
www.elsevier.com/locate/cageo

Author’s Accepted Manuscript

Modules based on the geochemicalmodel PHREEQC
for use in scripting and programming languages

Scott R. Charlton, David L. Parkhurst

PII: S0098-3004(11)00065-3
DOI: doi:10.1016/j.cageo.2011.02.005
Reference: CAGEO2539

To appear in: Computers & Geosciences

Received date: 8 November 2010
Revised date: 1 February 2011
Accepted date: 7 February 2011

Cite this article as: Scott R. Charlton and David L. Parkhurst, Modules based on the geo-
chemical model PHREEQC for use in scripting and programming languages, Computers
& Geosciences, doi:10.1016/j.cageo.2011.02.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errorsmay be discoveredwhich could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2011.02.005


1

Modules Based on the Geochemical Model PHREEQC 1
for Use in Scripting and Programming Languages 2

3
By Scott R. Charlton and David L. Parkhurst*4

U.S. Geological Survey 5
Denver Federal Center, P.O. Box 25046, MS 413, Denver, CO, USA 6

7
E-mail addresses: charlton@usgs.gov and dlpark@usgs.gov*  8

*Corresponding author 9
Phone 303 236 5098 10
Fax 303 236 5034 11

12
13
14
15

Submitted to Computers & Geosciences, November 8, 2010 16
Revised and resubmitted February 1, 2011 17



 2 

Abstract 18 

The geochemical model PHREEQC is capable of simulating a wide range of 19 

equilibrium reactions between water and minerals, ion exchangers, surface complexes, 20 

solid solutions, and gases. It also has a general kinetic formulation that allows modeling 21 

of non-equilibrium mineral dissolution and precipitation, microbial reactions, 22 

decomposition of organic compounds, and other kinetic reactions. To facilitate use of 23 

these reaction capabilities in scripting languages and other models, PHREEQC has been 24 

implemented in modules that easily interface with other software. A Microsoft COM 25 

(Component Object Model) has been implemented, which allows PHREEQC to be used 26 

by any software that can interface with a COM server—for example, Excel®, Visual 27 

Basic®, Python, or MATLAB®. PHREEQC has been converted to a C++ class, which can 28 

be included in programs written in C++. The class also has been compiled in libraries for 29 

Linux and Windows that allow PHREEQC to be called from C++, C, and Fortran. A 30 

limited set of methods implement the full reaction capabilities of PHREEQC for each 31 

module. Input methods use strings or files to define reaction calculations in exactly the 32 

same formats used by PHREEQC. Output methods provide a table of user-selected model 33 

results, such as concentrations, activities, saturation indices, or densities.  34 

The PHREEQC module can add geochemical reaction capabilities to surface-water, 35 

groundwater, and watershed transport models. It is possible to store and manipulate 36 

solution compositions and reaction information for many cells within the module. In 37 

addition, the object-oriented nature of the PHREEQC modules simplifies implementation 38 

of parallel processing for reactive-transport models. 39 
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The PHREEQC COM module may be used in scripting languages to fit parameters; 40 

to plot PHREEQC results for field, laboratory, or theoretical investigations; or to develop 41 

new models that include simple or complex geochemical calculations.  42 

Keywords 43 

Geochemical modeling; PHREEQC; Reactive-transport modeling; COM, Component 44 

Object Model; C++, C, and Fortran.  45 

Software Requirements 46 

� COM Module—Microsoft Windows operating system, COM client software such as 47 
Excel®, Visual Basic®, Python, or MATLAB® 48 

� Windows Library Module—C++, C, or Fortran compiler for Windows operating 49 
system; Visual Studio® and C++ are needed to link with the library 50 

� Linux Library Module—C++, C, or Fortran compiler for Linux operating system; 51 
C++ is needed to link with the library 52 

� C++ Module—C++ compiler 53 
 54 
All modules are available at http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc. 55 
 56 
 57 

Any use of trade, product, or firm names in this publication is for descriptive purposes 58 

only and does not imply endorsement by the U.S. Government. 59 
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1 Introduction 60 

PHREEQC (Parkhurst and Appelo, 1999) is a geochemical reaction model that 61 

simulates a variety of geochemical processes including equilibrium between water and 62 

minerals, ion exchangers, surface complexes, solid solutions, and gases. The general 63 

kinetic formulation allows modeling of non-equilibrium mineral dissolution and 64 

precipitation, microbial reactions, decomposition of organic compounds, and other 65 

kinetic reactions. PHREEQC has capabilities for 1D reactive transport, including such 66 

processes as multicomponent diffusion and transport of surface-complexing species. 67 

Finally, PHREEQC has inverse-modeling capabilities for the evaluation of the 68 

geochemical reactions that account for changes in water chemistry.  69 

Because of the general geochemical speciation and reaction capabilities and the 70 

modular organization of input, PHREEQC often has been used as a geochemical 71 

calculation module (server) in other software programs (clients). PHREEQC has been 72 

used to calculate saturation indices, activities, and pH in water-quality data management 73 

software (Scientific Software Group, 2010, AquaChem), to generate predominance 74 

diagrams and estimate parameters (Kinniburgh and Cooper, 2010, PhreePlot), and to 75 

consider geochemical effects in watershed processes (Hartman et al., 2007, DayCent-76 

Chem). Most commonly, PHREEQC has been used as the geochemical module for 77 

reactive-transport models. Reactive-transport environments include the unsaturated zone 78 

(Jacques and Šimůnek, 2004, HP1; Szegedi et al., 2008, RhizoMath; Wissmeier and 79 

Barry, 2010a, 2010b), the saturated zone (Mao et al., 2006, PHWAT; Parkhurst et al., 80 

2004, 2010, PHAST; Prommer et al., 1999, PHT3D), radionuclide isolation (Källvenius 81 
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and Ekberg, 2003, TACK), and acid mine drainage (Malmström et al., 2004, LaSAR-82 

