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Corrigendum

Page 21, line 15, amend the formula to read: x
.y

Page 23, Table, third column, second line from bottom; ~eplace 0.25549 by: 0.22549~

km 6 m' 3
Page 25, last line, amend the formula to read: fJ* = -n r b .S .15 + - rb .S .

• J .J n .J.J v/

Page 26, Example 3, line 3, amend the formula to read:

F (x) = exp [ - ( ~2) -~J

Page 27, line 5, sixth coiumn, replace 3.9475 by: 3.8475 t-

Page 27, fourth line from bottom, replace -3.2622 by: 3.7860

*Page 27, second line from bottom, replace fJ
i

Page 28, line 8, amend the formula to -read:

-lE;
by: (31

In v(F) *In lJ
2 ~*

Page 29, line 15, amend the formula to read: P(PL < et> < PU) 1 - 2a ,.

Page 29, lines 21 and 22, amend the sentence to read:

These replace the formulas and tables for obtaining PL and PU'

Page 29, ninth line from bottom, replace F

Page 31, line 9, amend the .formula to read: log gc = x log x - log x

Page 31, lines 11 and 12, amend the sentence to read:

P is given in column 8 and is the estimate for each x.
c

- 0.434- 29 x 1/

Page 31, lines 13-15, amend the sentence to read:

In colunm 11 the frequencies gc and go are compared by t~e x2 test whose total
is given in the footing of the table.



- 2 -

Page 32, line 2, the division line in the coefficient should be extended over r(k) to read:

Page 32, line 13, amend to read:

f(x)
r(x+k)

r(x+l) r(k)

x
p

(l+p)k+x

(1 +~)
*p

(k* + 2) < 20

Page 33, line 4, amend the formula to read:

Page 33, line 5, amend the formula to read: K =

K--------

*(1 + p*)k + x

r(k* + x)

r(x+l) r (k*)

Page 33, Table, column 6, line 1, replace x 10g[P~lJ by: x log [ ~* ]
p +1

m
Page 36, line 1, amend the formula to read: y = I: x.

i=l 1

Page 36, line 3, amend left hand side of the formula to read: v(t k.x.)
i=l 1 1

Page 37, paragraph 3.2.2, lines 1 and 2, amend the sentence to read:

The regression is a functional relationship between a dependent variable and
one or more independent variables.

Page 45, line 6, amend the formula to read: b2

F(2, n-3)

Page 45, line 8, amend the formula to read:

Page 4f, line 5, amend the formula to read:

b
3

= c
23

Q12 + c
33

Q
13

(Qll - ~.23)/2

Q1.2l(n-3 )

Page 49, fifth line from bottom, amend the formula to read: .

Q,J" .k 1 k k } l( .. {L_ [ r r (- ) ( _.] 2s Xl I = . - + . 2 . 2 c .. x.-x. x.-x.J
c n-k n 1= J= 1J 1 1 J J

Page 49, third line from bottom, amend the formula to read:

{
Q12··· k 1 k k

s(x - =) = [1 +- +.r .r
2

c .. (x.-x.)
1 n-k n 1=2 J= 1J 1 1

Page 51, fourth line from bottom, amend the formula to read:
2

l'

(x.-xJ] }~
J J

QR 15 030 556
= ~ = 16 365 567

0.9 184

Page 52, last line, amend the formula to read: P (2 235 <y < 38°5) 0.90



CONTENTS

Foreword ..

Summaries (English, French, Russian, Spanish)

Chapter TIne - Climatological series

Page

V

VII

1.1

1.2

1.3

1.4
1.4.1
1.4.2

The frequency distribution .........•.............•.•.......

The cumulative distribution .

Homogeneity of data series ••••••••••••••••••••••••••.••••••

Adjustment of climatological means •••••••••••••••••••••••••
The difference method ••••••••••••••••••••••••••••••••••••••
The ratio method •••••••••••••••••••••••••••••••••••••••••••

1

3

4

7
8
9

Chap..;;t:..;:e:.:r'---=Tw.:.:..;;:o_----eE=s..:tc;;i:;;;m;:.;a;:.t.:;.l;:.'c;;o.;;;;n:...-o;:.;f=--.;;;;s..:t:..:;a;:.;t;:.;l_·::.s..:t..:i..:c..:a;:.;l=--""p""a..:r..:a""m;:.e.:;.t..=....::;e..:r...o:.s

2.1 Statistics in general ••••••••••••••••••••••••.•••••••••••••

2.2 Common statistics of climatological variables ••••••••••••••

2.3 Sampling variability of climatological means •••••••••••••••

Chapter Three - General statistical methods

12

13

15

The normal distribution ••••••••••••.••••••••••••••••••••••••
Example 1· - Normal distribution •••••••••••••••••••••••

The gamma distribution •••••••••••••••••••••••••••••••••••••
Example 2 - Gamma distribution ••••••••••••••••••••••••

The extreme value distriputi ons •••••••••••••••••••••••••••••
Example 3 - Extreme value distribution~••••••••••••••••

Th~ binomial distribution ••••• "•••••••••••••••••••••••••••••
The Poisson distribution •••••••••••••••••••••••••••••••••••

Example 4 - Poisson distribution ••••••••••••••••••••••
The negative binomial distribution •••••••••••••••••••••••••

Example 5 - Negative binomial distribution ••••••••••••

Correlation and regression analysis ••••••••••••••••••••••••
Correlation analysis •••••••••••••••••••••••••••••••••••••\••
Regression analysis ..

Example 6 ~ Single regression •••••••••••••••••••••••••

3.1
3.1.1

3.1.2

3.1.3

3.1.4
3.1.5

3.1.6

3.2
3.2.1
3.2.2

Frequency distributions ........................................................................ 17
17
19
20
21
22
26
28
30
30
31
32

34
34
37
50

References 53





v

FOREWORD

At its third session (London, December 1960) the Commission for
Climatology (CC1) established a Working Group on Statistical Methods in Clima­
tology. The group was requested to review and expand the material on statis­
tical methods in climatology already prepared by a previous working group of
the CC1, and to advise on the application of statistical methods to specific
climatological problems.

The membership of the group was as follows: H. C. S. Thorn (U.S.A),
chairman; M. I. Drozdov (D.S.S.R.); G. R. Kendall (Canada); G. OIMahony
(Australia); R. Sneyers (Belgium).

Mr. Thorn, the chairman of the group, prepared a draft paper on
methods of climatological analysis which, together with the final report of
the group, was submitted to the fourth session of CCl in Stockholm (August
1965). The Commission expressed its satisfaction with the report and recom­
mended that the paper be published in the series of WMO Technical Notes.

I am glad to have this opportunity of\thanking the members of the
working group, as well as others who have contributed to its work, for the
time and effort they have devoted to the preparation of this Technical Note.

(D. A. Davies)
Secretary-General
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SUMMARY

Modern statistical analysis is the mathematics of climatological
analysis, the objective of which is climatological prediction. This Tech­
nical Note gives an introduction to the basic principles for the making of
such predictions. The methods of analysis presented are applied to a series
of illustrative examples.

After defining a climatological series to lay the basis for valid
statistical analysis, the frequency distribution (the basic tool of climato­
logical analysis) is discussed. From this the cumulative distribution for
obtaining probabilities, which are the climatological predictions, follows
naturally.

Since some meteorological records do not form climatological series
because of heterogeneities, simple tests for homogeneity are given next. The
difference and ratio methods for adjusting, averaging and totalizing variables
are discussed,together with applications to actual climatological records.
Limitations are also presented on their use and interpretation.

The fundamental problem of estimating statistical parameters is
covered as it applies generally, and the ordinary statistical parameters are
discussed critically. The approach to normality of several common siatistics
is also treated, and confidence limits are defined and given for the mean.

Several fundamental frequency distributions are treated, including
the normal, gamma, extreme value, binomial, Poisson, and negative binomial
distributions. Best estimates for the parameters are given together with
complete instructions for fitting them to data. Examples of their applica­
tion to climatological series are worked out. The application of the binomial
distribution in order to obtain confidence limits for the probability estimates
obtained from any distribution is also given.

Correlation and regression analysis are discussed in general. The
propagation of variance in climatological series is treated, including the
effect of covariance. The correct correlation is carefully differentiated
from the autocorrelation which can only be used in this application with sta­
tionary data sequences. The formulas for propagation of variance are applied
to an equation for cooling load in an air-conditioning system.

Regression analysis is discussed in detail, including linear re­
gression forced through the origin. The analysis variance is employed for
testing the significance of a relationship as well as to the regression itself.
The test for linearity is also given. The standard errors of the regression,
as well as the all-important standard error of a forecast, are presented. A
complete example of application to a single independent variable is discussed.
The simple regression and multiple correlation methods are extended to two
independent variables and finally to many independent variables. Finally,
there is a list of references to statistical textbooks and papers.
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RESUME

Llanalyse statistique moderne est llaspect mathematique de l'ana­
lyse climatologique, qui a pour objectif la prevision climatologique. La pre­
sente Note technique est une introduction aux principes fondamentaux sur les­
quels repose l'elaboration des previsions climatologiques. Les methodes d'ana­
lyse presentees sont illustrees par une serie d'exemples.

Apres avoir defini ce qu1est une serie climatologique pour jeter
les bases dfUne analyse statistique valable, l'auteur traite de la distribu­
tion de frequences (element capital de llanalyse climatologique). De la, il
passe naturellement a la distribution de frequences cumulees pour obtenirdes
probabilites qui representent les previsions climatologiques.

Etant donne que certains releves meteorologiques ne constituent
pas des series climatologiques, en raison de leur heterogeneite, l'auteur
presente ensuite quelques te~s simples permettant de determiner l'homogeneite.
11 expose les methodes des differences et des quotients utilisees pour ajuster
les variables, ainsi que pour calculer les moyennes et les sommes de ces varia­
bles; il mentionne leurs applications aux releves climatologiques proprement
dits. 11 indique egalement les limites de leur emploi et de leur interpreta-
tion. .

Apres avoir aborde, d'une manlere generale, le probleme fondamental
des parametres statistiques, 1 'auteur passe au crible les d·ivers parametres
statistiques ordinaires. 11 montre egalement comment on arrive a determiner
le degre de normalite de divers parametres statistiques courants; il definit
et precise les seuils de confiance de la moyenne.

La Note passe en revue plusieurs distributions de frequences fon­
damentales : gamma, valeurs extremes, binomiale, Poisson et binomiale negative.
L'auteur fournit les meilleures estimations des parametres et donne des ins­
tructions detaillees pour les adapter aux donnees. 11 presente des exemples
d'application de ces parametres a des series climatologiques. 11 montre egale­
ment comment on applique la distribution binomiale pour obtenir les seuils de
confiance des estimations de probabilite a partir d'une distribution quelconque.

Les grandes lignes de l'analyse de correlation et de regression
sont esquissees. L'auteur traite de la propagation de la variance dans les
series climatologiques, notamment de l'effet de co-variance. La correlation
est soigneusement differenciee de l'autocorrelation qui ne peut etre utilisee
dans cette application qu'avec des series de donnees stationnaires. Les for­
mules se rapportant a la propagation de la variance sont appliquees a une equa....;
tion peTmettant de d~terminer le regime de refroidissement dans un systeme de
climatisation.

L'auteur etudie en detail l'analyse de regression, notamment le cas
du passage force des droites de re~ression par l'origine. La variance est
utilisee pour verifier la signification d'une/relation et appliquee a la re­
gression proprement dite. Le test de linearite est egalement decrit. Les
erreurs de la regression et l'erreur type - tres importante - d'une prevision



RESUME IX

sont exposees. La Note contient un exemple complet d'application de la methode
a une seule variable independante. Les methodes de regression simple et de
correlation multiple sont etendues a deux variables independantes et, finale­
ment, a de nombreuses variables independantes. La publication se termine par
une bibliographie renvoyant a des manuels et a des etudes statistiques.
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PearoMe

COBpeMeH~Ie CTaTMCTH~eCKRe aHa~RaM HB~HroTCH MaTe­

MaTR~eCKRM aCneKTOM K~RMaTO~OrM~eCKRXaHa~RaOB, ~e~hro KO­

TOPb~ HB~HeTCH K~RMaTO~OrRqeCKRH npOrHOa. B 3TOK TeXHR­

qeCKOH aanHCKe ~aHO BBe~eHRe K OCHOBH@M npRH~RnaM ~~H

paapa60TKM TaKRX npOrHOaOB. MeTO~M npe~CTaB~eHHb~ a~eCh

aHa~HaOB, R~~roCTPHpyroTCH PH~OM npHMepOB.

rrOc~e onpe~e~eHRH K~HMaTO~OrH~eCKHX CepRK, KOTO­

pMe nO~OXeHbI B OCHOBy CTaTHCTHqeCKOrO aHa~Haa, aBTOp pac­

CMaTpHBaeT pacnpe~e~eHHe qaCTOT (OCHOBHOrO 3~eMeHTa K~H­

MaTO~OrHqeCKOrO aHa~Raa). Ma 3Toro eCTeCTBeHHO BbITeKaeT

o606~eHHoe pacnpe~e~eHHe no~yqeHHMX BepoHTHocTeH, KOTO­

poe H eCTh HR qTO HHoe, KaK K~RMaTO~OrHqeCKHH nporHoa.

yqHTMBaH, qTO HeKOTopMe MeTeopo~orH~eCKHe ~aHHMe

HaG~ro~eHHH He no~rOTaB~HBaroT K~RMaTO~OrHqeCKHX cepRH B

COOTBeTCTByro~eH ~opMe B CBHaH C paaHopO~HOCThro K~HMaTO~OrH­

qeCKHX ~aHHDIX, aBTOp npe~~araeT HeCKO~hKO npOCTMX cnoco­

60B ~~H npHBe~eHHH RX K O~HOpO~HOCTH. OH npe~~araeT paa­

~H~HbIe H pa~HOHa~hHbIe MeTO~bI ~~H cor~aCOBaHHH, ocpe~HeHHH

R cyMMHpoBaHHH pa3~H~HMX H3M€HeHHH, HcnO~haYH ~aKTHqeCKRe

K~HMaTO~OrHqeCKRe ~aHHMe. OH yKaaMBseT TaKEe Ha orpaHH­

qeHHH B HX HcnO~haOBaHHH H TO~KOBaHRH.

rrOc~e 06~eH o~eHKH OCHOB~IX npo6~eM CTaTHCTHqeC­

KRX napaMeTpOB, aSTOp ~ICKa3MBaeT KpHTHQeCKOe cy~eHHe,

Kac~~eeCH OCHOBHMX npo6~e.M paCqeTa CTaTHCTHqeCKHX napa­

MeTpOB. VB coa~a~ TaKEe MeTO~ no~xo~a K HeKOTopMM CTaTHC­

THqeCKHM ooo6~eHHHM; OH onpe~e~H~ H YTOqHH~ npe~eAM ~~H

onpe~e~eHHH cpe1HRX aHa~eHHH~
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BM~M ~OCTMrHYTM HeKOTOpMe OCHOBHDJe nOBTOpHeMOCTM

pacnpe~e~eHM~: HOpMa~hHOrO, raMMa, 3KCTpeMa~hHOrO, 6MHO­

MMa~hHOrO, TIyaccoHa M OTpM~aTe~hHMe 6HHOMMa~hHWe.

