
www.elsevier.com/locate/cageo

Author’s Accepted Manuscript

Modules based on the geochemicalmodel PHREEQC
for use in scripting and programming languages

Scott R. Charlton, David L. Parkhurst

PII: S0098-3004(11)00065-3
DOI: doi:10.1016/j.cageo.2011.02.005
Reference: CAGEO2539

To appear in: Computers & Geosciences

Received date: 8 November 2010
Revised date: 1 February 2011
Accepted date: 7 February 2011

Cite this article as: Scott R. Charlton and David L. Parkhurst, Modules based on the geo-
chemical model PHREEQC for use in scripting and programming languages, Computers
& Geosciences, doi:10.1016/j.cageo.2011.02.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errorsmay be discoveredwhich could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2011.02.005

1

Modules Based on the Geochemical Model PHREEQC 1
for Use in Scripting and Programming Languages 2

3
By Scott R. Charlton and David L. Parkhurst*4

U.S. Geological Survey 5
Denver Federal Center, P.O. Box 25046, MS 413, Denver, CO, USA 6

7
E-mail addresses: charlton@usgs.gov and dlpark@usgs.gov* 8

*Corresponding author 9
Phone 303 236 5098 10
Fax 303 236 5034 11

12
13
14
15

Submitted to Computers & Geosciences, November 8, 2010 16
Revised and resubmitted February 1, 2011 17

 2

Abstract 18

The geochemical model PHREEQC is capable of simulating a wide range of 19

equilibrium reactions between water and minerals, ion exchangers, surface complexes, 20

solid solutions, and gases. It also has a general kinetic formulation that allows modeling 21

of non-equilibrium mineral dissolution and precipitation, microbial reactions, 22

decomposition of organic compounds, and other kinetic reactions. To facilitate use of 23

these reaction capabilities in scripting languages and other models, PHREEQC has been 24

implemented in modules that easily interface with other software. A Microsoft COM 25

(Component Object Model) has been implemented, which allows PHREEQC to be used 26

by any software that can interface with a COM server—for example, Excel®, Visual 27

Basic®, Python, or MATLAB®. PHREEQC has been converted to a C++ class, which can 28

be included in programs written in C++. The class also has been compiled in libraries for 29

Linux and Windows that allow PHREEQC to be called from C++, C, and Fortran. A 30

limited set of methods implement the full reaction capabilities of PHREEQC for each 31

module. Input methods use strings or files to define reaction calculations in exactly the 32

same formats used by PHREEQC. Output methods provide a table of user-selected model 33

results, such as concentrations, activities, saturation indices, or densities. 34

The PHREEQC module can add geochemical reaction capabilities to surface-water, 35

groundwater, and watershed transport models. It is possible to store and manipulate 36

solution compositions and reaction information for many cells within the module. In 37

addition, the object-oriented nature of the PHREEQC modules simplifies implementation 38

of parallel processing for reactive-transport models. 39

 3

The PHREEQC COM module may be used in scripting languages to fit parameters; 40

to plot PHREEQC results for field, laboratory, or theoretical investigations; or to develop 41

new models that include simple or complex geochemical calculations. 42

Keywords 43

Geochemical modeling; PHREEQC; Reactive-transport modeling; COM, Component 44

Object Model; C++, C, and Fortran. 45

Software Requirements 46

� COM Module—Microsoft Windows operating system, COM client software such as 47
Excel®, Visual Basic®, Python, or MATLAB® 48

� Windows Library Module—C++, C, or Fortran compiler for Windows operating 49
system; Visual Studio® and C++ are needed to link with the library 50

� Linux Library Module—C++, C, or Fortran compiler for Linux operating system; 51
C++ is needed to link with the library 52

� C++ Module—C++ compiler 53
 54
All modules are available at http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc. 55
 56
 57

Any use of trade, product, or firm names in this publication is for descriptive purposes 58

only and does not imply endorsement by the U.S. Government. 59

 4

1 Introduction 60

PHREEQC (Parkhurst and Appelo, 1999) is a geochemical reaction model that 61

simulates a variety of geochemical processes including equilibrium between water and 62

minerals, ion exchangers, surface complexes, solid solutions, and gases. The general 63

kinetic formulation allows modeling of non-equilibrium mineral dissolution and 64

precipitation, microbial reactions, decomposition of organic compounds, and other 65

kinetic reactions. PHREEQC has capabilities for 1D reactive transport, including such 66

processes as multicomponent diffusion and transport of surface-complexing species. 67

Finally, PHREEQC has inverse-modeling capabilities for the evaluation of the 68

geochemical reactions that account for changes in water chemistry. 69

Because of the general geochemical speciation and reaction capabilities and the 70

modular organization of input, PHREEQC often has been used as a geochemical 71

calculation module (server) in other software programs (clients). PHREEQC has been 72

used to calculate saturation indices, activities, and pH in water-quality data management 73

software (Scientific Software Group, 2010, AquaChem), to generate predominance 74

diagrams and estimate parameters (Kinniburgh and Cooper, 2010, PhreePlot), and to 75

consider geochemical effects in watershed processes (Hartman et al., 2007, DayCent-76

Chem). Most commonly, PHREEQC has been used as the geochemical module for 77

reactive-transport models. Reactive-transport environments include the unsaturated zone 78

(Jacques and Šimůnek, 2004, HP1; Szegedi et al., 2008, RhizoMath; Wissmeier and 79

Barry, 2010a, 2010b), the saturated zone (Mao et al., 2006, PHWAT; Parkhurst et al., 80

2004, 2010, PHAST; Prommer et al., 1999, PHT3D), radionuclide isolation (Källvenius 81

 5

and Ekberg, 2003, TACK), and acid mine drainage (Malmström et al., 2004, LaSAR-82

PHREEQC). 83

The coupling of PHREEQC to client programs has been both soft—reading and 84

writing files by the client and server—and hard—modifying the source codes to add 85

routines that transfer data between the client and server. Soft coupling is likely to be slow 86

because of file writing and reading and because PHREEQC must read a database and 87

perform extra calculations to redefine solution compositions as it is initialized at each 88

geochemical step. PHREEQC lacks a facility to define directly essential solution data, 89

particularly the solution charge balance, total moles of hydrogen, and total moles of 90

oxygen. Hard coupling using specialized methods to set and retrieve data values can be 91

difficult because of the complicated data structures in PHREEQC and because of 92

complicated data dependencies among these structures. 93

This report presents PHREEQC modules designed to be used in scripting languages 94

and integrated into C++, C, and Fortran programs. The modules are a hybrid between soft 95

coupling—strings (or files) of PHREEQC input are used to specify calculations—and 96

hard coupling—all data transfer between server and client can be done through a well-97

defined set of methods that do not require writing of files. The new modules rely on 98

reorganization of the original PHREEQC code and addition of several new keyword data 99

blocks that simplify extracting and modifying data within PHREEQC data structures. The 100

interface to each module is a limited number of methods that are simple and intuitive for 101

