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Corrigendum

Ny

line 15, amend the formula to read: 3 =

2%

Table, third column, second line from bottom; replace 0.25549 by: 0.22549, -

km © m' 3
last line, amend the formula to read: g* = Ib jS j/5 + — 1b
JJ. n

oJ ed
Example 3, line 3, amend the formula to read:
=Y
F(x) = exp [— z ]
B2
line 5, sixth column, replace 3.9475 by: 3.8475°/
fourth line from bottom, replace ‘3.2622 by: 3.7860 e
* *,
second line from bottom, replace Bi by ﬁ]_,
. % 1n 1n ( %-) ,
line 8, amend the formula to read: 1n v(F) = 1n 52 -
e

line 15, amend the formula to read: P(pL <P < pU) =1-2a ,°

lines 21 and 22, amend the sentence to read:

These replace the formulas and tables for obtaining pL and pU. &

ninth line from bottom, replace F = PU by: F = pU

line 9, amend the formula to read: log g, = x log X -logx ! - 043429 5% L

lines 11 and 12, amend the sentence to read:

PC is given in column 8 and is the estimate for each x.

lines 13-15, amend the sentence to read:

In column 11 the frequencies g, and g, are compared by the x2 test whose total
is given in the footing of the table.
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22,

33,

33,
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36,

36,

37,

45,

k5,

4e,

b9,

b9,

-2 -

line 2, the division line in the coefficient should be extended over TI' (k) to read:

r{xtk) P

r'(x+1) I'(k)

£(x)
(l+p)k+x

line 13, amend to read: (1 +-E¥) (k* + 2) < 20

p %
s
p

line 4, amend the formula to read: gg(x) = K
% K* + x

(1 + p*)
I'(k* + x)

T(x+1) T (k*)

line 5, amend the formula to read:t K =

*
Table, column 6, line 1, replace x log[—g—] by: x log D ‘]
p+l p*+1

m
line 1, amend the formula to read: y = ;Z% X
1=

line 3, amend left hand side of the formula to read: v(}j kixi)

paragraph 3.2.2, lines 1 and 2, amend the sentence to read:

The regression is a functional relationship between a dependent variable and
one or more independent variables.

line 6, amend the formula to read: b2 22 10 * 23Q13
line 8, amend the formula to reads b3 = 023Q12 + 033Q13
) 17 Q1.23)/2
line 5, amend the formula to read: F(2, n-3) =
o/ (0=3)

fifth line from bottom, amend the formula to read:
Q,q... k k 1
;o= = = z -X -X.) 2
sl { X [ *alp e OyytE) (g xj)]}

third line from bottom, amend the formula to read:

Q. ....k k k 5
- 12 1 % . }§
s(xl ) { - [1+ ot b Cij(xi Xi) (xj xj)]

> Q) 15 030 55
fourth line from bottom, amend the formula to reads r2 - R _ b 6 = 0.9 184
Qp 16 365 567

last line, amend the formula to readt P (2 235 <Y < 3 805) 0.90

il
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FOREWORD

At its third session (London, December 1960) the Commission for
Climatology (CCl) established a Working Group on Statistical Methods in Clima-
tology. The group was requested to review and expand the material on statis-
tical methods in climatology already prepared by a previous working group of

the CCl, and to advise on the application of statistical methods to specific
climatological problems.

The membership of the group was as follows: H, C. S. Thom (U.S.A),
chairmany M., I. Drozdov (U.S.S.R.); G. R. Kendall (Canada); G. 0'Mahony
(Australia); R. Sneyers (Belgium).

Mr. Thom, the chairman of the group, prepared a draft paper on
methods of climatological analysis which, together with the final report of
the group, was submitted to the fourth session of CCl in Stockholm (August
1965)., The Commission expressed its satisfaction with the report and recom-
mended that the paper be published in the series of WMO Technical Notes.

I am glad to have this opportunity of\| thanking the members of the
working group, as well as others who have contributed to its work, for +the
time and effort they have devoted to the preparation of this Technical Note.

posmr—

(D. A. Davies)
Secretary-General
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SUMMARY

Modern statistical analysis is the mathematics of climatological
analysis, the objective of which is climatological prediction. This Tech-
nical Note gives an introduction to the basic principles for the making of
such predictions. The methods of analysis presented are applied to a series
of illustrative examples.

After defining a climatological series to lay the basis for valid
statistical analysis, the frequency distribution (the basic tool of climato-
logical analysis) is discussed. From this the cumulative distribution for

obtaining probabilities, which are the climatological predictions, follows
naturally.

Since some meteorological records do not form climatological series
because of heterogeneities, simple tests for homogeneity are given next. The
difference and ratio methods for adjusting, averaging and totalizing variables
are discussed,together with applications to actual climatological records.
Limitations are also presented on their use and interpretation.

The fundamental problem of estimating statistical parameters is
covered as it applies generally, and the ordinary statistical parameters are
discussed critically. The approach to normality of several common statistics
is also treated, and confidence limits are defined and given for the mean.

Several fundamental frequency distributions are treated, including
the normal, gamma, extreme value, binomial, Poisson, and negative binomial
distributions. Best estimates for the parameters are given together with
complete instructions for fitting them to data. Examples of their applica-
tion to climatological series are worked out. The application of the binomial
distribution in order to obtain confidence limits for the probability estimates
obtained from any distribution is also given.

Correlation and regression analysis are discussed in general. The
propagation of variance in climatological series is treated, including the
effect of covariance. The correct correlation is carefully differentiated
from the autocorrelation which can only be used in this application with sta-
tionary data sequences. The formulag for propagation of variance are applied
to an equation for cooling load in an air-conditioning system.

Regression analysis is discussed in detail, including linear re-
gression forced through the origin., The analysis variance is employed for
testing the significance of a relationship as well as to the regression itself.
The test for linearity is also given. The standard errors of the regression,
as well as the all-important standard error of a forecast, are presented. A
complete example of application to a single independent variable is discussed.
The simple regression and multiple correlation methods are extended to two
independent variables and finally to many independent variables. Finally,
there is a list of references to statistical textbooks and papers.
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RESUME

L'analyse statistique moderne est l'aspect mathématique de 1'ana-
lyse climatologique, qui a pour objectif la prévision climatologique. La pré-
sente Note technique est une introduction aux principes fondamentaux sur les—
quels repose 1'élaboration des prévisions climatologiques. Les méthodes d'ana-
lyse présentées sont illustrées par une série d'exemples.

Apres avoir défini ce qu'est une série climatologique pour jeter
les bases d'une analyse statistique wvalable, l'auteur traite de la distribu-
tion de fréquences (élément capital de l'analyse climatologique). De 1la, il
passe naturellement & la -distribution de fréquences cumulées pour obtenir des
probabilités qui représentent les prévisions climatologiques.

Etant donné que certains relevés météorologiques ne constituent
pas des séries climatologiques, en raison de leur hétérogénéité, 1l'auteur
présente ensuite quelques tests simples permettant de déterminer 1‘'homogénéité.
I1 expose les méthodes des différences et des quotients utilisées pour ajuster
les variables, ainsi queée pour calculer les moyennes et les sommes de ces varia-
bles; il mentionne leurs applications aux relevés climatologiques proprement
dits. Il indique également les limites de leur emploi et de leur interpréta-
tion.

Aprés avoir abordé, d'une maniére générale, le probldéme fondamental
des paramétres statistiques, l'auteur passe au crible les divers parametres
statistiques ordinaires. Il montre également comment on arrive & déterminer
le degré de normalité de divers paramétres statistiques courants; il définit
et précise les seuils de confiance de la moyenne.

La Note passe en revue plusieurs distributions de fréquences fon-
damentales ¢ gamma, valeurs extrémes, binomiale, Poisson et binomiale négative.
L'auteur fournit les meilleures estimations des paramétres et donne des ins-
tructions détaillées pour les adapter aux données. 11 présente des exemples
d'application de ces paramdtres & des séries climatologiques, Il montre égale-~
ment comment on applique la distribution binomiale pour obtenir les seuils de
confiance des estimations de probabilité & partir d'une distribution quelconque.

Les grandes lignes de l'analyse de corrélation et de régression
sont esquissées. L'auteur traite de la propagation de la variance dans les
séries climatologiques, notamment de 1l'effet de co-variance. La corrélation
est soigneusement différencide de l'autocorrélation qui ne peut &tre utilisée
dans cette application qu'avec des séries de données stationnaires. Les for-
mules se rapportant & la propagation de la variance sont appliquées & une équa-
tion permettant de déterminer le régime de refroidissement dans un systéme de
climatisation.

L'auteur étudie en détail l'analyse de régression, notamment le cas
du passage forcé des droites de régression par 1l'origine. La variance est
utilisée pour vérifier la signification d'une .relation et appliquée & la ré-
gression proprement dite. Le test de linéarité est également décrit. Les
erreurs de la régression et l'erreur type - trés importante — d'une prévision
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sont exposdées. La Note contient un exemple complet d'application de la méthode
&4 une seule variable indépendante. Les méthodes de régression simple et de
corrélation multiple sont étendues & deux variables indépendantes et, finale-—
ment, & de nombreuses variables indépendantes. La publication se termine par
une bibliographie renvoyant & des manuels et & des études statistiques.




PeaoMe

CoBpeMeHHbIe CTATHMCTUYECKME AHAJIUSBH ABIANTCA MaTe-
MATUYECKUM ACHEeKTOM KJIMMATONOTMYECKUX BHAJUBO0B, LEIbH KO-
TOPHIX ABAAETCA KINMATOJNOTMYECKHM nporHos. B oToffi TexHu—
YeCKO# 3anucke faHO BBeleHUe K OCHOBHEIM NPUHLUNEM IJIA
paspabGoTKM TAKMX OPOTHO30B. MeTOxsl DpeiCTABICHHHX 3LeCh

aHaJAU30B, HUJIIOCTPUPYOTCH PAXOM IPUMEDPOB.

l[locne onupejeseHMsas KIMMATOJOTMYECKUX cepuit, KOTO-
Prie MOJOXEHs B OCHOBY CTATUCTUYECKOI'O aHajuida, aBTOp pac-
cMaTpUBaeT DacHpeleleHue HYACTOT (OCHOBHOTO dJIeMeHTa KIN-
MAaTONOTUYECKOrO aHaiumda). I3 5TOro eCTeCTBEHHO BHITEKAET
o6o0WeHHOe pacnpeleseHUe NOJydYeHHBIX BepoATHoCTel, KOTO-—

pPoe ® eCThb HM UTO HMHOE, KAK KJIMMATOJNOTNYECKUIA NIPOTHO3.,.

YunreiBas, 4TO HEKOTOpPHE MeTeOpPOoJOrudecKue JIaHHbIE
HabGnoneHuil He HNOIATOTABAMBAKT KIMMATOJNOTHYECKNX cepuit B
coOTBeTCTBywmMe! PopMe B CBA3M C PA3HOPOLHOCTHLI KIMMATOJXOTH-
YeCKHUX HAaHHpX, &BTOP IpelrjaraeT HECKOJbLKO MNPOCTHIX CIOCO-
60B IJaa HNPUBELeHMA UX K OJHOpPomHOCTM. OH mpenjaraetT pas-
JUYHBIe M PAIMOHAJbHbHIE MeTOILbl LJAf COrjJacOBaHUA, OCPeiHeHMUSA
M CyMMUPOBAHUA PasAMUHBIX M3MeHeHM#, uUCHOAL3YydA (PaKTHueCKue
KINM2TOJNOIUYeCKUe jaHHsie., OH yKasnBaeT TaKke Ha OI'DaHu-

YeHUA B HUX MCHOJNL3OBAHUM M TOJKOBAHUM.

[locne obmeit OLeHKM OCHOBHHIX NPOoOGJeM CTRTUCTUYEC—
KX Iapase TPOB, &BTOD BHICKABRIBAET KPUTHUYECKOE CYXIeHUEe,
Kacawieeca OCHOBHHX NPoOJjeM pacueTa CTATUCTUYECKHUX napa—
MeTpoB. OH COBJAa] TRKxe METOL NOILXOAB K HEKOTOPHM CTAaTHC-
TUYECKUM OOCOONEHKHAM; OH ONpelesud ¥ YTOUHMUI Npeleds AJAA

onpeleNeHua CPeiHMX BHAYEeHHH.
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BbiiM LOCTUTHYTH HEKOTODPhE OCHOBHEIE HOBTODPAEMOCTH
pacnpeleNeHuit: HOPMANLHOTO, T'aMMa, BKCTPeMaJbHOro, GUHO-

MunajbHoro, [lyaccoHa u oTpuuATeabHble GUHOMUAJIbHEIE.

ABTOp HaXOZUT HAUIAyUYMUEe CIHOCOOH DacyeTa IAPAMeTpPOB M
IaeT IleTalbHole HOACHEHMA JLJAA MCOOJbL3OBAHUA IIPU 00pabOTKe
ILaHHBIX HaOmwineHuit. OH JaeT ONPUMepPH NPUMEeHeHMS 3 TUX napa-
METPOB B OTHOMEHMM KJIMMATOJNOrMYecKMX cepuit. Takxe raercsa
npuMeHeHMe MUHOMMUAJILHOI'O pPaCHDPeleleHMA ILJAA NOAYyYeHUA Hpe-

JeJOB OLEeHKHM BepoATHocTel, mcxona mu3 JOGHX pacnpeneleHuil.

KoppensauuOHHRIA aHAAIM3 ¥ AHAJKU3 yYPaBHeHUR perpeccun
paccmaTpuBaeTCcd B ofueM nnaHe. ABTOp NPUBOLMUT PaABHOBHI—
HOCTUY Bapnaluif B KIMMATOJOTUYECKHUX CepPusAx, B YACTHOCTH 33—
heKT couaMeHeHuit. ABTOpP pasiuuaeT KOPPEeIAALUO OT &BTOKOD-
penxsanum, KOTOpPasg MOXeT OHTb MCIONb30BAHA TOJLKO C cepuaMu
CTalMOHAPHHIX JAaHHMNX. POPMyds, OTHOCAmWMEeCA K PA3HOBUIHOCTH
Bapualuif NIpPUMeHAOTCS K ypaBHEeHU0, ONpelelANmEMYy DPexuM

oxjaxlieHusa B KOHIMLMOHHBIX CHCTeMmaX.