PHREEQC).  83 

The coupling of PHREEQC to client programs has been both soft—reading and 84 

writing files by the client and server—and hard—modifying the source codes to add 85 

routines that transfer data between the client and server. Soft coupling is likely to be slow 86 

because of file writing and reading and because PHREEQC must read a database and 87 

perform extra calculations to redefine solution compositions as it is initialized at each 88 

geochemical step. PHREEQC lacks a facility to define directly essential solution data, 89 

particularly the solution charge balance, total moles of hydrogen, and total moles of 90 

oxygen. Hard coupling using specialized methods to set and retrieve data values can be 91 

difficult because of the complicated data structures in PHREEQC and because of 92 

complicated data dependencies among these structures.  93 

This report presents PHREEQC modules designed to be used in scripting languages 94 

and integrated into C++, C, and Fortran programs. The modules are a hybrid between soft 95 

coupling—strings (or files) of PHREEQC input are used to specify calculations—and 96 

hard coupling—all data transfer between server and client can be done through a well-97 

defined set of methods that do not require writing of files. The new modules rely on 98 

reorganization of the original PHREEQC code and addition of several new keyword data 99 

blocks that simplify extracting and modifying data within PHREEQC data structures. The 100 

interface to each module is a limited number of methods that are simple and intuitive for 101 

PHREEQC users, but retain the full capabilities of PHREEQC. Three examples are 102 

presented of geochemical tasks in different software environments to demonstrate a few 103 

of the possible uses for the new modules.  104 
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2 Methods 105 

A C++ class for PHREEQC (hereafter, “IPhreeqc” is used to refer to the class or any 106 

PHREEQC modules) was implemented in three stages. The first stage was the 107 

development of a series of C++ classes that are equivalent to the original C structures that 108 

contain the data for solutions and reactants—equilibrium phases, gas phases, exchangers, 109 

surface complexers, solid solutions, and kinetic reactions. These classes were written 110 

during the development of PHAST (Parkhurst et al., 2004, 2010) and could be used 111 

directly by C++ programs that incorporate the IPhreeqc class. Most of the enhancements 112 

to PHREEQC discussed in section 2.1 are based on these additional C++ classes.  113 

The second stage required much less development and was generally a 114 

rearrangement of the data and functions that comprise PHREEQC. All global and static 115 

data for PHREEQC were included in a header file for the IPhreeqc class. Similarly, all C 116 

functions were defined as methods of the class. The final stage was adding the interface, 117 

which is a series of methods described in section 2.2, and adding the wrappers necessary 118 

for the COM and library modules.  119 

Thus, the IPhreeqc class is not a complete rewrite of PHREEQC with C++ classes 120 

and methods for all calculations; rather, it is an encapsulation to limit access to the data 121 

and functions of the original C code. The C code is essentially intact within the C++ 122 

class, but interactions with the class are limited to a well-defined set of methods. 123 

2.1 Additions to PHREEQC  124 

The reaction capabilities of PHREEQC and examples of their use are described in 125 

detail in Parkhurst and Appelo (1999). In its simplest form, a reaction in PHREEQC can 126 
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be conceptualized as a solution plus a set of reactants that are put into a beaker and 127 

allowed to react. All of the moles of elements in the solution and in the reactants are 128 

combined in the beaker and a new system equilibrium is calculated. The reactants can 129 

include minerals, gases, ion exchangers, reactive surfaces, and solid solutions, which 130 

react to equilibrium, and kinetic reactions, which are functions of time and chemical 131 

compositions. PHREEQC allows definition of the initial compositions of the solution and 132 

reactants, calculates new compositions at the end of a reaction step, and finally saves 133 

these new compositions for use in subsequent reaction calculations. Compositions of all 134 

solutions and reactants are identified by a user-specified cell number.  135 

In developing the reactive-transport model PHAST (Parkhurst and others, 2004, 136 

2010), several new capabilities were added to PHREEQC, primarily to facilitate saving 137 

the compositional state of a simulation and restarting it. To that end, a series of input data 138 

blocks were devised that allow input of the exact contents of the data structures for 139 

solutions and other reactants. For solutions, the data block is named SOLUTION_RAW 140 

(for clarity, PHREEQC keywords are written with all capital letters); correspondingly 141 

named data blocks exist for equilibrium phases, exchangers, surfaces, solid solutions, gas 142 

phases, and kinetics.  143 

A new keyword data block, DUMP, is used to write the state of any solution or 144 

reactant in the RAW format. Thus, the output from dumping a solution composition is a 145 

string or file that contains a SOLUTION_RAW data block, and is suitable for use as 146 

input to IPhreeqc. 147 

In addition to the SOLUTION_RAW input data block, a SOLUTION_MODIFY data 148 

block is available. It uses exactly the same format as SOLUTION_RAW, but does not 149 
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require a complete set of data. Thus, only data items that need to be changed can be 150 

updated. It is expected that the SOLUTION_MODIFY will be used to update the element 151 

composition of a solution following a transport calculation, without redefining some parts 152 

of the solution structure (for example, calculated quantities such as total alkalinity, mass 153 

of water, Pitzer activity coefficients, or, optionally, initial estimates of activities of the 154 

master species). Equivalent MODIFY data blocks are available for all other reactants.  155 

The DELETE data block allows deleting some or all solution and reactant 156 

definitions. The COPY data block allows solutions and reactants to be replicated. 157 

Together, DUMP, MODIFY, DELETE, and COPY data blocks allow direct management 158 

of the solutions and reactants defined to PHREEQC.  159 

The RUN_CELLS data block streamlines the process of setting up, running, and 160 

saving the results of a calculation for a cell. For cells selected by the data block 161 

specifications, all of the reactants with a given cell number are brought together and 162 

reacted, after which, the resulting compositions of the solution and reactants are saved 163 

back to the given cell number. Thus, “RUN_CELLS; 1-2” will cause solution 1 to react 164 

with all reactants numbered 1 and the compositions of the solution and reactants in cell 1 165 

will be redefined to be the result of the reaction; similarly for cell 2. 166 

2.2 IPhreeqc Class Methods  167 

A client interacts with an IPhreeqc module through a set of methods. The key 168 

methods are listed in Table 1. These methods allow initializing the module and reading a 169 

thermodynamic database, running PHREEQC input (strings or files), and retrieving 170 

results from simulations. Other methods provide error and warning messages, get lengths 171 
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of data items—number of rows, number of columns, number of lines—and control the 172 

writing of PHREEQC output files. Appendix 1 contains a complete list of methods for a 173 