PHREEQC users, but retain the full capabilities of PHREEQC. Three examples are 102

presented of geochemical tasks in different software environments to demonstrate a few 103

of the possible uses for the new modules. 104

 6

2 Methods 105

A C++ class for PHREEQC (hereafter, “IPhreeqc” is used to refer to the class or any 106

PHREEQC modules) was implemented in three stages. The first stage was the 107

development of a series of C++ classes that are equivalent to the original C structures that 108

contain the data for solutions and reactants—equilibrium phases, gas phases, exchangers, 109

surface complexers, solid solutions, and kinetic reactions. These classes were written 110

during the development of PHAST (Parkhurst et al., 2004, 2010) and could be used 111

directly by C++ programs that incorporate the IPhreeqc class. Most of the enhancements 112

to PHREEQC discussed in section 2.1 are based on these additional C++ classes. 113

The second stage required much less development and was generally a 114

rearrangement of the data and functions that comprise PHREEQC. All global and static 115

data for PHREEQC were included in a header file for the IPhreeqc class. Similarly, all C 116

functions were defined as methods of the class. The final stage was adding the interface, 117

which is a series of methods described in section 2.2, and adding the wrappers necessary 118

for the COM and library modules. 119

Thus, the IPhreeqc class is not a complete rewrite of PHREEQC with C++ classes 120

and methods for all calculations; rather, it is an encapsulation to limit access to the data 121

and functions of the original C code. The C code is essentially intact within the C++ 122

class, but interactions with the class are limited to a well-defined set of methods. 123

2.1 Additions to PHREEQC 124

The reaction capabilities of PHREEQC and examples of their use are described in 125

detail in Parkhurst and Appelo (1999). In its simplest form, a reaction in PHREEQC can 126

 7

be conceptualized as a solution plus a set of reactants that are put into a beaker and 127

allowed to react. All of the moles of elements in the solution and in the reactants are 128

combined in the beaker and a new system equilibrium is calculated. The reactants can 129

include minerals, gases, ion exchangers, reactive surfaces, and solid solutions, which 130

react to equilibrium, and kinetic reactions, which are functions of time and chemical 131

compositions. PHREEQC allows definition of the initial compositions of the solution and 132

reactants, calculates new compositions at the end of a reaction step, and finally saves 133

these new compositions for use in subsequent reaction calculations. Compositions of all 134

solutions and reactants are identified by a user-specified cell number. 135

In developing the reactive-transport model PHAST (Parkhurst and others, 2004, 136

2010), several new capabilities were added to PHREEQC, primarily to facilitate saving 137

the compositional state of a simulation and restarting it. To that end, a series of input data 138

blocks were devised that allow input of the exact contents of the data structures for 139

solutions and other reactants. For solutions, the data block is named SOLUTION_RAW 140

(for clarity, PHREEQC keywords are written with all capital letters); correspondingly 141

named data blocks exist for equilibrium phases, exchangers, surfaces, solid solutions, gas 142

phases, and kinetics. 143

A new keyword data block, DUMP, is used to write the state of any solution or 144

reactant in the RAW format. Thus, the output from dumping a solution composition is a 145

string or file that contains a SOLUTION_RAW data block, and is suitable for use as 146

input to IPhreeqc. 147

In addition to the SOLUTION_RAW input data block, a SOLUTION_MODIFY data 148

block is available. It uses exactly the same format as SOLUTION_RAW, but does not 149

 8

require a complete set of data. Thus, only data items that need to be changed can be 150

updated. It is expected that the SOLUTION_MODIFY will be used to update the element 151

composition of a solution following a transport calculation, without redefining some parts 152

of the solution structure (for example, calculated quantities such as total alkalinity, mass 153

of water, Pitzer activity coefficients, or, optionally, initial estimates of activities of the 154

master species). Equivalent MODIFY data blocks are available for all other reactants. 155

The DELETE data block allows deleting some or all solution and reactant 156

definitions. The COPY data block allows solutions and reactants to be replicated. 157

Together, DUMP, MODIFY, DELETE, and COPY data blocks allow direct management 158

of the solutions and reactants defined to PHREEQC. 159

The RUN_CELLS data block streamlines the process of setting up, running, and 160

saving the results of a calculation for a cell. For cells selected by the data block 161

specifications, all of the reactants with a given cell number are brought together and 162

reacted, after which, the resulting compositions of the solution and reactants are saved 163

back to the given cell number. Thus, “RUN_CELLS; 1-2” will cause solution 1 to react 164

with all reactants numbered 1 and the compositions of the solution and reactants in cell 1 165

will be redefined to be the result of the reaction; similarly for cell 2. 166

2.2 IPhreeqc Class Methods 167

A client interacts with an IPhreeqc module through a set of methods. The key 168

methods are listed in Table 1. These methods allow initializing the module and reading a 169

thermodynamic database, running PHREEQC input (strings or files), and retrieving 170

results from simulations. Other methods provide error and warning messages, get lengths 171

 9

of data items—number of rows, number of columns, number of lines—and control the 172

writing of PHREEQC output files. Appendix 1 contains a complete list of methods for a 173

Fortran module. 174

An IPhreeqc module is created in different ways depending on the software 175

environment where it is used. Multiple instances of an IPhreeqc class can be created 176

within the client program in all programming environments, even in C and Fortran. After 177

a module is created, the LoadDatabase (for clarity, all IPhreeqc method names are 178

written in bold font) or LoadDatabaseString method reads a thermodynamic database 179

from a file or string, respectively. When the database has been read, a module is ready to 180

perform PHREEQC calculations. Using LoadDatabase or LoadDatabaseString a 181

second time will re-initialize the module and remove all data stored in it. 182

PHREEQC input can be defined and run in three different ways with an IPhreeqc 183

module. First, the AccumulateLine method can be called sequentially to append 184

PHREEQC input to an input buffer in IPhreeqc. When the entire input has been 185

accumulated, it is run with the RunAccumulated method. The second way to run 186

simulations is to define PHREEQC input in a string within the client program. This string 187

is then submitted and run with the RunString method. Finally, it is possible to run 188

PHREEQC input that has been saved in a file by using the RunFile method. Because 189

reading and writing files to disk is slow, running simulations with many calls to RunFile 190

is expected to be slower than using RunString and RunAccumulated with internally 191

generated strings. 192

The SELECTED_OUTPUT and USER_PUNCH data blocks are used in a batch 193

PHREEQC run to identify data to be written to a selected-output file. The data written 194

 10

can include most quantities calculated by the geochemical model—dissolved 195

concentrations of elements, concentrations of aqueous species, activities of aqueous 196

species, moles of minerals, and moles of kinetic reactants, for example. IPhreeqc makes 197

special use of the data defined by the SELECTED_OUTPUT and USER_PUNCH data 198

blocks, and allows this array of data to be returned to the client program by two methods 199

that do not require reading or writing files. The GetSelectedOutputValue method is 200

available in all modules and retrieves an individual data item at a given row and column 201

from the array of selected-output results that was generated by the last call to a 202