ABTOp HaXO~MT HaM~y~mMe cnoco6@ paC~eTa napaMeTpOB H

~aeT ,IJ,eTa~hHbJe nOHCHeHMH ~~H MCnO~b30BaHMH npM o6pa6oTKe

~aHHbIX Ha6~IO~eHMii. OH ~ae T npMMepbI npHMeHeHHH 3THX napa­

MeTpOB B OTHOmeHHH K~HMaTO~OrHqeCKHX cepMii. TaKze ~aeT6H

npHMeHeHMe MMHOMHa~bHOrO pacnpe~e~eHHH ~~H nOJIyqeHHH npe­

~e~OB O~eHKM BepOHTHOCTeii, HCXO~H M3 ~IOC5:bIX paCnpe~eJIeHHH.

KOppeJIH~HOHHWii aHaJIH3 H aHaJIM3 ypaBHeHM~ perpeCCHM

paCCMaTpHBaeTCH B 06~eM nJIaHe. ABTOp npHBO~HT pa3HOBH~­

HOCTH BapHa~H~ B KJIMMaTOJIOrH~eCKHX CepHHX, B ~aCTHOCTH 3~­

~eKT COH3MeHeHH~. ABTOp pa3JIH~aeT KOppeJIH~HIO OT aBTOKOp­

pe~H~HH, KOTOpaH MO~eT 6@Tb HCrrOJIb30BaHa TOJIbKO C CepHHMH

CTa~HOHapHbJX ~aHHb!X. ~OPNyJIb!, OTHOCH~HeCH K pa3HOBH~HOCTH

BapHa~Mii rrpHMeHHIOTCH K ypaBHeHHIO, Orrpe~eJIHIO~eMY peXHM

OXJIaX~eHHH B KOH~H~HOHHbIX CHCTeMaX.

ABTOp ~aeT ~eTaJIbH@i &HaJIH3 ypaBHeHHIO perpeCCHH,

BK~IOqaH JIHHeHHOe ypaBHeHHe perpeCCHH. BapHaHTbJ &HaJIHS&

HCnOJIbayroTCH ~JIH npOBepKH 3Ha~eHHH CBHseii, T&RZe RaR H ,IJ,JIH

caMO~ perpeCCHH. laeTCH TaKze HCCJIe,IJ,OBaHHe JIHHe~HOOTH

H rrpHBO~HTCH BeCbMa cy~ecTBeHHbIe omH6RH perpeCCHH H TKnHq­

HbIe omH0KH B rrporHoaax.

3arrHCKa co~epXHT rrpHMep HCrrOJIbaOBaHHH MeTo~a no rrpe~eJIY

He3aBHCHMO~ paaHOBH~HOCTH. MeTO~bI rrpocToit perpeCCHH H

CJIOXHOH KOppeJI.fI~HH pacrrpo·c TpaHe HbI Ha ~Be HeaaBHCHMbIe

BapHa~MH H, B KOHeqHOM MTore Ha MHOrO~HCJIeHHWe HesaBHCH­

MbIe BapHa~HH. TIy6JIHKa~H.fI aaKaHqHBaeTCH 6H6JIHOrp~Heit,

KOTopaH C~IJIaeTCH Ha yqe6HbJe rroco6HH H CTaTHCTH~eCKHe

HCCJIe~OBaHHH.
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RESUMEN

El analisis estadlstico modemo constituye el aspecto matematico del analisis
climatologico, cuyo objetivo es la prediccion climato16gica. Esta Nota Tecnica es una intro­
duccion a los principios basicos necesarios para la elaboracion de tales predicciones. Los
metodos de analisis que se detallan se ilustran por medio de una serie de ejemplos.

Despues de haber definido 10 que es una serie climatologica, con el fin de esta­
blecer la base de un analisis estadlstico valedero, el autor estudia la distribuci6n de fre­
cuencias que es un elemento fundamental del analisis climatologico. SigUiendo un orden
l6gico, se estudia a continuacion la distribucion acumulativa para la obtencion de las
probabilidades, que representan las predicciones climatologicas.

Como algunos registros de datos meteorologi~os no forman series climatologicas
debido a su heterogeneidad, el autor expone seguidamente algunos metodos sencillos que per­
miten verificar dicha homogeneidad. Explica los metodos de las diferencias y los cocientes
utilizados para ajustar, promediar y totalizar las variables e indica sus aplicaciones a los
registros climatologicos propramente dichos. Se exponen tambien las limitaciones referentes
a la utilizacion e interpretacion de estos metodos.

Despu~s de estudiar de un modo general el fundamental problema de ~a estimacion
de los parametros estadlsticos, el autor hace un examen crltico de los parametros estad1s­
ticos ordinarios. Muestra asimismo el metodo que se sigue para determinar el grado de norma­
lidad de varios parametr08 estadlsticos comunes y define y precisa los 11mites de confinanza
de la media.

La Nota estudia varias distribuci9nes fundamentales de frecuencia : distribuci6n
normal, distribucion gamma, distribucion de los valores extremos, distribucion binomial, dis­
tribucion de Poisson y distribucion binomial negativa. El autor da cuenta de las estimaciones
mas aproximadas de 108 parametros e inclUye instrucciones detalladas para su adaptacion a los
datos. Se exponen ejemplos de su aplicacion a las series climatologicas y se estudia tambien
la aplicacion de la distribucion Binomial 'con el fin de obtener 11mites de confianza para las
probabilidades estimadas que resultan a partir de una distribucion cualquiera.

Se trata de una manera general del analisis de correlacion y del de regresi6n y se
estudia la propagacion de la variancia en las series climatologicas, incluyendo el efecto de
la covariancia. Seguidamente se explica con detalle la diferencia que existe entre la corre­
lacion y la autocorrelacion, la cual solo puede ser utilizada en esta aplicacion si va acom­
panada de una serie de datos estacionales. Las formulas de· propagacion de la variancia se
aplican a una ecuacion que expresa el regimen de enfriamiento en un sistema de acondiciona­
miento de aire.

El autor estudia detalladamente el analisis de regresion, incluyendo la regresi6n
lineal forzada a traves del origen. El analisis de la variancia se utiliza para verificar
la significacion de una relacion y se aplica tambien a la regresion misma. Se describe el
metodo de verificacion de la linealidad y los errores tipo de regresion, asl como tambien el
error tipb de una prediccion, que es de la mayor importancia. La Nota contiene un ejemplo
completo de aplicacion del metodo a una sola variable independiente. Los metodos de regre­
sion simple y de correlacion multiple se aplican a dos variables independientes y, finalmente,
a numerosas variables independientes.

La pUblicacion termina con una bibliografla en la que se hace referencia a diversos
textos y documentos estadisticos.



CHAPTER ONE

CLlMATOLOGICAL SERIES

The meihods of statistical analysis apply to climatological data
because, to a large extent, if the data are properly taken, sequences of them
behave like random variables. Since statistical analysis only applies to
samples from populations of data, the sequences of climatological data must be
defined so as to be samples f~om populations. To accomplish this we define a
climatological series as a sample- series of data consisting of one climatolo­
gical value for each year of the record being considered. Thus the 30 January
average temperatures for a 30-year record form a climatological series. The
30 daily precipitation amounts for 1 January form a climatological series. The
90 February, March, and April monthly precipitation amounts do not form a
climatolog~cal series but are samples through different populations and are
therefore different climatological series; hence they must be dealt with as
three separate series. The series of 3 720 hourly temperatures for a five-year
record during March does not form a climatological series because there are
24 x 31 different populations, so that really 744 different climatological series
are involved. Under certain circumstances such populations can be mixed to­
gether, as were the February, March, and April series above, but the individual
climatological series and populations must firsi;; be defined-so that the exact
meaning of the mixture of populations is defined in advance of statistical
analysis.

Climatological series variables may be either discrete or continuous.
Discrete series variables are usually counted values such as the number of days
with precipitation greater than 1.0 mm for each of 30 Junes or the number of
times the visibility is less than 1 km during each of 30.;Tulys. Cpntinuous
series variables are usually measured values such as temperature and precipita­
tion, for example the series of 30 totals of spring precipitation (each the
total of March, April, and May).

A climatological series is never more than a sample from a single
population assumed to behave as if it were infinite in extent and having clima­
tic properties such that the observed climatological series is a random sample
from that infinite population, that is to say a sample drawn in a manner inde­
pendent of the in~ividual magnitudes of the members of the infinite population.

1.1 The frequency distribution

The frequency distribution is the basic tool for describing and
l;\.nalyaing the population. This is accomplished by estimating the characteristics
of the population frequency d-istriblJtion from the sample or climatological
series. To accomplish this the data of the climatological series are tallied
in class intervals which are divisions of the range of theclimatological
variable. The number of class intervals is best taken to be between 10 and 20.
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This divides the difference between the largest and smallest value or range of
the climatological series into from 10 to 20 equal divisions. The procedure
for division into class intervals is best illustrated by the following example
for August precipitation amounts (in mm) for Geneva, Switzerland. The 30-year
record for 1927-1956 given in the following table is used.

TABLE 1

August precipitation (mm), Geneva, Switzerland

Year p Year p Year p

1927 250 1938 79 1949 49
28 147 39 85 50 110
29 83 40 18 51 100
30 108 41 105 52 125
31 171 42 48 53 57
32 62 43 41 54 206
33 67 44 44 55 107
34 119 45 133 56 144
35 157 46 158
36 23 47 54
37 78 48 72

To find a class interval for this climatological series we follow our
rule: the highest value is 250 mm and the lowest 18 mm. This give-sa range of
232 mm. Since 20 mm is a convenient division and gives 13 divisions, this is
a suitable class interval. Tallying these by classes we obtain the following
table of precipitation p and frequency f:

TABLE 2

Frequency distribution of August precipitation, Geneva

P f P f

0-19 1 140-159 4
20-39 1 160-179 1
40-59 6 180-199 0
60-79 5 200-219 1
80-99 2 220-239 0

100-119 6 240-259 1
120-139 2

If these frequencies are plotted as blocks proportional to f on the
scale of precipitation, the histogram of precipitation for Geneva is obtained.
The values of f may be divided by 30, the number of years in the climatologica,l
series, to obtain the relative frequencies in each class interval. These sample
values are estimates of the probabilities in the population of precipitation
amounts in the various class intervals.
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The cumulative distribution

3

\
Usually the climatologist is more inte~ested in estimates of proba-

bilities over several class intervals which are more conveniently obtained from
the cumulative distribution. The latter also provides better estimates of the
probabilities, since the arbitrary division into class intervals, as in Table 2,
tends to waste some of the information on the population given by the climato­
logical series.

To obtain the cumulative distribution the data are first put in order
as in the following table:

TABLE 3

Cumulative distribution, August precipitation

m p F m p F m p F

1 18 0.032 11 72 0.355 21 119 0.677
2 23 0.065 12 78 0.387 22 125 0.71'0
3 41 0.097 13 79 0.419 23 133 0.742
4 44 0.129 14 83 0.452 24 144 0.774
5 48 0.161 15 85 0.484 25 147 0.806
6 49 0.194 16 100 0.516 26 157 0.839
7 54 0.226 17 105 0.548 27 158 0.871
8 57 0.258 18 107 0.581 28 171 0.903
9 62 0.290 19 108 0.613 29 206 0.935

10 67 0.323 20 110 0.645 30 250 0.968 I

The F values are the cumulative relative frequencies or estimates of
the cumulative population probabilities, and are obtained by the formula
F m/(n + 1) where m is the mih value in order of magnitude of the clima-
tological series and n is the number of terms in the climatological series, in
this case 30. The division by (n + 1) instead of n gives a better estimate of
population probabilities especially at the ends of the distribution. It can be
shown that m/(n + 1) gives the best simple estimate of the probabilities.

The F values give the probabilities that precipitation is less than
any value shown in the table. For example, the probability that p is less than
62 mm is 0.290, and that it is greater than 62 mm is 1 - F = 0.710. Note that
when probabilities are esti~ated for a continuous random variable, such as
precipitation, it is a misunderstanding of sampling Principles to use the wording
"equalled or exceeded" or "less than or equal to", for the probability of any
exact value occurring is zero. The probability that it is between 62 and 125 mm
is 0.710 - 0.290 = 0.420. Thus the cumulative distribution gives all the infor­
mation available from histograms, and much in addition, since it uses every
value of the climatological series individually to obtain the probability esti-
mates. The sample cumulative distribution may also be put in graphical form
by plotting F on the ordinate against p on the abscissa anq. connecting the points
by straight lines. Climatological series with discrete variables may also be
treated in a similar manner.