ABTOD maeT IZeTaJbHbi aHaJIu3d3 ypaBHeHUw perpeccmu,
BKJioyasa JUHellHOoe ypaBHeHue perpeccuu. BapuaHTH aHaausa
HCHONb3YWOTCA ILJA OPOBEPKUM 3HAUEHUA cBAsel, TaKkxe KaAK u LJA
caMoifi perpeccuu. JgaeTcAa TaKxe MCCIelOBaHUe JHHeRHOCTH
M NPUBOJLATCA BeChbMa CYylleCTBeHHbe ONMUOKM pPerpeCCH¥ M THUINUU-
Hble OMMOKM B NPOTHO3I&X.
3anucka CONEePXUT I PUMEP MCIOJNb3OBAHMA Me TOL& IO Npereay
He3aBUCKHMOK pasHOBUIHOCTH. MeTonsl npocTolft perpeccuu u
CJIOXHO# KODPpPenALMM PACHPOCTPAHEHH HA J1Be He3aBUCHUMHIE
BapUALMH K, B KOHEYHOM MTOre HA MHOrOuMCJAEeHHLE HeB3aBUCH—
Mble BapuanuM. IlySaukauus saKaHuuBaeTcs Oubauorpaduei,
KOTOpasa CcchljaeTcsa Ha ydyeOHble NMOCOOMS M CTATUCTHUUYECKHE
HMCCASLOBAHUMA.



XII

RESUMEN

El andlisls estadistico moderno constituye el aspecto matemdtico del anilisis
climatoldglco, cuyo objetivo es la prediceidn climatoldgica. Esta Nota Técnica es una intro-
duceidn a los principlos basicos necesarios para la elaboracidén de tales bredicciones. Los
métodos de andlisis que se detallan se ilustran por medio de una serie de ejemplos.

Después de haber definido lo que es una serie climatolégica, con el fin de esta-
blecer la base de un andlisls estadistico valedero, el autor estudia la distribucién de fre-
cuencias que es un elemento fundamental del an&dlisils climatolégico. Siguiendo un orden
légico, se estudia a continuacidén la distribucién acumulativa para la obtencién de las
probabilidades, que representan las predicclones climatolégicas.

Como algunos registros de datos meteorolégicos no forman series climatolégicas
debido a su heterogeneidad, el autor expone seguidamente algunos métodos sencillos que per-
miten verificar dicha homogeneidad. Explica los métodos de las diferencias y los coclentes
utilizados para ajustar, promediar y totalizar las variables e indica sus aplicacliones & los
registros climatoldégicos proplramente dichos. Se exponen también las limitaciones referentes
a la utilizacién e interpretacidén de estos métodos.

Después de estudiar de un modo general el fundamental problema de ta estimacién
de los pardmetros estadisticos, el autor hace un examen critico de los pardmetros estadis-
ticos ordinarios. Muestra asimismo el método que se sigue para determinar el grado de norma-
lidad de varios parémetros estadisticos comunes y define y precisa los limites de confinanza
de la media.

La Nota estudla varias distribuciones fundamentales de frecuencia : distribucién
normal, distribucién gamma, distribucidén de los valores extremos, distribucidn binomial, dis-
tribucién de Poisson y distribucién binomial negativa. El autor da cuenta de las estimaciones
més aproximadas de los pardmetros e incluye instrucciones detalladas para su adaptacién a los
datos. Se exponen ejemplos de su aplicacldén a las serles climatolégicas y se estudia también
la aplicacidén de la distribucién Binomial con el fin de obtener limites de confianza para las
probabilidades estimadas que resultan a partir de una distribucién cualquiera.

Se trata de una manera general del andlisis de correlacién y del de regresién y se
estudia la propagaclién de la varlancia en las serles climatoldgicas, incluyendo el efecto de
la covariancia. Seguidamente se explica con detalle la diferencia que existe entre la corre-
lacién y la autocorrelacidn, la cual sélo puede ser utilizada en esta aplicacién sl va acom-
panada de una serie de datos estacionales. ILas férmulas de propagacién de la variancia se
aplican a una ecuacién que expresa el régimen de enfriamiento en un sistema de acondiciona-
mlento de aire.

El autor estudia detalladamente el andlisis de regresién, inecluyendo la regresién
lineal forzada a través del origen. El andlisis de la variancia se utiliza para verificar
la significacidén de una relacidn y se aplica también a la regresién misma. Se describe el
método de verificacidén de la linealidad y los errores tipo de regresién, asi como tamblén el
error tipd de una prediceién, que es de la mayor importancia. La Nota contiene un ejemplo
completo de aplicacidn del método a una sola variable independiente. Los métodos de regre-
sién simple y de correlacién miltiple se aplican a dos variables independientes y, finalmente,
a numerosas variables independientes.

La publicacién termina con una bibliografia en la que se hace referencia a diversos
textos y documentos estadisticos.




CHAPTER ONE

CLIMATOLOGICAL SERIES

The methods of statistical analysis apply to climatological data
because, to a large extent, if the data are properly taken, sequences of them
behave like random variables. Since statistical analysis only applies to
samples from populations of data, the sequences of climatological data must be
defined so as to be samples from populations. To accomplish this we define a
climatological series as a sample.series of data consisting of one climatolo-
gical value for each year of the record being considered. Thus the 30 January
average temperatures for a 30-year record form a climatological series., The
30 daily precipitation amounts for 1 January form a climatological series. The
90 February, March, and April monthly precipitation amounts do not form a
climatological series but are samples through different populations and are
therefore different climatological series; hence they must be dealt with as
three separate series, The series of 3 720 hourly temperatures for a five-year
record during March does not form a climatological series because there are
24 x 31 different populations, so that really 744 different climatological series
are involved., Under certain circumstances such populations can be mixed to-
gether, as were the February, March, and April seéries above, but the individual
climatological series and populations must first be defined -so that the exact

meaning of the mixture of populations is defined in advance of statistical
analysis,

Climatological series variables may be either discrete or continuous,
Discrete series variables are usually counted values such as the number of days
with precipitation greater than 1.0 mm for each of 30 Junes or the number of
times the visibility is less than 1 km during each of 30 Julys. Continuous
series variables are usually measured values such as temperature and precipita-~
tion, for example the series of 30 totals of spring precipitation (each the
total of March, April, and May).

A climatological series is never more than a sample from a single
population assumed to behave as if it were infinite in extent and having clima-
tic properties such that the observed climatological series is a random sample
from that infinite population, that is to say a sample drawn in a manner inde-
pendent of the individual magnitudes of the members of the infinite population.

1.1 The frequency distribution

The frequency distribution is the basic tool for describing and
analysing the population, This is accomplished by estimating the characteristics
of the population frequency distribution from the sample or climatological
series, To accomplish this the data of the climatological series are tallied
in class intervals which are divisions of the range of the climatological
variable. The number of class intervals is best taken to be between 10 and 20,
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This divides the difference between the largest and smallest value or range of
the climatological series into from 10 to 20 equal divisions, The procedure
for division into class intervals is best illustrated by the following example
for August precipitation amounts (in mm) for Geneva, Switzerland. The 30-year
record for 1927-1956 given in the following table is used.

TABLE 1

August precipitation (mm), Geneva, Switzerland

Year P Year ] Year P
1927 250 1938 79 1949 49
28 147 39 85 50 110
29 83 40 18 51 100
30 108 41 105 52 125
31 171 42 48 53 57
32 62 ‘ 43 : 41 54 206
33 67 44 44 55 107
34 119 45 133 56 144
35 - 157 46 | 158
36 23 47 54
37 78 48 72

To find a class interval for this climatological series we follow our
rule: the highest value is 250 mm and the lowest 18 mm, This gives a range of
232 mm, Since 20 mm is a convenient division and gives 13 divisions, this is
a suitable class interval., Tallying these by classes we obtain the following
table of precipitation p and frequency f:

TABLE 2

Frequency distribution of August precipitation, Geneva

P f P £
0-19 1 140-159 4
20-39 1 160-179 1
40-59 6 180-199 0
60-79 5 200-219 1
80-99 2 220-239 0
100-119 6 240-259 1
120-139 2

If these frequencies are plotted as blocks proportional to f on the
scale of precipitation, +the histogram of precipitation for Geneva is obtained.
The values of f may be divided by 30, the number of years in the climatological
series, to obtain the relative frequencies in each class interval., These sample
values are estimates of the probabilities in the population of precipitation
amounts in the various class intervals,
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1,2 The cumulative distribution

Usually the climatologist is more interested in estimates of probé-
bilities over several class intervals which are more conveniently obtained from
the cumulative distribution. The latter also provides better estimates of the
probabilities, since the arbitrary division into class intervals, as in Table 2,
tends to waste some of the information on the population given by the climato-
logical series.

To obtain the cumulative distribution the data are first put in order
as in the following table:

TABLE 3

Cumulative distribution, August precipitation

m D F m P F m P F
1 18 0.032 11 72 0,355 21 119 0.677
2 23 0.065 12 78 0.387 22 125 0.710
3 41  0.097 13 79 0.419 23 133 0,742
4 44 0.129 14 83  0.452 24 144 0,774
5 48 0.161 15 85 0.484 25 147 0,806
6 49 0.19%4 16 100 0,516 26 157 0.839
7 54 0.226 17 105 0.548 27 158 0.871
8 57 0.258 18 107 0,581 28 171 0.903
9 62 0.290 19 108 0.613 29 206 0.935
10 67 0.323 20 110 0.645 30 250 0,968

The F values are the cumulative relative frequencies or estimates of
the cumulative population probabilities, and are obtained by the formula
F = m/(n + 1) where m is the mil value in order of magnitude of the clima-
tological series and n is the number of terms in the climatological series, in
this case 30, The division by (n + 1) instead of n gives a better estimate of
population probabilities especially at the ends of the distribution. It can be
shown that m/(n + 1) gives the best simple estimate of the probabilities.

The T values give the probabilities that precipitation is less than
any value shown in the table. For example, the probability that p is less than
62 mm is 0,290, and that it is greater than 62 mm is 1 - F = 0,710, Note that
when probabilities are estimated for a continuous random variable, such as
precipitation, it is a misunderstanding of sampling principles to use the wording
"equalled or exceeded" or "less than or equal to", for the probability of any
exact value occurring is zero. The probability that it is between 62 and 125 mm
is 0.710 - 0.290 = 0.420. Thus the cumulative distribution gives all the infor-
mation available from histograms, and much in addition, since it uses every
value of the climatological series individually to obtain the probability esti-
mates. The sample cumulative distribution may also be put in graphical form
by plotting F on the ordinate against p on the abscissa and connecting the points

by straight lines. Climatological series with discrete variables may also be
treated in a similar manner.

The average temperatures for August for Geneva shown in Table 4 may
be analysed in a similar fashion as another example., The series has been
arranged in order of magnitude in Table 4.
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TABLE 4

Average temperature (OC), August, Geneva

m t F m t F m t I

1 16,9 0.032 11 18.6 0.355 21 19.8 0.677
2 17.4 0.065 12 18.7 0.387 22 19.9 0.710
3 17.5 0.097 13 18.7 0.419 23 20.3 0.742
4 17.8 0.129 14 18.9 0.452 24 20.4 0.774
5 17.9 0.161 15 18.9 0,484 25 20.7 0.806
6 17.9 0.194 16 19,2 0.516 26 20.8 0.839
7 18.1 0.226 17 19.3 0.548 27 20.9 0.871
8 18.3 0.258 18 19,5 0.581 28 20 .9 0.903
9 18.5 0.290 19 19.5 0.613 29 22.0 0.935
10 18.6 0.323 20 19.7 0.645 30 22.9 0.968

. Note that since the record length is the same, the F values are the
same as in the previous table, and hence have the same interpretation as pre-
viously. The estimated probability that the average temperature for August at
Geneva is less than 20.3°C is 0,742, and that it is greater than 20.30C is
1 - 0.742 = 0.258, The mean recurrence interval or return period (i.e the

average time between occurrences) for values exceeding any value t is 1 .
' (1 - F)
Hence for temperatures exceeding 20.3°C the mean recurrence interval is
1 or about four years,
0.258
1.3 Homogeneity of data series

A data series is said to be homogeneous if it is a sample from a
single population. Hence by definition a climatological series is homogeneous
and elementary probability analysis must be applied only to climatological
series, The previous temperature and precipitation series were, of course,
analysed on the assumption of homoganeity. If a series is not homogeneous,
adjustments must be made so that statistical estimates will be valid estimates
of the population parameters applying to the last terms in the series, or so
that they are estimates obtained from a hypothetical homogeneous series in-
cluding the latest data as elements.