RunAccumulated, RunString, or RunFile method. The array has a row for every 203

geochemical calculation that was performed and columns as defined by the 204

SELECTED_OUTPUT and USER_PUNCH data blocks. The COM module has an 205

additional method, GetSelectedOutputArray, which returns the entire array of the 206

selected-output data. 207

A data item in the selected-output array may be an integer, real, or string value. 208

IPhreeqc implements a simple variant object, which can contain any of these three data 209

types. The IPhreeqc module requires slightly different handling of this variant object 210

depending on whether the module is called as a COM, or as C++, C, or Fortran program 211

elements. 212

A new PHREEQC capability to write (DUMP) data values allows access to the 213

complete internal definition of each solution and reactant. The dumped data values are 214

written in keyword data blocks that are suitable for input back into IPhreeqc (RAW data 215

blocks, section 2.1). The GetDumpString method allows the raw keyword data blocks to 216

be captured by the client program. (In Fortran, the dump string must be captured line-by-217

 11

line with the GetDumpStringLine method.) The dumped data can be modified and 218

reintroduced to an IPhreeqc module by use of the MODIFY data blocks (section 2.1) or 219

transferred to another IPhreeqc module. The DUMP and the set of MODIFY keyword 220

data blocks provide the basis for “get” and “set” methods, whereby the client program 221

can control the data items of the module’s solutions and reactants. 222

2.3 The COM Module 223

The COM module was implemented using Microsoft's Active Template Library 224

(ATL). Through the use of C++ templates ATL provides standard implementations 225

required by all COM objects. Each method and property was implemented by wrapping 226

calls to the underlying IPhreeqc C++ methods. Methods containing string arguments 227

required additional code to handle the necessary conversions between native COM 228

strings (BSTR data type) and standard C strings. It also was necessary to convert the 229

simplified IPhreeqc variant into a COM variant (VARIANT data type) for the 230

GetSelectedOutputValue and GetSelectedOutputArray methods. The 231

GetSelectedOutputArray method additionally uses an array (SAFEARRAY data type) 232

of COM variants to return the selected-output array. 233

Programming environments designed to support COM objects (Visual Basic®, 234

Python, or MATLAB®, for example) are able to use these COM variants directly and 235

interchange them with their own native data types. 236

2.4 C++, C, and Fortran Modules 237

IPhreeqc libraries are available that allow use of IPhreeqc by C++, C, and Fortran 238

programs; a library and equivalent DLL are available for Windows operating systems and 239

 12

source code for a library is available to be compiled for Linux or other Unix operating 240

systems. The same Windows library (or DLL) or Linux library is linked no matter which 241

of the three programming languages is used for the client program. However, each 242

programming language requires a different header or “include” file in the client program. 243

Header files for C++ and C and include files for Fortran77 and Fortran90 are included in 244

the distribution of each of the library modules. 245

The use of the IPhreeqc methods is slightly different for C++, C, and Fortran to 246

comply with the syntax of each language. The GetSelectedOutputArray method is not 247

available in C++, C, or Fortran modules. 248

2.4.1 C++ Modules 249

Instances of the IPhreeqc C++ class can be used by linking with the IPhreeqc library. 250

Alternatively, if the client of the IPhreeqc module is a C++ program, then the source code 251

for the module could be compiled directly into the client program. In this case, it is 252

possible to use the internal C++ classes for solutions and equilibrium phase, gas phase, 253

exchange, surface, solid solution, and kinetic reactants. Use of these and other C++ 254

classes included in the source code for IPhreeqc could simplify data storage and 255

manipulation. When compiled into the client, it also is possible to extend the set of 256

methods for the IPhreeqc class (or the other classes) to simplify data communication 257

between the client and the IPhreeqc class. 258

The header file IPhreeqc.hpp is needed to compile C++ code that uses the IPhreeqc 259

class, whether the C++ class is defined by integrating the source code or by using the 260

IPhreeqc library. The class is instantiated by using normal C++ syntax for class objects. 261

 13

Methods are called by using the standard C++ syntax for methods of objects. For a C++ 262

module, the GetSelectedOutputValue method returns the IPhreeqc variant, which can 263

contain an integer, double, string value, or error code. The definition of the variant and its 264

methods are defined in the header file, Var.h. 265

2.4.2 C Modules 266

 267
All methods for the C modules are functions. The client program must include the 268

header file IPhreeqc.h, which includes the prototypes for the methods and the definition 269

of the IPhreeqc variant. The GetSelectedOutputValue method returns the IPhreeqc 270

variant. 271

2.4.3 Fortran Modules 272

The methods listed in Appendix 1 are subroutine and function calls. Fortran90 client 273

programs must include the file IPhreeqc.f90.inc, which defines constants and the Fortran 274

interfaces for the IPhreeqc methods. Fortran77 programs must include the file 275

IPhreeqc.f.inc to define the constants and function types. 276

The IPhreeqc variant was not implemented in Fortran. Instead, the argument list of 277

GetSelectedOutputValue contains three additional arguments, an integer type of the 278

selected-output value (indicating integer, real, string, or error code), a real number, and a 279

string value. If the type of the return value is string, the real number is not meaningful. If 280

the type is integer or real, the value is returned as a real number in the real argument and 281

the value is written as a string into the string argument. 282

 14

3 Discussion 283

A wide variety of uses are possible for the IPhreeqc modules. Three general classes 284

of users are envisioned: (1) researchers who use PHREEQC for interpretation of 285

laboratory or field data and would like to use Excel® to store and plot results, (2) 286

researchers who need more complex geochemical calculations and could use the 287

flexibility of embedding a geochemical module in a scripting language such as Python or 288

Visual Basic®, and (3) program developers who need a geochemical module for reactive-289

transport codes or who need to incorporate a geochemical calculation [calcium carbonate 290

precipitation potential (CCPP) or base neutralizing capacity, for example] into their 291

software. Three examples are given to demonstrate how IPhreeqc might be used by each 292

of these three classes of users. The examples are made as simple as possible, while still 293

demonstrating the utility of IPhreeqc in three different software environments. 294

3.1 Use of a COM Module in Excel® 295

Once installed on a computer, the IPhreeqc COM module can be used in Excel® 296

Visual Basic for Applications® (VBA) macros. One common use for PHREEQC is to 297

calculate saturation indices for a set of chemical analyses. Figure 1 (top) shows a 298

PHREEQC input file that has been entered on sheet 1 of an Excel® workbook. The 299

analytical data are entered in a set of columns headed by the PHREEQC nomenclature for 300

elements and element valence states. Lines 1-2 and 7-10 are added to make a complete 301

