following sections describe how to use vegas. Almost every example shown is a complete code, which can be
copied into a file and run with python. It is worthwhile playing with the parameters to see how things change.

About Printing: The examples in this tutorial use the print function as it is used in Python 3. Drop the outermost
parenthesis in each print statement if using Python 2, or add

from __future__ import print_function

at the start of your file.

3

vegas Documentation, Release 3.3.1

1.2 Basic Integrals

Here we illustrate the use of vegas by estimating the integral

𝐶

∫︁ 1

−1

𝑑𝑥0

∫︁ 1

0

𝑑𝑥1

∫︁ 1

0

𝑑𝑥2

∫︁ 1

0

𝑑𝑥3 e−100
∑︀

𝑑(𝑥𝑑−0.5)2 ,

where constant 𝐶 is chosen so that the exact integral is 1. The following code shows how this can be done:

import vegas
import math

def f(x):
dx2 = 0
for d in range(4):

dx2 += (x[d] - 0.5) ** 2
return math.exp(-dx2 * 100.) * 1013.2118364296088

integ = vegas.Integrator([[-1, 1], [0, 1], [0, 1], [0, 1]])

result = integ(f, nitn=10, neval=1000)
print(result.summary())
print('result = %s Q = %.2f' % (result, result.Q))

First we define the integrand f(x)where x[d] specifies a point in the 4-dimensional space. We then create an integra-
tor, integ, which is an integration operator that can be applied to any 4-dimensional function. It is where we specify
the integration volume. Finally we apply integ to our integrand f(x), telling the integrator to estimate the integral
using nitn=10 iterations of the vegas algorithm, each of which uses no more than neval=1000 evaluations of
the integrand. Each iteration produces an independent estimate of the integral. The final estimate is the weighted
average of the results from all 10 iterations, and is returned by integ(f ...). The call result.summary()
returns a summary of results from each iteration.

This code produces the following output:

itn integral wgt average chi2/dof Q

1 2.4(1.9) 2.4(1.9) 0.00 1.00
2 1.19(32) 1.23(32) 0.42 0.52
3 0.910(90) 0.934(87) 0.68 0.51
4 1.041(70) 0.999(55) 0.76 0.52
5 1.090(43) 1.055(34) 1.00 0.41
6 0.984(34) 1.020(24) 1.24 0.29
7 1.036(27) 1.027(18) 1.07 0.38
8 0.987(22) 1.011(14) 1.20 0.30
9 0.995(18) 1.005(11) 1.11 0.35

10 0.993(17) 1.0015(91) 1.02 0.42

result = 1.0015(91) Q = 0.42

There are several things to note here:

Adaptation: Integration estimates are shown for each of the 10 iterations, giving both the estimate from
just that iteration, and the weighted average of results from all iterations up to that point. The estimates
from the first two iterations are not accurate at all, with errors equal to 30–190% of the final result.
vegas initially has no information about the integrand and so does a relatively poor job of estimating the
integral. It uses information from the samples in one iteration, however, to remap the integration variables
for subsequent iterations, concentrating samples where the function is largest and reducing errors. As a
result, the per-iteration error is reduced to 4.3% by the fifth iteration, and below 2% by the end — an

4 Chapter 1. Tutorial

vegas Documentation, Release 3.3.1

improvement by almost two orders of magnitude from the start. Eventually the per-iteration error stops
decreasing because vegas has found the optimal remapping, at which point it has fully adapted to the
integrand.

Weighted Average: The final result, 1.0015 ± 0.0091, is obtained from a weighted average of the separate
results from each iteration: estimates are weighted by the inverse variance, thereby giving much less
weight to the early iterations, where the errors are largest. The individual estimates are statistical: each is
a random number drawn from a distribution whose mean equals the correct value of the integral, and the
errors quoted are estimates of the standard deviations of those distributions. The distributions are Gaussian
provided the number of integrand evaluations per iteration (neval) is sufficiently large, in which case
the standard deviation is a reliable estimate of the error. The weighted average 𝐼 minimizes

𝜒2 ≡
∑︁
𝑖

(𝐼𝑖 − 𝐼)2

𝜎2
𝑖

where 𝐼𝑖±𝜎𝑖 are the estimates from individual iterations. If the 𝐼𝑖 are Gaussian, 𝜒2 should be of order the
number of degrees of freedom (plus or minus the square root of that number); here the number of degrees
of freedom is the number of iterations minus 1.

The distributions are likely non-Gaussian, and error estimates unreliable, if 𝜒2 is much larger than the
number of iterations. This criterion is quantified by the Q or p-value of the 𝜒2, which is the probability
that a larger 𝜒2 could result from random (Gaussian) fluctuations. A very small Q (less than 0.05-0.1)
indicates that the 𝜒2 is too large to be accounted for by statistical fluctuations — that is, the estimates of
the integral from different iterations do not agree with each other to within errors. This means that neval
is not sufficiently large to guarantee Gaussian behavior, and must be increased if the error estimates are to
be trusted.

integ(f...) returns a weighted-average object, of type vegas.RAvg, that has the following at-
tributes:

result.mean — weighted average of all estimates of the integral;

result.sdev — standard deviation of the weighted average;

result.chi2 — 𝜒2 of the weighted average;

result.dof — number of degrees of freedom;

result.Q — Q or p-value of the weighted average’s 𝜒2;

result.itn_results — list of the integral estimates from each iteration.

In this example the final Q is 0.42, indicating that the 𝜒2 for this average is not particularly unlikely and
thus the error estimate is most likely reliable.

Precision: The precision of vegas estimates is determined by nitn, the number of iterations of the
vegas algorithm, and by neval, the maximum number of integrand evaluation made per iteration. The
computing cost is typically proportional to the product of nitn and neval. The number of integrand
evaluations per iteration varies from iteration to iteration, here between 486 and 959. Typically vegas
needs more integration points in early iterations, before it has fully adapted to the integrand.

We can increase precision by increasing either nitn or neval, but it is generally far better to increase
neval. For example, adding the following lines to the code above

result = integ(f, nitn=100, neval=1000)
print('larger nitn => %s Q = %.2f' % (result, result.Q))

result = integ(f, nitn=10, neval=1e4)
print('larger neval => %s Q = %.2f' % (result, result.Q))

generates the following results:

1.2. Basic Integrals 5

vegas Documentation, Release 3.3.1

larger nitn => 0.9968(15) Q = 0.43
larger neval => 0.99978(67) Q = 0.42

The total number of integrand evaluations, nitn * neval, is about the same in both cases, but increas-
ing neval is more than twice as accurate as increasing nitn. Typically you want to use no more than
10 or 20 iterations beyond the point where vegas has fully adapted. You want some number of iterations
so that you can verify Gaussian behavior by checking the 𝜒2 and Q, but not too many.

It is also generally useful to compare two or more results from values of neval that differ by a significant
factor (4–10, say). These should agree within errors. If they do not, it could be due to non-Gaussian
artifacts caused by a small neval. vegas estimates have two sources of error. One is the statistical
error, which is what is quoted by vegas. The other is a systematic error due to residual non-Gaussian
effects. The systematic error vanishes like 1/neval and so becomes negligible compared with the
statistical error as neval increases. The systematic error can bias the Monte Carlo estimate, however,
if neval is insufficiently large. This usually results in a large 𝜒2 (and small Q), but a more reliable
check is to compare results that use signficantly different values of neval. The systematic errors due to
non-Gaussian behavior are likely negligible if the different estimates agree to within the statistical errors.

The possibility of systematic biases is another reason for increasing neval rather than nitn to obtain
more precision. Making neval larger and larger is guaranteed to improve the Monte Carlo estimate, as
the statistical error decreases (at least as fast as sqrt(1/neval) and often faster) and the systematic
error decreases even more quickly (like 1/neval). Making nitn larger and larger, on the other hand, is
guaranteed eventually to give the wrong answer. This is because at some point the statistical error (which
falls as sqrt(1/nitn)) will no longer mask the systematic error (which is unaffected by nitn). The
systematic error for the integral above (with neval=1000) is about -0.0008(1), which is negligible
compared to the statistical error unless nitn is of order 1500 or larger — so systematic errors aren’t a
problem with nitn=10.

Early Iterations: Integral estimates from early iterations, before vegas has adapted, can be quite crude.
With very peaky integrands, these are often far from the correct answer with highly unreliable error
estimates. For example, the integral above becomes more difficult if we double the length of each side of
the integration volume by redefining integ as:

integ = vegas.Integrator([[-2, 2], [0, 2], [0, 2], [0., 2]])

The code above then gives:

itn integral wgt average chi2/dof Q

1 0.013(13) 0.013(13) 0.00 1.00
2 0.0165(80) 0.0154(67) 0.07 0.79
3 2.07(96) 0.0155(67) 2.31 0.10
4 0.86(26) 0.0160(67) 5.06 0.00
5 1.01(11) 0.0199(67) 25.01 0.00
6 0.963(64) 0.0302(67) 63.06 0.00
7 1.032(41) 0.0561(66) 149.77 0.00
8 0.924(31) 0.0924(64) 232.41 0.00
9 1.037(28) 0.1410(63) 341.52 0.00

10 0.976(22) 0.2026(60) 448.77 0.00

result = 0.2026(60) Q = 0.00

vegas misses the peak completely in the first two iterations, giving estimates that are completely wrong
(by 76 and 123 standard deviations!). Some of its samples hit the peak’s shoulders, so vegas is eventually
able to find the peak (by iterations 5–6), but the integrand estimates are wildly non-Gaussian before that
point. This results in a nonsensical final result, as indicated by the Q = 0.00.

It is common practice in using vegas to discard estimates from the first several iterations, before the

6 Chapter 1. Tutorial

vegas Documentation, Release 3.3.1

algorithm has adapted, in order to avoid ruining the final result in this way. This is done by replacing the
single call to integ(f...) in the original code with two calls:

step 1 -- adapt to f; discard results
integ(f, nitn=7, neval=1000)

step 2 -- integ has adapted to f; keep results
result = integ(f, nitn=10, neval=1000)
print(result.summary())
print('result = %s Q = %.2f' % (result, result.Q))

The integrator is trained in the first step, as it adapts to the integrand, and so is more or less fully adapted
from the start in the second step, which yields:

itn integral wgt average chi2/dof Q

1 1.042(26) 1.042(26) 0.00 1.00
2 1.010(18) 1.020(15) 0.99 0.32
3 0.999(14) 1.009(10) 1.05 0.35
4 0.965(16) 0.9963(86) 2.47 0.06
5 0.994(15) 0.9958(74) 1.86 0.11
6 1.001(15) 0.9968(66) 1.51 0.18
7 0.999(15) 0.9971(61) 1.26 0.27
8 0.994(13) 0.9965(55) 1.09 0.37
9 1.017(22) 0.9977(53) 1.05 0.39

10 0.981(16) 0.9961(50) 1.04 0.40

result = 0.9961(50) Q = 0.40

The final result is now reliable.

Other Integrands: Once integ has been trained on f(x), it can be usefully applied to other functions
with similar structure. For example, adding the following at the end of the original code,

def g(x):
return x[0] * f(x)

result = integ(g, nitn=10, neval=1000)
print(result.summary())
print('result = %s Q = %.2f' % (result, result.Q))

gives the following new output:

itn integral wgt average chi2/dof Q

1 0.5015(83) 0.5015(83) 0.00 1.00
2 0.5099(68) 0.5065(53) 0.61 0.43
3 0.4992(73) 0.5040(43) 0.63 0.53
4 0.5121(61) 0.5066(35) 0.81 0.49
5 0.5046(73) 0.5062(32) 0.62 0.65
6 0.4918(63) 0.5033(28) 1.34 0.25
7 0.5053(99) 0.5035(27) 1.12 0.35
8 0.4997(69) 0.5030(25) 1.00 0.43
9 0.5016(81) 0.5029(24) 0.88 0.54

10 0.4951(75) 0.5021(23) 0.88 0.54

result = 0.5021(23) Q = 0.54

Again the grid is almost optimal for g(x) from the start, because g(x) peaks in the same region as
f(x). The exact value for this integral is very close to 0.5.