In cases where instrument exposures have changed it is necessary to
make a statistical test to ensure homogeneity. Many of the older methods of
testing for homogeneity were incomplete in the sense that they provided inade-
quate criteria for accepting or rejecting the hypothesis of homogeneity. The
valid test of homogeneity is a statistical test of hypothesis which provides
a hypothesis of homogeneity (null hypothesis) and a rule for accepting or
rejecting this hypothesis on the basis of probability of occurrence., Thus if
the probability of the evidence for homogeneity is small, it is concluded that
the series is heterogeneous; if it is large, the decision is for homogeneity.
The rule specifies the probability limit {significance limit) beyond which the
hypothesis of homogeneity would be rejected and some alternative to homogeneity
accepted. In most instances distributions on the null hypothesis and the alter-
natives to homogeneity are difficult to specify; hence the so-called non-
parametric tests must ordinarily be used.
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The alternatives to homogeneity in a series of meteorological data
are usually slippage of the mean, trend, or some form of oscillation. Since
these alternatives, especially the latter, may be difficult to specify exactly,
it is best to use a non-parametric test which does not require exact specifi-
cation of these alternatives or the null distribution. A well-known non-para-
metric test which is sensitive to all of these alternatives is the run test.
This test is made by counting the number of runs u above and below the median
or middle value in a naturally ordered series, and testing this by means of a
table of the distribution of u. The test is best illustrated by applying it

to the August average temperatures for Geneva. These are given in their his-
torical order in Table 5. '

TABLE 5

Runs for observed Geneva temperature series

1927 17.4 B 1942 19.9 A
28 20.9 A 43 20.9 - A
29 18.7 B iy 22.9 A
30 18.7 B 45 18.9 B
31 16.9 B 46 19.2 A
32 20.8 A
33 20.4 A 1947 22.0 A
3 17.9 B 48 18.9 B
35 18.1 B it} 20.7 A
36 18.5 B 50 19.7 A

51 19.5 A

1937 19.5 A 52 20.3 A
38 18.6 B 5% 19.8 A
39 18.6 B 5k 18.3% B
4o 17.9 B 55 19.3 A
i1 17.8 B 56 17.5 B

From Table 5 it can be seen that the median or middle value is
between 18.9 and 19.2. It may be taken as half-way between these two values
or 19,05, Using this value the entries in Table 5 may be marked with a B if
they are below this value and with an A if above this value. The runs then

are marked as sequences of A and B. The total number of runs is seen to be
u = 15. '

It is clear that too many runs would be an indication of oscillation,
while too few runs would be an indication of a trend or a shift in the median
during the sample record. Hence, if the probability of a u being exceeded were
small, an oscillation would be suspected; whereas if the probability of being
less than a sample u were small, a trend or shift in median would be suspeéected.
If the probability of being either greater than or less than u is large, ‘then
neither oscillation nor trend is suspected and the series is said to be homo-
geneous or from a single population. To make this test a distribution table
of u is required. This is given below. Since the median was chosen, the

number of values above the median N, will equal the number of values Ny below

the median; hence the table is for NA = NB'
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TABLE 6

Distribution table of number of runs u

NA = N.B
P P

N, 0.10 |0.90 N, 0,10 1]0.90
10 8 13 19 16 23
11 9 14 20 16 25
12 9 16 25 22 30
13 10 17 30 26 36
14 11 .| 18 35 31 41
15 12 19 40 35 by
16 13 20 I5 ko 52
17 14 21 50 45 57
18 15 22 ‘ ’

Table 6 gives the lower and upper 0.10 significance limits, i.e,
for probabilities P of 0.10 and 0.90. Significance limits of 0.10 are most
satisfactory for many meteorological applications because, on account of
frequent high variability, it is desirable to increase the significance limit
probabilities since this in turn will increase the chances of accepting the
alternative hypothesis. Since u is discrete, the u values shown in the tables
are those corresponding to the probability closest to 0.10 and 0.90. The
maximum divergence from exact probability values is + 0.03. If a sample u is
below the lower limit, heterogeneity is due to trend or mean slippage; if
above, to oscillation,

In order to illustrate further the application of the runs test the
series in Table 5 has been deliberately made heterogeneous by subtracting loCy
from each of the first 12 years of record and subtracting 0.50C from each of‘the
next eight years. The heterogenecous series is shown in Table 7 (see following

page).

It was seen in Table 5 that uw = 15 for Ny = Ny = 15. The upper and
lower limits from Table 6 for Np = 15 are 12 and 19. wu = 15 is within this
range; hence this u is not significantly different from those expected from
homogeneous series, and the series is concluded to. be homogeneous.
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TABLE 7

Runs for heterogeneous Geneva temperature series

1927 16.4 1934 16.9 1945 . 18.4
28 19.9 35 17.1 46 18.7
29 17.7 36 17.5 47 22.0
30 17.7 37 18.5 48 18.9
31 15.9 38 17.6 49 20.7
32 19.8 39 18.1 50 19.7
33 19.4 40 17.4 51 19.5

41 17.3 52 20.3
42 19.4 ' 53 19.8
43 20.3 ﬁ 54 18.3
44 22.4 55 19.3

56 17.5

The number of runs is reduced to 11 by the two shifts of the mean
which in effect produce a kind of trend. Table 6 at N, = 15 shows that the
probability of less than 12 runs is 0.10; and since Table 7 has only 11 runs
the heterogeneity was found by the test, Of course it was already known that
the heterogeneity was there because it was introduced deliberately. It will
naturally be suspected from this example, and correctly so, that the ability
of such tests to find heterogeneities when the exact alternatives to homogeneity
are not known will not be very good, This brings out the very important point
that the best way to determine heterogeneities is to determine their cause in
the history of the record., If the history of a record shows changes which could
cause heterogeneities and which can be described according to period and
character, more powerful parametric tests such as Student's t—test may be
employed to determine the significance of the heterogeneities. Such tests,
however, may only be employed where the periods and character of the hetero-
geneities are known a priori.

1.4 Adjustment of climatological means

Heterogeneity in climatological data series is usually due to some
disturbing factor such as change in station location or change in exposure.
Although in the past attempts have been made to homogenize series having such
disturbances, it must be made very clear that it is not possible to homogenize
a series in the sense that a new series of individual values is derived with
the same properties as a sample from the proper hypothetical population. In
other terms, if the data from a particular station are unavailable for a parti-
cular period of record, it is impossible to reproduce the individual items of
the series for that period. The reason for this is that any adjustment disturbs
the variability of the series and hence changes the scale or dispersion of the
frequency distribution. It is possible, however, to adjust certain statistics
of the series so that these adjusted values are in effect like those estimated
from samples taken from the proper hypothetical population. The most common
application of such adjustments is to the means of data series for the purpose
of obtaining normals. It is recommended that such adjustments be made if
possible only on the basis of a priori known heterogeneities.
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It may be shown by theoretical analysis that the classical difference
and ratio methods are close to optimum for the adjustment of temperature and
precipitation means. Such adjustments are often made to compensate for missing
records and to remove heterogeneities. The difference method employs the differ-
ence between temperature means of two concurrent homogeneous series as an
additive factor on the available series mean. The ratio method employs the
ratio of precipitation totals or means of two concurrent homogeneous series as
a multiplying factor on the available series total or mean. The adjustments
are best illustrated by examples.

The method involves using a supplementary station with a concurrent
homogeneous record., This station should be as close as possible to the station
to be adjusted, as the effectiveness of the adjustment depends on the correla-
tions between the two stations, Usually a station less than 80 km from the
station to be adjusted, and in the same climatic régime, will serve the purpose.
Several supplementary stations may be averaged and used as the supplementary
record, but this usually does not increase the correlation greatly. If a
supplementary station does not have a complete record the adjustment may have
to proceed by stages, a different supplementary station being used for each
period of record.

1.4.1 The difference method

In Table 7 deliberate heterogeneity was introduced into the average
temperature record by subtracting 1.0°C from each of the first 12 years, 0.5°C
from the next eight, and leaving the last ten unchanged. It is now assumed
that during each of the first two periods the station was moved or the exposure
of instruments changed, and that it is desired to adjust the 30-year mean to
the exposure during the last 10 years. This is a typical adjusitment problem.
Other arrangements of the heterogeneltles in & record are easily taken into
account by a simple variation in the adjustment procedure.

To adjust the means of temperature and precipitation of the Geneva
record, given the dates of heterogeneous periods and therefore also the dates
of homogeneous ones, it has been found convenient to use Lausanne as the supple-
mentary station. It is not presumed that Lausanne is the best supplementary
station. It is only used because it serves the purpose of illustrating the
adjustment of a known heterogeneity. The adjustment formula for temperature is

y = a+x (1)

Here X is the mean for the homogen¢ous period at the supplementary station
corresponding to the heterogeneous period at the station whose record is being
adjusted, and y is the adjusted mean., The adjustment constant a is estimated
by the equation

a = ;7’ -1 (2)

Here v and u are the means from concurrent periods of homogeneous record at

the supplementary station and the station being adjusted respectively. The
process of adjustment for temperature then consists of estimating a, using con-
current homogeneous records at the supplementary station and the station to be
adjusted, and substituting this value in turn in Equation (1) to obtain the
adjusted mean y. The y values for the various parts of the 30-year record are
then weighted according to length of period in years and averaged to obtain

the adjusted 30-year record.
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The means for each period were obtained from Table 7 which is arti-
ficially heterogeneous. These are shown in Table 8:

TABLE 8

Mean temperature adjustment for Geneva

Lausanne X Geneva—unadjusted Geneva y
means
1927-38  17.9 (17.9) 19.3%
1939-46  18.4 (19.0) 19.8%
1947-56 18.2 19.6 : . 19.6
Adjusted record mean 19.5%

Substituting the homogeneous values for u and v in Equation (2)
gives an estimate of the adjustment factor a = 196 - 182 = 1.4, Inserting this
in Equation (1) and substituting successively the homogeneous values 17.9 and
18.4 gives y = 17.9 + 1.4 = 19,3% and y = 18.4 + 1.4 = 19.8% the adjusted
values. Next multiplying the values of y by 12, 8, and 10, their respective
lengths of record, summing these and dividing by 30 gives the weighted mean
19.5%, This is the estimated adjusted mean of August average temperature for
Geneva. Note that this compares favourably to the actual value for the undis-
turbed record 19,3, The procedure provides the best estimate of the hypothe-
tical mean for the 1927-1956 record at Geneva based on the homogeneous period
1947-1956.

1.4.2 The ratio method

In order to illustrate the application of the ratio method of adjust-
ment which must be used for precipitation, the Geneva precipitation record for
1927-1956 was made heterogeneous by being subjected to a change of scale, the
precipitation for each of the first 12 years being multiplied by 1.20 and each
of the next eight by 0.90, the last 10 being left undisturbed. The resulting
heterogeneous series is shown in Table 9. ‘

TABLE 9

Heterogeneous precipitation series, Geneva, August

1927 300 1936 28 1947 54
28 176 37 94 48 72
29 100 38 95 49 49
30 130 39 7 50 110
31 205 40 16 51 100
32 74 41 95 1 52 125
33 80 42 43 53 57
34 143 43 37 54 206
35 188 44 40 55 107

45 120 56 144
46 142
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Before proceeding with the adjustment it is easy to test the homo-
geneity of the series to provide a further illustration of the use of the run
test. Of course this test is really unnecessary, for the heterogeneities are
known a priori, In this instance the median may be readily found by ordering
the data to be 97.5 mm. The runs of values above and below the median may be
marked as shown in Table 9. This is seen to give the number of runs u = 9.
Since Ny, = N, = 15 as with Table 7, the upper and lower significance limits
12 and 19 are the same as previously., The value 9 lies outside this range;
hence the series is not homogeneous. As would be expected, u has been made
too small by slippage of the mean values for the periods 1927-1938 and
1939-1946. ‘

Since heterogeneities in precipitation series are scale changes in
the frequency distribution, it is proper to adjust for heterogeneities by scale
adjustment, i.,e. by using the ratio of homogeneous totals. This is seen to be
equivalent to adjusting by the difference of homogeneous means.

By this principle, if y is the precipitation for one unit of the
year on the station to be adjusted, and x is the corresponding value for the
supplementary station, then

Iy = bix o (3)

where the summations are over a period heterogeneous at the station to be ad-
justed. Thus the estimated total precipitation on a unit of the year for a
period of record is equal to the total for the same unit and period at +the
supplementary station times the adjustment constant b. The adjustment constant
b is estimated by the equation:

Iy

b o ———
- | (4)

where Xv is the sum of precipitation over the homogeneous period at the station
to be adjusted and Zu is the sum for the corresponding period at the supple-
mentary station., This, of course, should be the latest period of record for
active stations since it is desired to adjust to a population from which obser-
ved values at the active station location will be obtained. The process of
adjustment consists in estimating b for a homogeneous period by means . of
Equation (4) and applying Equation (3) with this statistic to the heterogeneous
periods, The results are shown in Table 10,

TABLE 10

Mean precipitation adjustment for Geneva

Lausanne Ix Geneva unadjusted Geneva Iy

totals
1927-38 1 602 (1 613) 1 295%
1939-46 753 (570)  609%
1947-56 1 267 1 024 1 024

Adjusted record mean 97.6%
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Substituting the values of Xx and Xy from Table 10 for the homo-
geneous period 1947-1956 for Iu and Xv in Equation (4) gives b = 1 024 _ 9,8 082,
1 267
Inserting this value for b in Equation (3) and successively substituting the
homogeneous totals 1 602 and 753 gives Ly = 0.8 082 x 1 602 = 1 295% and

Iy = 0,8 082 x 753 = 609% the adjusted values, Finally averaging
72 129 + 609 + 1 024

30

mean total precipitation for August at Geneva. The average value of the homo-
geneous 30-year series of August precipitation at Genmeva is indeed 99.9 mm.

yields
= 97.6%¥ mm, This is a near optimum estimate of the




CHAPTER TWO

ESTIMATION OF STATISTICAL PARAMETERS

2.1 Statistics in general

A statistical parameter is a fixed value which is a function of all
of the population values, Thus the mean for a population would be the average
of all the values in that population. Since the entire population of values
is never known in climatology, it is only feasible to estimate population para-
meters from samples or climatological series., Such an estimate of a population
parameter is called a statistic, A statistic is a function of the sample or
climatological series. Statistical parameters may be dealt with only in theory;
in practice, statistics or estimates of the parameters must always be used.