Fortran module. 174 

An IPhreeqc module is created in different ways depending on the software 175 

environment where it is used. Multiple instances of an IPhreeqc class can be created 176 

within the client program in all programming environments, even in C and Fortran. After 177 

a module is created, the LoadDatabase (for clarity, all IPhreeqc method names are 178 

written in bold font) or LoadDatabaseString method reads a thermodynamic database 179 

from a file or string, respectively. When the database has been read, a module is ready to 180 

perform PHREEQC calculations. Using LoadDatabase or LoadDatabaseString a 181 

second time will re-initialize the module and remove all data stored in it. 182 

PHREEQC input can be defined and run in three different ways with an IPhreeqc 183 

module. First, the AccumulateLine method can be called sequentially to append 184 

PHREEQC input to an input buffer in IPhreeqc. When the entire input has been 185 

accumulated, it is run with the RunAccumulated method. The second way to run 186 

simulations is to define PHREEQC input in a string within the client program. This string 187 

is then submitted and run with the RunString method. Finally, it is possible to run 188 

PHREEQC input that has been saved in a file by using the RunFile method. Because 189 

reading and writing files to disk is slow, running simulations with many calls to RunFile 190 

is expected to be slower than using RunString and RunAccumulated with internally 191 

generated strings. 192 

The SELECTED_OUTPUT and USER_PUNCH data blocks are used in a batch 193 

PHREEQC run to identify data to be written to a selected-output file. The data written 194 
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can include most quantities calculated by the geochemical model—dissolved 195 

concentrations of elements, concentrations of aqueous species, activities of aqueous 196 

species, moles of minerals, and moles of kinetic reactants, for example. IPhreeqc makes 197 

special use of the data defined by the SELECTED_OUTPUT and USER_PUNCH data 198 

blocks, and allows this array of data to be returned to the client program by two methods 199 

that do not require reading or writing files. The GetSelectedOutputValue method is 200 

available in all modules and retrieves an individual data item at a given row and column 201 

from the array of selected-output results that was generated by the last call to a 202 

RunAccumulated, RunString, or RunFile method. The array has a row for every 203 

geochemical calculation that was performed and columns as defined by the 204 

SELECTED_OUTPUT and USER_PUNCH data blocks. The COM module has an 205 

additional method, GetSelectedOutputArray, which returns the entire array of the 206 

selected-output data.  207 

A data item in the selected-output array may be an integer, real, or string value. 208 

IPhreeqc implements a simple variant object, which can contain any of these three data 209 

types. The IPhreeqc module requires slightly different handling of this variant object 210 

depending on whether the module is called as a COM, or as C++, C, or Fortran program 211 

elements.  212 

A new PHREEQC capability to write (DUMP) data values allows access to the 213 

complete internal definition of each solution and reactant. The dumped data values are 214 

written in keyword data blocks that are suitable for input back into IPhreeqc (RAW data 215 

blocks, section 2.1). The GetDumpString method allows the raw keyword data blocks to 216 

be captured by the client program. (In Fortran, the dump string must be captured line-by-217 
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line with the GetDumpStringLine method.) The dumped data can be modified and 218 

reintroduced to an IPhreeqc module by use of the MODIFY data blocks (section 2.1) or 219 

transferred to another IPhreeqc module. The DUMP and the set of MODIFY keyword 220 

data blocks provide the basis for “get” and “set” methods, whereby the client program 221 

can control the data items of the module’s solutions and reactants. 222 

2.3 The COM Module 223 

The COM module was implemented using Microsoft's Active Template Library 224 

(ATL). Through the use of C++ templates ATL provides standard implementations 225 

required by all COM objects. Each method and property was implemented by wrapping 226 

calls to the underlying IPhreeqc C++ methods. Methods containing string arguments 227 

required additional code to handle the necessary conversions between native COM 228 

strings (BSTR data type) and standard C strings. It also was necessary to convert the 229 

simplified IPhreeqc variant into a COM variant (VARIANT data type) for the 230 

GetSelectedOutputValue and GetSelectedOutputArray methods. The 231 

GetSelectedOutputArray method additionally uses an array (SAFEARRAY data type) 232 

of COM variants to return the selected-output array. 233 

Programming environments designed to support COM objects (Visual Basic®, 234 

Python, or MATLAB®, for example) are able to use these COM variants directly and 235 

interchange them with their own native data types.   236 

2.4 C++, C, and Fortran Modules 237 

IPhreeqc libraries are available that allow use of IPhreeqc by C++, C, and Fortran 238 

programs; a library and equivalent DLL are available for Windows operating systems and 239 
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source code for a library is available to be compiled for Linux or other Unix operating 240 

systems. The same Windows library (or DLL) or Linux library is linked no matter which 241 

of the three programming languages is used for the client program. However, each 242 

programming language requires a different header or “include” file in the client program. 243 

Header files for C++ and C and include files for Fortran77 and Fortran90 are included in 244 

the distribution of each of the library modules.  245 

The use of the IPhreeqc methods is slightly different for C++, C, and Fortran to 246 

comply with the syntax of each language. The GetSelectedOutputArray method is not 247 

available in C++, C, or Fortran modules.  248 

2.4.1 C++ Modules 249 

Instances of the IPhreeqc C++ class can be used by linking with the IPhreeqc library. 250 

Alternatively, if the client of the IPhreeqc module is a C++ program, then the source code 251 

for the module could be compiled directly into the client program. In this case, it is 252 

possible to use the internal C++ classes for solutions and equilibrium phase, gas phase, 253 

exchange, surface, solid solution, and kinetic reactants. Use of these and other C++ 254 

classes included in the source code for IPhreeqc could simplify data storage and 255 

manipulation. When compiled into the client, it also is possible to extend the set of 256 

methods for the IPhreeqc class (or the other classes) to simplify data communication 257 

between the client and the IPhreeqc class. 258 

The header file IPhreeqc.hpp is needed to compile C++ code that uses the IPhreeqc 259 

class, whether the C++ class is defined by integrating the source code or by using the 260 