The average temperatures for August for Geneva shown in Table 4 may
be analysed in a similar fashion as another example. The series has been
arranged in order of magnitude in Table 4.
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TABLE 4

Average temperature (bC), August, Geneva

m t F m t F m t F

1 16.9 0.032 11 18.6 0.355 21 19.8 0.677
2 17.4 0.065 12 18.7 0.387 22 19.9 0.710
3 17.5 0.097 13 18.7 0.419 23 20.3 0.742
4: 17.8 0.129 14 18.9 0.452 24 20.4 0.774
5 17.9 0.161 15 18.9 0.484 25 20.7 0.806
6 17.9 0.194 16 19.2 0.516 26 20.8 0.839
7 18.1 0.226 17 19.3 0.548 27 20.9 0.871
8 18.3 0.258 18 19.5 0.581 28 20.9 0.903
9 18.5 0.290 19 19.5 0.613 29 22.0 0.935

10 18.6 0.323 20 19.7 0.645 30 22.9 0.968

Note that since the record length is the same, the F values are the
same as in the previous table,. and hence have the same interpretation as pre­
viously. The estimated probability that the average temperature for August at
Geneva is, less than 20.3 0C is 0.742, and that it is greater than 20.30C is
1 - 0.742 = 0.2.58. The mean recurrenCe interval or return period (Le the
average time between occurrences) for values exceeding any value t is 1

(1 - F)
Hence for temperatures exceeding 20.30 C the mean recurrence interval is
___1__ or about four years.
0.258

1.3 Homogeneity of data series

A data series is said to be homogeneous if it is a sample from a
single population. Hence by definition a climatological series is homogeneous
and elementary probability analysis must be applied only to climatological
series. The previous temperature and precipitation series were, of course,
analysed on the assumption of homogBneity. If a series is not homogeneous,
adjustments must be made so that statistical estimates will be valid estimates
of the population parameters applying to the last terms in the series, or so
that they are estimates obtained from a hypothetical homogeneous series in­
cluding the latest data as elements.

In cases where instrument exposures have changed it is necessary to
make a statistical test to ensure homogeneity. Many of the older methods of
testing for homogeneity were incomplete in the senSe that they provided inade­
quate criteria for accepting or rejecting the hypothesis of homogeneity. The
valid test of homogeneity is a statistical test of hypothesis which provides
a hypothesis of homogeneity (nUll hypothesis) and a rule for accepting or
rejecting this hypothesis on the basis of probability of oCcurrence. Thus if
the probability of the evidence for homogeneity is small, it is concluded that
the series is heterogeneous; if it is large, the decision is for homogeneity.
The rule specifies the probability limit (significance limit) beyond which the
hypothesis of homogeneity would be rejected and some alternative to homogeneity
accepted. In most instances distributions on the null hypothesis and the alter­
natives to homogeneity are difficult to specify; hence the so-called non­
parametric tests must ordinarily be used.
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The alternatives to homogeneity in a series of meteorological data
are usually slippage of the mean, trend, or some form of oscillation. Since
these alternatives, especially the latter, may be difficult to specify exactly,
it is best to use a non-parametric test which does not require exact specifi­
cation of these alternatives or the null distribution. A well-known non-para­
metric test which is sensitive to all of these alternatives is the run test.
This test is made by counting the number of runs u above and below the median
or middle value in a naturally ordered series, and testing this by means of a
table of the distribution of u. The test is best illustrated by applying it
to the August average temperatures for Geneva. These are given in their his­
torical order in Table 5.

TABLE 5

Runs for observed Geneva temperature series

1927 17.4 B 1942 19.9 A
28 20.9 A 43 20.9 A
29 18.7 B 44 22.9 A
30 18.7 B 45 18.9 B
31 16.9 B 46 19.2 A
32 20.8 A

33 20.4 A 1947 22.0 A
34 17.9 B 48 18.9 B

35 18.1 B 49 20.7 A
36 18.5 B 50 19·7 A

51 19.5 A

19>7 19·5 A 52 20.3 A

3S 18.6 B 53 19.8 A

39 18.6 ·B 54 18.) B
40 17.9 B 55 19.3 A
41 17.8 B 56 17·5 B

From Table 5 it can be seen that the median or middle value is
between 18.9 and 19.2. It may be taken as half-way between these two values
or 19.05. Using this ~f.l,lue the entries in Table 5 may be marked with a B if
they are below this value and with an Aif above this value. The. runs tlie~

are marked l:}S SE;1quences of A Ij,):ld l? The total numbE;1r of ru~s is seen to be
u ;::= 15.

It is clear that too many runs would be an indication of oscillation,
while too few runs would be an indication of a trend or a shift in the median
during the sample record. Hence, if the probability of a u being exceeded were
small, an oscillation would be suspected; whereas if the probability of being
less than a sample u were s.mall, a trend or shift in median would be suspected.
If the oprobabili ty of heingei ther greater than or less than u is large, then
neither oscillation nor trend is suspected and the series is said to be homo­
geneous or fro~ a single population. To make this test a distribution table
of u is required. This is given below. Since the median was chosen, the
number of values above the median NA will equal the number of values NB below
the median; hence the table is for N

A
;::= NB'
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TABLE 6

Distribution table of number of runs u

NA = NB

p P

N
A

0.10 0.90 N
A

0.10 0.90

10 8 13 19 16 23

Li. 9 14 20 16 25

12 9 16 25 22 30

13 10 17 30 26 36

14 11 18 35 31 41

15 12 19 40 35 47

16 13 20 45 40 52

17 14 21 50 45 57

18 15 22

Table 6 gives the lower and upper 0.10 significance limits, i.e.
for probabilities P of 0.10 and 0.90. Significance limits of 0.10 are most
satisfactory for many meteorological applications because, on account of
frequent high variability, it is desir~ble to increase the significance limit
probabilities since this in turn will increase the chances of accepting the
alternative hypothesis. Since u is discrete, the u val-ues shown in the tables
are those corresponQ.ing to the probability closest to 0.10 and 0.90. The
maximum divergence from exact probability values is ± 0.03. If a sample u is
below the lower limit, heterogeneity is due to trend or mean slippage; if
above, to oscillation.

In order to illustrate further the application of the runs test the
series in Table 5 has been deliberately made hetefogeneous by subtracting loe
from each of the first 12 years of record and subtracting 0.5 oe from each of. the
next eight years. The heterogeneous series is shown in Table 7 (see followlng
page) •

It was seen in Table 5 that u = 15 for NA = NB = 15. The upper ~nd
lower limits from Table 6 for NA = 15 are 12 and 19. u = 15 is within this
range; hence this u is not significantly different from those expected from
homogeneous series, and the series is concluded to 1;>e homogeneous.
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TABLE 7

Runs for heterogeneous Geneva temperature series

1927 16.4 19:3'4 lq.9 1945 18.4
28 19.9 35 17.1 46 18.7
29 17.7 36 17.5 47 22.0
30 17.7 37 18.5 <$8 18.9
31 i5.9 38 17.6 49 20.7
32 19.8 39 18.1 50 19.7
33 19.4 40 17.4 51 19.5

41 17.3 52 20.3
42 19.4 53 19.8
43 20.~ 54 18.3
44 22.4 55 19.3

56 17.5

7

The number of runs is reduced to 11 by the two shifts of the mean
which in effect produce a kind of trend. Table 6 at NA = 15 shows that the
probability of less than 12 runs is 0.10; and since Table 7 has only 11 runs
the heterogeneity was found by the test. Of course it was already known that
the heterogeneity was there because it was introduced deliberately. It will
naturally be suspected from this example, and correctly so, that the ability
of such tests to find heterogeneities when the exact alternatives to homogeneity
are not known will not be very good. This brings out the very important point
that the best way to determine heterogeneities is to determine their cause in
the history of the record. If the history of a record show.s changes which could
cause heterogeneities and which can be described according to period and
chaFacter, more powerful parametric tests such as Student's t-test may be
employed to determine the significance of the heterogeneities. Such tests,
however, may only be employed where the periods and character of the hetero­
geneities ar~ known a priori.

1.4 Adjustment of climatological means

Heterogeneity in climatological data series is usually due to some
disturbing factor such as change in station location or change in exposure.
Although in the past attempts have been made to homogenize series having such
disturbances, it must be made very clear that it is not possible to homogenize
a series in the sense that a new series of individual values is derived with
the same properties as a sample from the proper hypothetical popUlation. In
other terms, if the data from a particular station are unavailable for a parti­
cular period of record, it is impossible to reproduce the individual items of
the series for that period. The reason for this is that any adjustment disturbs
the variability of the series and hence changes the scale or dispersion of the
frequency distribution. It is possible, however, to adjust certain statistics
of the series so that these adjusted values are in effect like those estimated
from samples taken from the proper hypothetical population. The most common
application of such adjustments is to the means ~f data series for the purpose
of obtaining normals.It is recommended that such adjustments be made if
possible only on the basis of a priori known heterogeneities.
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It may be shown by theoretical analysis that the classical difference
and ratio methods are close to optimum for the adjustment of temperature and
precipitation means. Such adjustments are often made to compensate for missing
recordsMd to remove heterogeneities. The difference method employs the differ­
ence between temperature means of two concurrent homogeneous series as an
additive factor on the available series mean. The ratio method employs the
ratio of precipitation totals or means of two concurrent homogeneous series as
a multiplying factor on the available series total or mean. The adjustments
are best illustrated by examples.

The method involves using a supplementary station with a concurrent
homogeneous record. This station should be as close as possible to the station
to be adjusted, as the effectiveness of the adjustment depends on the correla­
tions between the two stations. Usually a station less than 80 km from the
station to be adjusted, and in the same climatic regime, will serve the purpose.
Several supplementary stations may be averaged and used as the supplementary
record, but this usually does not increase the correlation greatly. If a
supplementary station does not have a complete record the adjustment may have
to proceed by stages, a different supplementary station being used for each
period of record.

1.4.1 The difference method

In Table 7 deliberate heterogeneity was introduced into the average
temperature recor-d by subtracting 1.Ooe from each of the first 12 years, O. 5_oe
from the next eight, and leaving the last ten unchanged. It is now assumed
that during each of the first two periods the station was moved or the exposure
of instruments changed, and that it is desired to adjust the 30.....year mean to
the exposure during the last 10·years, This is atypical adjustment problem.
Other arrangements of the heterogeneities in a record are easily taken into
account by a simple variation in the adjustment procedure.

To adjust the means of temperature and precipitation of the Geneva
record, given the dates mf heterogeneous periods and therefore also the datas
of homogeneous ones, it has been found convenient to use Lausanne as the supple­
mentary station. It is not presumed that Lausanne is the best supplementary
station. It is only used because it serves the purpose of illustrating the
adjustment of a known heterogeneity. The adjustment formula for temperature is

y a + x (1 )

Here x is the mean for the homogenfous period at the supplementary station
corresponding to the heterogeneous period at the station whose record is being
adjusted, and y is the adjusted mean. The adjustment constant a is estimated
by the equation

a v - u (2 )

Here v and u are the means from concurrent periods of homogeneous record at
the supplementary station and the station being adjusted respectively. The
process of adjustment for temperature then consists of estimating a, u~ing con­
current homogeneous records at the supplementary station and the station to be
adjusted, and substituting this value in turn in Equation (1) to obtain the
adjusted mean y. The y values for the various parts of the 30-year record are
then weighted according to length of period in years and averaged to obtain
the adjusted 30-year record.
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The means for each period were obtained from Table 7 which is arti­
ficially heterogeneous. These are shown in Table 8:

TABLE 8

Mean temperature adjustment for Geneva

-Lausanne x Geneva-unadjusted
means

Geneva y

1927-38
1939-46
1947-56

17.9
18.4
18.2

(17.9)
(19.0)
19.6

Adjusted record mean

19.3*
19.8*
19.6

19.5*

Substituting the homogeneous, values for u and v in Equation (2)
gives an estimate of the adjustment factor a = 19.6 - 18.2 = 1.4. Insertlng this
in Equation (1) and substituting successively the homogeneous values 17.9 and
18.4 gives y = 17.9 + 1.4 = 19.3* and y = 18.4 + 1.4 = 19.8* the adjusted
values. Next multiplying t:\le values of y by 12, 8, and 10, their respective
lengths of record, summing these and dividing by 30 glves the weighted mean
19.5*. This is the estimated adjusted mean of August average temperature for
Geneva. Note ~hat this compares favourably to the actual value for t:\le undis­
turbed record 19.3. The procedure provides the best estimate of the hypothe­
tical mean for the 1927-1956 record at Geneva based on the homogeneous period
1947-1956.

1.4.2 The ratio method

In order to illustrate the application of the ratio method of adjust­
ment 'which must be used for precipitation, the Geneva precipitation record for
1927-1956 was made heterogeneous by being subjected to a change of scale, the
precipitation for each of the first 12 years being multiplied by 1.20 and each
of the next eight by 0.90, the last 10 being left undisturbed. The resulting
heterogeneous series is shown in Table 9.

TABLE 9

Heterogeneous precipitation series, Geneva, August

1927 300 1936 28 1947 54
28 176 37 94 48 72
29 100 38 95 49 49
30 130 39 77 50 110
31 205 40 16 51 100
32 74 41 95 52 125
33 80 42 43 53 57
34 l43 43 37 54 206
3) 188 44 40 55 107

45 120 56 144
46 142
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Before proceeding with the adjustment it is easy to test the homo­
genei ty of the series to provide a further illustration iD·f the use of the run
test. Of course this test is really unnecessary, for the heterogeneities are
known a priori. In this instance the median may be readily found by ordering
the data to be 97.5 mm. The runs of values above and below the median may be
marked as shown in Table 9. This is seen to give the number of runs u = 9.
Since NA = NB = 15 as with Table 7, the upper and lower significance limits
12 and 19 are the same as previously. The value 9 lies outside this range;
hence the series is not homogeneous. As would be expected, u has been made
too small by slippage of the mean values for the periods 1927-1938 and
1939-1946.

Since heterogenei ties in precipitati on ser,ies are scale changes in
the frequency distribution, it is proper to adjust for heterogeneities by scale
adjustment, i.e. by using the ratio of homogeneous totals. This is seen to be
equivalent to adjusting by the difference of homogeneous means.