Since every function of a random variable is also a random variable,
statistics are random variables and are therefore subject to random variation
similar to that in a climatological series, ZEvery climatological statistic is
therefore a random variable which forms a population for which there is a fre-
quency distribution. The variability of this frequency distribution about the
population parameter is called the dispersion of the statistic. There are
always a number of functions of the sample or statistics which estimate +the
same population parameter, The best of these estimates will have the smallest
dispersion. The estimate with the least dispersion will in general extract the
most information from the sample on the value of the population parameter. The
dispersion of a statistic decreases with increase in sample size, hence statistics
for long climatological series have less dispersion than those for short climato-
logical series. ©Since poor statistics have greater dispersion, their use in
effect discards climatological record and thus is wasteful of usually scarce
record length; it is therefore to be avoided if possible. An example is the
use of the median to estimate the centre of a normal (Gaussian) distribution
(for example a climatological series of temperature which has a distribution
close to normal). Both the median and the mean are statistics for the centre
of a normal distribution. The median, however, has a larger dispersion than
the mean and in fact requires a climatological series about one third longer
than the mean to obtain an equally good estimate of the centre of the distri-
bution. A number of other inefficient statistics are used in climatology, for
example the mean absolute deviation as an estimate of the standard deviation,
and also certain short-cut estimates of the correlation coefficient. Statistics
with the smallest dispersions are called efficient. It is naturally advantageous
to employ either efficient statistics or those with high efficiencies in climato-
logical analysis. If the distribution form is not known, little exact informa-
tion can be inferred about the efficiency of a statistic.

While it is always desirable to use the most efficient statistic
available, it is sometimes also desirable, but not necessarily essential in all
problems, for it to be mean unbiased or what is commonly known as unbiased. A
statistic is said to be (mean) unbiased if the mean of the statistic for m
samples of size n approaches its parameter value as m increases without limit
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or mn approaches the number of values in the whole population. Efficiency and
lack of bias do not naturally occur together. In statistical analysis it is
common practice to choose an efficient statistic and make it unbiased if the

latter property is necessary, as in cases where statistics are to be added or
averaged.

There are in general two kinds of statistics: (a) those which are
direct estimates of the parameters of a frequency distribution, and (b) those
which are estimates of other population properties. The mean and standard

deviation are estimates of the population or distribution parameters of +the
normal distribution, The mean is also an estimate of the population mean or
expected value independent of the distribution form.,

2.2 Common statistics of climatological variables

The mode is defined as the value of the random variable where +the
density of probability is a maximum. If the analytical form of the frequency
distribution is known, efficient estimates of the mode may be obtained by s%b—
stituting efficient estimates of the distribution parameters and obtaining the
maximum of the frequency curve by differentiation. If the analytical form of
the frequency distribution is not known, there is no good method of estimating
the mode. If the sample is large the centre of the class with the highest

frequency may be taken as an estimate of the mode. 1In general the mode is not
recommended for use in climatology.

There has been a good deal written about multimodal distributions
in climatology. Most of the multimodality observed is caused by mixing small
samples from several populations, which gives the false impression that large
samples have been used. In these cases the multimodality is not real but only
an effect resulting from improper statistical analysis.

The median of a population is defined as the value of the random
variable below which the probability of occurrence is 0.50. If the frequency
distribution is known, it may be obtained by integrating up to the value of
the random variable where the probability reaches 0.50., If the distribution
is not known the median is best obtained by reading the 0.50 value from cumu-
lative distributions plotted from data such as those shown in Tables 3 and 4.
Rough estimates of the median may be obtained by taking the middle value of an
ordered series, or, if there are two middle values, they may be averaged to
obtain the median. The median is one of a class of quantities called quantiles
which are defined as Xy, where F is the probability of X being less than Xg.
The median is then the 0.50 gquantile, Quantiles should be estimated from fit-—
ted analytieal distributions where possible, as those obtained either from the
empirical cumulative distributions or from ordered series tend to be more vari-—
able,

The mean is the most used climatological parameter. 1In most cases
it is best to obtain it by summing the climatological series and dividing by
the number of years of record. It has two properties. First, it is an estimate

of the well-known expected value or mathematical expectation, i.e. the mean of
the population, This is important in applied climatology, for the mean of any
linear function of the climatological series is a linear function of the mean
of the series. Second, the mean is the centre of the normal distribution and
is therefore the centre of the distribution for climatological series having
this distribution. The mean, as computed above, is generally optimum for
estimating the expected value for precipitation and ﬁitimum for both the
expected value and the centre of the distribution for temperature.
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The moments about the mean or central moments are also commonly
employed in statistical-climatological work. These are defined for the popu-

lation R by
Bp = fR (x = u) £(x) dx (5)

Here B is the r® moment, u is the mean, f(x) is the probability density
function or frequency curve, and R is the population of interval or region
over which f(x) is defined. The unbiased estimate of the second moment or
variance is

n .
5 r (x - ;)2

s = (6)

n-1

The square root of this value is the standard deviation. The higher moments:
may be estimated by

Eo(x- 3T
T (7)

n

The third moment is often used to measure the skewness and the fourth moment

the flatness of frequency distribution. For these purposes the statistics

m m

g = —% and g, = -% - 3 which are estimates of the parameters Y; and Y, may
s s

be employed. For the normal distribution Y1 Y2 = 0. The statistic

n —
a = E_lf_:_flis often substituted for g, since it has a simpler distribution.
ns
Moments higher than the 4th are ordinarily not recommended for climatological
work since they are highly variable for the short climatological series usually

available,

Again it should be stated that, if good estimates of the distribu-
tion parameters are availahle, Formula (5) should be used directly for esti-
mating the moments. Another statistic occasibnally used is the range. This
statistic is not recommended except for very crude work, since it has a high
variability. Related to the range are the extreme values of record. These
are even more highly variable than the range and depend greatly on the length
of record. The extreme values for each year may, of course, be fitted by
appropriate frequency distributions. Statistics of these distributions give
a much better appraisal of individual extremes. For example, quantiles from
these distributions are independent of the length of record used; hence they
give valid information about unusual values.

The coefficient of variation (or variability) or relative standard

deviation has also been used in climatology. It is defined as the ratio of

s
the standard deviation to the mean —=* The statistic in absolute value depends
X
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on the interpretation which can be given the standard deviation. If the dis-
tribution is not normal the standard deviation has no simple meaning, and hence
an individual relative standard deviation has little value. However, it 1is
useful for comparison with other relative standard deviations from populations
having the same analytical form of distribution. In this case the ordinary
estimate may be an inefficient statistic. A better estimate could be obtained
using the proper functions of the estimated parameters in Equation (5).

2.3 Sampling variability of climatological means

The sampling variability or accuracy of a statistic is often measured
by its standard deviation, which, when applied to a statistic, is commohly
called the standard error. In order for the standard deviation or standard
error to have a valid interpretation, the distribution must be normal or near
normal., Although the distributions of many climatological series are not
normal, the distributions of their means for reasonably long records tend to
normality, This is a result of the central limit theorem which states that
the distribution of means tends to normal with increasing sample size, irres-—
pective of the distributions of individual values, providing the second moments
exist. Since the second moment exists for the distributions of every meteoro-
logical element, their means will be close to normally distributed for reason-
ably long records, such as 30 years.

The sample standard error of the mean of a climatological series is

s(Xx) — %_ , where n is the number of years in the series and s is the standard
n

deviation of the individuals in a climatological series., This is true regard-
less of the form of the distribution. In case the distribution is approximately
normal and the sample size is 30 years or more, confidence limits may be estab-
lished for the mean using normal tables, If s is obtained from n< 30, it is
necessary to use the t distribution tables with n-1 degrees of freedom. Thus,
for nj= 30, the 0.90 confidence interval for the mean X - 1.64s(X)<p<X + 1,64s(X),
where ~1,64 and +1,64 ars the 0.05 and 0.95 values obtained from a table of
the normal distribution. This means that the probability is 0,90 that the true
or population values of the mean will lie omn this interval. Or, if such inter-
vals were computed for successive periods of record of length used for x, 9 out
of 10 of these would contain p. The confidence interval gives a good measure
of the accuracy of X. As in previous statistical tests, 0.90 probability, the
complement of 0.10, has been used because most statistics in meteorology cannot
be expected to attain an accuracy justifying any higher confidence that a para-
meter may be on an interval,

In order to determine how closely the distribution of means approaches

normality, the skewness statistic gl(i) = &1 , and the flatness or kurtosis
%)

g
statistic g,(X) = —E, may be employed. With an extreme case of skewness and
n

flatness the above statistics could; for example, have the sample values

gy = 2 and g, = 6 (a J-shaped distribution) in the original climatological
series, According to the formulas given above, gl(i)is reduced to 0,365 and
go(x) to 0.2 for a 30-year mean. The small departure from normality shown by
these statistics only increases the confidence interval probability from 0,900
to 0.901. The maximum effect at any single probability value will be less than
0.03. Thus, even with such extreme conditions of skewness and flatness in the
climatological series, the distribution of 30-year means may be assumed normal
without risk of serious bias in the probabilities,
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CHAPTER THREE

GENERAL STATISTICAL METHODS

The basic problems of climatological analysis may be classified into
three general types: (1) problems of specification which occur in the choice
of the analytical form of the population, (2) problems of inference which arise
in the estimation of population parameters and in testing hypotheses and estab-
lishing confidence intervals on the population parameters, and (3) problems of
relationship which occur in relating several climatological variables and in
relating climatological variables to non-climatological variables.

The problem of specification is solved by specifying the frequency
distribution- in the population of the climaitological variable. This may be lone
either empirically or using theoretical reasoning. An empirical specification
of the population usually consists of simply assuming the existence of a dis-
tribution of probability whose cumulative distribution has the characteristic
ogive form. This was the approach followed previously in obtaining the dis-
tribution of August precipitation for Geneva, Occasionally on the basis of
examination of numerous samples a mathematical form of distribution may be
specified for convenience of computation., A theoretical specification of the
population distribution is always expressed in mathematical form, This form
is derived from a consideration of the bounds of the variable; scale, location,
and shape behaviour, behaviour in convolution, etc. A theoretical specification
of the normal distribution may result from an application of the central limit
theorem.

The estimation part of the inference problem is solved by providing
the most satisfactory statistics for estimating the population parameters. As
was seen previously the most satisfactory statistics or estimators will be those
having a small dispersion in their distributions. Usually maximum likelihooll
estimates will provide the best estimates of the parameters.

Confidence intervals for the parameter estimates should always be
provided to give a measure of their accuracy. Tests of hypothesis may also be
made to ascertain whether the population meets certain prescribed conditions or
whether the parameters differ from other sets of parameters of similar character.
Previously, for example, tests were made to examine the homogeneity of temperature
and precipitation series, Confidence interval and test of hypothesis problems
are similar in that they both involve distributions of the estimates or statis-
tics,

The relationship problem may involve only climatological variables
or it may involve climatological and other variables. The first problem arises
when functions of elimatological variables are needed to replace climatological
variables which are not available, or to form a new variable which has some
special properties., For example, statistics of daily temperatures may be im~
possible or too expensive to obtain directly, and it may be necessary to obtain



GENERAL STATISTICAL METHODS ' 17

estimates of these from monthly statistics. The degree-day variable is a simple
example of a function of temperature which had special useful properties not
possessed by temperature. The second type of problem, where climatological
variables are related to non-climatological variables, is encountered in every
problem in applied climatology. The basic objective in such problems is +to
develop a relationship which will transform a frequency distribution on the
climatological variable +to one on the applied variable. A simple example would
be a relationship between degree~days and heat consumption in a building which

would give the distribution of heat consumption from the distribution of degree-
days.

Since many of the inference problems of climatology are closely
associated with specification problems, these will be discussed together. The
test of hypothesis problem has already been introduced in connexion with tests
of homogeneity, and space will not allow of further treatment. Purther detail
on the subject is readily available in statistical literature. The relation-
ship problem will be treated separately.

3.1 Frequency distributions

An example of specification of the population has already been
introduced at the beginning of Chapter One, where the empirical distribution
was specified for August precipitation at Geneva, The only theory employed
there was to assume the existence of a population and a random variable, and
hence the set of cumulative probabilities. In many instances of climatological
analysis the specification of an empirical distribution is all that is neces-
sary or justified., It is only where the theory is strong, or where several dis-
tributions are to be fitted and comparison or smoothing of their statistics is
required, that theoretical distributions are fitted., A mathematical fit adds
little in other circumstances.

Frequency distributions are of two general types, discrete and
continuous. In discrete distributions the probability density is a function of
a discrete random variable, i.e. one that varies in steps. The most common
discrete climatological vatiable is (absolute) frequency, for example the
number of hail storms, days with rain, etc. In continuous distributions the
probability density is a function of a continuous random variable, Temperature,
pressure, precipitation, or any element measured on a continuous scale has a
continuous random variable, Often for convenience a discrete “andom variable
may be treated as continuous. Also for special application continuous random
variables may be transformed to discrete random variables. Cloud height, for
example, is a continuous variable which may be transformed into a discrete
variable consisting of heights below and above an arbitrary height h.

While there has been a good deal of consideration given to fitting
frequency distributions to meteorological data, much of this has been empirical
in nature. Often also the fitting has been done to improperly defined popula-
tions such as mixtures of several climatological series which have led to quite
anomalous interpretations. Because of lack of space only the most common dis-
tributions can be discussed.

3.1.1 The normal di§§£ibution

The most important continuous distribution in climatological analysis
and, of course, in statistical analysis, is the normal or Gaussian distribution.



18 CHAPTER THREE

Its frequency or probability density function is 2
1 __% { x-P}
£f(x) =—— e °© o

oV 2w .

whexe p is the population mean and o is the population standard deviation.
p is best estimated by X and o by s. These are obtained from the sample
values x by the relatiomships

n
§=—1—Zx
'n
and
I (x-x)?
s = ——
n -1

The normal distribution function cannot be expressed in terms of
simple functions but must be evaluated by means of function expansions. Many
tables of the normal distribution function and related functions have been
prepared using the variable u = (X = B) as argument. wu is called a standard-

g
ized variable. Using this variable the distribution function becomes
J1 e
1 t 2 *
F(t) = S e du
2w =t

which can be converted to any desired normal distribution simply by varying

g and o, Thus a single normal table with argument t, which is also a table

of the distribution with mean zero and standard deviation unity, may be used to
obtain the probabilities for any normal distribution. F(t), of course, gives
the probability that u is less than t, 1 — F(4) the probability that u is
greater than t, and F(tz) - F(tl) the probability that u is between t; and t,.