IPhreeqc library. The class is instantiated by using normal C++ syntax for class objects. 261 
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Methods are called by using the standard C++ syntax for methods of objects. For a C++ 262 

module, the GetSelectedOutputValue method returns the IPhreeqc variant, which can 263 

contain an integer, double, string value, or error code. The definition of the variant and its 264 

methods are defined in the header file, Var.h.  265 

2.4.2 C Modules 266 

 267 
All methods for the C modules are functions. The client program must include the 268 

header file IPhreeqc.h, which includes the prototypes for the methods and the definition 269 

of the IPhreeqc variant. The GetSelectedOutputValue method returns the IPhreeqc 270 

variant.  271 

2.4.3 Fortran Modules 272 

The methods listed in Appendix 1 are subroutine and function calls. Fortran90 client 273 

programs must include the file IPhreeqc.f90.inc, which defines constants and the Fortran 274 

interfaces for the IPhreeqc methods. Fortran77 programs must include the file 275 

IPhreeqc.f.inc to define the constants and function types.  276 

The IPhreeqc variant was not implemented in Fortran. Instead, the argument list of 277 

GetSelectedOutputValue contains three additional arguments, an integer type of the 278 

selected-output value (indicating integer, real, string, or error code), a real number, and a 279 

string value. If the type of the return value is string, the real number is not meaningful. If 280 

the type is integer or real, the value is returned as a real number in the real argument and 281 

the value is written as a string into the string argument.  282 
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3 Discussion 283 

A wide variety of uses are possible for the IPhreeqc modules. Three general classes 284 

of users are envisioned: (1) researchers who use PHREEQC for interpretation of 285 

laboratory or field data and would like to use Excel® to store and plot results, (2) 286 

researchers who need more complex geochemical calculations and could use the 287 

flexibility of embedding a geochemical module in a scripting language such as Python or 288 

Visual Basic®, and (3) program developers who need a geochemical module for reactive-289 

transport codes or who need to incorporate a geochemical calculation [calcium carbonate 290 

precipitation potential (CCPP) or base neutralizing capacity, for example] into their 291 

software. Three examples are given to demonstrate how IPhreeqc might be used by each 292 

of these three classes of users. The examples are made as simple as possible, while still 293 

demonstrating the utility of IPhreeqc in three different software environments.  294 

3.1 Use of a COM Module in Excel® 295 

Once installed on a computer, the IPhreeqc COM module can be used in Excel® 296 

Visual Basic for Applications® (VBA) macros. One common use for PHREEQC is to 297 

calculate saturation indices for a set of chemical analyses. Figure 1 (top) shows a 298 

PHREEQC input file that has been entered on sheet 1 of an Excel® workbook. The 299 

analytical data are entered in a set of columns headed by the PHREEQC nomenclature for 300 

elements and element valence states. Lines 1-2 and 7-10 are added to make a complete 301 

PHREEQC input set that performs speciation calculations and generates selected output 302 

that contains the saturation indices for calcite, dolomite, and gypsum and the log partial 303 

pressure for CO2(g).  304 
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Table 2 contains a VBA macro that creates the PHREEQC module, formats the data 305 

in sheet 1 as a PHREEQC input string, runs the string, and places the results in sheet 2 of 306 

the Excel® workbook. The phreeqc.dat database is assumed to be available in the 307 

directory containing the Excel® spreadsheet, but the macro could be modified with a path 308 

to a PHREEQC database. In the example, saturation indices are calculated as shown in 309 

figure 1 (bottom). In terms of the macro, no restriction is placed on the input that is 310 

defined in sheet 1; any PHREEQC input set could be defined on sheet 1 and the macro 311 

would place the selected-output results in sheet 2.  312 

3.2 Use of a Module in Python 313 

This example uses the COM module with the Python scripting language in a 314 

Windows environment. The task in the example is to calculate the solubility of gypsum 315 

as a function of NaCl concentration for two different aqueous models—the ion-316 

association model, as developed in WATEQ4F (Ball and Nordstrom, 1991) and 317 

implemented in wateq4f.dat, and the specific ion interaction approach of Pitzer (1973), as 318 

originally coded in PHRQPITZ (Plummer et al., 1988) and implemented in pitzer.dat.  319 

The Python script for the example is shown in table 3. The main program (last block 320 

of code) defines PHREEQC input for the simulation and specifies that the solubility of 321 

gypsum be calculated for increments of 0.1 moles of NaCl. The function show_results 322 

creates an IPhreeqc module for each database, runs the simulation in each module, and 323 

retrieves the data in the variables nacl_conc, wateq4f_values, and pitzer_values. The 324 

Python utility matplotlib (http://matplotlib.sourceforge.net/) is then used to produce a plot 325 

that compares the two results (figure 2). The specific ion interaction approach is a good 326 

fit to experimental data (Harvie and Weare, 1980). The ion-association model is generally 327 
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applicable at lower ionic strengths and, indeed, the results of the ion-association model 328 

deviate from the more accurate Pitzer results at high ionic strengths. 329 

3.3 Use of a Module in Fortran 330 

The third example demonstrates use of IPhreeqc in a Fortran90 program. An 331 

equivalent C program is provided in Appendix 2. The program works with two cells that 332 

represent a reactive-transport model. Initial conditions are defined in the file ic (table 4), 333 

where both cells initially are filled with pure water. Cell 1 has an equilibrium-phases 334 

definition that contains carbon dioxide with a partial pressure of 10-1.5, whereas cell 2 has 335 

an equilibrium phases definition that contains calcite. The file ic also contains a definition 336 

for SELECTED_OUTPUT that writes the total number of moles of H, O, Ca, and C, plus 337 

the pH and saturation ratio (SR) for calcite (IAP/K, where IAP is ion activity product and 338 

K is the equilibrium constant).  339 

In the Fortran90 program (table 5), the phreeqc.dat database is loaded, and the initial 340 

conditions file is run, which places pure water in each of the two cells. Then the solution 341 

and reactants (equilibrium phases) for cell 1 are reacted with the RUN_CELLS data 342 

block, which produces a water in equilibrium with a soil-zone partial pressure of carbon 343 

dioxide.  344 

In place of a true dispersive-transport step, the solution from cell 1 is simply 345 

advected to cell 2. The data from cell 1 are retrieved in the subroutine ExtractWrite by 346 

sequentially retrieving the columns of the selected-output array. After retrieving the data, 347 

the pH and saturation ratio for cell 1 are written to the output screen. Returning to the 348 

main program, the SOLUTION_MODIFY data block is constructed, which specifies the 349 
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total moles of elements in cell 2 to be equal to those just retrieved from cell 1. The 350 

