
 1

Modules Based on the Geochemical Model PHREEQC
for Use in Scripting and Programming Languages

By Scott R. Charlton

and David L. Parkhurst

*

U.S. Geological Survey

Denver Federal Center, P.O. Box 25046, MS 413, Denver, CO, USA

E-mail addresses: charlton@usgs.gov and dlpark@usgs.gov*

*Corresponding author

Phone 303 236 5098

Fax 303 236 5034

Submitted to Computers & Geosciences, November 8, 2010

Revised and resubmitted February 1, 2011

 Accepted February 7, 2011

mailto:charlton@usgs.gov
mailto:dlpark@usgs.gov

 2

Abstract

The geochemical model PHREEQC is capable of simulating a wide range of

equilibrium reactions between water and minerals, ion exchangers, surface complexes,

solid solutions, and gases. It also has a general kinetic formulation that allows modeling

of non-equilibrium mineral dissolution and precipitation, microbial reactions,

decomposition of organic compounds, and other kinetic reactions. To facilitate use of

these reaction capabilities in scripting languages and other models, PHREEQC has been

implemented in modules that easily interface with other software. A Microsoft COM

(Component Object Model) has been implemented, which allows PHREEQC to be used

by any software that can interface with a COM server—for example, Excel
®
, Visual

Basic
®
, Python, or MATLAB

®
. PHREEQC has been converted to a C++ class, which can

be included in programs written in C++. The class also has been compiled in libraries for

Linux and Windows that allow PHREEQC to be called from C++, C, and Fortran. A

limited set of methods implement the full reaction capabilities of PHREEQC for each

module. Input methods use strings or files to define reaction calculations in exactly the

same formats used by PHREEQC. Output methods provide a table of user-selected model

results, such as concentrations, activities, saturation indices, or densities.

The PHREEQC module can add geochemical reaction capabilities to surface-water,

groundwater, and watershed transport models. It is possible to store and manipulate

solution compositions and reaction information for many cells within the module. In

addition, the object-oriented nature of the PHREEQC modules simplifies implementation

of parallel processing for reactive-transport models.

 3

The PHREEQC COM module may be used in scripting languages to fit parameters;

to plot PHREEQC results for field, laboratory, or theoretical investigations; or to develop

new models that include simple or complex geochemical calculations.

Keywords

Geochemical modeling; PHREEQC; Reactive-transport modeling; COM, Component

Object Model; C++, C, and Fortran.

Software Requirements

 COM Module—Microsoft Windows operating system, COM client software such as

Excel
®
, Visual Basic

®
, Python, or MATLAB

®

 Windows Library Module—C++, C, or Fortran compiler for Windows operating

system; Visual Studio
®
 and C++ are needed to link with the library

 Linux Library Module—C++, C, or Fortran compiler for Linux operating system;

C++ is needed to link with the library

 C++ Module—C++ compiler

All modules are available at http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc.

Any use of trade, product, or firm names in this publication is for descriptive purposes

only and does not imply endorsement by the U.S. Government.

http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc

 4

1 Introduction

PHREEQC (Parkhurst and Appelo, 1999) is a geochemical reaction model that

simulates a variety of geochemical processes including equilibrium between water and

minerals, ion exchangers, surface complexes, solid solutions, and gases. The general

kinetic formulation allows modeling of non-equilibrium mineral dissolution and

precipitation, microbial reactions, decomposition of organic compounds, and other

kinetic reactions. PHREEQC has capabilities for 1D reactive transport, including such

processes as multicomponent diffusion and transport of surface-complexing species.

Finally, PHREEQC has inverse-modeling capabilities for the evaluation of the

geochemical reactions that account for changes in water chemistry.

Because of the general geochemical speciation and reaction capabilities and the

modular organization of input, PHREEQC often has been used as a geochemical

calculation module (server) in other software programs (clients). PHREEQC has been

used to calculate saturation indices, activities, and pH in water-quality data management

software (Scientific Software Group, 2010, AquaChem), to generate predominance

diagrams and estimate parameters (Kinniburgh and Cooper, 2010, PhreePlot), and to

consider geochemical effects in watershed processes (Hartman et al., 2007, DayCent-

Chem). Most commonly, PHREEQC has been used as the geochemical module for

reactive-transport models. Reactive-transport environments include the unsaturated zone

(Jacques and Šimůnek, 2004, HP1; Szegedi et al., 2008, RhizoMath; Wissmeier and

Barry, 2010a, 2010b), the saturated zone (Mao et al., 2006, PHWAT; Parkhurst et al.,

2004, 2010, PHAST; Prommer et al., 1999, PHT3D), radionuclide isolation (Källvenius

 5

and Ekberg, 2003, TACK), and acid mine drainage (Malmström et al., 2004, LaSAR-

PHREEQC).

The coupling of PHREEQC to client programs has been both soft—reading and

writing files by the client and server—and hard—modifying the source codes to add

routines that transfer data between the client and server. Soft coupling is likely to be slow

because of file writing and reading and because PHREEQC must read a database and

perform extra calculations to redefine solution compositions as it is initialized at each

geochemical step. PHREEQC lacks a facility to define directly essential solution data,

particularly the solution charge balance, total moles of hydrogen, and total moles of

oxygen. Hard coupling using specialized methods to set and retrieve data values can be

difficult because of the complicated data structures in PHREEQC and because of

complicated data dependencies among these structures.

This report presents PHREEQC modules designed to be used in scripting languages

and integrated into C++, C, and Fortran programs. The modules are a hybrid between soft

coupling—strings (or files) of PHREEQC input are used to specify calculations—and

hard coupling—all data transfer between server and client can be done through a well-

defined set of methods that do not require writing of files. The new modules rely on

reorganization of the original PHREEQC code and addition of several new keyword data

blocks that simplify extracting and modifying data within PHREEQC data structures. The

interface to each module is a limited number of methods that are simple and intuitive for

PHREEQC users, but retain the full capabilities of PHREEQC. Three examples are

presented of geochemical tasks in different software environments to demonstrate a few

of the possible uses for the new modules.

 6

2 Methods

A C++ class for PHREEQC (hereafter, ―IPhreeqc‖ is used to refer to the class or any

PHREEQC modules) was implemented in three stages. The first stage was the

development of a series of C++ classes that are equivalent to the original C structures that

contain the data for solutions and reactants—equilibrium phases, gas phases, exchangers,

surface complexers, solid solutions, and kinetic reactions. These classes were written

during the development of PHAST (Parkhurst et al., 2004, 2010) and could be used

directly by C++ programs that incorporate the IPhreeqc class. Most of the enhancements

to PHREEQC discussed in section 2.1 are based on these additional C++ classes.