By this principle, if y is the pl'ecipitation for one unit of the
year on the station to be adjusted, and x is the corresponding value for the
supplementary station, then

IY blx

where the summations are Over a period heterogeneous at the station to be ad­
justed. Thus the estimated total precipitation on a unit of the year for a
period of record is equal to the total for the same unit and period at the
supplementary station times the adjustment constant b. The adjustment constant
b is estimated by the equation:

Iv
b = -

Iu
(4 )

where Iv is the sum of precipitation over the homogeneous period at the station
to be adjusted and Iu is the sum for the Corl:fill'lponding period at the supple­
mentary station. This, of course, should be the latest period of record for
active stations since it is desired to adjust to a population from which obser­
ved 'values at, the active station locati'on will be obtained. The process of
adtiustment consists in estimating b for a homogeneous period by means of
Equation (4) and applying Equation (3) with this statistic to the heterogeneous
periods. The results are shown in Table 10.

TABLE 10

Mean precipitation adjustment for Geneva

Lausanne Ix Geneva unadjusted Geneva Iy
totals

192T-38 1 602 (1 613 ) 1 295*
1939-46 753 (570 ) 609*
1947-56 1 267 1 024 1 024

---
Adjusted record mean 97.6*
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The average value of the homo­
at Geneva is indeed 99.9 mm.

Substituting the values of Ix and Iy from Table 10 for the homo­
geneous period 1947-1956 for Iu and Iv in Equation (4) gives b = 1 024 = 0.8 082.

1 267
Inserting this value for b in Equation (3) and successively substituting the
homogeneous totals 1 602 and 753 gives Iy = 0.8 082 x 1 602 = 1 295* and
Iy = 0.8 082 x 753 = 609* the adjusted values. Finally averaging yields
y ~ _1__2~9~5__+__6~0~9~+__1~~0~2~4 = 97.6* mm. This is a near optimum estimate of the

:30
mean total precipitation for August at Geneva.
geneous 30-year series of August precipitation



... :.

CHAPTER TWO

ESTIMATION OF STATISTICAL PARAMETERS

2.1 Statistics in general

A statistical parameter is a fixed value which is a function of all
of the population values. Thus the mean for a population would be the average
of all the values in that population. Since the entire population of values
is never known in climatology, it is only feasible to estimate population para­
meters from samples or climatological series. Such an estimate of a population
parameter is called a statistic. A statistic is a function of the sample or
climatological series. Statistical parameters may be dealt with only in theory;
in practice, statistics or estimates of the parameters must always be used.

Since every function of a random variable is also a random variable,
statistics are random variables and are therefore subject to random variation
similar to that in a climatological series. Every climatological statistic is
therefore a random variable which forms a population for which there is a fre­
quency distribution. The variability of this frequency distribution about the
population parameter is called the dispersion of the statistic. There are
always a number of functions of the sample or statistics which estimate the
same population parameter. The best of these estimates will have the smallest
dispersion. The estimate with the least dispersion will in general extract the
most information from the sample on the value of the population parameter. The
dispersion of a statistic decreases with increase in sample size, hence statistics
for long climatological series have less dispersion than those for short climato­
logical series. Since poor statistics have greater dispersion, their use in
effect discards climatological record and thus is wasteful of usually scarce
record length; it is therefore to be avoided if possible. An example is the
use of the median to estimate the centr~ of a normal (Gaussian) distribution
(for example a climatological series of temperature which has a distribution
close to normal). Both the median and the mean are statistics for the centre
of a normal distribution. The median, however, has a larger dispersion than
the mean and in fact requires a climatological series about one third longer
than the mean to obtain an equally good estimate of the centre of the distri­
bution. A number of other inefficient statistics are used in climatology, for
example the mean absolute deviation as an estimate of the standard deviation,
and also certain short-cut estimates of the correlation coefficient. Statistics
with the smallest dispersions are called efficient. It is naturally advantageous
to employ either efficient statistics or those with high efficiencies in climato­
logical analysis. If the distribution form is not known, little exact informa­
tion can be inferred about the efficiency of a statistic.

While it is always desirable to use the most efficient statistic
available, it is sometimes also desirable, but not necessarily essential in all
problems, for it to be mean unbiased or what is commonly known as unbiased. A
statistic is said to be (mean) unbiased if the mean of the statistic for m
samples of size n approaches its parameter value as m increases without limit
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or mn approaches the number of values in the whole population. Efficiency and
lack of bias do not naturally occur together. In statistical analysis it is
common practice to choose an efficient statistic and make it unbiased if the
latter property is necessary, as in cases where statistics are to be added or
averaged.

There are in general two kinds of statistics: (a) those which are
direct estimates of the parameters of a frequency distribution, and (b) those
which are estimates of other population properties. The mean and standard
deviation are estimates of the population or distribution parameters of the
normal distribution. The mean is also an estimate of the population mean or
expected value independent of the distribution form.

2.2 Common statistics of climatological variables

The mode is defined as the value of the random variable where the
density of probability is a maximum. If the analytical form of the frequency
distribution is known, efficient estimates of the mode may be obtained by s~b­
stituting efficient esttmates of the distribution parameters and obtaining ~he
maximum of the frequency curve by differentiation. If the analytical form of
the frequency distribution is not known, there is no good method of estimating
the mode. If the sample is large the centre of the class with the highest
frequency may be taken as an estimate of the mode. In general the mode is not
recommended for use in climatology.

There has been a good deal written about multimodal distributions
in climatology. Most of the multimodality observed is caused by mixing small
samples from several populations, which gives the false impression that large
samples have been used. In these cases the multimodality is not real but only
an effect resulting from improper statistical analysis.

The median of a population is defined as the value of the random
variable below which the probability of occurrence is 0.50. If the frequency
distribution is known, it may be obtained by integrating up to the value of
the random variable where the probability reaches 0.50. If the distribution
is not known the median is best obtained by reading the 0.50 value from cumu­
lative distributions plo~ted from data such as those shown in Tables 3 and 4.
Rough estimates of the median may be obtained by taking the middle value of an
ordered series, or, if there are two middle values, they may be averaged to
obtain the median. The median is one of a class of quantities called quantiles
which are defined as XF , where F is the probability of X being less than XF •
The median is then the 0.50 quantile. Quantiles should be estimated from fit­
ted analytical distributions where possible, as those obtained either from the
empirical cumulative distributions or from ordered series tend to be more vari­
able.

The mean is the most used climatological parameter. In most cases
it is best to obtain it by summing the climatological series and dividing by
the number of years of record. It has two properties. First, it is an estimate
of the well-known expected value or mathematical expectation, i.e. the mean of
the population. This is important in applied climatology, for the mean of any
linear funotion of the climatological series is a linear function of the mean
of the series. Second, the mean is the centre of the normal distribution and
is therefore the centre of the distribution for climatological series having
this distribution. The mean, as computed above, is ~enerally optimum for
estimating the expected value for precipitation and oPtimum for both the
expected value and the centre of the distribution for temperature.
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The moments about the mean or central moments are also commonly
employed in statistical-climatological work. These are defined for the popu­
lation R by

I!r ~R (x - u)r £(x) dx (5 )

Here I! is the ~th moment, u
functi5n or frequency curve,
over which f(x) is defined.
variance is

2
s

is the mean, f(x) is the probability density
and R is the population of interval or region
The unbiased estimate of the second moment or

n
I (x - x)?

(6)
n - 1

The square root of this value is the standard-deviation. The higher moments
may be estimated by

m
r

n

The third moment is often used to measure the skewness and the fourth moment
the flatness of fr~quency distribution. For these purposes the statistics

m3 m4
gl = -- and g2 -- - 3 which are estimates of the parameters YI and Y2 may

s3 s4 -

be employed. For the normal distribution YI Y2 O. The statistic
n
I I~ - xla == ~ is often substituted for g2 since it has a simpler distribution.

ns
Moments higher than the 4th are ordinarily not. recommended for climatological
work since they are highly variable for the short climatological series usually
available.

Again it should be stated that, if good estimates of the distribu­
tion parameters are available, Formula (5) should be used directly for esti­
mating the moments. Another statistic occasi'onally used is the range. This
statistic is not recommended except for very crude work, since it has a high
variability. Related to the range are the extreme values of record. These
are even more highly variable than the range and depend greatly on the length
of record. The extreme values for each year may, of course, be fitted by
appropriate frequency distributions. Statistics of these distributions give
a much better appraisal of individual extremes. For example, quantiles from
these distributions are independent of the length of record used; hence they
give valid information about unusual values.

The coefficient of variation (or variability) or relative standard
deviation has also been used in climatology. It is defined as the ratio of

is-
the standard deviation to the mean~' The statistic in absolute value depends

x
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on the inte~pretation which can be given the standard deviation. If the dis­
tribution is not normal the standard deviation has no simple meaning, and hence
an individual relative standard deviation has little value. However, it is
useful for comparison with other relative standard deviations from populations
having the same analytical form of distribution. In this case the ordinary
estimate may be an inefficient statistic. A better estimate could be obtained
using the proper functions of the estimated parameters in Equation (5).

2.3 Sampling variability of climatological means

the distribution of means approaches

, and the flatness or kurtosis

The sampling variability or accuracy of a statistic is often measured
by its standard deviation, which, when applied to a statistic, is commonly
called the standard error. In order for the standard deviation or standard
error to have a valid interpretation, the distribution must be normal or near
normal. Although the distributions of many climatological series are not
normal, the distributions of their meanS for reasonably long records tend to
normality. This is a result of the central limit theorem which states that
the distribution of meanS tends to normal with increasing sample size, irres­
pective of the distributions of individual values, providing the second moments
exist. Since the second moment exists for the distributions of every meteoro­
logical element, their means will be close to normally distributed for reason­
ably long records, such as 30 years.

The sample standard error of the mean of a climatological series is
s(i) _ ~ , where n is the number of years in the series and s is the stand~rd

-VIi:
deviation of the individuals in a climatological series. This is true regard­
less of the form of the distribution. In case the distribution is appr~ximately

normal and the sample size is 30 years or more, confidence limits may be estab­
lished for the mean using normal tables. If s is obtained from n<30, it is
necessary to use the t distribution tables with n-l degrees of freedom. Thus,
for ~~ 30, the 0.90 confidence interval for the mean x - 1.64s(i)<~<x + 1.64s(i),
where -1.64 and +1.64 are the 0.05 and 0.95 values obtained from a table of
the normal distribution. This means that the probability is 0.90 that the true
or population values of the mean will lie on this interval. Or, if such inter­
vals were computed for successive periods of record of length used for x, 9 out
of 10 of these would contain 1-1' The confidence interval gives a good measure
of the accuracy of X. As in previous statistical tests, 0.90 probability, the
complement of 0.~0, has been used because most statistics in meteorology cannot
be expected to a.ttain an accuracy justifying any higher confidence that a para­
meter may be on an interval.

In order to determine how closely

normali ty, the skewness statistic gl (i) =gl
g vn

statistic g2(x) = ~, may be employed. With an extreme case of skewness and
n

flatness the above statistics could; for example, have the sample values
gl = 2 and g2 = 6 (a J-shaped distribution) in the original climatological
ser~es. According to the formulas given above, gl(x)is reduced to 0.365 and
g2(x) to 0.2 fora 30-year mean. The small departure from normality shown by
these statistics only increases the confidence interval probability from 0.900
to 0.901. The maximum effect at any single probability value will be less than
0.03. Thus, even with such extreme conditions of skewness and flatness in the
climatological series, the distribution of 30-year means may be assumed normal
without risk of serious bias in the probabilities.
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CHAPTER THREE

GENERAL STATISTICAL METHODS

The basic problems of climatological analysis may be classified into
three general types: (1) problems of specification which occur in the choice
of the analytical form of the population, (2) problems of inference which arise
in the estimation of population parameters and in testing hypotheses and estab­
lishing confidence intervals on the population parameters, and (3) problems of
relationship which occur in relating several climatological variables and in
relating climatological variables to non-climatological variables.

The problem of specification is solved by specifying the frequency
distribution- in the population of the climatological variable. This may be lone
either empirically or using theoretical reasoning. An empirical specification
of the population usually consists of simply- assuming the existence of a dis­
tribution of probability whose cumulative distribution has the characteristic
ogive form. This was the approach followed previously in obtaining the dis­
tribution of August precipitation for Geneva. Occasionally on the basis of
examination of numerous samples a mathematical form of distribution maybe
specified for convenience of computation. A theoretical sPecification of the
population distribution is always expressed in mathematical form. This form
is derived from a consideration of the bounds of the variable; scale, location,
and shape behaviour, behaviour in convolution, etc. A theoretical specification
of the normal distribution may result from an application of the central limit
theorem.

The estimation part of the inference p1'oblem is solved by providing
the most satisfactory statistics for estimating the population parameters. As
was seen previously the most satisfacto1'Y statistics or estimators will be those
having a small dispersion in their distributions. Usually maximum likelihooa
estimates will provide the best estimates of the parameters.

Confidence intervals for the parameter estimates should always be
provided to give a measure of their accuracy. Tests of hypothesis may also be
made to ascertain whether the popUlation meets certain prescribed conditions or
whether the parameters differ from other sets of parameters of similar character.
Previously, for example, tests were made to examine the homogeneity of temperature
and precipitation series. Confidence interval and test of hypothesis problems
are similar in that they both involve distributions of the estimates or statis­
tics.

The relationship problem may involve only climatological variables
01' it may involve climatological and other variables. The first problem arises
when functions of climatological variables are needed to replace climatological
variables which are not available, or to form a new variable which has some
special properties. For example, statistics of daily temperatures may be im­
possible or too expensive to obtain directly, and it may be necessary to obtain
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estimates of these from monthly statistics. The degree-day variable is a simple
example of a function of temperature which had special useful properties not
possessed by temperature. The second type of problem, where climatological
variables are related to non-climatological variables, is encountered in every
problem in applied climatology. The basic objective in such problems is to
develop a relationship which will transform a frequency distribution on the
climatological variable to one on the applied variable. A simple example would
be a relationship between degree-days and heat consumption in a building which
would give the distribution of heat consumption from the distribution of degree­
days.

Since many of the inference problems of climatology are closely
associated with specification problems, these will be discussed together. The
test of hypothesis problem has already been introduced in connexion with tests
of homogeneity, and space will not allow of further treatment. Further detail

, on the subject is readily available in statistical literature. The relation­
ship problem will be treated separately.