PHREEQC input set that performs speciation calculations and generates selected output 302

that contains the saturation indices for calcite, dolomite, and gypsum and the log partial 303

pressure for CO2(g). 304

 15

Table 2 contains a VBA macro that creates the PHREEQC module, formats the data 305

in sheet 1 as a PHREEQC input string, runs the string, and places the results in sheet 2 of 306

the Excel® workbook. The phreeqc.dat database is assumed to be available in the 307

directory containing the Excel® spreadsheet, but the macro could be modified with a path 308

to a PHREEQC database. In the example, saturation indices are calculated as shown in 309

figure 1 (bottom). In terms of the macro, no restriction is placed on the input that is 310

defined in sheet 1; any PHREEQC input set could be defined on sheet 1 and the macro 311

would place the selected-output results in sheet 2. 312

3.2 Use of a Module in Python 313

This example uses the COM module with the Python scripting language in a 314

Windows environment. The task in the example is to calculate the solubility of gypsum 315

as a function of NaCl concentration for two different aqueous models—the ion-316

association model, as developed in WATEQ4F (Ball and Nordstrom, 1991) and 317

implemented in wateq4f.dat, and the specific ion interaction approach of Pitzer (1973), as 318

originally coded in PHRQPITZ (Plummer et al., 1988) and implemented in pitzer.dat. 319

The Python script for the example is shown in table 3. The main program (last block 320

of code) defines PHREEQC input for the simulation and specifies that the solubility of 321

gypsum be calculated for increments of 0.1 moles of NaCl. The function show_results 322

creates an IPhreeqc module for each database, runs the simulation in each module, and 323

retrieves the data in the variables nacl_conc, wateq4f_values, and pitzer_values. The 324

Python utility matplotlib (http://matplotlib.sourceforge.net/) is then used to produce a plot 325

that compares the two results (figure 2). The specific ion interaction approach is a good 326

fit to experimental data (Harvie and Weare, 1980). The ion-association model is generally 327

 16

applicable at lower ionic strengths and, indeed, the results of the ion-association model 328

deviate from the more accurate Pitzer results at high ionic strengths. 329

3.3 Use of a Module in Fortran 330

The third example demonstrates use of IPhreeqc in a Fortran90 program. An 331

equivalent C program is provided in Appendix 2. The program works with two cells that 332

represent a reactive-transport model. Initial conditions are defined in the file ic (table 4), 333

where both cells initially are filled with pure water. Cell 1 has an equilibrium-phases 334

definition that contains carbon dioxide with a partial pressure of 10-1.5, whereas cell 2 has 335

an equilibrium phases definition that contains calcite. The file ic also contains a definition 336

for SELECTED_OUTPUT that writes the total number of moles of H, O, Ca, and C, plus 337

the pH and saturation ratio (SR) for calcite (IAP/K, where IAP is ion activity product and 338

K is the equilibrium constant). 339

In the Fortran90 program (table 5), the phreeqc.dat database is loaded, and the initial 340

conditions file is run, which places pure water in each of the two cells. Then the solution 341

and reactants (equilibrium phases) for cell 1 are reacted with the RUN_CELLS data 342

block, which produces a water in equilibrium with a soil-zone partial pressure of carbon 343

dioxide. 344

In place of a true dispersive-transport step, the solution from cell 1 is simply 345

advected to cell 2. The data from cell 1 are retrieved in the subroutine ExtractWrite by 346

sequentially retrieving the columns of the selected-output array. After retrieving the data, 347

the pH and saturation ratio for cell 1 are written to the output screen. Returning to the 348

main program, the SOLUTION_MODIFY data block is constructed, which specifies the 349

 17

total moles of elements in cell 2 to be equal to those just retrieved from cell 1. The 350

RUN_CELLS keyword data block is used to equilibrate the new water composition in 351

cell 2 with the reactants in cell 2, namely calcite. The results of this calculation are again 352

retrieved and written by the subroutine ExtractWrite. The results show that the water in 353

cell 1 has a pH of 4.66 and a calcite saturation ratio of 0.0 (because calcium is absent), 354

whereas the water in cell 2 has a pH of 7.68 and a calcite saturation ratio of 1.0 355

(equilibrium with calcite). 356

Some care is needed with the units of solutions and reactants when using IPhreeqc 357

for reactive-transport simulations. PHREEQC stores all quantities of elements, 358

exchangers, equilibrium phases, and other reactants, in units of moles, not in units of 359

concentration. Although PHREEQC does all of its calculations with solutions in terms of 360

molality (mol/kg water), only the numbers of moles of each element and the mass of 361

water are stored; a solution definition may have a mass of water that differs substantially 362

from 1.0 kg. Thus, solution compositions are defined by the number of moles of 363

elements, including H and O, and the equivalents of charge imbalance. In the file ic (table 364

4), the function TOTMOLE was used, which returns the total number of moles of an 365

element in solution. The total numbers of moles in solution are the quantities needed for 366

the SOLUTION_MODIFY data block that was used in the advection step of the example 367

(table 5). For reactive-transport calculations, it may be necessary to convert the solution 368

compositions to concentration units (mol/L, ppm, or mass fraction, for example) for the 369

transport calculation and then back to moles for the IPhreeqc calculations. Alternatively, 370

fluid flow and solute transport with species-independent diffusion can be considered as 371

an assembage of fluxes of individual elements, and the governing equations can be 372

 18

derived in terms of transport of moles of individual elements (Wissmeier and Barry, 373

2008). Regardless of the transport equations selected, it is necessary to transport H, O, 374

and charge, in addition to any other elements in the system to maintain complete solution 375

composition and correct charge imbalances. 376

3.4 Parallelized Calculations Using IPhreeqc Modules 377

Because IPhreeqc modules are independent objects in the sense of object-oriented 378

programming, parallelization with threads or multiple processes is straightforward. Here, 379

multiple processors are discussed, but the use of threads is similar. In general, the 380

strategy is to start multiple processes, each of which creates an IPhreeqc module. Each 381

module is then assigned part of the geochemical calculation tasks. Data are passed among 382

the processes, either by queues or messages. The passed data would be primarily 383

chemical compositions, which could be DUMP strings, _MODIFY data blocks, or arrays 384

of elemental compositions. 385

An example calculation (parallel_advect.py) using the multiprocessing package of 386

Python is presented in the supplemental material. The example reproduces the results of 387

the advective case of example 11 in the PHREEQC manual (Parkhurst and Appelo, 388

1999). The Python script uses multiple processes and queues to divide the geochemical 389

calculations for a column of cells equally among a specified number of processes. 390

4 Summary and Conclusions 391

PHREEQC can simulate a wide range of reactions between water and solids, 392

including reactions with minerals, gases, ion exchangers, surface complexers, and solid 393

solutions. Irreversible kinetic reactions also can be simulated. Because of the generality 394

