cygenja’s manual
Release 0.3.0

Nikolaj van Omme
Sylvain Arreckx
Dominique Orban

January 18, 2016

CONTENTS

1 Introduction 3
I[.1 Whatcygenjacando i i i it e e e e e e 3
1.2 Howeygenja works e e e 3
1.3 Limitations e e e e e e e e e e e e e 3
1.4 LACENSE . . . o o o e e e e e e e e e e e e e 4
2 Installing cygenja 5
2.1 Dependencies e e e e 5
2.2 Installation e e e e e e 5
3 Usage 7
3.1 The Generator Class e e e 7
3.2 Patterns e e e e e e e e e e 8
3.3 The root direCtory o o v i e e e e e e e e e e e e e e e e e e 8
3.4 FIters o o e e e e e e e e e e e e e 8
3.5 File extensions i e e e e e e e e e e e e e e e e e e e 9
3.6 ACHONS o o it e s 10
3.7 File @eneration i i e e e e e e e e e e e e e e e e e e e 11
4 Examples 13
4.1 Init . .. e 13
4.2 File eXtensions v . v i e e e e e e e e e e e e e e e e 14
43 FIters o o o e e e e e e e e e e 14
4.4 ACHONS . . . o o e e e e e 14
45 Filegeneration L e 16
Index 17

cygenja’s manual, Release 0.3.0

Release 0.3
Date January 18, 2016

CONTENTS 1

cygenja’s manual, Release 0.3.0

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

cygenija is a small Python2 library to generate typed source files from Jinja2 source templates. We use it extensively
to generate our Cython projects. See Limitations to see if this tool is for you.

1.1 What cygenja can do

From a bunch of templated (source) files, cygenja can generate several (source) files. The translation part is given
to the powerful Jinja2 template engine. cygen3ja is a layer above this template engine and is in charge of dispatching
translation rules to the right subdirectories and apply them to the right bunch of files. A file is only generated if
it is older than the template file used to produce it, i.e. a change in a template file triggers a regeneration of the
corresponding files !.

1.2 How cygenja works

Within a root directory, you provide some translation rules: each rule is attached to a subdirectory and a file pattern.
You can define several rules for one subdirectory. These rules (called actions in cygen ja) are user defined callbacks.
Once all rules are registered, the cygenja engine is given a directory pattern and a file pattern: only the matching
rules are triggered. See Usage or look at the Examples for more.

1.3 Limitations

Here is a small list of limitations . It is of course not exhaustive but it can already give you a hint if this tool is for
you or not.

1.3.1 cygenja only parses subdirectories

cygenija can only parse subdirectories from a root directory. This means that it cannot generate files located at the
root directory level (or outside the root directory).

1.3.2 cygenja generates files in place

Files can only be generated in the same subdirectories as their corresponding templates.

1 Of course, you can force a file generation.
2 Most limitations described here can easily be overcome.

https://docs.python.org/2/
http://jinja.pocoo.org/docs/dev/
http://cython.org/
http://jinja.pocoo.org/docs/dev/

cygenja’s manual, Release 0.3.0

1.3.3 Templates and generated files must have different extensions

Templates are identified by specific extensions. The corresponding generated files will be given specific corresponding
extensions too. This extension correspondance is defined by the user but both extensions must be different. For
instance, *.cpd templated files are transformed into *.pxd files. Both extensions, .cpd and .pxd are be different.

1.3.4 File patterns: only £nmatch patterns

Translation rules can only be applied to files corresponding to fnmatch patterns. While this covers most cases, it might
be a limitation for some.

We also use the same kind of file patterns to trigger the translation.

1.3.5 Directory patterns: only glob patterns

To select the subdirectory(ies) within which the rules will be applied by cygenja‘s engine, only glob patterns can be
used.

1.3.6 Contradictory actions are not filtered nor monitored

Nothing prevents you from registering conflicting actions. In this case, only the first registered action is guaranteed to
be triggered.

1.4 License

cygenija is distributed under the GPLv3.