The second stage required much less development and was generally a

rearrangement of the data and functions that comprise PHREEQC. All global and static

data for PHREEQC were included in a header file for the IPhreeqc class. Similarly, all C

functions were defined as methods of the class. The final stage was adding the interface,

which is a series of methods described in section 2.2, and adding the wrappers necessary

for the COM and library modules.

Thus, the IPhreeqc class is not a complete rewrite of PHREEQC with C++ classes

and methods for all calculations; rather, it is an encapsulation to limit access to the data

and functions of the original C code. The C code is essentially intact within the C++

class, but interactions with the class are limited to a well-defined set of methods.

2.1 Additions to PHREEQC

The reaction capabilities of PHREEQC and examples of their use are described in

detail in Parkhurst and Appelo (1999). In its simplest form, a reaction in PHREEQC can

 7

be conceptualized as a solution plus a set of reactants that are put into a beaker and

allowed to react. All of the moles of elements in the solution and in the reactants are

combined in the beaker and a new system equilibrium is calculated. The reactants can

include minerals, gases, ion exchangers, reactive surfaces, and solid solutions, which

react to equilibrium, and kinetic reactions, which are functions of time and chemical

compositions. PHREEQC allows definition of the initial compositions of the solution and

reactants, calculates new compositions at the end of a reaction step, and finally saves

these new compositions for use in subsequent reaction calculations. Compositions of all

solutions and reactants are identified by a user-specified cell number.

In developing the reactive-transport model PHAST (Parkhurst and others, 2004,

2010), several new capabilities were added to PHREEQC, primarily to facilitate saving

the compositional state of a simulation and restarting it. To that end, a series of input data

blocks were devised that allow input of the exact contents of the data structures for

solutions and other reactants. For solutions, the data block is named SOLUTION_RAW

(for clarity, PHREEQC keywords are written with all capital letters); correspondingly

named data blocks exist for equilibrium phases, exchangers, surfaces, solid solutions, gas

phases, and kinetics.

A new keyword data block, DUMP, is used to write the state of any solution or

reactant in the RAW format. Thus, the output from dumping a solution composition is a

string or file that contains a SOLUTION_RAW data block, and is suitable for use as

input to IPhreeqc.

In addition to the SOLUTION_RAW input data block, a SOLUTION_MODIFY data

block is available. It uses exactly the same format as SOLUTION_RAW, but does not

 8

require a complete set of data. Thus, only data items that need to be changed can be

updated. It is expected that the SOLUTION_MODIFY will be used to update the element

composition of a solution following a transport calculation, without redefining some parts

of the solution structure (for example, calculated quantities such as total alkalinity, mass

of water, Pitzer activity coefficients, or, optionally, initial estimates of activities of the

master species). Equivalent MODIFY data blocks are available for all other reactants.

The DELETE data block allows deleting some or all solution and reactant

definitions. The COPY data block allows solutions and reactants to be replicated.

Together, DUMP, MODIFY, DELETE, and COPY data blocks allow direct management

of the solutions and reactants defined to PHREEQC.

The RUN_CELLS data block streamlines the process of setting up, running, and

saving the results of a calculation for a cell. For cells selected by the data block

specifications, all of the reactants with a given cell number are brought together and

reacted, after which, the resulting compositions of the solution and reactants are saved

back to the given cell number. Thus, ―RUN_CELLS; 1-2‖ will cause solution 1 to react

with all reactants numbered 1 and the compositions of the solution and reactants in cell 1

will be redefined to be the result of the reaction; similarly for cell 2.

2.2 IPhreeqc Class Methods

A client interacts with an IPhreeqc module through a set of methods. The key

methods are listed in Table 1. These methods allow initializing the module and reading a

thermodynamic database, running PHREEQC input (strings or files), and retrieving

results from simulations. Other methods provide error and warning messages, get lengths

 9

of data items—number of rows, number of columns, number of lines—and control the

writing of PHREEQC output files. Appendix 1 contains a complete list of methods for a

Fortran module.

An IPhreeqc module is created in different ways depending on the software

environment where it is used. Multiple instances of an IPhreeqc class can be created

within the client program in all programming environments, even in C and Fortran. After

a module is created, the LoadDatabase (for clarity, all IPhreeqc method names are

written in bold font) or LoadDatabaseString method reads a thermodynamic database

from a file or string, respectively. When the database has been read, a module is ready to

perform PHREEQC calculations. Using LoadDatabase or LoadDatabaseString a

second time will re-initialize the module and remove all data stored in it.

PHREEQC input can be defined and run in three different ways with an IPhreeqc

module. First, the AccumulateLine method can be called sequentially to append

PHREEQC input to an input buffer in IPhreeqc. When the entire input has been

accumulated, it is run with the RunAccumulated method. The second way to run

simulations is to define PHREEQC input in a string within the client program. This string

is then submitted and run with the RunString method. Finally, it is possible to run

PHREEQC input that has been saved in a file by using the RunFile method. Because

reading and writing files to disk is slow, running simulations with many calls to RunFile

is expected to be slower than using RunString and RunAccumulated with internally

generated strings.

The SELECTED_OUTPUT and USER_PUNCH data blocks are used in a batch

PHREEQC run to identify data to be written to a selected-output file. The data written

 10

can include most quantities calculated by the geochemical model—dissolved

concentrations of elements, concentrations of aqueous species, activities of aqueous

species, moles of minerals, and moles of kinetic reactants, for example. IPhreeqc makes

special use of the data defined by the SELECTED_OUTPUT and USER_PUNCH data

blocks, and allows this array of data to be returned to the client program by two methods

that do not require reading or writing files. The GetSelectedOutputValue method is

available in all modules and retrieves an individual data item at a given row and column

from the array of selected-output results that was generated by the last call to a

RunAccumulated, RunString, or RunFile method. The array has a row for every

geochemical calculation that was performed and columns as defined by the

SELECTED_OUTPUT and USER_PUNCH data blocks. The COM module has an

additional method, GetSelectedOutputArray, which returns the entire array of the

selected-output data.

A data item in the selected-output array may be an integer, real, or string value.

IPhreeqc implements a simple variant object, which can contain any of these three data

types. The IPhreeqc module requires slightly different handling of this variant object

depending on whether the module is called as a COM, or as C++, C, or Fortran program

elements.