1.2. Basic Integrals 7

vegas Documentation, Release 3.3.1

Note that vegas.Integrators can be saved in files and reloaded later using Python’s pickle mod-
ule: for example, pickle.dump(integ, openfile) saves integrator integ in file openfile,
and integ = pickle.load(openfile) reloads it. The is useful for costly integrations that might
need to be reanalyzed later since the integrator remembers the variable transformations made to minimize
errors, and so need not be readapted to the integrand when used later.

Non-Rectangular Volumes: vegas can integrate over volumes of non-rectangular shape. For example,
we can replace integrand f(x) above by the same Gaussian, but restricted to a 4-sphere of radius 0.2,
centered on the Gaussian:

import vegas
import math

def f_sph(x):
dx2 = 0
for d in range(4):

dx2 += (x[d] - 0.5) ** 2
if dx2 < 0.2 ** 2:

return math.exp(-dx2 * 100.) * 1115.3539360527281318
else:

return 0.0

integ = vegas.Integrator([[-1, 1], [0, 1], [0, 1], [0, 1]])

integ(f_sph, nitn=10, neval=1000) # adapt the grid
result = integ(f_sph, nitn=10, neval=1000) # estimate the integral
print(result.summary())
print('result = %s Q = %.2f' % (result, result.Q))

The normalization is adjusted to again make the exact integral equal 1. Integrating as before gives:

itn integral wgt average chi2/dof Q

1 1.005(41) 1.005(41) 0.00 1.00
2 1.055(37) 1.033(27) 0.82 0.37
3 1.048(63) 1.035(25) 0.43 0.65
4 1.051(63) 1.037(23) 0.31 0.82
5 0.994(23) 1.015(16) 0.68 0.61
6 1.008(33) 1.014(15) 0.55 0.74
7 1.030(34) 1.016(13) 0.49 0.82
8 0.971(18) 1.000(11) 0.99 0.43
9 1.005(34) 1.001(10) 0.87 0.54

10 1.039(29) 1.0049(97) 0.94 0.48

result = 1.0049(97) Q = 0.48

It is a good idea to make the actual integration volume as large a fraction as possible of the total volume
used by vegas — by choosing integration variables properly — so vegas doesn’t spend lots of effort
on regions where the integrand is exactly 0. Also, it can be challenging for vegas to find the region
of non-zero integrand in high dimensions: integrating f_sph(x) in 20 dimensions instead of 4, for
example, would require neval=1e16 integrand evaluations per iteration to have any chance of finding
the region of non-zero integrand, because the volume of the 20-dimensional sphere is a tiny fraction of the
total integration volume. The final error in the example above would have been cut in half had we used the
integration volume 4 * [[0.3, 0.7]] instead of [[-1, 1], [0, 1], [0, 1], [0, 1]].

Note, finally, that integration to infinity is also possible: map the relevant variable into a different variable
of finite range. For example, an integral over 𝑥 ≡ tan(𝜃) from 0 to infinity is easily reexpressed as an
integral over 𝜃 from 0 to 𝜋/2.

8 Chapter 1. Tutorial

vegas Documentation, Release 3.3.1

Damping: This result in the previous section can be improved somewhat by slowing down vegas’s
adaptation:
...
integ(f_sph, nitn=10, neval=1000, alpha=0.1)
result = integ(f_sph, nitn=10, neval=1000, alpha=0.1)
...

Parameter alpha controls the speed with which vegas adapts, with smaller alphas giving slower
adaptation. Here we reduce alpha to 0.1, from its default value of 0.5, and get the following output:

itn integral wgt average chi2/dof Q

1 1.004(21) 1.004(21) 0.00 1.00
2 0.988(24) 0.997(16) 0.26 0.61
3 1.023(24) 1.005(13) 0.56 0.57
4 0.996(19) 1.002(11) 0.43 0.73
5 1.009(25) 1.0032(99) 0.34 0.85
6 0.981(22) 0.9995(90) 0.44 0.82
7 1.010(22) 1.0010(84) 0.40 0.88
8 0.979(20) 0.9978(77) 0.48 0.85
9 1.068(25) 1.0037(74) 1.29 0.24

10 0.973(24) 1.0010(71) 1.32 0.22

result = 1.0031(72) Q = 0.14

Notice how the errors fluctuate less from iteration to iteration with the smaller alpha in this case. Per-
sistent, large fluctuations in the size of the per-iteration errors is often a signal that alpha should be
reduced. With larger alphas, vegas can over-react to random fluctuations it encounters as it samples
the integrand.

In general, we want alpha to be large enough so that vegas adapts quickly to the integrand, but not so
large that it has difficulty holding on to the optimal tuning once it has found it. The best value depends
upon the integrand.

adapt=False: Adaptation can be turned off completely by setting parameter adapt=False. There are
three reasons one might do this. The first is if vegas is exhibiting the kind of instability discussed in the
previous section — one might use the following code, instead of that presented there:
...
integ(f_sph, nitn=10, neval=1000, alpha=0.1)
result = integ(f_sph, nitn=10, neval=1000, adapt=False)
...

The second reason is that vegas runs slightly faster when it is no longer adapting to the integrand. The
difference is not signficant for complicated integrands, but is noticable in simpler cases.

The third reason for turning off adaptation is that vegas uses unweighted averages, rather than weighted
averages, to combine results from different iterations when adapt=False. Unweighted averages are
not biased. They have no systematic error of the sort discussed above, and so give correct results even for
very large numbers of iterations, nitn.

The lack of systematic biases is not a strong reason for turning off adaptation, however, since the biases
are usually negligible (see above). The most important reason is the first: stability. It is particularly
relevant if the number of integrand evaluations neval is small for the integrand.

Training the integrator and then setting adapt=False for the final results works best if the number
of evaluations per iteration (neval) is the same in both steps. This is because the second of vegas‘s
adaptation strategies (adaptive stratified sampling) is usually reinitialized when neval changes, and so
is not used at all when neval is changed at the same time adapt=False is set.

1.2. Basic Integrals 9

vegas Documentation, Release 3.3.1

1.3 Multiple Integrands Simultaneously

vegas can be used to integrate multiple integrands simultaneously, using the same integration points for each of the
integrands. This is useful in situations where the integrands have similar structure, with peaks in the same locations.
There can be signficant advantages in sampling different integrands at precisely the same points in x space, because
then Monte Carlo estimates for the different integrals are correlated. If the integrands are very similar to each other, the
correlations can be very strong. This leads to greatly reduced errors in ratios or differences of the resulting integrals
as the fluctuations cancel.

Consider a simple example. We want to compute the normalization and first two moments of a sharply peaked proba-
bility distribution:

𝐼0 ≡
∫︁ 1

0

𝑑4𝑥 e−200
∑︀

𝑑(𝑥𝑑−0.5)2

𝐼1 ≡
∫︁ 1

0

𝑑4𝑥 𝑥0 e−200
∑︀

𝑑(𝑥𝑑−0.5)2

𝐼2 ≡
∫︁ 1

0

𝑑4𝑥 𝑥2
0 e−200

∑︀
𝑑(𝑥𝑑−0.5)2

From these integrals we determine the mean and width of the distribution projected onto one of the axes:

⟨𝑥⟩ ≡ 𝐼1/𝐼0

𝜎2
𝑥 ≡ ⟨𝑥2⟩ − ⟨𝑥⟩2

= 𝐼2/𝐼0 − (𝐼1/𝐼0)2

This can be done using the following code:

import vegas
import math
import gvar as gv

def f(x):
dx2 = 0.0
for d in range(4):

dx2 += (x[d] - 0.5) ** 2
f = math.exp(-200 * dx2)
return [f, f * x[0], f * x[0] ** 2]

integ = vegas.Integrator(4 * [[0, 1]])

adapt grid
training = integ(f, nitn=10, neval=2000)

final analysis
result = integ(f, nitn=10, neval=10000)
print('I[0] =', result[0], ' I[1] =', result[1], ' I[2] =', result[2])
print('Q = %.2f\n' % result.Q)
print('<x> =', result[1] / result[0])
print(

'sigma_x**2 = <x**2> - <x>**2 =',
result[2] / result[0] - (result[1] / result[0]) ** 2
)

print('\ncorrelation matrix:\n', gv.evalcorr(result))

The code is very similar to that used in the previous section. The main difference is that the integrand function and
vegas return arrays of results — in both cases, one result for each of the three integrals. vegas always adapts to the
first integrand in the array. The Q value is for all three of the integrals, taken together.

10 Chapter 1. Tutorial

vegas Documentation, Release 3.3.1

The code produces the following output:

I[0] = 0.00024677(17) I[1] = 0.000123397(85) I[2] = 0.000062322(45)
Q = 0.49

<x> = 0.500056(59)
sigma_x**2 = <x**2> - <x>**2 = 0.0024974(83)

correlation matrix:
[[1. 0.98520462 0.94374824]
[0.98520462 1. 0.98591163]
[0.94374824 0.98591163 1.]]

The estimates for the individual integrals are separately accurate to about ±0.07%, but the estimate for ⟨𝑥⟩ = 𝐼1/𝐼0 is
accurate to ±0.01%. This is almost an order of magnitude (8x) more accurate than we would obtain absent correlations.
The correlation matrix shows that there is 98% correlation between the statistical fluctuations in estimates for 𝐼0 and
𝐼1, and so the bulk of these fluctuations cancel in the ratio. The estimate for the variance 𝜎2

𝑥 is 51x more accurate than
we would have obtained had the integrals been evaluated separately. Both estimates are correct to within the quoted
errors.

The individual results are objects of type gvar.GVar, which represent Gaussian random variables. Such objects
have means (result[i].mean) and standard deviations (result[i].sdev), but also can be statistically cor-
related with other gvar.GVars. Such correlations are handled automatically by gvar when gvar.GVars are
combined with each other or with numbers in arithmetical expressions. (Documentation for gvar can be found at
http://pythonhosted.org/gvar or with the source code at https://github.com/gplepage/gvar.git.)

Integrands can return dictionaries instead of arrays. The example above, for example, can be rewritten as

import vegas
import math
import gvar as gv

def f(x):
dx2 = 0.0
for d in range(4):

dx2 += (x[d] - 0.5) ** 2
f = math.exp(-200 * dx2)
return {'1':f, 'x':f * x[0], 'x**2':f * x[0] ** 2}

integ = vegas.Integrator(4 * [[0, 1]])

adapt grid
training = integ(f, nitn=10, neval=2000)

final analysis
result = integ(f, nitn=10, neval=10000)
print(result)
print('Q = %.2f\n' % result.Q)
print('<x> =', result['x'] / result['1'])
print(

'sigma_x**2 = <x**2> - <x>**2 =',
result['x**2'] / result['1'] - (result['x'] / result['1']) ** 2
)

which returns the following output:

{'1': 0.00024677(17),'x': 0.000123397(85),'x**2': 0.000062322(45)}
Q = 0.49

1.3. Multiple Integrands Simultaneously 11

http://pythonhosted.org/gvar
https://github.com/gplepage/gvar.git

vegas Documentation, Release 3.3.1

<x> = 0.500056(59)
sigma_x**2 = <x**2> - <x>**2 = 0.0024974(83)

The result returned by vegas is a dictionary using the same keys as the dictionary returned by the integrand. Using
a dictionary with descriptive keys, instead of an array, can often make code more intelligible, and, therefore, easier
to write and maintain. Here the values in the integrand’s dictionary are all numbers; in general, values can be either
numbers or arrays (of any shape).