RUN_CELLS keyword data block is used to equilibrate the new water composition in 351 

cell 2 with the reactants in cell 2, namely calcite. The results of this calculation are again 352 

retrieved and written by the subroutine ExtractWrite. The results show that the water in 353 

cell 1 has a pH of 4.66 and a calcite saturation ratio of 0.0 (because calcium is absent), 354 

whereas the water in cell 2 has a pH of 7.68 and a calcite saturation ratio of 1.0 355 

(equilibrium with calcite).  356 

Some care is needed with the units of solutions and reactants when using IPhreeqc 357 

for reactive-transport simulations. PHREEQC stores all quantities of elements, 358 

exchangers, equilibrium phases, and other reactants, in units of moles, not in units of 359 

concentration. Although PHREEQC does all of its calculations with solutions in terms of 360 

molality (mol/kg water), only the numbers of moles of each element and the mass of 361 

water are stored; a solution definition may have a mass of water that differs substantially 362 

from 1.0 kg. Thus, solution compositions are defined by the number of moles of 363 

elements, including H and O, and the equivalents of charge imbalance. In the file ic (table 364 

4), the function TOTMOLE was used, which returns the total number of moles of an 365 

element in solution. The total numbers of moles in solution are the quantities needed for 366 

the SOLUTION_MODIFY data block that was used in the advection step of the example 367 

(table 5). For reactive-transport calculations, it may be necessary to convert the solution 368 

compositions to concentration units (mol/L, ppm, or mass fraction, for example) for the 369 

transport calculation and then back to moles for the IPhreeqc calculations. Alternatively, 370 

fluid flow and solute transport with species-independent diffusion can be considered as 371 

an assembage of fluxes of individual elements, and the governing equations can be 372 
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derived in terms of transport of moles of individual elements (Wissmeier and Barry, 373 

2008). Regardless of the transport equations selected, it is necessary to transport H, O, 374 

and charge, in addition to any other elements in the system to maintain complete solution 375 

composition and correct charge imbalances.   376 

3.4 Parallelized Calculations Using IPhreeqc Modules 377 

Because IPhreeqc modules are independent objects in the sense of object-oriented 378 

programming, parallelization with threads or multiple processes is straightforward. Here, 379 

multiple processors are discussed, but the use of threads is similar. In general, the 380 

strategy is to start multiple processes, each of which creates an IPhreeqc module. Each 381 

module is then assigned part of the geochemical calculation tasks. Data are passed among 382 

the processes, either by queues or messages. The passed data would be primarily 383 

chemical compositions, which could be DUMP strings, _MODIFY data blocks, or arrays 384 

of elemental compositions.  385 

An example calculation (parallel_advect.py) using the multiprocessing package of 386 

Python is presented in the supplemental material. The example reproduces the results of 387 

the advective case of example 11 in the PHREEQC manual (Parkhurst and Appelo, 388 

1999). The Python script uses multiple processes and queues to divide the geochemical 389 

calculations for a column of cells equally among a specified number of processes.   390 

4 Summary and Conclusions 391 

PHREEQC can simulate a wide range of reactions between water and solids, 392 

including reactions with minerals, gases, ion exchangers, surface complexers, and solid 393 

solutions. Irreversible kinetic reactions also can be simulated. Because of the generality 394 
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and ease of use, PHREEQC has been integrated as the geochemical calculation module in 395 

several programs; however, the integration of PHREEQC into other codes has been 396 

difficult and time consuming. IPhreeqc is a set of modules that have been developed 397 

specifically to allow easy integration of PHREEQC into other software. All of the 398 

simulation and data-storage capabilities of PHREEQC are accessible in IPhreeqc modules 399 

through a limited set of methods.  400 

IPhreeqc modules can be used in a number of software environments. The COM 401 

module can be used by any software that supports the COM interface—Excel® (Visual 402 

Basic for Applications®), Python, or MATLAB® for example. The C++ class for 403 

IPhreeqc can be compiled into C++ programs, where the module and its underlying 404 

classes can be used or subclassed directly. Alternatively, libraries and DLLs allow the 405 

IPhreeqc modules to be used in C++, C, and Fortran programs on Windows or Linux 406 

operating systems. The modularity of IPhreeqc allows easy implementation of parallel 407 

processing for computationally intensive geochemical simulations.  408 

The interface to the modules is a relatively small set of methods, which combined 409 

with enhancements to PHREEQC, implements all of the capabilities of PHREEQC and 410 

allows all of the underlying data that define solutions and reactants to be retrieved and 411 

modified. While it is admittedly somewhat cumbersome to generate strings to perform all 412 

of the IPhreeqc calculations, the string approach has the advantage that the interface is 413 

simple and intuitive. In addition, the interface methods should not need modification, 414 

even if new features are added to PHREEQC.  415 

IPhreeqc can be used for a variety of geochemical simulation tasks, including 416 

analysis of field and laboratory data, comparison and fitting of thermodynamic data, and 417 
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reactive-transport simulations. Two applications have successfully used IPhreeqc 418 

modules: Kinniburgh and Cooper (2010) have integrated the library module into 419 

PhreePlot to plot predominance diagrams and fit thermodynamic data, and Wissmeier and 420 

Barry (2010b) have used the COM module with MATLAB® and COMSOL 421 

Multiphysics® to simulate reactive-transport in the unsaturated zone. The module may 422 

prove useful in a number of other fields, including water treatment, contaminant 423 

mitigation, and chemical engineering.  424 
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Appendix 1 494 

A complete list of methods for IPhreeqc Fortran modules is given in table A1. The 495 

most important methods have been used in the examples in the text. These methods 496 

include CreateIPhreeqc, LoadDatabase, RunFile, RunString, RunAccumulated, 497 

GetSelectedOutputValue, and DestroyIPhreeqc. Additional information for the set of 498 

Fortran methods is provided here. Note that additional methods are available to COM, C, 499 

and C++ programs that are not available in Fortran: GetDumpString, GetErrorString, 500 

GetWarningString, and GetOutputArray (COM only). 501 

Most methods return an integer value. Non-negative return values indicate successful 502 

completion of the method. If the integer is less than zero, an error has occurred during the 503 

invocation of the method and the cause of the error can be determined by using the 504 