A new PHREEQC capability to write (DUMP) data values allows access to the

complete internal definition of each solution and reactant. The dumped data values are

written in keyword data blocks that are suitable for input back into IPhreeqc (RAW data

blocks, section 2.1). The GetDumpString method allows the raw keyword data blocks to

be captured by the client program. (In Fortran, the dump string must be captured line-by-

 11

line with the GetDumpStringLine method.) The dumped data can be modified and

reintroduced to an IPhreeqc module by use of the MODIFY data blocks (section 2.1) or

transferred to another IPhreeqc module. The DUMP and the set of MODIFY keyword

data blocks provide the basis for ―get‖ and ―set‖ methods, whereby the client program

can control the data items of the module’s solutions and reactants.

2.3 The COM Module

The COM module was implemented using Microsoft's Active Template Library

(ATL). Through the use of C++ templates ATL provides standard implementations

required by all COM objects. Each method and property was implemented by wrapping

calls to the underlying IPhreeqc C++ methods. Methods containing string arguments

required additional code to handle the necessary conversions between native COM

strings (BSTR data type) and standard C strings. It also was necessary to convert the

simplified IPhreeqc variant into a COM variant (VARIANT data type) for the

GetSelectedOutputValue and GetSelectedOutputArray methods. The

GetSelectedOutputArray method additionally uses an array (SAFEARRAY data type)

of COM variants to return the selected-output array.

Programming environments designed to support COM objects (Visual Basic
®
,

Python, or MATLAB
®

, for example) are able to use these COM variants directly and

interchange them with their own native data types.

2.4 C++, C, and Fortran Modules

IPhreeqc libraries are available that allow use of IPhreeqc by C++, C, and Fortran

programs; a library and equivalent DLL are available for Windows operating systems and

 12

source code for a library is available to be compiled for Linux or other Unix operating

systems. The same Windows library (or DLL) or Linux library is linked no matter which

of the three programming languages is used for the client program. However, each

programming language requires a different header or ―include‖ file in the client program.

Header files for C++ and C and include files for Fortran77 and Fortran90 are included in

the distribution of each of the library modules.

The use of the IPhreeqc methods is slightly different for C++, C, and Fortran to

comply with the syntax of each language. The GetSelectedOutputArray method is not

available in C++, C, or Fortran modules.

2.4.1 C++ Modules

Instances of the IPhreeqc C++ class can be used by linking with the IPhreeqc library.

Alternatively, if the client of the IPhreeqc module is a C++ program, then the source code

for the module could be compiled directly into the client program. In this case, it is

possible to use the internal C++ classes for solutions and equilibrium phase, gas phase,

exchange, surface, solid solution, and kinetic reactants. Use of these and other C++

classes included in the source code for IPhreeqc could simplify data storage and

manipulation. When compiled into the client, it also is possible to extend the set of

methods for the IPhreeqc class (or the other classes) to simplify data communication

between the client and the IPhreeqc class.

The header file IPhreeqc.hpp is needed to compile C++ code that uses the IPhreeqc

class, whether the C++ class is defined by integrating the source code or by using the

IPhreeqc library. The class is instantiated by using normal C++ syntax for class objects.

 13

Methods are called by using the standard C++ syntax for methods of objects. For a C++

module, the GetSelectedOutputValue method returns the IPhreeqc variant, which can

contain an integer, double, string value, or error code. The definition of the variant and its

methods are defined in the header file, Var.h.

2.4.2 C Modules

All methods for the C modules are functions. The client program must include the

header file IPhreeqc.h, which includes the prototypes for the methods and the definition

of the IPhreeqc variant. The GetSelectedOutputValue method returns the IPhreeqc

variant.

2.4.3 Fortran Modules

The methods listed in Appendix 1 are subroutine and function calls. Fortran90 client

programs must include the file IPhreeqc.f90.inc, which defines constants and the Fortran

interfaces for the IPhreeqc methods. Fortran77 programs must include the file

IPhreeqc.f.inc to define the constants and function types.

The IPhreeqc variant was not implemented in Fortran. Instead, the argument list of

GetSelectedOutputValue contains three additional arguments, an integer type of the

selected-output value (indicating integer, real, string, or error code), a real number, and a

string value. If the type of the return value is string, the real number is not meaningful. If

the type is integer or real, the value is returned as a real number in the real argument and

the value is written as a string into the string argument.

 14

3 Discussion

A wide variety of uses are possible for the IPhreeqc modules. Three general classes

of users are envisioned: (1) researchers who use PHREEQC for interpretation of

laboratory or field data and would like to use Excel
®
 to store and plot results, (2)

researchers who need more complex geochemical calculations and could use the

flexibility of embedding a geochemical module in a scripting language such as Python or

Visual Basic
®
, and (3) program developers who need a geochemical module for reactive-

transport codes or who need to incorporate a geochemical calculation [calcium carbonate

precipitation potential (CCPP) or base neutralizing capacity, for example] into their

software. Three examples are given to demonstrate how IPhreeqc might be used by each

of these three classes of users. The examples are made as simple as possible, while still

demonstrating the utility of IPhreeqc in three different software environments.

3.1 Use of a COM Module in Excel®

Once installed on a computer, the IPhreeqc COM module can be used in Excel
®

Visual Basic for Applications
®
 (VBA) macros. One common use for PHREEQC is to

calculate saturation indices for a set of chemical analyses. Figure 1 (top) shows a

PHREEQC input file that has been entered on sheet 1 of an Excel
®
 workbook. The

analytical data are entered in a set of columns headed by the PHREEQC nomenclature for

elements and element valence states. Lines 1-2 and 7-10 are added to make a complete

PHREEQC input set that performs speciation calculations and generates selected output

that contains the saturation indices for calcite, dolomite, and gypsum and the log partial

pressure for CO2(g).

 15

Table 2 contains a VBA macro that creates the PHREEQC module, formats the data

in sheet 1 as a PHREEQC input string, runs the string, and places the results in sheet 2 of

the Excel
®
 workbook. The phreeqc.dat database is assumed to be available in the

directory containing the Excel
®
 spreadsheet, but the macro could be modified with a path

to a PHREEQC database. In the example, saturation indices are calculated as shown in

figure 1 (bottom). In terms of the macro, no restriction is placed on the input that is

defined in sheet 1; any PHREEQC input set could be defined on sheet 1 and the macro

would place the selected-output results in sheet 2.