4 Chapter 1. Introduction

https://docs.python.org/2/library/fnmatch.html
https://docs.python.org/2/library/glob.html
http://www.gnu.org/licenses/gpl-3.0.en.html

CHAPTER
TWO

INSTALLING CYGENJA

Installing cygenja is really easy.

2.1 Dependencies

The only dependency is the Jinja2 library.

If you want to generate the documentation, you need Sphinx and the sphinx_bootstrap_theme (and possibly LaTeX
and several sub modules/packages). To generate the documentation, cygenja does not need to be installed.

2.2 Installation

Download source files from Github (or clone the repository) and invoke the traditionnal:

‘python setup.py install

in a virtual environment or globally with full admin rights.

http://jinja.pocoo.org/
http://sphinx-doc.org/
https://ryan-roemer.github.io/sphinx-bootstrap-theme/README.html
https://www.latex-project.org/
https://github.com/PythonOptimizers/cygenja

cygenja’s manual, Release 0.3.0

6 Chapter 2. Installing cygenija

CHAPTER
THREE

USAGE

We briefly describe the use of cygenja. Basically, you register some filters, file extensions and actions before
triggering the translation. In the Examples section, you can see cygenja in action as we detail its use to generate the
CySparse library.

3.1 The Generator class

The Generator class is the main class of the cygenja library. It also is the only class you need to interact with.
Its constructor is really simple:

from cygenja.generator import Generator

logger =
env = .
engine = Generator ('root_directory', env, logger, True)

You provide a root_directory directory, a Jinja2 environment, a logger (from the standard 1ogging library)
and decide if warnings must raise Exceptions or not (default: False). The first two arguments are mandatory while
the last two are optional. You don’t have to provide a logging engine. We describe the root directory a little further in
The root directory, refer the reader to jinja2.Environment for more about the env argument and discuss the two last
arguments in the next corresponding subsections.

3.1.1 Logging

A logging engine can be used but is not mandatory. If you don’t want to log cygen ja‘s behavior, simply pass None as
the value of the logger argument in the constructor (this is the default). The logging engine is an object from Python’s
logging library.

from cygenja.generator import Generator
import logging

logger = logging.getLogger ('Logger name')
engine = Generator ('root_directory', logger, True)

Three message logging helpers are provided:

def log_info(self, msqg)
def log_warning(self, msg)
def log_error(self, msq)

Their names and signatures are quite self-explanatory.

https://github.com/PythonOptimizers/cysparse
http://jinja.pocoo.org/docs/dev/api/#jinja2.Environment
https://docs.python.org/2/library/logging.html

cygenja’s manual, Release 0.3.0

3.1.2 Raising exceptions on Warnings

Errors always trigger RuntimeErrors while warnings may or may not trigger RuntimeErrors. To raise exceptions on
warnings, set the raise_exception_on_warning to True in the constructor:

engine = Generator ('root_directory', logger=logger, raise_exception_on_warning=True)

By default, raise_exception_on_warningissettoFalse.

3.2 Patterns

There are only two types of patterns:
 fnmatch patterns for file names and
* glob patterns for directory names.

This is a general rule for the whole library. When you register an action though, you must provide a directory name,
not a directory name pattern.

We encourage the reader to (re)read the specifications of these two libraries.

3.3 The root directory

The root directory is really the main working directory: all file generations can only be done inside subdirectories of
this directory.

This is so important that it is worth a warning:

Warning: File generations can only be done inside subdirectories of the root directory.

This directory is given as the first parameter of Generator‘s constructor and can be absolute or relative. At any
moment, you can retrieve this directory as an absolute path:

engine = Generator ('root_directory', ...)

absolute_root_directory = engine.root_directory ()

3.4 Filters

Filters are simply Jinja2 filters. These filters are registered:

def my_jinja2_filter (filter_argument) :
return filter_result

engine = Generator(...)
engine.register_filter('my_ filter name', my_jinja2_filter)

where ‘my_filter_name’ is the name of the filter used inside your Jinja2 template files and
my_Jjinja2_filter is areference to the actual filter.