1.4 Faster Integrands

The computational cost of a realistic multidimensional integral comes mostly from the cost of evaluating the integrand
at the Monte Carlo sample points. Integrands written in pure Python are probably fast enough for problems where
neval=1e3 or neval=1e4 gives enough precision. Some problems, however, require hundreds of thousands or
millions of function evaluations, or more.

We can significantly reduce the cost of evaluating the integrand by using vegas‘s batch mode. For example, replacing

import vegas
import math

def f(x):
dim = len(x)
norm = 1013.2118364296088 ** (dim / 4.)
dx2 = 0.0
for d in range(dim):

dx2 += (x[d] - 0.5) ** 2
return math.exp(-100. * dx2) * norm

integ = vegas.Integrator(4 * [[0, 1]])

integ(f, nitn=10, neval=2e5)
result = integ(f, nitn=10, neval=2e5)
print('result = %s Q = %.2f' % (result, result.Q))

by

import vegas
import numpy as np

@vegas.batchintegrand
def f_batch(x):

evaluate integrand at multiple points simultaneously
dim = x.shape[1]
norm = 1013.2118364296088 ** (dim / 4.)
dx2 = 0.0
for d in range(dim):

dx2 += (x[:, d] - 0.5) ** 2
return np.exp(-100. * dx2) * norm

integ = vegas.Integrator(4 * [[0, 1]])

integ(f_batch, nitn=10, neval=2e5)
result = integ(f_batch, nitn=10, neval=2e5)
print('result = %s Q = %.2f' % (result, result.Q))

reduces the cost of the integral by an order of magnitude. Internally vegas processes integration points in batches.
(vegas parameter nhcube_batch determines the number of integration points per batch (typically 1000s).) In

12 Chapter 1. Tutorial

vegas Documentation, Release 3.3.1

batch mode, vegas presents integration points to the integrand in batches rather than offering them one at a time.
Here, for example, function f_batch(x) accepts an array of integration points — x[i, d] where i=0... labels
the integration point and d=0... the direction — and returns an array of integrand values corresponding to those
points. The decorator vegas.batchintegrand() tells vegas that it should send integration points to f(x) in
batches.

An alternative to a function decorated with vegas.batchintegrand() is a class derived from
vegas.BatchIntegrand that behaves like a batch integrand:

import vegas
import numpy as np

class f_batch(vegas.BatchIntegrand):
def __init__(self, dim):

self.dim = dim
self.norm = 1013.2118364296088 ** (dim / 4.)

def __call__(self, x):
evaluate integrand at multiple points simultaneously
dx2 = 0.0
for d in range(self.dim):

dx2 += (x[:, d] - 0.5) ** 2
return np.exp(-100. * dx2) * self.norm

f = f_batch(dim=4)
integ = vegas.Integrator(f.dim * [[0, 1]])

integ(f, nitn=10, neval=2e5)
result = integ(f, nitn=10, neval=2e5)
print('result = %s Q = %.2f' % (result, result.Q))

This version is as fast as the previous batch integrand, but is potentially more flexible because it is built around a class
rather than a function.

The batch integrands here are fast because they are expressed in terms numpy operators that act on entire arrays —
they evaluate the integrand for all integration points in a batch at the same time. That optimization is not always
possible or simple. It is unnecessary if we write the integrand in Cython, which is a compiled hybrid of Python and C.
The Cython version of the (batch) integrand is:

file: cython_integrand.pyx

import numpy as np

use exp from C
from libc.math cimport exp

def f_batch(double[:, ::1] x):
cdef int i # labels integration point
cdef int d # labels direction
cdef int dim = x.shape[1]
cdef double norm = 1013.2118364296088 ** (dim / 4.)
cdef double dx2
cdef double[::1] ans = np.empty(x.shape[0], float)
for i in range(x.shape[0]):

integrand for integration point x[i]
dx2 = 0.0
for d in range(dim):

dx2 += (x[i, d] - 0.5) ** 2
ans[i] = exp(-100. * dx2) * norm

1.4. Faster Integrands 13

vegas Documentation, Release 3.3.1

return ans

We put this in a separate file called, say, cython_integrand.pyx, and rewrite the main code as:

import numpy as np
import pyximport
pyximport.install(inplace=True)

import vegas
from cython_integrand import f_batch
f = vegas.batchintegrand(f_batch)

integ = vegas.Integrator(4 * [[0, 1]])

integ(f, nitn=10, neval=2e5)
result = integ(f, nitn=10, neval=2e5)
print('result = %s Q = %.2f' % (result, result.Q))

Module pyximport is used here to cause the Cython module cython_integrand.pyx to be compiled the first
time it is imported. The compiled code is used in subsequent imports, so compilation occurs only once.

Batch mode is also useful for array-valued integrands. The code from the previous section could have been written as:

import vegas
import gvar as gv
import numpy as np

dim = 4

@vegas.batchintegrand
def f(x):

ans = np.empty((x.shape[0], 3), float)
dx2 = 0.0
for d in range(dim):

dx2 += (x[:, d] - 0.5) ** 2
ans[:, 0] = np.exp(-200 * dx2)
ans[:, 1] = x[:, 0] * ans[:, 0]
ans[:, 2] = x[:, 0] ** 2 * ans[:, 0]
return ans

integ = vegas.Integrator(4 * [[0, 1]])

adapt grid
training = integ(f, nitn=10, neval=2000)

final analysis
result = integ(f, nitn=10, neval=10000)
print('I[0] =', result[0], ' I[1] =', result[1], ' I[2] =', result[2])
print('Q = %.2f\n' % result.Q)
print('<x> =', result[1] / result[0])
print(

'sigma_x**2 = <x**2> - <x>**2 =',
result[2] / result[0] - (result[1] / result[0]) ** 2
)

print('\ncorrelation matrix:\n', gv.evalcorr(result))

Note that the batch index (here :) always comes first. An extra (first) index is also added to each value in the dictionary
returned by a dictionary-valued batch integrand: e.g.,

14 Chapter 1. Tutorial

vegas Documentation, Release 3.3.1

dim = 4

@vegas.batchintegrand
def f(x):

ans = {}
dx2 = 0.0
for d in range(dim):

dx2 += (x[:, d] - 0.5) ** 2
ans['1'] = np.exp(-200 * dx2)
ans['x'] = x[:, 0] * ans['1']
ans['x**2'] = x[:, 0] ** 2 * ans['1']
return ans

1.5 Multiple Processors

vegas supports multi-processor evaluation of integrands using MPI, via the Python module mpi4py (which must be
installed separately). This can shorten execution time substantially when the integrand is costly to evaluate.

MPI support works for any integrand. For example, the script

file: ridge.py

import vegas
import numpy as np

Integrand: ridge of N Gaussians spread evenly along the diagonal
def ridge(x):

N = 10000
x0 = np.arange(0.0, N) / (N - 1.)
dx2 = 0.0
for xd in x:

dx2 += (xd - x0) ** 2
return np.average(np.exp(-100. * dx2)) * (100. / np.pi) ** (len(x) / 2.)

def main():
integ = vegas.Integrator(4 * [[0, 1]])
adapt
integ(ridge, nitn=10, neval=1e4)
final results
result = integ(ridge, nitn=10, neval=1e4)
if integ.mpi_rank == 0:

print('result = %s Q = %.2f' % (result, result.Q))

if __name__ == '__main__':
main()

can be run on 2 processors using

mpirun -np 2 python ridge.py

This cuts the run time almost in half. The speed is not exactly doubled because time is required to move integration
results between the different CPUs. The code uses the MPI rank of the processes so that only one of them prints out
results:

result = 0.8559(39) Q = 0.52

1.5. Multiple Processors 15

vegas Documentation, Release 3.3.1

Note that the random number generator used by vegas must be synchronized so that it produces the same random
numbers on the different processors. This happens automatically for the default random-number generator (unless
vegas.Integrator parameter sync_ran is set to False).

vegas‘s batch mode makes it possible to implement other strategies for distributing integrand evaluations across mul-
tiple processors. For example, we can create a class parallelintegrand whose function is similar to decorator
vegas.batchintegrand(), but where Python’s multiprocessing module provides parallel processing:

import multiprocessing
import numpy as np
import vegas

class parallelintegrand(vegas.BatchIntegrand):
""" Convert (batch) integrand into multiprocessor integrand.

Integrand should return a numpy array.
"""
def __init__(self, fcn, nproc=4):

" Save integrand; create pool of nproc processes. "
self.fcn = fcn
self.nproc = nproc
self.pool = multiprocessing.Pool(processes=nproc)

def __del__(self):
" Standard cleanup. "
self.pool.close()
self.pool.join()

def __call__(self, x):
" Divide x into self.nproc chunks, feeding one to each process. "
nx = x.shape[0] // self.nproc + 1
launch evaluation of self.fcn for each chunk, in parallel
results = self.pool.map(

self.fcn,
[x[i*nx : (i+1)*nx] for i in range(self.nproc)],
1,
)

convert list of results into a single numpy array
return np.concatenate(results)

Then fparallel = parallelintegrand(f, 4), for example, will create a new integrand fparallel(x)
that uses 4 CPUs. Python’s multiprocessing module has limitations, particularly on Windows machines, which
make this approach to multi-processing less robust than MPI.

1.6 Sums with vegas

The code in the previous sections is inefficient in the way it handles the sum over 10,000 Gaussians. It is not necessary
to include every term in the sum for every integration point. Rather we can sample the sum, using vegas to do the
sampling. The trick is to replace the sum with an equivalent integral:

𝑁−1∑︁
𝑖=0

𝑓(𝑖) = 𝑁

∫︁ 1

0

𝑑𝑥 𝑓(floor(𝑥𝑁))

where floor(𝑥) is the largest integer smaller than 𝑥. The resulting integral can then be handed to vegas. Using this
trick, the integral in the previous section can be re-cast as a 5-dimensional integral:

import vegas
import numpy as np

16 Chapter 1. Tutorial

vegas Documentation, Release 3.3.1

Integrand: ridge of N Gaussians spread evenly along the diagonal
def ridge(x):

N = 10000
dim = 4
x0 = np.floor(x[-1] * N) / (N - 1.)
dx2 = 0.0
for xd in x[:-1]:

dx2 += (xd - x0) ** 2
return np.exp(-100. * dx2) * (100. / np.pi) ** (dim / 2.)

def main():
integ = vegas.Integrator(5 * [[0, 1]])
adapt
integ(ridge, nitn=10, neval=5e4)
final results
result = integ(ridge, nitn=10, neval=5e4)
print('result = %s Q = %.2f' % (result, result.Q))

if __name__ == '__main__':
main()

This code gives a result with the same precision, but is 5x faster than the code in the previous section. (The difference
would be much larger if both integrands were coded in Cython. Also running the code on two processors with MPI
again cuts the time almost in half.)

The same trick can be generalized to sums over multiple indices, including sums to infinity. vegas will provide
Monte Carlo estimates of the sums, emphasizing the more important terms.

1.7 vegas as a Random Number Generator

A vegas integrator generates random points in its integration volume from a distribution that is optimized for integrals
of whatever function it was trained on. The integrator provides low-level access to the random-point generator through
the iterators vegas.Integrator.random() and vegas.Integrator.random_batch().

To illustrate, the following code snippet estimates the integral of function f(x) using integrator integ:

integral = 0.0
for x, wgt in integ.random():

integral += wgt * f(x)

Here x[d] is a random point in the integration volume and wgt is the weight vegas assigns to that point in an
integration. The iterator generates integration points and weights corresponding to a single iteration of the vegas
algorithm. In practice, we would train integ on a function whose shape is similar to that of f(x) before using it to
estimate the integral of f(x).