3.2 Use of a Module in Python

This example uses the COM module with the Python scripting language in a

Windows environment. The task in the example is to calculate the solubility of gypsum

as a function of NaCl concentration for two different aqueous models—the ion-

association model, as developed in WATEQ4F (Ball and Nordstrom, 1991) and

implemented in wateq4f.dat, and the specific ion interaction approach of Pitzer (1973), as

originally coded in PHRQPITZ (Plummer et al., 1988) and implemented in pitzer.dat.

The Python script for the example is shown in table 3. The main program (last block

of code) defines PHREEQC input for the simulation and specifies that the solubility of

gypsum be calculated for increments of 0.1 moles of NaCl. The function show_results

creates an IPhreeqc module for each database, runs the simulation in each module, and

retrieves the data in the variables nacl_conc, wateq4f_values, and pitzer_values. The

Python utility matplotlib (http://matplotlib.sourceforge.net/) is then used to produce a plot

that compares the two results (figure 2). The specific ion interaction approach is a good

fit to experimental data (Harvie and Weare, 1980). The ion-association model is generally

 16

applicable at lower ionic strengths and, indeed, the results of the ion-association model

deviate from the more accurate Pitzer results at high ionic strengths.

3.3 Use of a Module in Fortran

The third example demonstrates use of IPhreeqc in a Fortran90 program. An

equivalent C program is provided in Appendix 2. The program works with two cells that

represent a reactive-transport model. Initial conditions are defined in the file ic (table 4),

where both cells initially are filled with pure water. Cell 1 has an equilibrium-phases

definition that contains carbon dioxide with a partial pressure of 10
-1.5

, whereas cell 2 has

an equilibrium phases definition that contains calcite. The file ic also contains a definition

for SELECTED_OUTPUT that writes the total number of moles of H, O, Ca, and C, plus

the pH and saturation ratio (SR) for calcite (IAP/K, where IAP is ion activity product and

K is the equilibrium constant).

In the Fortran90 program (table 5), the phreeqc.dat database is loaded, and the initial

conditions file is run, which places pure water in each of the two cells. Then the solution

and reactants (equilibrium phases) for cell 1 are reacted with the RUN_CELLS data

block, which produces a water in equilibrium with a soil-zone partial pressure of carbon

dioxide.

In place of a true dispersive-transport step, the solution from cell 1 is simply

advected to cell 2. The data from cell 1 are retrieved in the subroutine ExtractWrite by

sequentially retrieving the columns of the selected-output array. After retrieving the data,

the pH and saturation ratio for cell 1 are written to the output screen. Returning to the

main program, the SOLUTION_MODIFY data block is constructed, which specifies the

 17

total moles of elements in cell 2 to be equal to those just retrieved from cell 1. The

RUN_CELLS keyword data block is used to equilibrate the new water composition in

cell 2 with the reactants in cell 2, namely calcite. The results of this calculation are again

retrieved and written by the subroutine ExtractWrite. The results show that the water in

cell 1 has a pH of 4.66 and a calcite saturation ratio of 0.0 (because calcium is absent),

whereas the water in cell 2 has a pH of 7.68 and a calcite saturation ratio of 1.0

(equilibrium with calcite).

Some care is needed with the units of solutions and reactants when using IPhreeqc

for reactive-transport simulations. PHREEQC stores all quantities of elements,

exchangers, equilibrium phases, and other reactants, in units of moles, not in units of

concentration. Although PHREEQC does all of its calculations with solutions in terms of

molality (mol/kg water), only the numbers of moles of each element and the mass of

water are stored; a solution definition may have a mass of water that differs substantially

from 1.0 kg. Thus, solution compositions are defined by the number of moles of

elements, including H and O, and the equivalents of charge imbalance. In the file ic (table

4), the function TOTMOLE was used, which returns the total number of moles of an

element in solution. The total numbers of moles in solution are the quantities needed for

the SOLUTION_MODIFY data block that was used in the advection step of the example

(table 5). For reactive-transport calculations, it may be necessary to convert the solution

compositions to concentration units (mol/L, ppm, or mass fraction, for example) for the

transport calculation and then back to moles for the IPhreeqc calculations. Alternatively,

fluid flow and solute transport with species-independent diffusion can be considered as

an assembage of fluxes of individual elements, and the governing equations can be

 18

derived in terms of transport of moles of individual elements (Wissmeier and Barry,

2008). Regardless of the transport equations selected, it is necessary to transport H, O,

and charge, in addition to any other elements in the system to maintain complete solution

composition and correct charge imbalances.

3.4 Parallelized Calculations Using IPhreeqc Modules

Because IPhreeqc modules are independent objects in the sense of object-oriented

programming, parallelization with threads or multiple processes is straightforward. Here,

multiple processors are discussed, but the use of threads is similar. In general, the

strategy is to start multiple processes, each of which creates an IPhreeqc module. Each

module is then assigned part of the geochemical calculation tasks. Data are passed among

the processes, either by queues or messages. The passed data would be primarily

chemical compositions, which could be DUMP strings, _MODIFY data blocks, or arrays

of elemental compositions.

An example calculation (parallel_advect.py) using the multiprocessing package of

Python is presented in the supplemental material. The example reproduces the results of

the advective case of example 11 in the PHREEQC manual (Parkhurst and Appelo,

1999). The Python script uses multiple processes and queues to divide the geochemical

calculations for a column of cells equally among a specified number of processes.

4 Summary and Conclusions

PHREEQC can simulate a wide range of reactions between water and solids,

including reactions with minerals, gases, ion exchangers, surface complexers, and solid

solutions. Irreversible kinetic reactions also can be simulated. Because of the generality

 19

and ease of use, PHREEQC has been integrated as the geochemical calculation module in

several programs; however, the integration of PHREEQC into other codes has been

difficult and time consuming. IPhreeqc is a set of modules that have been developed

specifically to allow easy integration of PHREEQC into other software. All of the

simulation and data-storage capabilities of PHREEQC are accessible in IPhreeqc modules

through a limited set of methods.

IPhreeqc modules can be used in a number of software environments. The COM

module can be used by any software that supports the COM interface—Excel
®
 (Visual

Basic for Applications
®
), Python, or MATLAB

®
 for example. The C++ class for

IPhreeqc can be compiled into C++ programs, where the module and its underlying

classes can be used or subclassed directly. Alternatively, libraries and DLLs allow the

IPhreeqc modules to be used in C++, C, and Fortran programs on Windows or Linux

operating systems. The modularity of IPhreeqc allows easy implementation of parallel

processing for computationally intensive geochemical simulations.