3.1 Freguency distributions

An example of specification of the population has already been
introduced at the beginning of Chapter One, where the empirical distribution
was specified for August precipitation at Geneva. The only theory employed
there was to assume the existence of a population and a random variable, and
hence the set of cumulative probabilities.. In many instances of climatological
analysis the specification of an empirical distribution is all that is neces­
sary or justified. It is only where the theory is strong, or where several dis­
tributions are to be fitted and comparison or smoothing of their statistics is
required, that theoretical distributions are fitted. A mathematic.al fit adds
little in other circumstances.

Frequency distributions are of two general types, discrete and
continuous. In discrete distributions the probability density is a ;function of
a discrete random variable, i.e. one that varies in steps. The most common
discrete climatological variable is (absolute) frequency, for example the
number of hail storms, days with rain, etc. In continuous distributions the
probability density is a function of a continuous random variable. Temperature,
pressure, precipitation, or any element measured on a continuous scale has a
continuous random variable. Often for convenience a discrete 'random variable
may be treated. as continuous. Also for special application continuous random
variables may be transformed to discret\randOm variables. C.IOUd height, for
example, is a continuous variable which ay be transformed into a discrete
variable consisting of heights below and above an arbitrary heighth.

While there has been a good deal of consideration given to fitting
frequency distributions to meteorological data, much of this has been empirical
in nature. Often also the fitting has been done to improperly defined popula­
ti ons such as mixtures of several climatological serie.s which have led to quite
anomalous interpretations. Because of lack of space only the most common dis­
tributions can be dlscussed.

3.1.1 The normal distribution

The most important continuous distribution in climatological analysis
and, of course, in statistical analysis, is the normal or Gaussian distribution.
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Its frequency or probability density function is

1
f(x)

whe:'3\e f1 is the populatfon mean and a
f1 is best estimated by x and a by s.
values x by the relationships

is the population standard deviation.
These are obtained from the sample

and

x
1
n

n
I x

s
VI (x - x)2

n - 1

The normal distribution function cannot be expressed in terms of
simple functions but must be evaluated by means of function expansions. Many
tables of the normal distribution function and related functions have been
prepared using the variable u = (x - 11) as argument. u is called a standard-

a
ized variable. Using this variable the distribution function bec omes

F(t)

1 2
t - 2' u

f e du
-co

which can be converted to any desired normal distribution simply by varying
f1 and a. Thus a single normal table with argumeni t, which is also a table
of the distribution with mean zero and standard deviation unity, maybe used to
obtain the probabilities for any normal distribution. F(t), of course, gives
the probability that u is less than t, 1 - F(t) the probability that u is
greater than t, and F(t2 ) - F(t l ) the probability that u is between t l and t 2 •

The impccrtance of the normal distribution _in climatology stems, to
a considerable extent, from the central limit theorem. This causes means and
sums of a sufficient number of climatological values to be normally distributed.
For example, rainfall climatological series for short periods for which the
mean rainfall is small would have very skewed distributions. As the period
increases several shorter periods are added together and an increase in the
mean occurs. Thus the size of the mean is some measure of how many periods
have been added together; hence, as the mean value gets larger, the sum of
the several component periods approaches a normal distribution. It may be shown
that, under average conditions, periods with a mean rainfall of 500 mm or more
will be close to normally distributed, the greatest discrepancy in probability
being about 001 at the median. Even for 250 mm means under ordinary conditions
the largest discrepancy in probability is only about 0.02.

The normal distribution also provides good fits in most instances
to climatological variabl"es which are unbounded above or below, such as tempera­
ture and pressure. The sampl€ of data fitted must, of course, be a sample from
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a homogen~ous climatological series. It must not be a sample from mixed popula­
tions which in the past has led to erroneous conclusions such as frequency dis­
tributions having several modes, etc.

EXAMPLE 1 - NORMAL DISTRIBUTION

It is well known that monthly average temperature tends to be close
to normally distributed. To fit the normal distribution it is necessary to es­
timate the mean and standard deviation. The estimation formulas are

LX
X

n

and

2
s

1

n - 1

The necessary computations are shown below for average January temperature oc
for Akureyri, Iceland.

Year Temperature Year Temperature

1932 -2.2 1947 3.2
1933 2.4 1948 -0.5
1934 -0.5 1949 -3.3
1935 1.8 1950 1.7
1936 -6.0 1951 -3.5
1937 0.5 1952 -2.9
1938 -1.3 1953 -0.4
1939 -3.4 1954 1.6
1940 -0.4 1955 -3.5
1941 -3.1 1956 -3.8
1942 1.0 1957 0.8
1943 -2.9 1958 -3.6
1944 -3.8 1959 -5.7
1945 -4.3 1960 -0.6
1946 2.0 1961 0.0

The sum of the temperatures is -40.70; so x

240.49 and (~~)2 1 6~~.49 = 55.22

-40.70
30

2
s

1

n - 1

1

n

1

29
[240.49 - 55.22J

185.27
• 6.3986

29

s ~ 6.3986 = 2.53°C
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The probability values are then obtained from the normald'istribu­
tion function table by the equation

x(F) = x + s t(F)

Here x(F) is the x quantile for F and t(F) is the standard normal quantile for
F. To determine x(O.lO), Le. the temperature below which x is expected to
fall once in ten, the normal table gives t(O.lO) = -1.28. Hence

x(O.lO) = -1.36 - 2.53 x 1.28

-4.60 C

3.1. 2

Since there are a number of zero-bounded continuous variables in
climatology, it is important to give a distribution which may be used for such
variables. The gamma distribution which has a zero lower bound has been found
to fit several such variables well. It is defined by its frequency or proba­
bility density function

1

pY r(y)

x.
Y-I -jf

x e

where p is a scale parameter, Y is a shape parameter, and r (y) is the ordinary
gamma function of y •

The moments in this instance give poor estimates of the parameters.
Sufficient estimates are, however, available and these are closely approximated
by

1
A

Y
4A

and -x

where A is given by

I In x
A In x

n

The distribution function, from which probabilities may be obtained,
is

x
G(x) f get) dt

o

Pearson1s "Tables of the Incomplete r-function" gives G(u) where u =
Y = P + 1, and u = ~ •

a

x



GENERAL STATISTICAL METHODS 21

The gamma distribution has been found to give good fits to precipita­
tion climatological series. In case these contain zeros the mixed distribution
function of zeros and continuous precipitation amounts may be employed. This is
given by

g(x) = q + P G(x)

where q is the probability of a zero and p = 1 - q. Thus when x = 0, H(O) = q
as it should be. If m is the number of zeros :in a climatological series, q may
be estimated by ~ •. n

EXAMPLE 2 - GAMMA DISTRIBUTION

The gamma distribution has been found to fit precipitation data
closely. To fit this distribution it is necessary to estimate ~ and y which
are obtained from the maximum likelihood solutions.

and

,..
y =-

1

4A
(1 + ~ 1

4A
+ -. )

3

where

I In x-A = In x - -----
n

The necessary computations for the November precipitation (mm) for
Reykjavik, Iceland,are shown below.

Year Precipitation In x Year Precipitation In x
x x

1932 151.0 5.0173 1947 13.3 2.5871
1933 11601 4.7545 1948 99.2 4.5972
1934 74.9 4.3162 1949 72.0 4.2767
1935 58.8 4.0742 1950 57.9 4.0587
1936 91.4 4.5153 1951 25.1 3.2229
1937 44.3 3.7910 1952 60.0 4.0943
1938 51.4 3.9397 1953 86.9 4.4648
1939 50.2 3.9160 1954 147.2 4.9918
1940 79.0 4.3694 1955 37.0 3.6109
1941 108.5 4.6868 1956 193.3 5.2642
1942 87.0 4.4659 1957 58.7 4.072 5
1943 129.2 4.8614 1958 212.1 5.357 1
1944 41.5 3.7257 1959 44.;3 3.7910
1945 101.3 4.6181 1960 26.8 3.2884
1946 53.4 3.9778 1961 96.4 4.5685
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From the table it is seen that

Hence A = 4.4100 - 4.2425

In x = 4.4100. Averaging the logarithms

0.1675,

- I 2x = ~ =
n

gives· llnx
.P

468.2 = 82.273 and
30

121.2760 =4.2425.
30

+ 4

y =

0.1675

3

4x 0.1675

3.14

and

26.20
3.14

To determine the probability that the
50 mm it must be put in standard form t(F)... x

If
of the gamma distribution it is seen that for y =
Hence the probability of the precipitation being

precipitation is less than
_ -22- ~ 1.91. From tables

26.20
3.14 and t = 1.91, F = 0.28.
less than 50 mm in 0.28.

3.1. 3 The extreme value distributions

Often in design problems the climatological variable of interest is
the annual extreme, either upper or lower. This arises from the fact that if a
designed structure can withstand the highest (lowest) value in a year it can
also withstand all other values in the year. Hence a distribution of annual
extreme values furnishes the proper climatological prediction. Up to the
present the Fisher-Tippett Type I distribution has been of main interest. It
has been widely applied by Gumbel. Its distribution function is given by

F(x) exp [ i:,x-a]
-e {3.

Here the negative of the double sign holds for maximum values and the positive
sign applies for minimum values. The Type II distribution, which is an ex­
ponential transformation of the Type I distribution, has also been employed in
climatology. It may be fitted by using the Type I distribution on In z (see
Example 3).

As with most other skewed distributions the moments give poor estimates
of the parameters. Lieblein has provided a simple method of fitting the Type I
distribution which gives estimates of the quantiles with minimum variance. This
is a desirable property for climatological work, for our ultimate objective is
always to obtain quantiles or probabilities.

The Lieblein fitting procedure involves carefully maintaining the
original time order of the climatological series and dividing into suitable
subgroups for the computations. The following table of weights is needed in
the computations.
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~ABLE OF ORDER STATISTICS WEIGHTS

23

m x.1 x.2 . x;3. x. 4 x. 5 x. 6

1

2 a .j 0.91637 0.08363

b
.j

-0.72135 0·72135

3 a .j 0.65632 0.25571 0.08797

b. j
-0.63054 0.25582 0.37473

4 a. j
0.51100 0.26394 0.15368 0.07138

b. j
-0.55862 0.08590 0.22392 0.24880

5 a. j
0.41893 0.24628 0.16761 0.10882 0.05835

b .j -0.50313 0.00653 0.13045 0.18166 0.18448

6 a .j 0.35545 0.22549 0.16562 0.12105 0.08352 0.04887

b. j
-0.45928 -0.03599 0.07319 0.12673 0.14953 0.14581

As previously, the sample climatological series is assumed to have n
values. Retaining the original time order these n-values are to be divided
into subgroups of size m. It will be noted that the table of weights allows
m to be chosen from 2 to 6. It is best to choose m as large as possible. Thus,
if the sample size is 30, m = 6 would be chosen rather than m = 5. If n is not
divisible by m = 4, 5, or 6, an additional weighting will be necessary. First
consider that n = 30. The sample is maintained in original time order and
divided into k = 5 subgroups of m = 6. The values within the subgroups are
then arranged in order according to increasing magnitude. The ith subgroup.
would then appear as xil' x i2 ' x i3 ' xi4' xi5' x i6 . All ordered subgroups are

then arranged as in the table on page 24. The dot indicates no operation on
the subscript it replaceJ.

Each column of x is first summed to obtain the
plied by tha a.j and summed to obtain the row sum. Next
by the b. j and summed to obtain the second row sum.

S.j' These are multi­
the S . are multiplied

• J

In the Type I distribution function the exponent (Xpd) is a standard­

ized variable, in other words it is a variable located at Q and scaled in p.
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XII x 12
x
l3

x 14 xIS x 16

x 21 x 22 x
23

x
24

x
25

x
26

x
31 x 32

x
33

x
34

x
35

x 36

x
41 x

42
x

43
x44

x
45

x
46

x
51 x

52
x

53
x

54
x

S5
x

56

8 .1 S
.2

8 .3 8
.4

8 8
.6.5

a .1 a
.2

a
.3 a. 4

a a
.6.5

6

a. 18. 1 a. 28. 2 a. 38. 3 a. 4 8. 4 a. 58. 5 a. 68. 6
ra .8

. j• J

b .1 h
.2 b

.3
b

.4
b

.5
b

.6

6
b S b. 28. 2

b 8 b. 4 8. 4
b 8 b. 68. 6 rb .8

.1 .1 .3 .3 .5 .5 • J . j

If X is a quantile in x (a value of x corresponding to F p) , then
p

x - Q
P

Yp
~

and

given by

x
p Q + ~Y

P

Lieblein showed that a minimum variance estimate for a given Yp is

*x
p

m m
,r a .S ./k + (1 b jS ./k)Y
J=l • J • J • • J p

Thus the minimum variance estimates for Q and pare

and

*Q

*
~

m
,r a .S /k
J=l .J.j

m

J
.r_- 1 b .S ./k

• J • J
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For the sample of 30 under consideration they are

*
6

a 1 a .S ./5
• J • J

and

*
6

P 1 b .S ./5
• J • J

25

Vhen these values are substituted in the Type I distribution function, estimated
probabilities are obtained.

In case m = 5 or 6 is not an even multiple of the sample size n, a
further simple computation is necessary. Suppose that n = 33 instead of 30.
The last three values of the sample climatological series then form an addi­
tional subgroup m' = 3. These values are also arranged in order of increasing
magnitude, giving x61' x62' and x63' A similar table is formed with the weights
for m' = 3 as follows:

x 61 x 62 x 63

a
.1

a
.2

a
.3

a .lx61 a. 2x 62
a

.3
x

63

b .1
b

.2
b

.3

b .lx6l b
. 2

x
62

b
.3x 63

3
la .x

6
.

• J J

3
:rb .x

6
.

• J J

The estimator for this sample is then as before

*u
p

3
1 a ,x

6
. +

.J J

3
(r b jX

6
.)y

• J P

Lieblein has shown that the estimator for v the quantile for th~

variable in the sample n = 33 is P

For the final estimates this
6

km /-:r a ,S , 5 +
n • J .J

*v
P

*a

km *x +
n P

m' *-u
n P

gives

m' 3
-la .S .
n • J • J

and

km 6 m' 3
lb .S ./5 + - lh .S ,

n .J.J n .J.J
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The fitting of any sample size is a simple variation of tEe above procedures.
For minimum values or lower extremes the magnitude order arrangement in the
rows of the computation tables is reversed, i.e. instead of going ·from low to
high values they should go from high to low values. All other parts of the
tables remain the same.