 19

and ease of use, PHREEQC has been integrated as the geochemical calculation module in 395

several programs; however, the integration of PHREEQC into other codes has been 396

difficult and time consuming. IPhreeqc is a set of modules that have been developed 397

specifically to allow easy integration of PHREEQC into other software. All of the 398

simulation and data-storage capabilities of PHREEQC are accessible in IPhreeqc modules 399

through a limited set of methods. 400

IPhreeqc modules can be used in a number of software environments. The COM 401

module can be used by any software that supports the COM interface—Excel® (Visual 402

Basic for Applications®), Python, or MATLAB® for example. The C++ class for 403

IPhreeqc can be compiled into C++ programs, where the module and its underlying 404

classes can be used or subclassed directly. Alternatively, libraries and DLLs allow the 405

IPhreeqc modules to be used in C++, C, and Fortran programs on Windows or Linux 406

operating systems. The modularity of IPhreeqc allows easy implementation of parallel 407

processing for computationally intensive geochemical simulations. 408

The interface to the modules is a relatively small set of methods, which combined 409

with enhancements to PHREEQC, implements all of the capabilities of PHREEQC and 410

allows all of the underlying data that define solutions and reactants to be retrieved and 411

modified. While it is admittedly somewhat cumbersome to generate strings to perform all 412

of the IPhreeqc calculations, the string approach has the advantage that the interface is 413

simple and intuitive. In addition, the interface methods should not need modification, 414

even if new features are added to PHREEQC. 415

IPhreeqc can be used for a variety of geochemical simulation tasks, including 416

analysis of field and laboratory data, comparison and fitting of thermodynamic data, and 417

 20

reactive-transport simulations. Two applications have successfully used IPhreeqc 418

modules: Kinniburgh and Cooper (2010) have integrated the library module into 419

PhreePlot to plot predominance diagrams and fit thermodynamic data, and Wissmeier and 420

Barry (2010b) have used the COM module with MATLAB® and COMSOL 421

Multiphysics® to simulate reactive-transport in the unsaturated zone. The module may 422

prove useful in a number of other fields, including water treatment, contaminant 423

mitigation, and chemical engineering. 424

5 Acknowledgements 425

The authors thank David Kinniburgh, Honorary Research Associate British 426

Geological Survey, for having inspired the development of the PHREEQC module and 427

for his help enhancing PHREEQC. We also thank Mike Müller, Hydrocomputing.com, 428

for the versions of the Python examples presented in the report. 429

6 References 430

 431
Ball, J.W., Nordstrom, D.K., 1991. User’s manual for WATEQ4F, with revised 432

thermodynamic data base and test cases for calculating speciation of major, trace, and 433

redox elements in natural waters. U. S. Geological Survey Water-Resources 434

Investigations Report 91-183, 189 pp. 435

Hartman, M.D., Baron, J.S., Ojima, D.S., 2007. Application of a coupled ecosystem-436

chemical equilibrium model, DayCent-Chem, to stream and soil chemistry in a Rocky 437

Mountain watershed. Ecological Modeling, 200(3-4), 493-510. 438

 21

Harvie, C.E., Weare, J.H., 1980. The prediction of mineral solubilities in natural 439

waters—the Na–K–Mg–Ca–Cl–SO4–H2O system from zero to high concentration at 440

25oC. Geochimica et Cosmochimica Acta, 44, 981-997. 441

Jacques, D., Šimůnek, J. 2004. User manual of the Multicomponent variably-442

saturated transport model HP1 (Version 1.0): Description, Verification and Examples. 443

SCK•CEN, Mol, Belgium, BLG-998, 79 pp. 444

Källvenius, G., Ekberg, C., 2003. TACK—a program coupling chemical kinetics 445

with a two-dimensional transport model in geochemical systems. Computers & 446

Geosciences, 29(4), 511-521. 447

Kinniburgh, D.G., Cooper, D.M., 2010. PhreePlot—Creating graphical output with 448

PHREEQC. Accessed March 23, 2010. http://www.phreeplot.org. 449

Malmström, M.E., Destouni, G., Martinet, P., 2004. Modeling expected solute 450

concentration in randomly heterogeneous flow systems with multicomponent reactions. 451

Environmental Science & Technology, 38(9), 2673-2679. 452

Mao, X., Prommer, H., Barry, D.A., Langevin, C.D., Panteleit, B., Li, L., 2006. 453

Three-dimensional model for multi-component reactive transport with variable density 454

groundwater flow. Environmental Modelling & Software, 21(5), 615-628. 455

Parkhurst, D.L., and Appelo, C.A.J., 1999, User’s guide to PHREEQC (Version 2)—A 456

computer program for speciation, batch-reaction, one-dimensional transport, and inverse 457

geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 458

99–4259, 312 pp. 459

 22

Parkhurst, D.L., Kipp, K.L., and Charlton, S.R., 2010. PHAST version 2 —A 460

program for simulating groundwater flow, solute transport, and multicomponent 461

geochemical reactions. U. S. Geological Survey Techniques and Methods 6—A35, 235 462

pp. 463

Parkhurst, D.L., Kipp, K.L., and Engesgaard, P., and Charlton, S.R., 2004. 464

PHAST—A program for simulating ground-water flow, solute transport, and 465

multicomponent geochemical reactions. U. S. Geological Survey Techniques and 466

Methods 6—A8, 154 pp. 467

Pitzer, K.S., 1973, Thermodynamics of electrolytes, I: Theoretical basis and general 468

equations. Journal of Physical Chemistry, 77(2), 268-277. 469

Plummer, L.N., Parkhurst, D.L., Fleming, G.W., Dunkle, S.A., 1988. A computer 470

program incorporating Pitzer’s equations for calculation of geochemical reactions in 471

brines. U. S. Geological Survey Water-Resources Investigations Report 88-4153, 310 pp. 472

Prommer, H., Davis, G.B., Barry, D.A., 1999. PHT3D—A three-dimensional 473

biogeochemical transport model for modelling natural and enhanced remediation, in: 474

Johnston, C.D. (Ed.), Contaminated Site Remediation: Challenges Posed by Urban and 475

Industrial Contaminants. Centre for Groundwater Studies, Fremantle, Western Australia, 476

pp. 351-358. 477

Scientific Software Group, 2010. Aqueous Geochemical Analysis, Plotting and 478

Modeling. Accessed March 23, 2010. 479

http://www.scientificsoftwaregroup.com/pages/software.php 480

 23

Szegedi, K. Vetterlein, D., Nietfield, H. Jahn, R., Neue, H-U., 2008. New tool 481

RhizoMath for modeling coupled transport and speciation in the rhizosphere. Vadose 482

Zone Journal, 7, 712-720. doi:10.2136/vzj2007.0064 483

Wissmeier, L., Barry, D.A., 2008. Reactive transport in unsaturated soil: 484

Comprehensive modelling of the dynamic spatial and temporal mass balance of water and 485

chemical components. Advances in Water Resources, 31(5), 858-875. 486

Wissmeier, L., Barry, D.A., 2010a. Implementation of variably saturated flow into 487