It is usually more efficient to generate and use integration points in batches. The
vegas.Integrator.random_batch() iterator does just this:

integral = 0.0
for x, wgt in integ.random_batch():

integral += wgt.dot(batch_f(x))

Here x[i, d] is an array of integration points, wgt[i] contains the corresponding weights, and batch_f(x)
returns an array containing the corresponding integrand values.

The random points generated by vegas are stratified into hypercubes: vegas uses transformed integration variables
to improve its Monte Carlo estimates. It further improves those estimates by subdividing the integration volume in

1.7. vegas as a Random Number Generator 17

vegas Documentation, Release 3.3.1

the transformed variables into a large number of hypercubes, and doing a Monte Carlo integral in each hypercube
separately. The final result is the sum of the results from all the hypercubes. To mimic a full vegas integral estimate
using the iterators above, we need to know which points belong to which hypercubes. The following code shows how
this is done:

integral = 0.0
variance = 0.0
for x, wgt, hcube in integ.random_batch(yield_hcube=True):

wgt_fx = wgt * batch_f(x)
iterate over hypercubes: compute variance for each,
and accumulate for final result
for i in range(hcube[0], hcube[-1] + 1):

idx = (hcube == i) # select array items for h-cube i
nwf = np.sum(idx) # number of points in h-cube i
wf = wgt_fx[idx]
sum_wf = np.sum(wf) # sum of wgt * f(x) for h-cube i
sum_wf2 = np.sum(wf ** 2) # sum of (wgt * f(x)) ** 2
integral += sum_wf
variance += (sum_wf2 * nwf - sum_wf ** 2) / (nwf - 1.)

answer = integral; standard deviation = variance ** 0.5
result = gvar.gvar(integral, variance ** 0.5)

Here hcube[i] identifies the hypercube containing x[i, d].

1.8 Integrands in C or Fortran

Older implementations of the vegas algorithm have been used extensively in C and Fortran codes. The Python
implementation described here uses a more powerful algorithm. It is relatively straightforward to combine this version
with integrands coded in C or Fortran. Such integrands are usually substantially faster than integrands coded directly in
Python; they are similar in speed to optimized Cython code. There are many ways to access C and Fortran integrands
from Python. Here we review a few of the options.

1.8.1 ctypes for C

The simplest way to access an integrand coded in C is to use the Python ctypes module. To illustrate, consider the
following integrand, written in C and stored in file cfcn.c:

// file cfcn.c
#include <math.h>

double fcn(double x[], int dim)
{

int i;
double xsq = 0.0;
for(i=0; i<dim; i++)

xsq += x[i] * x[i] ;
return exp(-100. * sqrt(xsq)) * pow(100.,dim);

}

This file needs to be compiled into a shared library using something like:

cc -fPIC -shared -o cfcn.so cfcn.c

The exact compilation command depends on the operating system and compiler being used. The function in this
library is then wrapped in Python function f, and integrated using vegas:

18 Chapter 1. Tutorial

vegas Documentation, Release 3.3.1

import vegas
import numpy as np

import ctypes

import cfcn.so
cfcn = ctypes.CDLL('cfcn.so')
specify argument types and result type for cfcn.fcn
cfcn.fcn.argtypes = (ctypes.POINTER(ctypes.c_double), ctypes.c_int)
cfcn.fcn.restype = ctypes.c_double

Python wrapper for function cfcn.fcn
def f(x):

global cfcn
n = len(x)
array_type = ctypes.c_double * n
return cfcn.fcn(array_type(*x), ctypes.c_int(n))

def main():
integ = vegas.Integrator(4 * [[0., 1.]])
print integ(f, neval=1e4, nitn=10).summary()
print integ(f, neval=1e4, nitn=10).summary()

if __name__ == '__main__':
main()

The output shows 10 iterations that are used to adapt vegas to the integrand, and then an additional 10 iterations to
generate the final result:

itn integral wgt average chi2/dof Q

1 8.6(7.1) 8.6(7.1) 0.00 1.00
2 8.2(1.7) 8.2(1.7) 0.00 0.96
3 7.14(76) 7.32(69) 0.18 0.84
4 7.88(38) 7.75(33) 0.29 0.84
5 7.39(13) 7.44(12) 0.47 0.76
6 7.359(81) 7.383(68) 0.43 0.82
7 7.400(55) 7.393(43) 0.37 0.90
8 7.392(51) 7.393(33) 0.32 0.95
9 7.427(48) 7.404(27) 0.32 0.96

10 7.388(41) 7.399(23) 0.30 0.98

itn integral wgt average chi2/dof Q

1 7.429(34) 7.429(34) 0.00 1.00
2 7.412(32) 7.420(24) 0.13 0.72
3 7.413(28) 7.417(18) 0.08 0.92
4 7.366(25) 7.400(15) 0.96 0.41
5 7.366(23) 7.390(12) 1.12 0.34
6 7.410(22) 7.395(11) 1.02 0.40
7 7.395(20) 7.3951(95) 0.85 0.53
8 7.425(19) 7.4011(85) 1.02 0.42
9 7.394(19) 7.3998(77) 0.91 0.51

10 7.386(17) 7.3976(71) 0.86 0.56

The final estimate for the integral is 7.3976(71) (1000 times more accurate than the very first iteration).

The ctypes implementation is probably the slowest of the implementations shown here.

1.8. Integrands in C or Fortran 19

vegas Documentation, Release 3.3.1

1.8.2 Cython for C

A more flexible (and often faster) interface to a C integrand can be created using Cython. To increase efficiency
(slightly, in this case), we use Cython code in file cfcn.pyx to convert the orginal function (in cfcn.c) into a batch
integral:

file cfcn.pyx
import numpy as np
import vegas

cdef extern double fcn (double[] x, int n)

@vegas.batchintegrand
def f(double[:, ::1] x):

cdef double[:] ans
cdef int i, dim=x.shape[1]
ans = np.empty(x.shape[0], type(x[0,0]))
for i in range(x.shape[0]):

ans[i] = fcn(&x[i, 0], dim)
return ans

We also have to tell Cython how to construct the cfcn Python module since that module needs to include compiled
code from cfcn.c. This is done with a .pyxbld file:

file cfcn.pyxbld
import numpy as np

def make_ext(modname, pyxfilename):
from distutils.extension import Extension
return Extension(name = modname,

sources=[pyxfilename, 'cfcn.c'],
libraries=[],
include_dirs=[np.get_include()],
)

def make_setup_args():
return dict()

Finally the integral is evaluated using the Python code

import vegas

compile cfcn, if needed, at import
import pyximport
pyximport.install(inplace=True)

import cfcn

def main():
integ = vegas.Integrator(4 *[[0,1]])
print integ(cfcn.f, neval=1e4, nitn=10).summary()
print integ(cfcn.f, neval=1e4, nitn=10).summary()

if __name__ == '__main__':
main()

where, again, pyximport guarantees that the cfcn module is compiled the first time the code is run.

This implementation is probably the fastest of those presented here. Cython also works with C++.

20 Chapter 1. Tutorial

vegas Documentation, Release 3.3.1

1.8.3 f2py for Fortran

The f2py package, which is distributed with numpy, makes it relatively easy to compile Fortran code directly into
Python modules. Consider a Fortran implementation of integrand discussed above, stored in file ffcn.f:

c file ffcn.f
c

function fcn(x, dim)
integer i, dim
real*8 x(dim), x2, fcn
x2 = 0.0
do i=1,dim

x2 = x2 + x(i) ** 2
end do
fcn = exp(-100. * sqrt(x2)) * 100. ** dim
return
end

This code is compiled into a Python module using

f2py -m ffcn -c ffcn.f

and the resulting module provides access to the integrand from Python:

import vegas
import ffcn

def main():
integ = vegas.Integrator(4 *[[0,1]])
print integ(ffcn.fcn, neval=1e4, nitn=10).summary()
print integ(ffcn.fcn, neval=1e4, nitn=10).summary()

if __name__ == '__main__':
main()

Again you can make the code somewhat faster by converting the integrand into a batch integrand inside the Fortran
module. Adding the following function to the end of file ffcn.f above :

c part 2 of file ffcn.f --- batch form of integrand

subroutine batch_fcn(ans, x, dim, nbatch)
integer dim, nbatch, i, j
real*8 x(nbatch, dim), xi(dim), ans(nbatch), fcn

cf2py intent(out) ans
do i=1,nbatch

do j=1,dim
xi(j) = x(i, j)

end do
ans(i) = fcn(xi, dim)

end do
end

results in a second Python function ffcn.batch_fcn(x) that takes the integration points x[i,d] as input and
returns an array of integrand values ans[i]. (The second Fortran comment tells f2py that array ans should be
returned by the correponding Python function; f2py also has the function automatically deduce dim and nbatch
from the shape of x.) The correponding Python script for doing the integral is then:

import vegas
import ffcn_f2py
import numpy as np

1.8. Integrands in C or Fortran 21

vegas Documentation, Release 3.3.1

def main():
integ = vegas.Integrator(4 *[[0,1]])
batch_fcn = vegas.batchintegrand(ffcn_f2py.batch_fcn)
print(integ(batch_fcn, neval=1e4, nitn=10).summary())
print(integ(batch_fcn, neval=1e4, nitn=10).summary())

if __name__ == '__main__':
main()

This runs roughly twice as fast as the original when neval is large (eg, 1e6).

1.8.4 f2py for C

f2py can also be used to compile C code directly into Python modules, but usually needs an interface file to specify
how the C is turned into Python. The interface file cfcn.pyf for the C file cfcn.c (above) is:

python module cfcn
interface

real*8 function fcn(x, n)
intent(c) fcn ! fcn is a C function
intent(c) ! all fcn arguments are

! considered as C based
integer intent(hide), depend(x) :: n=len(x) ! n is the length

! of input array x
real*8 intent(in) :: x(n) ! x is input array

end function fcn
end interface
end python module cfcn

More information is available in the documentation for f2py. The module is created using

f2py -m cfcn -c cfcn.pyf cfcn.c

and the integral evaluated using Python code:

import vegas
import cfcn

def main():
integ = vegas.Integrator(4 *[[0,1]])
print integ(cfcn.fcn, neval=1e4, nitn=10).summary()
print integ(cfcn.fcn, neval=1e4, nitn=10).summary()

if __name__ == '__main__':
main()

1.9 Implementation Notes

This implementation relies upon Cython for its speed and numpy for array processing. It also uses matplotlib for
graphics and mpi4py for MPI support, but graphics and MPI are optional.

vegas also uses the gvar module (pip install gvar). Integration results are returned as objects of type
gvar.GVar, which is a class representing Gaussian random variables (i.e., something with a mean and standard
deviation). These objects can be combined with numbers and with each other in arbitrary arithmetic expressions to

22 Chapter 1. Tutorial

vegas Documentation, Release 3.3.1

get new gvar.GVars with the correct standard deviations, and properly correlated with other gvar.GVars — that
is the tricky part.

1.9. Implementation Notes 23

vegas Documentation, Release 3.3.1

24 Chapter 1. Tutorial

CHAPTER

TWO

HOW VEGAS WORKS

vegas uses two adaptive strategies: importance sampling, and adaptive stratified sampling. Here we discuss the ideas
behind each, in turn.