The impeotance of the normal distribution in climatology stems, to
a considerable extent, from the central limit theorem. This causes means and
sums of a sufficient number of climatological values to be normally distributed.
For example, rainfall climatological series for short periods for which the
mean rainfall is small would have wery skewed disitributions. As the period
increases several shorter periods are added together and an increase in the
mean occurs. Thus the size of the mean is some measure of how many periods
have been added together; hence, as the mean value gets larger, the sum of
the several compecnent periods approaches a normal distribution. It may be shown
that, under average conditions, periods with a mean rainfall of 500 mm or more
will be close to normally distributed, the greatest discrepancy in probability
being about 0-01 at the median, Even for 250 mm means under ordinary conditions
the largest discrepancy in probability is only about 0,02,

The normal distribution also provides good fits in most instances
to climatological variables which are unbounded above or below, such as tempera-—
ture and pressure. The sample of data fitted must, of course, be a sample from
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a homogeneous climatological series. It must not be a sample from mixed popula-
tions which in the past has led to erroneous conclusions such as frequency dis-
tributions having several modes, etc.

EXAMPLE 1 - NORMAL DISTRIBUTION

It is well known that monthly average temperature tends to be close
to normally distributed. To fit the normal distribution it is necessary to es-
timate the mean and standard deviation., The estimation formulas are

Ix
x = n
and
2 ! 2 1 2
s = [IZX - (£ x) ]
. n-1

The necessary computations are shown below for average January temperature ©C
for Akureyri, Iceland. '

Year Temperature Year Temperature
1932 -2,2 1947 3.2
1933 2.4 1948 -0.5
1934 -0.5 1949 =3.3
1935 1.8 1950 1.7

| 1936 -6.0 1951 -3.5
1937 0.5 1952 -2.,9
1938 -1.3 1953 -0.4
1939 -3.4 1954 1.6
1940 -0.4 1955 -3.5
1941 -3.1 1956 -3.8
1942 1.0 1957 0.8
1943 -2.9 1958 -3.6
1944 -3.8 1959 -5.7
1945 -4.,3 1960 -0.6
1946 2.0 1961 0.0

The sum og the temperatures is -40.70; so x = _i%619 = -1.36°C.
$x2 = 240.49 and (23’8) =1 628'49 = 55,22
1 1 : 1
s = [z w - — (1 x)z] —— [240.49 - 55.22]
n-1 n 29
185.27
= = 6.3986

29

(1]
n

4'6.3986 = 2.,53°C
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The probability values are then obtained from the normal distribu-
tion function table by the equation
x(F) = X + s t(F)

Here x(F) is the x quantile for F and t(F) is the standard normal quantile for
F. To determine x(0.10), i.e., the temperature below which x is expected to

fall once in ten, the normal table gives +(0.10) = -1.28. Hence
x(0.10) = -1.36 - 2.53 x 1,28
= -4,6°C
3.1.2 The gamma distribution

, Since there are a number of zero-bounded continuous variables in
climatology, it is important to give a distribution which may be used for such
variables. The gamma distribution which has a zero lower bound has been found
to fit several such variables well. It is defined by its frequency or proba-
bility density function

1 -
g(x) = x
' r(y)

where B is a scale parameter, Y is a shape parameter, and r(y) is the ordinary
gamnma function of Y.

The moments in this instance give poor estimates of the parameters.
Sufficient estimates are, however, available and these are closely approximated

by
1
SR e
4A 3
and
X
Pp=—
Y

where A is given by

The distribution function, from which probabilities may-be obtained,
is
X
G(x) = [ g(t) at

0

Pearson's "Tables of the Incomplete r-function" gives G(u) where u = X

Y=p+ 1, and u = % . BvVY ’
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The gamma distribution has been found to give good fits to precipita-
tion climatological series. In case these contain zeros the mixed distribution

function of zeros and continuous precipitation amounts may be employed. This is
given by

H(x) =gq + p G(x)

where q is the probability of a zero and p = 1 - q. Thus when x = 0, H(0) = q

as it should be. If m is the number of zeros in a climatological series, q may
be estimated by 2 .

EXAMPLE 2 - GAMMA DISTRIBUTION

The gamma distribution has been found to fit precipitation data
closely. To fit this distribution it is necessary to estimate B and y which
are obtained from the maximum likelihood solutions.

1 4A
Yy = — (1+ 14+ —)

4A 3
and

where

21ln x

The necessary computations for the November precipitation (mm) for
Reykjavik, Iceland,are shown below.

Year Precig%tation In x Year Precip%ﬁation In x
1932 151.0 5.0173 1947 13.3 2.5877
1933 116.1 4,7545 1948 99.2 4,597 2
1934 74.9 4,3162 1949 72.0 4.2767
1935 58.8 4,0742 1950 57.9 4.0587
1936 91.4 4.5153 1951 25.1 3,2229
1937 44,3 3.7910 1952 60.0 4.094 3
1938 51.4 3.9397 1953 86.9 4.464 8
1939 50.2 3.9160 1954 147.2 4.991 8
1940 79.0 4,3694 1955 37.0 3.6109
1941 108.5 4,6868 1956 193.3 5.264 2
1942 87.0 4,4659 1957 58.7 4.0725
1943 129.2 4,8614 1958 212.1 5.357 1
1944 41.5 3.7257 1959 44.3 3.7910
1945 101.3 4,6181 1960 26.8 3.2884
1946 53.4 3.9778 1961 96.4 4.568 5
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2 468.2 _ 95 273 and

v From the table it is seen that x = ZX =
In X = 4.4100, Averaging the logarithms gives-):l;lX = 127é8760 = '4,2425,

Hence A = 4.4100 -~ 4.2425 = 0,1675,

J 0.1675
1+ V1 +4 —

5 3 ’
Y = ' . . : .
4x 0,1675
= 3.14
and

82,27

B = = 26,20
3.14

To determine the probability that the precipitation is less than
50 mm it must be put in standard form t(F) = _%, = _20 =1.91. From tables
26.20
of the gamma distribution it is seen that for§\: 3,14 and t+ = 1.91, F = 0.28.
Hence the probability of the precipitation being less than 50 mm in 0.28.

3.1.3 The extreme value distributions

Often in design problems the climatological variable of interest is
the annual extreme, either upper or lower. This arises from the fact that if a
designed structure can withstand the highest (lowest) value in a year it can
also withstand all other values in the year. Hence a distribution of annual
extreme values furnishes the proper climatological prediction. Up to the
present the Fisher-Tippett Type I distribution has been of main interest. It
has been widely applied by Gumbel. Its distribution function is given by

F(x) = exp {-ei B -J

Here the negative of the double sign holds for maximum values and the positive
sign applies for minimum values. The Type II distribution, which is an ex-
ponential transformation of the Type I distribution, has also been employed in
climatology. It may be fitted by using the Type I distribution on ln z (see
Example 3).

. As with most other skewed distributions the moments give poor estimates
of the parameters. Lieblein has provided a simple method of fitting the Type I
distribution which gives estimates of the quantiles with minimum variance. This
is a desirable property for climatological work, for our ultimate objective is
always to obtain quantiles or probabilities.

The Lieblein fitting procedure involves carefully maintaining the
original time order of the climatological series and dividing into suitable
subgroups for the computations. The following table of weights is needed in
the computations.
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TABLE OF ORDER STATISTICS WEIGHTS

m X l X.2 X 3 X 4 X.S X.6
1
2 2, 0.91637 0.08363
] -0.72135 0.72135
3 a j 0.65632 0.25571 0.08797
b 3 -0.63054 0.25582 0.37473
4 ey 0.51100 0.26394 0.15368 0.07138
by -0.55862 0.08590 © 0.22392 0.24880
5 a ; 0.4189% 0.24628 0.16761 0.10882 0.05835
b ] -0.50313 0.00653 0.13045 0.18166 0.18448
6 a | 0.35545 0.22549 0.16562 0.12105 0.08352 0.04887
b.J -0.45928 -0.0%599 0.07319 0.12673 0.14953 0.14581

As previously, the sample climatological series is assumed to have n
values. Retaining the original time order these n-values are to be divided
into subgroups of size m. It will be noted that the table of weights allows
m to be chosen from 2 to 6. It is best to choose m as large as possible. Thus,
if the sample size is 30, m = 6 would be chosen rather than m = 5. If n is not
divisible by m = 4, 5, or 6, an additional weighting will be necessary. First
consider that n = 30, The sample is maintained in original time order and
divided into k = 5 subgroups of m = 6. The values within the subgroups are
then arranged in order according to increasing magnitude. The ith subgroup.
would then appear as Xi19 Xj25 X35 Xjqy Xi55 Xig- All ordered subgroups are
then arranged as in the table on page 24 The dot indicates no operation on
the subscript it replaces.

Each column of x is first summed to obtain the § ;. These are multi-
plied by tha a_ ; and summed to obtain the row sum. Next the S . are multiplied
by the.b.j and summed to obtain the second row sum. X

In the Type I distribution function the exponent {x=4) j5 a standard-

ized variable, in other words it is a variable located at a and scaled in B.
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*11 X2 *13 X14 X15 *16
X5 X5 X33 Xo4 X5 *26
%31 %32 %33 X34 X35 *36
*41 X42 *43 Xa4 *45 *46
*51 X52 *53 X54 *55 %56
5.1 S o 5.3 S 4 S5 56
a.l a 2 a 3 a 4 a 5 a 6
6
2151 28, as845 a8, eSS a8 a8
by b5 b 4 by b5 b6
6
b8y b8, PS5 b S, bS5 b S Ib LS

If XP is a quantile in x (a value of x corresponding to F = p), then

X -a
p
Yp = B
and
X = a
P * pyp
Lieblein showed that a minimum variance estimate for a given Yp is
given by '
% m m
x = X a 8 /k+ (b ,5 _fx
P J=1 ".j .J/ ( -J -J/ )yp

Thus the minimum variance estimates for a and p are

*
a

TS

an,s.j/k

<

j=1

and

m
= I b .5 ./x
P #1058
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For the sample of 30 under consideration they are

6
*
a = za.js.j/s
and.
6
*
= Xb .S ./5
B 5.

When these values are substituted in the Type I distribution function, estimated
probabilities are obtained.

In case m = 5 or 6 is not an even multiple of the sample size n, a
further simple computation is necessary. Suppose that n = 33 instead of 30,
The last three values of the sample climatological series then form an addi-
tional subgroup m' = 3. These values are also arranged in order of increasing

magnitude, giving xg7, Xg2, and Xgge A similar table is formed with the weights
for m' = 3 as follows:

X61 X62 %63
&1 & 0 &3
a X a X a. X 3
.1%61 2562 .3%63  za .x,.
6]
by b5 b5
3
b 1¥e1  Po¥ea  P3¥e3 TP 5%

The estimator for this sample is then as before

3

+ (Z b.jXGj)yp

*
u = a ,X_.
P 363

Lieblein has shown that the estimator for v. the quantile for the
variable in.the sample n = 33 is P

* km ¥ m'
V. = —x_+ —u
P n Pp n P
For the final estimates this gives
6

3
* 1
- My, .S ,/5+m—2a S .
n i n .35
and
6 .

* t 3
B.o= Myy s /5423 5,
n «J oJ n ed o



26 CHAPTER THREE

The fitting of any sample size is a simple variation of tke above procedures.
For minimum values or lower extremes the magnitude order arrangement in the
rows of the computation tables is reversed, i.e. instead of going from low to
high values they should go from high to low values. All other parts of the
tables remain the same.

EXAMPLE 3 - EXTREME VALUE DISTRIBUTIONS

The commonly used distribution is the Type I. The Type II distribu-
tion has, however, been found useful in fitting extreme winds. . Its distribu-
tion function is F(x) = exp[:fﬁzj)"{]. Since the Type I distribution on the

: 2

logarithms is a Type II distribution, the fitting of both distributiens may be
illustrated by fitting the Type T distribution to the logarithms of annual
extreme winds, in this instance the fastest mile of wind in miles per hour.

The computations are carried out for data of the airport at Birming-
ham, Alabama. Since engineers want design winds at a standard level, in this
instance 30 feet (10 m), and anemometer heights vary, it is necessary to reduce
all wind speeds to 30 feet. This is done by the power law where the exponent
for this airport is assumed to be %. The formula in terms of logarithms is

In 30 -~ 71n 2z

In v(30) = 1n v(z) + -
7
v(z) is the speed at the anemometer height z and v(30) is the speed reduced
to 30 feet. The computations are carried out in the table.

Year v(z) In v(z) z in z llL;ﬂlﬁ?_LE_Eh 1n v {30)
1944 52 3.9512 62 4.,1271 -0.1037 3.847s
1945 54 3.9890 n n n - 3.8853
1946 49 3.8918 " n n 3,7881
1947 48 3.8712 63 4.1431 -0.1060 : 3.7652
1948 47 3.8501 " n " ) | 3.7441
1949 49 3.8918 " " " 3.7858
1950 47 3.8501 n " " : 3.7441
1951 65 4.1744%4 " n " 4,0684
1952 60 4.0943 " n n '3.9883
1953 47 3.8501 " " n 3.7441
1954 48 3,8712 " n n 3.7652
1955 65 4.1744 " n " 4,0684
1956 56 4.0254 n " .o 3.9194
1957 56 4.025% " " " 3.919%
1958 45 3.8067 n n n 3.7007
1959 52 3.9512 n 4.1431. -0.1060 3.8452
1960 59 4.0775 " " L 3.9715
1961 54 3.9890 n " n 3.8830
1962 43 3.7612 " n n 3.6552
1963 47 3.8501 " " : n 3.7441
1964 43 3.7612 n " " 3.6552
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\Q 1 2 3 4 5 6
a . 0.35545 0.22549 0.16562 0.,12105 0.08352 0.04887
b'% -0.45928 -0.03599 0.07319 0.12673 0.14953 0.14581
1 X. X. X. X X. X.
& 11 12 13 14 15 16

1 3.7441 3.7652 3.7858 3.7881 3.8475 3.8853

2 3.7441 3.7441 3.7652 3.9883 4.068% 4.068%

3 3.7007 3.8452 3.8830 3.9194 3.919%4 3.9715
S 11.1889 11.3545 11.4340 11.6958 11.8353 11.9252
\ 1 2 ;

2 0.65632 - 0.25571 0.08797
b -0.63054 0.25582 0.37473
xig 3.6552¢C 3.66520 3.74410
For convenience in using the computational notation let x = 1n v(30).