EXAMPLE 3 - EXTREME VALUE DISTRIBUTIONS

The commonly used distribution is the Type I. The Type II distribu­
tion has, however, been found useful in fitting extreme winds. Its distribu­
tion function is F(x) = exp [-~~~) -y J. Since the Type I distribution on the

logarithms is a Type II distribRtion, the fitting of both distributions may be
illustrated by fitting the Type I distribution to the logarithms of annual
extreme winds, in this instance the fastest mile of wind in mil~s per .hour.

The computations are carried out for data of the airport at Birming­
ham, Alabama. Since engineers want design winds at a standard level, in this
instance 30 feet (10 m), and anemometer heights vary, it is necessary tQ reduce
all wind speeds to 30 feet. This is done by the power law where the exponent
for this airport is assumed to be 1. The formula in terms of logarithms is

7

In v(30)
In 30 - 1.n z

In v'(z) + ------
7

v(z) is the speed at ~he anemometer height z and v(30) is the speed reduced
to 30 feet. The computations are carried out in the table.

z
In V' (30)......... ,

3.8475
3.8853
3.7881
3.7652
3.7441
3.7858
3.7441
4. 06~4
3.9883
3.7441
3.7652
4.0684
3.9194
3.9194'·
3.7007
3.8452
3.9715
3.8830
3.655!3
3.7441
3.6552

1.1

11

11

11

"
11

11

11

11

"

11

11

11

. I'

-0.1060
"
"

-Gl.1060

ln 30 -In
7

-0.1037
"
"

11

"

"

"

"
11

"
11

"
11

"

11
"

4.1431
"

4.1271
It

4.1431
"

'lnz--zln v(z)v(z)Year

1944 52 3.9512 62
1945 54 3.9890 It

1946 49 I 3.8918 11

1947 48 3.8712 63
1948 47 3.8501 11

1949 49 3.8918 11

1950 47 3.8501 11

1951 65 4.1744 11

1952 60 4.0943 11

1953 47 3.8501 11

1954 48 3.8712 11

1955 65 4.1744 11

1956 56 4.0254 11

1957 56 4.0254 11

1958 45 3.8067 11

1959 52 3.9512 11

1960 59 4.0775 11

1961 154 3.9890 11

1962 43 3.7612 11

1963 47 3 . 8501 "I"
~.64 ~_L2.76=-~_'_'_~_
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L 1 2 3 4 5 6

a
· j

0.35545 0.22549 0.16562 0.12105 0.08352 0.04887

t -0.45928 -0.03599 0.07319 0.12673 0.14953 0.14581

x. x. x. x. x. x.
11 12 13 14 15 16

1 3.744.1 3.7652 3.7858 3.7881 3.8475 3.8853
2 3.744 1 3.7441 3.7652 3.9883 4.0684 4.0684
3 3.7007 3.8452 3.8830 3.9194 3.9194- 3.9715

S
· j

11.1889 11.3545 11.4340 11. 6958 11. 8353 11. 9252

~ 1 2 3

a . 0.65632 0.25571 0.08797
• Jb . -0.63054 0.255 82 0.37473
• J 3.6552C 3.66520 3.74410Xlj

For convenience in using the computational notation let x = In v(30).
The best division into subsamples is three of size six and one of size three.
For the three groups of six the a and b tables of subsample size six are em­
ployed, giving

6
I a. j S .. 11.4183

J

and
3 3

6
I b. j S. j 0.2800

3 3

3.8061

0.0933

as seen under the wind speed table. Similarly for· the single group of three
the a and b tables of subsample size three are used, giving

3
I a •. xl jJ

and
3
I b •. xl jJ

3.6656

0.0359

Since the six groups contain 18 of the 21 values their weight

For the single three group it is ~l 0.1429 Hence

a* 0.8571 x 3.8061 + 0.1429 x 3.6656

3.?~O

and

Pi 0.8571 x 0.0933 + 0.1429 x 0.0359

0.0852

18
is 21 0.8571 •
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These are the parameters for the Type I distribution of In v. 1 The parameters
for the Type 11 distribution are given by Pz = exp Q and y = If

l
. Hence

*P2 exp 3.7860 44.08

and 1
*Y 1l.74

0.0852

y*
design value,

exp [3.783 - ~3.9021, J
11.74

v(O. 98)

*'In v(F) InP2 -

F = 0.98. a commonHence for

Quantiles are readily obtained by taking logarithms twice of the
distriblltion function giving

In In (l)
F

61.3 miles/hour

3.1.4 The binomial distribution

This distribution does not in general fit climatological data well
because of correlations which occur when the probabilities of occurrence are
high enough to meet one of its requirements for application. It is important,
however, because it is r~lated to the Poisson and negative binomial distribu­
tions, which apply respectively for small probabilities (rare events, often
uncorrelated) and for correlated events. Because of this relation it has
occasionally been used to give simple rough probability estimates to replace
the more crude observed extreme relative frequencies. The most important
aspect of the binomial distribution in climatological analysis is that it is
the distribution of the estimated probabilities obtained from any distribution
function, empirical or theoretical. This makes it possible to obtain confi­
dence limits for estimated probabilities and qua;ntiles.

The binomial probability function is given by

f(x)

where p is the probability of an event occurring, I-p is the probability of
the event not occurrtng, x is the frequency of QQcurrence, and x can take the
values 0, 1, .•• , m. The distribution function is given by

x m t m-t
F(X)t:O (t) P (l-p) ,t=O, 1, ••• , m

This, of course, gives the probability that the frequency is x or less. p is
usually estimated by Ix where n is the total number of occurrences and non-

n
occurrences of the event. The climatological events which might be considered
in this category are widely varied, for example days when ~t hailed and days
when it did not; days when it rained and days when it did not; days with
rainfall less than an amount u and those with rainfall greater than u; obser­
vations with visibility less than V and those with visihility greater -than V, etc.
Most of these variables have the limitation that they are correlated and ihat ­
the binomial ·distribution can therefore only be used for rough biased estimates
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of probabilities where only summarized data are available or results are needed
quickly.

The important application of the binomial distribution in climatolo­
gical analysis is to obtain confidence bands for estimated probabilities. It
may be seen that when an estimate F(h) of the probability that x<h is obtained
from any distribution function, theoretical or empirical, the probabilities in
random sampling are divided into those less than h and those greater than h.
These form a binomial distribution. If the sample size is m and c values are
below h, F(h) = ii. Then the true value of F, et> , lies on the interval p <et><p

·L U
with probability 1 - 2a where PL and Pu are given by

and

a =
m
r

x=c

I-a
m
r

x=c+l
(m) x ( )m-x
x Pu I-PU

Thus the probability

1 - 2at:

defines the confidence interval for et> with confidence coefficient 1 - 2 a . The
formulas have been arranged for use with the "Tables of the Binomial Probability
Distribution" (U.S. National Bureau of.Standard~ where interpolation must be made
on a and 1- a , the function of the tEl-bles in this application. Dixon and
Massey's book "An introduction to statistical analysis" gives convenient graphs
of confidence limits for 1 - 2a = 0.80, 0.90,0.95, and 0.99. These replace
the formulas and tables for obtaining ftand pu. %. 0.90 is the largest confi­
dence coefficient which should ordinarily be used in climatological analysis.

If the inverted function notation h = F-l(ii) is employed, the confi­
dence interval for ~ the true value of the quantile h F may be expressed as the
probability relationship

This is obtained by simply finding the x values corresponding to F
F =rU of the confidence interval.

It should be noted that both confidence int~rvals are independent of
the functional form ·of F which in a sense makes them non-parametric. If the
functionai form of F is known, parametric confidence intervals may be available
which will be shorter than those above. However, some authors simply assume that
p and the corresponding quantiles are nOJ;'mal?,y distributed. This can only give
a good approximation at values near the middle of F(x). For values of F(x) near
o or 1, it is better to use the binomial confidence intervals. They are slightly
too broad but they reflect the right shape for the distribution of F(h).
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3.1. 5

CHAPTER THREE

The Poisson distribution

When m becomes large and p approaches zero with the mean ~ = mp
constant, the binomial distribution approaches the Poisson distribution. Thus
the Poisson distribution fits events with a small probability. Since this also
means for climatological series that, on the average, a small number of events
is found in the annual time interval or a portion of it, the correlation between
successive events will ordina~ily be small. The distribution, the~~fore, fits
annual hail frequency when the mean frequency is not too high, excessive preci­
pitation events, annual tornado and typhoon frequency, etc.

The Poisson probability function is given by

f(x)
xl

The distribution function is then

F(x)
x

t
e -~-

L
t=O tJ

t!

Here the only parameter is the mean tJ ~hich is best estimated by x _ ;x .
Probabili~ies may be obtained readily from F(x) with the aid of tables of ex­
ponentials and factorials.

EXAMPLE 4 - POISSON DISTRIBUTION

The Poisson distribution must only be used for frequencies. It
applies for rare events such as annual tropical cyclone frequency, hail
frequency, etc. The application here is to tropical cyclones reaching the
U.S. east coast from 1887-1956. The series is homogeneous because all tropical
cyclones reaching the coast were easily recorded.

frequency,
function.
logarithms

The variable x is the number of storms in a year, g is the observed
gc is the estimated frequency, and F is the estima~ed distribution
The test and fitting computations are carried out in the table. All
are to base 10.

2
log x log x! 2

x go g x g x x log P P g F (go-go) /go
0 0 0 0 0

(1) (2) (3) (4) (5) (6) (7) (8 ) (9 ) (10) (ll)

0 1 0 0 0 0 1.61990 0.0240 1.68 0.024
1 6 6 6 0.57171 0 1.04819 0.0895 6.27 0.114 0.ll35
2 10 20 40 1.14342 0·30103 0.77751 0.1669 ll.68 0.280 0.2416
3 16 48 144 1.71513 0.77815 0.68292 0.2075 14·53 0.488 0.1487
4 19 76 304 2.28684 1.38021 0.71327 0.1935 13.55 0.681 2.1921
5 5 25 125 2.85855 2.07918 0.84053 0.1444 10.ll 0.826 2.5828
6 8 48 288 3.43026 2.85733 1.04697 0.0898 6.29 0.916 0.4649
7 3 21 147 4.00197 3·70243 0.32036 0.0478 3.35 0.963
8 1 8 64 4.57368 4.60552 1.65174 0.0223 1.56 0.986 0.0545
9 1 -.2. 81 5·14539 5·55976 2.03427 0.0092 0.64 0.995- --

70 261 ll99 5.7981
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To test for the adequacy of the Poisson distribution

31

(70 x 119'9)

261

60.6

- 261

For this value from X2 tables

therefore it is not significant, and the Poisson distribution model is to be
preferred.

The formula for the Poisson density function expressed in logarithms is

log g
c

x log x - log xl- ~.q342.qX

In the table all that is necessary is to subtract column 6 and 0.434 29 x
0.434 29 x 3.73 = 1.619 90 from column 5 giving log Pc' P is given in column
a and is the estimate ~or each x. Multiplying the total f~equency 70 by Pc
gives column 9 the estlmated frequency of occurrence. In column 10 the
frequencies g and go are compared by the X2 test whose total is given in the
footing qf thg table. For this test it is necessa;ry to consolidate observed
frequencies less than 5 as shown in colUIPn 2. This leaves 7 x-cells from which
one degree of freedom is lost for the total and one for having estimated the
mean leaving 5. From the X2 table

, p~2 (5):> 5. 798 ~ :> 0.30

Thus the fit of the Poisson distribution is good.

3.1.6 ~!!:~~::~~~~~!~_~~~~~~~~_~~~~~~£~~~~~
The negative' binomial distribution is useful in fitting discrete

dichotomous random variables in which the individua;l events tend to be corre­
lated. Thus, when too many events are packed on the average into an annual
time interval, this distribut;l9n tends to fit petter than the Poisson distri­
bution •. For example, annual hail days and anI!ua! frequency of typhoons tend
to be fitted petter by the negative binomial di$tribution when the mean annual
occurrence is high. Continuous data should in general not be fitted with
theoretical di;:;continuous distributiolls unless a siIJ1ple transformation to a
discrete variable is fi~st made, for example to a dic4otomousvariable. There
are a number of ex~ples of such misfitting in meteorological literature. On
the other hand the fitting of continuous distributions to discontinuous data
is often useful., . . .

A test of hypothesis is available to test the adequacy of the Poisson
distribution. Thus, if the expressioll

Ix
2

n - Ix
Ix

where n is the number years of record, is not greater than the 0.05 value in
a chi-squared table with n-l degrees of freedom, the Poisson rlistribution is
adequate. If it exceeds the 0.05 value, the negative binomial distribution
should be fitted.
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The negative binomial probability function is

r(x+k) pX
£(X)

r(x+l)r(k) (l+p)k+X

The distribution function is given by

F(x)

The moment estimates of p and kare

and

p*

k* ::

1
-x

where x is the sample arithmetic mean and s2 is ihe sample variance.

The moment estimates are not always efficient enough. Fisher has
given a criterion which suggests the use of a better-fitting procedure if the
efficiency falls below 90%. Thus if

1
(1 + -) (k* + 2) ~20

p*

the method of maximum likelihood should be used. This method of fitting is
too complex to consider here. For details of the method see Thorn, 1957.

EXAMPLE 5 - NEGATIVE BINOMIAL-DISTRIBUTION

The Poisson distribution has the population mean equal to the
variance. When there is a packing of frequency in individual years, for
example, the variance is increased abbve the mean. The distribution then
becomes a negative binomial. This is the case with the number of days with
hail (or hail frequency) at Abilene, Texas, for the record 1886-1950. Here
the variance s2 = 5.25 while the mean X = 3.58. The necessary data for the
f1 tting computations are shown in the :~able on page 3-~ ,. where x is the number
of days with hail, go is the observed frequency of hail days, g is the
calculated frequency, and k and p are parameters of the negativg binomial
distribution. All logarithms are to base 10.