2.1 Importance Sampling

The most important adaptive strategy vegas uses is its remapping of the integration variables in each direction,
before it makes Monte Carlo estimates of the integral. This is equivalent to a standard Monte Carlo optimization
called “importance sampling.”

vegas chooses transformations for each integration variable that minimize the statistical errors in Monte Carlo es-
timates whose integrand samples are uniformly distributed in the new variables. The idea in one-dimension, for
example, is to replace the original integral over 𝑥,

𝐼 =

∫︁ 𝑏

𝑎

𝑑𝑥 𝑓(𝑥),

by an equivalent integral over a new variable 𝑦,

𝐼 =

∫︁ 1

0

𝑑𝑦 𝐽(𝑦) 𝑓(𝑥(𝑦)),

where 𝐽(𝑦) is the Jacobian of the transformation. A simple Monte Carlo estimate of the transformed integral is given
by

𝐼 ≈ 𝑆(1) ≡ 1

𝑀

∑︁
𝑦

𝐽(𝑦) 𝑓(𝑥(𝑦))

where the sum is over 𝑀 random points uniformly distributed between 0 and 1.

The estimate 𝑆(1) is a itself a random number from a distribution whose mean is the exact integral and whose variance
is:

𝜎2
𝐼 =

1

𝑀

(︂∫︁ 1

0

𝑑𝑦 𝐽2(𝑦) 𝑓2(𝑥(𝑦)) − 𝐼2
)︂

=
1

𝑀

(︃∫︁ 𝑏

𝑎

𝑑𝑥 𝐽(𝑦(𝑥)) 𝑓2(𝑥) − 𝐼2

)︃
The standard deviation 𝜎𝐼 is an estimate of the possible error in the Monte Carlo estimate. A straightforward variational
calculation, constrained by ∫︁ 𝑏

𝑎

𝑑𝑥

𝐽(𝑦(𝑥))
=

∫︁ 1

0

𝑑𝑦 = 1,

25

vegas Documentation, Release 3.3.1

shows that 𝜎𝐼 is minimized if

𝐽(𝑦(𝑥)) =

∫︀ 𝑏

𝑎
𝑑𝑥 |𝑓(𝑥)|
|𝑓(𝑥)|

.

Such transformations greatly reduce the standard deviation when the integrand has high peaks. Since

1/𝐽 =
𝑑𝑦

𝑑𝑥
∝ |𝑓(𝑥)|,

the regions in 𝑥 space where |𝑓(𝑥)| is large are stretched out in 𝑦 space. Consequently, a uniform Monte Carlo
in 𝑦 space places more samples in the peak regions than it would if were we integrating in 𝑥 space — its samples
are concentrated in the most important regions, which is why this is called “importance sampling.” The product
𝐽(𝑦) 𝑓(𝑥(𝑦)) has no peaks when the transformation is optimal.

The distribution of the Monte Carlo estimates 𝑆(1) becomes Gaussian in the limit of large 𝑀 . Non-Gaussian correc-
tions vanish like 1/𝑀 . For example, it is easy to show that

⟨(𝑆(1) − 𝐼)4⟩ = 3𝜎4
𝐼

(︂
1 − 1

𝑀

)︂
+

1

𝑀3

∫︁ 1

0

𝑑𝑦 (𝐽(𝑦) 𝑓(𝑥(𝑦)) − 𝐼)4

This moment would equal 3𝜎4
𝐼 , which falls like 1/𝑀2, if the distribution was Gaussian. The corrections to the

Gaussian result fall as 1/𝑀3 and so become negligible at large 𝑀 . These results assume that (𝐽(𝑦) 𝑓(𝑥(𝑦)))𝑛 is
integrable for all 𝑛, which need not be the case if 𝑓(𝑥) has (integrable) singularities.

2.2 The vegas Grid

vegas implements the transformation of an integration variable 𝑥 into a new variable 𝑦 using a grid in 𝑥 space:

𝑥0 = 𝑎

𝑥1 = 𝑥0 + ∆𝑥0

𝑥2 = 𝑥1 + ∆𝑥1

· · ·
𝑥𝑁 = 𝑥𝑁−1 + ∆𝑥𝑁−1 = 𝑏

The grid specifies the transformation function at the points 𝑦 = 𝑖/𝑁 for 𝑖 = 0, 1 . . . 𝑁 :

𝑥(𝑦= 𝑖/𝑁) = 𝑥𝑖

Linear interpolation is used between those points. The Jacobian for this transformation function is piecewise constant:

𝐽(𝑦) = 𝐽𝑖 = 𝑁∆𝑥𝑖

for 𝑖/𝑁 < 𝑦 < (𝑖 + 1)/𝑁 .

The variance for a Monte Carlo estimate using this transformation becomes

𝜎2
𝐼 =

1

𝑀

(︃∑︁
𝑖

𝐽𝑖

∫︁ 𝑥𝑖+1

𝑥𝑖

𝑑𝑥 𝑓2(𝑥) − 𝐼2

)︃

26 Chapter 2. How vegas Works

vegas Documentation, Release 3.3.1

Treating the 𝐽𝑖 as independent variables, with the constraint∑︁
𝑖

∆𝑥𝑖

𝐽𝑖
=
∑︁
𝑖

∆𝑦𝑖 = 1,

it is trivial to show that the standard deviation is minimized when

𝐽2
𝑖

∆𝑥𝑖

∫︁ 𝑥𝑖+1

𝑥𝑖

𝑑𝑥 𝑓2(𝑥) = 𝑁2∆𝑥𝑖

∫︁ 𝑥𝑖+1

𝑥𝑖

𝑑𝑥 𝑓2(𝑥) = constant

for all 𝑖.

vegas adjusts the grid until this last condition is satisfied. As a result grid increments ∆𝑥𝑖 are small in regions where
|𝑓(𝑥)| is large. vegas typically has no knowledge of the integrand initially, and so starts with a uniform 𝑥 grid. As it
samples the integrand it also estimates the integrals∫︁ 𝑥𝑖+1

𝑥𝑖

𝑑𝑥 𝑓2(𝑥),

and use this information to refine its choice of ∆𝑥𝑖s, bringing them closer to their optimal values, for use in subsequent
iterations. The grid usually converges, after several iterations, to the optimal grid.

This analysis generalizes easily to multi-dimensional integrals. vegas applies a similar transformation in each direc-
tion, and the grid increments along an axis are made smaller in regions where the projection of the integral onto that
axis is larger. For example, the optimal grid for the four-dimensional Gaussian integral in the previous section looks
like:

2.2. The vegas Grid 27

vegas Documentation, Release 3.3.1

These grids transform into uniformly-spaced grids in 𝑦 space. Consequently a uniform, 𝑦-space Monte Carlo places
the same number of integrand evaluations, on average, in every rectangle of these pictures. (The average number is
typically much less one in higher dimensions.) Integrand evaluations are concentrated in regions where the 𝑥-space
rectangles are small (and therefore numerous) — here in the vicinity of x = [0.5, 0.5, 0.5, 0.5], where
the peak is.

These plots were obtained by including the line

integ.map.show_grid(30)

in the integration code after the integration is finished. It causes matplotlib (if it is installed) to create images
showing the locations of 30 nodes of the grid in each direction. (The grid uses 99 nodes in all on each axis, but that is
too many to display at low resolution.)

2.3 Adaptive Stratified Sampling

A limitation of vegas’s remapping strategy becomes obvious if we look at the grid for the following integral, which
has two Gaussians arranged along the diagonal of the hypercube:

import vegas
import math

def f2(x):
dx2 = 0
for d in range(4):

dx2 += (x[d] - 1/3.) ** 2
ans = math.exp(-dx2 * 100.) * 1013.2167575422921535
dx2 = 0
for d in range(4):

dx2 += (x[d] - 2/3.) ** 2

28 Chapter 2. How vegas Works

vegas Documentation, Release 3.3.1

ans += math.exp(-dx2 * 100.) * 1013.2167575422921535
return ans / 2.

integ = vegas.Integrator(4 * [[0, 1]])

integ(f2, nitn=10, neval=4e4)
result = integ(f2, nitn=30, neval=4e4)
print('result = %s Q = %.2f' % (result, result.Q))

integ.map.show_grid(70)

This code gives the following grid, now showing 70 nodes in each direction:

The grid shows that vegas is concentrating on the regions around x=[0.33, 0.33, 0.33, 0.33] and
x=[0.67, 0.67, 0.67, 0.67], where the peaks are. Unfortunately it is also concentrating on regions around
points like x=[0.67, 0.33, 0.33, 0.33] where the integrand is very close to zero. There are 14 such phan-
tom peaks that vegas’s new integration variables emphasize, in addition to the 2 regions where the integrand actually
is large. This grid gives much better results than using a uniform grid, but it obviously wastes integration resources.
The waste occurs because vegas remaps the integration variables in each direction separately. Projected on the
x[0] axis, for example, this integrand appears to have two peaks and so vegas will focus on both regions of x[0],
independently of what it does along the x[1] axis.

vegas uses axis-oriented remappings because other alternatives are much more complicated and expensive; and
vegas’s principal adaptive strategy has proven very effective in many realistic applications.

An axis-oriented strategy will always have difficulty adapting to structures that lie along diagonals of the integration
volume. To address such problems, the new version of vegas introduces a second adaptive strategy, based upon an-
other standard Monte Carlo technique called “stratified sampling.” vegas divides the 𝑑-dimensional 𝑦-space volume
into 𝑀𝑑

st hypercubes using a uniform 𝑦-space grid with 𝑀st stratifications on each axis. It estimates the integral by
doing a separate Monte Carlo integration in each of the hypercubes, and adding the results together to provide an
estimate for the integral over the entire integration region. Typically this 𝑦-space grid is much coarser than the 𝑥-space
grid used to remap the integration variables. This is because vegas needs at least two integrand evaluations in each

2.3. Adaptive Stratified Sampling 29

vegas Documentation, Release 3.3.1

𝑦-space hypercube, and so must keep the number of hypercubes 𝑀𝑑
st smaller than neval/2. This can restrict 𝑀st

severely when 𝑑 is large.

Older versions of vegas also divide 𝑦-space into hypercubes and do Monte Carlo estimates in the separate hyper-
cubes. These versions, however, use the same number of integrand evaluations in each hypercube. In the new version,
vegas adjusts the number of evaluations used in a hypercube in proportion to the standard deviation of the integrand
estimates (in 𝑦 space) from that hypercube. It uses information about the hypercube’s standard deviation in one iter-
ation to set the number of evaluations for that hypercube in the next iteration. In this way it concentrates integrand
evaluations where the potential statistical errors are largest.

In the two-Gaussian example above, for example, the new vegas shifts integration evaluations away from the phan-
tom peaks, into the regions occupied by the real peaks since this is where all the error comes from. This improves
vegas’s ability to estimate the contributions from the real peaks and reduces statistical errors, provided neval is
large enough to permit a large number (more than 2 or 3) 𝑀st of stratifications on each axis. With neval=4e4,
statistical errors for the two-Gaussian integral are reduced by more than a factor of 3 relative to what older versions
of vegas give. This is a relatively easy integral; the difference can be much larger for more difficult (and realistic)
integrals.

30 Chapter 2. How vegas Works

CHAPTER

THREE

VEGAS MODULE

3.1 Introduction

The key Python objects supported by the vegas module are:

• vegas.Integrator — an object describing a multidimensional integration operator. Such objects contain
information about the integration volume, and also about optimal remappings of the integration variables based
upon the last integral evaluated using the object.

• vegas.AdaptiveMap — an object describing the remappings used by vegas.

• vegas.RAvg — an object describing the result of a vegas integration. vegas returns the weighted average
of the integral estimates from each vegas iteration as an object of class vegas.RAvg. These are Gaussian
random variables — that is, they have a mean and a standard deviation — but also contain information about
the iterations vegas used in generating the result.

• vegas.RAvgArray — an array version of vegas.RAvg used when the integrand is array-valued.

• vegas.RAvgDict — a dictionary version of vegas.RAvg used when the integrand is dictionary-valued.

• vegas.PDFIntegrator — a specialized integrator for evaluating Gaussian expectation values.