The signature of register_filteris:

8 Chapter 3. Usage

https://docs.python.org/2/library/fnmatch.html
https://docs.python.org/2/library/glob.html
http://jinja.pocoo.org/docs/dev/templates/#filters

cygenja’s manual, Release 0.3.0

register_filter(self, filter_name, filter_ref, force=False)

allowing you to register a new filter under an already existing filter name. If you keep force set to False, a
warning is triggered each time you try to register a new filter under an already existing filter name and this new filter
is disregarded.

You also can register several filters at once with a dictionary of filters:

engine = Generator(...)
filters = { 'f1' : filterl,
'£2' ¢ filter2}

engine.register_filters(filters, force=False)

At any time, you can list the registered filters:

engine = Generator(...)
print engine.filters_list ()

This list also includes predefined Jinja2 filters (see builtin filter). If you only want the filters you registered, invoke:

’ engine.registered_filters_list ()

3.5 File extensions

cygenija uses a correspondance table between template files and generated files. This table defines a correspondance
between file extensions. For instance, to have * cpd templates generate *.pxd files:

engine = Generator(...)
engine.register_extension(.cpd , " .pxd)

Again, we use a force switch to force the redefinition of such a correspondance. By default, this switch is set to
False and if you try to redefine an association with a given template extension, you will trigger a warning and this
new correspondance will be disregarded.

You can use a dict to register several extensions at once:

engine = Generator(...)
ext_correspondance = { '.cpd' : '.pxd',

'.cpx' : 'pyx'}
engine.register_extensions (ext_correspondance, force=False):

As with filters, you can retrieve the registered extensions:

engine.registered_extensions_list ()

Files with extensions registered as template file extensions are systematically parsed, i.e. you cannot use these exten-
sions for files that are not templates because cygenja will try to parse them. What about generated file extensions?
Files with these extensions can peacefully coexist with generated files, i.e. existing files, regardless of their extensions,
can coexist with generated files and will not be plagued by cyjenja. This means that you can safely delete files:
only generated files will be deleted '.

Note: Only generated files are deleted. You can thus safely delete files with cygenja.

! The user is responsible to not to define a translation rule that overwrites any existing files.

3.5. File extensions 9

http://jinja.pocoo.org/docs/dev/templates/#builtin-filters

cygenja’s manual, Release 0.3.0

3.6 Actions

Actions (defined in the GeneratorAction class) are really the core concept of cygen3ja: an action correspond to
a translation rule. This translation rule makes a correspondance between a subdirectory and a file pattern and a user
callback. Here is the signature of the register_action method:

’def register_action(self, relative_directory, file_pattern, action_function)

The relative_directory argument holds the name of a relative directory from the root directory. The separator
is OS dependent. For instance, under linux, you can register the following:

engine = Generator(...)
def action_function(...):

return

engine.register_action('cysparse/sparse/utils', 'findx.cpy', action_function)

This means that all files corresponding to the ’findx.cpy’ fnmatch pattern inside the
cysparse/sparse/utils directory can be dealt with the action_function.

Contrary to filters and file extensions, you cannot ask for a list of registered actions. But you can ask cygenja to

perform a dry session: cygenja outputs what it would normaly do but without taking any action .

3.6.1 User callback

The action_function () is auser-defined callback without argument. It returns a file suffix with a corresponding
Jinja2 variables dict (this is a simple Python dict). Let’s illustrate this by an example:

GENERAL_CONTEXT = {...}
INDEX_TYPES = ['INT32', 'INT64']
ELEMENT_TYPES = ['FLOAT32', 'FLOAT64']

def generate_following_index_and_type() :

mmn

mmn

for index in INDEX_TYPES:
GENERAL_CONTEXT['index'] = index
for type in ELEMENT_TYPES:
GENERAL_CONTEXT ['type'] = type
yield '_%s5_%s5' % (index, type), GENERAL_CONTEXT

The user-defined callback generate_following_index_and_type () doesn’t take any input argument and
returns the ’ _%s_%s’ suffix string together with the variables dict GENERAL_CONTEXT. This function allows
cygenija to create files with this suffix from any matching template file. The GENERAL_CONTEXT is given to
Jinja2 for the appropriate translation.