To test for adequacy of the Poisson di str-ibution

65 x 1 171/233 - 233 93.7

For this value from the X2 tables
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Hence the departure from the Poisson distribution is significant and the
negative binomial Bhculd be fitted.

The formula for the negative binomial density function is

33

g (x)
c k------_

where p* and k* are statistics and k

p* and k* so that g can be calculated.c

r(k* + x)

-r(x+l) r (k*)
The problem is to find

2
log K x lOf-] log P Px go g x gx go0 0 p+l 0 0

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0 3 0 0 0.0 0.0 -1.27820 0.0527 3.43
1 11 11 11 0.88593 -0.49812 -0.89039 0.1287 8.37
2 11 22 44 1.52394 -0.99624 -0·75050 0.1776 11.54
3 8 24 72 2.03313 -1.49436 -0.73943 0.1822 11.84
4 10 40 160 2.46006 -1.99248 -0.81062 0.1547 10.06
5 9 45 225 2.82891 -2.49060 -0.93989 0.1148 7.46
6 7 42 252 3.15420 -2.98872 -1.11272 0.0771 5.01
7 2 14 98 3.44553 -3·48684 -1.31951 0.0479 3.11
8 2 16 128 3.70946 -3·98496 -1.55370 0.0279 1.81
9 1 9 81 3.95084 -4.48308 -1.81044 0.0155 1.01

10 1 ,10 100 4.17329 -4.98120 -2.08611 0.0082 0.53-
6? 233 1 171

5.2466.

Th . - 233 3 58Th . . s 2e mean 18 x = __ = .. e var1ance 1S
65

The moment estimates of k and p are then
-2x

H71- (233 )2/65.

64

and

k* = ----- = 7.6901

p* -x
= 0.4655

Log K is found from gamma function tables using the value of k*. The last
term in the density function is divided into two factors of which only one
involves x. IThe logarithm of this is given in column 6. The second fac~or

is k* logf . J= -1.27820. Log Pc is then obtained by adding log K, colurnn6,
L. l+p*

and -1.27820. gc is finally obtained from 65 Pc' The fit of the negative
binomial is to be judged by comparing ge and go'
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This comparison may also be done by X2 For this pu;rpose the first
two and last four frequencies must be consolidated. This leaves seven degrees
of freedom, from which two mus~ be subtracted for fitting k and p, leaving
five. Hence

2.83

From tables

P(X 2 (5) > 2.83) > 0.70

Thus the fit of the negative binomial is good.

Fisher has shown that the moment estimates are not always efficient
for the negative binomial. To test whether they are adequate he used the
criterion that

C = (1 +~) (k* + 2) > 20
p*

For the present data

C = 30.51

which is greater than 20, so that the efficiency of the moment estimates is
adequate. If C~20 in an example ,maximum likelihood estimation should be
employed (see rh~m,1957).

3.2 Correlation and regression analysis

The most important use of correlation analysis in climatological
analys:ls is in connexion with the correlation between climatological series
caused by the natural persistence of the meteorological variable within the
year. Correlation problems also occur in connexion. with compound variables,
that is where two or more variables are combined into a single variable, and
also in connexion with the propagation of variability in relationships of
theoretical or applied problems. Most other applications of correlation are
supplementary to regression analysis.

Regression analysis is applied whenever the objective is to
estimate a functional relationship for predicting the values of a variable
from one or more others. Its main uses are in relating one or more meteoro­
logical variables so that one may be substituted for one or more others, and
in relating applied variables to meteorological variables. There is also some
application to the study of systematic variation of climatological variables in
time, but as this is largely of specialized interest it will not be considered
here. In any case the regression analysis in this instance is only a variation
of that considered here, except that the independent variable is time and the
regression terms may be harmonic functions or of some other form.

3.2.1

largely
series.

~~E~~~~~~~~_~~~~~~~~

In a strict sense correlation analysis in climatology consists
of accounting for the effect of correlation between climatological
For example, if the climatological series for the average temperature
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series for 1 and 2 May have sample variances sI and s~ then the series for the
average of 1 and 2 May has a,variance which is affected by the correlation
between the 1 May and 2 May series. Similarly the variance of the average of
the 1, 2, ... , m May series will be affected by the correlations among the m
climatological series. Clearly the climatological series ~ould also be for
weeks, months or any other portion of the year.

Just as it is necessary always to work with climatological series,
so it is necessary to work with the proper correlation coefficients in the
present aspect of climatological analysis. The only correlation coefficients
useful in the type of analysis considered here are ~hose computed between the
two series in any pair of climatological series. If the two series are for
the same element, they will be displaced in time within the year; hence it
will be possible to have a whole sequence of such correlations. The pairs of
climatological series may be separated by different units of time and so there
will be a timelag between them. Because of the time-sequential nature of
these correlation coefficients, and to differentiate them from autocorrelation
coefficients, they will be called sequence correlation coefficients. The
sequence correlation coefficient between the ith and jth climatological series
is defined as

E (x. - }!.) (x.
1 1 J

0.0.
1 J

lA· )
J

The numerator is the expected value of the product of the departures of the Xi
and Xj from their respective population means, and is called the covariance.
The denominator is the product of the population standard deviations of Xi and
Xj' The sample estimate of the sequence corre'lation coefficient is given by

m

k~-l (x·k-x.) (x·k-x.)/ns.s.1 1 J J 1 J

Here x'k is the kth term (year) in the ith climatological ~eries, and ~jk is
the ktfi term (year) in the jth climatological series, and Xi' Si' and Xj' Sj
are their respective means and standard deviations.

The sequence correlation coefficient should be carefully differen­
tiated from the autocorrelation coefficient (sometimes called serial correla­
tion coefficient). The sequence correlation coefficient is really a single
correlation coefficient with a time displacement so that the effect of varia­
tion in the mean and standard deviation through the year is removed. The auto­
correlation coefficient, on the other hand, includes the variation in the mean
and §tandard deviations. In the methods discussed here it is always wrong to
use an autocorrelation coefficient.

For the 1, 2, ... , m May climatological series considered above there
are m(m-l) possible pairs of series .. Since P(xi' Xj) = p(x.,x.), there are only
m(m-l) different sequence correlations. All of these must J be

1
considered in

2
obtaining the variance of the sum and average series formed by summing or
averaging for each year. If i and J both run over the same sequence of series,
the sample variance of the sum may be expressed by

m
v (i: x )

i=l i

m 2 2 m
IS, + ~r

i=l 1 1=1

m
I s.s.r(x.,x.)

j>i 1 J 1 J
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m
This is the variance of the linear function y =mIxi- If the xi have different

weights k. so that the linear function is y =.Ilk.x., the variance becomes
1 1= 1 1

m
v(I k.x

l
)

i=l 1

m 2 2
.Ilk. s ~
1= 1 1

It may be noted that when the r (x. ,x.) = 0, the relationship reduces to the
simple variance formula 1 J

m
vCr k.x.)

i=l 1 1

Ifm 2 and k 2 has a negative sign the formula gives

If k
l

= 1 and k 2 = -1,

v(x
l

- x 2 )

m

v(x
l
-x2 )

If k _ 1
-ill

the variance becomes

1, k
2

= -1

m
1:

i=lxi
so that the linear function is a simple average

1 [m 2 m m J
. I s. + 2. I

l
.I. s.s. r(x.,x.)·

m2 i=l 1 1= J >1 1 J 1 J

Thus the avera~ temperature for June has a variance formed from the daily
variances and sequence correlations given by

30

v(i;~Xi)
1

302
[

30 2. 30 30 1
I s. + 2 I I s.s. r(x.,x.~

i=l 1 . i=l j>i 1 J 1 J

The variance of the total precipitation for June based on the individual daily
variances and sequence correlation is

Since monthly total precipitation is not very near to normally distributed,
there would be more interest in the variance of the mean or normal for n years

-i--~O xi _ This is 1:. v( iO x
i
)-

n i=l n 2 i",l
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All of the formulas also apply where the x. are the variables of
different elements which are observed simultaneously 6r otherwise. This makes
them useful in applied problems where the relationship with the applied vari­
able is linear. For example, the outside air cooling load for an air condition­
ing system may be closely approximated by the linear relationship

where t is dry-bulb temperature, t' is wet-bulb temperature, and -the k results
from purely physical considerations. Since t and t' are nearly normally dis­
tributed around ordinary design levels, the variance of q is important. By
means (If thp formulas given above

v(q) = k~ v(t) + k~ v(t') - 2kl k 2 r(t,t')

The standard deviation of q is therefore s(q) =Vv(q)
and the mean of q is given by

Thus the normal distribution function N[q; q, s(q)] gives the probabilities
for climatological predictions based on the distributions of t and t'.

Correlation analysis enters in other ways into climatological ana­
lysis, but most of these analyses are closely connected with regression analysis.
In fact, wherever relationships are desired between random variables, regression
analysis is the proper tool to Employ.

3.2.2

A regression is a functional relationship between an independent
random variable and one or more dependent random variables. For a given set
of values of the independent variables the regression gives a mean value of
the dependent variable. Regression analysis is used in climatology to estimate
the constants in functional relationships where these are not given directly
as physical quantities. It is used for the establishment of relationships
both between climatological series and between climatological series and
applied variables. The latter may often be accomplished without climatologi­
cal series by employing sets of values of the i~dependent variables which are
simply uncorrelated within each set and which vary over a range of values
equal to that in the climl1tological series. Thus the relationship between an
applied variable and climatologiCal variables can often be established with 11

short simultaneous record of the two sets of variables.

The first problem in regression analysis is to estimate the con­
stant~. This i$ commonly done by the least squares method applied to the resi­
duals about the regression function obtained when the values of the independent
variables have been substituted. The minimization of the residuals of the
dependent variable alone requires that the values of the independent variables
be fixed or be measured essentially without errOr. If this condition is not
met biases will be introduced in the regression constants. As mentioned above,
the values of each variable must also be mutually independent. The least
squares estimates have certain optimum properties which make the method a
desirable one fitting regressions.
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The least square principle is very general and may be applied to
almost any type of function. If the regressiun function is of the form

y = R(x l , ••• , x k ; ~O' ~l' ••• , ~k)

the sum of the square residuals may b~ expressed as

n 2
l:-e .

J
~[Yj - R(xlj , ••• , xkj ; ~O' ~l' ••• , ~k)J2
n
L (y. _ R.) 2

J J

where j runs over the sample values from 1 to n. The "least square" is ob­
tained by minimizing the sums of squared residuals through differentiating
and setting to zero. This gives the so-called normal equations

n
-L L (y.
a~O J

n
_a_ L (y.
oh J

n
_0_ L (y.
O~k J

R. )2 0
J

R. )2 0
J

o

The simultaneous solution of the normal equations gives the least squares
estimates of ~O' ~l'···' ~k·

The regression function R can, of course, take an infinite variety
of forms. As usual, the linear forms are the most used. Linear regressions
for one and two independent variables are considered here. More complicated
functions may be analysed by finding the proper normal equations by the pro­
cess given above.

The linear regression equation in one independent variable is best
written as

Y = Q + ~ (x- Il)

since measuring x from the mean Il makes the least squares estimate of Q In­
dependent of that of ~. The le~ squares estimates of Q and ~ based on a
sample of n pairs of (x,y) are

-a = y



and

b

n
ry(x-~)

n . 2
L(x-x)
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where the summation is over the sample values.

The regression equation may then be written as

y = a + b(x-x)
c

Frequently it is known by physical means that Q

gression equation becomes
O. In this case the re-

y = bx
c

I There is now only one normal equation which gives the least squares estimate

b

It is often necessary to test the fitted regression for reality and for line­
arity. This is best done by the analysis of variance which is a technique
devised by R. A. Fisher to analyse the mean squares due to several components
of the variation. For the linear regression given above it may be observed
tha~there is a total variability of the y which is divided into a variability
accounted for by the regression, and a variability unaccounted for by the re­
gression or residual variability. This may be expressed conveniently by an
analysis of variance table:

ANALYSIS OF VARIANCE

Accounted for by
regression

Unaccounted for by
regression
(residual)

Accounted for byl me an (total)

Sum of squares

n 2
L (y-y) = Q

T

Degrees of freedom

1

n-2

n-l

Mean square

I
"Degrees of freedom" is a term used by R. A. Fisher to express the

whole number by which the sum of squares is to be divided to give the mean
square. When the mean has been estimated, and therefore fixed, only n-l of
the observations may vary, sinceoJ;lce the mean is fixed and n-l of the obser­
vations are chosen, the nth value is automatically fix:ed by the fact that the
n values must average to the mean. One degree of freedom is therefore taken
up by fitting the mean, or n-l degrees of freedom remain for estimating the
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total mean square which involves the mean. It will not be needed and so is not
computed. A further degree of freedom is lost in estimating b; hence there
are n-2 degrees of freedom left for estimating the residual mean square. It
is seen that the degrees of freedom of the components of variation in an ana­
lysis of variance table add to the total degrees of freedom. The sum of
squares QT and Q

R
are obtained from

n 2 1
n

QT
1: y (1:y)2

n

and
n 2

[1:y(x-x)]
QR

n ( -) 21: x-x

The squared correlation coefficient is given by

2
=V~r

From this it is seen that r 2 gives the proportion of the sum of squares or
variability explained by the regression. Thus, in usi~g the correlation co­
efficient as a measure of the goodness of relationship, it is best to square
it in order to obtain a realistic estimate of the amount of variability which
the linear relationship explains. This will, of course, always be less than r.

The analysis of variance table also provides a te'st of significance
of the linear regression. The statistic F is given by

F(I,n-2)

This is to be compared to an F or variance ratio table with l,and n-2 degrees
of freedom at the 0.10 or 0.05 significance level to determine whether a linear
rela~ionship really exists; or, iN other terms, whether the mean square ex­
plained by the linear regression is large enough, in comparison to the residual
mean square, to decide that the regression is due to a real effect rather than
to random smnpling.