These are described in detail below.

3.2 Integrator Objects

The central component of the vegas package is the integrator class:

class vegas.Integrator
Adaptive multidimensional Monte Carlo integration.

vegas.Integrator objects make Monte Carlo estimates of multidimensional functions f(x) where x[d]
is a point in the integration volume:

integ = vegas.Integrator(integration_region)

result = integ(f, nitn=10, neval=10000)

The integator makes nitn estimates of the integral, each using at most neval samples of the integrand, as it
adapts to the specific features of the integrand. Successive estimates (iterations) typically improve in accuracy
until the integrator has fully adapted. The integrator returns the weighted average of all nitn estimates, together
with an estimate of the statistical (Monte Carlo) uncertainty in that estimate of the integral. The result is an object
of type RAvg (which is derived from gvar.GVar).

31

vegas Documentation, Release 3.3.1

Integrands f(x) return numbers, arrays of numbers (any shape), or dictionaries whose values are numbers or
arrays (any shape). Each number returned by an integrand corresponds to a different integrand. When arrays
are returned, vegas adapts to the first number in the flattened array. When dictionaries are returned, vegas
adapts to the first number in the value corresponding to the first key.

vegas can generate integration points in batches for integrands built from classes derived from
vegas.BatchIntegrand, or integrand functions decorated by vegas.batchintegrand(). Batch in-
tegrands are typically much faster, especially if they are coded in Cython.

vegas.Integrators have a large number of parameters but the only ones that most people will care
about are: the number nitn of iterations of the vegas algorithm; the maximum number neval of inte-
grand evaluations per iteration; and the damping parameter alpha, which is used to slow down the adap-
tive algorithms when they would otherwise be unstable (e.g., with very peaky integrands). Setting param-
eter analyzer=vegas.reporter() is sometimes useful, as well, since it causes vegas to print (on
sys.stdout) intermediate results from each iteration, as they are produced. This helps when each itera-
tion takes a long time to complete (e.g., longer than an hour) because it allows you to monitor progress as it is
being made (or not).

Parameters

• map (array or vegas.AdaptiveMap or vegas.Integrator) – The integration re-
gion as specified by an array map[d, i] where d is the direction and i=0,1 specify the
lower and upper limits of integration in direction d.

map could also be the integration map from another vegas.Integrator, or that
vegas.Integrator itself. In this case the grid is copied from the existing integrator.

• nitn (positive int) – The maximum number of iterations used to adapt to the integrand and
estimate its value. The default value is 10; typical values range from 10 to 20.

• neval (positive int) – The maximum number of integrand evaluations in each iteration of
the vegas algorithm. Increasing neval increases the precision: statistical errors should
fall at least as fast as sqrt(1./neval) and often fall much faster. The default value is
1000; real problems often require 10–1000 times more evaluations than this.

• alpha (float) – Damping parameter controlling the remapping of the integration variables
as vegas adapts to the integrand. Smaller values slow adaptation, which may be desirable
for difficult integrands. Small or zero alphas are also sometimes useful after the grid has
adapted, to minimize fluctuations away from the optimal grid. The default value is 0.5.

• beta (float) – Damping parameter controlling the redistribution of integrand evaluations
across hypercubes in the stratified sampling of the integral (over transformed variables).
Smaller values limit the amount of redistribution. The theoretically optimal value is 1;
setting beta=0 prevents any redistribution of evaluations. The default value is 0.75.

• adapt (bool) – Setting adapt=False prevents further adaptation by vegas. Typically
this would be done after training the vegas.Integrator on an integrand, in order to sta-
bilize further estimates of the integral. vegas uses unweighted averages to combine results
from different iterations when adapt=False. The default setting is adapt=True.

• nhcube_batch (positive int) – The number of hypercubes (in y space) whose integration
points are combined into a single batch to be passed to the integrand, together, when using
vegas in batch mode. The default value is 1000. Larger values may be lead to faster
evaluations, but at the cost of more memory for internal work arrays.

• minimize_mem (bool) – When True, vegas minimizes internal workspace at the cost
of extra evaluations of the integrand. This can increase execution time by 50–100% but
might be desirable when the number of evaluations is very large (e.g., neval=1e9).
Normally vegas uses internal work space that grows in proportion to neval. If that
work space exceeds the size of the RAM available to the processor, vegas runs much

32 Chapter 3. vegas Module

vegas Documentation, Release 3.3.1

more slowly. Setting minimize_mem=True greatly reduces the internal storage used
by vegas; in particular memory becomes independent of neval. The default setting
(minimize_mem=False), however, is much superior unless memory becomes a prob-
lem. (The large memory is needed for adaptive stratified sampling, so memory is not an
issue if beta=0.)

• adapt_to_errors (bool) – adapt_to_errors=False causes vegas to remap the
integration variables to emphasize regions where |f(x)| is largest. This is the default
mode.

adapt_to_errors=True causes vegas to remap variables to emphasize regions
where the Monte Carlo error is largest. This might be superior when the number of the
number of stratifications (self.nstrat) in the y grid is large (> 50?). It is typically
useful only in one or two dimensions.

• maxinc_axis (positive int) – The maximum number of increments per axis allowed for
the x-space grid. The default value is 1000; there is probably little need to use other values.

• max_nhcube (positive int) – Maximum number of y-space hypercubes used for strati-
fied sampling. Setting max_nhcube=1 turns stratified sampling off, which is proba-
bly never a good idea. The default setting (1e9) was chosen to correspond to the point
where internal work arrays become comparable in size to the typical amount of RAM
available to a processor (in a laptop in 2014). Internal memory usage is large only when
beta>0 and minimize_mem=False; therefore max_nhcube is ignored if beta=0 or
minimize_mem=True.

• max_neval_hcube (positive int) – Maximum number of integrand evaluations per hy-
percube in the stratification. The default value is 1e7. Larger values might allow for more
adaptation (when neval is larger than 2 * max_neval_hcube), but also can result in
very large internal work arrays.

• rtol (non-negative float) – Relative error in the integral estimate at which point the in-
tegrator can stop. The default value is 0.0 which turns off this stopping condition. This
stopping condition can be quite unreliable in early iterations, before vegas has converged.
Use with caution, if at all.

• atol (non-negative float) – Absolute error in the integral estimate at which point the in-
tegrator can stop. The default value is 0.0 which turns off this stopping condition. This
stopping condition can be quite unreliable in early iterations, before vegas has converged.
Use with caution, if at all.

• analyzer – An object with methods

analyzer.begin(itn, integrator)

analyzer.end(itn_result, result)

where: begin(itn, integrator) is called at the start of each vegas iteration with
itn equal to the iteration number and integrator equal to the integrator itself; and
end(itn_result, result) is called at the end of each iteration with itn_result
equal to the result for that iteration and result equal to the cummulative result of all
iterations so far. Setting analyzer=vegas.reporter(), for example, causes ve-
gas to print out a running report of its results as they are produced. The default is
analyzer=None.

• ran_array_generator – Function that generates numpy arrays of random numbers
distributed uniformly between 0 and 1. ran_array_generator(shape) should cre-
ate an array whose dimensions are specified by the integer-valued tuple shape. The default
generator is numpy.random.random.

3.2. Integrator Objects 33

vegas Documentation, Release 3.3.1

• sync_ran – If True, the default random number generator is synchronized across all
processors when using MPI. If False, vegas does no synchronization (but the random
numbers should synchronized some other way).

vegas.Integrator objects have attributes for each of these parameters. In addition they have the following
methods:

__call__(fcn, **kargs)
Integrate integrand fcn.

A typical integrand has the form, for example:

def f(x):
return x[0] ** 2 + x[1] ** 4

The argument x[d] is an integration point, where index d=0... represents direction within the integra-
tion volume.

Integrands can be array-valued, representing multiple integrands: e.g.,

def f(x):
return [x[0] ** 2, x[0] / x[1]]

The return arrays can have any shape. Dictionary-valued integrands are also supported: e.g.,

def f(x):
return {'a':x[0] ** 2, 'b':[x[0] / x[1], x[1] / x[0]]}

Integrand functions that return arrays or dictionaries are useful for multiple integrands that are closely
related, and can lead to substantial reductions in the errors for ratios or differences of the results.

It is usually much faster to use vegas in batch mode, where integration points are presented to the inte-
grand in batches. A simple batch integrand might be, for example:

@vegas.batchintegrand
def f(x):

return x[:, 0] ** 2 + x[:, 1] ** 4

where decorator @vegas.batchintegrand tells vegas that the integrand processes integration
points in batches. The array x[i, d] represents a collection of different integration points labeled by
i=0.... (The number of points is controlled vegas.Integrator parameter nhcube_batch.) The
batch index is always first.

Batch integrands can also be constructed from classes derived from vegas.BatchIntegrand.

Batch mode is particularly useful (and fast) when the class derived from vegas.BatchIntegrand is
coded in Cython. Then loops over the integration points can be coded explicitly, avoiding the need to use
numpy‘s whole-array operators if they are not well suited to the integrand.

Any vegas parameter can also be reset: e.g., self(fcn, nitn=20, neval=1e6).

set(ka={}, **kargs)
Reset default parameters in integrator.

Usage is analogous to the constructor for vegas.Integrator: for example,

old_defaults = integ.set(neval=1e6, nitn=20)

resets the default values for neval and nitn in vegas.Integrator integ. A dictionary, here
old_defaults, is returned. It can be used to restore the old defaults using, for example:

integ.set(old_defaults)

34 Chapter 3. vegas Module

vegas Documentation, Release 3.3.1

settings(ngrid=0)
Assemble summary of integrator settings into string.

Parameters ngrid (int) – Number of grid nodes in each direction to include in summary. The
default is 0.

Returns String containing the settings.

random(yield_hcube=False, yield_y=False)
Iterator over integration points and weights.

This method creates an iterator that returns integration points from vegas, and their corresponding
weights in an integral. Each point x[d] is accompanied by the weight assigned to that point by vegas
when estimating an integral. Optionally it will also return the index of the hypercube containing the inte-
gration point and/or the y-space coordinates:

integ.random() yields x, wgt

integ.random(yield_hcube=True) yields x, wgt, hcube

integ.random(yield_y=True) yields x, y, wgt

integ.random(yield_hcube=True, yield_y=True) yields x, y, wgt, hcube

The number of integration points returned by the iterator corresponds to a single iteration.

random_batch(yield_hcube=False, yield_y=False)
Iterator over integration points and weights.

This method creates an iterator that returns integration points from vegas, and their corresponding
weights in an integral. The points are provided in arrays x[i, d] where i=0... labels the integration
points in a batch and d=0... labels direction. The corresponding weights assigned by vegas to each
point are provided in an array wgt[i].

Optionally the integrator will also return the indices of the hypercubes containing the integration points
and/or the y-space coordinates of those points:

integ.random() yields x, wgt

integ.random(yield_hcube=True) yields x, wgt, hcube

integ.random(yield_y=True) yields x, y, wgt

integ.random(yield_hcube=True, yield_y=True) yields x, y, wgt, hcube

The number of integration points returned by the iterator corresponds to a single iteration. The number in
a batch is controlled by parameter nhcube_batch.