The interface to the modules is a relatively small set of methods, which combined

with enhancements to PHREEQC, implements all of the capabilities of PHREEQC and

allows all of the underlying data that define solutions and reactants to be retrieved and

modified. While it is admittedly somewhat cumbersome to generate strings to perform all

of the IPhreeqc calculations, the string approach has the advantage that the interface is

simple and intuitive. In addition, the interface methods should not need modification,

even if new features are added to PHREEQC.

IPhreeqc can be used for a variety of geochemical simulation tasks, including

analysis of field and laboratory data, comparison and fitting of thermodynamic data, and

 20

reactive-transport simulations. Two applications have successfully used IPhreeqc

modules: Kinniburgh and Cooper (2010) have integrated the library module into

PhreePlot to plot predominance diagrams and fit thermodynamic data, and Wissmeier and

Barry (2010b) have used the COM module with MATLAB
®
 and COMSOL

Multiphysics
®
 to simulate reactive-transport in the unsaturated zone. The module may

prove useful in a number of other fields, including water treatment, contaminant

mitigation, and chemical engineering.

5 Acknowledgements

The authors thank David Kinniburgh, Honorary Research Associate British

Geological Survey, for having inspired the development of the PHREEQC module and

for his help enhancing PHREEQC. We also thank Mike Müller, Hydrocomputing.com,

for the versions of the Python examples presented in the report.

6 References

Ball, J.W., Nordstrom, D.K., 1991. User’s manual for WATEQ4F, with revised

thermodynamic data base and test cases for calculating speciation of major, trace, and

redox elements in natural waters. U. S. Geological Survey Water-Resources

Investigations Report 91-183, 189 pp.

Hartman, M.D., Baron, J.S., Ojima, D.S., 2007. Application of a coupled ecosystem-

chemical equilibrium model, DayCent-Chem, to stream and soil chemistry in a Rocky

Mountain watershed. Ecological Modeling, 200(3-4), 493-510.

 21

Harvie, C.E., Weare, J.H., 1980. The prediction of mineral solubilities in natural

waters—the Na–K–Mg–Ca–Cl–SO4–H2O system from zero to high concentration at

25
o
C. Geochimica et Cosmochimica Acta, 44, 981-997.

Jacques, D., Šimůnek, J. 2004. User manual of the Multicomponent variably-

saturated transport model HP1 (Version 1.0): Description, Verification and Examples.

SCK•CEN, Mol, Belgium, BLG-998, 79 pp.

Källvenius, G., Ekberg, C., 2003. TACK—a program coupling chemical kinetics

with a two-dimensional transport model in geochemical systems. Computers &

Geosciences, 29(4), 511-521.

Kinniburgh, D.G., Cooper, D.M., 2010. PhreePlot—Creating graphical output with

PHREEQC. Accessed March 23, 2010. http://www.phreeplot.org.

Malmström, M.E., Destouni, G., Martinet, P., 2004. Modeling expected solute

concentration in randomly heterogeneous flow systems with multicomponent reactions.

Environmental Science & Technology, 38(9), 2673-2679.

Mao, X., Prommer, H., Barry, D.A., Langevin, C.D., Panteleit, B., Li, L., 2006.

Three-dimensional model for multi-component reactive transport with variable density

groundwater flow. Environmental Modelling & Software, 21(5), 615-628.

Parkhurst, D.L., and Appelo, C.A.J., 1999, User’s guide to PHREEQC (Version 2)—A

computer program for speciation, batch-reaction, one-dimensional transport, and inverse

geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report

99–4259, 312 pp.

 22

Parkhurst, D.L., Kipp, K.L., and Charlton, S.R., 2010. PHAST version 2 —A

program for simulating groundwater flow, solute transport, and multicomponent

geochemical reactions. U. S. Geological Survey Techniques and Methods 6—A35, 235

pp.

Parkhurst, D.L., Kipp, K.L., and Engesgaard, P., and Charlton, S.R., 2004.

PHAST—A program for simulating ground-water flow, solute transport, and

multicomponent geochemical reactions. U. S. Geological Survey Techniques and

Methods 6—A8, 154 pp.

Pitzer, K.S., 1973, Thermodynamics of electrolytes, I: Theoretical basis and general

equations. Journal of Physical Chemistry, 77(2), 268-277.

Plummer, L.N., Parkhurst, D.L., Fleming, G.W., Dunkle, S.A., 1988. A computer

program incorporating Pitzer’s equations for calculation of geochemical reactions in

brines. U. S. Geological Survey Water-Resources Investigations Report 88-4153, 310 pp.

Prommer, H., Davis, G.B., Barry, D.A., 1999. PHT3D—A three-dimensional

biogeochemical transport model for modelling natural and enhanced remediation, in:

Johnston, C.D. (Ed.), Contaminated Site Remediation: Challenges Posed by Urban and

Industrial Contaminants. Centre for Groundwater Studies, Fremantle, Western Australia,

pp. 351-358.

Scientific Software Group, 2010. Aqueous Geochemical Analysis, Plotting and

Modeling. Accessed March 23, 2010.

http://www.scientificsoftwaregroup.com/pages/software.php

 23

Szegedi, K. Vetterlein, D., Nietfield, H. Jahn, R., Neue, H-U., 2008. New tool

RhizoMath for modeling coupled transport and speciation in the rhizosphere. Vadose

Zone Journal, 7, 712-720. doi:10.2136/vzj2007.0064

Wissmeier, L., Barry, D.A., 2008. Reactive transport in unsaturated soil:

Comprehensive modelling of the dynamic spatial and temporal mass balance of water and

chemical components. Advances in Water Resources, 31(5), 858-875.

Wissmeier, L., Barry, D.A., 2010a. Implementation of variably saturated flow into

PHREEQC for the simulation of biogeochemical reactions in the vadose zone.

Environmental Modelling & Software, 25(4), 526-538.

Wissmeier, L., Barry, D.A., 2010b. Simulation tool for variably saturated flow with

comprehensive geochemical reactions in two- and three-dimensional domains.

Environmental Modelling & Software, 26(2011), 210-218.

doi:10.1016/j.envsoft.2010.07.005

 24

Appendix 1

A complete list of methods for IPhreeqc Fortran modules is given in table A1. The

most important methods have been used in the examples in the text. These methods

include CreateIPhreeqc, LoadDatabase, RunFile, RunString, RunAccumulated,

GetSelectedOutputValue, and DestroyIPhreeqc. Additional information for the set of

Fortran methods is provided here. Note that additional methods are available to COM, C,

and C++ programs that are not available in Fortran: GetDumpString, GetErrorString,

GetWarningString, and GetOutputArray (COM only).