For instance, let’s use the ext__correspondance extensions dict discussed earlier (see File extensions):

ext_correspondance = { '.cpd' : '.pxd',
' 'pyx'}

.CpX

3 You also have access to the internal TreeMap object with the registered_actions_treemap () method and thus you have access to
all its methods. One interesting method is to_string (). It gives you a representation of all involved subdirectories.

10 Chapter 3. Usage

https://docs.python.org/2/library/fnmatch.html
http://jinja.pocoo.org/docs/dev/templates/#variables

cygenja’s manual, Release 0.3.0

Any template file with a .cpd or .cpx extension will be translated into a _index_type.pxd or
_index_type.pyx file respectively. For instance, the template file my_template_code_file.cpd will be
translated to:

* my_template_code_file INT32_FLOAT32.cpd
e my_template_code_file INT32_FLOAT64.cpd
* my_template_code_file_INT64_FLOAT32.cpd
* my_template_code_file INT64_FLOAT64.cpd

As this function is defined by the user, you have total control on what you want to generate or not. In our example, we
redefine GENERAL_CONTEXT [’ index’] and GENERAL_CONTEXT [’ type’] for each index and element types.

We use generators (yield) but you could return a 1ist if you prefer.

3.6.2 Incompatible actions

You could register incompatible actions, i.e. register competing actions that would translate a file in different ways.
Our approach is to only use the first compatible action and to disregard all the other actions, regardless if they could
be applied or not. So the order in which you register your actions is important. A file will be dealt with the first
compatible action found. This is worth a warning:

Warning: A template is translated with the first compatible action found and only that action.

3.6.3 Default action

cygenija allows to define one default action that will be triggered when no other compatible action is found for a
given template file that corresponds to a fnmatch pattern:

engine = Generator(...)

def default_action():
return ...

engine.register_default_action('x.*", default_action)

Be careful when defining a default action. This action is applied to all template files (corresponding to the fnmatch
pattern) for which no compatible action is found. You might want to prefer declaring explicit actions than relying on
this implicit default action. That said, if you have lots of default cases, this default action can be very convenient and
avoid lots of unnecessary action declarations.

3.7 File generation

To generate the files from template files, there is only one method to invoke: generate(). Its signature is:

def generate(self, dir_pattern, file_pattern, action_ch='g',
recursively=False, force=False)

dir_pattern is a glob pattern taken from the root directory and it is only used for directories while
file_pattern is a fnmatch pattern taken from all matching directories and is only used for files. The
action_ch is a character that triggers different behaviours:

* g: Generate all files that match both directory and file patterns. This is the default behavior.

3.7. File generation 11

https://docs.python.org/2/library/fnmatch.html

cygenja’s manual, Release 0.3.0

e d: Same as g but with doing anything, i.e. dry run.
e c: Same as g but erasing the generated files instead, i.e. clean.

These actions can be done in a given directory or in all its corresponding subdirectories. To choose between these two
options, use the recursively switch. Finally, by default, files are only generated if they are outdated, i.e. if they
are older than the template they were originated from. You can force the generation with the force switch.

12 Chapter 3. Usage

CHAPTER
FOUR

EXAMPLES

In this section, we demonstrate the use of cygenja to generate the CySparse library.

4.1 Init

We start by creating a cygenja engine:

from cygenja.generator import Generator

read cysparse.cfg
cysparse_config = ConfigParser.SafeConfigParser ()
cysparse_config.read('cysparse.cfg')

create logger
logger = make_logger (cysparse_config=cysparse_confiqg)

cygenja engine
current_directory = os.path.dirname (os.path.abspath(__file_))
cygenja_engine = Generator (current_directory, logger=logger)

make_logger is just a wrapper around a logging logger. This logger is not mandatory but can be quite handy
to debug sessions. The current_directory can be absolute or relative. In this example, let’s say its value is
" cysparse’ !, the main project directory.