3.3 AdaptiveMap Objects

vegas’s remapping of the integration variables is handled by a vegas.AdaptiveMap object, which maps the
original integration variables x into new variables y in a unit hypercube. Each direction has its own map specified by
a grid in x space:

3.3. AdaptiveMap Objects 35

vegas Documentation, Release 3.3.1

𝑥0 = 𝑎

𝑥1 = 𝑥0 + ∆𝑥0

𝑥2 = 𝑥1 + ∆𝑥1

· · ·
𝑥𝑁 = 𝑥𝑁−1 + ∆𝑥𝑁−1 = 𝑏

where 𝑎 and 𝑏 are the limits of integration. The grid specifies the transformation function at the points 𝑦 = 𝑖/𝑁 for
𝑖 = 0, 1 . . . 𝑁 :

𝑥(𝑦= 𝑖/𝑁) = 𝑥𝑖

Linear interpolation is used between those points. The Jacobian for this transformation is:

𝐽(𝑦) = 𝐽𝑖 = 𝑁∆𝑥𝑖

vegas adjusts the increments sizes to optimize its Monte Carlo estimates of the integral. This involves training the
grid. To illustrate how this is done with vegas.AdaptiveMaps consider a simple two dimensional integral over a
unit hypercube with integrand:

def f(x):
return x[0] * x[1] ** 2

We want to create a grid that optimizes uniform Monte Carlo estimates of the integral in y space. We do this by sam-
pling the integrand at a large number ny of random points y[j, d], where j=0...ny-1 and d=0,1, uniformly
distributed throughout the integration volume in y space. These samples be used to train the grid using the following
code:

import vegas
import numpy as np

def f(x):
return x[0] * x[1] ** 2

m = vegas.AdaptiveMap([[0, 1], [0, 1]], ninc=5)

ny = 1000
y = np.random.uniform(0., 1., (ny, 2)) # 1000 random y's

x = np.empty(y.shape, float) # work space
jac = np.empty(y.shape[0], float)
f2 = np.empty(y.shape[0], float)

print('intial grid:')
print(m.settings())

for itn in range(5): # 5 iterations to adapt
m.map(y, x, jac) # compute x's and jac

for j in range(ny): # compute training data
f2[j] = (jac[j] * f(x[j])) ** 2

36 Chapter 3. vegas Module

vegas Documentation, Release 3.3.1

m.add_training_data(y, f2) # adapt
m.adapt(alpha=1.5)

print('iteration %d:' % itn)
print(m.settings())

In each of the 5 iterations, the vegas.AdaptiveMap adjusts the map, making increments smaller where f2 is
larger and larger where f2 is smaller. The map converges after only 2 or 3 iterations, as is clear from the output:

initial grid:
grid[0] = [0. 0.2 0.4 0.6 0.8 1.]
grid[1] = [0. 0.2 0.4 0.6 0.8 1.]

iteration 0:
grid[0] = [0. 0.412 0.62 0.76 0.883 1.]
grid[1] = [0. 0.506 0.691 0.821 0.91 1.]

iteration 1:
grid[0] = [0. 0.428 0.63 0.772 0.893 1.]
grid[1] = [0. 0.531 0.713 0.832 0.921 1.]

iteration 2:
grid[0] = [0. 0.433 0.63 0.772 0.894 1.]
grid[1] = [0. 0.533 0.714 0.831 0.922 1.]

iteration 3:
grid[0] = [0. 0.435 0.631 0.772 0.894 1.]
grid[1] = [0. 0.533 0.715 0.831 0.923 1.]

iteration 4:
grid[0] = [0. 0.436 0.631 0.772 0.895 1.]
grid[1] = [0. 0.533 0.715 0.831 0.924 1.]

The grid increments along direction 0 shrink at larger values x[0], varying as 1/x[0]. Along direction 1 the
increments shrink more quickly varying like 1/x[1]**2.

vegas samples the integrand in order to estimate the integral. It uses those same samples to train its
vegas.AdaptiveMap in this fashion, for use in subsequent iterations of the algorithm.

class vegas.AdaptiveMap
Adaptive map y->x(y) for multidimensional y and x.

An AdaptiveMap defines a multidimensional map y -> x(y) from the unit hypercube, with 0 <= y[d]
<= 1, to an arbitrary hypercube in x space. Each direction is mapped independently with a Jacobian that is
tunable (i.e., “adaptive”).

The map is specified by a grid in x-space that, by definition, maps into a uniformly spaced grid in y-space. The
nodes of the grid are specified by grid[d, i] where d is the direction (d=0,1...dim-1) and i labels the
grid point (i=0,1...N). The mapping for a specific point y into x space is:

y[d] -> x[d] = grid[d, i(y[d])] + inc[d, i(y[d])] * delta(y[d])

where i(y)=floor(y*N), delta(y)=y*N - i(y), and inc[d, i] = grid[d, i+1] -
grid[d, i]. The Jacobian for this map,

dx[d]/dy[d] = inc[d, i(y[d])] * N,

is piece-wise constant and proportional to the x-space grid spacing. Each increment in the x-space grid maps
into an increment of size 1/N in the corresponding y space. So regions in x space where inc[d, i] is small
are stretched out in y space, while larger increments are compressed.

3.3. AdaptiveMap Objects 37

vegas Documentation, Release 3.3.1

The x grid for an AdaptiveMap can be specified explicitly when the map is created: for example,

m = AdaptiveMap([[0, 0.1, 1], [-1, 0, 1]])

creates a two-dimensional map where the x[0] interval (0,0.1) and (0.1,1) map into the y[0] intervals
(0,0.5) and (0.5,1) respectively, while x[1] intervals (-1,0) and (0,1) map into y[1] intervals
(0,0.5) and (0.5,1).

More typically an initially uniform map is trained with data f[j] corresponding to ny points y[j, d], with
j=0...ny-1, uniformly distributed in y space: for example,

m.add_training_data(y, f)
m.adapt(alpha=1.5)

m.adapt(alpha=1.5) shrinks grid increments where f[j] is large, and expands them where f[j] is
small. Typically one has to iterate over several sets of ys and fs before the grid has fully adapted.

The speed with which the grid adapts is determined by parameter alpha. Large (positive) values imply rapid
adaptation, while small values (much less than one) imply slow adaptation. As in any iterative process, it is
usually a good idea to slow adaptation down in order to avoid instabilities.

Parameters

• grid – Initial x grid, where grid[d, i] is the i-th node in direction d.

• ninc (int or None) – Number of increments along each axis of the x grid. A new grid
is generated if ninc differs from grid.shape[1]. The new grid is designed to give the
same Jacobian dx(y)/dy as the original grid. The default value, ninc=None, leaves the
grid unchanged.

dim
Number of dimensions.

ninc
Number of increments along each grid axis.

grid
The nodes of the grid defining the maps are self.grid[d, i] where d=0... specifies the direction
and i=0...self.ninc the node.

inc
The increment widths of the grid:

self.inc[d, i] = self.grid[d, i + 1] - self.grid[d, i]

adapt(alpha=0.0, ninc=None)
Adapt grid to accumulated training data.

self.adapt(...) projects the training data onto each axis independently and maps it into x space.
It shrinks x-grid increments in regions where the projected training data is large, and grows increments
where the projected data is small. The grid along any direction is unchanged if the training data is constant
along that direction.

The number of increments along a direction can be changed by setting parameter ninc.

The grid does not change if no training data has been accumulated, unless ninc is specified, in which
case the number of increments is adjusted while preserving the relative density of increments at different
values of x.

Parameters

38 Chapter 3. vegas Module

vegas Documentation, Release 3.3.1

• alpha (double or None) – Determines the speed with which the grid adapts to training
data. Large (postive) values imply rapid evolution; small values (much less than one) im-
ply slow evolution. Typical values are of order one. Choosing alpha<0 causes adaptation
to the unmodified training data (usually not a good idea).

• ninc (int or None) – Number of increments along each direction in the new grid. The
number is unchanged from the old grid if ninc is omitted (or equals None).

add_training_data(y, f, ny=-1)
Add training data f for y-space points y.

Accumulates training data for later use by self.adapt(). Grid increments will be made smaller in
regions where f is larger than average, and larger where f is smaller than average. The grid is unchanged
(converged?) when f is constant across the grid.

Parameters

• y (contiguous 2-d array of floats) – y values corresponding to the training data. y is a
contiguous 2-d array, where y[j, d] is for points along direction d.

• f (contiguous 2-d array of floats) – Training function values. f[j] corresponds to point
y[j, d] in y-space.

• ny (int) – Number of y points: y[j, d] for d=0...dim-1 and j=0...ny-1. ny is
set to y.shape[0] if it is omitted (or negative).

__call__(y)
Return x values corresponding to y.

y can be a single dim-dimensional point, or it can be an array y[i,j, ..., d] of such points
(d=0..dim-1).

If y=None (default), y is set equal to a (uniform) random point in the volume.

jac(y)
Return the map’s Jacobian at y.

y can be a single dim-dimensional point, or it can be an array y[d,i,j,...] of such points
(d=0..dim-1).

make_uniform(ninc=None)
Replace the grid with a uniform grid.

The new grid has ninc increments along each direction if ninc is specified. Otherwise it has the same
number of increments as the old grid.

map(y, x, jac, ny=-1)
Map y to x, where jac is the Jacobian.

y[j, d] is an array of ny y-values for direction d. x[j, d] is filled with the corresponding x values,
and jac[j] is filled with the corresponding Jacobian values. x and jac must be preallocated: for
example,

x = numpy.empty(y.shape, numpy.float_)
jac = numpy.empty(y.shape[0], numpy.float_)

Parameters

• y (contiguous 2-d array of floats) – y values to be mapped. y is a contiguous 2-d array,
where y[j, d] contains values for points along direction d.

• x (contiguous 2-d array of floats) – Container for x values corresponding to y.

• jac (contiguous 1-d array of floats) – Container for Jacobian values corresponding to y.

3.3. AdaptiveMap Objects 39

vegas Documentation, Release 3.3.1

• ny (int) – Number of y points: y[j, d] for d=0...dim-1 and j=0...ny-1. ny is
set to y.shape[0] if it is omitted (or negative).

show_grid(ngrid=40, shrink=False)
Display plots showing the current grid.

Parameters

• ngrid (int) – The number of grid nodes in each direction to include in the plot. The
default is 40.

• axes – List of pairs of directions to use in different views of the grid. Using None in
place of a direction plots the grid for only one direction. Omitting axes causes a default
set of pairings to be used.

• shrink – Display entire range of each axis if False; otherwise shrink range to include
just the nodes being displayed. The default is False.

settings(ngrid=5)
Create string with information about grid nodes.

Creates a string containing the locations of the nodes in the map grid for each direction. Parameter ngrid
specifies the maximum number of nodes to print (spread evenly over the grid).

3.4 PDFIntegrator Objects

Expectation values using probability density functions defined by collections of Gaussian random variables (see gvar)
can be evaluated using the following specialized integrator:

class vegas.PDFIntegrator(g, limit=1e15, scale=1., svdcut=1e-15)
vegas integrator for PDF expectation values.

PDFIntegrator(g) is a vegas integrator that evaluates expectation values for the multi-dimensional Gaus-
sian distribution specified by with g, which is a gvar.GVar or an array of gvar.GVars or a dictionary whose
values are gvar.GVars or arrays of gvar.GVars.

PDFIntegrator integrates over the entire parameter space of the distribution but reexpresses integrals in
terms of variables that diagonalize g‘s covariance matrix and are centered at its mean value. This greatly
facilitates integration over these variables using the vegas module, making integrals over 10s or more of
parameters feasible.