PHREEQC for the simulation of biogeochemical reactions in the vadose zone. 488

Environmental Modelling & Software, 25(4), 526-538. 489

Wissmeier, L., Barry, D.A., 2010b. Simulation tool for variably saturated flow with 490

comprehensive geochemical reactions in two- and three-dimensional domains. 491

Environmental Modelling & Software, 26(2011), 210-218. 492

doi:10.1016/j.envsoft.2010.07.005 493

 24

Appendix 1 494

A complete list of methods for IPhreeqc Fortran modules is given in table A1. The 495

most important methods have been used in the examples in the text. These methods 496

include CreateIPhreeqc, LoadDatabase, RunFile, RunString, RunAccumulated, 497

GetSelectedOutputValue, and DestroyIPhreeqc. Additional information for the set of 498

Fortran methods is provided here. Note that additional methods are available to COM, C, 499

and C++ programs that are not available in Fortran: GetDumpString, GetErrorString, 500

GetWarningString, and GetOutputArray (COM only). 501

Most methods return an integer value. Non-negative return values indicate successful 502

completion of the method. If the integer is less than zero, an error has occurred during the 503

invocation of the method and the cause of the error can be determined by using the 504

OutputErrorString method or by a call to the GetErrorStringLineCount method and 505

sequential calls to the GetErrorStringLine method. An IPhreeqc run also can produce 506

warnings, which are conditions that do not cause failure of the run, but may indicate 507

problems with input or difficulties in obtaining a numerical solution to the input 508

definitions. Warnings can be obtained with calls to the GetWarningStringLineCount 509

method and sequential calls to the GetWarningStringLine method. 510

An IPhreeqc module has several properties that control file output from the module. 511

An IPhreeqc run can write data to an output file, a selected-output file, an error file, a 512

dump file (complete item-by-item output of solution or reactant data), and a log file 513

(rarely used). The methods SetOutputFileOn , SetSelectedOutputFileOn, 514

SetErrorFileOn, SetDumpFileOn, and SetLogFileOn can be used to set the properties 515

 25

that activate or suspend writing to the respective files. The status of the properties related 516

to file writing can be obtained by the methods GetOutputFileOn , 517

GetSelectedOutputFileOn, GetErrorFileOn, GetDumpFileOn, and GetLogFileOn. 518

Several methods apply to the input buffer that is used to accumulate lines of 519

PHREEQC input. The AccumulateLine method appends one or more lines to the input 520

buffer. The OutputAccumulatedLines method prints the state of the input buffer and the 521

ClearAccumulatedLines method clears the buffer. The input can be run with the 522

RunAccumulated method. 523

Methods related to retrieving results from an IPhreeqc run include: 524

GetSelectedOutputRowCount, which returns the number of rows in the selected-output 525

array; GetSelectedOutputColumnCount, which returns the number of columns in the 526

selected-output array; and GetSelectedOutputValue, which returns a specified row-527

column value from the selected-output array. 528

It can be convenient to have a list of elements that have been defined by input to an 529

IPhreeqc module. The GetComponentCount and GetComponent methods allow 530

retrieval of all the elements that are presently defined in the module in solutions and 531

reactants. This is not the complete list of components defined in the database, but the list 532

of all elements that have been used in SOLUTION, EQUILIBRIUM_PHASES, 533

EXCHANGE, GAS_PHASE, KINETICS, REACTION, SOLID_SOLUTION, and 534

SURFACE data blocks. Solutions or reactants that have been deleted with the DELETE 535

keyword data block are not currently defined and are not considered. This list could be 536

used as the list of components (in addition to H, O, and charge) that need to be 537

transported in multicomponent reactive-transport simulations. 538

 26

The final methods described here are related to the dump string of the module. The 539

dump string contains the results from using the DUMP keyword in PHREEQC input. 540

First, the dump string must be activated before an IPhreeqc run with a call to the 541

SetDumpStringOn method. After the IPhreeqc run, the dump string can be retrieved by 542

the client program line by line. The GetDumpStringLineCount method returns the 543

number of lines in the dump string. The GetDumpStringLine method returns a specified 544

line from the dump string. 545

Appendix 2 546

Table A2 gives a C program that is equivalent to the Fortran program of the third 547

example. Apart from the differences in language syntax, there is one important difference 548

in the C IPhreeqc module related to memory usage. Whereas, no memory problems can 549

occur in Fortran or COM usage, a variable of type VAR will leak memory in C or C++ if 550

it is used to store a string, and it is not cleared before it goes out of scope. A memory leak 551

is a condition where memory is not freed even though it is no longer used. Memory leaks 552

cause an accumulation of unusable computer memory, and a consequent decrease in the 553

memory available for program use. Although the memory leak only will occur in C or 554

C++ when using a variable of type VAR to store a string, it is good practice to clear any 555

type VAR variable with VarClear after each use, as is done near the end of the void 556

ExtractWrite function. Note that if a variable of type VAR is assigned a new value, it 557

automatically will be cleared before the new value is stored. 558

 27

List of Figures: 559

Figure 1. PHREEQC input in sheet 1 of workbook (top) is used in an Excel® macro to 560

produce selected output in sheet 2 (bottom). 561

Figure 2. Solubility of gypsum in sodium chloride solutions as calculated in Python with 562

two IPhreeqc modules using the wateq4f.dat and the pitzer.dat databases. 563

 564

List of Tables: 565

Table 1. Key methods for IPhreeqc modules 566

Table 2. Excel® Visual Basic for Applications® macro that takes PHREEQC input from 567

sheet 1 of a workbook and puts selected output in sheet 2 of workbook 568

Table 3. Python script that plots the solubility of gypsum as a function of NaCl 569

concentration as calculated by the Pitzer and WATEQ4F databases 570

Table 4. Initial conditions and selected-output definitions for Fortran90 example 571

Table 5. Fortran90 program that performs advection and chemical reactions for two cells 572

Table A1. Complete list of methods for a Fortran90 IPhreeqc module 573

Table A2. C program that performs advection and chemical reactions for two cells 574

0 1 2 3 4 5 6

NaCl, MOLES PER KILOGRAM WATER

0.00

0.01

0.02

0.03

0.04

0.05

0.06

G
Y
P
S
U
M
S
O
L
U
B
IL
IT
Y
,
M
O
L
E
S
P
E
R
K
IL
O
G
R
A
M
W
A
T
E
R

PITZER

WATEQ4F

Figure(s)

 1

SOLUTION_SPREAD
-units mg/L

Temp pH Ca Mg Na Cl S(6) Alkalinity
18.7 6.86 114.7 8.109 12.03 2.787 19.007 298
18.4 6.9 95.79 49.58 20.39 28.327 31.544 348
18.3 6.91 80.81 39.61 4.934 8.37 10.783 329