The best division into subsamples is three of size six and one of size three.
For the three groups of six the a and b tables of subsample size six are em-
ployed, giving

and

as seen under the wind speed table.

and

Il

I

6

I a iS00 11.4183
3 B 3

6

2 b'j -5 0.2800
3 3

3
T a.j xlj = 3.6656
3
I b. = 0.0359

i1

3,8061

0.0933

Similarly for the single group of three
the a and b tables of subsample size three are used, giving

Since the six groups contain 18 of the 21 values their weight is

For the single

and

a*

I
Il

three group it is

0.8571

3.78¢80

3_ _
57 = 0.1429
x 3.8061 + 0.1429

Hence

x 3.6656

0.8571 x 0.0933 + 0.1429 x 0.0359

0.0852

18 _ o.8571 .
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These are the parameters for the Type I distribution of 1ln v. . The parameters
for the Type II distribution are given by By = exp aand Y = Iﬁf Hence

pz = exp 3.7860 = 44.08
and
Y = —— = 11.74
0.0852

Quantiles are readily obtained by taking logarithms twice of the
distribution function giving

In 1ln Cl)
B
in v(F) = lnB2 - 7"—
Hence for F = 0.98. a common desigb value,
~3.9021
v(0.98) = exp [3.783 - '—h—-]
' 11.74
= 61.3 miles/hour
3.1.4 The blnomlal distribution

This distribution does not in general fit cllmatologlcal data well
because of correlations which occur when the probabilities of occurrence are
high enough to meet one of its requirements for application. It is important,
however, because it is related to the Poisson and negative binomial distribu-
tions, which apply respectively for small probabilities (rare events, often
uncorrelated) and for correlated events. Because of this relation it has
occasionally been used to give simple rough probability estimates to replace
the more crude observed extreme relative frequencies. The most important
aspect of the binomial distribution in climatological analysis is that it is
the distribution of the estimated probabilities obtained from any distribution
function, empirical or theoretical. This makes it possible to obtain confi-
dence limits for estimated probabilities and quantiles.

The binomial probability function is given by

() = (M )™

wvhere p is the probability of an event occurring, l-p is the probability of
the event not occurring, x is the frequency of occurrence, and x can take the
values 0, 1, ..., m. The distribution function is given by

. ; ™ t m-t : -
F(x) = 2 Q) p (1-p)" ", t=0,1, ceuym

This, of course, gives the probability that the frequency is x or less. ©p is
usually estimated by %? where n is the total number of occurrences and non-

occurrences of the event. The climatological events which might be considered
in this category are widely varied, for example days when it hailed and days
when it did not; days when it rained and days when it did net; days with
rainfall less than an amount u and those with rainfall greater than uj; obser—
vations with visibility less than V and thosewlth visibility greater than V, etec.
Most of these variables have the limitation that they are correlated and that -
the binomial distribution can therefore only be used for rough biased estimates
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of probabilities where only summarized data are available or results are needed
quickly.

The important application of the binomial distribution in climatolo-
gical analysis is to obtain confidence bands for estimated probabilities. It
may be seen that when an estimate F(h) of the probability that x<h is obtained
from any distribution function, theoretical or empirical, the probabilities in
random sampling are divided into those less than h and those greater than h.
These form a binomial distribution. If the sample size is m and ¢ values are

¢ ) :
F, ¢, lies on thg interval P, <L Py

below h, F(h) =2 . Then the true value of
with probability 1 - 2a where 12 and py are given by

a= I (2) pf (1-1>L)m_x
and
1-a = x=g+1 ) py (1-p )"
Thus the probability
P(PpL<d < py) = 1-2x
defines the confidence interval for ¢ with confidence coefficient 1 - 2q. The

formulas have been arranged for use with the "Tables of the Binomial Probability
Distribution" (U.S. National Bureau of.Standards where interpolation must be made
ona and 1 -~ a , the function of the tables in this application. Dixon and
Massey's book "An introduction to statistical analysis" gives convenient graphs
of confidence limits for 1 - 2a = 0.80, 0.90, 0.95, and 0.99. These replace
the formulas and tables for obtaining g and p,» £ . 0.90 is the largest confi-
dence coefficient which should ordinarily be used in climatological analysis.

If the inverted function notation h = F_l(%) is employed, the confi-
dence interval for n the true value of the quantile hy may be expressed as the
probability relationship

P [F"l(pL) <9< F—l(PU)] = 1-2a

This is obtained by simply finding the x values corresponding to F = p;, and
F :'?U of the confidence interval.

It should be noted that both confidence intervals are independent of
the functional form of F which in a sense makes them non-parametric. If the
functional form of F is known, parametric confidence intervals may be available
which will be shorter than those above. However, some authors simply assume that
p and the corresponding gquantiles are normally distributed. This can only give
a good approximation at values near the middle of F(x). For values of F(x) near
0 or 1, it is better to use the binomial confidence intervals. They are slightly
too broad but they reflect the right shape for the distribution of F(h).
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3.1.5 The Poisson distribution

When m becomes large and p approaches zero with the mean p = mp
constant, the binomial distribution approaches the Poisson distribution. Thus
the Poisson distribution fits events with a small probability. Since tHis also
means for climatological series that, on the average, a small number of events
is found in the annual time interval or a portion of it, the correlation between °
successive events will ordinarily be small. The distribution, therefore, fits
annual hail frequency when the mean frequency is not too high, excessive preci-
pitation events, annual tornado and typhoon frequency, etc.

The Poisson probability function is given by

e F
x

£(x) = p

x1

The distribution function is then

x et
= z
Fx) t=0 ¥
t!
Here the only parameter is the mean p which is best estimated by x = Ex .

Probabilities may be obtained readily from F(x) with the aid of tables of ex-—
ponentials and factorials. '

EXAMPLE 4 - POISSON DISTRIBUTION

The Poigson distribution must only be used for frequencies. It
applies for rare events such as annual tropical cyclone frequency, hail
frequency, etc. The application here is to tropical cyclones reaching the
U.8. east coast from 1887-}X956. The series is homogeneous because all tropical
cyclones reaching the coast were easily recorded.

The variable x is the number of storms in a year, g 1is the observed
frequency, g, is the estimated frequency, and F is the estimated distribution
function. The test and fitting computations are carried out in the table. All
logarithmg are to base 10,

2 - ' 2
X g, gx | Bx x log x | log x! log P Pc g, F (gc—go) /gc :
v | @ |G | (5) (6) (7) (8) ) (10) (11)
0 1 0 0 0 . 0 | 1.61990 | 0.0240 1.68 | 0.024
1 6 6 6 |0.57171 0 | 1.04819 | 0.0895 6.27 |0.114 | 0.1135
2 10 20 40 | 1.14342 |0.30103 | 0.77751 | 0.1669 |11.68 |0.280 | 0.2416
3 16 43 144 | 1.71513 | 0.77815 | 0.68202 | Q.2075 |14.53 | 0.488 | 0.1487
4 19 76 304 | 2,28684 | 1.%8021 | 0.71327 | 0.1935 |13.55 |0.681 | 2.1921
5 5 25 125 |2.85855 | 2.,07918 | 0.84053 | o.1444 |10.11 |0.826 | 2.5828
6 8 18 288 | 3.43026 | 2.85733 | 1.04697 | 0.0898 6.29 | 0.916 | 0.4649
7 3 21 | 147 | 4.00197 | 3.70243 | 0.3203%6 | 0.0478 3.%5 [ 0.963
8 | 1 8 |. 64 |4,57368 | 4.60552 | 1.65174 | 0.0223 1.56 [0.986 [ 0.0545
9 1 |9 81 |5.14539 | 5.55976 | 2.03427 | 0.0092 0.64 | 0.995
70 261 | 1199 5.7981
|
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To test for the adequacy of the Poisson distribution

2(69) = (T0x1199) ¢

261

= 60.6
For this value from x2 tables
P[x2(69) >60.6] > 0.70

therefore it is not significant, and the Poisson distribution model is to be
preferred.

The formula for the Poisson density function expressed in logarithms is
log g, = x log X — log x! - 0.434 29 %

In the table all that is necessary is to subtract column 6 and 0.434 29 x =
0.434 29 x 3.73 = 1.619 90 from column 5 giving log P, P is given in column
8 and is the estimate for each x. Multiplying the total frequency 70 by P,
gives column 9 the estimated frequency of occurrence. In column 10 the
frequencies g, and g, are compared by the X2 test whose total is given in the
- footing of +hé table For this test it is necessary to consolidate observed
frequencies less than 5 as shown in column 2, This leaves 7 x~cells from which
one degree of freedom is lost for the total and one for having estimated the

- mean leaving 5. From the x2 table

P[x?(5)>5.798 1] = 0.30
Thus the fit of the Poisson distribution is good.

3.1.6  The negative binomial dlstrlbutlon

The negative binomial distribution is useful in fitting discrete
dichotomous random variables in which the individual events tend to be corre-
lated., Thus, when too many events are packed on the average into an annual
time interval, this distribution tends to fit better than the Poisson distri-
bution., For example, annual hail days and annual frequency of typhoons tend
to be fitted better by the negative binomial distribution when the mean annual
occurrence is high. Continuous data should in general not be fitted with
theoretical discontinuous distributions unless a simple transformation to a
discrete variable is first made, for example to a dichotomous variable. There
are a number of examples of such misfitting in meteorological literature. On
the other hand the fitting of continuous distributions. to discontinuous data
is often useful.

A test of hypothesis is available to test the adequacy of the Poisson
distribution. Thus, if the expression

2
2 Ix

X = n — - Ix
rx

where n is the number years of record, is not greater than the 0.05 value in
a chi-squared table with n-1 degrees of freedom, the Poisson distribution is
adequate, If it exceeds the 0,05 value, the negative binomial distribution
should be fitted.
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The negative binomial probability function is

r{x+k) pr

£{x) =
r(x+1)r(k) (1+P)k+x

The distribution function is given by
X
= I
F(x) = I £(t)
The moment estimates of p and k are
p¥ = — (s2 - %)
X

and

L]

k*

2

where X is the sample arithmetic mean and s¢ is the sample variance.

The moment estimates are not always efficient enough. Fisher has
given a criterion which suggests the use of a better-fitting procedure if the
efficiency falls below 90%. Thus if

(1 +) (k* + 2)=20
p¥*

the method of maximum likelihood should be used. This method of fitting is
too complex to consider here. For details of the method see Thom, 1957.

EXAMPLE 5 — NEGATIVE BINOMIAL DISTRIBUTION

The Poisson distribution has the population mean equal to the

variance. When there is a packing of freguency in individual years, for
example, the variance is increased above the mean. The distribution then
becomes & negative binomial. This is the case with the number of days with

hail (or hail frequency) at Abilene, Texas, for the record 1886-1950. Here
the variance s2 = 5.25 while the mean X = 3.,58. The necessary data for the
fitting computations are shown in the %able on page 33, where x is the number’
of days with hail, g, is the observed frequency of hail days, g, is the
calculated frequency, and k and p are parameters of the negatlve binomial

distribution. All logarithms are to base 10,

To test for adequacy of the Poisson distribution
2(64) — 65 x 1171/233 - 233 = 93.7

For this wvalue from the XZ tables

P(x2(64) =93.7) < 0.02
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Hence the departure from the Poisson distribution is significant and the
negative binomial should be fitted.

The formula for the negative binomial density function is

p**

gc(x) = k

x

rk* + x)

where p* and k* are statistics and k = . The problem is to find

F(x41) T (k¥)

p* and k¥ so that g, can be calculated.

>
2
— log P P
X go g x gox log K b4 log[p+;] og o c gc
(1) | (2) (3) *) (5) (6) (7 (8) (9)
0 3 0 0 0.0 0.0 -1.27820 0.0527 3.43
1 11 11 11 0.885903 -0.49812 -0.89039 0.1287 8.37
2 11 22 4y 1.52394 -0.99624 -0.75050 0.1776 11.54
3 8 2y 72 2.03313 -1.494%6 -0.73943 0.1822 11.8%
L 10 4o 160 2.46006 -1.99248 -0.81062 0.1547 10.06
5 9 45 205 2.82801 -2.49060 ~0.93989 0.1148 7.46
6 7 Dt 252 3.15420 ~2.98872 -1.11272 0.0771 5.01
7 2 1k 98 ©3,44553 -3.48684 -1.31951 0.0479 3,11
8 2 16 128 3, 70046 -3.98496 ~1.55370 0.0279 1.81
9 1 9 81 3.95084 -4,148308 ~1.81044 0.0155 1.01
10 1 _lo 100 4,17329 -4.98120 -2.08611 0.0082 0.53
65 233 1171
2 .
The mean is x = 333 = 3.58. The wvariance is s2 = 1171-(233) /65’
4 65 ‘ 64
5.2466, The moment estimates of k and p are then
k* = = = 7.6901
52 - X
and
s - %
p* = — = 0.4655
X

Log K is found from

gamma function tables using the value of k*,

The last

term in the density function is divided into two factors of which only omne

involves x. 1
is k¥ logr_____.
L

and -1,27820. g

1+p*

The logarithm

is finally obtained from 65 P..
binomial is to be judged by comparing g, and g,.

of this is given in column 6,
]: -1.27820. Log P, is then obtained by adding log K, colum6,

The second factor

The fit of the negative
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This comparison may also be done by Xx2. For this purpose ‘the first

two and last four frequencies must be consolidated. This leaves seven degrees
of freedom, from which two must be subtracted for fitting k and p, leaving
five. Hence

2 (go - g )2
x2(5) =73_'8c = 8’ _ 2,83
gC

From tables

P(x2(5) > 2.83) » 0.70
Thus the fit of the negative binomial is good.