There has been some tendency to attribute too much importance to
tests of significance or tests of hypotheses. Thus it might be concluded that
if a regression is significant no more is required: this, however, is far
from true, for there are two kinds of significance, practical and statistical.
If a regression is not practically significant it is of little use to test its
statistical significance. If, however, it is practically significant, then
the test of hypothesis must be made in order to test for reality. In the case
of the linear relation, practical significance is measured by the squared cor­
relation coefficient,that is by whatever proportion of the total variability
is explained by the regression. It may be observed that if r< 0.50, i. e. ,
r 2 <. 0.25, the regression is of very doubtful practical us e.
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If the sample values of the independent variable x can be divided
into, say, four or more classes or columns with at least two y values in each
class, a second analysis of variance table may be prepared which will lead to
a test of linearity. Such a test will tell whether it might be worth while
to fit additi!onal terms of higher degree.

With the data ~rranged i~to classes or columns with n· in the jth
column, t4e total variability may be divided .into variability be~ween column
means arranged according to increasing x and variation within columns or re­
sidual. This leads to a second analysis of variance table:

ANALYSIS OF VARIANCE

Sum of squares Degrees of freedom Mean square

Column
means

k n .
L I· J (- -)2

j=l i=l n. j Y.j-y == k-l

k n
Residual I !.J

j=Li=l

Total

(y .. _y .)2
lJ .J

1 k n_. j
, (' L I )2

- ~ j=l i==l Yij =

n-k

n-l

An F- test may pe mad~ on this table by computing

F(k-l, n-k)
~/k-l

If this F is not significant, then there is no relation between y and x linear
or otherwise. Had there been doubt about both linearity and whether there were
a relationship at all, this test could have been made first.

It will be,seen from the first analysis of variance table that the
fitting of the linear regression leaves QT~QR of the variability expressed as
a sum of squares unexplained by the regression. If a more complicated func­
tion is to provide. an improved fit, the improvement must come by removing or
reducing this residual variability. Hence, this residual sum of squares may
become the. total for a third analysis of variance tEj.ble. Since by the least
squares principle a ma;x:imum amount of variability will be e,xPlained by fitting
the column meal.ls, the residual from this f;i tting will be the smallest' possible.
If this residual is subtracted f1;'ol11 the residual left by linear'regression,
the remainder lsthe amount explained by the colwrtn means over what was ex­
plained by the linear regression. The analysis of variance is as follows:
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ANALYSIS OF VARIANCE

_.
Sum of squares Degrees of freedom Mean sg.:uare

Column means
about regression QM-Qg, k-2 (~-~)/k-2

Column mean
residual QT-QM n-k (~-~)/n-k

Linear regression
residual QT-QR n-2

The test for linearity is now made by comparing

F(k-2, n-k) =
(Q~f~)!k-2

(~-~)!n-k

to the value corresponding to k-2 and n-k degrees of freedom of an F- table.
If this is significant the line~r regression does not explain all otthe vari­
ability and it may be desirable to fit higher degree terms.

Once the regression line has been found significant in both the
practical and statistical senses, the next interest will be in what error is
committed in its use. This may be obtained from the confidence interval for
Y, the true value of y and the prediction interval for (y - Y), the departure
from the true regressi8n. These are found by taking the variance of Yc and
(y - Yc) using the regression equation. The square roots of these variances
give the required standard deviations. The standard deviation of Yc at x is
given by

s [y (x)]
c

= {QT-QR [.!. +. (x_x)2]}!
n-2 n (-)2·1: x-x

The 0.90 confidence interval for Yc at a given value of x, y (x), is given by

p{yc(x)-t. 05 (n....2) s[yc(x)] < Y (x) < Yc(x) + t o•95 (n-2) s[yc(x)] } = 0.90

where Y (x) is the true vaiue of Yc (x) at x and t. 05 (n-2) is the value at 0.05
probability from a table of Student's t. It should be remembered that y (x)
is a conditional mean value> not a future y value, so the confidence inte~val
is for this mean value; it is not the confidence interval for a particular
predicted value. This must be obtained from the standard deviation of the
observations of the y with respect to. the true regression lin?This will
include the variation in the points about the sample regression line plus the
variation in Yc or the sample regression.
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This standard deviation at a given x is

43

( -)2 1
1 X-X}[+-+ J ..

. n I(x_x)2

and is sometimes called the standard error of a forecast in statistical lan­
guage. The 0.90 prediction interval for a predicted value of y at the given
x is then

where t is the same as in the confidence interval for Y.*

As in the case of the air conditioning design cooling load there
may be two meteorological variables involved, but the equation connecting them
with the design variable may not h~ve its constants determined physically. In
that case the problem is one of regression with two independent variables. Or,
on the other hand, the simple linear regression may not account for all the
'variability and a quadratic might need to be added. This regression can be
fitted in the same manner as the two independent variable linear regression.

The three-dimensional estimated linear regression may be convenient­
ly expressed by

in which case the estimate b l = xl. The b are called the regression coeffi­
cients and are estimated from the normal equations which are the two indepen­
dent variable case of the general normal equations givenear:tier. If the
following general notation is used,

n
Q.. = I.(x.-x.)(x.-x.)
lJ 1 1 J J

then

and

etc.
as

n
Q12 = I(xl-xl ) (x2-x2 )

The normal equations for two

Q22b 2 + Q23b
3 = Q12

Q23 b2 + Q
33

b
3 = Ql3

independent variables may then be expressed

* See Example 6 at the end of this chapter.
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or in matrix notation

CHAPTER THREE

In this form it will be readily seen how i;heI;L·ormal equ,ations can be expanded
for regressions of any number of dimensions. The b, other than b

l
, may be

found directly from a simultaneous solution of the normal equations, but it
·will be found convenient to obtain the solution in -terms of the Gaussian
multipliers since they will be useful in extending the solutions to any number
of independent variables. In terms of the Gaussian multipliers c·· and in
matrix notation the first equation is 1J

or in general for k variables

where the subscript one does not appear because the·x are taken about their
means. Inverting gives

Cc] = [Q]-l

Thus the matrix of the c 1S the reciprocal matrix of the Q. The b are then
found from the equation

c

b
2k Qlk

If
2 - Q22Q

33
D = Q23

the c are given by

c 22 = ~/D
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and

c 33 ~/D

The b are then given by the equations

and

45

The solutions for k variables depend on the calculation of the reci,....
proealmatrix of the Q. This is easily done by the method of pivotal condensa­
tion. While the method is simple to apply, space does not allow it to be dis­
cussed here. For details see Rao or Snedecor.

The tests of hypothesis on the regression are again facilitated by
the analysis of varia~ce. For this purpose two additional Q forms are needed

and

where

b
p.q

b is the sample regression coefficient between'x and x .
p.q p q

The multiple regression analysis of variance is then

Multiple re~ssion A/V

I sls n/F I
IExplained by x 2 and x 3 IQn - Ql.23 2 I
jUnexplained by x 2 and x 3 IQl. 23 n-3 I

~-=-=~-=-h---n=l
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where S/S is sum of squares and D/F is degrees of freedom. The multiple re­
gression coefficient is

and the significance test for the multiple regression is given by testing

F(2, n-3)
(Qn Q1.23)/2

Q /(n-3)
1.23

The three simple analyses are as follows:

i

S/S D/F

Explained by x 2 Qll-QI.2 1

Unexplained by x 2 Q1. 2 n-2

Total Qll n-l

--

The simple correlation coefficient between xl and x 2 is then given by

and the F- test by

F(l, n-2)
(Qn - Q1.2)

Q1.!(n-2)
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s/s D/F

Explained by x
3 Qll-Ql.3 1

Unexplained by x
3 Ql, 3 n-2

Total Qll n-l

--
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F(l, n-2}
(Qll-Q1.3)

Ql.l(n-2)

s/s D/F

Explained by x
3 Q22-Q2.3 1

Unexplained by x
3 Q2.3 n-2

-~.

Total ~Q22 n-l

_._-------

F(l, n-2}
(~2-~.3)

~.l(n-2)

From quantities already available in the above tables analyses may
be made of the partial regression coefficients r 12 . 3 and r 13 . 2 . These are,
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respectively, the correlation between xl and x2 after the influence of x3 has
been eliminated, and the correlation between xl and x 3 after the influence of
x

2
has been eliminated. The analyses of variance tables again conveniently

provide the term for the correlation coefficients and their tests of signifi­
cance. They also provide tests of whether the fitting of x3 significantly
reduces the residual after xl on x2 has been fitted and whether x2 signifi­
cantly reduces the residual after xl on x

3
has been fitted. This is important

in determining the significance of an added variable, and as will be seen below,
an added power.

Partial Alv of xl on x 3

sls DIp

Increase due to x3 QI.2-QI.23 I

Unexplained by x 2 and x
3 Q1. 23

n-3

Unexplained by x 2 Q1. 2
n-2

The test of this partial correlation coefficient and whether x
3

adds signi­
ficantly after xl on x 2 has been fitted is given by testing

P(l, n-3)
~.2-~.23

Q1.2!(n-3 )

Partial Alv of xl on x 2

sls DIp

Increase due to x 2 QI.3-QI.23 I

Unexplained by x 2
and x

3 Q1. 23 n-3

Unexplained by x
3 Q1. 3

n-2



GENERAL STATISTICAL METHODS 49

The test of this coefficient and of x2 after xl on x3 has been fitted is given
by

F(l, n-3)
Q1. r Q1. 23

Q1. 23 /(n-3)

By observing the scheme of formation of the analysis of variance
tables for two independent variables, the analyses may be extended to any
number of variables. The analysis for the second degree equation

can be
of the
linear

accomplished using the aboye methods by simply substituting the squares
x values for x 3 and similarly substituting higher powers for further
terms. The only difference is that b l will now be obtained from

- 1 2
b l = xl - b 2x 2 - - b 3 Ix

n

The Gaussian multipliers will now be found to be a great convenience in ob­
taining the standard deviations of xl and (xl - Z) from which the confidence
bands may be obtained. 2 is the truecyalue of xl for a pair (x2 ' x3). The
standard deviations for the three-dimensional regfession are then given by

The standard error of a prediction is given

{
Q1.23 C-l - 2

s(xlc ) = . --3- L- + c 22 (xrx 2)
n- n.

particular pairs of (x2 ' x
3

).for
by

Q
( ';;') _ { 1. 23s x l - - - ---

n-3

As in the simple two-dimensional case the confidence band may be determined by
employing Student's t with (n-3) degrees of freedom. For the case of k indepen­
dent variables the standard deviations be00me

Q
( ) {

1.2 ... k
s x lc =

n-k

k k 1

[ -n
l + .I

2
.I

2
c .. (x.-x.) (x.-X.)J}2

l= J= lJ l l J J

where the summation is such that the cross-product terms occur twice and

Q k k 1

s(xl-Z) = { 1.2 ... k [1 + 1 + .I
2

.I
2

c .. (x.-x.) (x._X.)1}2
n l= J=. lJ l l J J ~n-k

Student's t for determining the confidence interval will in this case have
(n-k) degrees of freedom.
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EXAMPLE 6 - SINGLE REGRESSION

CHAPTER THREE

The problem is to find the linear relation between a hotel's daily
electrical consumption in kwh and degree-days above 65 0 F. The data given are
as follows:

25 969, Ixy
1 997.62, n

~ - 51 876 073.8, and Ixly
n n

immediately available:

x(DD)

5
8

10
16
14
14
19

8
10
17
18

9
G

1.48

From these
68 241 641.

y(kwh)

878
1 081
1 160
2 948
3 094
3 002
3 275
1 200
1 357
3 354
3 254
1 355

11

25 969

data LX = 148, Iy
Hence y = 25 969

13

295 647.08.

370 330, lx2 = 2 ·056,
13, (Ix)2 = 1 684.92,

n

Reduced sums-of squares are

1Q = Ixy - - Ixly = 74 682.92
yx n

I(x_x)2 = 2 056 - 1 684.92 = 371.08

and

Q
T

= I(y_y)2 = 68 241 641 - 51 876 074

Then

16 365 567

b ~x 74 682.92

371. 08
201.26

X

a

Hence

148 = 11. 38
13

25 969
y =---

13
1 997.62

or removing x

1 997.6 + 201.3 (x - 11.4)

-297.2 + 201.3 x
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The regression shqwq a sm~ll negative intercept of ~297.2 kwh. This
indicates that air conditioning is used on~y when the temperature is somewhere
above 65 0 F. If it is bothersome, the regression can be forced through zero.
The regression coefficient is then

and

b = Xxy

LX2

370 330

2 056
180.1

yl 180.1 x
c

The regre£sion may be tested and the correlation found through a
simple analysis of variance:

,--------------- ----------------
Variabili ty

Accounted· for
by regression

Sum of squares

QR = 15 030 556

Degrees of
freedom

1

Mean square

15 030 556

------ ------------1

Unaccounted for
by regression (residual)
1---------------+--

Accounted for
by the mean

1 335 011

16 365 567

11

12

121 365

1--------_._---- ---

The ratio of the mean squares is distributed as F with 1 and 11 degrees of
freedom so

F(l, 11) 15 030 556

121 365
123.8

Referring to a table of F it is seen

P(F(l,ll) > 4.84).( <'0.05

hence the regression is significant.

The square of the correlation coefficient between y and x which is
proportional to the amount of information is given by

2
r

15 030 556
16 365 567

0.9 184

This indicates tha~ a very high proportion of the relationship between y and x
is explained by the linear regression. The squared correlation coefficient is
always to be preferred for an honest measure of a relationship.
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Torheasurethe error of a prediction one mUst compute the standard
error of y - Y where Y is the population value of Yc' This is given by

{ Q:
- Q

R
[1

+.!. (x _x)2]}1s(y - Y) +
2 n I(x ~)2- - x

{121 [1. 077

(x _ x) 2

]}
1
2"

365 +
371.08

For x 15, (x. - x)2 = 184·96; hence

s(y - Y) = {121 365 (1. 077 + 0.498)}t

=~L91 150 = 437.2

(y - Y) is distributed as t with n-2 degrees of freedom. Referring to a
i-table at n-2 = 11 degrees of freedom, the 0.05 and 0.95 points are ± 1.796.
1.796 x 437.2 ~ 785.2. Therefore the true value of Yc or Y at x =15 is
covered by the random interval (3 020 ± 785.2) with probability 0.90 or

P(2 234<'Y <3805) = 0.90
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