Most methods return an integer value. Non-negative return values indicate successful

completion of the method. If the integer is less than zero, an error has occurred during the

invocation of the method and the cause of the error can be determined by using the

OutputErrorString method or by a call to the GetErrorStringLineCount method and

sequential calls to the GetErrorStringLine method. An IPhreeqc run also can produce

warnings, which are conditions that do not cause failure of the run, but may indicate

problems with input or difficulties in obtaining a numerical solution to the input

definitions. Warnings can be obtained with calls to the GetWarningStringLineCount

method and sequential calls to the GetWarningStringLine method.

An IPhreeqc module has several properties that control file output from the module.

An IPhreeqc run can write data to an output file, a selected-output file, an error file, a

dump file (complete item-by-item output of solution or reactant data), and a log file

(rarely used). The methods SetOutputFileOn , SetSelectedOutputFileOn,

SetErrorFileOn, SetDumpFileOn, and SetLogFileOn can be used to set the properties

 25

that activate or suspend writing to the respective files. The status of the properties related

to file writing can be obtained by the methods GetOutputFileOn ,

GetSelectedOutputFileOn, GetErrorFileOn, GetDumpFileOn, and GetLogFileOn.

Several methods apply to the input buffer that is used to accumulate lines of

PHREEQC input. The AccumulateLine method appends one or more lines to the input

buffer. The OutputAccumulatedLines method prints the state of the input buffer and the

ClearAccumulatedLines method clears the buffer. The input can be run with the

RunAccumulated method.

Methods related to retrieving results from an IPhreeqc run include:

GetSelectedOutputRowCount, which returns the number of rows in the selected-output

array; GetSelectedOutputColumnCount, which returns the number of columns in the

selected-output array; and GetSelectedOutputValue, which returns a specified row-

column value from the selected-output array.

It can be convenient to have a list of elements that have been defined by input to an

IPhreeqc module. The GetComponentCount and GetComponent methods allow

retrieval of all the elements that are presently defined in the module in solutions and

reactants. This is not the complete list of components defined in the database, but the list

of all elements that have been used in SOLUTION, EQUILIBRIUM_PHASES,

EXCHANGE, GAS_PHASE, KINETICS, REACTION, SOLID_SOLUTION, and

SURFACE data blocks. Solutions or reactants that have been deleted with the DELETE

keyword data block are not currently defined and are not considered. This list could be

used as the list of components (in addition to H, O, and charge) that need to be

transported in multicomponent reactive-transport simulations.

 26

The final methods described here are related to the dump string of the module. The

dump string contains the results from using the DUMP keyword in PHREEQC input.

First, the dump string must be activated before an IPhreeqc run with a call to the

SetDumpStringOn method. After the IPhreeqc run, the dump string can be retrieved by

the client program line by line. The GetDumpStringLineCount method returns the

number of lines in the dump string. The GetDumpStringLine method returns a specified

line from the dump string.

Appendix 2

Table A2 gives a C program that is equivalent to the Fortran program of the third

example. Apart from the differences in language syntax, there is one important difference

in the C IPhreeqc module related to memory usage. Whereas, no memory problems can

occur in Fortran or COM usage, a variable of type VAR will leak memory in C or C++ if

it is used to store a string, and it is not cleared before it goes out of scope. A memory leak

is a condition where memory is not freed even though it is no longer used. Memory leaks

cause an accumulation of unusable computer memory, and a consequent decrease in the

memory available for program use. Although the memory leak only will occur in C or

C++ when using a variable of type VAR to store a string, it is good practice to clear any

type VAR variable with VarClear after each use, as is done near the end of the void

ExtractWrite function. Note that if a variable of type VAR is assigned a new value, it

automatically will be cleared before the new value is stored.

 27

List of Figures:

Figure 1. PHREEQC input in sheet 1 of workbook (top) is used in an Excel
®

 macro to

produce selected output in sheet 2 (bottom).

Figure 2. Solubility of gypsum in sodium chloride solutions as calculated in Python with

two IPhreeqc modules using the wateq4f.dat and the pitzer.dat databases.

 28

SOLUTION_SPREAD

-units mg/L

Temp pH Ca Mg Na Cl S(6) Alkalinity

18.7 6.86 114.7 8.109 12.03 2.787 19.007 298

18.4 6.9 95.79 49.58 20.39 28.327 31.544 348

18.3 6.91 80.81 39.61 4.934 8.37 10.783 329

SELECTED_OUTPUT

-reset false

-SI Calcite Dolomite Gypsum CO2(g)

END

si_Calcite si_Dolomite si_Gypsum si_CO2(g)

-0.10 -1.08 -2.13 -1.36

-0.11 -0.24 -2.06 -1.34

-0.17 -0.39 -2.55 -1.37

 29

 30

List of Tables:

Table 1. Key methods for IPhreeqc modules

Table 2. Excel
®
 Visual Basic for Applications

®
 macro that takes PHREEQC input from

sheet 1 of a workbook and puts selected output in sheet 2 of workbook

Table 3. Python script that plots the solubility of gypsum as a function of NaCl

concentration as calculated by the Pitzer and WATEQ4F databases

Table 4. Initial conditions and selected-output definitions for Fortran90 example

Table 5. Fortran90 program that performs advection and chemical reactions for two cells

Table A1. Complete list of methods for a Fortran90 IPhreeqc module

Table A2. C program that performs advection and chemical reactions for two cells

 31

Table 1. Key methods for IPhreeqc modules

Method Function

LoadDatabase(FileName) Reads the database from the specified file

LoadDatabaseString(Input) Reads the database from the input string

AccumulateLine(String) Append the input string to the input buffer for the module

RunAccumulated() Runs PHREEQC based on the input buffer defined by calls to

AccumulateLine

RunFile(FileName) Runs PHREEQC based on the input in the specified file

RunString(InputString) Runs PHREEQC based on the specified input string

GetSelectedOutputArray() Returns an array with the selected-output results from the last run

(RunAccumulated, RunFile, or RunString). (This method is

available only in the COM module)

GetSelectedOutputValue(Row,

Column)

Returns the value from the specified row and column of the

selected-output array, which contains results from the last run

(RunAccumulated, RunFile, or RunString)

GetDumpString() Returns a string containing the output as defined by the DUMP

data block of the last RunAccumulated, RunFile, or RunString

command

 32

Table 2. Excel
®
 Visual Basic for Applications

®
 macro that takes PHREEQC input from

sheet 1 of a workbook and puts selected output in sheet 2 of workbook

Sub RunPhreeqc()