A simple illustration of PDFIntegrator is given by the following code:

import vegas
import gvar as gv

multi-dimensional Gaussian distribution
g = gv.BufferDict()
g['a'] = gv.gvar([0., 1.], [[1., 0.9], [0.9, 1.]])
g['b'] = gv.gvar('1(1)')

integrator for expectation values in distribution g
g_expval = vegas.PDFIntegrator(g)

want expectation value of [fp, fp**2]
def f_f2(p):

fp = p['a'][0] * p['a'][1] + p['b']
return [fp, fp ** 2]

40 Chapter 3. vegas Module

vegas Documentation, Release 3.3.1

adapt integrator to f_f2
warmup = g_expval(f_f2, neval=1000, nitn=5)

<f_f2> in distribution g
results = g_expval(f_f2, neval=1000, nitn=5, adapt=False)
print(results.summary())
print('results =', results, '\n')

mean and standard deviation of f(p)'s distribution
fmean = results[0]
fsdev = gv.sqrt(results[1] - results[0] ** 2)
print ('f.mean =', fmean, ' f.sdev =', fsdev)
print ("Gaussian approx'n for f(g) =", f_f2(g)[0])

where the warmup calls to the integrator are used to adapt it to the integrand, and the final results are in
results. Here neval is the (approximate) number of function calls per iteration of the vegas algorithm
and nitn is the number of iterations. We use the integrator to calculated the expectation value of fp and
fp**2, so we can compute the standard deviation for the distribution of fps. The output from this code shows
that the Gaussian approximation (1.0(1.4)) for the mean and standard deviation of the fp distribution is not
particularly accurate here (correct value is 1.9(2.0)), because of the large uncertainties in g:

itn integral average chi2/dof Q

1 1.893(38) 1.893(38) 0.00 1.00
2 1.905(35) 1.899(26) 0.25 0.78
3 1.854(41) 1.884(22) 0.47 0.76
4 1.921(36) 1.893(19) 0.44 0.85
5 1.913(37) 1.897(17) 0.35 0.94

results = [1.897(17) 7.48(10)]

f.mean = 1.897(17) f.sdev = 1.969(21)
Gaussian approx'n for f(g) = 1.0(1.4)

In general functions being integrated can return a number, or an array of numbers, or a dictionary whose values
are numbers or arrays of numbers. This allows multiple expectation values to be evaluated simultaneously.

See the documentation with the vegas module for more details on its use, and on the attributes and methods
associated with integrators. The example above sets adapt=False when computing final results. This gives
more reliable error estimates when neval is small. Note that neval may need to be much larger (tens or
hundreds of thousands) for more difficult high-dimension integrals.

Parameters

• g – gvar.GVar, array of gvar.GVars, or dictionary whose values are gvar.GVars or
arrays of gvar.GVars that specifies the multi-dimensional Gaussian distribution used to
construct the probability density function.

• limit (positive float) – Limits the integrations to a finite region of size limit times the
standard deviation on either side of the mean. This can be useful if the functions being
integrated misbehave for large parameter values (e.g., numpy.exp overflows for a large
range of arguments). Default is 1e15.

• scale (positive float) – The integration variables are rescaled to emphasize parameter val-
ues of order scale times the standard deviation. The rescaling does not change the value
of the integral but it can reduce uncertainties in the vegas estimate. Default is 1.0.

• svdcut (non-negative float or None) – If not None, replace covariance matrix of g with
a new matrix whose small eigenvalues are modified: eigenvalues smaller than svdcut

3.4. PDFIntegrator Objects 41

vegas Documentation, Release 3.3.1

times the maximum eigenvalue eig_max are replaced by svdcut*eig_max. This can
ameliorate problems caused by roundoff errors when inverting the covariance matrix. It
increases the uncertainty associated with the modified eigenvalues and so is conservative.
Setting svdcut=None or svdcut=0 leaves the covariance matrix unchanged. Default is
1e-15.

__call__(f, nopdf=False, mpi=False, **kargs)
Estimate expectation value of function f(p).

Uses module vegas to estimate the integral of f(p) multiplied by the probability density function asso-
ciated with g (i.e., pdf(p)). The probability density function is omitted if nopdf=True (default setting
is False).

Parameters

• f (function) – Function f(p) to integrate. Integral is the expectation value of the function
with respect to the distribution. The function can return a number, an array of numbers, or
a dictionary whose values are numbers or arrays of numbers.

• nopdf (bool) – If True drop the probability density function from the integrand (so no
longer an expectation value). This is useful if one wants to use the optimized integrator
for something other than a standard expectation value (e.g., an expectation value with a
non-Gaussian PDF). Default is False.

All other keyword arguments are passed on to a vegas integrator; see the vegas documentation for
further information.

3.5 Other Objects and Functions

class vegas.RAvg
Running average of scalar-valued Monte Carlo estimates.

This class accumulates independent Monte Carlo estimates (e.g., of an integral) and combines them into a single
average. It is derived from gvar.GVar (from the gvar module if it is present) and represents a Gaussian
random variable.

Different estimates are weighted by their inverse variances if parameter weight=True; otherwise straight,
unweighted averages are used.

mean
The mean value of the weighted average.

sdev
The standard deviation of the weighted average.

chi2
chi**2 of weighted average.

dof
Number of degrees of freedom in weighted average.

Q
Q or p-value of weighted average’s chi**2.

itn_results
A list of the results from each iteration.

add(g)
Add estimate g to the running average.

42 Chapter 3. vegas Module

vegas Documentation, Release 3.3.1

summary(weighted=None)
Assemble summary of results, iteration-by-iteration, into a string.

Parameters weighted (bool) – Display weighted averages of results from different iterations
if True; otherwise show unweighted averages. Default behavior is determined by vegas.

class vegas.RAvgArray
Running average of array-valued Monte Carlo estimates.

This class accumulates independent arrays of Monte Carlo estimates (e.g., of an integral) and combines them
into an array of averages. It is derived from numpy.ndarray. The array elements are gvar.GVars (from
the gvar module if present) and represent Gaussian random variables.

Different estimates are weighted by their inverse covariance matrices if parameter weight=True; otherwise
straight, unweighted averages are used.

chi2
chi**2 of weighted average.

dof
Number of degrees of freedom in weighted average.

Q
Q or p-value of weighted average’s chi**2.

itn_results
A list of the results from each iteration.

add(g)
Add estimate g to the running average.

summary(extended=False, weighted=None)
Assemble summary of results, iteration-by-iteration, into a string.

Parameters

• extended (bool) – Include a table of final averages for every component of the integrand
if True. Default is False.

• weighted (bool) – Display weighted averages of results from different iterations if
True; otherwise show unweighted averages. Default behavior is determined by vegas.

class vegas.RAvgDict
Running average of dictionary-valued Monte Carlo estimates.

This class accumulates independent dictionaries of Monte Carlo estimates (e.g., of an integral) and com-
bines them into a dictionary of averages. It is derived from gvar.BufferDict. The dictionary values
are gvar.GVars or arrays of gvar.GVars.

Different estimates are weighted by their inverse covariance matrices if parameter weight=True; otherwise
straight, unweighted averages are used.

chi2
chi**2 of weighted average.

dof
Number of degrees of freedom in weighted average.

Q
Q or p-value of weighted average’s chi**2.

itn_results
A list of the results from each iteration.

3.5. Other Objects and Functions 43

vegas Documentation, Release 3.3.1

add(g)

summary(extended=False, weighted=None)
Assemble summary of results, iteration-by-iteration, into a string.

Parameters

• extended (bool) – Include a table of final averages for every component of the integrand
if True. Default is False.

• weighted (bool) – Display weighted averages of results from different iterations if
True; otherwise show unweighted averages. Default behavior is determined by vegas.

vegas.batchintegrand()
Decorator for batch integrand functions.

Applying vegas.batchintegrand() to a function fcn repackages the function in a format that vegas
can understand. Appropriate functions take a numpy array of integration points x[i, d] as an argument,
where i=0... labels the integration point and d=0... labels direction, and return an array f[i] of integrand
values (or arrays of integrand values) for the corresponding points. The meaning of fcn(x) is unchanged by
the decorator.

An example is

import vegas
import numpy as np

@vegas.batchintegrand
def f(x):

return np.exp(-x[:, 0] - x[:, 1])

for the two-dimensional integrand exp(−𝑥0 − 𝑥1).

This decorator provides an alternative to deriving an integrand class from vegas.BatchIntegrand.

class vegas.BatchIntegrand
Base class for classes providing batch integrands.

A class derived from vegas.BatchIntegrand will normally provide a __call__(self, x) method
that returns an array f where:

x[i, d] is a contiguous numpy array where i=0... labels different integrtion points and
d=0... labels different directions in the integration space.

f[i] is a contiguous array containing the integrand values corresponding to the integration points
x[i, :]. f[i] is either a number, for a single integrand, or an array (of any shape) for multiple
integrands (i.e., an array-valued integrand).

An example is

import vegas
import numpy as np

class batchf(vegas.BatchIntegrand):
def __call__(x):

return np.exp(-x[:, 0] - x[:, 1])

f = batchf() # the integrand

for the two-dimensional integrand exp(−𝑥0 − 𝑥1).

Deriving from vegas.BatchIntegrand is the easiest way to construct integrands in Cython, and gives the
fastest results.

44 Chapter 3. vegas Module

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

45

vegas Documentation, Release 3.3.1

46 Chapter 4. Indices and tables

PYTHON MODULE INDEX

v
vegas, 31

47

vegas Documentation, Release 3.3.1

48 Python Module Index

INDEX

Symbols
__call__() (vegas.AdaptiveMap method), 39
__call__() (vegas.Integrator method), 34
__call__() (vegas.PDFIntegrator method), 42

A
adapt() (vegas.AdaptiveMap method), 38
AdaptiveMap (class in vegas), 37
add() (vegas.RAvg method), 42
add() (vegas.RAvgArray method), 43
add() (vegas.RAvgDict method), 43
add_training_data() (vegas.AdaptiveMap method), 39

B
BatchIntegrand (class in vegas), 44
batchintegrand() (in module vegas), 44

C
chi2 (vegas.RAvg attribute), 42
chi2 (vegas.RAvgArray attribute), 43
chi2 (vegas.RAvgDict attribute), 43

D
dim (vegas.AdaptiveMap attribute), 38
dof (vegas.RAvg attribute), 42
dof (vegas.RAvgArray attribute), 43
dof (vegas.RAvgDict attribute), 43

G
grid (vegas.AdaptiveMap attribute), 38

I
inc (vegas.AdaptiveMap attribute), 38
Integrator (class in vegas), 31
itn_results (vegas.RAvg attribute), 42
itn_results (vegas.RAvgArray attribute), 43
itn_results (vegas.RAvgDict attribute), 43

J
jac() (vegas.AdaptiveMap method), 39

M
make_uniform() (vegas.AdaptiveMap method), 39
map() (vegas.AdaptiveMap method), 39
mean (vegas.RAvg attribute), 42

N
ninc (vegas.AdaptiveMap attribute), 38

P
PDFIntegrator (class in vegas), 40

Q
Q (vegas.RAvg attribute), 42
Q (vegas.RAvgArray attribute), 43
Q (vegas.RAvgDict attribute), 43

R
random() (vegas.Integrator method), 35
random_batch() (vegas.Integrator method), 35
RAvg (class in vegas), 42
RAvgArray (class in vegas), 43
RAvgDict (class in vegas), 43

S
sdev (vegas.RAvg attribute), 42
set() (vegas.Integrator method), 34
settings() (vegas.AdaptiveMap method), 40
settings() (vegas.Integrator method), 34
show_grid() (vegas.AdaptiveMap method), 40
summary() (vegas.RAvg method), 42
summary() (vegas.RAvgArray method), 43
summary() (vegas.RAvgDict method), 44

V
vegas (module), 31

49

	Tutorial
	Introduction
	Basic Integrals
	Multiple Integrands Simultaneously
	Faster Integrands
	Multiple Processors
	Sums with vegas
	vegas as a Random Number Generator
	Integrands in C or Fortran
	Implementation Notes

	How vegas Works
	Importance Sampling
	The vegas Grid
	Adaptive Stratified Sampling

	vegas Module
	Introduction
	Integrator Objects
	AdaptiveMap Objects
	PDFIntegrator Objects
	Other Objects and Functions

	Indices and tables
	Python Module Index
	Index