OutputErrorString method or by a call to the GetErrorStringLineCount method and 505 

sequential calls to the GetErrorStringLine method. An IPhreeqc run also can produce 506 

warnings, which are conditions that do not cause failure of the run, but may indicate 507 

problems with input or difficulties in obtaining a numerical solution to the input 508 

definitions. Warnings can be obtained with calls to the GetWarningStringLineCount 509 

method and sequential calls to the GetWarningStringLine method. 510 

An IPhreeqc module has several properties that control file output from the module. 511 

An IPhreeqc run can write data to an output file, a selected-output file, an error file, a 512 

dump file (complete item-by-item output of solution or reactant data), and a log file 513 

(rarely used). The methods SetOutputFileOn , SetSelectedOutputFileOn, 514 

SetErrorFileOn, SetDumpFileOn, and SetLogFileOn can be used to set the properties 515 
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that activate or suspend writing to the respective files. The status of the properties related 516 

to file writing can be obtained by the methods GetOutputFileOn , 517 

GetSelectedOutputFileOn, GetErrorFileOn, GetDumpFileOn, and GetLogFileOn. 518 

Several methods apply to the input buffer that is used to accumulate lines of 519 

PHREEQC input. The AccumulateLine method appends one or more lines to the input 520 

buffer. The OutputAccumulatedLines method prints the state of the input buffer and the 521 

ClearAccumulatedLines method clears the buffer. The input can be run with the 522 

RunAccumulated method. 523 

Methods related to retrieving results from an IPhreeqc run include: 524 

GetSelectedOutputRowCount, which returns the number of rows in the selected-output 525 

array; GetSelectedOutputColumnCount, which returns the number of columns in the 526 

selected-output array; and GetSelectedOutputValue, which returns a specified row-527 

column value from the selected-output array. 528 

It can be convenient to have a list of elements that have been defined by input to an 529 

IPhreeqc module. The GetComponentCount and GetComponent methods allow 530 

retrieval of all the elements that are presently defined in the module in solutions and 531 

reactants. This is not the complete list of components defined in the database, but the list 532 

of all elements that have been used in SOLUTION, EQUILIBRIUM_PHASES, 533 

EXCHANGE, GAS_PHASE, KINETICS, REACTION, SOLID_SOLUTION, and 534 

SURFACE data blocks. Solutions or reactants that have been deleted with the DELETE 535 

keyword data block are not currently defined and are not considered. This list could be 536 

used as the list of components (in addition to H, O, and charge) that need to be 537 

transported in multicomponent reactive-transport simulations. 538 
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The final methods described here are related to the dump string of the module. The 539 

dump string contains the results from using the DUMP keyword in PHREEQC input. 540 

First, the dump string must be activated before an IPhreeqc run with a call to the 541 

SetDumpStringOn method. After the IPhreeqc run, the dump string can be retrieved by 542 

the client program line by line. The GetDumpStringLineCount method returns the 543 

number of lines in the dump string. The GetDumpStringLine method returns a specified 544 

line from the dump string.  545 

Appendix 2 546 

Table A2 gives a C program that is equivalent to the Fortran program of the third 547 

example. Apart from the differences in language syntax, there is one important difference 548 

in the C IPhreeqc module related to memory usage. Whereas, no memory problems can 549 

occur in Fortran or COM usage, a variable of type VAR will leak memory in C or C++ if 550 

it is used to store a string, and it is not cleared before it goes out of scope. A memory leak 551 

is a condition where memory is not freed even though it is no longer used. Memory leaks 552 

cause an accumulation of unusable computer memory, and a consequent decrease in the 553 

memory available for program use. Although the memory leak only will occur in C or 554 

C++ when using a variable of type VAR to store a string, it is good practice to clear any 555 

type VAR variable with VarClear after each use, as is done near the end of the void 556 

ExtractWrite function. Note that if a variable of type VAR is assigned a new value, it 557 

automatically will be cleared before the new value is stored. 558 
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SOLUTION_SPREAD               
-units mg/L               

Temp pH Ca Mg Na Cl S(6) Alkalinity 
18.7 6.86 114.7 8.109 12.03 2.787 19.007 298 
18.4 6.9 95.79 49.58 20.39 28.327 31.544 348 
18.3 6.91 80.81 39.61 4.934 8.37 10.783 329 

SELECTED_OUTPUT               
-reset false               
-SI Calcite Dolomite  Gypsum CO2(g)       
END               
 
 

si_Calcite si_Dolomite si_Gypsum si_CO2(g) 
-0.10 -1.08 -2.13 -1.36 
-0.11 -0.24 -2.06 -1.34 
-0.17 -0.39 -2.55 -1.37 

 

Figure(s)
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Table 1. Key methods for IPhreeqc modules 

Method Function 

LoadDatabase(FileName) Reads the database from the specified file 

LoadDatabaseString(Input) Reads the database from the input string 

AccumulateLine(String) Append the input string to the input buffer for the module 

RunAccumulated() Runs PHREEQC based on the input buffer defined by calls to 
AccumulateLine 

RunFile(FileName) Runs PHREEQC based on the input in the specified file 

RunString(InputString) Runs PHREEQC based on the specified input string 

GetSelectedOutputArray() Returns an array with the selected-output results from the last run 
(RunAccumulated, RunFile, or RunString). (This method is 
available only in the COM module) 

GetSelectedOutputValue(Row, 
Column) 

Returns the value from the specified row and column of the 
selected-output array, which contains results from the last run 
(RunAccumulated, RunFile, or RunString) 

GetDumpString() Returns a string containing the output as defined by the DUMP 
data block of the last RunAccumulated, RunFile, or RunString 
command  

 

Table(s)
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Table 2. Excel® Visual Basic for Applications® macro that takes PHREEQC input from 

sheet 1 of a workbook and puts selected output in sheet 2 of workbook 

Sub RunPhreeqc() 
  On Error GoTo ErrHandler: 
  ChDir ActiveWorkbook.Path 
  Set Phreeqc = CreateObject("IPhreeqcCOM.Object") 
  Db = "phreeqc.dat" 
  Phreeqc.LoadDatabase (Db) 
     
  'Format input from sheet1 
  Dim Istring As String 
  Worksheets("Sheet1").Activate 
  FirstRow = ActiveSheet.UsedRange.Row 
  FirstColumn = ActiveSheet.UsedRange.Column 
  For r = FirstRow To (FirstRow + ActiveSheet.UsedRange.Rows.Count) 
    For c = FirstColumn To (FirstColumn + ActiveSheet.UsedRange.Columns.Count) 
      Istring = Istring & CStr(Cells(r, c)) & vbTab 
    Next c 
    Istring = Istring & vbNewLine 
  Next r 
   