 On Error GoTo ErrHandler:

 ChDir ActiveWorkbook.Path

 Set Phreeqc = CreateObject("IPhreeqcCOM.Object")

 Db = "phreeqc.dat"

 Phreeqc.LoadDatabase (Db)

 'Format input from sheet1

 Dim Istring As String

 Worksheets("Sheet1").Activate

 FirstRow = ActiveSheet.UsedRange.Row

 FirstColumn = ActiveSheet.UsedRange.Column

 For r = FirstRow To (FirstRow + ActiveSheet.UsedRange.Rows.Count)

 For c = FirstColumn To (FirstColumn + ActiveSheet.UsedRange.Columns.Count)

 Istring = Istring & CStr(Cells(r, c)) & vbTab

 Next c

 Istring = Istring & vbNewLine

 Next r

 'Run and save selected output to sheet2

 Phreeqc.RunString (Istring)

 arr = Phreeqc.GetSelectedOutputArray()

 Worksheets("Sheet2").Activate

 Range(Cells(1, 1), Cells(Phreeqc.RowCount, Phreeqc.ColumnCount)) = arr

 MsgBox "Phreeqc ran successfully."

 Exit Sub

ErrHandler:

 MsgBox "Phreeqc errors: " & Phreeqc.GetErrorString()

End Sub

 33

Table 3. Python script that plots the solubility of gypsum as a function of NaCl

concentration as calculated by the Pitzer and WATEQ4F databases

"""Compares gypsum solubility for WATEQ4F and Pitzer databases.

"""

Import standard library modules first.

import os

Then get third party modules.

from win32com.client import Dispatch

import matplotlib.pyplot as plt

def selected_array(db_path, input_string):

 """Load database via COM and run input string.

 """

 dbase = Dispatch('IPhreeqcCOM.Object')

 dbase.LoadDatabase(db_path)

 dbase.RunString(input_string)

 return dbase.GetSelectedOutputArray()

def show_results(input_string):

 """Get results for different databases

 """

 wateq4f_result = selected_array('wateq4f.dat', input_string)

 pitzer_result = selected_array('pitzer.dat', input_string)

 # Get data from the arrays.

 nacl_conc = [entry[0] for entry in wateq4f_result][1:]

 wateq4f_values = [entry[1] for entry in wateq4f_result][1:]

 pitzer_values = [entry[1] for entry in pitzer_result][1:]

 # Plot

 plt.plot(nacl_conc, pitzer_values, 'k', nacl_conc, wateq4f_values,'k--')

 plt.axis([0, 6, 0, .06])

 plt.legend(('PITZER','WATEQ4F'), loc = (0.4, 0.4))

 plt.ylabel('GYPSUM SOLUBILITY, MOLES PER KILOGRAM WATER')

 plt.xlabel('NaCl, MOLES PER KILOGRAM WATER')

 plt.show()

if __name__ == '__main__':

 # This will only run when called as script from the command line

 # and not when imported from another script.

 INPUT_STRING = """

 SOLUTION 1

 END

 INCREMENTAL_REACTIONS

 REACTION

 NaCl 1.0

 0 60*0.1 moles

 EQUILIBRIUM_PHASES

 Gypsum

 USE solution 1

 SELECTED_OUTPUT

 -reset false

 -total Na S(6)

 END"""

 show_results(INPUT_STRING)

 34

Table 4. Initial conditions and selected-output definitions for Fortran90 example

File ic

SOLUTION 1-2

END

EQUILIBRIUM_PHASES 1

 CO2(g) -1.5 10

EQUILIBRIUM_PHASES 2

 Calcite 0 10

SELECTED_OUTPUT

 -reset false

USER_PUNCH

 -Heading charge H O C Ca pH SR(calcite)

 10 PUNCH charge_balance

 20 PUNCH TOTMOLE("H"), TOTMOLE("O"), TOTMOLE("C"), TOTMOLE("Ca")

 30 PUNCH -LA("H+"), SR("calcite")

END

 35

Table 5. Fortran90 program that performs advection and chemical reactions for two cells

module Subs

 integer (kind=4), dimension(7) :: vt

 real (kind=8), dimension(7) :: dv

 character (len=100), dimension(7) :: sv

 integer :: Id

 contains

 subroutine ExtractWrite(cell)

 include "IPhreeqc.f90.inc"

 integer (kind=4), intent(in) :: cell

 do j = 1, 7

 ! Headings are on row 0

 Ierr = GetSelectedOutputValue(Id,1,j,vt(j),dv(j),sv(j))

 if(Ierr .ne. IPQ_OK) call EHandler()

 enddo

 write(*,"(a,i2/2(5x,a,f7.2))") "Cell",cell,"pH:",dv(6),"SR(calcite):",dv(7)

 end subroutine ExtractWrite

 subroutine EHandler()

 include "IPhreeqc.f90.inc"

 call OutputErrorString(Id)

 stop

 end subroutine EHandler

end module Subs

program Advect

 use Subs

 include "IPhreeqc.f90.inc"

 character(len=1024) Istring

!Create module, load database, define initial conditions and selected output

 Id = CreateIPhreeqc()

 if (LoadDatabase(Id, "phreeqc.dat") .ne. 0) call EHandler()

 If (RunFile(Id, "ic") .ne. 0) call EHandler()

!Run cell 1, extract/write result

 if (RunString(Id, "RUN_CELLS; -cells; 1; END") .ne. 0) call EHandler()

 call ExtractWrite(1)

!Advect cell 1 solution to cell 2, run cell 2, extract/write results

 Ierr = AccumulateLine(Id, "SOLUTION_MODIFY 2")

 Ierr = AccumulateLine(Id, " -cb " // sv(1))

 Ierr = AccumulateLine(Id, " -total_h " // sv(2))

 Ierr = AccumulateLine(Id, " -total_o " // sv(3))

 Ierr = AccumulateLine(Id, " -totals ")

 Ierr = AccumulateLine(Id, " C " // sv(4))

 Ierr = AccumulateLine(Id, " Ca " // sv(5))

 Ierr = AccumulateLine(Id, "RUN_CELLS; -cells; 2; END")

 if (RunAccumulated(Id) .ne. 0) call EHandler()

 call ExtractWrite(2)