SELECTED_OUTPUT
-reset false
-SI Calcite Dolomite Gypsum CO2(g)
END

si_Calcite si_Dolomite si_Gypsum si_CO2(g)
-0.10 -1.08 -2.13 -1.36
-0.11 -0.24 -2.06 -1.34
-0.17 -0.39 -2.55 -1.37

Figure(s)

 1

Table 1. Key methods for IPhreeqc modules

Method Function

LoadDatabase(FileName) Reads the database from the specified file

LoadDatabaseString(Input) Reads the database from the input string

AccumulateLine(String) Append the input string to the input buffer for the module

RunAccumulated() Runs PHREEQC based on the input buffer defined by calls to
AccumulateLine

RunFile(FileName) Runs PHREEQC based on the input in the specified file

RunString(InputString) Runs PHREEQC based on the specified input string

GetSelectedOutputArray() Returns an array with the selected-output results from the last run
(RunAccumulated, RunFile, or RunString). (This method is
available only in the COM module)

GetSelectedOutputValue(Row,
Column)

Returns the value from the specified row and column of the
selected-output array, which contains results from the last run
(RunAccumulated, RunFile, or RunString)

GetDumpString() Returns a string containing the output as defined by the DUMP
data block of the last RunAccumulated, RunFile, or RunString
command

Table(s)

 2

Table 2. Excel® Visual Basic for Applications® macro that takes PHREEQC input from

sheet 1 of a workbook and puts selected output in sheet 2 of workbook

Sub RunPhreeqc()
 On Error GoTo ErrHandler:
 ChDir ActiveWorkbook.Path
 Set Phreeqc = CreateObject("IPhreeqcCOM.Object")
 Db = "phreeqc.dat"
 Phreeqc.LoadDatabase (Db)

 'Format input from sheet1
 Dim Istring As String
 Worksheets("Sheet1").Activate
 FirstRow = ActiveSheet.UsedRange.Row
 FirstColumn = ActiveSheet.UsedRange.Column
 For r = FirstRow To (FirstRow + ActiveSheet.UsedRange.Rows.Count)
 For c = FirstColumn To (FirstColumn + ActiveSheet.UsedRange.Columns.Count)
 Istring = Istring & CStr(Cells(r, c)) & vbTab
 Next c
 Istring = Istring & vbNewLine
 Next r

 'Run and save selected output to sheet2
 Phreeqc.RunString (Istring)
 arr = Phreeqc.GetSelectedOutputArray()
 Worksheets("Sheet2").Activate
 Range(Cells(1, 1), Cells(Phreeqc.RowCount, Phreeqc.ColumnCount)) = arr
 MsgBox "Phreeqc ran successfully."
 Exit Sub

ErrHandler:
 MsgBox "Phreeqc errors: " & Phreeqc.GetErrorString()
End Sub

 3

Table 3. Python script that plots the solubility of gypsum as a function of NaCl

concentration as calculated by the Pitzer and WATEQ4F databases

"""Compares gypsum solubility for WATEQ4F and Pitzer databases.
"""
Import standard library modules first.
import os
Then get third party modules.
from win32com.client import Dispatch
import matplotlib.pyplot as plt

def selected_array(db_path, input_string):
 """Load database via COM and run input string.
 """
 dbase = Dispatch('IPhreeqcCOM.Object')
 dbase.LoadDatabase(db_path)
 dbase.RunString(input_string)
 return dbase.GetSelectedOutputArray()

def show_results(input_string):
 """Get results for different databases
 """
 wateq4f_result = selected_array('wateq4f.dat', input_string)
 pitzer_result = selected_array('pitzer.dat', input_string)
 # Get data from the arrays.
 nacl_conc = [entry[0] for entry in wateq4f_result][1:]
 wateq4f_values = [entry[1] for entry in wateq4f_result][1:]
 pitzer_values = [entry[1] for entry in pitzer_result][1:]
 # Plot
 plt.plot(nacl_conc, pitzer_values, 'k', nacl_conc, wateq4f_values,'k--')
 plt.axis([0, 6, 0, .06])
 plt.legend(('PITZER','WATEQ4F'), loc = (0.4, 0.4))
 plt.ylabel('GYPSUM SOLUBILITY, MOLES PER KILOGRAM WATER')
 plt.xlabel('NaCl, MOLES PER KILOGRAM WATER')
 plt.show()

if __name__ == '__main__':
 # This will only run when called as script from the command line
 # and not when imported from another script.
 INPUT_STRING = """
 SOLUTION 1
 END
 INCREMENTAL_REACTIONS
 REACTION
 NaCl 1.0
 0 60*0.1 moles
 EQUILIBRIUM_PHASES
 Gypsum
 USE solution 1
 SELECTED_OUTPUT
 -reset false
 -total Na S(6)
 END"""
 show_results(INPUT_STRING)

 4

Table 4. Initial conditions and selected-output definitions for Fortran90 example

File ic
SOLUTION 1-2
END
EQUILIBRIUM_PHASES 1
 CO2(g) -1.5 10

EQUILIBRIUM_PHASES 2
 Calcite 0 10
SELECTED_OUTPUT
 -reset false
USER_PUNCH
 -Heading charge H O C Ca pH SR(calcite)
 10 PUNCH charge_balance
 20 PUNCH TOTMOLE("H"), TOTMOLE("O"), TOTMOLE("C"), TOTMOLE("Ca")
 30 PUNCH -LA("H+"), SR("calcite")
END

 5

Table 5. Fortran90 program that performs advection and chemical reactions for two cells

module Subs
 integer (kind=4), dimension(7) :: vt
 real (kind=8), dimension(7) :: dv
 character (len=100), dimension(7) :: sv
 integer :: Id
 contains

 subroutine ExtractWrite(cell)
 include "IPhreeqc.f90.inc"
 integer (kind=4), intent(in) :: cell
 do j = 1, 7
 ! Headings are on row 0
 Ierr = GetSelectedOutputValue(Id,1,j,vt(j),dv(j),sv(j))
 if(Ierr .ne. IPQ_OK) call EHandler()
 enddo
 write(*,"(a,i2/2(5x,a,f7.2))") "Cell",cell,"pH:",dv(6),"SR(calcite):",dv(7)
 end subroutine ExtractWrite

 subroutine EHandler()
 include "IPhreeqc.f90.inc"
 call OutputErrorString(Id)
 stop
 end subroutine EHandler
end module Subs
program Advect
 use Subs
 include "IPhreeqc.f90.inc"
 character(len=1024) Istring

!Create module, load database, define initial conditions and selected output
 Id = CreateIPhreeqc()
 if (LoadDatabase(Id, "phreeqc.dat") .ne. 0) call EHandler()
 If (RunFile(Id, "ic") .ne. 0) call EHandler()

!Run cell 1, extract/write result
 if (RunString(Id, "RUN_CELLS; -cells; 1; END") .ne. 0) call EHandler()
 call ExtractWrite(1)