  'Run and save selected output to sheet2 
  Phreeqc.RunString (Istring) 
  arr = Phreeqc.GetSelectedOutputArray() 
  Worksheets("Sheet2").Activate 
  Range(Cells(1, 1), Cells(Phreeqc.RowCount, Phreeqc.ColumnCount)) = arr 
  MsgBox "Phreeqc ran successfully." 
  Exit Sub 
     
ErrHandler: 
  MsgBox "Phreeqc errors: " & Phreeqc.GetErrorString() 
End Sub  
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Table 3. Python script that plots the solubility of gypsum as a function of NaCl 

concentration as calculated by the Pitzer and WATEQ4F databases  

"""Compares gypsum solubility for WATEQ4F and Pitzer databases. 
""" 
# Import standard library modules first. 
import os 
# Then get third party modules. 
from win32com.client import Dispatch 
import matplotlib.pyplot as plt 
 
def selected_array(db_path, input_string): 
    """Load database via COM and run input string. 
    """ 
    dbase = Dispatch('IPhreeqcCOM.Object') 
    dbase.LoadDatabase(db_path) 
    dbase.RunString(input_string) 
    return dbase.GetSelectedOutputArray() 
 
def show_results(input_string): 
    """Get results for different databases 
    """ 
    wateq4f_result = selected_array('wateq4f.dat', input_string) 
    pitzer_result  = selected_array('pitzer.dat', input_string) 
    # Get data from the arrays. 
    nacl_conc      = [entry[0] for entry in wateq4f_result][1:] 
    wateq4f_values = [entry[1] for entry in wateq4f_result][1:] 
    pitzer_values  = [entry[1] for entry in pitzer_result][1:] 
    # Plot 
    plt.plot(nacl_conc, pitzer_values, 'k', nacl_conc, wateq4f_values,'k--') 
    plt.axis([0, 6, 0, .06]) 
    plt.legend(('PITZER','WATEQ4F'), loc = (0.4, 0.4)) 
    plt.ylabel('GYPSUM SOLUBILITY, MOLES PER KILOGRAM WATER') 
    plt.xlabel('NaCl, MOLES PER KILOGRAM WATER') 
    plt.show() 
     
if __name__ == '__main__': 
    # This will only run when called as script from the command line 
    # and not when imported from another script. 
    INPUT_STRING = """ 
    SOLUTION 1 
    END 
    INCREMENTAL_REACTIONS 
    REACTION 
     NaCl 1.0 
     0 60*0.1 moles 
    EQUILIBRIUM_PHASES 
     Gypsum 
    USE solution 1 
    SELECTED_OUTPUT 
     -reset false 
     -total Na S(6) 
    END""" 
    show_results(INPUT_STRING)  
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Table 4. Initial conditions and selected-output definitions for Fortran90 example 

# File ic 
SOLUTION 1-2 
END 
EQUILIBRIUM_PHASES 1 
   CO2(g) -1.5 10 
    
EQUILIBRIUM_PHASES 2 
   Calcite 0   10 
SELECTED_OUTPUT 
   -reset false 
USER_PUNCH 
   -Heading  charge    H   O   C   Ca  pH  SR(calcite) 
   10 PUNCH charge_balance 
   20 PUNCH TOTMOLE("H"), TOTMOLE("O"), TOTMOLE("C"), TOTMOLE("Ca") 
   30 PUNCH -LA("H+"), SR("calcite") 
END 
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Table 5. Fortran90 program that performs advection and chemical reactions for two cells 

module Subs 
  integer    (kind=4), dimension(7) :: vt 
  real       (kind=8), dimension(7) :: dv 
  character (len=100), dimension(7) :: sv  
  integer                           :: Id 
  contains 
   
  subroutine ExtractWrite(cell) 
    include "IPhreeqc.f90.inc" 
    integer    (kind=4), intent(in) :: cell 
    do j = 1, 7 
      ! Headings are on row 0 
      Ierr = GetSelectedOutputValue(Id,1,j,vt(j),dv(j),sv(j)) 
      if(Ierr .ne. IPQ_OK) call EHandler() 
    enddo 
    write(*,"(a,i2/2(5x,a,f7.2))") "Cell",cell,"pH:",dv(6),"SR(calcite):",dv(7)  
  end subroutine ExtractWrite 
   
  subroutine EHandler() 
    include "IPhreeqc.f90.inc" 
    call OutputErrorString(Id) 
    stop 
  end subroutine EHandler     
end module Subs 
program Advect 
  use Subs 
  include "IPhreeqc.f90.inc" 
  character(len=1024) Istring  
   
!Create module, load database, define initial conditions and selected output 
  Id = CreateIPhreeqc() 
  if (LoadDatabase(Id, "phreeqc.dat") .ne. 0) call EHandler() 
  If (RunFile(Id, "ic") .ne. 0) call EHandler() 
 
!Run cell 1, extract/write result 
  if (RunString(Id, "RUN_CELLS; -cells; 1; END") .ne. 0) call EHandler() 
  call ExtractWrite(1) 
 
!Advect cell 1 solution to cell 2, run cell 2, extract/write results 
  Ierr = AccumulateLine(Id, "SOLUTION_MODIFY 2")     
  Ierr = AccumulateLine(Id, "   -cb      " // sv(1)) 
  Ierr = AccumulateLine(Id, "   -total_h " // sv(2)) 
  Ierr = AccumulateLine(Id, "   -total_o " // sv(3)) 
  Ierr = AccumulateLine(Id, "   -totals  ") 
  Ierr = AccumulateLine(Id, "      C     " // sv(4)) 
  Ierr = AccumulateLine(Id, "      Ca    " // sv(5)) 
  Ierr = AccumulateLine(Id, "RUN_CELLS; -cells; 2; END") 
  if (RunAccumulated(Id) .ne. 0) call EHandler() 
  call ExtractWrite(2) 
   
 !Destroy module  
  if (DestroyIPhreeqc(Id) .ne. 0) call EHandler() 
end program Advect 
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Table A1. Complete list of methods for a Fortran90 IPhreeqc module 