Fisher has shown that the moment estimates are not always efficient
for the negative binomial. To test whether they are adequate he used the

criterion that
C=(1+;—*) (k¥ + 2) > 20
For the present data
C = 30.51
wvhich is greater than 20, so that the efficiency of the moment estimates is

adequate. If C=20 in an example, maximum likelihood estimation should be
employed (see Thom,1957).

3.2 Correlation and regression ahalysis

The most important use of correlation analysis in c¢limatological
analysis is in conmexion with the correlation between climatological series
caused by the natural persistence of the meteorological variable within the
year. Correlation problems also occur in connexion with compound varigbles,
that is where two or more variables are c¢combined into a single 'variable, and
also in connexion with the propagation of variability in relationships of
theoretical or applied problems, Most other applications of correlation are
supplementary to regression analysis.

Regression analysis is applied whenever the objective is to
estimate a functional relationship for predicting the values of a variable
from one or more others. Its main uses are in relating one or more meteoro-
logical variables so that one may be substituted for one or more others, and
in relating applied variables to meteorological variables. There is also some
application to the study of systematic variation of climatological variables in
time, but as this is largely of specialized interest it will not be considered
here. In any case the regression analysis in this instance is only a variation
of that considered here, except that the independent variable is time and the
regression terms may be harmonic functions or of some other form.

3.2.1 Correlation analysis

In a strict sense correlation analysis in climatolqu consists
largely of accounting for the effect of correlation between climatological
series. For example, if the climatological series for the average temperature
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series for 1 and 2 May have sample variances s% and s2 then the series for the
average of 1 and 2 May has a.variance which is affected by the correlation
between the 1 May and 2 May series. Similarly the variance of the average of
the 1, 2, ..., m May series will be affected by the correlations among the m
climatological series., Clearly the climatological series could also be for
weeks, months or any other portion of the year.

Just as it is necessary always to work with climatological series,
so it is necessary to work with the proper correlation coefficients in the
present aspect of climatological analysis. The only correlation coefficients
useful in the type of analysis considered here are those computed between the
two series in any pair of climatological series. If the two series are for
the same element, they will be displaced in time within the yearj hence it
will be possible to have a whole sequence of such correlations. The pairs of
climatological series may be separated by different units of time and so there
will be a time-lag between them. Because of the time-sequential nature of
these correlation coefficients, and to differentiate them from autocorrelation
coefficients, they will be called sequence correlation coefficients. The
sequence correlation coefficient between the ith and jth climatological series
is defined as

E(Xi - pi) (XJ - PJ)

P(Xiyxj) = o o
13

The numerator is the expected value of the product of the departures of the xj
and x; from their respective population means, and is called the covariance.
The denominator is the product of the population standard deviations of x; and

R . 0 » 3 . - 1
Xg. The sample estimate of the sequence correlation coefficient is given by

m
X = I -X -X
r(xl,xJ) kel (Xik xi) (xjk xj)/nsis:j

Here X ig the kth term (year) in the ith climatological §eries, and xij is
the kﬁﬁ term (year) in the jth climatological series, and X X
are their respective means and standard deviations.

i» 843, and Xjs 85
The sequence correlation coefficient should be carefully differen-—
tiated from the autocorrelation coefficient (sometimes called serial correla-—
tion coefficient). The sequence correlation coefficient is really a single
correlation coefficient with a time displacement so that the effect of varia-—
tion in the mean and standard deviation through the year is removed. The auto-
correlation coefficient, on the othér hand, includes the variation in the mean
and Standard deviations. = In the methods discussed here it is always wrong to
use an autocorrelation coefficient.

For the 1, 2, ..., m May climatological series considered above there
are m(m-1) possible pairs of series. Since p(x;, xi) = p(x.,x;), there are only
m(m-1) different sequence correlations.  All of thése mustIbe considered in

2

obtaining the variance of the sum and average Series formed by summing or

averaging for each year. If i and j both rum over the same sequence of series,
the sample variance of the sum may be expressed by

m m 2 m m
viz x ) - 3 s; + zlz s s.s.r(x.,x.)
izl i i=1 * i=1 §>i 173 i
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m
This is the variance of the linear function y :mixi. If the X5 have different

weights ki so that the linear function is y =>i£1kixi’ the variance becomes

mo, 5 m m
= X z 2. k.k.s.s. . .
Viilk X ) i=1ki s; * 2%, i klkaslsJ r(xl,xJ)

It may be noted that when the r(xi,x.) = 0, the relationship reduces to the
simple variance formula J .
m
vz kx;) =
i=1

IME

k?s
1

N

i=1

If m = 2 and k2 has a negative sign the formula gives

2 2 22 '

v(klx1 - k2x2) = kys] + kzs2 - 2k1k251s2 r(xl,xz)
Ir k1 =1 and k2 = -1,

v(x1 - x2) = 8] * 85 - 285 r(xl,xz)
For r(xl,xz) = 0, kl =1, k2 = -1

. 2 2
v(xl—xz) = s] + 85 m
1 ;lx.
If k ==, 80 that the linear function is a simple average 1 — = ,

the variance becomes

m
XX, 1 m A m m
=1

v(l 1) = [ b3 s? + 2.X 1 X, s.s. r(x.,x.)]
m n i1 i i=l j>i i i’

Thus the average temperature for June has a variance formed from the daily
variances and sequence correlations given by

30
I x. 1 30 30 30

v(l_l l) T2 [ Ief+2X I s T(Xi’x'ﬂ'
30 302 izl T is1 jei T !

The variarce of the total precipitation for June based on the 1nd1v1dua1 daily
variances and sequence correlation is

30 30 , 30 30
z = I I3 :
v(3Zyx%;) 12151 * 2 3%y g3 misy rixgixg)

Since monthly total precipitation is not very near to normally distributed,
there would be more interest in the variance of the mean or normal for n years

0
1 g x,. This is 1 v( %O xi).
n i=1 n? \i=l
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All of the formulas also apply where the x. are the variables of
different elements which are observed simultaneously or otherwise. This makes
them useful in applied problems where the relationship with the applied vari-
able is linear. For example, the outside air cooling load for an air condition-
ing system may be closely approximated by the linear relationship

— '

q = klt + kzt + k3
where t is dry-bulb temperature, t' is wet-bulb temperature, and the k results
from purely physical considerations. Since t and t' are nearly normally dis-
tributed around ordinary design levels, the variance of q is important. By
means of the formulas given above

v(q) = k° v(t) + k>

t - [
1 5 v(t') 2k k, r(t,t')

The standard deviation of q is therefore s(q) =Vv(q)
and the mean of q is given by
q = -kl% + kZT-,’ + kg

Thus the normal distribution function N[q; q, s(q)] gives the probabilities
for climatological predictions based on the distributions of + and t°'.

Correlation analysis enters in other ways into climatological ana-
lysis, but most of these analyses are closely connected with regression analysis.
In fact, wherever relationships are desired between random variables, regression
analysis is the proper tool to employ.

3.2.2 Regression analysis

A regression is a functional relationship between an independent
random variable and one or more dependent random variables. For a given set
of values of the independent variables the regression gives a mean value of
the dependent variable. Regression analysis is used in climatology to estimate
the constants in functional relationships where these are not given directly
as physical quantities. It is used for the establishment of relationships
both between climatological series and between climatological series and
applied variables. The latter may often be accomplished without climatologi-
cal series by employing sets of values of the independent variables which are
simply uncorrelated within each set and which vary over a range of values
equal to that in the climatological series. Thus the relationship between an
applied variable and climatological variables can often be established with a
short simultaneous record of the two sets of variables.

The first problem in regression analysis is to estimate the con-
stanhts. This is commonly done by the least squares method applied to the Tesi-
duals about the regression function obtained when the values of the independent
variables have been substituted. The minimization of the residuals of the
dependent variable alone requires that the values of the independent variables
be fixed or be measured essentially without error. If this condition is not
met biases will be introduced in the regression constants. As mentioned above
the values of each variable must also be mutually independent. The least

squares estimates have certain optimum properties which make the method a
desirable one fitting regressions.
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The least square principle is very general and may be applied to
almost any type of function. If the regression function is of the form

y :R(X]_’ coey X5 po! Bly ceey pk)

the sum of the square residuals may be expressed as

n n 2
zej = Z[yj - R(le’ ey ij; BO’ Bl, ey Bk)]
n
2
=X(y. - R.)
(yJ ;

where j runs over the sample values from 1 to n. The "least square" is ob-
tained by minimizing the sums of squared residuals through differentiating
and setting to zero. This gives the so-called normal equations

a3 2
A 3(y. -R.)Z =0
app J
n .
2 5(y.-R)%=0
ap; v j
n
S(y. - R.)% =0

9 .
9Py J J

The simultaneous solution of the normal equations gives the least squares
estimates of By, Py, ...y Py

The regression function R can, of course, take an infinite variety
of forms. As usual, the linear forms are the most used. Linear regressions
for one and two independent variables are considered here. More complicated
functions may be analysed by finding the proper normal equations by the pro-
cess given above.

The linear regression equation in one independent variable is best
written as

Y=a+ B (x-H)
since measuring x from the mean p makes the least squares estimate of a in-

dependent of that of B . The least squares estimates of q and B based on a
sample of n pairs of (x,y) are

a =7y
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n
and zy (X—-X)

E (x-5)2
where the summation is over the sample values,
The regression equation may then be written as
y, =&+ b(x-x)

Frequently it is known by physical means that a = 0. In this case the re-
gression equation becomes

Yo = bx

There is now only one normal equation which gives the least squares estimate

IXy
b= ——
Ix2

It is often necessary to test the fitted regression for reality and for line-
arity. This is best done by the analysis of variance which is a technique
devised by R. A. Fisher to analyse the mean squares due to several components
of the variation. TFor the linear regression given above it may be observed
that there is a total variability of the y which is divided into a variability
accounted for by the regression, and a variability unaccounted for by the re-
gression or residual variability. This may be expressed conveniently by an
analysis of variance table:

ANALYSIS OF VARIANCE

Sum of squares Degrees of freedom Mean square
Accounted for by n _.2
regression Z(yc—y) = 0p 1 QR/l
Unaccounted for by n 5
regression Z(y—yc) = 000 n-2 G%fQQGPQ

(residual)

Accounted for by n 5
mean (total) I(y-y)

QT n-1

"Degrees of freedom" is a term used by R. A, Fisher to express the
whole number by which the sum of squares is to be divided to give the mean
square. When the mean has been estimated, and therefore fixed, only n-1 of
the observations may vary, since once the mean is fixed and n-1 of the obser-
vations are chosen, the nth value is automatically fixed by the fact that the
n values must average to the mean. One degree of freedom is therefore taken
up by fitting the mean, or n-1 degrees of freedom remain for estimating the
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total mean square which involves the mean., It will not be needed and so is not
computed. A further degree of freedom is lost in estimating b; hence there
are n—-2 degrees of freedom left for estimating the residual mean square. It

is seen that the degrees of freedom of the components of variation in an ana-
lysis of variance table add to the total degrees of freedom. The sum of
squares QT and QR are obtained from

Il

n n
2 1 2
Iy© - Z (Ty)
n

QT
and
2y (5)1°
B (x-x)?
The squared correlation coefficient is given by

r® - o/,

From this it is seen that r2 gives the proportion of the sum of squares or
variability explained by the regression. Thus, in using the correlation co-
efficient as a measure of the goodness of relationship, it is best to square

it in order to obtain a realistic estimate of the amount of variability which
the linear relationship explains. This will, of course, always be less than r.

The analysis of variance table also provides a test of significance
of the linear regression. The statistic F is given by

0p/1
F(1,n-2) = ——
(QT—QR)/H_Z

This is to be compared to an F or variance ratio table with 1 and n-2 degrees
of freedom at the 0.10 or 0.05 significance level to determine whether a linear
relationship really exists; or, in other terms, whether the mean square ex-—
plained by the linear regression is large enough, in comparison to the residual
mean square, to decide that the regression is due to a real effect rather than
to random sampling,

There has been some tendency to attribute too much importance to
tests of significance or tests of hypotheses. Thus it might be concluded that
if a regression is significant no more is required: +this, however, is far
from true, for there are two kinds of significance,; practical and statistical.
If a regression is not practically significant it is of little use to test its
statistical significance. If, however, it is practically significant, then
the test of hypothesis must be made in order to test for reality. In the case
of the linear relation, practical significance is measured by the squared cor-
relation coefficient, that is by whatever proportion of the total variability
ig explained by the regression. It may be observed that if r<€0.50, i.e.,
r=< 0,25, the regression is of very doubtful practical use.
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If the sample values of the independént variable x can be divided
into, say, four or more classes or columns with at least two y values in each
class, a second analysis of variance table may be prepared which will lead to
a test of linearity. Such a test will tell whether it might be worth while
to fit additional terms of higher degree.

With the data arranged into classes or columns with n: in the jth
column, the total variability may be divided into variability be%ween column
means arranged according to increasing x and variation within columns or re-
sidual, This leads to & second analysis of variance table:

ANALYSIS OF VARIANCE

Sum of squares Degrees of freedom [Mean square
Column k 0.5 5 ' ‘ o .
zZ X v =y = - -
means |s%; 3y 1'1.j(y.j y) O ‘ k-1 %W“k 1)
k n j _ 5 ;
Residual ‘E Z (yij_y.j ) = QT_QM n-k (QT“QM)/(n‘k)
J:]. -i=1
ko Lj kMg
2 1 o N :
T z = (X X — -
Total 1.2y §3 %55 -5 Gh i Yig)” = Op n-1

An F- test may be made on this table by computing
QM/k -1
(Qp-Qy)/nk

F(k-1, n-k) =-

If this F is not significant, then there is no relation between y and x linear
or otherwise. Had there been doubt about both linearity and whether there were
a relationship at all, this test could have been made first.