 !Destroy module

 if (DestroyIPhreeqc(Id) .ne. 0) call EHandler()

end program Advect

 36

Table A1. Complete list of methods for a Fortran90 IPhreeqc module

[Id, number returned by the CreateIPhreeqc function; N, integer used to refer to the Nth

member of a list; col, column number; comp, variable to hold the Nth component name,

logical, a value of true or false; Vtype,integer variable; Dvalue, real variable ; Svalue,

string variable]

Method Usage

Function AccumulateLine(Id, String) Appends one or more lines to the input buffer

Function AddError(Id, String) Appends the string to the error string in the module and

increments the error count

Function AddWarning(Id, String) Appends the string to the warning string in the module

Function ClearAccumulatedLines(Id) Clears the input buffer of the module

Function CreateIPhreeqc() Create and initialize a module

Function DestroyIPhreeqc(Id) Destroy a module

Subroutine GetComponent(Id, N, Comp) Retrieve specified component name

Function GetComponentCount(Id) Determine number of components currently used in the module

Function GetDumpFileOn(Id, Logical) Retrieve the print setting for the dump file

Subroutine GetDumpStringLine(Id, N, Line) Retrieve line from the lines generated by the DUMP data block

Function GetDumpStringLineCount(Id) Retrieve number of lines generated by the DUMP data block

Function GetDumpStringOn(Id, Logical) Retrieve the setting for saving dump information in a string

Function GetErrorFileOn(Id, Logical) Retrieve the print setting for the error file

Subroutine GetErrorStringLine(Id, N, Line) Retrieve specified line from the error messages

Function GetErrorStringLineCount(Id) Retrieve number of lines in the error messages

Function GetLogFileOn(Id, Logical) Retrieve the print setting for the log file

Function GetOutputFileOn(Id, Logical) Retrieve the print setting for the output file

Function GetSelectedOutputColumnCount(Id) Retrieve number of columns in selected output

Function GetSelectedOutputFileOn(Id, Logical) Retrieve the print setting for the selected-output file

Function GetSelectedOutputRowCount(Id) Retrieve number of rows in selected output

Function GetSelectedOutputValue(Id, Row, Col,

Vtype, Dvalue, Svalue)

Retrieve selected-output value from specified row and column

Subroutine GetWarningStringLine(Id, N, Line) Retrieve specified line from the warning messages

Function GetWarningStringLineCount(Id) Retrieve number of lines in the warning messages

Function LoadDatabase(Id, FileName) Reads the database from file

Function LoadDatabaseString(Id, String) Reads the database from string

 37

Subroutine OutputAccumulatedLines(Id) Display the accumulated input buffer

Subroutine OutputErrorString(Id) Display errors from the last run

Subroutine OutputWarningString(Id) Display warnings from the last run

Function RunAccumulated(Id) Run the input accumulated in the input buffer

Function RunFile(Id, FileName) Run from a file

Function RunString(Id, String) Run from a string

Function SetDumpFileOn(Id, Logical) Set the switch for printing to the dump file

Function SetDumpStringOn(Id, Logical) Set the switch for saving dump information in a string

Function SetErrorFileOn(Id, Logical) Set the switch for printing to the error file

Function SetLogFileOn(Id, Logical) Set the switch for printing to the log file

Function SetOutputFileOn(Id, Logical) Set the switch for printing to the output file

Function SetSelectedOutputFileOn(Id, Logical) Set the switch for printing to the selected-output file

 38

Table A2. C program that performs advection and chemical reactions for two cells

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <IPhreeqc.h>

int id;

int vt[7];

double dv[7];

char sv[7][100];

char buffer[100];

void ExtractWrite(int cell)

{

 VAR v;

 int j;

 VarInit(&v);

 for (j = 0; j < 7; ++j) {

 GetSelectedOutputValue(id, 1, j, &v);

 vt[j] = v.type;

 switch (vt[j]) {

 case TT_DOUBLE:

 dv[j] = v.dVal;

 sprintf(sv[j], "%23.15e", v.dVal);

 break;

 case TT_STRING:

 strcpy(sv[j], v.sVal);

 break;

 }

 VarClear(&v);

 }

 printf("Cell %d \n\tpH: %4.2f\tSR(calcite): %4.2f\n", cell, dv[5], dv[6]);

}

void EHandler(void)

{

 OutputErrorString(id);

 exit(EXIT_FAILURE);

}

const char *ConCat(const char *str1, const char *str2)

{

 strcpy(buffer, str1);

 return strcat(buffer, str2);

}

int main(void)

{

 /* Create module, load database, define initial conditions and selected output */

 id = CreateIPhreeqc();

 if (LoadDatabase(id, "phreeqc.dat") != 0) EHandler();

 if (RunFile(id, "ic") != 0) EHandler();

 /* Run cell 1, extract/write result */

 if (RunString(id, "RUN_CELLS; -cells; 1; END") != 0) EHandler();

 ExtractWrite(1);

 /* Advect cell 1 solution to cell 2, run cell 2, extract/write results */

 AccumulateLine(id, ConCat("SOLUTION_MODIFY 2", ""));

 AccumulateLine(id, ConCat(" -cb ", sv[0]));

 AccumulateLine(id, ConCat(" -total_h ", sv[1]));

 AccumulateLine(id, ConCat(" -total_o ", sv[2]));

 AccumulateLine(id, ConCat(" -totals ", ""));

 AccumulateLine(id, ConCat(" C ", sv[3]));

 AccumulateLine(id, ConCat(" Ca ", sv[4]));

 AccumulateLine(id, ConCat("RUN_CELLS; -cells; 2; END", ""));

 if (RunAccumulated(id) != 0) EHandler();

 ExtractWrite(2);

 /* Destroy module */

 if (DestroyIPhreeqc(id) != IPQ_OK) EHandler();

 exit(EXIT_SUCCESS);

}

	Modules Based on the Geochemical Model PHREEQC for Use in Scripting and Programming Languages
	Abstract
	Keywords
	Software Requirements
	1 Introduction
	2 Methods
	2.1 Additions to PHREEQC
	2.2 IPhreeqc Class Methods
	2.3 The COM Module
	2.4 C++, C, and Fortran Modules
	2.4.1 C++ Modules
	2.4.2 C Modules
	2.4.3 Fortran Modules

	3 Discussion
	3.1 Use of a COM Module in Excel®
	3.2 Use of a Module in Python
	3.3 Use of a Module in Fortran
	3.4 Parallelized Calculations Using IPhreeqc Modules

	4 Summary and Conclusions
	5 Acknowledgements
	6 References
	Appendix 1
	Appendix 2