[Id, number returned by the CreateIPhreeqc function; N, integer used to refer to the Nth 

member of a list; col, column number; comp, variable to hold the Nth component name, 

logical, a value of true or false; Vtype,integer variable; Dvalue, real variable ; Svalue, 

string variable] 

Method Usage 

Function AccumulateLine(Id, String) Appends one or more lines to the input buffer 

Function AddError(Id, String) Appends the string to the error string in the module and 
increments the error count 

Function AddWarning(Id, String) Appends the string to the warning string in the module 

Function ClearAccumulatedLines(Id) Clears the input buffer of the module  

Function CreateIPhreeqc() Create and initialize a module 

Function DestroyIPhreeqc(Id) Destroy a module 

Subroutine GetComponent(Id, N, Comp) Retrieve specified component name 

Function GetComponentCount(Id) Determine number of components currently used in the module 

Function GetDumpFileOn(Id, Logical) Retrieve the print setting for the dump file 

Subroutine GetDumpStringLine(Id, N, Line) Retrieve line from the lines generated by the DUMP data block 

Function GetDumpStringLineCount(Id) Retrieve number of lines generated by the DUMP data block 

Function GetDumpStringOn(Id, Logical) Retrieve the setting for saving dump information in a string 

Function GetErrorFileOn(Id, Logical) Retrieve the print setting for the error file 

Subroutine GetErrorStringLine(Id, N, Line) Retrieve specified line from the error messages 

Function GetErrorStringLineCount(Id) Retrieve number of lines in the error messages 

Function GetLogFileOn(Id, Logical) Retrieve the print setting for the log file 

Function GetOutputFileOn(Id, Logical) Retrieve the print setting for the output file 

Function GetSelectedOutputColumnCount(Id) Retrieve number of columns in selected output 

Function GetSelectedOutputFileOn(Id, Logical) Retrieve the print setting for the selected-output file 

Function GetSelectedOutputRowCount(Id) Retrieve number of rows in selected output 

Function GetSelectedOutputValue(Id, Row, Col, 
Vtype, Dvalue, Svalue) 

Retrieve selected-output value from specified row and column 

Subroutine GetWarningStringLine(Id, N, Line) Retrieve specified line from the warning messages 

Function GetWarningStringLineCount(Id) Retrieve number of lines in the warning messages 

Function LoadDatabase(Id, FileName) Reads the database from file 

Function LoadDatabaseString(Id, String) Reads the database from string 
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Subroutine OutputAccumulatedLines(Id) Display the accumulated input buffer 

Subroutine OutputErrorString(Id) Display errors from the last run 

Subroutine OutputWarningString(Id) Display warnings from the last run 

Function RunAccumulated(Id) Run the input accumulated in the input buffer 

Function RunFile(Id, FileName) Run from a file 

Function RunString(Id, String) Run from a string 

Function SetDumpFileOn(Id, Logical) Set the switch for printing to the dump file 

Function SetDumpStringOn(Id, Logical) Set the switch for saving dump information in a string 

Function SetErrorFileOn(Id, Logical) Set the switch for printing to the error file 

Function SetLogFileOn(Id, Logical) Set the switch for printing to the log file 

Function SetOutputFileOn(Id, Logical) Set the switch for printing to the output file 

Function SetSelectedOutputFileOn(Id, Logical) Set the switch for printing to the selected-output file 
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Table A2. C program that performs advection and chemical reactions for two cells 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <IPhreeqc.h> 
int id; 
int vt[7]; 
double dv[7]; 
char sv[7][100]; 
char buffer[100]; 
void ExtractWrite(int cell) 
{ 
 VAR v; 
 int j; 
 VarInit(&v); 
 for (j = 0; j < 7; ++j) { 
  GetSelectedOutputValue(id, 1, j, &v); 
  vt[j] = v.type; 
  switch (vt[j]) { 
  case TT_DOUBLE: 
   dv[j] = v.dVal; 
   sprintf(sv[j], "%23.15e", v.dVal); 
   break; 
  case TT_STRING: 
   strcpy(sv[j], v.sVal); 
   break; 
  } 
  VarClear(&v); 
 } 
 printf("Cell %d \n\tpH: %4.2f\tSR(calcite): %4.2f\n", cell, dv[5], dv[6]); 
} 
void EHandler(void) 
{ 
 OutputErrorString(id); 
 exit(EXIT_FAILURE);  
} 
const char *ConCat(const char *str1, const char *str2) 
{ 
 strcpy(buffer, str1); 
 return strcat(buffer, str2); 
} 
int main(void) 
{ 
 /* Create module, load database, define initial conditions and selected output */ 
 id = CreateIPhreeqc(); 
 if (LoadDatabase(id, "phreeqc.dat") != 0) EHandler(); 
 if (RunFile(id, "ic") != 0) EHandler(); 
 
 /* Run cell 1, extract/write result */ 
 if (RunString(id, "RUN_CELLS; -cells; 1; END") != 0) EHandler(); 
 ExtractWrite(1); 
 
 /* Advect cell 1 solution to cell 2, run cell 2, extract/write results */ 
 AccumulateLine(id, ConCat("SOLUTION_MODIFY 2",         ""   )); 
 AccumulateLine(id, ConCat("   -cb      ",              sv[0])); 
 AccumulateLine(id, ConCat("   -total_h ",              sv[1])); 
 AccumulateLine(id, ConCat("   -total_o ",              sv[2])); 
 AccumulateLine(id, ConCat("   -totals  ",              ""   )); 
 AccumulateLine(id, ConCat("      C     ",              sv[3])); 
 AccumulateLine(id, ConCat("      Ca    ",              sv[4])); 
 AccumulateLine(id, ConCat("RUN_CELLS; -cells; 2; END", ""   )); 
 if (RunAccumulated(id) != 0) EHandler(); 
 ExtractWrite(2); 
 
 /* Destroy module */ 
 if (DestroyIPhreeqc(id) != IPQ_OK) EHandler(); 
 exit(EXIT_SUCCESS); 
} 



� Modules for geochemical reaction calculations based on PHREEQC 
� Mineral, gas, exchange, surface-complexation, solid-solution, and kinetic 

reactions 
� For use in Excel, Python, C++, C, and Fortran 
� Suitable for coupling geochemical reactions with transport models 
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