We now define some variables:

ELEMENT TYPES = ['INT32 t', 'INTG64 t',
'"FLOAT32_t', 'FLOAT64 t', 'FLOAT128 t',
"COMPLEX64_t', 'COMPLEX128_t', 'COMPLEX256_t']
INDEX_TYPES = ['INT32 t', 'INT64 t']

GENERAL_CONTEXT = {
"type_list': ELEMENT_TYPES,

'"index_list' : INDEX_TYPES,
'default_index_type' : DEFAULT_INDEX_ TYPE,
"integer_list' : INTEGER_ELEMENT_TYPES,
'real_ list' : REAL_ELEMENT_TYPES,
'complex_list' : COMPLEX_ELEMENT_TYPES,
}
! Yes, we are well aware that this not what is expected from the code. os.path.abspath (__file_) will never only return cysparse.

13

https://github.com/PythonOptimizers/cysparse
https://docs.python.org/2/library/logging.html

cygenja’s manual, Release 0.3.0

4.2 File extensions

CySparse is written essentially in Cython. We can thus generate four types of files: .pyx, .pxd, .pxi and of
course . py files. For each type of file, we have defined a corresponding extension for a template file: .cpx, .cpd,
.cpi and cpy. We register this correspondance like so:

register extensions

cygenja_engine.register_extension('.cpy', '.py'")

cygenja_engine.register_extension('.cpx', '.pyx")
cygenja_engine.register_extension('.cpd', '.pxd")
cygenja_engine.register_extension('.cpi', '.pxi')

Now, each time cygenja will encounter a template . cpx file, it will generate one or several corresponding . pyx
files.

4.3 Filters

Jinja2 filters are essentially functions that take a string as input and return a modified version of this string. Here is an
example:

def cysparse_type_to_numpy_c_type (cysparse_type) :

mmn

Transform a :program: CySparse’ enum type into the corresponding
:program: NumPy C-type.

For instance:
INT32_T —-> npy_1int32

Args:
cysparse_type:

mmn

return 'npy_' + str(cysparse_type.lower () [:-2])

We keep the same name for the function as the function name itself to register it (this is not mandatory):

engine.register_filter ('cysparse_type_ to_numpy_c_type', cysparse_type_to_numpy_c_type)

Now you can use cysparse_type_to_numpy_c_type () in your Jinja2 template *:

cnp.ndarray[cnp.@index|cysparse_type_to_numpy_c_type@, ndim=1] a_row =
cnp.PyArray_SimpleNew(1, dmat, cnp.@index|cysparse_type_to_numpy_enum_type@)

4.4 Actions

Before we can register any cygenja actions, we need to define some callbacks. Here are a few examples:

def single_generation() :
yield '', GENERAL_CONTEXT

2 cySparse‘s Jinja2 environment allows us to use variables names like so: @my_variable@.

14 Chapter 4. Examples

http://cython.org/
http://jinja.pocoo.org/docs/dev/templates/#filters

cygenja’s manual, Release 0.3.0

def generate_following only_index () :
GENERAL_CONTEXT['type'] = None
for index in INDEX_TYPES:
GENERAL_CONTEXT['index'] = index

yield '_%s' % index, GENERAL_CONTEXT

The first function, single_generation, only generates one file without changing its name (the extension will
be changed though). The second function, generate_following_only_index, is more interesting. It gen-
erates one file for each index type. These files all have a suffix _index attached to their names (i.e. _INT32_t,
_INT64_t) and the GENERAL_CONTEXT dict is changed every time with the corresponding entry index up-
dated. Here is a more complex version where we generate files with respect to an index type but also an element
type:

def generate_following_index_and_element () :
for index in INDEX_TYPES:
GENERAL_CONTEXT['index'] = index
for type in ELEMENT_TYPES:
GENERAL_CONTEXT['type'] = type
yield '_%s_ ' % (index, type), GENERAL_CONTEXT

Because these functions are user-defined, you have total control and can generate any complicated combinations that
you like.