It will be.seen from the first analysis of variance table that the
fitting of the linéar regression leaves Qn Q of the variability expressed as
a sum of squares unexplained by the regre531on. If a more complicated func-
tion is to provide an improved fit, the improvement must come by removing or
reducing this residual varlablllty. Hence, this residual sum of squares may
become the total for a third analysis of variance table. Since by the least
squares prlnclple a maximum amount of variability will be explainéd by fitting
the column means, the residual from this fitting will be the smallest possible.
If this residual is subtracted from the residual left by linear regression,
the remainder is the amount explained by the column means over what was ex-
plained by the linear régression. The analysis of variance is as follows:
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ANALYSTS OF VARIANCE

Sum of squares Degrees of freedom" Meén square
Column means :
about regression QM—QR k-2 (Q,M-Q,R)/k-2;
Column mean ' ' l o
residual QT—QM n-k (QT—QM”GPK
Linear regression
residual QT—QR 2

The test for linearity is now made by comparing

(QyQg)/k-2
(Qp-Q)/n-k

P(k-2, n-k) =

to the value'corresponding to k-2 and n-k degrees of freedom of an F- table,
If this is significant the linear regression does not explain all of the vari-
ability and it may be desirable to fit higher degree terms..

Once the regression line has been found 51gn1flcant in both the
practlcal and statistical senses, the next interest will be in what error is
committed in its use. This may be obtained from the confidence interval for
Y, the true value of y_ and the prediction interval for (y - Y), the departure
from the true regression. These are found by taking the variance of y, and
(y = yc) using the regression equation. The square roots of these variances
give the required standard deviations. The standard deviation of y, at x is
given by

1
On-0Rr %)2 2

@] = [

Z(x—x)

The 0,90 confidence interval for y, at a given value of x, y (x), is given by
Py, (x)-t_5(0=2) s[y, (x)] < ¥ (x) <y (x) + by gs(n-2) sy, (x)] } = 0.90

vhere Y (x) is the true value of y.(x) at x and t, .0 (n-2) is ‘the value at 0,05
probability from a table of Student’s t. It should be remembered that yc(x)
is a conditional mean value, not a future y value, so the confidence interval
ig Por thisg mean value, 1t is not the confidence interval for a partlcular
predlcted'value. This must be obtained from the standard dev1at10n of the
observations of the y with respect to the true regression line. This will
include the variation in the points about the sample regression line plus the
variation in y, or the sample regression.
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This standard deviation at a given x is

Qp-0p )2 z

(x-x

sE&-Y (XZI ={

i+2+ —51}
n-2 ' n I(x=x)

and is sometimes called the standard error of a forecast in statistical lan-

guage, The 0,90 prediction interval for a predicted value of y at the given
x is then

P{yc(x) - t‘os(n-Z) sE§-Y(x§] <.[y-Y(xﬂ < ye(X) + t.95(n—2)s [&-Y(xﬂ } = 0.90
where + is the same as in the confidence interval for Y.*

As in the case of the air conditioning design cooling load there
may be two meteorological variables involved, but the equation connecting them
with the design variable may not have its constants determined physically. In
that case the problem is one of regression with two independent variables. Or,
on the other hand, the simple linear regression may not account for all the
variability and a quadratic might need to be added. This regression can be
fitted in the same manner as the two independent variable linear regression,

The three-dimensional estimated linear regression may be convenient-—
ly expressed by . ‘

Ky, = b1 + b2(x2 - X2) + b3(x3 - x3)
in which case the estimate b, = x,. The b are called the regression coeffi-
cients and are estimated from the normal equations which are the two indepen-

dent variable case of the general normal equations given earlier, If the
following general notation is used,

n
then
n
- 2
Q1 = Z(xy-%xy)
and

2(x1-§1) (x2-§2)

1

Q12
etc, The normal equations for two independent variables may then be expressed
as ‘

Qooby * Q55b5 = 045

Qp3by + Q33b3 = 0p4

* BSee Example 6 at the end of this chapter.
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or in matrix notation

Q12

915

In this form it will be readily seen how the normal equations can be expanded
for regressions of any number of dimensions. The b, other than b., may be
found directly from a simultaneous solution of the normal equations, but it
-will be found convenient to obtain the solution in terms of the Gaussian
multipliers since they will be useful in exténding the solutions to any number
of independent variables. In terms of the Gaussian multipliers cij and in
matrix notation the first equation is

€22 €23 Q0 Q24 1 0

°23  °33 93 %3 ° 1
or in general for k variables

EI -

where the subscript one does not appear because the x are taken about their
means. Inverting gives

[c] =[]

Thus the matrix of the c¢ is the reciprocal matrix of the Q. The b are then
found from the equation

- _
F_bz 912
by 915
= ¢
Do Q1%
f S — . J—

If
D—92 0
T 23 T 955 33

the ¢ are given by

°22 = P
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€23 7 er/D

and

C

33 = /P

The b are then given by the equations

b1 = X1,

by = ey 1505
and

b

3 = S8 * ©559,

The solutions for k variables depend on the calculation of the reci~
proeal matrix of the Q. This is easily done by the method of pivotal condensa-
tion. While the method is simple to apply, space does not allow it to be dis-
cussed here. TFor details see Rao or Snedecor.

The tests of hypothesis on the regression are again facilitated by

the analysis of variance. For this purpose two additional Q forms are needed
91,2, 7 %11 7 Pafin m PaQyp e m bl
and
= -b
QP-q QPP P-qQPq
where
b =
p.q qu/Qqq

bP q is the sample regression coefficient between'xp and x

The multiple regression anaiysis of variance is then

Multiple regression A/V

s/s D/F
Explained by X, and X4 Qll - 91.23 2
Unexplained by X, and Xy Q1.23 n-3
Total Qll n-1
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where S/S is sum of squares and D/F is degrees of freedom. The multiple re-
gression coefficient is

>
t] 5y = Q- Q) 530/

and the significance test for the multiple regression is given by testing

(Qll Q1.23)/2

F(2, n-3) =
Q) px/{n-3)

The three simple analyses are as follows:

A/V of x

1 on X,

s/s D/F
Explained by X, Qll—Ql 5 1
Unexplained by X5 Ql 5 n-2
Total 011 - n-1

The simple correlation coefficient between Xq and Xs is then given by

f.z = (Q; - 9 Ve,

T

and the F- test by
(9, - 91.2)

F(1, n-2) =
Q, /(n-2)
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A/V of X, on x

3
s/s D/F
Explained by X5 Qll—Ql 3 1
Unexplained by X, Ql 3 n-2
Total Qll n-1
SR Y,
T1.3 = Q779 5)/9),
(Qy1-Q; =)
F(1, n-2) = _ %t .57
Q. 5/(n-2)
A/V of X, on x3
S/s D/F
Explained by Xq Q22—Q2 3 1
Unexplained by X3 Qz 3 n-2
Total Q22 n-1

ry 5 = (9% 5)/%;

(9579, 5)
Qo (n-2)

F(1, n-2) =

From quantities already available in the above tables analyses may

be made of the partial regression coefficients T15.3 and Ty3.2° These are,
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respectively, the correlation between x; and x, after the influence of x5 has
been eliminated, and the correlation between x, and x, gfter the influence of

X, has been eliminated. The analyses of wvariance tab}es again conveniently
provide the term for the correlation coefficients and their tests of signifi-
cance. They also provide tests of whether the fitting of x4 significantly
reduces the residual after x; on x, has been fitted and whether x, signifi-
cantly reduces the residual after x, on x, has been fitted. This 1s important
in determining the significance of an addéd variable, and as will be seen below,
an added power.

Partial A/V of x| on x

3
s/s D/F
Increase due to xj Q1.2—91‘23 1
Unexplained by X, and X4 Q1.23 n-3
Unexplained by X, 91.2 n-2

2
13,2 © (Q'l.e_Ql.Qj)/Ql.2

The test of this partial correlation coefficient and whetheér x, adds signi-

ficantly after X, on X, has been fitted is given by testing

9U.27%.23
Q) o5/ (n-3)

3

F(1, n-3) =

Partial A/V of X, on X,
s/s D/F
Increase due to X, Q1,3_91.23 1
Unexplained by X, and Xq Q1.23 n-3
Unexplained by X4 Ql.3 n-2

2
12.3 ~ (Ql.j_Ql.Qle.j

T
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The test of this coefficient and of x, after X, on X3 has been fitted is given
by

01.3791.23

F(1, n-3) = 91,23 /(n-3)

By observing the scheme of formation of the analysis of variance
tables for two independent variables, the analyses may be extended to any
number of wvariables. The analysis for the second degree equation
2

5X + b3x

X1e = b1 + b

can be accomplished using the above methods by simply substituting the squares
of the x values for x, and similarly substituting higher powers for further
linear terms. The on%y difference is that by will now be obtained from

by =X - byE, - - by Ix°
n
The Gaussian multipliers will now be found to be a great convenience in ob-
taining the standard deviations of x7_ and (xl — E) from which the confidence
bands may be obtained. ZE is the true value of x for a pair (x , X3). The
standard deviations for the three—dimensional reg%ession are then given by

[

{91.23 i1

(x.) = =
S 1C 1’1—3 ‘n

- \2 - \2 - - 1
f 022(x2—x2) + 033(x3—x3) + 2023(X2—X2) (X3—X3i] }

for particular pairs of (X2’ XB). The standard error of a prediction is given
by

ste=2) = {12 a Ll io (e,7)2 4 oy, (x,,)7 + 20y, (xy-%y) (xy-R, 0]}
1 - - 2272 72 33'73 73 2372 72 373

n-3 n

As in the simple two-dimensional case the confidence band may be determined by
employing Student's t with (n-3) degrees of freedom. TFor the case of k indepen-
dent variables the standard deviations become

Do,k 1 & K o _ - h
S(ch) = {———————— [E-+ i£2 j£2 c..(xi—xi) (xj—xj)]}z

n-k +J
where the summation is such that the cross—product terms occur twice and
91.2...k k k 1
~E) = ymree LS S -x -X 2
s(xq-%) "{ . Oo+5+ 325 Zp egylxg=x) (xy Xj)]}

Student's t for determining the confidence interval will in this case have
(n-k) degrees of freedom.
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EXAMPLE 6 - SINGLE REGRESSION

The problem is to find the linear relation between a hotel's daily
electrical consumption in kwh and degree-days above 65°F, The data given are
as follows:

x (DD) v (kwh)
5 878

8 1 081
10 1 160
16 2 948
14 3 094
14 3 002
19 3 275
8 1 200
10 1 357
17 3 354
18 3 254
9 1 355
—0 — 1
148 25 969

From these data Xx = 148, Ly = 25 969, Ixy = 370 330, 3x2 = 2 056,
and Iy® = 68 241 641. Hence § = 25 969 = 1 997.62, n = 13, (Ix)2 = 1 684.92,
13 n
2
i%fl— = 51 876 073.8, and ZzZy = 295 647.08. Reduced sums-of squares are
immediately available: '

. 1 _ ,
ny = IXy - o IxXy = 74 682.92

I(x=X)2 = 2 056 ~ 1 684.92 = 371.08

and

QT = Z(y—§)2 = 68 241 641 - 51 876 074 = 16 365 567
Then

. %x 74 682.92 _ 20126

3 (x-%)2 371.08
X = 148 11.38
13
a=§:35_92:1997,62
13

Hence

1 997.6 + 201.3 (x - 11.4)

It

Ve

or removing X

-297.2 + 201.3 x

Ve
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The regression shows a small negative intercept of -297.2 kwh. This
indicates that air conditioning is used only when the temperature is somewhere
above 650F, If it is bothersome, the regression can be forced through zero.
The regression coefficient is then

b = EXY _ 370 330

Fx2 2 056

= 180.1

and

1 —
y'. = 180.1 x

The regression may be tested and the correlation found through a
simple analysis of variance:

A Degrees of

Variability Sum of squares freedom Mean square
Accounted. for QR — 15 030 556 1 15 030 556
by regression : ' ‘ :
Unaccounted for 0.-0., =1 335 011 11 121 365

. . T *R
by regression (residual)
Accounted for 0., = 16 365 567 12

T

by the mean

The ratio of the mean squares is distributed as F with 1 and 11 degrees of
freedom so

15 030 556
121 365

F(1, 11) = = 123.8

Referring to a table of F it is seen

P(F(1,11) > 4.84)<£ < 0.05

hence the regression is significant.

The square of the correlation coefficient between y and x which is
proportional to the amount of information is given by

Q
> _ % 15 030 556 _
TS g0, T 16365 567 - 009 ¥4

This indicates that a very high proportion of the relationship between y and x

is explained by the linear regression. The squared correlation coefficient is
always to be preferred for an honest measure of a relationship.
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To measure .the error of a prediction one must compute the standard
error ¢6f y — Y where Y is the population value of y,. This is given by

{—QT_QR 1+l+ —(X_’_()Z
n - 2 n x - E)Z ‘

(x - X)?
{121 365 1.077 + —
371.08

For x = 15, (x - §)2 = 184.96; hence

=

s(y - Y)

1l

ol

‘1_
s(y - 1) = {121 365 (1.077 + 0.498) } 2

Vl9l 150 = 437.2

fl

(y - Y) is distributed as t with n-2 degrees of freedom. Referring to a
t-table at n-2 = 11 degrees of freedom, the 0,05 and 0.95 points are + 1.796.
1.796 x 437.2 = 785.2. Therefore the true value of y, or Y at x = 15 is
¢covered by the random interval (3 020 + 785.2) with probability 0.90 or

P(2 234 < Y <3 805) = 0.90
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