!Advect cell 1 solution to cell 2, run cell 2, extract/write results
 Ierr = AccumulateLine(Id, "SOLUTION_MODIFY 2")
 Ierr = AccumulateLine(Id, " -cb " // sv(1))
 Ierr = AccumulateLine(Id, " -total_h " // sv(2))
 Ierr = AccumulateLine(Id, " -total_o " // sv(3))
 Ierr = AccumulateLine(Id, " -totals ")
 Ierr = AccumulateLine(Id, " C " // sv(4))
 Ierr = AccumulateLine(Id, " Ca " // sv(5))
 Ierr = AccumulateLine(Id, "RUN_CELLS; -cells; 2; END")
 if (RunAccumulated(Id) .ne. 0) call EHandler()
 call ExtractWrite(2)

 !Destroy module
 if (DestroyIPhreeqc(Id) .ne. 0) call EHandler()
end program Advect

 6

Table A1. Complete list of methods for a Fortran90 IPhreeqc module

[Id, number returned by the CreateIPhreeqc function; N, integer used to refer to the Nth

member of a list; col, column number; comp, variable to hold the Nth component name,

logical, a value of true or false; Vtype,integer variable; Dvalue, real variable ; Svalue,

string variable]

Method Usage

Function AccumulateLine(Id, String) Appends one or more lines to the input buffer

Function AddError(Id, String) Appends the string to the error string in the module and
increments the error count

Function AddWarning(Id, String) Appends the string to the warning string in the module

Function ClearAccumulatedLines(Id) Clears the input buffer of the module

Function CreateIPhreeqc() Create and initialize a module

Function DestroyIPhreeqc(Id) Destroy a module

Subroutine GetComponent(Id, N, Comp) Retrieve specified component name

Function GetComponentCount(Id) Determine number of components currently used in the module

Function GetDumpFileOn(Id, Logical) Retrieve the print setting for the dump file

Subroutine GetDumpStringLine(Id, N, Line) Retrieve line from the lines generated by the DUMP data block

Function GetDumpStringLineCount(Id) Retrieve number of lines generated by the DUMP data block

Function GetDumpStringOn(Id, Logical) Retrieve the setting for saving dump information in a string

Function GetErrorFileOn(Id, Logical) Retrieve the print setting for the error file

Subroutine GetErrorStringLine(Id, N, Line) Retrieve specified line from the error messages

Function GetErrorStringLineCount(Id) Retrieve number of lines in the error messages

Function GetLogFileOn(Id, Logical) Retrieve the print setting for the log file

Function GetOutputFileOn(Id, Logical) Retrieve the print setting for the output file

Function GetSelectedOutputColumnCount(Id) Retrieve number of columns in selected output

Function GetSelectedOutputFileOn(Id, Logical) Retrieve the print setting for the selected-output file

Function GetSelectedOutputRowCount(Id) Retrieve number of rows in selected output

Function GetSelectedOutputValue(Id, Row, Col,
Vtype, Dvalue, Svalue)

Retrieve selected-output value from specified row and column

Subroutine GetWarningStringLine(Id, N, Line) Retrieve specified line from the warning messages

Function GetWarningStringLineCount(Id) Retrieve number of lines in the warning messages

Function LoadDatabase(Id, FileName) Reads the database from file

Function LoadDatabaseString(Id, String) Reads the database from string

 7

Subroutine OutputAccumulatedLines(Id) Display the accumulated input buffer

Subroutine OutputErrorString(Id) Display errors from the last run

Subroutine OutputWarningString(Id) Display warnings from the last run

Function RunAccumulated(Id) Run the input accumulated in the input buffer

Function RunFile(Id, FileName) Run from a file

Function RunString(Id, String) Run from a string

Function SetDumpFileOn(Id, Logical) Set the switch for printing to the dump file

Function SetDumpStringOn(Id, Logical) Set the switch for saving dump information in a string

Function SetErrorFileOn(Id, Logical) Set the switch for printing to the error file

Function SetLogFileOn(Id, Logical) Set the switch for printing to the log file

Function SetOutputFileOn(Id, Logical) Set the switch for printing to the output file

Function SetSelectedOutputFileOn(Id, Logical) Set the switch for printing to the selected-output file

 8

Table A2. C program that performs advection and chemical reactions for two cells

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <IPhreeqc.h>
int id;
int vt[7];
double dv[7];
char sv[7][100];
char buffer[100];
void ExtractWrite(int cell)
{
 VAR v;
 int j;
 VarInit(&v);
 for (j = 0; j < 7; ++j) {
 GetSelectedOutputValue(id, 1, j, &v);
 vt[j] = v.type;
 switch (vt[j]) {
 case TT_DOUBLE:
 dv[j] = v.dVal;
 sprintf(sv[j], "%23.15e", v.dVal);
 break;
 case TT_STRING:
 strcpy(sv[j], v.sVal);
 break;
 }
 VarClear(&v);
 }
 printf("Cell %d \n\tpH: %4.2f\tSR(calcite): %4.2f\n", cell, dv[5], dv[6]);
}
void EHandler(void)
{
 OutputErrorString(id);
 exit(EXIT_FAILURE);
}
const char *ConCat(const char *str1, const char *str2)
{
 strcpy(buffer, str1);
 return strcat(buffer, str2);
}
int main(void)
{
 /* Create module, load database, define initial conditions and selected output */
 id = CreateIPhreeqc();
 if (LoadDatabase(id, "phreeqc.dat") != 0) EHandler();
 if (RunFile(id, "ic") != 0) EHandler();

 /* Run cell 1, extract/write result */
 if (RunString(id, "RUN_CELLS; -cells; 1; END") != 0) EHandler();
 ExtractWrite(1);

 /* Advect cell 1 solution to cell 2, run cell 2, extract/write results */
 AccumulateLine(id, ConCat("SOLUTION_MODIFY 2", ""));
 AccumulateLine(id, ConCat(" -cb ", sv[0]));
 AccumulateLine(id, ConCat(" -total_h ", sv[1]));
 AccumulateLine(id, ConCat(" -total_o ", sv[2]));
 AccumulateLine(id, ConCat(" -totals ", ""));
 AccumulateLine(id, ConCat(" C ", sv[3]));
 AccumulateLine(id, ConCat(" Ca ", sv[4]));
 AccumulateLine(id, ConCat("RUN_CELLS; -cells; 2; END", ""));
 if (RunAccumulated(id) != 0) EHandler();
 ExtractWrite(2);

 /* Destroy module */
 if (DestroyIPhreeqc(id) != IPQ_OK) EHandler();
 exit(EXIT_SUCCESS);
}

� Modules for geochemical reaction calculations based on PHREEQC
� Mineral, gas, exchange, surface-complexation, solid-solution, and kinetic

reactions
� For use in Excel, Python, C++, C, and Fortran
� Suitable for coupling geochemical reactions with transport models

Research Highlights