Now we can use these callbacks and register them. For instance:

engine.register_action('config', 'x.x', single_generation)

This registers any template file (* . «’) located in cysparse/config (linux version) with the user callback
single_generation.

engine.register_action('cysparse/sparse/sparse_utils/generic',
'generate_indices.x"',

generate_following_only_index)

This time, we associate template files with the name generate_indices inside the subdirectory
cysparse/sparse/sparse_utils/generic withthe generate_following_only_index callback>.

Here, we only associate template files with extension . cpi tothe generate_following_index_and_element
callback inside subdirectory cysparse/sparse/csc_mat_matrices/csc_mat_kernel:

cygenja_engine.register_action('cysparse/sparse/csc_mat_matrices/csc_mat_kernel',
'x.cpi',
generate_following_index_and_element)

You are allowed to define multiple actions for one subdirectory:

cygenja_engine.register_action('cysparse/sparse/sparse_utils/generic’,
'find.x"',

generate_following_index_and_element)

cygenja_engine.register_action('cysparse/sparse/sparse_utils/generic',
'generate_indices.x"',
generate_following_only_index)

Remember that if a template file can be associated with several actions, only the first action will be triggered.

3 Thus the real directory is cysparse/cysparse/sparse/sparse_utils/generic.

4.4. Actions 15

cygenja’s manual, Release 0.3.0

4.5 File generation

We are now ready to generate some files from some templates. There is only one method to call: generate. Its

signature is:

engine.generate (dir_pattern, file_pattern, action_ch='g', recursively=True,

force=False)

where dir_pattern is a glob pattern used to match directories and file_pattern a £nmatch pattern taken
from all matching directories. This combination allows you to refine your operations with a great flexibility. The

action_ch argument can be g (generate files), c (clean or erase files) or d (dry run).

This is the beginning of the output cygenja generates when asked a dry run for all file generation:

Process file 'config/setup.cpy' with function 'single_generation':
-> config/setup.py
Process file 'cysparse/sparse/ll_mat.cpx' with function 'single_generation':
-> cysparse/sparse/ll_mat.pyx
Process file 'cysparse/sparse/csc_mat_matrices/csc_mat.cpx' with
function 'generate_following_index_and_element':
-> cysparse/sparse/csc_mat_matrices/csc_mat_INT32_t_INT32_t.pyx
—-> cysparse/sparse/csc_mat_matrices/csc_mat_INT32_t_INT64_t.pyx
-> cysparse/sparse/csc_mat_matrices/csc_mat_INT32_t_FLOAT32_t.pyx
-> cysparse/sparse/csc_mat_matrices/csc_mat_INT32_t_FLOAT64_t.pyx
-> cysparse/sparse/csc_mat_matrices/csc_mat_INT32_t_ FLOAT128_t.pyx
-> cysparse/sparse/csc_mat_matrices/csc_mat_INT32_t_COMPLEX64_t.pyx
-> cysparse/sparse/csc_mat_matrices/csc_mat_INT32_t_COMPLEX128_t.pyx

At the moment of writing, we have 23 registered actions that trigger 492 file generations.

16 Chapter 4. Examples

A

action, 10
action default, 11

D

directories
pattern, 8

F

files
pattern, 8
filters, 8

P

pattern
directories, 8
files, 8

R

root directory, 8

INDEX

17

	Introduction
	What cygenja can do
	How cygenja works
	Limitations
	License

	Installing cygenja
	Dependencies
	Installation

	Usage
	The Generator class
	Patterns
	The root directory
	Filters
	File extensions
	Actions
	File generation

	Examples
	Init
	File extensions
	Filters
	Actions
	File generation

	Index

